
New Quantum Algorithms and Quantum Lower Bounds

Shengyu Zhang

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

September, 2006



c© Copyright 2006 by Shengyu Zhang.

All rights reserved.



Abstract

The last decade witnessed a great surge of fruitful studies in the new paradigm of quantum

computing. Remarkable progress has been made in all the areas including quantum algo-

rithms, quantum complexity theory, quantum error-correcting code, quantum information

theory, quantum cryptography and physical implementations of quantum computers. How-

ever, quantum algorithm design, probably the most important task in quantum computing,

did not make as much progress as people expected. This thesis aims at both designing new

quantum algorithms and studying why efficient quantum algorithms are so hard to design

by proving many lower bounds on quantum query complexity for various problems.

We first review (and generalize) known techniques for designing quantum algorithms

and for proving quantum lower bounds. Using these techniques, we then study the quan-

tum query complexity for many problems, including some specific problems such as Graph

Matching and other natural graph properties, the general tuple search, and local search.

We also study the lowest possible quantum query complexity for a class of functions as a

whole, such as graph properties, circular functions, and functions invariant of a transitive

permutation group, where tight results are given in all these cases.

Finally for the quantum lower bounds techniques themselves, we study the main two

techniques and show that they are incomparable in power. For the most widely used one,

which has a lot of parameters to choose, we show limitations for it in terms of certificate

complexity. This implies that we cannot use the method to prove better lower bounds for

almost all known open problems in this area.

iii



Acknowledgements

I would like to take this opportunity to thank a number of people who helped me during

my years as a graduate student at Princeton University.

First, I’d like to thank my thesis advisor Andy Yao, who has been helping me so much on

many levels, including both research problems themselves and how to be a good researcher

in general. He gave me a great deal of scientific guidance with his distinctive perspectives

and insights on the theory of computing, and I now more and more realize how much

I have been benefiting from all that he taught me. I believe these invaluable four-year

collaborations influence encouragements, evaluations, and suggestions. He also invited me

to go to Chinese University of Hong Kong in January, 2005 to work with him for a month,

which helped me a lot for the study of the local search problem.

Second, I’d also like to thank my co-authers, including Mung Chiang, Prashanth Hande,

Wei Huang, Yaoyun Shi, Xiaoming Sun, Powel Wocjan, and Yufan Zhu; I learned a lot

from the collaborations with them. I’d mention especially that as a former student of

Andy, Yaoyun greatly helped me during all these years at every aspect within and outside

the research. Thanks also to people that I had scientific discussions with, including Scott

Aaronson, Andris Ambainis, Sean Hallgren, Peter Hoyer, Sasha Razborov, Martin Roetteler,

Miklos Santha, Pranab Sen, Mario Szegedy, John Watrous, and Avi Wigderson; I really

learned a lot from all these communications.

What I also benefit from are the wonderful courses taught at Princeton University by

various people like Sanjeev Arora, Boaz Barak, Mung Chiang, Moses Charikar, Bernard

Chazelle, Amit Sahai, and Robert Tarjan. I am also indebted to the people inviting and

iv



supporting me to visit their places: John Preskill and Leonard Schulman at IQI (Caltech),

Miklos Santha at CNRS (Université ParisSud), Yaoyun Shi at University of Michigan, and

Andy Yao at Chinese University of Hong Kong.

The manuscript of the thesis was read by my advisor Andy Yao and two readers in my

committee: Nicholas Pippenger and Sasha Razborov. Thank all of them very much for

reading the manuscript so carefully and giving me so many detailed comments, corrections

and suggestions to improve the quality the thesis to a great extent.

As always, I am indebted to my parents so much; they always encouraged, trusted and

supported me with no reason. Em... actually, there is a reason: the love. Thank you and I

love you too!

Finally, I acknowledge the financial support of the National Science Foundation under

grants CCR-0310466 and CCF-0426582.

v



Contents

Abstract iii

Acknowledgements iv

Contents vi

List of Figures ix

List of Tables x

1 Introduction and Summary of Results 1

1.1 A brief history of quantum computing . . . . . . . . . . . . . . . . . . . . . 1

1.2 Quantum query complexity: What is it and why do we study it? . . . . . . 2

1.3 Summary of results and the organization of the thesis . . . . . . . . . . . . 5

2 Preliminaries and Basic Theorems 9

2.1 General notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 A brief review of quantum mechanics in its mathematical framework . . . . 10

2.3 Query (decision tree) computation models: deterministic, randomized and

quantum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Some other complexity measures . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Two main tools for proving quantum lower bounds . . . . . . . . . . . . . . 13

2.5.1 The polynomial method . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.5.2 The quantum adversary method . . . . . . . . . . . . . . . . . . . . 14

3 Quantum Query Complexities of Specific Problems 21

3.1 Quantum query complexities for some natural graph properties . . . . . . . 22

3.2 Promised tuple search and the Claw-Finding problem . . . . . . . . . . . . 24

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Review of Ambainis’ search and the generic algorithm . . . . . . . . 26

3.2.3 Proof of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Randomized and Quantum Query Complexities for Local Search on Dif-

ferent Graphs 31

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Preliminaries and notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Lower bounds for Local Search on product graphs . . . . . . . . . . . . . . 38

4.4 Applications to the two special graphs . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Lower bounds for Local Search on the Boolean Hypercube . . . . . . 44

4.4.2 Lower bounds for Local Search on the constant dimensional grid . . 47

4.5 New algorithms for Local Search on general graphs . . . . . . . . . . . . . . 61

4.6 Open problems: remaining gaps . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Quantum Query Complexities for a class of functions: weakly symmetric

functions 69

5.1 Background of Monotone Graph Properties and Aanderaa-Rosenberg Con-

jecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Is monotonicity still necessary in the quantum version of the conjecture? 70

5.2 Quantum algorithms for Scorpion . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 An Õ(n3/4) algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.2 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 One other symmetry group: circular functions . . . . . . . . . . . . . . . . . 80

5.4 Quantum lower bounds for all weakly symmetric functions . . . . . . . . . . 84

vii



6 Quantum Query Complexity vs. Other Complexity Measures 87

6.1 The quantum query complexity and the influence . . . . . . . . . . . . . . . 87

6.1.1 Proof by the polynomial method . . . . . . . . . . . . . . . . . . . . 88

6.1.2 Proof by the quantum adversary method . . . . . . . . . . . . . . . 90

6.2 The quantum query complexity and the quantum communication complexity 91

7 On the Power of the Quantum Adversary Method 95

7.1 A limitation of the quantum adversary method for general partial functions 96

7.2 Limitations of the quantum adversary method for total functions . . . . . . 100

References 105

viii



List of Figures

3.1 X and Y : a pair of inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 R ⊆ X × Y : the relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 The proof of the reflecting rule. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Illustration for changing a block in the 2-dimensional grid . . . . . . . . . . 56

4.3 A different random walk in the 2 dimensional-grid . . . . . . . . . . . . . . 60

5.1 A Scorpion graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 A Sink graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

ix



List of Tables

x



Chapter 1

Introduction and Summary of

Results

We will start the thesis by giving a brief review of the history of quantum computing,

followed by some discussions on the motivations of quantum algorithm design and lower

bound on quantum query complexity, two important and closely related areas in quantum

computing. Then we summarize the results in the thesis, which combines several previous

research papers by the author [78, 79, 80] or jointly done with other co-authors [65, 71].

1.1 A brief history of quantum computing

The idea of using the distinctive nature of quantum mechanics to accelerate computation

dates back to as early as 1982, when Feynman pointed out that simulating quantum systems

on classical computers seems to have exponential slowdown and asked whether it is possible

to build computers using quantum effects to have substantial speedup [33]. Deutsch took

another big step by introducing the notion of universal quantum computer, quantum circuits

and universal quantum gate sets [27, 28]. Concrete problems, like those proposed by Deutsch

and Josza [29] and by Simon [68] were then constructed and used to show that quantum

computer can have exponential speedup on some computational tasks. However, these

1



2

problems seemed too artificial to be of big practical interest. This line of research culminated

in Shor’s [66] polynomial time algorithms for factoring and discrete logarithm problems,

two problems used in many public-key cryptosystems because of their classical hardness

— the best known classical algorithms use exponential time. This discovery caused great

excitement among both theoretical computer scientists and experimental physicists, and

greatly helped to open up the whole new paradigm of quantum computing.

Various other areas including quantum complexity theory, quantum error-correcting

code, quantum information theory, quantum cryptography and physical implementations of

quantum computers were also rapidly developed. See the textbook by Nielsen and Chuang

[52] for an extensively introduction to this new and fantastic paradigm.

1.2 Quantum query complexity: What is it and why do we

study it?

Among all the areas in quantum computing and quantum information processing, quantum

algorithm design is one of the most important tasks. On one hand, we can solve more

problems efficiently with faster quantum computers, on the other hand, this threatens the

current cryptosystems. Therefore, there has never been lack of effort on designing efficient

quantum algorithms.

There really were more new algorithms discovered. Shortly after Shor’s algorithms,

Grover found a simple searching algorithm which has a quadratic speedup over the best clas-

sical one [34]. Because searching is such a fundamental and ubiquitous problem, Grover’s

search is widely used as a primitive for quantum algorithm design. However, since it gives

only a quadratic speedup, it was natural that people hoped to discover more quantum algo-

rithms with exponential speedup over the best known classical ones. Two major candidate

problems that seemed promising are Graph Isomorphism and (Gap) Shortest-lattice Vector;

both are classically hard and very important on many levels. People then found that all

these problems can be put into a general formalism of Hidden Subgroup Problem (HSP).



3

The HSP for a (finitely-generated) abelian group, which contains Factoring and Discrete

Logarithm as special cases, is not hard and people know polynomial time quantum algo-

rithm for it. For non-abelian groups, people have found efficient quantum algorithms for

some special cases, including Hallgren’s [36] polynomial time algorithm for Pell’s equation

and class groups, van Dam, Hallgren and Ip’s polynomial time algorithm for some hidden

shift problems [73], Kuperberg’s subexponential time algorithm for HSP over the dihedral

group [44], and some others. Most of them are of algebraic or number theoretical nature,

and the basic technique is the quantum Fourier transform; see [49] for a survey of HSP. But

the general case of non-abelian group, or even for the symmetric group and dihedral group

(which correspond to the Graph Isomorphism and (Gap) Shortest-lattice vector problems

the latter showed by [59]), are much harder than first appeared.

Why is it so hard to design quantum algorithms? Different people may have different

explanations, but the two possibilities addressed by Shor [67] may be representative: First,

there might be very few problems that quantum computers can solve substantially faster

than classical computers; and second, we do not have much intuition of how quantum

computers work since our experience is almost all from classical world.

Considering the enormous payoff of efficient quantum algorithms and the difficulty of

discovering them, Shor suggested first looking at those problems that already have efficient

classical algorithms. On studying them, we may find new quantum algorithm techniques,

which may be used to design algorithms for broader class of problems, some of which may

have exponential speedup by quantum algorithms!

This other line of research for quantum algorithm design has already been active since

Grover’s search. Different than the the Hidden Subgroup problems, these quantum algo-

rithms are for problems with a searching flavor. The main techniques used in designing

algorithms for these problems are Grover’s search, quantum walk, and classical techniques

like random sampling. Interestingly, for these problems, we can not only design algorithms,

but also prove lower bounds on the query complexity, which we will briefly discuss next.

The quantum query model is a natural extension of the decision tree, a well studied clas-



4

sical computation model. In these models, algorithms can access the input only by making

queries, and we care about the query complexity, i.e. the minimum number of queries

needed to compute a function. In the quantum query model, we can use superposition to

get all the variable information by just one query. Unfortunately, the answers are also in a

superposition, thus it is not straightforward to extract the function value, the information

we want. Also, the operations between quantum queries must be unitary, which makes

the design of quantum query algorithms harder. Again, we care about the quantum query

complexity of a function, the minimum number of quantum queries needed to compute it.

Pinning down the quantum query complexity for a problem may seem more like a

mathematical recreation at first sight. However, we want to argue that quantum query

complexity has many more implications for at least the following reasons.

1. Essentially all known quantum algorithms are query algorithms! We do not know

any other techniques to design quantum algorithms. Therefore, a strong quantum lower

bound1 is a good indiction for the hardness of the problem for quantum computers.

2. The hardness result is not necessarily bad news — impossibility results can have

important implications for other areas, such as cryptography. For example, the quantum

lower bounds for the Permutation Inversion [15, 10] and Collision [5] problems leave open

the possibility of one-way functions for quantum computers. Another example is that lower

bounds on quantum query complexity can give some oracle results in quantum complexity

theory, such as [3].

3. At first glance, query algorithms are all sublinear; while with quantum computers

we hope to solve those problems not in P (or even BPP). So why is a sublinear quantum

algorithm interesting at all?

In some cases, we can formalize the problem using exponentially many variables. Thus

a linear algorithm for the new problem is an exponential algorithm for the original problem!

For example, we can formalize the factoring problem as a Hidden Subgroup Problem with

the size of the group being exponential of the size of the input of the factoring problem. Any
1In literature, the phrase “quantum lower bounds” usually means lower bounds on quantum query com-

plexity.



5

known classical algorithm for factoring needs polynomial time for the new HSP problem,

which is exponential time for the original factoring problem. But Shor’s algorithm is of

polylog time for that HSP problem. Therefore we should not ignore the quantum query

complexity simply because it is studying sublinear algorithms — there may be reductions

between linear time and exponential time!

4. It may sound a bit counterintuitive, but it turns out that the study of quantum

lower bounds has implicit contributions to the quantum algorithm design. Since algorithm

design and lower bounds are closely coupled, pinning down the quantum query complexity

for various problems gradually guides the research community to those problems that still

have a gap between upper and lower bounds. Then one of the two possibilities is that the

upper bound is not tight, which means our old algorithm design techniques are not enough.

With more effort put on these problems, new algorithm design technique may come out of

it.

As a good example, after Aaronson and Shi’s lower bound of Ω(N2/3) for Element

Distinctness [5] and Buhrman et al. upper bound of O(N3/4) (using Grover’s search) [22],

Ambainis gave the matching upper bound by using discrete quantum walk in a novel way,

opening up a new avenue of quantum algorithm design.

5. More surprisingly, the study of quantum lower bounds yielded new lower bound

techniques for classical query complexity (Aaronson [2])! In this thesis, we will also use the

technique to get tight results for both quantum and classical query complexity for some

problems.

1.3 Summary of results and the organization of the thesis

In Chapter 2 we give notations, definitions and basic theorems used in the thesis. In

particular, we will summarize the two known techniques for proving quantum lower bounds:

the polynomial method and the quantum adversary method. Different versions of the

quantum adversary method are discussed, and a further generalization is presented.

In Chapter 3 we study the quantum query complexity for some specific problems. These



6

include graph properties like Bipartiteness, Bipartite Matching, and Graph Matching. A

lower bound of Ω(n1.5) is proved for all the three properties, improving the previous bound

of Ω(n).

Also included is the promised version of the tuple search, which is to search for a k-tuple

satisfying some pre-defined relation. When k = 2, it is essentially the (m,n) Claw-Finding

problem. We get the tight bound Θ((mn)1/3) for this problem, improving both previous

upper bound of O(n1/2m1/4 + m1/2) and previous lower bound of Ω(m1/2) (where without

loss of generality they assume m ≥ n) by Buhrman, Durr, Heiligman, Hoyer, Magniez,

Santha and de Wolf [22].

Chapter 4 is devoted to Local Search, a problem defined as follows. On a fixed known

graph, find a local minimum of a black-box function mapping each vertex to an integer.

Local Search is of both practical and theoretical importance to combinatorial optimization,

complexity theory and many other areas in theoretical computer science.

We study the problem in both the randomized and the quantum query models and give

new lower and upper bound techniques in both models. The lower bound technique works

for any graph that contains a product graph as a subgraph. Applying it to the Boolean

hypercube {0, 1}n and the constant dimensional grids [n]d, two particular product graphs

that recently drew much attention, we get the following tight results:

RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6); (1.1)

RLS([n]d) = Θ(nd/2), ∀d ≥ 4, QLS([n]d) = Θ(nd/3), ∀d ≥ 6. (1.2)

Here RLS(G) and QLS(G) are the randomized and quantum query complexities of Local

Search on G, respectively. For the other few small d’s omitted in above formula, our new

bounds also significantly improve the old ones. These improve the previous results by

Aaronson [2], Ambainis (unpublished) and Santha and Szegedy[63].

Our new algorithms work well when the underlying graph expands slowly. As an appli-

cation to [n]2, a new quantum algorithm using O(
√

n(log log n)1.5) queries is given. This

improves the previous best known upper bound of O(n2/3) (Aaronson, [2]), and implies that

Local Search on grids exhibits different properties in low dimensions.



7

In Chapter 5, we consider the lowest possible quantum query complexity for a class of

functions as a whole. In decision tree models, considerable attention has been paid on the

effect of symmetry on computational complexity. That is, for a permutation group Γ, how

low can the complexity be for any Boolean function invariant under Γ? We investigate this

question for quantum decision trees for graph properties, directed graph properties, and

circular functions. In particular, we prove that the n-vertex Scorpion graph property has

quantum query complexity Θ̃(n1/2), which implies that the minimum quantum complexity

for graph properties is strictly less than that for monotone graph properties (known to be

Ω(n2/3)). A directed graph property, Sink, is also shown to have the Θ̃(n1/2) quantum

query complexity. Furthermore, we give an N -ary circular function which has the quantum

query complexity Θ̃(N1/4). Finally, we show that for any permutation group Γ, as long

as Γ is transitive, the quantum query complexity of any function invariant to Γ is at least

Ω(N1/4), which implies that our examples are (almost) the best ones in the sense of pinning

down the complexity for the corresponding permutation group.

In Chapter 6, we study the relations between the quantum query complexity and other

complexity measures. First we show a lower bound for the quantum query complexity in

terms of the total influence. In the second part, we show that in the tuple search task, if the

components in the desired tuple are distributed, then we can consider both the quantum

query complexity and the quantum communication complexity simultaneously. It is shown

that we can trade one resource for another.

We then study in Chapter 7 the quantum lower bound techniques themselves. Since

many lower bounds have been proved using the polynomial method and the quantum ad-

versary method, it is natural to compare the power of the two techniques. Also, as we

will see from the proof for the lower bounds on Local Search, the application of the quan-

tum adversary method could be very complicated since it has a lot of parameters to choose.

Sometimes other techniques, like heavy analysis at random walks on graphs for Local Search,

may be involved to apply the method. Therefore, for a particular problem, it is natural to

wonder whether we can use the quantum adversary method in some clever way to improve



8

the previous lower bound.

Here we will answer both questions. For the quantum adversary method, we will show

various limitations in terms of certificate complexity, a well studied classical complexity

measure. Using these limitations, first we can get that the quantum adversary method

is not always tight. In particular, for the Element Distinctness problem, the polynomial

method can be used to get tight lower bound but we cannot use the quantum adversary

method to achieve it, no matter how we pick all the parameters.

More importantly, these limitations imply that for many problems such as Triangle, k-

Clique, Bipartiteness, Bipartite/Graph Matching and And-Or Tree which draw

wide interest and whose quantum query complexities are still open, the best known lower

bounds cannot be further improved by using the quantum adversary method!



Chapter 2

Preliminaries and Basic Theorems

In this chapter we give some notations, definitions and basic theorems. Some notations or

definitions are just used in one chapter, then we will put those in the beginning of that

chapter.

Theorem 7 and Theorem 8 are from paper [78]

2.1 General notations

In the thesis, we will consider various computation tasks. There could be different formal-

izations of a computation task; one standard way is as follows. For a function f : In → O,

we are required to design an algorithm such that for any input x = x1x2...xn, the algorithm

runs on the input x and gives the desired output f(x). Here I and O are input and output

sets, respectively, and the function is n-ary, which means that it takes n variables as an

input. Sometimes we could also consider other generalizations, such as partial functions,

where the input set is a subset of In, and searching problems (also called relations), where

for each input, there may be more than one “correct” output, and the algorithm succeeds

by outputting any one of them.

We use [n] to denote the set {1, 2, ..., n}. For an n-bit binary string x = x1...xn ∈ {0, 1}n,

let x(i) = x1...xi−1(1−xi)xi+1...xn, i.e. the string obtained from x by flipping the coordinate

i. In general, for a subset I ⊆ [n], xI is obtained from x by flipping all the coordinates in I.

9



10

2.2 A brief review of quantum mechanics in its mathematical

framework

The mathematical model for quantum mechanics is very simple.

1. Any isolated quantum system corresponds to a quantum state |ψ〉, which is mathe-

matically a unit vector in a Hilbert space H. The Dirac notation “ket” |.〉 is used to

denote a quantum state.

2. The evolution of a closed quantum system is specified by a unitary operator U in H.

3. A measurement on orthogonal subspaces S1 and S2 (where S1 ⊕ S2 = H) causes the

system collapse to P1|ψ〉/‖P1|ψ〉‖ or P2|ψ〉/‖P1|ψ〉‖, with probability ‖P1|ψ〉‖2 and

‖P2|ψ〉‖2, respectively, where Pi is the projector on the subspace Si. When it collapses

to Si, then an outcome i is observed.

4. A quantum system including two components whose corresponding states are |ψ1〉
and |ψ2〉 corresponds to the state |ψ1〉 ⊗ |ψ2〉, where ⊗ is the tensor product.

For a comprehensive introduction to quantum computing, please refer to the textbooks

[52, 43].

2.3 Query (decision tree) computation models: determinis-

tic, randomized and quantum

A deterministic query algorithm, classically also called a decision tree algorithm, is defined

as follows. For a function f : In → O, the query algorithm accesses the input x ∈ In only

by making queries of the form of “xi =?”. The decision of which query to make for the next

step can depend on the variable values already got from previous queries. Each query has

cost 1, and all the other computation between queries is free. The naive way to compute

any function f is just to query all the variables and thus get all the variable information,

which of course fixes the function value on this input. However, for some functions, we



11

can do the computation by only making a small number of queries. For a function f , the

minimum number of queries needed to compute f(x) for any input x is the deterministic

query complexity of f , denoted by D(f). More formally,

D(f) = min
A: deterministic

max
x

cost(A, x) (2.1)

where the minimum is over all the deterministic query algorithms that compute f correctly

on every input, and the maximum is over all the inputs x, and the cost is the number of

queries A makes on the input x.

A randomized query algorithm is the same except that the algorithm can toss coins

at each step to decide which variable xi to ask next. The randomized query complexity,

denoted by R(f), is the minimum expected number of queries needed for a randomized

query algorithm to compute f(x) for any input x. More formally,

R(f) = min
A: randomized

max
x

Erand(A)[cost(A, x)] (2.2)

We can also allow a small error probability ε. There are two variants of the cost measures:

the worst case and the average case. The worst case cost of a randomized algorithm A is

the number of queries that A makes on the worst input and the worst-case outcomes of

A’s coins. The average case cost of a randomized algorithm A is the expected number of

queries that A makes on the worst input, where the expectation is over A’s randomness.

More formally,

Rworst
2,ε (f) = min

A: randomized,ε−error
max

x,rand(A)
cost(A, x) (2.3)

Rexpected
2,ε (f) = min

A: randomized,ε−error
max

x
Erand(A)[cost(A, x)] (2.4)

Since Rworst
2,ε+δ (f) ≤ 1

δ Rexpected
2,ε (f) by Markov’s Inequality, we usually do not distinguish

these two measures explicitly and just use R2(f) to denote the double-sided constant error

probability randomized query complexity of f .

The quantum query model, formally introduced in [20], has a working state in the form

of
∑

i,a,z αi,a,z|i, a, z〉. A quantum query on the input x proceeds as follows.

∑

i,a,z

αi,a,z|i, a, z〉 →
∑

i,a,z

αi,a,z|i, a⊕ xi, z〉 (2.5)



12

where i is the position that we are currently interested in, the register where a is holds

the answer xi by XOR-ing xi to a, and z is something not involved in this step of query

computation. A T -query quantum query algorithm works as a sequence of operations

U0 → Ox → U1 → Ox → ... → UT−1 → Ox → UT (2.6)

where Ox is as defined above, and each Ut is a unitary operation that does not depend

on the input x. In the quantum query model, it is more natural to consider the bounded

error case because practical quantum systems have various kinds of errors anyway. The ε

quantum query complexities, denoted by Q2,ε(f), is the minimum numbers of queries we

need to make to compute f by a quantum query algorithm with error probability at most

ε. Again, the quantum query complexity is Q2(f) = Q2,1/3(f).

For more details on the query models, the corresponding query complexities, many other

complexity measures, and known relations among them, we refer to [23] by Buhrman and

de Wolf as an excellent survey.

2.4 Some other complexity measures

In this section, we review some complexity measures.

We first define sensitivity, block sensitivity and certificate complexity of a function f .

Recall that for a subset I ⊆ [n], xI is obtained from x by flipping all the coordinates in I.

Definition 1 The sensitivity of a Boolean function f on input x = x1x2...xn ∈ {0, 1}n is

s(f, x) = |{i ∈ {1, ..., n} : f(x) 6= f(x(i))}|, (2.7)

where x(i) is the n-bit string obtained from x by flipping xi. The sensitivity of f is

s(f) = max
x∈{0,1}n

s(f, x). (2.8)

Definition 2 The block sensitivity of f on x is the maximum number b such that there

are b disjoint sets B1, ..., Bb ⊆ [n] for which f(x) 6= f(xBi). The block sensitivity of f is

bs(f) = maxxbs(f, x).



13

Definition 3 A certificate set CSx of f on x is a set of indices such that f(x) = f(y)

whenever yi = xi for all i ∈ CSx. The certificate complexity C(f, x) of f on x is the

size of a smallest certificate set of f on x. The b-certificate complexity of f is Cb(f) =

maxx:f(x)=b C(f, x). The certificate complexity of f is C(f) = max{C0(f), C1(f)}.

It is obvious that s(f) ≤ bs(f) ≤ C(f).

Definition 4 A polynomial p(x) represents a function f : {0, 1}n → R if p(x) = f(x) for

all x ∈ {0, 1}n. The degree deg(f) of a function is the degree of the multilinear polynomial

representing f .

This is well defined because it is not hard to see that there exists a unique multilinear

polynomial presenting f .

Definition 5 A polynomial p(x) approximates a function f : {0, 1}n → {0, 1} up to ε if

|p(x) − f(x)| ≤ ε for all x ∈ {0, 1}n. The ε-approximate degree d̃egε(f) of a function is

the minimum degree of a multilinear polynomial approximates f up to ε. The approximate

degree d̃eg(f) = d̃eg1/3(f).

2.5 Two main tools for proving quantum lower bounds

There are mainly two methods for proving quantum lower bounds: the polynomial method

and the quantum adversary method. We will briefly introduce these two tools now, and

give a generalized version of the quantum adversary method. See [39] for a comprehensive

survey of this research area.

2.5.1 The polynomial method

The polynomial method is essentially the following theorem by Beals, Buhrman, Cleve,

Mosca and de Wolf [20].

Theorem 1 (Beals, et al. [20])

Q2,ε(f) ≥ d̃egε(f), and in particular, Q2(f) ≥ d̃eg(f) (2.9)



14

An important result from this theorem is that the deterministic and quantum query com-

plexities for any total Boolean function are polynomially related.

Theorem 2 (Beals, et al. [20])

D(f) ≤ O(Q2(f)6). (2.10)

So to prove a quantum lower bound, it is enough to prove the lower bound for the

approximate degree. Some theorems are known from the approximation theory, and one

example is as follows whose proof can be found in Chapter 4 of [30].

Theorem 3 (Bernstein Inequality) For any univariate polynomial p(t) with degree d and

||p||[−1,1] = 1, we have

|p′(t)| ≤ d/
√

1− t2, ∀t ∈ (−1, 1) (2.11)

where ||p||D = supt∈D |p(t)|.

It is worth to remark that only lower bounds for univariate polynomials are known,

following the Theorem 3 and some other ones in a similar spirit. So it seems hard to use the

polynomial method to pin down the exact quantum query complexity for non-symmetric

functions. (It is easy to apply the method to get the quantum query complexity for any

symmetric function [20].)

2.5.2 The quantum adversary method

Unlike the polynomial method, the quantum adversary method looks complicated. How-

ever, as will be seen later, it is powerful enough to achieve good lower bounds for many

nonsymmetric functions. The quantum adversary method was first proposed by Ambainis

[10], where two versions of the method were given.

Theorem 4 (Ambainis, [10]) Let f : {0, 1}N → {0, 1} be a function and X, Y be two

sets of inputs such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let R ⊆ X ×Y be a relation such

that



15

1. ∀x ∈ X, there are at least m different y ∈ Y such that (x, y) ∈ R.

2. ∀y ∈ Y , there are at least m′ different x ∈ X such that (x, y) ∈ R.

3. ∀x ∈ X,∀i ∈ [N ], there are at most l different y ∈ Y such that (x, y) ∈ R, xi 6= yi.

4. ∀y ∈ Y ,∀i ∈ [N ], there are at most l′ different x ∈ X such that (x, y) ∈ R, xi 6= yi.

Then

Q2(f) = Ω

(√
mm′

ll′

)
. (2.12)

Since this method looks complicated, it is worth to make some remarks about its intuition

before giving the second version of the method. Note that if f(x) 6= f(y), thus any quantum

algorithm needs to distinguish x and y. The first condition says that for x, there are a large

number m of y’s to distinguish from x; the third condition says that querying one position

can only distinguish x from a small number l of y’s. Thus we need some number like m/l

of queries to distinguish x and all y’s that (x, y) ∈ R. Similarly for m′ and l′. Of course,

the argument is far from rigorous; it however gives a intuitive feeling why this might be a

lower bound.

The second version of the method is as follows.

Theorem 5 (Ambainis, [10]) Let f : IN → {0, 1} be a Boolean function where I is a

finite set, and X, Y be two sets of inputs such that f(x) 6= f(y) if x ∈ X and y ∈ Y . Let

R ⊆ X × Y satisfy

1. ∀x ∈ X, there are at least m different y ∈ Y such that (x, y) ∈ R.

2. ∀y ∈ Y , there are at least m′ different x ∈ X such that (x, y) ∈ R.

Let

lx,i = |{y : (x, y) ∈ R, xi 6= yi}|, ly,i = |{x : (x, y) ∈ R, xi 6= yi}| (2.13)

and

lmax = max
x,y,i:(x,y)∈R,i∈[N ],xi 6=yi

lx,ily,i. (2.14)



16

Then

Q2(f) = Ω

(√
mm′

lmax

)
. (2.15)

Clearly, the second one generalizes the first one. Ambainis later generalized Theorem 4 in

another way by putting different weights on different input pairs.

Definition 6 Let f : IN → [M ] be an N -variate function. Let R ⊆ IN × IN be a relation

such that f(x) 6= f(y) for any (x, y) ∈ R. A weight scheme consists of three weight functions

w(x, y) > 0, u(x, y, i) > 0 and v(x, y, i) > 0 satisfying

u(x, y, i)v(x, y, i) ≥ w2(x, y) (2.16)

for all (x, y) ∈ R and i ∈ [N ] with xi 6= yi. We further put

wx =
∑

y′:(x,y′)∈R w(x, y′), wy =
∑

x′:(x′,y)∈R

w(x′, y), (2.17)

ux,i =
∑

y′:(x,y′)∈R,xi 6=y′i
u(x, y′, i), vy,i =

∑

x′:(x′,y)∈R,x′i 6=yi

v(x′, y, i). (2.18)

Theorem 6 (Ambainis, [9]) Let f : IN → {0, 1} where I is a finite set, and X ⊆ f−1(0),

Y ⊆ f−1(1) and R ⊆ X × Y . Let w, u, v be a weight scheme for X,Y, R. Then

Q2(f) = Ω
(√

min
x∈X,i∈[N ]

wx

ux,i
· min

y∈Y,j∈[N ]

wy

vy,j

)
(2.19)

Since Theorem 5 and Theorem 6 generalize Theorem 4 in different ways, two immediate

questions can be asked. First, are their powers comparable? Second, can we combine both

approaches and give an further generalized method? For the first question, it turns out that

Theorem 6 is always no worse than Theorem 5.

Theorem 7 Any lower bounds achieved by Theorem 5 can also be achieved by Theorem 6.

Proof For any X, Y, R in Theorem 5, we set the weight functions in Theorem 6 as follows.

Let w(x, y) = 1, u(x, y, i) =
√

lmax/lx,i and v(x, y, i) =
√

lmax/ly,i. It’s easy to check that

u(x, y, i)v(x, y, i) =
lmax

lx,ily,i
≥ 1 = w(x, y)2 (2.20)



17

Note that u(x, y, i) is independent of y, so we have ux,i = lx,iu(x, y, i) =
√

lmax. Sym-

metrically, it follows that vy,i =
√

lmax. Thus, by denoting mx = |{y : (x, y) ∈ R}| and

my = |{x : (x, y) ∈ R}|, we have

min
x,i

wx

ux,i
min
y,i

wy

vy,i
= min

x,i

mx√
lmax

min
y,i

my√
lmax

=
m√
lmax

m′
√

lmax
=

mm′

lmax
,

which means that for any X, Y,R in Theorem 5, the lower bound result can be also achieved

by Theorem 6. ¤

For the second question, the answer is also affirmative. The following theorem is slightly

more general than the one in [78] (Zhang) which works only for Boolean functions. The

proof is almost the same.

Theorem 8 For any f,R and any weight scheme w, u, v as in Definition 6, we have

Q2(f) = Ω
(

min
(x,y)∈R,i∈[N ]: xi 6=yi

√
wxwy

ux,ivy,i

)
. (2.21)

Proof As mentioned before, the query computation is a sequence of operations U0 →
Ox → U1 → ... → UT on some fixed initial state, say |0〉. Note that here T is the number

of queries. Denote

|ψk
x〉 = Uk−1Ox...U1OxU0|0〉. (2.22)

Note that |ψ0
x〉 = |0〉 for all input x. Because the computation is correct with high prob-

ability (1 − ε), for any (x, y) ∈ R, the two final states must be at some distance to be

distinguishable. In other words, we can assume that |〈ψT
x |ψT

y 〉| ≤ c for some constant c < 1.

Now suppose that

|ψk−1
x 〉 =

∑

i,a,z

αi,a,z|i, a, z〉, |ψk−1
y 〉 =

∑

i,a,z

βi,a,z|i, a, z〉, (2.23)

and the oracle works as follows:

Ox|ψk−1
x 〉 =

∑

i,a,z

αi,a,z|i, a⊕ xi, z〉 =
∑

i,a,z

αi,a⊕xi,z|i, a, z〉, (2.24)

Oy|ψk−1
y 〉 =

∑

i,a,z

βi,a,z|i, a⊕ yi, z〉 =
∑

i,a,z

βi,a⊕yi,z|i, a, z〉. (2.25)



18

So we have

〈ψk
x|ψk

y 〉 =
∑

i,a,z

α∗i,a⊕xi,zβi,a⊕yi,z (2.26)

=
∑

i,a,z:xi=yi

α∗i,a⊕xi,zβi,a⊕yi,z +
∑

i,a,z:xi 6=yi

α∗i,a⊕xi,zβi,a⊕yi,z (2.27)

= 〈ψk−1
x |ψk−1

y 〉+
∑

i,a,z:xi 6=yi

α∗i,a⊕xi,zβi,a⊕yi,z −
∑

i,a,z:xi 6=yi

α∗i,a,zβi,a,z.

(2.28)

Thus

1− c ≤ 1− |〈ψT
x |ψT

y 〉| (2.29)

=
T∑

k=1

(|〈ψk−1
x |ψk−1

y 〉| − |〈ψk
x|ψk

y 〉|) (2.30)

≤
T∑

k=1

|〈ψk−1
x |ψk−1

y 〉 − 〈ψk
x|ψk

y 〉| (2.31)

=
T∑

k=1

|
∑

i,a,z:xi 6=yi

(α∗i,a⊕xi,zβi,a⊕yi,z − α∗i,a,zβi,a,z)| (2.32)

≤
T∑

k=1

∑

i,a,z:xi 6=yi

(|αi,a⊕xi,z||βi,a⊕yi,z|+ |αi,a,z||βi,a,z|). (2.33)

Summing up the inequalities for all (x, y) ∈ R, with weight w(x, y) multiplied, yields

(1− c)
∑

(x,y)∈R

w(x, y) (2.34)

≤
T∑

k=1

∑

(x,y)∈R

∑

i,a,z:xi 6=yi

w(x, y)(|αi,a⊕xi,z||βi,a⊕yi,z|+ |αi,a,z||βi,a,z|) (2.35)

≤
T∑

k=1

∑

(x,y)∈R

∑

i,a,z:xi 6=yi

√
u(x, y, i)v(x, y, i)(|αi,a⊕xi,z||βi,a⊕yi,z|+ |αi,a,z||βi,a,z|) (2.36)

=
T∑

k=1

∑

i,a,z

∑

(x,y)∈R:xi 6=yi

√
u(x, y, i)v(x, y, i)(|αi,a⊕xi,z||βi,a⊕yi,z|+ |αi,a,z||βi,a,z|) (2.37)

by the definition of weight scheme. We then use inequality 2AB ≤ A2 + B2 to get

√
u(x, y, i)v(x, y, i)|αi,a⊕xi,z||βi,a⊕yi,z|

≤ 1
2
(u(x, y, i)

√
vy,i

ux,i

wx

wy
|αi,a⊕xi,z|2 + v(x, y, i)

√
ux,i

vy,i

wy

wx
|βi,a⊕yi,z|2), (2.38)



19

and

√
u(x, y, i)v(x, y, i)|αi,a,z||βi,a,z|

≤ 1
2

(
u(x, y, i)

√
vy,i

ux,i

wx

wy
|αi,a,z|2 + v(x, y, i)

√
ux,i

vy,i

wy

wx
|βi,a,z|2

)
. (2.39)

Denote A = minx,y,i:(x,y)∈R,xi 6=yi

wxwy

ux,ivy,i
. Note that

∑

y:(x,y)∈R,xi 6=yi

u(x, y, i) = ux,i,
∑

x:(x,y)∈R,xi 6=yi

v(x, y, i) = vy,i (2.40)

by the definition of ux,i and vy,i. We have

(1− c)
∑

(x,y)∈R

w(x, y) (2.41)

≤ 1
2

T∑

k=1

∑

i,a,z

[
∑

x∈X

√
ux,ivy,i

wxwy
wx(|αi,a⊕xi,z|2 + |αi,a,z|2)

+
∑

y∈Y

√
ux,ivy,i

wxwy
wy(|βi,a⊕yi,z|2 + |βi,a,z|2)] (2.42)

≤ 1
2

T∑

k=1

[
∑

x∈X

√
1/Awx

∑

i,a,z

(|αi,a⊕xi,z|2 + |αi,a,z|2)

+
∑

y∈Y

√
1/Awy

∑

i,a,z

(|βi,a⊕yi,z|2 + |βi,a,z|2)] (2.43)

=
√

1/A

T∑

k=1

(
∑

x∈X

wx +
∑

y∈Y

wy) (2.44)

= 2T
√

1/A
∑

(x,y)∈R

w(x, y) (2.45)

by noting that
∑

x wx =
∑

y wy =
∑

(x,y)∈R w(x, y). Therefore,

T = Ω(
√

A) = Ω
(

min
(x,y)∈R,i∈[N ]: xi 6=yi

√
wxwy

ux,ivy,i

)
, (2.46)

as desired. ¤

There are also some other generalizations [14, 46]. Recently Spalek and Szegedy made

the picture clear by showing that all these generalizations are equivalent in power [69].



20

The relational adversary method

Inspired by the quantum adversary method, Aaronson [2] gave a nice technique to get a

lower bound for randomized query complexity. We restate it using language similar to that

of Theorem 8.

Theorem 9 [Aaronson, [2]] Let F : IN → [M ] be an N -variate function. Let R ⊆ IN × IN

be a relation such that F (x) 6= F (y) for any (x, y) ∈ R. For any weight function w : R →
R+, we have

R2(F ) = Ω
(

min
(x,y)∈R,i∈[N ],xi 6=yi

max
{

wx

wx,i
,

wy

wy,i

})
(2.47)

where

wx,i =
∑

y′:(x,y′)∈R,xi 6=y′i

w(x, y′), wy,i =
∑

x′:(x′,y)∈R,x′i 6=yi

w(x′, y). (2.48)

Note that we can think of Theorem 9 as having a weight scheme too, but requiring

that u(x, y, i) = v(x, y, i) = w(x, y). This simple observation is used in the proofs of the

theorems for Local Search problems in Chapter 4.



Chapter 3

Quantum Query Complexities of

Specific Problems

In this chapter, we will study the quantum query complexity for several specific problems.

In Section 3.1, we will give new quantum lower bounds for some graph properties. In Section

3.2, we will study tuple search problems. As a special case, we solve the quantum query

complexity of a specific problem called Claw-Finding. Here we get the upper bound by the

discrete quantum walk, where we generalize Ambainis’ idea by performing two (or more)

discrete quantum walks simultaneously to achieve the optimal algorithm.

The results in Section 3.1 are from paper [78]. The same Ω(n1.5) lower bound for

Matching was independently obtained by Berzina, Dubrovsky, Freivalds, Lace and Scegul-

naja in [18], and the same lower bound for Bipartiteness was independently obtained by

Durr (mentioned in [46]).

The results in Section 3.2 are from paper [79].

21



22

3.1 Quantum query complexities for some natural graph prop-

erties

We consider the following three graph properties. We assume that the input for the graph

property problems are given by adjacency matrix.

1. Bipartiteness: Given an undirected graph, decide whether it is a bipartite graph.

2. Graph Matching: Given an undirected graph, decide whether it has a perfect matching.

3. Bipartite Matching: Given an undirected bipartite graph, decide whether it has a

perfect matching.

We will use Theorem 5 to show the following results.

Theorem 10 All the three graph properties, Bipartiteness, Bipartite Matching and Graph

Matching, have Q2(f) = Ω(n1.5).

Proof 1. Bipartiteness. Without loss of generality, we assume n is even, because otherwise

we can use the following argument on arbitrary n− 1 (out of total n) nodes and leave the

nth node isolated. Let

X = {G : G is composed of a single n-length cycle},
Y = {G : G is composed of two cycles with each length being an odd number between

n/3 and 2n/3}, and

R = {(G,G′) ∈ X × Y : ∃ four nodes v1, v2, v3, v4 such that the only difference between

graphs G and G′ is that (v1, v2), (v3, v4) are edges in G but not in G′ and (v1, v3), (v2, v4)

are edges in G′ but not in G}.
Note that a graph is bipartite if and only if it contains no cycle with odd length.

Therefore, any graph in X is a bipartite graph because n is even, and any graph in Y is not

bipartite graph because it contains two odd-length cycles. Then all the remaining analysis

is the same as calculation in the proof for Graph Connectivity (undirected graph and matrix

input) in [31]. For completeness, it is not hard to find that m = Θ(n2), m′ = Θ(n2), and



23

for any fixed x, y, i such that xi 6= yi, either lx,i = O(1) and ly,i = O(n), or lx,i = O(n) and

ly,i = O(1). Thus by Theorem 5, we get Q2(Bipartiteness) = Ω(n1.5).

2. Bipartite Matching. Let X be the set of the bipartite graphs like Figure 3.1(a) where

τ and σ are two permutations of {1, ..., n}, and n
3 ≤ k ≤ 2n

3 . Let Y be the set of the

bipartite graphs like Figure 3.1(b), where τ ′ and σ′ are two permutations of {1, ..., n}, and

also n
3 ≤ k′ ≤ 2n

3 . It is easy to see that all graphs in X have no perfect matching, while all

graphs in Y have a perfect matching.

σ (1)

...

...

(n) σ

...

σ (k’)

...

(1)’τ

’τ

’

’

’(n)

σ’(k’+1)

τ ’(k’)

τ ’(k’+1)

(b): Y(a): X

τ (1) σ (1)

...

τ (k)

(k+1)τ

...

τ (n) σ(n)

...
σ (k−1)

σ (k)

...

Figure 3.1: X and Y : a pair of inputs

Let R be the set of all pairs of (x, y) ∈ X × Y as in Figure 3.2, where graph y is

obtained from x by choosing two horizontal edges (τ(i), σ(i)), (τ(j), σ(j)), removing them,

and adding two edges (τ(i), σ(j)), (τ(j), σ(i)).

τ (1) σ (1)

τ (k)

τ (n) σ

σ (k)

τ (i)

τ (j)

σ

σ

(i)

(j)

(n)

τ (1) σ (1)

τ (n)

σ

σ

τ (i)

τ (j)

σ

σ

(k)τ

τ (k+1)

σ (i)

σ (k−1)

(j)

(k)

(n)

(j−1)

X Y

Figure 3.2: R ⊆ X × Y : the relation



24

Now it is not hard to calculate the m,m′, lmax in Theorem 5. For example, to get m

we study x in two cases. When n
3 ≤ k ≤ n

2 , any edge (τ(i), σ(i)) where i ∈ [k − n/3, k]

has at least n/6 choices for edge (τ(j), σ(j)) because the only requirement for choosing is

that k′ ∈ [n/3, 2n/3] and k′ = i + n − j. The case when n
2 ≤ k ≤ 2n

3 can be handled

symmetrically. Thus m = Θ(n2). The same argument yields m′ = Θ(n2). Finally, for lmax,

we note that if the edge e = (τ(i), σ(i)) for some i, then lx,e = O(n) and ly,e = 1; if the

edge e = (τ(i), σ(j)) for some i, j, then lx,e = 1 and ly,e = O(n). For all other edges e,

lx,e = ly,e = 0. Putting all cases together, we have lmax = O(n). Thus by Theorem 5, we

know that Q2(Bipartite Matching) = Ω(n1.5).

3. Graph Matching. This can be easily shown by noting that Bipartite Matching is a

special case of Graph Matching. ¤

3.2 Promised tuple search and the Claw-Finding problem

3.2.1 Introduction

Recently Ambainis [12] proposed a novel algorithm for k-Element Distinctness, which is

to decide whether there are k equal elements in a given set A of size N . As later pointed out

by Magniez, Santha and Szegedy [50] and by Childs and Eisenberg [25], Ambainis’ algorithm

actually gives an O(Nk/(k+1)) algorithm for the general k-Subset Finding problem, defined

as follows.

k-Subset Finding: Given N elements x1, ...xN ∈ [M ], and a k-ary relation R ⊆ [M ]k,

decide whether there is a k-size set {i1, ..., ik} such that (xi1 , ..., xik) ∈ R. If yes, output a

solution; otherwise reject.

Intuitively speaking, this is a tuple search: we search for a tuple satisfying some pre-

defined relation. This generalizes Grover’s search [34], which can be viewed as the special

case of k = 1. We can also define the Unique k-Subset Finding problem, which is the

same as k-Subset Finding except that it is promised that there is at most one solution set

{i1, ..., ik}. As pointed out in [50], by a standard random reduction, we can solve k-Subset



25

Finding with the same complexity as the Unique k-Subset Finding. Therefore, in what

follows we mostly study the unique version of the problem.

Unlike the case of single element search (as in Grover’s search), two new problems arise

distinctively for tuple search. One is to consider what if we already have some information

about one component in the desired tuple. For example, we know that there is a desired

pair (i1, ..., ij) such that i1 ∈ S for some subset S ∈ [n] which is small, say
√

n. Could

we do better than the standard Ambainis’ search? The other question is to consider the

scenario in which the components in the desired tuple are distributed, and we study both

the communication cost and the query cost simultaneously in the tuple finding task. The

second question is addressed in Chapter 6.

To make the first question more precise, consider the following problems.

Unique (m,n) 2-Subset Finding: We are given x1, ..., xN ∈ [M ], two sets of indices

J1, J2 ⊆ [N ] with |J1| = m, |J2| = n, and a relation R ⊆ [M ]× [M ], with the promise that

there exists at most one pair (xj1 , xj2) ∈ R such that j1 ∈ J1, j2 ∈ J2 and j1 6= j2. Output

the unique pair if it exists, and reject otherwise.

Claw Finding: The above problem with the restrictions that R is the Equality relation

and J1 ∩ J2 = ∅.

The best previous result for the Claw Finding is given by Buhrman, Durr, Heiligman,

Hoyer, Magniez, Santha and de Wolf [22] 1 :

Ω(m1/2) ≤ Q2(Claw-Finding) ≤ O((n1/2m1/4 + m1/2) log n) (3.1)

where without loss of generality, they assume m ≥ n. In this paper, we improve it to the

following tight bounds.

Theorem 11 For both Unique (m,n) 2-Subset Finding and Claw Finding, we have

Q2(f) = Θ((mn)1/3 +
√

n +
√

m) (3.2)
1The query model they assumed is slightly different than the standard one we consider, but for many

problems including this Claw-Finding one, the query complexities in these two different models are the same
up to at most a log factor.



26

3.2.2 Review of Ambainis’ search and the generic algorithm

We first review Ambainis’ search algorithm for Unique k-Element Distinctness [12] as

follows. The working state is a superposition of basis in the form of |S, xS , i〉. Here S is a

r-size subset of [N ] for some integer r; xS contains the variable values xj ’s for all j ∈ S; i

is an index not in S. A basic tool used in the algorithm is a subroutine called Quantum

Walk the following box of Algorithm 3.1.

Algorithm 3.1: Quantum Walk on S in A
Input: State |S, xS , i〉 and A with S ⊆ A, and i ∈ A− S. Suppose that |S| = r, |A| = N .

1. |S, xS , i〉 → |S, xS〉
(
(−1 + 2

N−r )|i〉+ 2
N−r

∑
j∈A−S−{i} |j〉

)

2. |S, xS , i〉 → |S ∪ {i}, xS∪{i}, i〉 by one query.

3. |S, xS , i〉 → |S, xS〉
(
(−1 + 2

r+1)|i〉+ 2
r+1

∑
j∈S−{i} |j〉

)

4. |S, xS , i〉 → |S − {i}, xS−{i}, i〉 by one query.

Intuitively, Step 1 and 3 make a diffusion of the position i in the set A− S and S. The

role of the diffusions will be clear in the Algorithm 3.2 and the analysis of it by Lemma

12.

Mathematically, a key fact shown by Ambainis [12] is the following. Let I = {i1, ..., ik}
where (i1, ..., ik) is the unique k-tuple of equal elements. Define a (2k + 1)-dimentional

subspace

H̃ = span{|ψj,l〉 : j = 0, ..., k; l = 0, 1; (j, l) 6= (k, 1)} (3.3)

where |ψj,l〉 is the uniform superposition of states {|S, xS , i〉 : |S| = r, i ∈ A − S, j =

|S ∩ I|, l = λi∈I} (with λφ = 1 if φ is true, and 0 otherwise). Then first, one step of

Quantum Walk maps H̃ to H̃ itself. Second, the operation of Quantum Walk, when

restricted on H̃, has 2k + 1 eigenvalues, one of which is 1 and the corresponding eigenvalue

is the starting state |ψstart〉. The other 2k eigenvalues are in the form of e±θ1i, ..., e±θki,

where θj = (2
√

j +o(1))/
√

r. Though the original k is supposed to be at least 2, we observe

that the above fact also holds for case k = 1. This will be used in our proof of Theorem 11.



27

Using the following key lemma, Ambainis gave Algorithm 3.2 for Unique k-Element

Distinctness.

Lemma 12 (Ambainis [12]) Let H be a finite dimensional Hilbert space and |ψ1〉, . . .,

|ψm〉 be an orthonormal basis for H. Let |ψgood〉, |ψstart〉 be two states in H which are

superpositions of |ψ1〉, . . ., |ψm〉 with real amplitudes and 〈ψgood|ψstart〉 = α. Let U1, U2 be

unitary transformations on H satisfying:

1. U1 is the transformation that flips the phase on |ψgood〉 ( i.e. U1|ψgood〉 = −|ψgood〉)
and leaves any state orthogonal to |ψgood〉 unchanged.

2. U2 is a transformation which is described by a real-valued m ∗m matrix in the basis

|ψ1〉, . . ., |ψm〉. Moreover, U2|ψstart〉 = |ψstart〉 and, if |ψ〉 is an eigenvector of U2

perpendicular to |ψstart〉, then U2|ψ〉 = eiθ|ψ〉 for θ ∈ [ε, 2π − ε].

Then, there exists t = O( 1
α) such that 〈ψgood|(U2U1)t|ψstart〉 = Ω(1).

Algorithm 3.2: for Unique k-Element Distinctness
Input: x1, ..., xN ∈ [M ], with the promise that there exists at most one k-size set I =
{i1, ..., ik} ⊆ [N ] such that xi1 = ... = xik .
Output: I and xI = {xi1 , ..., xik} if they exist; otherwise reject.

1. Set up the initial state |ψstart〉 = 1q
(N

r )(N−r)

∑
S⊆[N ],|S|=r,i∈[N ]−S |S, xS , i〉.

2. Do Θ((N
r )k/2) times

(a) Change the phase of those S containing I as a subset, i.e. |S, xS , i〉 → −|S, xS , i〉.
(b) Do Quantum Walk on S in [N ] for Θ(

√
r) times.

3. Measure the resulting state and give the corresponding answer.

By Lemma 12, if the (unique) k-size subset I exists, then after Step 2, the state is

close to |ψgood〉 = 1q
(N−k

r−k )(N−r)

∑
|S|=r, I⊆S, i∈[N ]−S |S, xS , i〉, thus the algorithm can output

I = {i1, ..., ik} and xI = {xi1 , ..., xik} in Step 3 (with high probability). If such I does

not exist, the state after Step 2 is still |ψstart〉, and thus the algorithm rejects in Step 3.

Therefore, by letting r = Nk/k+1, we have an algorithm using O(Nk/k+1) queries.



28

3.2.3 Proof of Theorem 11

We prove Theorem 11 in this section. For the upper bounds, we give Algorithm 3.3,

which refines Ambainis’ Algorithm 3.2 by maintaining two sets of registers instead of one

set.

Algorithm 3.3: for Unique (m,n) 2-Subset Finding
Input: x1, ..., xN ∈ [M ]. J1, J2 ⊆ [N ], |J1| = m, |J2| = n. R ⊆ [M ] × [M ] such that there
is at most one (xj1 , xj2) ∈ R with j1 ∈ J1, j2 ∈ J2 and j1 6= j2.
Output: The unique pair (j1, j2) if it exists; otherwise reject.

1. Set up the initial state |ψstart〉 = 1√
T

∑
Sb⊆Jb,|Sb|=rb,ib∈Jb−Sb

|S1, xS1 , i1, S2, xS2 , i2〉,
where T =

(
m
r1

)(
n
r2

)
(m− r1)(n− r2) and b = 1, 2.

2. Do Θ(
√

mn
r1r2

) times

(a) Check whether the unique (j1, j2) is in S1 × S2. If yes, do the following phase
flip: |S1, xS1 , i1, S2, xS2 , i2〉 → −|S1, xS1 , i1, S2, xS2 , i2〉.

(b) Do Quantum Walk on S1 in J1 for t1 = dπ
4

√
r1e times.

Do Quantum Walk on S2 in J2 for t2 = dπ
8

√
r2e times.

3. Measure the resulting state and give the corresponding answer.

The following theorem actually shows the upper bound in Theorem 1.

Theorem 13 Algorithm 3.3 outputs the desired results correctly, and we can pick r1, r2 to

make number of queries be




O((mn)1/3) if
√

n ≤ m ≤ n2 (by letting r1 = r2 = (mn)1/3)

O(
√

n) if m <
√

n (by letting r1 = m, r2 ∈ [m, (mn)1/3])

O(
√

m) if m > n2 (by letting r1 ∈ [n, (mn)1/3], r2 = n)

(3.4)

Proof Correctness: First, if there is no desired pair, then the algorithm actually does

nothing, so the state after Step 2 is still |ψstart〉. Thus in Step 3, we cannot find the desired

pair after the measurement, and we will reject.

On the other side, if there is the pair, we shall use Lemma 12 to show that we can find

it. Suppose (j1, j2) ∈ J1 × J2 is the desired pair. First, define H̃1 as in (3.3), with |ψj,l〉



29

being the uniform superposition of states

{|S1, xS1 , i1〉 : S1 ⊆ J1, |S1| = r1, i1 ∈ J1 − S1, j = λj1∈S1 , l = λi1=j1}. (3.5)

Note that it is exactly the “k = 1” case of (3.3), so W1, the operator of Quantum Walk

on S1 in J1, when restricted on H̃1, has 3 eigenvalues. One of the eigenvalues is 1, and the

corresponding eigenvector is

|ψstart,1〉 =
1√(

m
r1

)
(m− r1)

∑

S1⊆J1,|S1|=r1,i1∈J1−S1

|S1, xS1 , i1〉.

The other two eigenvalues are e±iθ1 , and θ1 = (2 + o(1))/
√

r1. Therefore, W t1
1 has 3

eigenvalues: 1 (with the eigenvector |ψstart,1〉) and e±iθ′1 where θ′1 = π
2 + o(1).

H̃2 is defined symmetrically, as well as W2, |ψstart,2〉 and θ2. As a result, W t2
2 has 3

eigenvalues: 1 (with the eigenvector |ψstart,2〉) and e±iθ′2 where θ′2 = π
4 + o(1). The whole

step 2(b) restricted on H̃1 ⊗ H̃2 is the operation W = (I1 ⊗W2)(W1 ⊗ I2). Now note that

the eigenvalues of W are given by

{λ · µ : λ is an eigenvalue of W1 on H̃1, and µ is an eigenvalue of W2 on H̃2}.

Therefore, W has 9 eigenvalues: {ei(b1θ′1+b2θ′2) : b1, b2 ∈ {−1, 0, 1}}. It is easy to check that

one of these eigenvalues is 1, and the corresponding eigenvector is |ψstart,1〉⊗|ψstart,2〉, which

is exactly the |ψstart〉 in Algorithm 3.3. All the other 8 eigenvalues are in the form of e±iθ,

for some θ ∈ [π/4− o(1), 2π − π/4 + o(1)].

Finally, we calculate α = 〈ψstart|ψgood〉 :

α =
√

Pr|S1|=r1,|S2|=r2
[(j1, j2) ∈ S1 × S2] = Θ

(√
r1r2

mn

)
. (3.6)

So the number of iterations in Step 2 is 1/α = Θ(
√

mn
r1r2

) and the correctness holds by

Lemma 12.

It is easy to verify that the number of queries used is

O

(
r1 + r2 +

√
mn

r1r2
(
√

r1 +
√

r2)
)

= O

(
r1 + r2 +

√
mn√
r1

+
√

mn√
r2

)
. (3.7)



30

Now we need to minimize it, with restrictions r1 ≤ m (because S1 is a subset of J1) and r2 ≤
n. For the (r1 +

√
mn√
r1

) part, it is not hard to see that if m ≥ √
n then minr1≤m(r1 +

√
mn√
r1

) =

(mn)1/3 and the minimum is achieved when r1 = (mn)1/3; otherwise minr1≤m(r1 +
√

mn√
r1

) =

m +
√

n and the minimum is obtained when r1 = m. Analyze the r2 +
√

mn/
√

r2 part

similarly, and we can get the conclusion of the theorem. ¤

Next we prove the lower bound part in Theorem 11. Note that since Claw-Finding

is a special case of (m,n) 2-Subset Finding, it is enough to show the lower bound for

Q2(Claw-Finding).

Proof (of the lower bound in Theorem 11) It is sufficient to prove the lower bound of

Ω((mn)1/3). We will show it by a reduction to the 2-Collision problem, which is to

distinguish whether a function f : [N ] → [N ] is one-to-one or two-to-one. This problem is

shown by Aaronson, Shi [5] (and Ambainis [11] for small range) to have Ω(N1/3) lower bound

of quantum query complexity. Assume that we can solve (m,n) 2-Subset Finding with

o((mn)1/3) queries, then we can have an o(N1/3) algorithm for the 2-Collision problem as

follows. Let f : [N ] → [N ] be a function, where N = mn, and we are to decide whether it is

one-to-one or two-to-one. First pick a random set S1 ⊆ [N ] of size m and then pick another

random set S2 ⊆ [N ] − S1 of size n. If f is one-to-one, then f(i1) 6= f(i2) for any i1 ∈ S1

and i2 ∈ S2, since S1 ∩ S2 = ∅. On the other hand, if f is two-to-one, then by a standard

probability calculation we know that with constant probability there will be i1 ∈ S1 and

i2 ∈ S2 such that f(i1) = f(i2). Therefore, whether f is two-to-one or one-to-one is, up

to a constant probability, equivalent to whether there are i1 ∈ S1 and i2 ∈ S2 such that

f(i1) = f(i2), which can be decided with o((mn)1/3) = o(N1/3) queries, by our assumption.

This contradicts to the Ω(N1/3) lower bound of 2-Collision [5, 11], so

Q2(Unique (m,n) 2-Subset Finding) = Ω
(
(mn)1/3

)
. (3.8)

¤



Chapter 4

Randomized and Quantum Query

Complexities for Local Search on

Different Graphs

The results in this chapter are from paper [80].

4.1 Introduction

Many important combinatorial optimization problems arising in both theory and practice

are NP-hard, which forces people to resort to heuristic searches in practice. One popular

approach is Local Search, by which one first defines a neighborhood structure, then finds a

solution that is locally optimal with respect to this neighborhood structure. In the past

two decades, Local Search approach has been extensively developed and “has reinforced its

position as a standard approach in combinatorial optimization” in practice [1]. Besides the

practical applications, the problem also has many connections to the complexity theory,

especially to the complexity classes PLS 1 and TFNP 2 . For example, the 2SAT-FLIP

problem is Local Search on the Boolean hypercube graph {0, 1}n, with the objective function
1Polynomial Local Search, introduced by Johnson, Papadimitriou, and Yannakakis [41].
2The family of total function problems, introduced by Megiddo and Papadimitriou [51].

31



32

being the sum of the weights of the clauses that the truth assignment x ∈ {0, 1}n satisfies.

This problem is complete in PLS, implying that the Boolean hypercube {0, 1}n has a central

position in the studies of Local Search. Local Search is also related to physical systems

including folding proteins and to quantum adiabatic algorithms [2]. We refer readers to the

papers [2, 56, 63] for more discussions and the book [6] for a comprehensive introduction.

Precisely, Local Search on an undirected graph G = (V, E) is defined as follows. Given

a function f : V → N, find a vertex v ∈ V such that f(v) ≤ f(w) for all neighbors w of v.

A class of generic algorithms that has been widely used in practice is as follows: we first

set out with an initial point v ∈ V , then repeatedly search a better/best neighbor until it

reaches a local minimum. Though empirically this class of algorithms works very well in

most applications, relatively few theoretical results are known about how good the generic

algorithms are, especially for the randomized (and quantum) algorithms.

Among models for theoretical studies, the query model has drawn much attention

[2, 7, 8, 47, 48, 63]. In this model, f is given by a black-box, i.e. f(v) can be accessed

by querying v. We only care about the number of queries made, and all other computa-

tions are free. If we are allowed to toss coins to decide the next query, then we have a

randomized query algorithm. If we are allowed use quantum mechanics to query all the

positions (and get corresponding answers) in superposition, then we have a quantum query

algorithm. The deterministic, randomized and quantum query complexities are the mini-

mum numbers of queries needed to compute the function by a deterministic, randomized

and quantum query algorithm, respectively. We use RLS(G) and QLS(G) to denote the

randomized and quantum query complexities of Local Search on graph G, respectively. Pre-

vious upper bounds on a general N -vertex graph G are RLS(G) = O(
√

Nδ) by Aldous [7]

and QLS(G) = O(N1/3δ1/6) by Aaronson [2], where δ is the maximum degree of G. Both

algorithms actually fall into the category of generic algorithms mentioned above, with the

initial point picked as a best one over a certain number of random samples. Immediately,

two questions can be asked:

1. On what graphs are these simple algorithms optimal?



33

2. For other graphs, what better algorithms can we have?

Clearly the first one is a lower bound question and the second one is an upper bound

question.

Previously for lower bounds, Aaronson [2] showed the following results on two special

classes of graphs: the Boolean hypercube {0, 1}n and the constant dimensional grid [n]d:

RLS({0, 1}n) = Ω(2n/2/n2), QLS({0, 1}n) = Ω(2n/4/n); (4.1)

RLS([n]d) = Ω(nd/2−1/ log n), QLS([n]d) = Ω(nd/4−1/2/
√

log n). (4.2)

It has also been shown that QLS([n]2) = Ω(n1/4) by Santha and Szegedy in [63], besides

their main result that the deterministic and the quantum query complexities of Local Search

on any graph are polynomially related. However, the question

3. What are the true values of QLS and RLS on {0, 1}n and [n]d?

remains an open problem, explicitly stated in an earlier version of [2] and also (partially)

in [63].

In this section, we answer questions 1 and 2 for large classes of graphs by giving both

new lower and upper bound techniques for randomized and quantum query algorithms. As

a consequence, we completely solve question 3, except for a few small d’s where our new

bounds also significantly improve the old ones.

Our lower bound technique works for any graph that contains a product graph as a

subgraph. For two graphs G1 = (V1, E1) and G2 = (V2, E2), their product G1 × G2 is the

graph G = (V,E) where V = V1 × V2 and

E = {(v1 ⊗ v2, v
′
1 ⊗ v2) : (v1, v

′
1) ∈ E1, v2 ∈ V2} ∪ {(v1 ⊗ v2, v1 ⊗ v′2) : (v2, v

′
2) ∈ E2, v1 ∈ V1}

(4.3)

We will also use the notion of random walk on graphs to state the theorem. Given a graph

G = (V,E), a random walk is a mapping W : V → 2V where W (u) ⊆ {u}∪{v : (u, v) ∈ E}.
Intuitively, at each step the random walk W goes from the current vertex u to a uniformly

random vertex in W (u). The walk W is regular if |W (u)| = c for each u ∈ V . Denote by



34

p(u, v, t) the probability that the random walk starting at u is at v after exactly t steps. Let

pt = maxu,v p(u, v, t). The following theorem is a special case of the general one (Theorem

20) in Section 4.3.

Theorem 14 Suppose G contains the product graph G1 × G2 as a subgraph, and L is the

length of the longest self-avoiding path in G2. Let T = bL/2c, then for any regular random

walk W on G1, we have

RLS(G) = Ω

(
T∑T

t=1 pt

)
, QLS(G) = Ω

(
T∑T

t=1

√
pt

)
.

The proof uses the quantum adversary method in its version Theorem 8. Recall that

recently Spalek and Szegedy showed that the various versions of the quantum adversary

method are equivalent in power [69]. However, in proving a particular problem, some of the

methods might be easier to apply than the others. In our case, the technique in [78] turns

out to work very well. Our proofs for the randomized lower bounds will use the relational

adversary method, which was proposed by Aaronson [2] inspired by the quantum adversary

method.

Both the quantum adversary method and the relational adversary method are parame-

terized by input sets and weight functions of input pairs. While previous works [2, 63] also

use random walks on graphs, a key innovation that distinguishes our work from previous

ones and yields better lower bounds is that we decompose the graph into two parts, the

tensor product of which is the original graph. We perform the random walk only in one

part, and perform a simple one-way walk in a self-avoiding path in the other part, which

serves as a “clock” to record the number of steps taken by the random walk in the first

part. The tensor product of these two walks is a random path in the original graph. A big

advantage of adding a clock is that the “passing probability”, the probability that the ran-

dom path passes a vertex v within T steps, is now the “hitting probability”, the probability

that the random walk in the first graph hits v after exactly t steps, because the time elapses

one-way and never comes back. The fact that the hitting probability is much smaller than

the passing probability enables us to achieve the better lower bounds. Another advantage



35

of the clock is that since the walk in the second part is self-avoiding, the resulting random

path in the original graph is self-avoiding too, which makes the analysis much easier.

Applying it to the two graphs {0, 1}n and [n]d, we improve previous results and show

tight bounds on both RLS and QLS (except for a few cases in the low dimensional grids).

Theorem 15

RLS({0, 1}n) = Θ(2n/2n1/2), QLS({0, 1}n) = Θ(2n/3n1/6). (4.4)

Theorem 16

RLS([n]d) =





Θ(nd/2) if d ≥ 4,

Ω((n3/ log n)1/2) if d = 3,

Ω(n2/3) if d = 2.

QLS([n]d) =





Θ(nd/3) if d ≥ 6,

Ω((n5/ log n)1/3) if d = 5,

Ω(n6/5) if d = 4,

Ω(n3/4) if d = 3,

Ω(n2/5) if d = 2.

(4.5)

It is worth noting that to apply Theorem 14, we need to know not only the mixing time

of the random walk in G1, but also its behavior before mixing. So the applications are not

simply using standard upper bounds on the mixing times, but involve heavy analysis on the

whole mixing processes.

When proving Theorem 16 by Theorem 14, one difficulty arises: to decompose the grid

[n]d into two parts [n]m and [n]d−m, we implicitly require that m is an integer. This gives us

lower bounds weaker than Theorem 16, especially for low dimension cases. We get around

this problem by cutting one of the m dimensions into many blocks, and use different block

to distinguish different time windows. Between adjacent blocks are pairwise disjoint path

segments, which thus thread all the blocks into a very long one. Using this technique, we

can apply Theorem 14 for any read-number dimension m ≤ d− 1.

In the second part of the chapter, we consider upper bounds for Local Search. While

the generic algorithms [2, 7] are simple and proven to be optimal for many graphs such as



36

the ones mentioned above, they are far from optimal for some other graphs. For example,

it is not hard to see an O(log N) deterministic algorithm for the line graph G. Therefore,

a natural question is to characterize those graphs on which Local Search is easy. It turns

out that the expansion speed plays a key role. For a graph G = (V, E), the distance l(u, v)

between two vertices u and v is the length of the shortest path connecting them. (Here the

length of a path is the number of edges on the path.) Let c(k) = maxv∈V |{u : l(u, v) ≤ k}|.
Clearly, the smaller c(k) is, the more slowly the graph expands. (Actually c(k) is an upper

bound of the standard definition of the expanding speed.) We say a graph is of polynomial

growth if c(k) = O(kα) for some constant α ≥ 1. As a special case of Theorem 26 in Section

4.5, the following upper bounds for the graphs of polynomial growth.

Theorem 17 If c(k) = O(kα) for some constant α ≥ 1, then

RLS(G) =





O
(
dα−1 log log d

)
if α > 1,

O(log d log log d) if α = 1.

QLS(G) =





O
(
d

α−1
2 (log log d)1.5

)
if α > 1,

O(log d log log d) if α = 1.

(4.6)

where d is the diameter of the graph G.

As a special case, on the line graph we get α = 1 and hence RLS = O(log n log log n), which

helps to explain why Local Search on the line graph is easy. Also, it immediately gives a

new upper bound for QLS([n]2) as follows. Together with Theorem 16, this implies that

Local Search on grids exhibits different properties in low dimensions.

Theorem 18 QLS([n]2) = O(
√

n(log log n)1.5)

Other related results. After the preliminary version of this paper appeared, Verhoeven

independently showed an upper bound in terms of the genus of the graph [74], giving

an O(
√

n log log n) quantum algorithm for [n]2. There is also an unpublished result on

QLS({0, 1}n): it is mentioned in [2] that Ambainis showed QLS({0, 1}n) = Ω(2n/3/nO(1)).

3

3Another unpublished result was mentioned in [63] that Verhoeven showed RLS([n]2) = Ω(n1−δ) for any
constant δ > 0. But according to Santha (personal communication), one of the two authors of [63], the proof
was never written up and this question should be considered now to be still open.



37

4.2 Preliminaries and notations

For graphs G1 = (V1, E1) and G2 = (V2, E2), we say that G1 is a subgraph of G2 if V1 ⊆ V2

and E1 ⊆ E2. Clearly, any local optimum in G2 is also a local optimum in G1 (but not the

other way around in general), therefore any lower bound for G1 is also a lower bound for

G2.

We let the variables v1⊗ v2 range over the set V1×V2. There are various ways to define

a product graph G1 ×G2 = (V1 × V2, E) by different choices of E. Three possibilities are

1. E = {(v1⊗v2, v
′
1⊗v2) : (v1, v

′
1) ∈ E1, v2 ∈ V2}∪{(v1⊗v2, v1⊗v′2) : (v2, v

′
2) ∈ E2, v1 ∈

V1};

2. E′ = {(v1 ⊗ v2, v
′
1 ⊗ v′2) : (v1, v

′
1) ∈ E1 ∪ IV1 and (v2, v

′
2) ∈ E2 ∪ IV2} − IV1×V2 , where

IV = {(v, v) : v ∈ V };

3. E′′ = {(v1 ⊗ v2, v
′
1 ⊗ v′2) : (v1, v

′
1) ∈ E1 ∪ IV1 or (v2, v

′
2) ∈ E2 ∪ IV2} − IV1×V2 .

It is clear that E ⊆ E′ ⊆ E′′, and our lower bound theorem will use the first definition E,

making the theorem as general as possible.

A path X in a graph G = (V, E) is a sequence (v1, ..., vl) of vertices such that for any

pair (vi, vi+1) of vertices, either vi = vi+1 or (vi, vi+1) ∈ E. We use set(X) to denote the

set of distinct vertices on path X. A path is self-avoiding if v1, ..., vl are all distinct. The

length of a path (v1, ..., vl) is l − 1. For two vertices u, v ∈ V , the distance lG(u, v) is the

length of a shortest path from u to v. The subscript G may be omitted if no confusion is

caused.

The (k, l)-hypercube Gk,l = (V, E) where V = [k]l and whose edge set is E = {(u, v) :

∃i ∈ {0, ..., l − 1}, suchthat |ui − vi| = 1, and uj = vj , ∀j 6= i}. Sometimes we abuse

notation by using [k]l to denote Gk,l. Note that both the Boolean hypercube and the

constant dimension grid are special hypercubes.4

In an N -vertex graph G = (V, E), a Hamilton path is a path X = (v1, ..., vN ) such

that (vi, vi+1) ∈ E for any i ∈ [N − 1] and set(X) = V . It is easy to check by induction
4Here we identify the Boolean hypercube {0, 1}n and G2,n since they are isomorphic.



38

that every hypercube [k]l has a Hamilton path. Actually, for l = 1, [k] has a Hamilton

path (1, ..., k). Now suppose [k]l has a Hamilton path P ; then a Hamilton path for [k]l+1

can be constructed as follows. First fix the last coordinate to be 1 and go through P ,

then change the last coordinate to be 2 and go through P in the reverse order, and then

change the last coordinate to be 3 and go through P , and so on. For each (k, l), let

HamPathk,l = (v1, ..., vN ) be the Hamilton path constructed as above (where N = kl), and

we define the successor function Hk,l(vi) = vi+1 for i ∈ [N − 1].

4.3 Lower bounds for Local Search on product graphs

In this section we prove a theorem which is stronger than Theorem 14 due to a relaxation

on the conditions of the random walk. Suppose we are given a graph G = (V, E), a starting

vertex v0 and an assignment W : V × N → 2V such that for each u ∈ V and t ∈ N, it

holds that W (u, t) ⊆ {u} ∪ {v : (u, v) ∈ E} and that |W (u, t)| = ct for some function c

of t. Intuitively, W gives the candidates that the walk goes to for the next step, and the

random walk (G, v0,W ) on graph G proceeds as follows. It starts at v0, and at step t ∈ N,

it goes from the current vertex vt−1 to a uniformly random vertex in W (vt−1, t). We say

a path (v0, v1, ..., vT ) is generated by the random walk if vt ∈ W (vt−1, t) for all t ∈ [T ].

Denote by p(u, t1, v, t2) the probability that the random walk is at v after step t2 under the

condition that the walk is at u after step t1. Let pt = maxu,v,t1,t2: t2−t1=t p(u, t1, v, t2). For

(u, u′) ∈ E, let q(u, u′, t1, v, t2) be the probability that the walk is at v after step t2, under

the conditions that 1) the walk is at u after step t1, and 2) the walk does not go to u′ at

step t1 + 1. The following lemma on the relation of the two probabilities is obvious.

Lemma 19 If |W (u, t1 + 1)| > 1, then q(u, u′, t1, v, t2) ≤ 2p(u, t1, v, t2).

Proof By considering the two cases of the step t1 + 1 (going to u′ or not), we have

p(u, t1, v, t2) =
1

|W (u, t1 + 1)|p(u′, t1 + 1, v, t2) +
(

1− 1
|W (u, t1 + 1)|

)
q(u, u′, t1, v, t2).

(4.7)



39

Thus

q(u, u′, t1, v, t2) ≤ p(u, t1, v, t2)/
(

1− 1
|W (u, t1 + 1)|

)
≤ 2p(u, t1, v, t2). (4.8)

¤

Theorem 20 Suppose G contains Gw × Gc (for two arbitrary graphs Gw and Gc) as a

subgraph, and L is the length of the longest self-avoiding path in Gc. Let T = bL/2c, then

for the random walk (Gw, vw
0 ,W ) on Gw, we have

RLS(G) = Ω

(
T∑T

t=1 pt

)
, QLS(G) = Ω

(
T∑T

t=1

√
pt

)
. (4.9)

Proof Without loss of generality, we assume G = Gw×Gc, as Local Search on a subgraph

is no harder than Local Search on the original graph. We shall construct a random walk on

G by the random walk (Gw, vw
0 ,W ) on Gw and a simple one-way walk on Gc. Starting from

some fixed vertex in G, the walk is proceeded by one step of walk in Gw followed by two steps

of walk in Gc. (We perform two steps of walk in Gc mainly for some technical reasons, and

this is where the factor of 2 in definition T = bL/2c comes from.) Precisely, fix a self-avoiding

path (zc
0,0, z

c
1,0, z

c
1,1, z

c
2,1, z

c
2,2, ..., z

c
T,T−1, z

c
T,T ) of length 2T in Gc. Let the set P contain all the

paths X = (xw
0 ⊗zc

0,0, x
w
1 ⊗zc

0,0, x
w
1 ⊗zc

1,0, x
w
1 ⊗zc

1,1, ..., x
w
T ⊗zc

T−1,T−1, x
w
T ⊗zc

T,T−1, x
w
T ⊗zc

T,T )

in G such that xw
0 = vw

0 and (xw
0 , xw

1 , ..., xw
T ) is a path generated by the random walk

(Gw, vw
0 ,W ). Define a problem PathP : given a path X ∈ P , find the end point xw

T ⊗ zc
T,T .

To access X, we can ask whether v ∈ set(X) for any vertex v ∈ V , and an oracle O will give

us the Yes/No answer.5 The following claim says that the PathP problem is not much

harder than the Local Search problem.

Claim 21 R2(PathP ) ≤ 2RLS(G), Q2(PathP ) ≤ 2QLS(G).
5Note that it is actually an oracle for the following function g : {0, 1}n → {0, 1}, with g(x) = 1 if and

only if x ∈ set(X). So strictly speaking, an input of PathP should be specified as set(X) rather than X,
because in general, it is possible that X 6= Y but set(X) = set(Y ). For our problem, however, it is easy to
check that for any X, Y ∈ P , it holds that X = Y ⇔ set(X) = set(Y ). Indeed, if X 6= Y , suppose the first
diverging place is k, i.e. xw

k−1 = yw
k−1, but xw

k 6= yw
k . Then Y will never pass xw

k ⊗ zc
k,k−1 because the clock

immediately ticks and the time always advances forward. (Or more rigorously, the only point that Y passes
through zc

k,k−1 is yw
k ⊗ zc

k,k−1. Since yw
k 6= xw

k , xw
k ⊗ zc

k,k−1 /∈ set(Y ).)



40

Proof Suppose we have an Q-query randomized or quantum algorithm A for Local Search,

we shall give a 2Q corresponding algorithm B for PathP . For any path X ∈ P , we define

a function fX essentially in the same way as Aaronson did in [2]: for each vertex v ∈ G, let

fX(v) =





lG(v, xw
0 ⊗ zc

0,0) + 3T if v /∈ set(X)

3(T − k) if v = xw
k ⊗ zc

k,k

3(T − k)− 1 if v = xw
k+1 ⊗ zc

k,k 6= xw
k ⊗ zc

k,k

3(T − k)− 2 if v = xw
k+1 ⊗ zc

k+1,k

. (4.10)

It is easy to verify that the only local minimum is xw
T ⊗ zc

T,T .

Given an oracle O and an input X of the Path problem, B simulates A to find the local

minimum of fX , which is also the end point of X. WheneverA needs to make a query on v to

get fX(v), B asks O whether v ∈ set(X). If v /∈ set(X), then fX(v) = lG(v, xw
0 ⊗ zc

0,0)+3T ;

otherwise, v = xw ⊗ zc
k+1,k or v = xw ⊗ zc

k,k for some xw ∈ V w and k. Note that k is known

for any given vertex v. So if v = xw⊗zc
k+1,k, then xw = xw

k+1 and thus fX(v) = 3(T −k)−2.

Now consider the case that v = xw ⊗ zc
k,k. If k = 0, then let fX(v) = 3T if v = xw

0 ⊗ zc
0,0

and fX(v) = 3T − 1 otherwise. If k ≥ 1, then B asks O whether xw ⊗ zc
k,k−1 ∈ set(X). If

yes, then v = xw
k ⊗ zc

k,k and thus fX(v) = 3(T − k); if no, then v = xw
k+1 ⊗ zc

k,k 6= xw
k ⊗ zc

k,k

and thus fX(v) = 3(T − k)− 1. Therefore, at most 2 queries on O can simulate one query

on fX , so we have a 2Q algorithm for PathP in both randomized and quantum cases. ¤

(Continue the proof of Theorem 20) By the claim, it is sufficient to prove lower bounds for

PathP . We define a relation RP as follows.

RP = {(X, Y ) : X ∈ P, Y ∈ P, X and Y has different end points}. (4.11)

For any pair (X, Y ) ∈ RP , where X = (xw
0 ⊗ zc

0,0, x
w
1 ⊗ zc

0,0, x
w
1 ⊗ zc

1,0, x
w
1 ⊗ zc

1,1, ..., x
w
T ⊗

zc
T−1,T−1, x

w
T ⊗ zc

T,T−1, x
w
T ⊗ zc

T,T ) and Y = (yw
0 ⊗ zc

0,0, y
w
1 ⊗ zc

0,0, y
w
1 ⊗ zc

1,0, y
w
1 ⊗ zc

1,1, ..., y
w
T ⊗

zc
T−1,T−1, y

w
T ⊗ zc

T,T−1, y
w
T ⊗ zc

T,T ), we write X ∧ Y = k if xw
0 = yw

0 , ..., xw
k−1 = yw

k−1 but

xw
k 6= yw

k . Intuitively, X ∧ Y = k if k is the place that the paths X and Y diverge for the

first time. Note that if X ∧ Y = k, then xw
k , yw

k ∈ W (xw
k−1, k) and thus |W (xw

k−1, k)| ≥ 2.

By Lemma 19, this implies that q(xw
k−1, x

w
k , k − 1, vw, j) ≤ 2pj−k+1.



41

We choose the weight functions in Theorem 8 by letting

w(X, Y ) = 1/|{Y ′ ∈ P : Y ′ ∧X = k}| (4.12)

= 1/|{X ′ ∈ P : X ′ ∧ Y = k}| (4.13)

= 1/[(ck − 1)ck+1...cT ]. (4.14)

To calculate wX =
∑

Y ′:(X,Y ′)∈RP
w(X, Y ′), we group those Y ′ that diverge from X at the

same place k′:

wX =
T∑

k′=1

∑

Y ′:(X,Y ′)∈RP

X∧Y ′=k′

w(X, Y ′) (4.15)

=
T∑

k′=1

∑

Y ′:(X,Y ′)∈RP

X∧Y ′=k′

1
|{Y ′ ∈ P : Y ′ ∧X = k′}| (4.16)

=
T∑

k′=1

PrY ′ [(X, Y ′) ∈ RP |Y ′ ∧X = k′] (4.17)

=
T∑

k′=1

PrY ′ [(y′)w
T 6= xw

T |Y ′ ∧X = k′] (4.18)

Here equality (4.17) holds because all paths diverging from X firstly at k′ have the same

probability 1/[(ck′−1)ck′ ...cT ]. Also note that the probability in the last equality is nothing

but 1− q(xw
k′−1, x

w
k′ , k

′ − 1, xw
T , T ), which is at least 1− 2pT−k′+1. So we have

wX ≥ T − 2
T∑

k′=1

pT−k′+1 = T − 2
T∑

t=1

pt. (4.19)

And similarly, we have wY ≥ T − 2
∑T

t=1 pt too.

Now we describe u(X, Y, i) and v(X,Y, i), where i is a point xw
j+r ⊗ zc

j+s,j ∈ set(X) −
set(Y ) or yw

j+r ⊗ zc
j+s,j ∈ set(Y ) − set(X). Here (r, s) ∈ {(0, 0), (1, 0), (1, 1)}, and 0 ≤ j ≤

j + r ≤ T . Let

u(X, Y, xw
j+r ⊗ zc

j+s,j) = ak,j,r,sw(X, Y ), u(X, Y, yw
j+r ⊗ zc

j+s,j) = bk,j,r,sw(X, Y ), (4.20)

v(X, Y, xw
j+r ⊗ zc

j+s,j) = bk,j,r,sw(X,Y ), v(X, Y, yw
j+r ⊗ zc

j+s,j) = ak,j,r,sw(X,Y ), (4.21)



42

where ak,j,r,s and bk,j,r,s will be given later (satisfying ak,j,r,sbk,j,r,s = 1, which makes u, v, w

really a weight scheme). We shall calculate uX,i and vY,i for i = xw
j+r ⊗ zc

j+s,j ∈ set(X) −
set(Y ) ; the other case i = yw

j+r ⊗ zc
j+s,j is symmetric. Note that if xw

j+r ⊗ zc
j+s,j /∈ set(Y ′)

and X ∧ Y ′ = k′, then k′ ≤ j + r.

uX,xw
j+r⊗zc

j+s,j
=

j+r∑

k′=1

∑

Y ′:(X,Y ′)∈RP ,X∧Y ′=k′
xw

j+r⊗zc
j+s,j /∈set(Y ′)

ak′,j,r,sw(X, Y ′) (4.22)

≤
j+r∑

k′=1

∑

Y ′:X∧Y ′=k′
ak′,j,r,sw(X, Y ′) (4.23)

=
j+r∑

k′=1

ak′,j,r,s (4.24)

The computation for vY,xw
j+r⊗zc

j+s,j
is a little more complicated. By definition,

vY,xw
j+r⊗zc

j+s,j
=

j+r∑

k′=1

∑

X′:(X′,Y )∈RP , X′∧Y =k′,
xw

j+r⊗zc
j+s,j∈set(X′)

bk′,j,r,sw(X ′, Y ) (4.25)

≤
j+r∑

k′=1

∑

X′:X′∧Y =k′,
xw

j+r⊗zc
j+s,j∈set(X′)

bk′,j,r,sw(X ′, Y ) (4.26)

=
j+r∑

k′=1

bk′,j,r,sPrX′ [xw
j+r ⊗ zc

j+s,j ∈ set(X ′)|X ′ ∧ Y = k′] (4.27)

We can see that by adding the clock, the passing probability PrX′ [xw
j+r⊗zc

j+s,j ∈ set(X ′)|X ′∧
Y = k′] is roughly the hitting probability q(yw

k′−1, y
w
k′ , k

′ − 1, xw
j+r, j) + q(yw

k′−1, y
w
k′ , k

′ −
1, xw

j+r, j + 1) except for some corner cases. To be more precise, define

Boundk′,j,r,s = 2pj−k′+2 · λ[s = 1 OR j < T ] + 2pj−k′+1 · λ[s = 0 AND (k′ ≤ j OR r = 0)]

(4.28)

where the Boolean function λ[φ] = 1 if φ is true and 0 otherwise. Then

Claim 22 PrX′ [xw
j+r ⊗ zc

j+s,j ∈ set(X ′)|X ′ ∧ Y = k′] ≤ Boundk′,j,r,s.

Proof We study the probability PrX′ [xw
j+r ⊗ zc

j+s,j ∈ set(X ′)|X ′ ∧ Y = k′] case by case.

If s = 1, then r = 1, and xw
j+1 ⊗ zc

j+1,j ∈ set(X ′) if and only if xw
j+1 = (x′)w

j+1. So

PrX′ [xw
j+r⊗zc

j+s,j ∈ set(X ′)|X ′∧Y = k′] = q(yw
k′−1, y

w
k′ , k

′−1, xw
j+1, j+1) ≤ 2pj−k′+2 (4.29)



43

by Lemma 19. If s = 0, then xw
j+r ⊗ zc

j,j ∈ set(X ′) if and only if “xw
j+r = (x′)w

j or

xw
j+r = (x′)w

j+1”. Also note that

PrX′ [xw
j+r = (x′)w

j |X ′ ∧ Y = k′] = q(yw
k′−1, y

w
k′ , k

′ − 1, xw
j+r, j) (4.30)

unless k′ = j + 1 and r = 1, in which case PrX′ [xw
j+r = (x′)w

j |X ′ ∧ Y = k′] = 0 because

xw
j+1 ⊗ zc

j,j /∈ set(Y ) but (x′)w
j ⊗ zc

j,j = yw
j ⊗ zc

j,j ∈ set(Y ). The other probability

PrX′ [xw
j+r = (x′)w

j+1|X ′ ∧ Y = k′] =





q(yw
k′−1, y

w
k′ , k

′ − 1, xw
j+r, j + 1) if j ≤ T − 1,

0 if j = T.

(4.31)

Putting all cases together, we get the desired result. ¤

(Continue the proof of Theorem 20) The claim implies that

vY,xw
j+r⊗zc

j+s,j
≤

j+r∑

k′=1

bk′,j,r,sBoundk′,j,r,s. (4.32)

The symmetric case of u(X, Y, i) and v(X,Y, i) where i is a point yw
j+r ⊗ zc

j+s,j ∈ set(Y )−
set(X) can be dealt with in the same way, yielding uX,yw

j+r⊗zc
j+s,j

≤ ∑j+r
k′=1 bk′,j,r,sBoundk′,j,r,s

and vY,yw
j+r⊗zc

j+s,j
≤ ∑j+r

k′=1 ak′,j,r,s.

By the definition of Boundk′,j,r,s, it holds for any (j, r, s) that

j+r∑

k′=1

Boundk′,j,r,s ≤ 4
T∑

t=1

pt and
j+r∑

k′=1

√
Boundk′,j,r,s ≤ 4

T∑

t=1

√
pt. (4.33)

Now for the randomized lower bound, ak′,j,r,s = bk′,j,r,s = 1.

RLS(G) = Ω

(
min
j,r,s

max

{
T − 2

∑T
t=1 pt

j + r
,

T − 2
∑T

t=1 pt∑j+r
k′=1 Boundk′,j,r,s

})
= Ω

(
T∑T

t=1 pt

)
. (4.34)

For the quantum lower bound, pick ak′,j,r,s =
√

Boundk′,j,r,s, and bk′,j,r,s = 1/
√

Boundk′,j,r,s.

Then

QLS(G) = Ω


min

j,r,s

√√√√√
(
T − 2

∑T
t=1 pt

)(
T − 2

∑T
t=1 pt

)
(∑j+r

k′=1

√
Boundk′,j,r,s

)(∑j+r
k′=1

√
Boundk′,j,r,s

)


 = Ω

(
T∑T

t=1

√
pt

)

(4.35)

This completes the proof of Theorem 20. ¤



44

4.4 Applications to the two special graphs

In this section, we will apply Theorem 20 to the two special graphs. Note that in both

cases, the probability pt is not easy to upper bound. Also note that we need not only to

pick the random walk, but also the way to decompose the graph.

4.4.1 Lower bounds for Local Search on the Boolean Hypercube

To apply Theorem 20 to {0, 1}n, we decompose the whole graph into the two parts {0, 1}m

and {0, 1}n−m, where m is to be decided later (and to be taken different values for random-

ized and quantum lower bounds). Pick the random walk ({0, 1}m, vw
0 ,W ), where vw

0 = 0m ∈
{0, 1}m and W (x, t) = {x(i) : i ∈ {0, ...,m − 1}} for each vertex x = x0...xm−1 ∈ {0, 1}m

and each t ∈ N. Finally, note that the longest self-avoiding path of the graph {0, 1}n−m is

a Hamilton path with length L = 2n−m − 1.

The following bounds on pt are rather loose for 10 < t ≤ m2 but sufficient for our

purpose. The proof of the lemma uses some techniques in generating functions and Fourier

analysis.

Lemma 23 For any t ∈ N, we have

pt =





O(m−dt/2e) if t ≤ 10

O(m−5) if 10 < t ≤ m2

O(2−m) if t > m2

(4.36)

Proof Consider that we put t balls randomly into m bins one by one. The j-th ball goes

into the ij-th bin. Denote by ni the total number of balls in the i-th bin. We write ni ≡ bi

if bi = ni mod 2. We say that (i1, ..., it) generates the parity sequence (b1, ..., bm), or simply

(i1, ..., it) generates (b1, ..., bm), if ni ≡ bi for all i ∈ [m]. For b1...bm ∈ {0, 1}m, denote by

p(t)[b1, ..., bm] the probability that ni ≡ bi, ∀i ∈ [m]. Let p(t) = maxb1,...,bm p(t)[b1, ..., bm].

It is easy to see that p(t) = pt in Lemma 23, so it is enough to prove the same bounds in

Lemma 23 for p(t).



45

We start with several simple observations. First, we assume that t and
∑m

i=1 bi have the

same parity, because otherwise the probability is 0 and the lemma holds trivially. Second,

by the symmetry, any permutation of b1, ..., bm does not change p(t)[(b1, ..., bm)]. Third,

p(t)[(b1, ..., bm)] decreases if we replace two 1’s in b1, ..., bm by two 0’s. Precisely, if we have

two bi’s being 1, say b1 = b2 = 1, then p(t)[(b1, ..., bm)] < p(t)[(0, 0, b3, ..., bm)]. In fact, note

that

p(t)[(b1, ..., bm)] =
1

mt

∑
n1+...+nm=t

ni≡bi,i∈[m]

t!
n1!...nm!

(4.37)

=
1

mt

∑

n3+...+nm≤t
ni≡bi,i=3,...,m


 t!

(n1 + n2)!n3!...nm!

∑
n1+n2=t−n3−...−nm

ni≡bi,i=1,2

(n1 + n2)!
n1!n2!




(4.38)

where as usual, let 0! = 1. If n3 + ... + nm < t, then

∑
n1+n2=t−n3−...−nm

ni≡1,i=1,2

(n1 + n2)!
n1!n2!

=
∑

n1+n2=t−n3−...−nm
ni≡0,i=1,2

(n1 + n2)!
n1!n2!

(4.39)

If n3 + ... + nm = t, then the only possible (n1, n2) is (0, 0), so

∑
n1+n2=t−n3−...−nm

ni≡1,i=1,2

(n1 + n2)!
n1!n2!

= 0,
∑

n1+n2=t−n3−...−nm
ni≡0,i=1,2

(n1 + n2)!
n1!n2!

= 1. (4.40)

Thus p(t)[(1, 1, b3, ..., bm)] < p(t)[(0, 0, b3, ..., bm)].

By these observations, it is sufficient to prove the lemma for the case p(t)[(0, ..., 0)] if t

is even, and for the case p(t)[(1, 0, ..., 0)] if t is odd. Note that if t is even, then

p(t)[(0, ..., 0)] =
m∑

i=1

Pr[i1 = i]Pr[(i2, ..., it) generates (ei)] (4.41)

where ei is the m-long vector with only coordinate i being 1 and all other coordinates being 0.

By symmetry, p(t−1)[e1] = ... = p(t−1)[em], thus p(t)[(0, ...0)] = p(t−1)[e1] = p(t−1)[1, 0, ..., 0].

Therefore, it is enough to show the lemma for even t.

We now express p(t)[0, ..., 0] in two ways. One is to prove the first case (t ≤ 10) in the

lemma, and the other is for the second case (10 < t ≤ m2) and the third case (t > m2) in

the lemma.



46

To avoid confusion, we write the number m of bins explicitly as subscript: p
(t)
m [b1, ..., bm].

We consider which bin(s) the first two balls are put into.

p(t)
m [0, ..., 0] = Pr[i1 = i2]p(t−2)

m [0, ..., 0] + Pr[i1 6= i2]p(t−2)
m [1, 1, 0, ..., 0] (4.42)

=
1
m

p(t−2)
m [0, ..., 0] +

m− 1
m

p(t−2)
m [1, 1, 0, ..., 0] (4.43)

To compute p
(t−2)
m [1, 1, 0, ..., 0], we consider how to put (t − 2) balls in m bins. By the

analysis of the third observation above, we know that

p(t−2)
m [0, ..., 0]− p(t−2)

m [1, 1, 0, ..., 0] (4.44)

=Pr[n1 = n2 = 0, n3 ≡ 0, ..., nm ≡ 0] (4.45)

=Pr[n1 = n2 = 0]Pr[n3 ≡ 0, ..., nm ≡ 0|n1 = n2 = 0] (4.46)

=
(

m− 2
m

)t−2

p
(t−2)
m−2 [0, ..., 0] (4.47)

Therefore,

p(t)
m [0, ..., 0] =

1
m

p(t−2)
m [0, ..., 0]− m− 1

m

(
m− 2

m

)t−2

p
(t−2)
m−2 [0, ..., 0]. (4.48)

Now using the above recursive formula and the base case p
(2)
m [0, ..., 0] = 1/m, it is easy

(but tedious) to prove by calculations that p
(t)
m [0, ..., 0] = ((t − 1)!!/m

t
2 )(1 − o(1)) for even

t ≤ 10. This proves the first case in the lemma.

For the remaining two cases, we shall use generating function and some technique in-

spired by Fourier analysis. Consider the generating function

(x1 + ... + xm)t =
∑

n1+...+nm=t

(
t

n1, ..., nm

)
xn1

1 ...xnm
m . (4.49)

If xi ∈ {−1, 1}, then (x1 + ... + xm)t =
∑

n1+...+nm=t

(
t

n1,...,nm

)
(−1)|{i:xi=−1,ni≡1}|. We sum

it over all x1...xm ∈ {−1, 1}m. Note that for those (n1, ..., nm) that have some ni0 ≡ 1, it

holds due to the cancelation that
∑

x1,...,xm∈{−1,1}(−1)|{i:xi=−1,ni≡1}| = 0 . On the other

hand, if all ni’s are even, then
∑

x1,...,xm∈{−1,1}(−1)|{i:xi=−1,ni≡1}| = 2m. Thus we have

∑

x1,...,xm∈{−1,1}
(x1 + ... + xm)t = 2m

∑
n1+...+nm=t

ni≡0,i∈[m]

(
t

n1, ..., nm

)
. (4.50)



47

And therefore,

p(t)[0, ..., 0] =
1

mt

∑
n1+...+nm=t

ni≡0,i∈[m]

(
t

n1, ..., nm

)
(4.51)

=
1

2mmt

∑

x1,...,xm∈{−1,1}
(x1 + ... + xm)t (4.52)

=
1

2mmt

m∑

i=0

(
m

i

)
(m− 2i)t (4.53)

=
1

2m

m∑

i=0

(
m

i

)(
1− 2i

m

)t

. (4.54)

Note that t is even, so p(t)[0, ..., 0] decreases if t increases by 2, and this proves the second

case of the lemma with the help of the first case. And if t > m2/2, then

p(t)[0, ..., 0] ≤ 1
2m

(
2 +

(
1− 2

m

)t m−1∑

i=1

(
m

i

))
< 2/2m + e−m = O(1/2m) (4.55)

This proves the third case of the lemma. ¤

Now it is very easy to prove Theorem 15 using this lemma. For the randomized lower

bound, let m = b(n + log2 n)/2c, then T = Θ(2n/2/n1/2) and
∑T

t=1 pt = O(1/n). Thus

RLS({0, 1}n) = Ω(
√

n2n/2). For the quantum lower bound, let m = b(2n+log2 n)/3c, then

T = Θ(2n/3/n1/3) and
∑T

t=1

√
pt = O(1/

√
n). Thus QLS({0, 1}n) = Ω(2n/3n1/6).

4.4.2 Lower bounds for Local Search on the constant dimensional grid

In this section we shall first prove a lower bound weaker than Theorem 16 in Section 4.4.2,

and then improve it to Theorem 16 in Section 4.4.2 and Section 4.4.2.

A weaker family of lower bounds

To simplify notations, we let n = N1/d. As in Section 4.4.1, we decompose the grid into two

parts, [n]m and [n]d−m. For each vertex x = x0...xm−1 ∈ [n]m and each i ∈ {0, ..., m − 1},
define

x(i),− = x0...xi−1 max{xi − 1, 1}xi+1...xm−1, (4.56)

x(i),+ = x0...xi−1 min{xi + 1, n}xi+1...xm−1. (4.57)



48

We perform the random walk ([n]m, vw
0 ,W ) where vw

0 = 00...0 ∈ [n]m and

W (x, t) = {x((t−1) mod m),+, x((t−1) mod m),−}. (4.58)

To analyze the probability pt in Theorem 20, we first consider the following simpler “line

walk”. Suppose a particle is initially put at point i ∈ {1, ..., n}, and in each step the particle

moves either to max{1, i−1} or to min{n, i+1}, each with probability 1/2. Let p
(t)
ij denote

the probability that the particle starting from point i stops at point j after exact t steps of

the walk. For t ≥ 1, the following proposition gives a very good (actually tight) estimate

on maxij p
(t)
ij .

Proposition 24 For any t ≥ 1,

max
i,j

p
(t)
ij =





O(1/
√

t) if t ≤ n2

O(1/n) if t > n2.

(4.59)

Before the formal proof, let us briefly discuss the main difficulty and the idea to get

around it. First note that since we care about the whole mixing process (i.e. before and

after mixing), the standard eigenvalue gap does not immediately apply. Second, if there are

not the two barriers (1 and n) then p
(t)
ij is very easy to calculate: p

(t)
ij =

(
t

t/2+(j−i)/2

)
if j − i

and t have the same parity, and 0 otherwise. However, since we now have the two barriers,

it is hard to count the number of paths from i to j after exactly t steps. Fortunately, there

is a basic reflecting rule as follows.

reflecting rule: In the line walk without barrier, the number of paths from i > 0 to j > 0

in exactly t steps touching or crossing the point 0 is equal to the number of paths from −i

to j in exactly t steps.

The proof of this rule is very easy. Suppose a random path touches the point 0 at t for

the first time, then do a reflection of the first t steps of the path with respect to point 0.

See Figure 4.1 for an illustration. It is not hard to see that this gives a 1-1 correspondence

between the following two sets: 1) the set of paths from i to j after exactly t steps touching

or crossing the point 0, and 2) the set of paths from −i to j.



49

i0−i

j

new path old path

Figure 4.1: The proof of the reflecting rule.

Now let us consider the barrier setting. Note that a path may try to cross the two

barriers in some pattern, for example, try to cross the left barrier (i.e. point 1) a times and

then try to cross the right barrier (i.e. point n) b times. Imagine that we now remove the

two barriers, then the path will touch (from right) but not cross the point 1 − a and will

touch (from left) but not cross the point n + b− a. To use the reflecting rule, we just need

to further note the following simple fact:

{paths touching but not crossing the point 1− a}
= {paths touching or crossing the point 1− a} − {paths touching or crossing the point − a}.

Following this idea, we will construct a series of 1-1 correspondences to reduce the problem

step by step to the no-barrier case. The precise proof is as follows.

Proof We consider two settings. One is the line walk on n points 0, ..., n − 1 with the

two barriers 0 and n− 1 6 . Another is the same except that the barriers are removed, and

we have infinite points in a line. For each t-bit binary string x = x1...xt, we use P x
i and

Qx
i to denote the two paths that starting at i and walk according to x in the two settings.

Precisely, at step s, Qx
i goes left if xs = 0 and goes right if xs = 1 . P x

i goes in the same

way except that it will stand still if the point is currently at left (or right) end and it still

wants to go left (or right). If the end point of P x
i is j, then we write i →P,x

t j. Let X
(t),P
ij

be the set of x ∈ {0, 1}t such that i →P,x
t j, and put n

(t),P
ij = |X(t),P

ij |. Then by definition,

6Here we let the n points be 0, ..., n− 1 instead of 1, ..., n just to make the later calculation cleaner.



50

p
(t)
ij = n

(t),P
ij /2t. The notations i →Q,x

t j, X
(t),Q
ij and n

(t),Q
ij are similarly defined, with the

corresponding P changed to Q. Note that n
(t),Q
ij =

(
t

t/2+(j−i)/2

)
if j− i and t have the same

parity, and 0 otherwise. We now want to upper bound n
(t),P
ij in terms of n

(t),Q
ij .

For a path P x
i , if at some step it is at point 0 and wants to go left, we say it attempts

to pass the left barrier. Similarly for the right barrier. We say a path is in the {as, bs}l
s=1

category if it first attempts to pass the left barrier for a1 times, and then attempts to pass

the right barrier for b1 times, and so on. We call each round a stage s, which begins at the

time that P x
i attempts to pass the left barrier for the (a1 + ...+ as−1 +1)-th time, and ends

right before the time that P x
i attempts to pass the left barrier for the (a1 + ... + as + 1)-th

time. We also split each stage s into two halves, cutting at the time right before the path

attempts to pass the right barrier for the (b1 + ... + bs−1 + 1)-th time. Note that a1 may

be 0, which means that the path first attempts to pass the right barrier. Also bl may be 0,

which means the the last barrier the path attempts to pass is the left one. But all other

ai, bi’s are positive. Also note that in the case of l = 0, the path never attempts to pass

either barrier. Now for any fixed l > 0, we consider those categories with a1 > 0 and bl > 0.

Other cases can handled similarly. Partition X
(t),P
ij as

X
(t),P
ij =

⋃

l, {as,bs}l
s=1

X
(t),P
ij [{as, bs}l

s=1] (4.60)

where X
(t),P
ij [{as, bs}l

s=1] contains those x ∈ {0, 1}t such that P x
i is in the category {as, bs}l

s=1.

Put n
(t),P
ij [{as, bs}l

s=1] = |X(t),P
ij [{as, bs}l

s=1]|, thus n
(t),P
ij =

∑
l

∑
{as,bs}l

s=1
n

(t),P
ij [{as, bs}l

s=1].

Now consider the corresponding paths in X
(t),Q
ij . The following observation relates P x

i

and Qx
i .

Observation 25 For each x ∈ X
(t),P
ij [{as, bs}l

s=1], the following three properties hold for

any s.

1. In the first half of stage s, the path Qx
i touches (from right) but does not cross the

point αs =
∑s−1

r=1(br − ar)− as.

2. In the second half of stage s, the path Qx
i touches (from left) but does not cross the

point βs = n− 1 +
∑s

r=1(br − ar).



51

3. The path Qx
i ends at γ = j +

∑l
s=1(bs − as).

We let Y
(t),Q
iγ [{αs, βs}l

s=1] contain those x ∈ {0, 1}t satisfying the three conditions in the

above observation, and denote by m
(t),Q
iγ [{αs, βs}l

s=1] the size of the set Y
(t),Q
iγ [{αs, βs}l

s=1].

Thus the observation says X
(t),P
ij [{αs, βs}l

s=1] ⊆ Y
(t),Q
ij [{αs, βs}l

s=1], and therefore we have

n
(t),P
ij [{as, bs}l

s=1] ≤ m
(t),Q
iγ [{αs, βs}l

s=1]. So it is enough to upper bound m
(t),Q
iγ [{αs, βs}l

s=1].

Now for each x ∈ Y
(t),Q
iγ [{αs, βs}l

s=1], if we change the condition 1 in state s = 1

by allowing the path to cross the point α1, and let Z
(t),Q
iγ [{αs, βs}l

s=1] be the new set

satisfying the new conditions, then m
(t),Q
iγ [{αs, βs}l

s=1] = |Z(t),Q
iγ [{αs, βs}l

s=1]| − |Z(t),Q
iγ [α1−

1, β1, {αs, βs}l
s=2]|. In other words, the set of paths touches (from right) but does not cross

α1 is the set of paths touches or crosses α1 minus the set of paths touches or crosses α1− 1.

Now we calculate |Z(t),Q
iγ [{αs, βs}l

s=1]| by the so-called reflection rule. Suppose the first

time that Qx
i touches α1 is t1. We reflect the first t1 part of the path Qx

i with respect

to the point α1. Precisely, let y = (1 − x1)...(1 − xt1)xt1+1...xt, then the paths Qx
i and

Qy
2α1−i merge at time t1. And it is easy to check that it is a 1-1 correspondence between

Z
(t),Q
iγ [{αs, βs}l

s=1] and Y
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2], Here Y
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2] is the set of

paths starting at 2α1−i, satisfying (a) the condition 2 at the first stage, (b) both conditions

1 and 2 at the rest l − 1 stages, and (c) condition 3. So

|Z(t),Q
iγ [{αs, βs}l

s=1]| = |Y (t),Q
2α1−i,γ [β1, {αs, βs}l

s=2]| = m
(t),Q
2α1−i,γ [β1, {αs, βs}l

s=2] (4.61)

= m
(t),Q
−2a1−i,γ [β1, {αs, βs}l

s=2] (4.62)

= m
(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2] (4.63)

where (4.62) is due to the fact that α1 = −a1, and (4.63) is because that the number of the

paths does not change if we move all the paths right by a1. Similarly, we have

|Z(t),Q
iγ [α1 − 1, β1, {αs, βs}l

s=2]| = m
(t),Q
2α1−2−i,γ [β1, {αs, βs}l

s=2] (4.64)

= m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]. (4.65)



52

Therefore,

n
(t),P
ij [{as, bs}l

s=1] ≤ m
(t),Q
iγ [{αs, βs}l

s=1] (4.66)

= m
(t),Q
−2a1−i,γ [β1, {αs, βs}l

s=2]−m
(t),Q
−2a1−2−i,γ [β1, {αs, βs}l

s=2] (4.67)

= m
(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]

−m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]. (4.68)

Note that αs + a1 = b1 +
∑s−1

r=2(br − ar) − as, βs + a1 = n − 1 + b1 +
∑s

r=2(br − ar) and

γ + a1 = j + b1 +
∑s

r=2(br − ar) are all functions of (b1, a2, b2, ..., al, bl), not of a1 any more.

Therefore,

∑

a1,b1,...,al,bl>0

n
(t),P
ij [{as, bs}l

s=1] (4.69)

≤
∑

b1,...,al,bl>0

∑

a1>0

(m(t),Q
−a1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]

−m
(t),Q
−a1−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]) (4.70)

=
∑

b1,...,al,bl>0

(m(t),Q
−1−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]

+ m
(t),Q
−2−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]) (4.71)

≤
∑

b1,...,al,bl>0

2 max
h=1,2

{m(t),Q
−h−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]}. (4.72)

Now using the similar methods, i.e. reflecting with respect to points (n−1+b1) and (n+b1),

moving the paths left by b1, and finally collapsing the telescope, we can get

∑

b1,...,al,bl>0

m
(t),Q
−h−i,γ+a1

[β1 + a1, {αs + a1, βs + a1}l
s=2]

≤
∑

a2,b2,...,al,bl>0

2 max
k=1,2

{m(t),Q
2n+i+h−k+1,γ+a1−b1

[{αs + a1 − b1, βs + a1 − b1}l
s=2]} (4.73)

and thus

∑

a1,b1,...,al,bl>0

n
(t),P
ij [{as, bs}l

s=1]

≤
∑

a2,b2,...,al,bl>0

4 max
h=0,1,2

{m(t),Q
2n+i+h,γ+a1−b1

[{αs + a1 − b1, βs + a1 − b1}l
s=2]}. (4.74)



53

We continue this process, and finally we get

∑

a1,b1,...,al,bl>0

n
(t),P
ij [{as, bs}l

s=1] ≤ 22l max
h=0,1,...,2l

n
(t),Q

2ln+i+h,γ+
Pl

s=1(as−bs)
(4.75)

= 22l max
h=0,1,...,2l

n
(t),Q
2ln+i+h,j (4.76)

= 22ln
(t),Q
2ln+i,j (4.77)

≤ 22l

(
t

t
2 + j−i−2ln

2

)
. (4.78)

Thus

∑

l>0

∑

a1,b1,...,al,bl>0

n
(t),P
ij [{as, bs}l

s=1] (4.79)

≤
∑

l≥0

22(l+1)

(
t

t
2 + ln

)
(4.80)

=4
(

t

t/2

)
+

∑

l≥1

22(l+1)

(
t

t/2 + ln

)
(4.81)

≤4
(

t

t/2

)
+

1
n

∑

l≥1

22(l+1)

((
t

t/2 + ln

)
+

(
t

t/2 + ln− 1

)
+ ... +

(
t

t/2 + ln− n + 1

))

(4.82)

≤4
(

t

t/2

)
+

1
n

∑

l≥1

22(l+1)

((
t

t

)
+

(
t

t− 1

)
+ ... +

(
t

t/2 + ln− n + 1

))
(4.83)

≤4
(

t

t/2

)
+

1
n

∑

l≥1

22(l+1)2te−
2(l−1)2n2

3t (4.84)

where
(

t
t′
)

= 0 if t′ > t. Here the first two inequalities are by the monotonicity of bi-

nomial coefficients, and the last inequality is by Chernoff’s Bound. Now if t ≤ n2, then
∑

l≥1 22(l+1)e−
2(l−1)2n2

3t ≤ ∑
l≥1 22(l+1)e−

2(l−1)2

3 = O(1), so
∑

l>0

∑
a1,b1,...,al,bl>0 n

(t),P
ij [{as, bs}l

s=1] ≤
O(

(
t

t/2

)
+2t/n) = O(2t/

√
t). For other categories of a1 = 0 or bl = 0, the same result can be

proved similarly, and the l = 0 is easy since n
(t),Q
ij = O(2t/

√
t). Putting all things together,

we see that p
(t)
ij = O(1/

√
t) if t ≤ n2. The other part, i.e. p

(t)
ij = O(1/n) when t > n2,

can be easily derived from this and the fact that maxij p
(t)
ij decreases as t increases. This

completes our proof. ¤



54

Now we use Proposition 24 to prove the weaker lower bounds for grids. Note that the

random walk ([n]m, vw
0 ,W ) is just a product of m line walks, i.e. cyclicly perform the line

walk in the cyclic order of dimension 0, 1, ...,m − 1 (see Eq. (4.58)). Therefore, the pt in

the random walk ([n]m, vw
0 , W ) satisfies

pt =





O(1/
√

tm) if t ≤ n2,

O(1/nm) if t > n2.

(4.85)

Now for the randomized lower bounds, when d > 4 we pick m = dd/2e > 2 and we get

RLS([n]d) = Ω
(

nd−m

O(1) + nd−m/nm

)
= Ω(nbd/2c) =





Ω(n
d
2 ) if d is odd,

Ω(n
d
2
− 1

2 ) if d is even.

(4.86)

For d = 4, 3, 2, we let m = 2, 2, 1 respectively, and get RLS([n]4) = Ω(n2/(log n + 1)) =

Ω(n2/ log n), RLS([n]3) = Ω(n/(log n + 1/n)) = Ω(n/ log n), and RLS([n]2) = Ω(n/(
√

n +

1)) = Ω(
√

n).

For the quantum lower bounds, if d > 6, we let m be the integer closest to 2d/3, thus

m > 4. We get

QLS([n]d) = Ω
(

nd−m

O(1) + nd−m/nm/2

)
=





Ω(N
1
3 ) if d = 3d′

Ω(N
1
3
− 1

3d ) if d = 3d′ + 1

Ω(N
1
3
− 1

6d ) if d = 3d′ + 2

. (4.87)

For d = 6, let m = 4 and we have QLS([n]6) = Ω(n2/ log n). For d = 5, 4, 3, we let

m = d − 2 and then QLS([n]d) = Ω(n2/(n2−(d−2)/2 + n2−(d−2)/2)) = Ω(nd/2−1), which is

Ω(n5/2), Ω(n2), Ω(n3/2), respectively. For d = 2, let m = 1 and QLS([n]2) = Ω( n
n3/4 ) =

Ω(n1/4).

Improvement

One weakness of the above proof is the integer constraint of the dimension m. We now

show a way to get around the problem, allowing m to be any real number between 0 and



55

d− 1. The idea is to partition the grid into many blocks, with different blocks representing

different time slots, and the blocks are threaded into one very long block by many paths

that are pairwise disjoint. Roughly speaking, we view [n]d as the product of d line graph [n].

For each of the first d−1 line graphs, we cut it into n1−r parts evenly, each of size nr. (Here

r = m/(d − 1)). Then [n]d−1 is partitioned into n(d−1)(1−r) smaller grids, all isomorphic

to [nr]d−1. Putting the last dimension back, we have n(d−1)(1−r) blocks, all isomorphic to

[nr]d−1 × [n]. Now the random walk will begin in the first block, and within each block,

there is just one step of random walk in [nr]d−1 followed by two steps of one-way walk

in the last dimension space [n]. When the walk runs out of the clock [n], the walk will

move to the next block via a particular block-changing path. All block-changing paths are

carefully designed to be disjoint, and they “thread” all the blocks to form a [nr]d−1 × [L]

grid, where L = (n − 2nr)n(1−r)(d−1). (L is not n · n(1−r)(d−1) because we need 2nr points

for the block-changing paths.) Figure 4.2 is an illustration for the case of d = 2.

We now describe the partition and the walk precisely. For x = x0...xd−1 in [n]d, let

x(k)=l = x0...xk−1lxk+1...xd−1, and x(k)=(k)+i = x0...xk−1(xk + i)xk+1...xd−1, where i satis-

fies xk + i ∈ [n]. Recall that x(i),− = x(i)=max{xi−1,1} and x(i),+ = x(i)=min{xi+1,n}.

For any fixed constant r ∈ (0, 1), let α = bnrc, β = bn1−rc and n′ = αβ. Note that

n′ ≥ (nr−1)(n1−r−1) = n−o(n). We now consider the slightly smaller grid [n′]d. Let V1 be

the set [n′]d−1 = {x0...xd−2 : xi ∈ [n′]}. We cut V1 into βd−1 parts {x0...xd−2 : (ki − 1)α <

xi ≤ kiα}k0...kd−2∈[β]d−1 , each of which is a small grid isomorphic to [α]d−1. We then refer

to the set {x0...xd−2xd−1 : (ki − 1)α < xi ≤ kiα, i = 0, ..., d− 2, α < xd−1 ≤ n′ − α} as the

“block (k0, ..., kd−2)”. Note that (k0, ..., kd−2) can be also viewed as a point in grid [β]d−1,

and there is a Hamilton path HamPathβ,d−1 in [β]d−1, as defined in Section 2. We call

the block (k′0, ..., k
′
d−2) the next block of the block (k0, ..., kd−2) if (k′0, ..., k

′
d−2), viewed as

the point in [β]d−1, is the next point of (k0, ..., kd−2) in HamPathβ,d−1. Note that by our

definition of HamPathβ,d−1, we know that ∃i ∈ {0, ..., d− 2} such that k′i ∈ {ki + 1, ki− 1}
and for all other j 6= i, k′j = kj . That is, adjacent blocks have only one coordinate to be

different, and this difference is 1. We call the block (k0, ..., kd−2) the last block if (k0, ..., kd−2)



56

1

block 1 block 2 block

dimension 1

n’−

 ...  

block−changing segmentboundary point

dimension 0

n’−

n’

α+1
α

α
α+1

1  ...  α α+1 2α  ...  n’− α+1 n’

β
 ...   ...  

Figure 4.2: Illustration for changing a block in the 2-dimensional grid

is the last point in HamPathβ,d−1.

Now we define the random walk by describing how a particle may go from start to end.

The path set is just all the possible paths the particle goes along. Intuitively, within one

block, the last dimension d − 1 serves as the clock space. So as before, we perform one

step of line walk (in the dimension which is the circularly next dimension of the last one

that the walk just goes in), followed by two steps of walk in the clock space. If we run out

of clock, we say we reach a boundary point at the current block, and we move to the next

block via a path segment called block-changing segment. In the following Algorithm 4.1, we

specify how the particle may move during the whole random walk process, including going

through block-changing segments. We always use x0...xd−1 to denote the current position

of the particle, and assume xi = (ki − 1)α + yi, i.e. x is in the block (k0, ..., kd−2) with the

offsets (y0, ..., yd−1). Thus the instruction x0 = x0 +1, for example, means that the particle



57

moves from x0...xd−1 to (x0 + 1)x1...xd−1.

Algorithm 4.1: specify the random walk in a real number dimensional grid.

1. Initially x0 = ... = xd−2 = 0, xd−1 = α + 1, k0 = ... = kd−2 = 1.

2. for t = 1 to (n′ − 2α)βd−1,

Let t′ = b t−1
n′−2αc, i = (t− 1) mod (d− 1)

do either xi = max{xi − 1, (ki − 1)α + 1} or xi = min{xi + 1, kiα} randomly

if t 6= k(n′ − 2α) for some positive integer k,

do xd−1 = xd−1 + (−1)t′ twice

else (the particle is now at a boundary point)

if the particle is not in the last block

(Suppose the current block changes to the next block by increasing kj by b ∈
{−1, 1})

do xd−1 = xd−1 + (−1)t′ for (α + 1− yj) times

do xj = xj + b for 2(α + 1− yj)− 1 times

do xd−1 = xd−1 + (−1)t′+1 for (α + 1− yj) times

kj = kj + b

else

The particle stops and the random walk ends

It is easy to verify that every boundary point has one unique block-changing segment,

and different block-changing segments do not intersect. Also note that we do not let the

clock tick when we are moving from one block to another. Thus the block-changing segments

thread all the blocks to form a [α]d−1× [L] grid, where L = (n′−2α)βd−1. Actually, for our

lower bound purpose, we can think of the random walk as performed in the product graph

[α]d−1 × [L]. We will make this clearer below.

What we care about is, as before, the probability that the random walk starting from

a point x = x0...xd−1 passes another point x′ = x′0...x
′
d−1. Note that for any point x

(including those on the block-changing segments), there is only one time t when the walk

may hit x, and this t is determined by x itself. Similarly we use t′ to denote the time when

the path passes x′. Denote the probability that the random walk starting from x passes



58

x′ by Pr[x → x′]. As before suppose xi = (ki − 1)α + yi and x′i = (k′i − 1)α + y′i for

i ∈ {0, ..., d− 2}.
We first consider the case that one of the two points, say x′ is on a block-changing

segment. Since different block-changing segments never intersect, a path passes x′ if and

only if the path passes the boundary point x′′ at the beginning of the block-changing segment

that x′ is in. Also note that the time that the path passes x′′ is also t′ because the time

does not elapse on the block-changing segment. So we have that Pr[x → x′] = Pr[x → x′′],

and it is enough to consider the case that both x and x′ are not in clock-changing segments.

Now suppose both x and x′ are not in clock-changing segments. In general, x and x′

may be not in the same block , so going from x to x′ needs to change blocks. Recall that

to change from the block (k0, ..., kd−2) to the next one, only one ki changes by increasing or

decreasing by 1. Suppose that to go to x′ from x, we change blocks for c times, by changing

ki1 , ki2 , ..., kic in turn. Let nj = |{s ∈ [c] : is = j}|. Note that to get to x′ from x after t′− t

steps, the coordinate j needs to be x′j after t′− t steps for each coordinate j ∈ {0, ..., d−2}.
It is not hard to see that if a block-changing needs to change kj by increasing b ∈ {−1, 1},
then among all the offsets yi’s, only the yj gets changed, and the change is a reflection

within the block. That is, suppose xj is (kj − 1)α + yj before the block-changing, then xj

changes to (kj +b−1)α+(α+1−yj) after the block-changing. So if c = 1, then Pr[x → x′]

is equal to the probability that a random walk in [α]d−1 starting from y0...yd−2 hits y′′0 ...y′′d−2

after exactly t′ − t steps, where y′′j = y′j if j 6= i1 and y′′i1 = α + 1 − y′i1 . For general c,

Pr[x → x′] is equal to the probability that a random walk in [α]d−1 starting from y0...yd−2

hits y′′0 ...y′′d−2 after exactly t′− t steps, where y′′j = y′j if nj is even and y′′j = α + 1− y′j if nj

is odd. Note that this probability has nothing to do with the block-changing; it is just the

same as we have a clock space [(n′ − 2α)βd−1] to record the random walk on [α]d−1. Thus

we can use Proposition 24 to upper bound this probability and just think of the graph as

[nr]d−1 × [L] and use Theorem 20, with Gw = [nr]d−1 and Gc = [L].

Now we have T = bL/2c and pt = O(1/
√

td−1) for t ≤ n2r and pt = O(1/nr(d−1)) for



59

t > n2r. So for randomized lower bounds, if d ≥ 4, then let r = d/(2d− 2) and we get

RLS([n]d) = Ω


n1+(1−r)(d−1)/




nd/(d−1)∑

t=1

1√
td−1

+
n1+(1−r)(d−1)

nr(d−1)





 = Ω

(
nd/2

)
. (4.88)

If d = 3, let r = 3/4 − log log n/(4 log n), and we get RLS([n]3) = Ω((n3/ log n)1/2). For

d = 2, let r = 2/3 and we get RLS([n]2) = Ω(n2/3).

For the quantum lower bounds, if d ≥ 6, then let r = 2d/(3d− 3) and we get

QLS([n]d) = Ω


n1+(1−r)(d−1)/




nd/(d−1)∑

t=1

1
t(d−1)/4

+
n1+(1−r)(d−1)

nr(d−1)/2





 = Ω(nd/3). (4.89)

If d = 5, then let r = 5/6 − log log n/(6 log n) and QLS([n]5) = Ω((n5/ log n)1/3). For

2 ≤ d ≤ 4, we let r = d/(d + 1), then QLS([n]d) = Ω(nd/2−d/(d+1)), which is Ω(n1/3),

Ω(n3/4), Ω(n6/5) for d = 2, 3, 4, respectively.

Further improvement on 2-dimensional grid [n]2

Some other random walk may be used to further improve the lower bound on low dimension

grid cases. Here is one way to improve QLS([n]2) from Ω(n1/3) to Ω(n4/5). We cut the

graph [n]2 into n2/5 smaller grids, each of size n4/5 × n4/5. Without loss of generality,

assume both n1/5 and n4/5 are integers, and further assume n1/5 = 3 mod 4; otherwise we

can consider a slightly smaller grid by the simple trick as at the beginning of Section 4.4.2.

We shall use a random walk similar to Aaronson’s in [2] as follows in each block, and change

blocks after each step. Thus different blocks record different time.

For any time t ∈ [n1/5(n1/5−1)], suppose t = 2rn1/5+t′ where r ∈ {0, 1, ..., (n1/5−3)/2}
and t′ ∈ {1, 2, ..., 2n1/5}. Let

u =





0 if t′ ≡ 0, 1 (mod 4)

n4/5 if t′ ≡ 2, 3 (mod 4).
(4.90)

Let block(t) as the small grid



{(x = (dt′/2e − 1)n4/5 + x′, y = 2rn4/5 + u + y′) : x′, y′ ∈ [n4/5]} if r is even

{(x = (n1/5 − dt′/2e)n4/5 + x′, y = 2rn4/5 + u + y′) : x′, y′ ∈ [n4/5]} if r is odd.

(4.91)



60

The (x′, y′) is called the offset of (x, y). Now define the random walk as in the following

Algorithm 4.2 and as depicted in Figure 4.3.

y

x

t=1

t=2 t=3

t=4 t=2n  −1
1/5

t=2n  +1
1/5

t=2n  
1/5

1/5
t=2n  +2

each length: a random number from {1,2,...,n  }
4/5

Figure 4.3: A different random walk in the 2 dimensional-grid

We then follow the same track as in the proof of Theorem 20. To get a reduction from

Local Search on [n]2 to the PathP problem, we define the function

fX(v) =





l[n]2(v − (1, 1)) if v /∈ set(X)

−2n4/5(t− 1)− (−1)rx′v + (−1)dt′/2ey′v if v ∈ set(X) ∩ block(t).
(4.92)

Intuitively, the function value decreases along the path as before. But the decrement is not

always by 1: each block has its fixed value setting. If for example the path passes through

the block toward right and down (as in the first block), then the value −x′ − y′ is used

within the block. In this way, we do not need to know the length of the path segment from

top to v to calculate each fX(v).

What we care about is still, as in Equality (4.27), the probability that the path X ′

passes another point x on X, under the condition that X ′ ∧ Y = k′. It is not hard to see

that this probability is Θ(1) in general if x is in block(k′), and Θ(1/n4/5) otherwise (i.e.



61

Algorithm 4.2: A different random walk in the 2 dimensional grid.

1. Initially (x, y) = (1, 1)

2. for t = 1, 2, ..., n1/5(n1/5−1) (Suppose the current point is (x, y) with offset (x′, y′))

3. if t′ is odd

4. pick a random x′′ ∈ [n1/5], move horizontally to the point in block(t) with the
offset (x′′, y′)

5. else

6. if t′ = 2n1/5 then c = 1 else c = 0

7. pick a random y′′ ∈ [n1/5], move vertically to the point in block(t + c) with the
offset (x′, y′′)

when x is in block(t) for some t > k′). Thus by L = Θ(n2/5) we have

QLS([n]2) = Ω
(
n2/5/

(
1 + n2/5/

√
n4/5

))
= Ω(n2/5) (4.93)

This completes the proof of Theorem 16.

Note that this random walk suffers from the fact that the “passing probability” is now

n4/5 times the “hitting probability”. So for general d, we can get RLS([n]d) = Ω(nd/(d+1))

and QLS([n]d) = Ω(nd/(2d+1)), which only gives better results for QLS on the 2-dimensional

grid.

4.5 New algorithms for Local Search on general graphs

In [7, 2], a randomized and a quantum algorithm for Local Search on general graphs are

given as follows. Pick k random samplings over all the vertices, and find a vertex v in them

with the minimum f -value.7 Then roughly speaking, v is the N/k-minimum vertex over

all the N vertices in G. Now we follow a decreasing path as follows. Find a neighbor of v

with the minimum f -value, and continue this minimum-value-neighbor search process until
7For the minimum f -value finding procedure, The randomized algorithm in [7] just queries all these

vertices and find the minimum, while the quantum algorithm in [2] uses the algorithm by Durr and Hoyer
[32] based on Grover search [34] to get a quadratic speedup.



62

getting to a local minimum. Since v is the N/k-minimum vertex, any decreasing path from

it has length no more than N/k. Thus we need k + δN/k queries in the randomized case

and
√

k +
√

δN/k queries in the quantum case, and optimizing k achieves the performance

of the algorithms mentioned in Section 4.1. We can see that the algorithms actually fall

into the generic algorithm category (see Section 1), with the initial point picked as the best

one over some random samples.

In this section, we give new randomized and quantum algorithms, which work better

than this simple “random sampling + steepest descent” method when the graph expands

slowly. Here the idea is that after finding the minimum vertex v of the k sampled points,

we know that v is (roughly) the N/k-minimum vertex. Therefore, there must be a local

optimum within the smaller range {u : dG(u, v) ≤ N/k}. So instead of following the

decreasing path of v, we start over by doing the local search within this smaller range, and

this procedure can be done recursively.

While this idea sounds simple and effective, there is one caveat here: a local minimum

u in the smaller range may be not a local minimum in the original larger graph G, because

u may have more neighbors in G. To deal with this difficulty, we will actually solve a

stronger version of the local search problem: on the graph G, given a function f : V → R

and a vertex v, find a local optimum u s.t. f(u) ≤ f(v). Note that such u must exist; any

decreasing path from v leads to a valid u. Also note that this problem is harder than the

original local search problem: any algorithm for this new problem is an algorithm for the

original one. A key property of this new problem is that it allows a recursion: given a small

range S and a vertex v in it, suppose that any vertex w on the boundary of S is worse than

v (i.e. f(w) > f(v)), then any local optimum u in S satisfying f(u) ≤ f(v) is also a local

optimum in a larger range S′ ⊇ S.

Now we describe the algorithm precisely as in Algorithm 4.3, with some notations as

follows. For G = (V,E), a given function f : V → N, a vertex v ∈ V and a set S ⊆ V ,

let n(v, S) = |{u ∈ S : f(u) < f(v)}|. The boundary B(S) of the set S ⊆ V is defined by

B(S) = {u ∈ S : ∃v ∈ V − S suchthat (u, v) ∈ E}. In particular, B(V ) = ∅. A decreasing



63

path from a vertex v ∈ V is a sequence of vertices v0, v1, ..., vk such that v0 = v, vk is a local

minimum and f(vi+1) = minv:(vi,v)∈E f(v) < f(vi) for i = 0, ..., k−1. We write f(u) ≤ f(S)

if f(u) ≤ f(v) for all v ∈ S. In particular, it always holds that f(u) ≤ f(∅). Suppose

d = maxu,v∈V l(u, v) is the diameter of the graph, and δ = maxv∈V |{u : (u, v) ∈ E}| is the

max degree of the graph. In the following algorithm, the asymptotical numbers at the end

of some command lines are the numbers of randomized or quantum queries needed for the

step. For those commands without any number, no query is needed.

Define c(k) = maxv∈V |{u : l(u, v) ≤ k}|. Clearly, the expanding speed of a graph is

upper bounded by c(k). The following theorem says that the algorithm is efficient if c(k) is

small.

Theorem 26 The algorithm outputs a local minimum with probability at least 1/2. The

randomized algorithm uses O
(∑I−1

i=0
c(mi)
mi

log log d
)

queries in expectation, and the quantum

algorithm uses O

(∑I−1
i=0

√
c(mi)
mi

(log log d)1.5

)
queries in expectation.

In case that c(k) = O(kα) for some α ≥ 1 (α may be a function of n) and k = 1, ..., d,

the expected number of queries that the randomized algorithm uses is O
(

dα−1−1
1−21−α log log d

)

if α > 1 and O(log d log log d) if α = 1. The expected number of queries that the quantum

algorithm use is O

(
d

α−1
2 −1

1−2
1−α

2
(log log d)1.5

)
if α > 1 and O(log d log logd) if α = 1.

Several comments before proving the theorem:

1. limα→1
dα−1−1
1−21−α = limα→1

d
α−1

2 −1

1−2
1−α

2
= log2 d

2. If α − 1 ≥ ε for some constant ε > 0, then dα−1−1
1−21−α = Θ(dα−1) and d

α−1
2 −1

1−2
1−α

2
=

Θ(d(α−1)/2).

If further the bound c(k) = O(kα) is tight in the sense that N = c(d) = Θ(dα), then

RLS(G) = O
(

N
d log log d

)
and QLS(G) = O

(√
N
d (log log d)1.5

)
.

3. For 2-dimensional grid, d = Θ(n) and α = 2. Thus Theorem 18 follows immediately.

Proof We shall prove the theorem for the quantum algorithm. The analysis of the



64

Algorithm 4.3: New randomized and quantum algorithm for Local Search on a general
graph G = (V, E).

1. m0 = d, U0 = V ;

2. i = 0;

3. while (|mi| > 10) do

(a) Randomly pick (with replacement) d8|Ui|
mi

log 1
ε1
e vertices from Ui, where ε1 =

1/(10 log2 d);

(b) Search the sampled vertices for one vi with the minimal f value.
- Randomized algorithm: query all the sampled vertices and get vi. —
O

(
8|Ui|
mi

log 1
ε1

)

- Quantum algorithm: use Durr and Hoyer’s algorithm [32] with the error prob-

ability at most ε2 = 1/(10 log2 d). — O

(√
8|Ui|
mi

log 1
ε1

log 1
ε2

)

(c) if i = 0, then ui+1 = vi;
else if f(ui) ≤ f(vi), then ui+1 = ui;

else ui+1 = vi;

(d) for j = 1, 2, ...

i. Randomly pick mij ∈ Mi = {m : mi/8 ≤ m ≤ mi/2, |W (m)| ≤ 10|Ui|/mi},
where W (m) = {w ∈ Ui : l(w, ui+1) = m}. Let Wij = W (mij).

ii. Test whether f(ui+1) ≤ f(Wij)
- Randomized algorithm: query all vertices in Wij . — O(|Wij |)
- Quantum algorithm: use Durr and Hoyer’s algorithm [32] on Wij with the

error probability at most ε3 = 1/(200 log2 d). — O
(√|Wij | log 1

ε3

)

iii. If the answer is Yes, jump out of this for loop and go to Step 3e.

(e) Ji = j, mi+1 = mij , Wi = Wij , Ui+1 = {u ∈ Ui : l(u, ui+1) ≤ mi+1};
(f) i = i + 1;

4. I = i;

5. Follow a decreasing path of uI to find a local minimum.

- Randomized algorithm: in each step, query all the neighbors — O(δ)

- Quantum algorithm: in each step, use Durr and Hoyer’s algorithm with the error
probability at most 1/100 — O(

√
δ)



65

randomized algorithm is almost the same (and actually simpler). We say Wi is good if

f(ui+1) ≤ f(Wi). We shall first prove the following claim; the theorem then follows easily.

Claim 27 For each i = 0, 1, ..., I − 1, the following three statements hold.

1. n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ mi/8 ≤ mi+1 with probability 1− ε1 − ε2.

2. If n(ui+1, Ui) ≤ mi/8, then Wi is good with probability 1− ε3Ji, and E[Ji] ≤ 2. 8

3. If W0, ..., Wi are all good, then f(ui+1) ≤ f(B(Ui+1)), and ui+1 /∈ B(Ui+1).

Proof 1: In Step 3a - 3c, denote by S the set of the d8|Ui|
mi

log 1
ε1
e sampled vertices in Step

3a. Let a = minu∈S f(u), then |{v ∈ Ui : f(v) < a}| ≤ mi/8 with probability at least 1− ε1.

The vi found in Step 3b achieves the minimum in the definition of a with probability at

least 1− ε2. Put the two things together, we have n(vi, Ui) ≤ mi/8 with probability at least

1 − ε1 − ε2. Since f(ui+1) ≤ f(vi) (by Step 3c), Ui+1 ⊆ Ui (by Step 3e) and mi+1 ≥ mi/8

(by Step 3(d)i), we have n(ui+1, Ui+1) ≤ n(ui+1, Ui) ≤ n(vi, Ui) ≤ mi/8 ≤ mi+1 with

probability at least 1− ε1 − ε2.

2: We say an mij is good if the corresponding Wij is good, i.e. f(ui+1) ≤ f(Wij). Note

that for any mij ∈ [mi], we have Wij ⊆ Ui, and also have Wij ∩ Wij′ = ∅ if mij 6= mij′ .

Therefore, if n(ui+1, Ui) ≤ mi/8, then at most mi/8 distinct mij ’s in [mi] are not good.

Also note that the number of distinct mij ’s such that |W (mij)| > 10|Ui|/mi is less than

mi/10. Therefore, |Mi| ≥ (3
8 − 1

10)mi > mi/4. So if n(ui+1, Ui) ≤ mi/8, a random mij in

Mi is good with probability at least 1/2, and thus E[Ji] ≤ 2. Also the probability that all

the Grover searches in Step 3(d)ii are correct is at least 1− Jiε3.

3: We shall first prove B(Ui+1) ⊆ B(Ui) ∪Wi. In fact, any s ∈ B(Ui+1) satisfies that

s ∈ Ui+1 and that ∃t ∈ V −Ui+1 such that l(s, t) = 1. Recall that Ui+1 ⊆ Ui, so if t ∈ V −Ui,

then s ∈ B(Ui) by definition. Otherwise t ∈ Ui−Ui+1, and thus t ∈ Ui and l(t, ui+1) > mi+1

8Since Ji is a random variable, the meaning of “Wi is good with probability 1 − ε3Ji” is that for each
fixed j = 1, 2, ..., we have that Wi is good with probability 1− ε3j under the condition that Ji = j. Similar
language is also used in the later part of the proof. Finally we will upper bound the probability of these
random variables being large, and in the case that they are small, the error probability is small. This implies
that the total error probability is small.



66

by the definition of Ui+1. Noting that l(s, ui+1) ≤ mi+1 since s ∈ Ui+1, and that l(s, t) = 1,

we have l(s, ui+1) = mi+1, which means s ∈ Wi. Thus for all s ∈ B(Ui+1), either s ∈ B(Ui)

or s ∈ Wi holds, which implies B(Ui+1) ⊆ B(Ui) ∪Wi.

Applying the result recursively, we have B(Ui+1) ⊆ B(U0)∪W0∪ ...∪Wi = W0∪ ...∪Wi.

Since we have f(ui+1) ≤ f(ui) ≤ ... ≤ f(u1) (by Step 3c) and f(uk+1) ≤ f(Wk) (for k =

0, ..., i) by the assumption that all Wk’s are good, we know that f(ui+1) ≤ f(W0 ∪ ...∪Wi),

which implies f(ui+1) ≤ f(B(Ui+1)).

For the other goal, ui+1 /∈ B(Ui+1), it is sufficient to prove ui+1 /∈ B(Ui) and ui+1 /∈ Wi.

The latter is easy to see by the definition of Wi. For the former, we can actually prove

uk+1 /∈ B(Uk) for all k = 0, ..., i by induction on k. The base case of k = 0 is trivial

because B(U0) = ∅. Now suppose uk /∈ B(Uk−1). There are two cases of uk+1 by Step 3c.

If f(uk) ≤ f(vk), then uk+1 = uk /∈ B(Uk−1) by induction. Again by the definition of Wk−1

we know that uk /∈ Wk−1 and thus uk+1 = uk /∈ B(Uk). The other case is f(uk) > f(vk),

then uk+1 = vk, and therefore f(uk+1) = f(vk) < f(uk) ≤ f(B(Uk)) (by the first part in

3), which implies that uk+1 /∈ B(Uk). ¤

(Continue the proof of Theorem 26) Now by the claim, we know that with probability at

least 1− I(ε1 + ε2)−
∑I−1

i=0 Jiε3, we will have

n(uI , UI) ≤ mI , f(uI) ≤ f(B(UI)), uI /∈ B(UI). (4.94)

Note that the correctness of the algorithms follows from these three items. Actually, by the

last two items, we know that any decreasing path from uI is contained in UI . Otherwise

suppose (u0
I , u

1
I , ..., u

T
I ) is a decreasing path from uI (so u0

I = uI), and the first vertex out of

UI is ut
I , then ut−1

I ∈ B(UI). Since u0
I /∈ B(UI), we have t−1 > 0 and thus f(ut−1

I ) < f(uI),

contradicting to f(uI) ≤ f(B(UI)). Now together with the first item, we know that any

decreasing path from uI is no more than mI long. Thus Step 5 will find a local minimum

by following a decreasing path.

The error probability of the algorithm is I(ε1 + ε2) + Jε3 + 10/100, where J =
∑I−1

i=0 Ji.

Since E[J ] ≤ 2I, we know by Markov inequality that J < 20I with probability at least



67

9/10. Since ε1 = ε2 = 1/(10 log2 d) and ε3 = 1/(200 log2 d), and noting that I ≤ log2 d

because m0 = d and mi+1 ≤ dmi/2e, the total error probability is less than 1/2.

We now consider the number of queries used in the i-th iteration. Note from Step 1 and

Step 3e that |Ui| ≤ c(mi) for i = 0, 1, ..., I − 1. So Step 3b uses

O




√
8|Ui|
mi

log log d log log d


 = O




√
c(mi)
mi

(log log d)1.5


 (4.95)

queries. Also note from Step 3(d)i that |Wij | ≤ 10|Ui|/mi, so the number of queries used in

Step 3d is O(
∑Ji

j=1

√
c(mi)/mi log log d), which has the expectation of O(

√
c(mi)/mi log log d).

Finally, Step 5 uses O(
√

δ) queries. Note that δ = c(1) = O(c(mI)/mI) where mI is a con-

stant integer in the range [6, 10]. Altogether, the total expected number of queries used

is

O







log2 d−1∑

i=0

√
c(mi)/mi


 (log log d)1.5


 . (4.96)

If c(k) = O(kα) for some α ≥ 1 and k = 1, ..., d, then

log2 d−1∑

i=0

√
c(mi)
mi

=
log2 d−1∑

i=0

m
(α−1)/2
i =

log2 d−1∑

i=0

(d/2i)(α−1)/2 =
dβ − 1
1− 2−β

(4.97)

where β = (α− 1)/2. This completes the proof for the quantum algorithm, except that in

the case of α = 1 we only have a quantum upper bound of O(log d(log log d)1.5). But note

that the randomized algorithm uses O(log d log log d) queries (because of the saving at error

probability controls). So if α = 1, the quantum algorithm just uses the randomized one. ¤

4.6 Open problems: remaining gaps

We list those grids on which the query complexities of Local Search still have gaps.

d = 2 3
old RLS [Ω(1), O(n)] [Ω̃(

√
n), O(n

3
2 )]

new RLS [Ω(n
2
3 ), O(n)] [Ω(n

2
3 /(log n)

1
2 ), O(n

3
2 )]

remaining gap n
1
3 (= N

1
6 ) (log n)

1
2 (= (log N)

1
2 )



68

d = 2 3 4 5
old QLS [Ω(n

1
4 ), O(n

2
3 )] [Ω̃(n

1
4 ), O(n)] [Ω̃(n

1
2 ), O(n

4
3 )] [Ω̃(n

3
4 ), O(n

5
3 )]

new QLS [Ω(n
2
5 ), O(n

1
2 )] [Ω(n

3
4 ), O(n)] [Ω(n

6
5 ), O(n

4
3 )] [Ω(n

5
3 /(log n)

1
3 ), O(n

5
3 )]

remaining gap n
1
10 (= N

1
20 ) n

1
4 (= N

1
12 ) n

2
15 (= N

1
30 ) (log n)

1
3 (= (log N)

1
3 )

Here N = nd is the number of the vertices in the grid.



Chapter 5

Quantum Query Complexities for a

class of functions: weakly

symmetric functions

The results in this chapter are from a work jointly done with Sun and Yao [71].

5.1 Background of Monotone Graph Properties and Aanderaa-

Rosenberg Conjecture

In classical decision trees, considerable attention has been paid on the effect of symmetry on

computational complexity. The most famous example is the confirmation of the Aanderra-

Rosenberg Conjecture that all non-constant monotone graph properties on n vertices have

(deterministic) decision tree complexity Θ(n2) [60]. There are however many intriguing

questions that remain open, in classical as well as quantum decision trees. The purpose of

this chapter is to fill some of these gaps in the area of quantum complexity.

Let Γ be a group of permutations of 1, 2, · · · , N . Let f : {0, 1}N → {0, 1} be any

Boolean function invariant under Γ, i.e., f(x1, x2, · · · , xN ) = f(xσ(1), xσ(2), · · · , xσ(N)) for

all σ ∈ Γ. We are interested in how low the complexity can be for such functions. In

69



70

the case of classical decision trees, let DΓ be the minimum deterministic complexity for

any non-constant Boolean function invariant under Γ, and let D
(M)
Γ be the minimum de-

terministic complexity for any non-constant monotone Boolean function invariant under Γ.

For quantum decision trees, let QΓ and Q
(M)
Γ be the corresponding minimum complexities

(allowing a small two-sided error probability).

Much is known about DΓ and D
(M)
Γ when Γ is a transitive group. See Section 5.4 for the

definition of transitive groups. In particular, the Aanderra-Rosenberg Conjecture mentioned

above can be phrased as D
(M)
Γ = Θ(N), where N =

(
n
2

)
and Γ is the permutation group on

the N edges of an n-vertex graph induced by the relabeling of the n vertices. It also has been

proved that, for the same Γ, DΓ = Θ(N1/2). We remark that it was not easy to construct a

graph property with O(N1/2) complexity, and the first non-trivial such example found was

the property of being Scorpion graphs (see Section 5.2 for definition). Historically, it was

actually first conjectured that DΓ = Θ(N) for Γ corresponding to directed or undirected

graph properties, but it was soon discovered that there are counterexamples in both cases:

there is a directed graph property called Sink and an undirected graph property called

Scorpion, both having D(f) = O(
√

N). Since neither of these two functions is monotone, it

was then conjectured that D
(M)
Γ = Θ(N) for directed or undirected graph properties, which

was even conjectured to be true for general transitive group Γ. The conjecture also went to

the randomized case: is it true that D
(M)
Γ = Θ(N) for any transitive group Γ?

5.1.1 Is monotonicity still necessary in the quantum version of the con-

jecture?

Less is known about QΓ and Q
(M)
Γ . For the case when Γ is the set of all permutations

on 1, 2, · · · , N , it is known that QΓ = Θ(
√

N) and Q
(M)
Γ = Θ(

√
N) [20]. It is generally

believed that, for Γ corresponding to graph properties, Q
(M)
Γ = Θ(N1/2). Clearly, O(N1/2)

is an upper bound, and so far the best lower bound (by Santha and Yao (unpublished)) is

Ω(N1/3). There do not seem to be published results on QΓ, and at first glance, it appears

that QΓ may even be Θ(N1/2). The main result of this paper is to pin down QΓ.



71

Theorem 28 For the Γ corresponding to graph properties, QΓ = Θ̃(N1/4).

It is of interest to note that this is strictly below the quantum complexity of any non-

constant monotone graph property. This means that the monotonicity condition is still

important for the quantum case. The graph property used to establish the upper bound in

Theorem 28 is again the Scorpion graph property. It is perhaps a natural choice, since the

Scorpion graph property has low classical complexity, but the proof is nontrivial.

We have also obtained results for several other Γ. Let Γdirected be the group of permu-

tations of 1, 2, · · · , N corresponding to the directed graph properties on n vertices (where

N = n(n − 1)). Let Γcircular be the group of all cyclic shifts of 1, 2, · · · , N . A circular

function is one whose value is invariant to any circular shift of the input indices.

Theorem 29 QΓdirected = Θ̃(N1/4).

Theorem 30 QΓcircular = Θ̃(N1/4).

The upper bound for Theorem 30 is established by a specially constructed Boolean

function. In contrast, the upper bounds for Theorems 28 and 29 are achieved by some

well-known Boolean functions.

The lower bound part of all the above 3 theorems can actually be generalized to the

general transitive permutation group case.

Theorem 31 For any transitive group Γ, QΓ = Ω(N1/4).

5.2 Quantum algorithms for Scorpion

To prove the upper bound part of Theorems 28 and 29, we give Õ(N1/4) algorithms for

a graph property Scorpion and a directed graph property Sink, two problems classically

interesting because their classical decision tree complexity is O(n) [16, 17]. Note that

N =
(
n
2

)
for graph properties and N = n(n − 1) for directed graph properties, where n is

the number of vertices. (We remark that instead of Sink, one can also use a directed graph

version of Scorpion.) The definitions of Scorpion graphs and Sink graphs are as follows.



72

Definition 7 An n-vertex undirected graph G is a Scorpion if there are three special vertices

called Body, Tail and Sting, whose degrees are n−2, 2 and 1, respectively. Furthermore, the

only vertex that Body does not connect to is Sting, and the only neighbor of Sting is Tail.

(See Figure 1) We call any vertex other than these three special ones a Foot. Between any

pair of Feet, there may or may not be an edge.

Foot

Body Tail

Sting

Figure 5.1: A Scorpion graph

An n-vertex directed graph G is a Sink if there is a special vertex with out-degree 0 and

in-degree n− 1. (See Figure 2)

Figure 5.2: A Sink graph

Both the properties have classical decision tree complexity of Θ(n). The algorithm for

Sink is as follows. From an arbitrary vertex v, do a depth first search. The first time we

cannot find a new vertex, we get a candidate sink vertex. Check whether this candidate

has out-degree 0 and in-degree n− 1. Output “Sink” if yes and “not Sink” otherwise. The

algorithm for Scorpion is a little more complicated, and we refer to [16, 17] for details of

algorithms for these two properties.

We give quantum algorithms for Scorpion. Similar algorithms work for Sink too, and

are omitted here. We first make some basic observations. The first one is about Grover



73

search [34] of bounded error input, by Hoyer, Mosca and de Wolf [38].

Lemma 32 (Hoyer, Mosca, de Wolf [38]) Given n elements, some of which may be marked,

we wish to decide whether there is a marked element and locate one if any exists. Suppose

that for any given element, one can decide with error probability less than 1/3 whether it

is marked, by a q-quantum-query subroutine. Then we can decide whether there exists a

marked element (and output one if there is any) using an quantum algorithm with expected

time and query complexity E = O(
√

n/mq), where m is the unknown number of marked

elements.

The second lemma considers to find multiple marked elements rather than just one.

Suppose we do not know the number m of marked elements, and are now required to find

k marked ones. We use the following algorithm.

1. for i = 0 to k − 1

2. for j = 0 to log(k/ε)

3. run the algorithm in Lemma 32 for 2Ei steps,

4. if we find a marked element during the time

5. unmark the element (to avoid finding the same one in later rounds)

5. go to line 1 with i incremented

6. output m = i and halt.

In line 3, the Ei is the expected number of steps of the algorithm in Lemma 32 in the

i-th iteration, and Ei = O(q
√

n
m−i).

We give a brief analysis of this algorithm. If k ≤ m, then in the i-th outer iteration, the

expected time to find a marked element is
∑log(k/ε)

t=1 2tEi/2t < 4Ei = O(kq
√

n
m−i) and the



74

error probability is 2−t = ε/k. So the expected value of the whole running time is

O(q(
√

n/m +
√

n/(m− 1) + ... +
√

n/(m− k + 1))) (5.1)

= O(q
√

n · 2(
√

m−
√

m− k)) (5.2)

= O(q
√

nk/
√

m) = O(kq
√

n/m) (5.3)

= O(q
√

kn), (5.4)

and the whole error probability is less than ε. If k > m, then for the first m marked

elements the analysis is the same as above and the expected time complexity is O(q
√

mn).

After we find m marked elements in the i = 0, ..., m − 1 iterations, we shall not find any

marked element in the i = m iteration, thus output m and halt by executing line 6. This

iteration needs O(q
√

n log(k/ε)) time and the error probability is ε/k. Thus the whole time

complexity in the k > m case is O(q
√

mn + q
√

n log(k/ε)) and the error probability is less

than ε. In summary, we have the following lemma.

Lemma 33 The above algorithm outputs k marked elements if k ≤ m, and outputs m and

the m marked elements when k > m. In both cases the algorithm is correct with probability

1− ε, and the time/query complexity is O(q
√

min{k, m}n + q
√

n log(k/ε)).

The third lemma is a basic observation that if we find a candidate for Body, Tail or

Sting, then we can easily decide whether the given graph is a Scorpion or not.

Lemma 34 Given a graph G and a vertex v, we can check whether G is a Scorpion graph

with v being Body, Tail or Sting with error probability ε by O(
√

n log(1/ε)) queries.

Proof We first check whether the degree of v is 1, 2, or n-2 by O(
√

n log(2/ε)) queries.

• Case 1: deg(v) = 1. We use Grover search to find the only neighbor u of v. Check that

deg(u) = 2 and then find the other neighbor w of u. Finally, check that deg(w) = n−2.

Output YES and w, u, v as Body, Tail and Sting and then halt if and only if G passes

all these checks, and NO otherwise.



75

• Case 2: deg(v) = n− 2. We use Grover search to find the only vertex u which is not

adjacent with v. Check deg(u) = 1 and then the rest part is similar with Case 1.

• Case 3: deg(v) = 2. Find the neighbors u,w of v. Check that deg(u) = 1 or deg(u) =

n− 2. Then proceed as in Case 1 or Case 2.

In all three cases we should use Grover search for Θ(log(1/ε)) times to let the error proba-

bility decrease to ε/2, and thus the whole error probability is less than ε. ¤

The last lemma is the key idea of the algorithms that follow. Basically, they uses random

sampling to find a vertex with low degree.

Definition 8 For any vertex v in an undirected graph G = (V,E) and any set U ⊆ V ,

define the set of neighbors of v in U as NU (v) = {u : (u, v) ∈ E, u ∈ U}. We write N(v)

for NV (v).

Lemma 35 In a graph G = (V, E), if we pick a random set T of 2u
d log n vertices from a

set U of u vertices, then we have

Pr[∀v ∈ V, if N(v) ∩ T = φ, then |NU (v)| ≤ d] > 1− 1/n.

This lemma says that, intuitively, if we pick a random subset T of U and T does not hit

any neighbor of v (in U), then the degree of v in U is small with high probability.

Proof We have

Pr[∀v ∈ V, if N(v) ∩ T = φ, then |NU (v)| ≤ d] (5.5)

= 1−Pr[∃v ∈ V, s.t. N(v) ∩ T = φ, and |NU (v)| > d] (5.6)

≥ 1− n ·Pr[N(v) ∩ T = φ, and |NU (v)| > d] (5.7)

≥ 1− n ·Pr[N(v) ∩ T = φ | |NU (v)| > d] (5.8)

> 1− n · (u− d

u
)|T | (5.9)

> 1− n · e−2 log n (5.10)

= 1− 1/n (5.11)

as claimed. ¤



76

5.2.1 An Õ(n3/4) algorithm

In this section, we give an O(n3/4 log1/4 n) algorithm. The basic idea is to find a low degree

vertex by random sampling, and then search among the neighbors of this vertex for the

body. The algorithm is as in Algorithm 5.1 box. The quantity following each step is the

query complexity of that step.

Algorithm 5.1
Input: G = (V, E).
Output: Tell whether G is a Scorpion, and if yes, output the Body, Tail and Sting.a

1. Let d =
√

n log n. Pick a set U of 2n
d log n random vertices. — 0

2. Use the algorithm in Lemma 32 to find a vertex v such that NU (v) = ∅, and the error
probability is less than 1/10. If we do not find one, then output “not Scorpion” and
halt. — O(

√
n
√

n
d log n) = O( n√

d

√
log n)

3. Use Lemma 34 to check whether G is a Scorpion with v being Body, Tail or Sting
(and halt if it is). Make the error probability less than 1/10. — O(

√
n)

4. Find all but up to d neighbors of v by Lemma 33 with error probability less than
1/10. If we find more than d neighbors of v, output FAILURE and halt. — O(

√
nd)

5. Search among these neighbors of v for a vertex u with degree n − 2 by Lemma 32.
If we do not find u, then output “not Scorpion”; otherwise, use Lemma 34 to check
whether G is a Scorpion with u being Body and output the result. — O(

√
nd)

aThere appear “FAILURE” outputs in the algorithms. That is to make the algorithms more clear:
“FAILURE” is something unexpected and the overall probability of “FAILURE” is no more than a small
constant.

The correctness and complexity of Algorithm 5.1 is given by the following theorem.

Theorem 36 Given a graph G, Algorithm 5.1 decides whether G is a Scorpion graph and,

if yes, output the Body, Tail and Sting. The time and query complexity of Algorithm 5.1 is

O(n3/4 log1/4 n).

Proof If G is a Scorpion, then there are at least two low degree vertices: Tail and Sting.

So we can find a vertex v in Step 2 with probability at least 9/10, and we know by Lemma

35 that deg(v) ≤ d with probability at least 1 − 1/n. Then if v is Tail or Sting we will



77

find that G is a Scorpion by Lemma 34 in Step 3. Otherwise, v is a low degree Foot. So

Body must be one of v’s neighbors, all of which have already been found in Step 4. Thus

with probability 9/10, Body is found in Step 5 and finally it uses Lemma 34 to output the

correct answer. The total error probability is less than 3/10 + 1/n ≤ 1/3.

If G is not a Scorpion, then error can only be made in Steps 3 or Step 5, where we use

Lemma 34 twice each of which has error probability less than 1/10.

Finally, The query complexity of the algorithm is O(n3/4 log1/4 n) by letting d =
√

n log n.

¤

5.2.2 Improvement

Now we give an improved algorithm, which is of Õ(
√

n) complexity. The key idea is that in

Step 4 in Algorithm 5.1, instead of getting all neighbors of v, we again pick some random

samples from these neighbors. We then find another vertex u which connects to none of

these sample neighbors, then by Lemma 35, we know NN(v)(u) is small — in other words,

v and u share few common neighbors. But note that Body still connects to both v and

u if they are feet. So we can search among these common neighbors for Body. Directly

following this idea gives an O(n2/3) algorithm. To make full use of it, we apply it for about

log n rounds as in Algorithm 5.2.

The following theorem actually shows Theorem 28.

Theorem 37 Given a graph G, Algorithm 5.2 decides whether G is a Scorpion with error

probability less than 1/3 and, if yes, outputs the body, tail and sting. The time and query

complexities of Algorithm 5.2 are O(
√

n log2 n).

Proof The proof is similar to the one for Algorithm 5.1. Note that by Lemma 35, after the

ith iteration of 1(b), with high probability (at least 1−1/n) the number of common neighbors

of v1, ..., vi+1 is no more than di+1. And after the total Step 1, with high probability (at

least 7/10 −m/n) the number of common neighbors of v1, v2, ..., vm (or v1, ..., vi if we get

Step 2 by jumping out of the ith iteration of Step 1) is no more than dm (or di, respectively).



78

Algorithm 5.2
Input: G = (V, E).
Output: tell whether the G is a Scorpion, and if yes, output the Body, Tail and Sting.
Parameters: m = 1

2(log n− log log n)− 1, di = (i− 1)!n/mi for i = 1, ..., m.

1. for i = 0 to m− 1 do

(a) If i = 0, randomly pick a set T0 of k0 = 2 n
d1

log n vertices from V . — 0

Else, randomly pick a set Ti of ki = 2 di
di+1

log n vertices from ∩i
j=1N(vj) using

Lemma 33 and making the error probability less than 1
10m . If we cannot find so

many vertices, jump out of this for loop and go to Step 2. —
O(
√

kiin +
√

in log(ki · 10m)) = O(
√

kiin)

(b) Find a point vi+1 such that vi+1 connects to none of points in Ti using Lemma
32 and making the error probability less than 1

10m . If no vi+1 is found, output
“not Scorpion” and halt. —O(

√
kin log m)

(c) Use Lemma 34 to check whether G is a Scorpion with vi+1 being Body, Tail or
Sting (and halt if yes), making the error probability less than 1

10m . —
O(
√

n log m)

2. If we get here by jumping out of the for loop at the ith iteration, then find all common
neighbors of v1, ..., vi using Lemma 33 with error probability less than 1/20. —
O(
√

kini)

Otherwise, find all but no more than dm common neighbors of v1, ..., vm using Lemma
33 with error probability less than 1/20. — O(

√
dmnm)

3. Use Lemma 32 to search among these common neighbors for a vertex u with degree
n− 2. If we do not find u, then output “not Scorpion”; otherwise, use Lemma 34 to
check whether G is a Scorpion and output the result. — max{O(

√
dmn), O(

√
kin)}



79

So if G is a Scorpion, then Body will be found finally in Step 3 with probability at least

6/10, if Tail or Sting is not found in Step 1(c) luckily (which makes the algorithm succeed

even earlier). On the other hand, if G is not a Scorpion, then similar arguments as in the

proof of Theorem 36 yield the small constant error probability result.

For the complexity, let us first calculate the cost of Step 1. Without loss of generality,

suppose that all m iterations of Step 1 are done before we get to Step 2. The first iteration

of Step 1 is of cost O(
√

k0n log m) = O( n√
d1

√
log n log m) and the cost of the ith iteration is

O(
√

kiin +
√

kin log m). Note that

ki = 2(di/di+1) log n (5.12)

= 2((i− 1)!n/mi)/(i!n/mi+1) log n (5.13)

=
2m

i
log n, (5.14)

thus by noting that
∑m−1

i=1

√
kiin ≥

∑m−1
i=1

√
kin log m, we have the cost of Step 1 as

O

(√
k0n log m +

m−1∑

i=1

(
√

kiin +
√

kin log m)

)
(5.15)

= O

(√
k0n log m +

m−1∑

i=1

(
√

kiin)

)
(5.16)

= O

(√
2mn log n log m +

m−1∑

i=1

√
2mn log n

)
(5.17)

= O
(
m

√
mn log n

)
(5.18)

= O
(√

n log2 n
)

(5.19)

since m = 1
2(log n− log log n)− 1.

Now we consider the cost of Step 2 and 3, which is O(
√

kini +
√

dmmn) = O(
√

n log n)



80

because

dm =
(m− 1)!n

mm
(5.20)

= O

(√
m(m/e)m−1n

mm

)
(5.21)

= O

(
n√
m

(1/e)m−1

)
(5.22)

= O

(
n√
log n

1
n/ log n

)
(5.23)

= O
(√

log n
)

(5.24)

As a result, the time and query complexities of Algorithm 5.2 are O(
√

n log2 n). ¤

We add some remarks about the Sink problem to end this section. The same algorithm

can be applied to solve Sink. Now instead of finding a vertex with low degree, we are trying

to find one with low out-degree. Here the sink point plays both the Sting role (by having

no out-degree) and the Body role (by having n− 1 in-degree).

5.3 One other symmetry group: circular functions

To show the upper bound part of Theorem 30, it is sufficient to construct a circular function

f whose quantum query complexity is Õ(N1/4).

Definition 9 A function f : {0, 1}N → {0, 1} is a circular function if any circular permu-

tation of input indices does not change the function value. In other words, f(x′) = f(x) for

any x and x′ with x′ = xk+1xk+2...xnx1...xk for some 1 ≤ k < n.

Now we give a particular circular function f . Basically, it is a variant of Sink. Here we

only give the definition when N = n2 for some integer n. The general case can be shown

using similar algorithms and theorems.

Definition 10 Let the function f : {0, 1}N → {0, 1} be a Boolean function of N Boolean

variables where N = n2. For each input x = x1x2...xN we write it as an n× n matrix with

row and column indices ranging over {0, 1, ..., n−1}, and the (i, j)-entry being xin+j+1. We



81

denote this matrix by Mx, or M if x is clear from the context. We use M(i, j) to denote

the (i, j) entry of the matrix M .

We denote by +n and −n the addition and subtraction mod n, respectively. For example,

(n− 1) +n 1 = 0 and 0−n 1 = n− 1.

Let f(x) = 1 if and only if Mx is of the following (i, j)-form for some i, j ∈ {0, 1, ..., n−
1}: row i contains all 0 entries; in row (i −n 1), all the entries with column index greater

than j are 0; in row (i +n 1), all the entries with column index less than j are 0; at last, all

the entries in column j except Mx(i, j) are 1.

0 ... j − 1 j j + 1 ... n− 1

0 1

...
...

i− 1 1 0 ... 0

i 0 ... 0 0 0 ... 0

i + 1 0 ... 0 1

...
...

n− 1 1

(5.25)

Sometimes we say M is of (i, ∗)-form if M is of (i, j)-form for some j; we also say M

is of (∗, j)-form if M is of (i, j)-form for some i. The following facts are obvious, where

the D(f) = O(
√

N) part can be shown by using an algorithm similar to the one for Sink

described in Section 5.2.

Lemma 38 The function f is a circular function, and D(f) = O(
√

N).

Another key property of f is that if f(x) = 1, then any row except row i has at least

one entry being 1, and exactly one column — column j — intersects all rows but row i with

a 1-entry.



82

Before describing the algorithm, we construct subroutines analogous to those in Lemma

34.

Lemma 39 Given x and row index i , we can decide whether Mx is in (i, ∗)-form with high

probability by using O(
√

n) queries; symmetrically, given x and column index j , we can

decide whether Mx is in (∗, j)-form with high probability by using O(
√

n) queries.

Proof An algorithm for the row case:

1. Check whether M(i, 1) = ... = M(i, n) = 0 and if not, return NO.

2. Find j such that M(i +n 1, 1) = ... = M(i +n 1, j − 1) = 0 and M(i +n 1, j) = 1. If no

j is found, return NO.

3. Check whether M(i −n 1, j + 1) = ... = M(i −n 1, n) = 0 and M(1, j) = ... =

M(i− 1, j) = M(i + 1, j) = ... = M(n, j) = 1. Return YES if so and NO otherwise.

An algorithm for the column case:

1. Check that only one entry is 0 in column j and assume M(i, j) = 0 if so. If not,

return NO.

2. Check whether M(i −n 1, j + 1) = ... = M(i −n 1, n) = M(i +n 1, 1) = ... =

M(i +n 1, j − 1) = 0 and all entries in row i are also 0’s. Return YES if so and NO

otherwise. ¤

Now we give an O(
√

n log2 n) algorithm for f in the box Algorithm 5.3.

The following theorem validates Theorem 30 in Section 5.1. We omit the proof because

it is almost the same as that for Algorithm 5.2.

Theorem 40 Algorithm 5.3 decides f with high probability and the time and query com-

plexity is O(
√

n log2 n).

We give some brief remarks on the case of N not being a perfect square to end this

section. Let n to be the maximal integer such that n2 ≤ N . Again we write x1...xN in the

matrix form similar as in Definition 10, now with n columns and n + 1 or n + 2 rows, but



83

Algorithm 5.3
Input: x
Output: f(x)
Parameters: m = 1

2(log n− log log n)− 1, di = (i− 1)!n/mi for i = 1, ..., m.

1. for i = 0 to m− 1 do

(a) If i = 0, randomly pick a set T0 of k0 = 2 n
d1

log n column indices {c1, ..., ck0}. —
0
Else, randomly pick a set Ti of ki = 2 di

di+1
log n column indices {c1, ..., cki

} such
that ∀c ∈ Ti, M(rs, c) = 1 for all s ∈ [i] using Lemma 33 and making the error
probability less than 1

10m . If we cannot find so many columns, then jump out
from this for loop and go to Step 2. — O(

√
kiin)

(b) Find a row index ri+1 such that M(ri+1, c1) = ... = M(ri+1, cki) = 0 using 32 and
making the error probability less than 1

10m . If no ri+1 is found, output f(x) = 0
and halt. — O(

√
kin)

(c) Check whether Mx is in (ri+1, ∗)-form by Lemma 39 with error probability less
than 1

10m . If YES, output f(x) = 1 and halt. — O(
√

n)

2. If we get here by jumping out of the for loop at the ith iteration, then use Lemma
33 to get all the columns c such that M(r1, c) = ... = M(ri+1, c) = 1 with error
probability less than 1

20 . — O(
√

kini)

Otherwise, get all but no more than dm columns c such that M(r1, c) = ... =
M(rm, c) = 1 using Lemma 33 with error probability less than 1

20 . — O(
√

dmnm)

3. Search among these columns for a column c such that Mx is of (∗, c)-form by the
algorithm in Lemma 39 with error probability less than 1

20 . Output f(x) = 1 if we
succeed and f(x) = 0 otherwise. — max{O(

√
dmn), O(

√
kin)}



84

the last row may be not complete. Suppose the last entry in the last row is in the j0-th

column. We define f(x) = 1 if, for some circular permutation σ, Mσ(x) is in the form of

(5.25) with j ≤ j0. It can be shown that all the lemmas and theorem hold for this case.

5.4 Quantum lower bounds for all weakly symmetric func-

tions

Before we prove Theorem 31, we remark that the lower bound part of Theorem 28 is easy

to obtain by existing results. Turan showed that, for any graph property f , s(f) ≥ n/4

[72] and Beals et al. showed Q2(f) ≥
√

bs(f)/4 [20], which together imply Q2(f) ≥ √
n/8

because of the trivial fact bs(f) ≥ s(f).

In this section we prove Theorem 31 using the quantum adversary method.

Definition 11 A permutation group Γ on the set {1, 2, ..., N} is transitive if, for any i, j ∈
{1, 2, ..., N}, there is a permutation σ ∈ Γ such that σ(i) = j.

A function invariant under a transitive permutation group is also called a weakly symmetric

function. A simple but useful fact about any transitive group Γ is the following lemma in

[60]. We denote by w(x) the number of 1’s in x, and by σ(x) the string xσ(1)xσ(2)...xσ(N).

Lemma 41 (Rivest and Vuillemin, [60]) If Γ is transitive, then for any x ∈ {0, 1}N and

any i ∈ {1, 2, ..., N}

w(x) · |{σ(x) : σ ∈ Γ}| = N · |{σ(x) : σ ∈ Γ, σ(x)i = 1}|. (5.26)

For completeness, we first show the following classical folklore result.

Proposition 42 For any N -ary function f invariant to a transitive group Γ, we have

C0(f)C1(f) ≥ N and thus D(f) ≥ C(f) ≥ √
N .

Proof Let A and B be a 1 and 0-certificate with size C1(f) and C0(f), respectively. Let

Γ(B) = {σ(B) : σ ∈ Γ}. Then for any B′ ∈ Γ(B), B′ is also a 0-certificate assignment. So



85

A ∩B′ 6= ∅, and thus
∑

B′∈Γ(B)

|A ∩B′| ≥ |Γ(B)|. (5.27)

By Lemma 41 we know that

|B| · |Γ(B)| = N · |σ(B) : σ ∈ Γ, i ∈ σ(B)|. (5.28)

Therefore,

∑

B′∈Γ(B)

|A ∩B′| = |A| · |σ(B) : σ ∈ Γ, i ∈ σ(B)| (5.29)

= |A| · |B| · |Γ(B)|
N

. (5.30)

Combining these two equalities, we have |A| · |B| ≥ N , i.e. C1(f)C0(f) ≥ N . So

D(f) ≥ C(f) ≥ √
N . ¤

Now the proof of Theorem 31 is as follows. We denote 0 = 00...0. For any x, let x(S)

be the string obtained from x by flipping all the xi that i ∈ S.

Proof (of Theorem 31) Let f be a nontrivial function invariant under a transitive permu-

tation group Γ. Without loss of generality, we assume that f(0) = 0. Let B be a minimal

subset such that f(0(B)) = 1, i.e. for any B′ ⊆ B, we have f(0(B′)) = 0. Thus flipping any

xi where i ∈ B changes the value of f(0(B)), therefore bs(f) ≥ |B|.
Now we use the Theorem 4 to show that Q2(f) = Ω(

√
n/|B|). Let X = {0}, Y =

{σ(0(B)) : σ ∈ Γ} and R = X × Y . Then

m = max
x
|{y : (x, y) ∈ R}| = |Y |, (5.31)

m′ = max
y
|{x : (x, y) ∈ R}| = 1. (5.32)

And

l = max
x,i

|{y : (x, y) ∈ R, xi 6= yi}| (5.33)

= |{σ(0(B)) : σ ∈ Γ, σ(0(B))i = 1}|, (5.34)

l′ = max
y,i

|{x : (x, y) ∈ R, xi 6= yi}| = 1. (5.35)



86

Thus by Theorem 4 and the above lemma, we have

Q2(f) = Ω(

√
mm′

ll′
) = Ω

(√
|Y | · 1
|B||Y |

N · 1

)
(5.36)

= Ω(
√

N/|B|) = Ω(
√

N/bs(f)). (5.37)

On the other side, we know Q2(f) = Ω(
√

bs(f)), so Q2(f) = Ω(N1/4). ¤



Chapter 6

Quantum Query Complexity vs.

Other Complexity Measures

6.1 The quantum query complexity and the influence

For Boolean function f : {0, 1}n → {0, 1}, let µp be the distribution on {0, 1}n such that

µp(x) = p|x|qn−|x|, where q = 1 − p and |x| is the number of 1’s in x. In other words, it

is the distribution that we pick each xi independently being 1 with probability p. Define

the influence of the i-th variable to be infi(f, p) = Prx∼µp [f(x) 6= f(xi)], where xi is

obtained from x by flipping the i-th variable of x. The total influence is the summation:

inf(f, p) =
∑

i infi(f, p).

Recently O’Donnell, Saks, Schramm, and Servedio [54] showed that

R(f) ≥ Var[f ]
pq maxi infi(f, p)

, (6.1)

for any Boolean function f and any p. Another recent result by O’Donnell and Servedio

[55] is

R(f) ≥ pq inf(f, p)2, (6.2)

for any monotone Boolean function f and any p. Using these two, one gets R(f) ≥ n4/3/p
1/3
c

for any monotone function f that is invariant to any permutation from a transitive group,

87



88

where pc is a critical probability, i.e. Ex∼µpc
[f(x)] = 1/2. This is the first proof of Ω(n4/3)

lower bound for all the monotone graph properties without using the graph packing tech-

nique as used in all previous work by Yao [76], King [42], Hajnal [35], and Chakrabarti and

Khot [24].

It is natural to conjecture

Q2(f) ≥ Ω

(√
Var[f ]

pq maxi infi(f, p)

)
(6.3)

for any Boolean function f and

Q2(f) ≥ Ω(
√

pq inf(f, p)) (6.4)

for any monotone Boolean function f . Shi showed (6.4) for p = 1/2 and any Boolean

function [64].

In this note we prove (6.4) for any f (not necessarily monotone), generalizing Shi’s result

[64]. We will give two proofs; the first one uses the polynomial methods, but it only shows

the case of monotone function, and it has a log factor loss. However, it implies that the

lower bounds actually holds not only for the quantum query complexity but also for the

approximate degree.

The second proof uses the quantum adversary method, and proves exactly the inequality

(6.4) in a simple way. Unlike the result (6.2) and the first proof mentioned in the last

paragraph, the condition of monotonicity is not needed the second proof. This implies

that the quantum lower bound of Ω(n2/3) actually hold not only for monotone transitive

functions, but for all balanced transitive functions, unless the widely believed conjecture

that the quantum and randomized query complexities cannot have a super-quadratic gap

is not true.

6.1.1 Proof by the polynomial method

Theorem 43 For monotone f and any p ∈ (0, 1),

Q2(f) = Ω
(√

pq inf(f, p)
log n

)
(6.5)



89

where q = 1− p.

Proof By simple probability amplification, we know that Q2(f) log n ≥ Q1/2n(f), where

Q1/2n(f) is defined like Q2(f), but with further requirement that the error is no more than

1/2n for any input. Denote by d̃eg1/2n(f) a lowest degree of the polynomial approximating

f with error no more than 1/2n for any input. Since Q1/2n(f) = Ω(d̃eg1/2n(f)), it is enough

to show that d̃eg1/2n(f) = Ω(
√

pq inf(f, p)).

We will use Bernstein’s Inequality, which says that any polynomial r(t) with degree d

and ‖r‖[−1,1] = 1 has d ≥ √
1− t2|r′(t)|, ∀t ∈ (−1, 1). Denote by fε the best polynomial to

approximate f up to ε, and let φp(fε) = Ex∼µp [fε(x)]. We will use Bernstein’s Inequality

for φp(fε). By some simple scaling t = 2p − 1, we know that
√

1− t2 = 2
√

pq). So it is

enough to lower bound dφp(fε)
dp by inf(f, p).

Let ~p = (p1, ..., pn) and φ~p(fε) = Ex∼µp [fε(x)]. Then dφp(fε)
dp =

∑
i

∂φ~p(fε)
∂pi

|pi=p by chain

law. We use x[n]−i to denote x1...xi−1xi+1...xn, and use x[n]−i◦b to denote x1...xi−1bxi+1...xn

for b ∈ {0, 1}. Fix ε = 1/2n, then

∂φ~p(fε)
∂pi

= (∂
∑

x

µ~p(x)fε(x))/∂pi (6.6)

= (∂
∑

x:xi=1

µ~p(x[n]−i)pifε(x) +
∑

x:xi=0

µ~p(x[n]−i)(1− pi)fε(x))/∂pi (6.7)

=
∑

x:xi=1

µ~p(x[n]−i)fε(x)−
∑

x:xi=0

µ~p(x[n]−i)fε(x) (6.8)

=
∑

x[n]−i

µ~p(x[n]−i)(fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)) (6.9)

=
∑

x[n]−i�i

µ~p(x[n]−i)
[
fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)

]
(6.10)

+
∑

x[n]−i∼i

µ~p(x[n]−i)
[
(fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0)

]
(6.11)

where x[n]−i ∼ i means x[n]−i is sensitive at i, i.e. f(x[n]−i ◦ 1) 6= f(x[n]−i ◦ 0). Since fε

approximates f , we know that for x[n]−i � i, −2ε ≤ fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0) ≤ 2ε. And

for x[n]−i ∼ i, we have f(x[n]−i ◦ 1) = 1 and f(x[n]−i ◦ 0) = 0 because f is monotone, and



90

thus fε(x[n]−i ◦ 1)− fε(x[n]−i ◦ 0) ≥ 1− 2ε. Therefore,

∂φ~p(fε)
∂pi

≥
∑

x[n]−i�i

µ~p(x[n]−i)(−2ε) +
∑

x[n]−i∼i

µ~p(x[n]−i)(1− 2ε). (6.12)

Note that
∑

x[n]−i∼i µ~p(x[n]−i)|~p=(p,...,p) is nothing but infi(f, p), so

∂φ~p(fε)
∂pi

|~p=(p,...,p) ≥ (1− infi(f, p))(−2ε) + infi(f, p)(1− 2ε) = infi(f, p)− 2ε. (6.13)

Now

dφp(fε)
dp

=
∑

i

∂φ~p(fε)
∂pi

|~p=(p,...,p) ≥
∑

i

(inf(f, p)−2ε) = inf(f, p)−2nε = inf(f, p)−1. (6.14)

¤

6.1.2 Proof by the quantum adversary method

Basically, the quantum adversary method first picks a relation, i.e. a set of 0 and 1 input

pairs, and assign a weight to each pair. It turns out that the initial total weight decreases

by a constant fraction after the computation. So by upper bounding the average progress

of one query, we can give a lower bound of the number of queries.

Theorem 44 We have for any Boolean function f and any p ∈ (0, 1) that

Q2(f) ≥ Ω(
√

pq inf(f, p)) (6.15)

Proof Consider the set {(x, x(i)) : f(x) 6= f(x(i))}. Put weight w(x, x(i)) = p(x). Use

x ∼ i to denote that f(x) 6= f(xi). Let |ψ(k)
x 〉 be the state after exactly k queries, and let

δk =
∑

x,i:x∼i p(x)|〈ψ(k)
x |ψ(k)

x(i)〉|. Then

δ0 =
∑

x,i:x∼i

p(x) · |〈ψ(0)
x |ψ(0)

x(i)〉| =
∑

i

Prx[x ∼ i] =
∑

i

infi(f, p) = inf(f, p). (6.16)

and δT =
∑

x,i:x∼i p(x)·|〈ψ(T )
x |ψ(T )

x(i)〉| ≤ ε inf(f, p). The standard analysis of oracle operation

tells us that the average progress |δk − δk+1| =
∑

x,i:x∼i p(x)2
∣∣∣〈Piψ

(k)
x |Piψ

(k)

x(i)〉
∣∣∣, where Pi is



91

the projector onto the subspace spanned by index i, i.e. Pi(
∑

j,z αj,z|j, z〉) =
∑

z αi,z|i, z〉.
Therefore,

|δk − δk+1| ≤ 2
∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x 〉
∥∥∥ ·

∥∥∥Pi|ψ(k)

x(i)〉
∥∥∥ (6.17)

≤ 2

√√√√√

 ∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x 〉
∥∥∥

2





 ∑

x,i:x∼i

p(x)
∥∥∥Pi|ψ(k)

x(i)〉
∥∥∥

2


 (6.18)

where both steps are by Cauchy-Schwartz Inequality. Furthermore, let y = x(i) and the

above quantity is equal to

= 2

√√√√√
(∑

x

p(x)
∑

i:x∼i

∥∥∥Pi|ψ(k)
x 〉

∥∥∥
2
)

 ∑

y,i:y∼i

p(y(i))
∥∥∥Pi|ψ(k)

y 〉
∥∥∥

2


 (6.19)

≤ 2
√ ∑

y,i:y∼i

p(y(i))
∥∥∥Pi|ψ(k)

y 〉
∥∥∥

2
(6.20)

= 2
√ ∑

y,i:y∼i,yi=1

p(y)
q

p

∥∥∥Pi|ψ(k)
y 〉

∥∥∥
2
+

∑

y,i:y∼i,yi=0

p(y)
p

q

∥∥∥Pi|ψ(k)
y 〉

∥∥∥
2

(6.21)

≤ 2
√

q

p
+

p

q
(6.22)

≤ 2√
pq

(6.23)

So T ≥ Ω(
√

pq inf(f, p)). ¤

6.2 The quantum query complexity and the quantum com-

munication complexity

Recall that tuple search is to find a tuple satisfying some pre-defined relation. We will now

study the scenario that the components in the desired tuple are distributed. For simplicity,

let us just examine the case of binary relation. Suppose that Alice has input x1, ..., xn and

Bob has y1, ..., yn. Alice can access her input x1, ..., xn only by quantum queries, and she

cannot access Bob’s input y1, ..., yn. Symmetric rules apply to Bob. They want to search for



92

the unique pair of (xi, yj) in some given relation R, by using communications.1 In other

words, the model is the same as the one used to study quantum communication complexity,

except that the two parties access their respective inputs by quantum queries and we care

about the number of queries they make. So there are two natural resources to consider: the

number of queries, and the number of qubits in the communication. The former is about

quantum query complexity as studied above, and the latter is about quantum communica-

tion complexity, introduced by Yao [77] as a generalization of the classical communication

complexity (also introduced by Yao [75]; see [45] as an excellent textbook) and extensively

studied since then (see [26] for a survey). As far as we know, all previous work considers one

of these two problems. 2 For example, Ambainis [9] and the first part of this thesis consider

the quantum query complexity; Buhrman, Cleve and Wigderson [21] show an O(
√

n log n)

upper bound of quantum communication complexity of Disj, later improved by Hoyer and

de Wolf to O(
√

nclog∗ n) [37] and finally to O(
√

n) by Aaronson and Ambainis [4], matching

the Ω(
√

n) lower bound shown by Razborov [58]. Since query and communication are both

well-studied resources, it is natural to study both of them simultaneously, and see how they

interact with each other.

We can use a protocol similar to the one shown by Buhrman, Cleve and Wigderson

[21], but it makes Θ(n) queries, which is higher than the optimal Θ(n2/3) value. We can

also have a protocol achieving the optimal quantum query complexity, but the number of

communication qubits is asymptotically more than the optimal Θ̃(
√

n) value. So there seems

to be a tradeoff between the quantum query computation and the quantum communication.

This paper gives one tradeoff result as follows. For a protocol P computing function f ,

denote by q(P ) the number of quantum queries and by c(P ) the number of communication

qubits.

Theorem 45 Let f = Unique 2-Subset Finding. For any given q0 ∈ (n2/3, n), there
1If the R is the Equality relation, then the problem is related to Disj, a well-studied function. But

we should note that Disj is to decide whether two subsets of an n-element set intersect, while here the
distributed search problem is to decide whether two n-element sets intersect.

2Some papers study yet other resources. For example, paper [40] gives a lower bound of the tradeoff
between communication complexity and round complexity.



93

exists a protocol P with q(P ) = q0 and c(P ) = O(n2 log n

q
3/2
0

).

In other words, we have a family of protocols with q(P )3/2 ·c(P ) = O(n2 log n). This implies

that we can pay more for quantum queries to save on quantum communication, and vice

versa.

In this section we prove Theorem 45 by giving a family of protocols achieving the tradeoff

result. Note that in Algorithm 3.3, both the preparation of the initial state |ψstart〉 in Step

1 and the Quantum Walks in Step 2(b) can be done distributively. So it naturally induces

a communication protocol as follows.

Protocol 6.1: for distributed Unique 2-Subset Finding
Input: x1, ..., xN ∈ [M ]. J1, J2 ⊆ [N ], |J1| = m, |J2| = n. R ⊆ [M ] × [M ] such that there
is at most one (xj1 , xj2) ∈ R with j1 ∈ J1, j2 ∈ J2 and j1 6= j2.
Output: The unique pair (j1, j2) if it exists; otherwise reject.

1. Alice sets up her initial state |ψa〉 = 1q
( n

r1
)(n−r1)

∑
S1⊆J1,|S1|=r1,i1∈J1−S1

|S1, xS1 , i1〉 in

her register Ra

Bob sets up his initial state |ψb〉 = 1q
( n

r2
)(n−r2)

∑
S2⊆J2,|S2|=r2,i2∈J2−S2

|S2, xS2 , i2〉 in

his register Rb

2. Do Θ( n√
r1r2

) times

(a) Bob sends Rb (i.e. all his qubits) to Alice.

(b) Alice checks whether (j1, j2) ∈ S1 × S2. If yes, do the following phase flip:
|S1, xS1 , i1, S2, xS2 , i2〉 → −|S1, xS1 , i1, S2, xS2 , i2〉.

(c) Alice sends Rb back to Bob.

(d) Alice does dπ
4

√
r1e times Quantum Walk on S1 in J1.

Bob does dπ
8

√
r2e times Quantum Walk on S2 in J2.

3. Bob does the measurement and outputs the corresponding result.

The correctness of the protocol is obvious because it is essentially the same as Algorithm

3.3. We now analyze the complexity. The number of queries is the same as that of Algorithm

3.3, i.e. q(P ) = Θ(r1+r2+ n√
r1r2

(
√

r1+
√

r2)) = Θ(r1+r2+n(1/
√

r1+1/
√

r2)). The number

of communication qubits of this protocol is c(P ) = Θ( n√
r1r2

r2 log n) = Θ(
√

r2
r1

n log n). If

t = r1/r2 ≥ 1, then q(P ) = Θ(r1 + n/
√

r2) = Θ(tr2 + n/
√

r2) ≥ Θ(t1/3n2/3), and the



94

equality is achieved when r2 = (n/t)2/3. So for any given q0 ∈ (n2/3, n), let r1 = q0 and

r2 = n2/q2
0, then q(P ) = Θ(q0) and c(P ) = Θ(n2 log n

q
3/2
0

).



Chapter 7

On the Power of the Quantum

Adversary Method

So far, we have used the quantum adversary method to show many quantum lower bounds.

These include those for specific problems, such as the three graph properties in Section 3.1

and the Local Search problems in Chapter 4, for a class of functions as a whole, such as

the transitive functions in Section 5.4, and in terms of other complexity measures, such as

influence in Section 6.1. The quantum adversary method has also been used on many other

problems (see [39] for a survey). Some applications are not hard, while some involve many

other techniques, like random walk in the proof of Local Search.

Given the usefulness of the method, it is interesting to answer the following several

questions:

1. Is it tight? That is, can we always use the quantum adversary method to prove tight

lower bounds?

2. Is there any limitation on the method?

3. The polynomial method is also used to prove some lower bounds. Are the two methods

comparable in power?

In this chapter, we will answer all these questions. We will show a number of limitations

95



96

in terms of certificate complexity, a well-studied complexity measure. These make it very

easy to judge whether it is possible to use the method to achieve some lower bounds. Also,

these give negative answers to the question 1 and 3.

The results in this chapter are from paper [78].

Related work: In [70], Szegedy independently proved the same limit
√

N · C−(f) for

partial functions (as in Theorem 46), but it is for the quantum adversary method in [14].

Szegedy then independently proved the same limit
√

C0(f)C1(f) for total functions (as in

Theorem 51). Also, after a preliminary version of the paper [78] posted on arXiv (quant-

ph/0311060), Laplante and Magniez posted the report quant-ph/0311189 (a preliminary

version of [46]), giving the limit of
√

N · C−(f) by a totally different argument (by Kol-

mogorov complexity).

7.1 A limitation of the quantum adversary method for gen-

eral partial functions

In this section, we show a limitation of the quantum adversary method (in its version

Theorem 6) for general partial Boolean functions. Since all the versions of the quantum

adversary methods are equivalent in power [69], this implies the same limitation for all the

versions of the method.

The limitation is in terms of certificate complexity, a well-studied complexity measure.

Recall that C−(f) = min{C0(f), C1(f)}

Theorem 46 For any N -ary Boolean function f , we cannot use the quantum adversary

method Theorem 6 to get a lower bound better than
√

N · C−(f).

Proof Actually we prove a stronger result: for any (X, Y,R, u, v, w) as in Theorem 6,

min
(x,y)∈R,i∈[N ]

wxwy

ux,ivy,i
≤ NC−(f). (7.1)

Without loss of generality, we assume that C−(f) = C0(f), and X ⊆ f−1(0) and Y ⊆
f−1(1). We can actually further assume that R = X × Y , because otherwise we just let



97

R′ = X × Y , and set new weight functions as follows.

u′(x, y, i) =





u(x, y, i) (x, y) ∈ R

0 otherwise,

v′(x, y, i) =





v(x, y, i) (x, y) ∈ R

0 otherwise,

w′(x, y) =





w(x, y) (x, y) ∈ R

0 otherwise.

Then it is easy to see that it satisfies Definition 6, so it is also a weight scheme. And for these

new weight functions, we have u′x,i =
∑

y:(x,y)∈R′,xi 6=yi
u′(x, y, i) =

∑
y:(x,y)∈R,xi 6=yi

u(x, y, i) =

ux,i and similarly v′y,i = vy,i and w′x = wx, w′y = wy.1 It follows that wxwy

ux,ivy,i
= w′xw′y

u′x,iv
′
y,i

, thus

we can use (X ′, Y ′, R′, u′, v′, w′) to derive the same lower bound as we use (X,Y, R, u, v, w).

So we now suppose R = X × Y and prove that ∃x ∈ X, y ∈ Y, i ∈ [N ], such that

wxwy ≤ N · C0(f) ux,ivy,i, (7.2)

Suppose the claim is not true. Then for all x ∈ X, y ∈ Y, i ∈ [N ], we have

wxwy > N · C0(f) ux,ivy,i. (7.3)

We first fix i for the moment. And for each x ∈ X, we fix a smallest certificate set CSx of

f on x. Clearly |CSx| ≤ C0(f). We sum (7.3) over {x ∈ X : i ∈ CSx} and {y ∈ Y }. Then

we get

( ∑

x∈X: i∈CSx

wx

)
∑

y∈Y

wy


 > N · C0(f)

( ∑

x∈X: i∈CSx

ux,i

) 
∑

y∈Y

vy,i


 . (7.4)

Note that
∑

y∈Y wy =
∑

x∈X,y∈Y w(x, y) =
∑

x∈X wx, and that
∑

y∈Y vy,i =
∑

x∈X,y∈Y :xi 6=yi
v(x, y, i) =

1Note that the function values of u′, v′, w′ are zero when (x, y) 6= R, which does not conform to the
definition of a weight scheme. But actually Theorem 3 also holds for u ≥ 0, v ≥ 0, w ≥ 0 as long as
ux,i, vy,i, wx, wy are all strictly positive for any x, y, i. This can be seen from the proof of Alb4 in Section 4.



98

∑
x∈X vx,i where vx,i =

∑
y∈Y :xi 6=yi

v(x, y, i). Inequality (7.4) now becomes

( ∑

x∈X: i∈CSx

wx

)(∑

x∈X

wx

)
> N · C0(f)

( ∑

x∈X: i∈CSx

ux,i

)(∑

x∈X

vx,i

)
(7.5)

≥ N · C0(f)

( ∑

x∈X: i∈CSx

ux,i

)( ∑

x∈X: i∈CSx

vx,i

)
(7.6)

≥ N · C0(f)

( ∑

x∈X: i∈CSx

√
ux,ivx,i

)2

(7.7)

by the Cauchy-Schwartz Inequality. We further note that

ux,ivx,i =


 ∑

y∈Y :xi 6=yi

u(x, y, i)





 ∑

y∈Y :xi 6=yi

v(x, y, i)


 (7.8)

≥

 ∑

y∈Y :xi 6=yi

√
u(x, y, i)v(x, y, i)




2

(7.9)

≥

 ∑

y∈Y :xi 6=yi

w(x, y)




2

(7.10)

= w2
x,i (7.11)

where we define wx,i =
∑

y∈Y :xi 6=yi
w(x, y). Thus

( ∑

x∈X: i∈CSx

wx

)(∑

x∈X

wx

)
> N · C0(f)

( ∑

x∈X: i∈CSx

wx,i

)2

. (7.12)

Now we sum (7.12) over i = 1, ..., N , and note that

∑

i

∑

x∈X: i∈CSx

wx =
∑

x∈X

∑

i:i∈CSx

wx ≤ C0(f)
∑

x∈X

wx (7.13)

because |CSx| ≤ C0(f) for each x. We have

(∑

x∈X

wx

)2

> N

N∑

i=1

( ∑

x∈X: i∈CSx

wx,i

)2

. (7.14)

By the convexity of squaring (or by the Cauchy-Schwartz Inequality),

N(a2
1 + ... + a2

N ) ≥ (a1 + ... + aN )2, (7.15)



99

we have

(∑

x∈X

wx

)2

>


 ∑

x∈X,i∈[N ]: i∈CSx

wx,i




2

(7.16)

=


 ∑

x∈X,i∈[N ],y∈Y : i∈CSx,xi 6=yi

w(x, y)




2

(7.17)

=


 ∑

x∈X,y∈Y

∑

i∈[N ]: i∈CSx,xi 6=yi

w(x, y)




2

. (7.18)

But by the definition of certificate, we know that for any x and y there is at least one index

i ∈ CSx such that xi 6= yi. Therefore, we derive an inequality

(∑

x∈X

wx

)2

>


 ∑

x∈X,y∈Y

w(x, y)




2

=

(∑

x∈X

wx

)2

(7.19)

which is a contradiction, as desired. ¤

We add some comments about this upper bound. First, this bound looks weak at first

glance because the
√

N factor seems too large. But in fact it is necessary. Consider the

problem of Invert A Permutation[10] 2 , where C0(f) = C1(f) = 1 but even the using

Theorem 5 gives lower bound Ω(
√

N) [10].

Second, the quantum query complexity of Element Distinctness is known to be

Θ(N2/3). The lower bound part is obtained by Aaronson and Shi by the polynomial method

[5]; the upper bound part is obtained by Ambainis [12]. Observe that C1(f) = 2 thus
√

NC1(f) = Θ(N), we derive the following interesting corollary from the above theorem.

Corollary 47 The quantum adversary method is not tight.

In [9] Ambainis gave a function whose approximate degree is small but the quantum

adversary method was used to show a large lower bound. Now the Element Distinctness

shows the other direction, and thus we have
2The original problem is not a Boolean function, but we can define a Boolean-valued version of it. Instead

of finding the position i with xi = 1, we are to decide whether i is odd or even. The original proof of the
Ω(
√

N) lower bound still holds.



100

Corollary 48 The quantum adversary method and the polynomial method is incomparable

in power.

We make some remarks on the quantity
√

N · C−(f) to end this section. A function

f is symmetric if f(x1...xN ) = f(xσ(1)...xσ(n)) for any input x and any permutation σ on

[N ]. In [20], Beals et al. prove that Q2(f) = Θ(
√

N(N − Γ(f))) by using Paturi’s result

d̃eg(f) = Θ(
√

N(N − Γ(f))) [57], where Γ(f) = min{|2k−n+1| : fk 6= kk+1, 0 ≤ k ≤ n−1}.
It is not hard to show that Γ(f) = N −Θ(C−(f)) for symmetric function f . Thus we know

that both d̃eg(f) and Q2(f) are Θ(
√

N · C−(f)) for symmetric function f .

7.2 Limitations of the quantum adversary method for total

functions

It turns out that if the function is total, then the upper bound can be further tightened.

We introduce a new measure which basically characterizes the size of intersection of a 0 and

1-certificate sets.

Definition 12 For any function f , if there is a certificate set assignment CS : {0, 1}N →
2[N ] such that for any inputs x, y with f(x) 6= f(y), |CSx ∩ CSy| ≤ k, then k is called

a candidate certificate intersection complexity of f . The minimal candidate certificate in-

tersection complexity of f is called the certificate intersection complexity of f , denoted by

CI(f). In other words,

CI(f) = min
CS

max
x,y:f(x)6=f(y)

|CSx ∩ CSy|. (7.20)

Now we give the following theorem which improves Theorem 46 for total functions. Note

that CI(f) ≤ C−(f) by the definition of CI(f).

Theorem 49 The quantum adversary method Theorem 6 cannot prove a lower bound better

than Ω(
√

N · CI(f)), for any N -ary total Boolean function f .



101

Proof Again, we prove the stronger result that for any (X,Y, R, u, v, w) in Theorem 6,

min
(x,y)∈R,i∈[N ]

wxwy

ux,ivy,i
≤ N · CI(f). (7.21)

As in the proof for Theorem 46, we assume without loss of generality that R = X × Y and

that for all x ∈ X, y ∈ Y , we have

wxwy > N · CI(f) ux,ivy,i. (7.22)

We shall show a contradiction as follows. Fix i and sum (7.22) over {x ∈ X : i ∈ CSx} and

{y ∈ Y : i ∈ CSy}, we get

∑

x∈X,y∈Y : i∈CSx∩CSy

wxwy (7.23)

> N · CI(f)

( ∑

x∈X: i∈CSx

ux,i

) 
 ∑

y∈Y : i∈CSy

vy,i


 (7.24)

= N · CI(f)




∑

x∈X,y∈Y :
i∈CSx,xi 6=yi

u(x, y, i)


 ·




∑

x∈X,y∈Y :
i∈CSy,xi 6=yi

v(x, y, i)


 (7.25)

≥ N · CI(f)




∑

x∈X,y∈Y :
i∈CSx∩CSy,xi 6=yi

u(x, y, i)


 ·




∑

x∈X,y∈Y :
i∈CSx∩CSy ,xi 6=yi

v(x, y, i)




(7.26)

≥ N · CI(f)




∑

x∈X,y∈Y :
i∈CSx∩CSy,xi 6=yi

√
u(x, y, i)v(x, y, i)




2

(7.27)

≥ N · CI(f)




∑

x∈X,y∈Y :
i∈CSx∩CSy,xi 6=yi

w(x, y)




2

. (7.28)



102

Now summing over i = 1, ..., N , we have

∑

x∈X,y∈Y,i∈[N ]:
i∈CSx∩CSy

wxwy (7.29)

> N · CI(f)
N∑

i=1




∑

x∈X,y∈Y :
i∈CSx∩CSy,xi 6=yi

w(x, y)




2

(7.30)

≥ CI(f)




∑

x∈X,y∈Y,i∈[N ]:
i∈CSx∩CSy,xi 6=yi

w(x, y)




2

. (7.31)

Note that for a total function f , if f(x) 6= f(y), then there is at least one position i ∈
CSx ∩ CSy such that xi 6= yi.3 Thus

∑

x∈X,y∈Y,i∈[N ]:
i∈CSx∩CSy,xi 6=yi

w(x, y) ≥
∑

x∈X,y∈Y

w(x, y). (7.32)

On the other hand, by the definition of CI(f), we have

∑

x∈X,y∈Y,i∈[N ]:
i∈CSx∩CSy

wxwy ≤ CI(f)
∑

x∈X,y∈Y

wxwy = CI(f)


 ∑

x∈X,y∈Y

w(x, y)




2

. (7.33)

Therefore we get a contradiction

CI(f)


 ∑

x∈X,y∈Y

w(x, y)




2

> CI(f)


 ∑

x∈X,y∈Y

w(x, y)




2

, (7.34)

as desired. ¤

And-Or Tree is a famous problem in both classical and quantum computation. In

the problem, there is a complete binary tree with height 2n. Any node in an odd level
3This is not true for partial functions, because it is possible that CSx ∩CSy = ∅, which may be the case

when the domain of f does not contain any string that agrees both with x on CSx and with y on CSy.
For example, in the Permutation Inversion problem, the input x ∈ [N ]N is a permutation of [N ], and we
are required to find i ∈ [N ] such that xi = 1. It is clear that for each input x, the certificate set CSx is a
singleton whose only member is the position of 1. For this problem, if f(x) 6= f(y), then CSx ∩ CSy = ∅.
Note that in the proof of Theorem 46, what we argue is that for any x and y satisfying f(x) 6= f(y), there
is at least one position i ∈ CSx such that xi 6= yi. This is true even for partial function because otherwise
f(y) = f(x) according to the definition of CSx.



103

is labeled with AND and any node in an even level is labeled with OR. The N = 4n

leaves are the input variables, and the value of the function is the value that we get at the

root, with value of each internal node calculated from the values of its two children in the

common AND/OR interpretation. The classical randomized decision tree complexity for

And-Or Tree is known to be Θ((1+
√

33
4 )n) = Θ(N0.753...) by Saks and Wigderson in [61]

and Santha in [62]. The best known quantum lower bound is Ω(
√

N) by Barnum and Saks

in [13] and best known quantum upper bound is the same as the best classical randomized

one. Note that C−(And-Or Tree) = 2n =
√

N and thus
√

NC−(f) = N3/4. So if we only

use Theorem 46, it seems that we still have a chance to improve the known Ω(
√

N) lower

bound by Theorem 6. But now by Theorem 49, we know that actually that is impossible.

Corollary 50 The quantum adversary method Theorem 6 cannot prove a lower bound better

than Ω(
√

N) for And-Or Tree.

Proof It is sufficient to prove that there is a certificate assignment CS such that |CSx ∩
CSy| = 1 for any f(x) 6= f(y). In fact, by a simple induction, we can prove that the

standard certificate assignment satisfies this property. The base case is trivial. For the

induction step, we note that for an AND connection of two subtrees, the 0-certificate set of

the new larger tree can be chosen as any one of the two 0-certificate sets of the two subtrees,

and the 1-certificate set of the new larger tree can be chosen as the union of the two 1-

certificate sets of the two subtrees. As a result, the intersection of the two new certificate

sets is not enlarged. The OR connection of two subtrees is analyzed in the same way. Thus

the intersection of the final 0- and 1-certificate sets is of size 1. ¤

We can tighten the
√

N · C−(f) upper bound in another way and get the following

result which also implies Corollary 50.

Theorem 51 The quantum adversary method Theorem 6 cannot prove a lower bound better

than Ω(
√

C0(f)C1(f)), for any total Boolean function f .

Proof For any (X, Y, R, u, v, w) in Theorem 3, we assume without loss of generality that

X ⊆ f−1(0), Y ⊆ f−1(1) and R = X × Y . We are to prove ∃x, y, i, j such that wxwy ≤



104

C0(f)C1(f)ux,ivy,j . Suppose this is not true, i.e. for all x ∈ X, y ∈ Y, i, j ∈ [N ],

wxwy > C0(f)C1(f)ux,ivy,j . (7.35)

First fix x, y and sum over i ∈ CSx and j ∈ CSy. Since |CSx| ≤ C0(f), |CSy| ≤ C1(f), we

have

wxwy >
∑

i∈CSx

ux,i

∑

j∈CSy

vy,j . (7.36)

Now we sum over x ∈ X and y ∈ Y ,
(∑

x∈X

wx

)
∑

y∈Y

wy


 (7.37)

>


 ∑

x∈X,i∈CSx

ux,i





 ∑

y∈Y,j∈CSy

vy,j


 (7.38)

=




∑

x∈X,y∈Y,i∈[N ]:
xi 6=yi,i∈CSx

u(x, y, i)


 ·




∑

x∈X,y∈Y,j∈[N ]:
xj 6=yj ,j∈CSy

v(x, y, j)


 . (7.39)

Since f is total, there is at least one i0 ∈ CSx ∩ CSy such that xi0 6= yi0 . Thus

(∑

x∈X

wx

)
∑

y∈Y

wy


 >




∑

x∈X,
y∈Y

u(x, y, i0)







∑

x∈X,
y∈Y

v(x, y, i0)


 (7.40)

≥

 ∑

x∈X,y∈Y

√
u(x, y, i0)v(x, y, i0)




2

(7.41)

≥

 ∑

x∈X,y∈Y

w(x, y)




2

(7.42)

=

(∑

x∈X

wx

)
∑

y∈Y

wy


 (7.43)

which is a contradiction. ¤

Finally, we remark that even these two improved upper bounds are not always tight.

For example, Sun, Yao and Zhang prove [71] that graph property Scorpion, directed graph

property Sink and a circular function all have Q2(f) = Θ̃(
√

n), but both
√

C0(f)C1(f) and
√

N · CI(f) are Θ(n).



References

[1] K. Aardal, S. Hoesel, J.K. Lenstra, L. Stougie. A Decade of Combinatorial Optimization.

CWI Tracts 122, pp. 5-14, 1997.

[2] S. Aaronson. Lower Bounds for Local Search by Quantum Arguments. Proceedings of

the thirty-sixth Annual ACM Symposium on Theory of Computing, pp. 465-474, 2004.

[3] S. Aaronson. Limitations of Quantum Advice and One-Way Communication, Theory of

Computing 1:1-28, 2005.

[4] S. Aaronson and A. Ambainis. Quantum search of spatial regions. Proceedings of the

44th Annual IEEE Symposium on Foundations of Computer Science, pp. 200-209, 2003.

[5] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element dis-

tinctness problems. Journal of the ACM, 51(4), pp. 595-605, 2004.

[6] E. Aarts and J. Lenstra, Local Search in Combinatorial Optimization, John Wiley &

Sons, Inc. New York, NY, USA, 1997.

[7] D. Aldous. Minimization Algorithms and Random Walk on the d-Cube. Annals of Prob-

ability, 11(2), pp. 403-413, 1983.

[8] I. Althöfer and K. Koschnich. On the Deterministic Complexity of Searching Local

Maxima. Discrete Applied Mathematics 43, pp. 111-113, 1993.

[9] A. Ambainis. Polynomial Degree vs. Quantum Query Complexity. Proceedings of the

44th Annual IEEE Symposium on Foundations of Computer Science, pp. 230-239, 2003.

105



106

[10] A. Ambainis. Quantum Lower Bounds by Quantum Arguments, Journal of Computer

and System Sciences, 64, pp. 750-767, 2002.

[11] A. Ambainis. Quantum lower bounds for collision and element distinctness with small

range. Theory of Computing, 1(3), 2005.

[12] A. Ambainis. Quantum Walk Algorithm for Element Distinctness. Proceedings of the

45th Annual IEEE Symposium on Foundations of Computer Science, pp. 22-31, 2004.

[13] H. Barnum and M. Saks. A lower bound on the quantum query complexity of read-once

functions. Journal of Computer and Systems Sciences, 69(2):244258, 2004.

[14] H. Barnum, M. Saks, M. Szegedy. Quantum Query Complexity and Semidefinite Pro-

gramming. Proceedings of the 18th Annual IEEE Conference on Computational Com-

plexity, pp. 179-193, 2003.

[15] C. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknesses of

quantum computing, SIAM Journal on Computing 26, pp. 15101523, 1997.

[16] M. R. Best, P. van Emde Boas and H. W. Lenstra, Jr. A sharpened version of the

Aanderaa-Rosenberg conjecture, Report ZW 30/74, Mathematish Centrum, Amsterdam,

1974.

[17] B. Bollobás and S. E. Eldridge, Packing of graphs and applications to computational

complexity, J. of Combinatorial Theory Ser. B 25, 105-124.

[18] Berzina, Dubrovsky, Freivalds, Lace and Scegulnaja, Quantum query complexity for

some graph problems. Proceedings of the 30th conference on Current Trends in Theory

and Practice of Computer Science, pp. 140-150, 2004.

[19] G. Brassard, P. Hoyer, A. Tapp. Quantum Counting. Proceedings of 25th International

Colloquium on Automata, Languages, and Programming, LNCS 1443, 820-831, 1998.

[20] R. Beals, H. Buhrman, R. Cleve, M.Mosca, R. de Wolf. Quantum Lower Bounds by

Polynomials. Journal of ACM, 48, pp. 778-797, 2001.



107

[21] H. Buhrman, R. Cleve, A. Wigderson. Quantum vs. classical communication and com-

putation. Proceedings of the 30th Annual ACM Symposium on Theory of Computing,

pp. 63-68, 1998

[22] H. Buhrman, C. Drr, M. Heiligman, P. Hyer, F. Magniez, M. Santha, R. de Wolf.

Quantum algorithms for element distinctness, SIAM Journal on Computing, 34(6), pp.

1324-1330, 2005.

[23] H. Buhrman and R. de Wolf. Complexity Measures and Decision Tree Complexity: a

survey. Theoretical Computer Science, Volume 288, Issue 1, pp. 21-43, 2002.

[24] A. Chakrabarti and S. Khot. Improved lower bounds on the randomized complexity

of graph properties. Proceedings of the 28th International Colloquium on Automata,

Lanaguages, and Programming, pp. 285-296, 2001.

[25] A. Childs and J. Eisenberg. Quantum algorithms for subset finding. Quantum Infor-

mation and Computation 5, 593 (2005)

[26] R. de Wolf. Quantum communication and complexity. Theoretical Computer Science,

287(1), pp. 337-353, 2002.

[27] D. Deutsch. Quantum theory, the Church-Turing principle and the Universal Quantum

Computer. Proceedings of the Royal Society of London: Series A - Mathematical and

Physical Sciences A, 400(1818), pp. 97-117, 1985.

[28] D. Deutsch. Quantum Computational Networks. Proceedings of the Royal Society of

London: Series A - Mathematical and Physical Sciences A, 425(1868), pp. 73-90, 1989.

[29] D. Deutsch and R. Josza. Rapid solution of problems by quantum computation, Pro-

ceedings of the Royal Society of London: Series A - Mathematical and Physical Sciences

A, 439(1907), pp. 553-558, 1992.

[30] R. DeVore and G. Lorentz. Constructive approximation. Spring-Verlag, Berlin, 1993.



108

[31] C. Durr, M. Heiligman, P. Hoyer, M. Mhalla. Quantum Query Complexity of some

Graph Problems. Proceedings of the 31st International Colloquium on Automata,

Lanaguages, and Programming, pp. 481-493, 2004.

[32] C. Durr and P. Hoyer. A Quantum Algorithm for Finding the Minimum, quant-

ph/9607014, 1996.

[33] R. Feynman. Simulating physics with computers. International Journal of Theoreteical

Physics 21, pp. 467 - 488, 1982.

[34] L. Grover. A Fast Quantum Mechanical Algorithm for Database Search, Proceedings

of the 28th Annual ACM Symposium on the Theory of Computing, pp. 212-219, 1996.

[35] P. Hajnal, An Ω(n4/3) lower bound on the randomized complexity of graph properties,

Combinatorica, 11, pp. 131-143, 1991.

[36] S. Hallgren. Polynomial-Time Quantum Algorithms for Pell’s Equation and the Prin-

cipal Ideal Problem. Proceedings of the 34th Annual ACM Symposium on Theory of

Computing, pp. 653 658, 2002.

[37] P. Hoyer and R. de Wolf. Improved quantum communication complexity bounds for

disjointness and equality. Proceedings of the 19th Symposium on Theoretical Aspects of

Computer Science, pp. 299-310, 2002.

[38] P. Hoyer, M. Mosca, R. de Wolf: Quantum Search on Bounded-Error Inputs. Pro-

ceedings of 30th International Colloquium on Automata, Languages, and Programming,

LNCS 2719, 291-299, 2003.

[39] P. Hoyer and R. Spalek. Lower Bounds on Quantum Query Complexity, Bulletin of the

European Association for Theoretical Computer Science 87, pp. 78-103, 2005.

[40] R. Jain. J. Radhakrishnan, P. Sen. A lower bound for bounded round quantum commu-

nication complexity of set disjointness. Proceedings of the 44th Annual IEEE Symposium

on Foundations of Computer Science, pp. 220 - 229, 2003



109

[41] D. Johnson, C. Papadimitriou, and M. Yannakakis. How Easy is Local Search, Journal

of Computer and System Sciences 37, pp. 429448, 1988.

[42] V. King, Lower bounds on the complexity of graph properties, Proceedings of the 20th

Annual ACM Symposium on Theory of Computing, pp. 468-476, 1988.

[43] A. Kitaev, A. Shen, M. Vyalyi Classical and Quantum Computation, American Math-

ematical Society, 2002.

[44] G. Kuperberg, A subexponential-time quantum algorithm for the dihedral hidden sub-

group problem, quant-ph/0302112

[45] E. Kushilevitz and N. Nisan, Communication Complexity, Cambridge University Press,

1997.

[46] S. Laplante and F. Magniez. Lower Bounds for Randomized and Quantum Query Com-

plexity Using Kolmogorov Arguments. Proceedings of the 19th Annual IEEE Conference

on Computational Complexity, pp. 294-304, 2004.

[47] D. Llewellyn and C. Tovey. Dividing and Conquering the Square. Discrete Applied

Mathematics 43, pp. 131-153, 1993.

[48] D. Llewellyn, C. Tovey, M. Trick. Local Optimization on Graphs. Discrete Aplied

Mathematics 23, pp. 157-178, 1989. Erratum: 46, pp. 93-94, 1993.

[49] C. Lomont. The Hidden Subgroup Problem - Review and Open Problems. quant-

ph/0411037

[50] F. Magniez, M. Santha, M. Szegedy. Quantum algorithms for the Triangle problem.

Proceedings of the 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 1109-1117,

2005.

[51] N. Megiddo and C. Papadimitriou. On Total Functions, Existence Theorems, and Com-

putational Complexity. Theoretical Computer Science 81, pp. 317324, 1991.



110

[52] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information, Cam-

bridge University Press, 2000.

[53] N. Nisan, CREW PRAMS and decision trees, SIAM Journal on computing, 20, 6,

999-1007, 1991. Earlier version in STOC’89.

[54] R. O’Donnell, M. Saks, O. Schramm, R. Servedio. Every decision tree has an influential

variable. In Proceedings of the 46th Annual Symposium on Foundations of Computer

Science, pp. 31-39, 2005.

[55] R. O’Donnell and R. Servedio. Learning monotone functions from random examples in

polynomial time. Manuscript, 2005.

[56] J. Orlin, A. Punnen, A. Schulz. Approximate Local Search in Combinatorial Optimiza-

tion. SIAM Journal on Computing, 33(5), pp. 12011214, 2004.

[57] R. Paturi. On the degree of polynomials that approximate symmetric Boolean func-

tions, Proceedings of the 24th Annual ACM Symposium on the Theory of Computing,

468-474, 1992.

[58] A. Razborov. Quantum communication complexity of symmetric predicates. Izvestiya:

Mathematics, 67(1), pp. 145-159, 2003

[59] O. Regev. Quantum computation and lattice problems. SIAM Journal on Computing

33(3), pp. 738-760, 2004.

[60] R. L. Rivest and J. Vuillemin, On recognizing graph properties from adjacency matri-

ces, Theoretical Computer Science 3: 371 - 384, 1976.

[61] M. Saks and A. Wigderson. Probabilistic boolean decision trees and the complexity

of evaluating game trees. Proceedings of the 27th Annual Symposium on Foundations of

Computer Science, pp. 29-38, 1986.



111

[62] M. Santha. On the Monte Carlo Boolean decision tree complexity of read-once formulae.

Proceedings of the 6th Annual Structure in Complexity Theory Conference, pp. 180-187,

1991.

[63] M. Santha and M. Szegedy. Quantum and Classical Query Complexities of Local Search

Are Polynomially Related. Proceedings of the thirty-sixth annual ACM symposium on

Theory of computing, pp. 494-501, 2004.

[64] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximating

polynomials by influence of boolean variables. Information Processing Letters, 75(1-2),

pp. 79-83, 2000.

[65] Y. Shi and S. Zhang, The Quantum Query Complexity, the Approximate Degree and

the Total Influence, manuscript, 2005.

[66] P. Shor. Polynomial time algorithms for prime factorization and discrete logarithms on

a quantum computer. SIAM Journal on Computing, 26, pp. 1484-1509, 1997.

[67] P. Shor. Progress in quantum algorithms. Quantum Information Processing 3, pp. 5-13,

2004.

[68] D. Simon. On the Power of Quantum Computation. Proceedings of the 35th Annual

Symposium on the Foundations of Computer Science, pp. 116-123, 1994.

[69] R. Spalek and M. Szegedy. All Quantum Adversary Methods Are Equivalent. Proceed-

ings of 32nd International Colloquium on Automata, Languages and Programming, pp.

1299-1311, LNCS 3580, Lisboa, Portugal, 2005.

[70] M. Szegedy. On the quantum query complexity of detecting triangles in graphs. quant-

ph/0310107, 2003.

[71] X. Sun, A. Yao, S. Zhang, Graph properties and circular functions: how low can

quantum query complexity go? Proceedings of the19th Annual IEEE Conference on

Computational Complexity, pp. 286-293, 2004.



112

[72] G. Turan, The critical complexity of graph properties, Information Processing Letters,

18, 151-153, 1984

[73] W. van Dam, S. Hallgren and L. Ip, Quantum algorithms for some hidden shift prob-

lems. Proceedings of the 14th ACM-SIAM Symposium on Discrete Algorithms, pp. 489-

498, 2003.

[74] Y. Verhoeven, Enhanced Algorithms for Local Search. Information Processing Letters

97, pp. 171-176, 2006.

[75] A. Yao, Some Complexity Questions Related to Distributive Computing, Proceedings

of the 11th Annual ACM Symposium on Theory of Computing, 209-213, 1979.

[76] A. Yao, Lower bounds to randomized algorithms for graph properties, Proceedings of

the 28th Annual Symposium on Foundations of Computer Science, pp. 393-400, 1987.

[77] A. Yao, Quantum circuit complexity, Proceedings of the 34th IEEE Symposium on

Foundations of Computer Science, pp. 352-361, 1993

[78] S. Zhang. On the Power of Ambainis Lower Bounds. Theoretical Computer Science,

339(2-3), pp. 241-256, 2005.

[79] S. Zhang, Promised and Distributed Quantum Search. Proceedings of the 11th Inter-

national Computing and Combinatorics Conference, pp. 430-439, 2005.

[80] S. Zhang, New upper and lower bounds for randomized and quantum Local Search,

the 38th ACM Symposium on Theory of Computing 2006, to appear.


