
ARCHITECTURAL AND COMPILER TECHNIQUES

FOR MICROPROCESSOR POWER AND

PERFORMANCE MANAGEMENT

QIANG WU

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

SEPTEMBER 2006

c© Copyright by Qiang Wu, 2006.

All Rights Reserved

Abstract

As computing technology continues to progress very rapidly, many technical challenges

emerge. One of these is the issue of power dissipation. Indeed, power delivery and dissipa-

tion are becoming primary limiters of performance and integration for microprocessors. In

response, architectural and software level power-reduction techniques, which extend tradi-

tional circuit-level energy techniques, have gained more and more attention and become an

active research area in the last few years.

The work in this thesis focuses on one important problem in this area, namely dynamic

power and performance management in high-performance processors. Dynamic adaptive

techniques are appealing because they offer the ability to adjust on the fly according to the

current run-time power and performance situation. This thesis investigates architectural

and compiler techniques for controlling power and performance in microprocessors. The

overall contributions of this work are the proposed new concepts, methods, and framework

for intelligent power and performance management.

Specifically, this work has had two major thrusts. First, formal control-theoretic tech-

niques will be discussed in the context of hardware-based energy control. The environment

is a multiple clock domain processor. An analytical system model is first proposed that

describes relationships among performance demand, capability, and clock frequency. A

controller is then designed to balance the speeds of different clock islands. Experimental

results show that the proposed technique is 2-3 times more efficient in terms of energy

delay product improvement, compared to a previous heuristic approach. In addition, the

new technique is more robust with a guaranteed stability margin even under extreme cases.

For the above design, both fixed-interval and adaptive interval control schemes have been

investigated. Second, software-layer energy control opportunities are explored in a general

dynamic compilation system. It is shown that a dynamic compiler driven scheme has sev-

eral unique features and advantages over existing energy control schemes. Such a scheme

is then designed, implemented, and deployed on real hardware (with a Pentium-M pro-

iii

cessor). Experimental results from physical power measurements show up to 70% energy

saving is accomplished for SPEC benchmarks. In addition, because of its orthogonal fea-

tures and advantages, the dynamic compiler driven scheme can be an effective complement

to existing hardware-based energy control schemes.

iv

Acknowledgements

The work presented in this thesis has been possible only through the contributions of

many wonderful people.

I wish to express my deep thankfulness to my thesis advisors, Doug Clark and Margaret

Martonosi. I thank Doug for his thoughtful direction that helped the thesis take shape, and

his endless guidance that sustained the thesis as it moved forward. Throughout these years,

he has been always available, helped me keep everything in perspective, and managed

to keep my spirits up in crises. I thank Margaret for her invaluable advice and support

throughout this thesis work. She has not only helped me with my research, but also taught

me how to develop myself intellectually and believe in my ideas and myself. I am privileged

to have learned from Doug and Margaret. The interaction with them has been one of the

best experiences of my professional life.

Many thanks are extended to David August, Kai Li, and Youfeng Wu. David introduced

me to the field of computer architecture and compilers at Princeton. I appreciate greatly his

help. Kai has contributed significantly to my intellectual development. I am very grateful

for his support and help in the thesis work and his advice on my career development.

Youfeng has been my industrial mentor since my first year at Princeton. Throughout these

years, he has constantly supported my work. I am indebted to him for his encouragement

and support along the way.

Many thanks to Andrea LaPaugh, David Brooks, and Dan Connors for their helpful and

constructive suggestions. Special thanks to Melissa Lawson and CS Staff for all their help

during my study at Princeton. Big thanks to my fellow students in the CS and EE depart-

ments — Philo Juang, Gilberto Contreras, Canturk Isci, James Donald, Yong Wang, Chris

Sadler, Eric Chi, Fen Xie, Pei Zhang, David Penry, Ram Rangan, Bolei Guo, Guilherme

Ottoni, and Easwaran Raman. Your friendship that accompanied my study will always be

cherished.

Financial support provided by the Intel foundation graduate fellowship and National

v

science foundation grants (ITR CCR-0086031 and CNS-0410937) is greatly acknowl-

edged.

Last but not least, I thank my wife and our parents for their enduring love and support

all these years. My wife, Hong, and I have shared all the ups and downs of our lives together

since we first met as teenagers. It would have been impossible for me to finish this thesis

without her.

vi

Contents

Abstract . iii

Acknowledgements . v

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Related Work . 3

1.3 Thesis Overview and Contributions . 5

2 Formal Online Methods for Voltage and Frequency Control in Multiple Clock

Domain Microprocessors 10

2.1 Introduction . 10

2.2 Background: Multiple Clock Domain Microprocessors 12

2.3 Online DVFS Design: An Analytic Approach 14

2.3.1 Problem formulation . 14

2.3.2 Overview of modeling and design of DVFS controller 16

2.3.3 Analytic modeling of queue and clock domain dynamics 20

2.3.4 DVFS controller design . 23

2.3.5 Hardware implementation of the DVFS controller 26

2.3.6 Specifying energy and performance tradeoffs with qref 29

2.4 Experimental Results . 32

2.4.1 Simulation methodology and setup 32

vii

2.4.2 Energy and performance results for different approaches 36

2.4.3 Energy-performance tradeoffs as a function of qref 38

2.5 Centralized DVFS schemes: A Discussion 39

2.6 Summary . 41

3 A Novel Energy Control Scheme With Adaptive Reaction Time 43

3.1 Introduction . 43

3.2 Design of Adaptive DVFS Scheme . 45

3.2.1 A Design for MCD Processors . 47

3.3 Modeling and Stability Analysis of Adaptive DVFS System 51

3.3.1 Overview of Modeling and Stability Analysis 52

3.3.2 Modeling the Adaptive DVFS controller 54

3.3.3 Stability Analysis of the Adaptive DVFS System 57

3.4 Experimental Results . 61

3.4.1 Simulation Methodology and Setup 62

3.4.2 Benchmark Classifications . 64

3.4.3 Energy and Performance Results 67

3.4.4 Comparison to Fixed-PID with Shorter Intervals 71

3.5 Related Work . 73

3.6 Summary . 74

4 A Dynamic Compilation Framework for Controlling Microprocessor Energy

and Performance 75

4.1 Introduction . 75

4.2 Why Dynamic Compiler Driven DVFS? 77

4.2.1 Advantages over hardware or OS DVFS 78

4.2.2 Advantages over static compiler DVFS 78

4.2.3 Disadvantages and challenges . 80

viii

4.3 Design Framework and DVFS Decision Algorithms 81

4.3.1 Key design issues . 81

4.3.2 DVFS decision algorithms . 84

4.4 Implementation and Deployment: Methodology and Experience 88

4.4.1 Implementation . 88

4.4.2 Deployment in a real system . 91

4.5 Experimental Results . 94

4.5.1 Experimental setup . 94

4.5.2 Energy and performance results 97

4.5.3 Basic O-PIN overhead . 102

4.5.4 Discussion and micro-architectural suggestions 103

4.6 Related Work . 104

4.7 Future Work . 105

4.8 Summary . 105

5 Conclusions and Future Directions 107

5.1 Concluding Remarks . 107

5.2 Future Directions . 108

ix

Chapter 1

Introduction

1.1 Background and Motivation

Computing technology has progressed rapidly in the past 20 years due to two major rea-

sons. First, advances in circuit integration technology make it possible to put smaller and

faster transistors into a chip and double the scale of integration roughly every 18 months.

Second, computer architects and compiler designers make use of the increasing number of

transistors available in a chip to exploit parallelism and further increase the computing ca-

pability through techniques like deeper pipeline, superscalar, and VLIW [29]. As a result,

we have seen an exponentially increasing computing performance in the past two decades,

as illustrated by Figure 1.1 for Intel microprocessors [54].

However, with the increasing computing performance come also exponentially increas-

ing design complexity and processor power consumption. Figure 1.2 gives an illustration

for power consumptions of Intel processors [54]. There are several serious problems with

the increasing power. First, higher power dissipation means more energy consumption in

general. For portable computing devices, this means shorter battery life, as battery technol-

ogy is not improving at the same rate. For desktop and server computers, this means more

electricity cost. For example, Google has noted that their electricity bill is too high and is

1

386386

486486
PentiumPentium

PIIPII
PIIIPIII

P4P4

0.1

1

10

100

1000

10000

1985 1990 1995 2000 2005

re
la

tiv
e

pe
rfo

rm
an

ce

Figure 1.1: Relative performance over time for Intel’s processors.

getting higher [7].

A second problem is thermal dissipation. We have seen the trend of needing no heat

sink for processors in the 1980s, to moderate-size heat sinks for processors in the 1990s,

to today’s giant heat sinks. With the power consumption moving crossing the line of 100

watts, the conventional air cooling system has been pushed toward its limit. With the

current trend of power increasing, it is possible that we will be forced to use more expen-

sive cooling systems like water or hydrogen-based, which will increase the overall system

cost and become impractical for lower-end computing systems. A third problem is that it

is becoming more difficult to maintain the quality of power supply in a processor. With

more current flowing, maintaining a stable and high-quality supply voltage becomes more

challenging due to issues like inductive noise or dI/dt [38]. Indeed, the power and ther-

mal problem is becoming a primary limiter of performance and integration, and has been

regarded as one of the grand challenges in current and future processor design.

In response to the challenge, significant research efforts have been devoted to power-

efficient computing. While traditional efforts in this direction focus on circuit level tech-

niques [16], more and more attentions have been paid to techniques at architecture or sys-

tem software level in the past few years [2, 10, 12, 24, 31, 32, 34, 36, 37, 38, 45, 46, 48, 49,

58, 68]. Numerous power-aware architecture/compiler/OS design, analysis, and manage-

2

386386
486486

PentiumPentium

PIIPII

PIIIPIII

P4P4

1

10

100

1985 1990 1995 2000 2005

po
w

er
 (w

at
ts

)

Figure 1.2: Power consumption over time for Intel’s processors.

ment techniques have been proposed and studied in literature. For example, we have seen

architectural level power modeling [10], dynamic thermal management [9], adaptively con-

figurable function units or cache structure [2, 14, 32], system-level voltage and frequency

scaling [12, 58], power-aware compilation and instruction selection [39], and power-aware

paging and swapping [42].

The work in this thesis focuses on one important problem in this area, namely dynamic

power and performance management in high-performance processors. Dynamic adaptive

management is crucial in modern computers because of the workload variability and the

unpredictability of moment-to-moment performance and power demand in real computer

systems. With dynamic adaptive techniques, the system can adjust on the fly according to

the current run-time power and performance situation, rather than the worst-case estimates.

1.2 Related Work

In this section, I give a high-level discussion and classification of existing work. Later, in

each chapter, I give more detailed discussions of the work related and specific to each of

the chapters.

Existing work in the area of dynamic power and performance management can be

3

categorized in several dimensions. The first dimension is the level of control hierarchy:

ranging from OS-based, compiler-based, to architecture or hardware-based. Current prac-

tice for power management is OS-based and is relatively coarse-grained. As implemented

in the latest operating systems (such as Windows XP or Linux 2.6), power and perfor-

mance are managed through a set of operating states – active, idle, deep sleep, etc. The OS

chooses an appropriate operating state according to user specifications, current workload,

and the battery or power supply condition. Besides these OS approaches in real systems,

more advanced OS-level techniques have been proposed in literature, such as power-aware

scheduling [63] in which the OS selects an appropriate voltage/frequency setting when a

new application or task is scheduled. At the compiler level, a number of techniques have

been proposed using a static compiler or binary re-writer as the tool for power and perfor-

mance management [31, 68]. They typically use profiling and offline analysis to choose

appropriate power/performance settings. At the architectural or hardware level, numerous

techniques have been proposed to adaptively control the execution for power and perfor-

mance [19, 49, 58]. They typically employ some online control mechanisms to monitor

the system condition and adjust the system parameters for better performance and power

efficiency.

A second dimension is the control granularity relative to the application or task. On

one hand, the inter-task schemes only consider possible adaptation points between different

applications [63]. On the other hand, the intra-task schemes strive to take advantage of the

program phase changes inside an application, and thus are more fine-grained [32, 58]. In

general, most OS-level techniques are inter-task, while most compiler or architectural level

techniques are intra-task. A third dimension is based on different control means employed

in the scheme. Dynamic voltage and frequency scaling (DVFS) is one popular control

method, which scales down voltage and frequency at run time based on the current power

and performance requirement [12, 65]. Another popular method is adaptively configurable

execution units such as resizable issue queues [14] or cache [2]. A fourth dimension is on

4

different target devices in a computer system. There are many research ideas for various

processors from low-end to high-end [17, 25, 40]. There are also quite a few works focusing

on memory [43] and disk [26, 28].

Relative to the above classification, the work in this thesis focuses on architectural

and compiler level techniques for processor adaptation. Because it is so prevalent, DVFS is

used as the form of energy control. But I believe the techniques and methodology described

in this thesis should be applicable for other control means as well. In addition, the focus

is on intra-task DVFS as it is more fine-grained and more aggressive in managing power,

compared to inter-task DVFS.

1.3 Thesis Overview and Contributions

The work in this thesis investigates architectural and compiler techniques for controlling

power and performance in high-performance processors. At a high level, the features of this

work are three-fold. First, it is one of the first efforts to use a rigorous, analytical approach

in architectural level energy control. Second, it is one of the first research attempts to

explore energy control opportunities in system software, especially in a dynamic compiler.

Third, it develops a real system and deploys the system in real hardware with physical

power measurements.

The main materials are presented in Chapters 2-4 of this thesis. An overview of them

is as follows.

Chapter 2. Formal online methods for voltage and frequency control in multiple-

clock-domain processors

Most existing architectural level hardware-based energy control schemes take an ad hoc

approach and employ a set of heuristics. However, there are several problems associated

with the heuristic-based approaches. First, the trial-and-error tuning process for heuristic

parameters is very time consuming. Second, with heuristic parameters, there are concerns

5

about worst-case control behavior and the control effectiveness on atypical applications.

Third, there is a scalability problem for control in a large system or a system with multiple

control loops, as it becomes extremely difficult to pick good heuristic rules and parameters

to handle a large number of interacting factors.

In this part of the thesis, I have investigated and designed formal control-theoretic tech-

niques for microprocessor voltage and frequency control. Control theory is used to formally

reason about what will happen and how to improve the control effectiveness and robustness.

Specifically, this work is carried on in the context of a multiple-clock-domain (MCD) pro-

cessor, which is a novel power-efficient design recently proposed in literature. I first model

the MCD processor as a queue-domain network and the DVFS problem as a feedback con-

trol problem with the issue queue occupancies as feedback signals. After an analytical

system model is derived, I design a PID-based (Proportional, Integral, and Derivative) con-

trol and verify it via stability analysis. Finally, the proposed DVFS scheme is evaluated by

a cycle-accurate architecture simulator with a broad set of applications. Compared to the

best-known DVFS scheme for MCD, which is heuristic-based, the proposed scheme is two

times more efficient in term of energy delay product (EDP) improvement.

The primary contributions of this part of the thesis are as follows. First, it focuses on

voltage/frequency control for MCD architectures, which are relatively new and have great

potential in terms of energy-saving and performance improvement. Second, the proposed

control-theoretic techniques applied to DVFS in MCD processors have led to a 2-3 fold

increase in efficiency compared to the best-known previous heuristic-based DVFS scheme

in MCD processors. In addition, the control-theoretic technique is more resilient, complete,

and boundable as well. For example, it can guarantee stability, achieve significant energy

savings, and offer more graceful degradation even under extreme cases. Third, this is

one of the first rigorous analytic approaches to DVFS control. Previous control theoretic

techniques exist [46], but only for multimedia processors with predictable workloads, while

this work is for general workloads.

6

Chapter 3. A novel energy control scheme with adaptive reaction time

Most existing hardware-based DVFS schemes (including the one in Chapter 2) use a

fixed time intervals between possible voltage/frequency changes. The downside to their

approach is that the interval boundaries are predetermined and independent of workload

changes. Thus, they can be delayed in responding to large, severe activity swings.

In Chapter 3, I propose a novel DVFS scheme for MCD processor, in which the control

reaction time is self-tuned and adaptive to application and workload changes. As part of the

scheme, I have designed a DVFS controller that has a simple decision process and reacts

directly to recent queue occupancy conditions. In addition to designing such a scheme,

I model the proposed DVFS controller and use the derived model in a formal stability

analysis. The obtained analytic insight is then used to guide and improve the design in

terms of stability margin and control effectiveness. Experimental results show that the new

and simpler scheme has achieved significant energy savings over all studied benchmarks:

19% energy savings with 3% performance loss on average. This is close to the best results

from existing fixed-interval DVFS schemes.

The primary contributions of Chapter 3 are follows. First, rigorous modeling and sta-

bility analysis techniques have been applied to the design to provide insight and guidance,

and make the design more efficient and more resilient. Second, the proposed interval-

less control scheme has a simpler decision process and better responsiveness than existing

fixed-interval schemes. A simpler decision process means smaller and cheaper hardware.

So this scheme is useful for processors with limited hardware budgets. In addition, for a

group of applications with fast workload variations, the new scheme outperforms existing

schemes by 18% or more due to its self-tuning nature and responsiveness. So this scheme

is also useful and suitable to processors where the type of application behavior (i.e. rapid

workload variations) is known in advance.

Chapter 4. A dynamic compilation framework for controlling microprocessor energy

and performance

7

In addition to hardware, the compiler and system software can also play an important

role in energy and performance management. While existing software-driven energy con-

trol techniques are primarily based on OS time-interrupt or static compiler, very little has

been done to explore control opportunities in a general dynamic compilation system. There

are, however, several unique features and advantages to deploying DVFS through the use

of a dynamic compiler. Most importantly, dynamic compiler driven DVFS is fine-grained,

code-aware, and adaptive to the current microarchitecture environment, partially because

of its ability to infer about program code attributes as well as to access run-time hardware

information.

Chapter 4 presents a design framework of the run-time DVFS optimizer in a general

dynamic compilation system. A prototype of the DVFS optimizer is implemented and in-

tegrated into an industrial-strength dynamic compilation system. The obtained system is

deployed in a real hardware platform that directly measures CPU voltage and current for ac-

curate power and energy readings. Experimental results, based on physical measurements

for over 40 SPEC or Olden benchmarks, show that significant energy savings achieved

with little performance degradation. For example, SPEC benchmarks benefit with energy

savings of up to 70% (with 0.5% performance loss), and Olden benchmarks save up to

61% energy (with 4.5% performance loss). In addition, because of its orthogonal features

and advantages, the dynamic compiler driven scheme can be an effective complement to

existing hardware-based energy control schemes.

Chapter 4 has two main contributions. First, I have designed and implemented a run-

time DVFS optimizer, and deployed it on real hardware with physical power measurements.

The optimization system is more effective in terms of energy and performance efficiency, as

compared to existing approaches. Second, to my knowledge, this is one of the first efforts

to develop dynamic compiler techniques for microprocessor voltage and frequency control.

A previous work [27] provides a partial solution to the Java Method DVFS in a Java Virtual

Machine, while this work provides a complete design framework and applies DVFS in a

8

more general dynamic compilation environment with general applications.

9

Chapter 2

Formal Online Methods for Voltage and

Frequency Control in Multiple Clock

Domain Microprocessors

2.1 Introduction

The energy control work in this chapter is conducted in the context of multiple-clock-

domain (MCD) processors [59]. An MCD processor constitutes a novel power-efficient

architecture which uses the Globally Asynchronous and Locally Synchronous (GALS)

clocking style [37, 50]. Inside an MCD, each function domain operates with an inde-

pendent clock; a synchronization circuit or queue is used for inter-domain communication.

A brief review of MCD is provided in Section 2.2.

The focus in this chapter is on hardware-based online DVFS schemes, as they are

driven by dynamic workload behavior, and thus are more adaptive and applicable than

static profile-based offline ones [48, 59]. The goal of this work is to design an analytic

online DVFS scheme for an MCD processor. Nearly all existing hardware-based DVFS

schemes are heuristic-based [36, 49, 58]. They typically include a set of manually selected

10

rules and threshold values. At run time, certain processor metrics, such as cache miss rate

[49] or queue occupancy [36, 58], are monitored. These metrics are then compared to the

threshold values and one of the rules is applied depending on the result of the comparison.

The best known DVFS scheme for an MCD processor is the AttackDecay algorithm by

Semeraro et al [58]. However, there are significant limitations in heuristic-based schemes.

First, the trial-and-error tuning process for parameters is very time consuming. Second, for

a given set of rules and parameters, it is not analytically clear how to improve the control

effectiveness and how to bound the worst-case control behavior. Third, it is generally hard

to scale the heuristics for a large system or a system with multiple interacting control loops,

as the number of rules and the tuning effort required can grow exponentially.

To overcome the above limitations, the DVFS scheme in this work takes a rigorous, ana-

lytical approach. I model an MCD processor as a queue-domain network, and formulate the

DVFS problem as a feedback control problem with issue queue occupancies as feedback

signals. Specifically, a stochastic model is proposed for the queue-domain dynamics. Since

the queue-domain system is inherently nonlinear, it is first linearized through an accurate

feedback linearization. The controller is then designed and verified by stability analysis.

Next, a possible hardware implementation of the controller is described. Finally the pro-

posed online DVFS scheme is evaluated by a cycle-accurate architecture simulator with a

broad set of applications selected from the MediaBench and SPEC2000 benchmark suites.

Overall, this work achieves a power-saving to performance degradation ratio of 6.2 (i.e. on

average, 6.2% power is saved for 1% performance degradation), as compared to a ratio of

2.5 for the conventional synchronous voltage scaling.

Compared to the best known prior online DVFS approach for an MCD processor [58]

which is heuristic-based, the proposed DVFS scheme has several significant advantages.

First, the analytic DVFS scheme is more robust and more effective in terms of energy sav-

ing for the same level of performance degradation. Experimental results show an energy-

delay product improvement 146% higher than that of the best-known heuristic-based on-

11

line scheme in [58], and 11% higher than the semi-oracle-based DVFS scheme in [59]. I

attribute this promising result to the automatic frequency/voltage regulation ability in the

proposed DVFS controller, which leads to a more effective and precise decision on when,

where, and how much to scale. In addition, the proposed analytic online DVFS scheme

requires less tuning effort than heuristic-based DVFS as the analytic DVFS chooses its

control parameters through stability analysis. Furthermore, the analytic DVFS scheme is

more scalable; we do not have to re-tune parameters or re-set rules in order to include new

resources. Also, we can extend it to a centralized or multi-modal DVFS scheme, which

will handle interactions among multiple clock domains (as is discussed in Section 2.5).

The rest of the chapter is structured as follows. In Section 2.2, we give a brief review

of the MCD processor design and implementation. Section 2.3 describes the modeling,

design, and analysis of our online DVFS controller. This is followed in Section 2.4 by

experimental results for the purpose of evaluation. In Section 2.5, I give a general outline

of centralized DVFS design. Finally, Section 2.6 summarizes this chapter.

2.2 Background: Multiple Clock Domain Microprocessors

Some computer architects and researchers have predicted that, in order to overcome the

increasing severe problems of clock distribution and power consumption, future high-

performance microprocessors may need to have multiple clock domains (MCD) or use

some form of asynchrony [3, 51]. MCD processors use the Globally Asynchronous Lo-

cally Synchronous (GALS) clocking style [50]. Each function block or domain operates

with an independently generated clock, and synchronization circuits ensure reliable inter-

domain communication.

Advantages of MCD processors include less clock distribution and skew burden, less

power consumption due to the absence of a global clock tree, DVFS flexibility, and de-

sign modularity [50]. The primary disadvantage of MCD processors is the inter-domain

12

Integer Floating-Point

Load/Store

ExternalFront End

FP queue

FP ALUs

Integer queue

Integer ALUs L1-Dcache

Load/Store queue

L2 CacheROB, Rename, Dispatch

Fetch Unit

L1-ICache Main memory

Figure 2.1: The clock domain partitions in an MCD processor by Semeraro et al.

communication and synchronization overhead. An interface circuit is needed if data passes

between two domains.

One key design issue for an MCD processor is the choice of where to partition the clock

domains. It is still an open research question on how to partition in order to maximize the

power-performance benefit. Most existing MCD implementations use architectural func-

tional blocks as natural boundaries for clock domains. For example, Figure 2.1 shows a

4-domain partition used by the MCD implementation by Semeraro et al. [59], which con-

sists of the front end, integer processing core (INT), floating point processing core (FP),

and load store unit (LS). The main memory is considered as an external separate clock

domain not controlled by the processor (for more details see [59]). Another popular MCD

implementation by Iyer and Marculescu [37] uses a 5-domain partition, which is similar to

that in Figure 2.1 but with the front-end split into two clock domains.

Another key design issue for an MCD processor is the synchronization interface de-

sign. A good interface design needs to have low latency, high throughput, and virtually

no synchronization failure (i.e. no metastability). Nearly all of the existing MCD inter-

face designs use some kind of queue structures for efficiency. One group of designs [18]

uses token-ring based FIFOs, which have a very low latency and low synchronization over-

13

head. (There is no synchronization cost if the token-ring FIFO is neither full nor empty.)

Another group of designs uses arbitration-based queue structures (often with a stoppable

clock) [61, 69]. The designs in this group are typically failure-free, but may need to check

synchronization for each data transfer. For example, the design by Sjogren and Myers [61]

includes arbitration and synchronization circuits which can detect whether the source and

destination clock edge are far enough apart (i.e., greater than the so-called synchronization

window size in [58]), in order for the source generated signal to be successfully accessed

at the destination. This design has been used by the MCD implementation in [59]. Note

that for a situation like that in Figure 2.1, where issue queues already exist between some

domains, the interface queue structure can be integrated with the existing issue queue to

form a combined issue/interface queue structure.

The MCD implementations in [37] and [59] also provide the capability of independently

configuring the frequency and voltage in each clock domain. An aggressive XScale-style

DVFS model [20] is assumed, in which a clock domain can execute through the DVFS

transition and the penalty is negligible due to a domain being idle waiting for the PLL [20].

Also, the XScale model allows any frequency to be used within the allowable range.

The quantitative benefit/overhead studies in [37, 59] have shown that an MCD processor

has the potential to achieve significant power and performance efficiency. However, many

design and control issues remain open and need more investigation in order to fully take

advantage of the power/performance benefits brought by the MCD processors [50]. Online

DVFS is one of these issues, as we will show next.

2.3 Online DVFS Design: An Analytic Approach

2.3.1 Problem formulation

Conceptually, the online DVFS problem for an MCD processor is to scale the frequency f to

match the varying performance demand in each clock domain. In other words, we want to

14

(a) Without DVFS (b) With perfect DVFS

Capability

Performance demand

t

Capability

Performance demand

t

Figure 2.2: A conceptual illustration of a perfect online DVFS for a clock domain in an
MCD processor.

adapt frequency to workload changes. Figure 2.2a depicts a typical scenario with varying

demand or workload. For a clock domain, changing clock frequency will generally change

the execution speed or capability of the domain. So, a perfect DVFS scheme will lead to a

perfect match between the demand and domain execution capability, as illustrated in Figure

2.2b. In the figure, perfect is in the sense of no performance degradation and elimination

of all energy wasted due to excessive capability slack. Thus, the goal of our online DVFS

scheme is to get results as close as possible to that of perfect DVFS.

Note the excessive capability slack in Figure 2.2a is just the gap between the capability

line and the demand line. We refer to the energy wasted due to this slack as Eslack. So for

a perfect DVFS in Figure 2.2b, the energy savings will be all of the Eslack.

In addition, in Figure 2.2, we can continue to scale the execution capability line arbi-

trarily low below the performance need for non-realtime applications to get more energy

savings, but that comes with a price of performance degradation, as the performance de-

mand can not be satisfied. We call this part of energy savings non-slack energy savings

or Enon-slack, to distinguish it from the “free” energy savings due to the elimination of

Eslack.

In this paper, we want to make use of the queues in an MCD to guide DVFS. Recall

from Section 2.2 that there are interface queues between clock domains for synchroniza-

tion. Intuitively, these queues give clues about the speed balance between the sender do-

15

queue q
clock
domain

demand λ
frequency f

service rate µ

Figure 2.3: A single queue model for a clock domain with an input queue.

main and the receiver domain. For example, an emptying queue may mean the receiver is

too fast relative to the sender; a filling queue may mean it is too slow; a stationary queue

means a perfect match of receiver speed relative to the sender. This suggests a feedback

control scheme for DVFS which uses the queue occupancy as a feedback signal to control

the domain frequency, making its execution speed adaptive to varying demand. If the adap-

tiveness is fast enough, the DVFS scheme should get results close to the perfect matching

in Figure 2.2.

There are, however, significant challenges to pursuing this idea along a rigorous an-

alytic direction. First, to design a simple, hardware controller based on control theory,

we need an analytical model for the involved queue and domain dynamics. Second, the

queue-domain relationships are inherently time varying and nonlinear. So techniques may

be needed to solve the nonlinearity problem accurately before we can design an effective

DVFS controller.

In the rest of this section, we describe modeling and design of an online DVFS scheme

for local queues and domains. That is, the DVFS controller considers each queue locally

and separately, assuming the interactions between queues are weak and can be ignored (the

so-called decentralized DVFS scheme). We leave the issue of centralized DVFS to Section

2.5.

2.3.2 Overview of modeling and design of DVFS controller

This subsection gives an overview of the modeling and design of our online DVFS con-

troller without going through control theoretic and mathematical details (those details will

16

Processor (MCD)
Specification

(queue length, etc)

DVFS Control
Specification

(control interval, etc)

Modeling of Queue &
Domain Dynamics

(Section 2.3.3)

System Linearization
(Section 2.3.4)

Linear Controller Design
& Stability Analysis

(Section 2.3.4)

design plan &
control parameters

Energy/Performance
Tradeoff Analysis

(Section 2.3.6)

reference queue qref

Hardware
Implementation
(Section 2.3.5)

Processors (MCD) with DVFS Control

Tradeoff Specification
(how aggressively to save energy?)

analysis/
design
toolbox

Figure 2.4: Design flow for our DVFS controller in MCD processors. Section numbers
inside the blocks indicate the location where the details of each design step can be found.

be given in subsections 2.3.3 - 2.3.6).

We use a local queue model as shown in Figure 2.3. The circle in that figure represents

the clock domain being considered (such as a floating point functional unit). The domain

has a frequency f and an execution capability or service rate µ, which is a function of f .

The performance demand is denoted as λ. The queue has a finite size. (Note this model

uses an input queue to a domain. For the case of an output queue, duals of the arguments

in this section will hold.)

Figure 2.4 shows the design flow of our DVFS controller, with the block diagrams

17

corresponding to the major steps for our methodology. The inputs to the modeling and

design blocks are the processor (MCD) specification and the DVFS control specification.

These include queue length, clock domains and their frequency ranges, control interval (i.e.

the time interval for one possible change of frequency/voltage), sampling period, queue

measures used as feedback signals, and other control performance requirements such as

maximum percent overshoot allowed.

The first major step is the modeling of the involved queue and clock domain dynamic.

(The details are described in subsection 2.3.3.) Based on the processor and control specifi-

cations, we derive a mathematical model for the controlled system, which is expressed as a

set of difference equations. These equations describes the dynamic relationship among the

feedback signal (q), the demand (λ), and the frequency (f).

The next two major steps are the system linearization and the linear controller design

(both are described in subsection 2.3.4). Since the controlled queue/domain system is in-

herently nonlinear, we first linearize the system using an accurate linearization technique

called nonlinear transformation [4]. As shown in Figure 2.5, this technique essentially adds

a nonlinear transformer to the feedback path to compensate for the nonlinearity in the orig-

inal controlled system. We then design a variation of the Proportional-Integral-Derivative

(PID) controller for this linearized system, which is commonly used in industry [41, 62].

Intuitively, the PID-based controller adjusts the execution rate to adapt to the workload

change. This adjustment is in proportion to the value of the workload change, the rate of

the workload change, and takes into account the prior history of workload changes. Figure

2.5 shows the control block diagram, where q is the measured feedback signal; qref is the

target or nominal queue operating point; e is the error signal and the input to the PID-based

controller; µ is the obtained control signal (or actuate signal) which is proportional to the

value of the error, the integral of previous errors, and the rate of the error change; f is

the frequency and is obtained from µ through a nonlinear transformation; demand λ is the

disturbance input which the controller is trying to adjust the execution rate to match.

18

PID-based
controller

q

eqref

Disturbance input

µ

λ

Trans-
former

Controlled system
(queue and domain)

f- q

linearized system

+

Figure 2.5: Control block diagram for a Proportion-Integral-Derivative (PID) controller for
DVFS .

The control parameters (or control gains) for the PID-based controller are decided by

the stability and control performance analysis. Note these control gains are the main output

of the analysis/design toolbox. The next major step is to take the design with the con-

trol gains, and implement it in hardware (we show a possible hardware implementation in

subsection 2.3.5). This finishes the design cycle of a DVFS controller in MCD processors.

A key design setting for the above DVFS controller is the reference queue occupancy

qref . As we will show in subsection 2.3.6, the value of qref specifies the actual tradeoff

between performance degradation and energy saving. We can increase qref to make DVFS

control more aggressive in saving energy, or decrease qref to value performance more. Note

that a design could make the value of qref adjustable by the OS or application software (e.g.

through a special mode set instruction). This mechanism provides an opportunity for hard-

ware/software cooperation in the sense that the hardware is responsible for implementing

the fine details of speed adaptation while the OS/application software will make the overall

policy decision (through qref) on how aggressively to save energy or preserve performance.

In the rest of this section, we will describe in detail the design steps in Figure 2.4. We

will start with the modeling and linear controller design, which involves some control the-

oretic and derivation details. (People who are already familiar with these derivations or are

not interested in these details may wish to skip subsections 2.3.3 and 2.3.4.) In practice,

these control theoretic techniques/details can be incorporated into an analysis/design tool-

box. A designer is able to use the toolbox to get the control parameters, and then use them

19

directly in the DVFS policy controller design.

2.3.3 Analytic modeling of queue and clock domain dynamics

As mentioned earlier, we use a local queue model as shown in Figure 2.3. For a clock

domain, the frequency and corresponding voltage cannot change instantaneously, and there

is a minimum time requirement for one possible change of frequency. So we have a control

interval such that the frequency is fixed inside an interval. Using T as the length of a control

interval, the kth control interval is just the time period [kT, (k + 1)T]. Also we denote N

as the total number of sampling periods in a control interval, and assume each sampling

period has a length of ∆t, so T = N∆t.

We first want to model the performance demand and service rate in a control interval.

The demand λ(t) and service rate µ(t) inside each control interval are modeled as an inde-

pendent and stationary random process along the time axis [30] (i.e., they have identical

distributions for all t inside an interval). We denote the expected values and variances (or

noise levels) of λ(t), µ(t) as λ̄, V(λ), µ̄, and V(µ) respectively. (From now on, for a variable

x, we will use x̄ and V(x) to represent the expected value and variance of x.) Also, we use

a subscript k as in λ̄k, V(λk) to indicate these values are for the kth control interval.

Consider q(t) as the queue occupancy at time t. Then the basic queue equation is

expressed as follows (essentially a simplified version of the Lindley equation [44]) :

q(t+∆t) − q(t) = (λ(t) − µ(t))∆t (2.1)

Intuitively, this means that queue occupancy change in a unit time is equal to the number

of arrived elements minus the number of departed elements in that unit time.

Next we want to use the above basic queue equation to model the queue-domain dy-

namics across different control intervals. First, we need to define the feedback signal and

other necessary dynamic state variables. For a control interval, there are a number of ways

20

to measure the queue utilization and use it as a feedback signal to the controller. In this

paper, we use the average queue occupancy over all sampling points in the previous interval

as the feedback signal for the current interval (as was used by the heuristic-based DVFS

approach in [58]). We denote this feedback signal for the kth control interval as q′
k. Also,

the queue occupancy at the starting point of the kth interval is qk, so we have qk = q(kT). If

we express these two dynamic state variables q ′
k and qk in terms of values from the previous

interval, we have

q′
k = 1

N

N
∑

i=1

q((k−1)T+i∆t)

qk = q((k−1)T+N∆t)

(2.2)

Next we recursively expand equations (2.2) using the the basic queue dynamics in (2.1)

and take the expected value of both sides of the expanded equation. Since both λ and µ are

stationary in a control interval, λ̄k and µ̄k are independent of time t for any k. So we have

q̄′
k = q̄k−1 + 1

N

N−1
∑

i=0

i
∑

j=0

(λ̄k−1 − µ̄k−1)∆t

= q̄k−1 + T+∆t
2

(λ̄k−1 − µ̄k−1)

q̄k = q̄k−1 + (λ̄k−1 − µ̄k−1)T

(2.3)

Intuitively, this means q̄′
k, the average queue occupancy over a control interval, is equal

to the sum of the queue occupancy at the beginning of the interval (q̄k−1) and the average

queue changes due to the differences between the demand rate λ̄k−1 and the service rate

µ̄k−1. A similar interpretation exists for q̄k, the queue occupancy at the beginning of next

interval, in the above equation.

The above equation describes the dynamics in the considered queue-domain system

across different control intervals. The RHS of equation (2.3) is expressed in terms of the

expected value of the service rate µ̄k, while the real control signal is fk. So we need to

model their relationship. We use the following model

µ̄k = 1

t̄1+
C̄2
fk

(2.4)

21

The above equation comes from the fact that, in most clock domains, execution time can be

separated into two parts – one that is independent of frequency and one that is dependent.

For example, in a load/store domain, the time spent for accessing asynchronous memory

due to a cache miss is independent of frequency, while the time for querying and accessing

cache is dependent on frequency. Accordingly, in the above model, t̄1 is the average amount

of unit time (or task step) per instruction that is independent of frequency, and C̄2 is the

average number of frequency-dependent cycles per instruction. Parameters t̄1 and C̄2 can

be estimated dynamically using techniques similar to those in [19, 68].

Putting (2.3) and (2.4) together, and dropping ∆t in (2.3) as T � ∆t, we have an

analytic model for the considered queue-domain system as

q̄′
k = q̄k−1 + T

2
(λ̄k−1 − 1

t̄1+
C̄2

fk−1

)

q̄k = q̄k−1 + (λ̄k−1 − 1

t̄1+
C̄2

fk−1

)T
(2.5)

In the above modeling of queue dynamics, we assume the queue at the nominal operating

point is partially full. The queue-domain relations when the queue is completely empty or

full will be different from that in (2.1), which must be modeled using some discrete binary

functions like those we will use in Section 2.5.

In addition, in the above model, we have only considered the expected values of λ and

µ, and have not considered the variance or noise level of the input V(λ), V(µ). In particular,

we want to check how the input noise propagates in the feedback signal q̄′, since the noise in

the feedback signal may affect the efficiency of a controller. We compute the variance Vq′

k

in one interval, assuming the queue occupancy is known at the beginning of the interval. By

expanding the first sub-equation in (2.2), taking the variance of both sides of the expanded

equation, and following the variance calculation rules [30], we have

V(q′

k
) = T+∆t

2T
(V(λk−1) + V(µk−1))

≈ 1
2

(V(λk−1) + V(µk−1))
(2.6)

From (2.6), we see the variance or noise in the feedback signal q ′ is not amplified and stays

22

Nonlinear
controller

f
q

µ

(a) (b)

Original
system

Compensated
system

demand λ
domain

Linear
controller

f
q

demand λ
domain

Transformer

Figure 2.6: Linearization of the original dynamic system through a nonlinear transforma-
tion on the feedback path

at roughly the same level as the input noise. This is beneficial to the controller because

smaller noise in the feedback signal tends to have less negative impact on the efficiency of

the controller.

2.3.4 DVFS controller design

A straightforward design approach for our goals would be to design a controller for fk,

as shown in Figure 2.6a. However, as indicated in equation (2.5), this control system is

nonlinear, and it is generally hard to design an effective controller for a nonlinear sys-

tem, as there are very limited control techniques and tools for a general nonlinear system

[41]. Fortunately, the nonlinearity inside this system can be separated, so we can have a

nonlinear transformation on the feedback path to compensate for the nonlinearity in the

original system dynamics; in this way, the compensated system becomes a linear one. This

accurate linearization technique is the so-called feedback linearization or nonlinear trans-

formation [4], as shown in Figure 2.6b. Specifically, we take µk as the control signal for

the compensated linear system. The actual or internal control signal fk is obtained through

a transformation on the feedback path.

23

After the linearization, we can design the controller using a rich set of linear con-

trol techniques [41]. A popular choice would be a variation on the Proportion-Integral-

Derivative (PID) controller. In this work, we use a PI controller because it is relatively

simple to design and robust in terms of steady-state control performance. The controlled

system with the PI controller can be described by the following state equations.1

q̄′
k = q̄k−1 + T

2
(λ̄k−1 − µ̄k−1)

q̄k = q̄k−1 + (λ̄k−1 − µ̄k−1)T

ek = q̄′
k − qref

µ̄k = µ̄k−1 + KIek + KP (ek − ek−1)

fk = C̄2µ̄k

1−t̄1µ̄k

(2.7)

where the first two sub-equations are simply the analytic queue-domain model in (2.5); qref

is the reference queue occupancy, i.e. the target or nominal operating queue point (more

discussion of this in Section 2.3.6) ; ek is the error signal; µk is the new service rate coming

from the PI controller, with KI and KP the control parameters (or the so-called control

gains); fk is the new clock frequency obtained by solving (2.4) for fk.

We then can proceed with stability and transient performance analysis of (2.7) and

choose appropriate control gains KI and KP [41], as described next.

In equation (2.7), we define µk as the output signal, and λk as the disturbance input

signal. Also we define new constants K ′
I = KIT , K ′

P = KP T . We can get the transfer

function through the input-output difference equation and the z-transformation [41]. From

the transfer function, we can get the corresponding characteristic equation as

2z3 + (K ′
I + K ′

P − 4)z2 + (2 + K ′
P)z − K ′

P = 0 (2.8)

From stability theory [41], the system in (2.7) is stable if and only if the roots of (2.8) are

all inside the unit cycle of the z-plane. Assuming the roots of (2.8) are z1, z2, and z3, we
1Note these equations describe the dynamic relationship between the state and control variables. For the

control relationship between these variables, please refer to the control block diagram in Figure 2.5 in Section
2.3.2.

24

0 10 20 30
−1

−0.5

0

0.5

1

1.5

2

time (xT)

rel
ati

ve
 ra

te

demand λ −, service rate µ −−

Figure 2.7: Step response for the system in (2.7) with K ′
I = 0.2, K ′

P = 0.6.

have the following relationships between the roots and the setting K ′
I , K

′
P , using a standard

coefficient matching technique.

K ′
I = 2(z1z2 + z2z3 + z3z1) − 2

K ′
P = 2z1z2z3

z3 = 3−z1z2−z1−z2

z1z2+z2+z3+1

(2.9)

With equation (2.9), we can use the poles-placement technique [41] to choose the appro-

priate K ′
I ,K ′

P setting for a given stability margin and transient performance requirement.

For example, if z1 and z2 are chosen with a very small magnitude (e.g. z1 = z2 = 0.25,

as smaller magnitudes give faster settling times), z3 will be placed outside the unit cycle in

the z-plane (e.g. z3 = 1.6) and the system will be unstable. So to make the system stable,

we need to choose z1 and z2 with a relatively large magnitude and sacrifice the settling time

a little bit. We also may want it relatively underdamped in order to have a fast rising time,

assuming we can tolerate the overshoot caused by the underdamping. Considering all of

the above, one good placement is to have z1,2 = 0.5±0.5i, z3 = 0.6, and the corresponding

K ′
I = 0.2, K ′

P = 0.6. Figure 2.7 shows the step response of the system in (2.7) for this

setting.

In the above controller design, we assume frequency fk can vary without bounds. In

practice, fk has an upper bound and a lower bound. Also, there is a maximum possible

25

reset

Interval
counter

16 DVFS trigger

queue
accum-
ulator

22
FF shifter

avg q

- prev q

- qref

qk –qk-1

qk –qref

16

total
changes

current f

IPC
f ~ µ

computing
logic

new f

reset 1

22 6

+

+

lookup tbl (KP)

…
0

127

lookup tbl (KI)

…
0

127

7

7

+
15

15

16

DVFS trigger

FF

Figure 2.8: Block diagram for a possible hardware implementation of the DVFS controller
in a clock domain.

frequency change in one control interval for a given interval length and clock changing

rate. So, in practice, the DVFS controller would need to check with these bounding values.

In addition, we assume an XScale-style frequency control which allows continuous fre-

quency changes. For processors which allow only stepwise frequency changes, the DVFS

controller would need to choose a discrete step which is closest to the requested continuous

value.

2.3.5 Hardware implementation of the DVFS controller

The most important hardware required to implement the proposed DVFS scheme are the

queues. As these queues already exist as synchronization queues between clock domains,

the online DVFS controller for an MCD processor uses the existing hardware in a “two for

one” style.

26

The rest of the required hardware includes two counters, which are similar to the hard-

ware counters in [58]. One is used to frame the control interval (a time counter or instruc-

tion counter). Since the length of a control interval is typically a few thousand cycles or

instructions, a single 16-bit counter should be sufficient. The other one is a queue counter to

get the cumulative queue occupancy. Given that a queue size is typically around 20 (� 26)

and we have to total up such occupancies over ≤ 216 cycles, a 22-bit queue counter should

be sufficient. One possible implementation for computing the average queue occupancy is

to choose the interval length as power of two and use a shifter as shown in Figure 2.8. The

most complicated part is the logic required to compute the control signal (f). Since it is

done only once for each control interval and is not time critical, this computation can be

finished in multiple cycles. Specifically, this logic first needs to compute µk as

µk−1 + KI(q̄′
k − qref) + KP (q̄′

k − q̄′
k−1)

One possible implementation for this task is shown in Figure 2.8, which uses two adders

to compute the queue differences, and two pre-computed lookup tables to get the actual

control gains or changes (one for KI and one for KP). The actual size of the lookup tables

depends on the queue size, the resolution of the queue values, and the control gains. For a

queue size of 32, a resolution of 0.25 for queue values, and a 7-bit KP or KI resolution,

each lookup table requires 128 entries and 15 bits per entry as illustrated in Figure 2.8.

This logic also needs to compute values of µ(f) with µ = 1/(t̄1+C̄2/f). The t̄1 and C̄2

can be estimated online by some performance counters [68]. The rest can be computed by a

multiplier or again by using some pre-computed lookup tables. In order to reduce the hard-

ware requirement for this part, we approximate the µ(f) function with some piece-wise

linear functions. (An illustration is given in Figure 2.9 with t̄1 = 0.35, C̄2 = 0.1.) That is,

we divide the frequency range into many small segments, each of which is centered at an

operating point. Then for f inside a particular segment, µ can be computed using a linear

function µ = IPC ·f , where IPC is the effective IPC at the center operating point. For the

27

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

relative frequency f

rel
ati

ve
 se

rvi
ce

 ra
te

service rate µ −

(f1, µ1)

(f2, µ2)

Figure 2.9: Piece-wise linear functions to approximate the real µ(f) function around two
operating points.

example in Figure 2.9, we have µ = IPC1f for f inside a small segment around operating

point (f1, µ1), and µ = IPC2f for the small segment around (f2, µ2). If the size of the

frequency segment is small, this will give a quite good approximation. (In the next section

we will see that because the frequency change rate is relatively slow in an MCD processor,

the maximum possible frequency change in an interval is relatively small; thus the error

from this piecewise approximation is relatively small.) With this approximation, the hard-

ware required to compute µ ∼ f will be reduced. We will need to estimate IPCeffective

online using a regular IPC counter, then compute the new frequency f using the current

f , total control gains (changes), and IPC as shown in Figure 2.8. The computing logic

for this part can be implemented using a pre-computed lookup table as discussed above, or

using a 16-32 bit multiplier depending on the frequency resolution. As mentioned earlier,

this computation is not time critical, so we can use some serial multiplication techniques to

further reduce the hardware requirement. Finally, the new frequency signal f will be used

by the frequency and voltage control mechanism in a clock domain.

Overall, only a modest amount of hardware support is needed to implement the online

DVFS controller.

28

2.3.6 Specifying energy and performance tradeoffs with qref

In the DVFS controller design in previous subsections, the reference queue qref specifies

the nominal operating queue point. In principle, qref can be any value which is neither full

nor empty (i.e 0 < qref < 1, if expressed relative to the queue size). In this subsection,

we show the position of qref specifies the actual tradeoff between performance degradation

and energy efficiency.

We continue to consider the single queue model in Figure 2.3. Notice that, for this

queue system, the steady state throughput (i.e. the steady state performance) degrades

if and only if the queue is full. That is because, at that point, the performance demand

from the upstream domain cannot be satisfied and the arriving process is forced to stall.

Similarly, energy is wasted if and only if the queue is empty, because the domain is running

idle and not doing any useful work. Note, control errors and input noise/variation are the

two major causes for the queue to become full or empty.

In addition, we notice that the distance from the nominal operating point (qref) to the

full-end queue point, [qref , 1], reflects the relative margin for the queue to tolerate the con-

trol errors and input variation before the queue becomes full and loses performance. Sim-

ilarly, the distance from qref to the empty-end queue point, [0, qref], reflects the margin to

tolerate errors before the queue becomes empty and wastes energy.

Therefore, if qref is increasing, then the distance [qref , 1] is decreasing and the system

is more likely to suffer performance degradation. On the other hand, for an increasing

qref , the distance [0, qref] is also increasing and the system is less likely to waste energy.

Qualitatively, the bigger the qref , the more performance degradation and the more energy

savings in general. We can choose how much energy performance tradeoff we want by

choosing an appropriate qref in our online DVFS controller.

As mentioned in Section 2.3.2, in our design, we can also leave the policy param-

eters like qref adjustable by the OS or application software. So the OS/application can

direct the overall power management with a simple lever (making the overall decision on

29

how aggressively to save energy or preserve performance) while leaving the actual imple-

mentation details of speed adaptation in hardware. This mechanism shows an example of

hardware/software cooperation in DVFS control.

In the rest of this subsection, we will further give a quantitative theoretic estimation of

the performance degradation and energy savings as a function of qref . (Later, in Section

2.4, we will show the actual experimental results.) Denote the control error as εc, the input

variation as εv, and the queue length as L. In concept, we have the following

Performance = PerfectP − Degradation

= PerfectP − D(qref , L, εc, εv)

Energy Savings = Eslack − Wasted + Enon-slack
= Eslack − W (qref , L, εc, εv) + Enon-slack

(2.10)

where PerfectP is the perfect performance of Figure 2.2, D is the performance degrada-

tion, Eslack and Enon-slack are the slack energy savings and the non-slack energy savings

defined in Section 2.3.1.

From (2.10), we see the value of Energy Savings is mostly decided by the Eslack in

the original program and the value of non-slack energy savings. The energy wasted W is

affected directly by qref as we mentioned. So in general, as qref increases, W decreases,

(also non-slack energy savings increases), and the overall Energy Savings increases.

The relative performance, on the other hand, is more closely related to qref as shown

next. To get a theoretical estimation of the relative performance, we assume the program

variation pattern is more or less exponentially distributed, so the demand and server process

can be approximated by a Markov model [8]. The queue system considered in this section

can be modeled as an M/M/1/L queue [8]. Also, assuming the controller error εc is 0, we

have µk = λk and the server utilization ρ = 1 [8]. For a given qref and queue size L, the

probability that the queue becomes full is

Ploss =
1

(1 − qref)L + 1
(2.11)

30

0 0.2 0.4 0.6 0.8 1
20

40

60

80

100

relative qref

pe
rce

nt
%

relative performance −

Figure 2.10: An analytic estimation of the relative performance of the single queue-domain
system as a function of the reference queue qref using a M/M/1/L queue model.

Using equations (2.10) and (2.11) , we have the performance as

Performance = PerfectP − Ploss · PerfectP

=
(

1 − 1
(1−qref)L+1

)

PerfectP
(2.12)

If we use the performance at qref = 0 as the base performance, then we can compute the

relative performance as a function of qref from (2.12) as

Relative Performance =
(1 − qref)(L + 1)

(1 − qref)L + 1
(2.13)

Figure 2.10 shows an example curve from equation (2.13) with L = 10. It is observed that

the relative performance degrades as qref increases, and the slope increases dramatically.2

The intention of the above discussion is to get some analytical insight on how the rel-

ative performance degrades with qref . In Section 2.4, we will give the actual experimental

results on performance and energy saving as a function of qref .
2In reality, the applications’ variation patterns are typically not strict-exponentially distributed. So the

actual performance-qref curve might be slightly different from that in Figure 2.10. Further, different applica-
tions may have different execution variation patterns, which may lead to different performance-qref curves.

31

0 200 400 600 800
0.6

0.7

0.8

0.9

1

fre
qu

en
cy

 f

INT domain

0 200 400 600 800
0

0.5

1

fre
qu

en
cy

 f

FP domain

0 200 400 600 800
0.6

0.7

0.8

0.9

1

fre
qu

en
cy

 f

LS domain

0 200 400 600 800
0

5

10

15

20

insts (x10k)

qu
eu

e
en

tri
es

0 200 400 600 800
0

5

10

15

20

insts (x10k)
0 200 400 600 800

0

5

10

15

insts (x10k)

Figure 2.11: Frequency trace from DVFS for the benchmark EPIC-Decode in the top row,
and the corresponding queue trace in the bottom row.

2.4 Experimental Results

In this section, we present experimental results to illustrate and evaluate the effectiveness

of the proposed online DVFS scheme.

2.4.1 Simulation methodology and setup

Our simulation environment is based on the SimpleScalar toolset [13] with the Wattch [10]

power estimation extension and the MCD processor extension [59]. The MCD extension

by Semeraro et al. in [59] has 4 clock domains as shown in Figure 2.1. It also includes

a cycle-by-cycle computation of the synchronization overhead due to independent clock

frequency, phase, and clock jitter. An XScale-like dynamic voltage and frequency chang-

ing mechanism has been implemented, which allows any frequency to be used within the

allowable range, as described in Section 2.2.

We have made two major modifications to the simulation core, in order to have a more

accurate energy and performance estimation. First, the load-store queue in the MCD simu-

lator has been split into a separate load-store issue queue and a load-store retirement buffer.

32

Table 2.1: Summary of All Simulation Parameters
Simulation Parameters Value
Reference queue point 6 INT, 5 FP, 3 LS
Domain frequency range 250MHz – 1.0GHz
Domain voltage range 0.65V - 1.20V
Frequency/voltage change speed 73.3 ns/MHz, 171 ns/2.86mV
Control interval length 10000 instructions
Domain clock jitter ±110ps, normally distributed
Inter-domain synchro window 300ps
Branch predictor:

2-level L1 1024, hist 10, L2 1024
Bimodal size 1024, BTB 4096 sets, 2-way
Combined size 4096

Decode/Issue/Retire width 4/6/11
L1 data cache 64KB, 2-way
L1 instr cache 64KB, 2-way
L2 unified cache 1MB, direct mapped
Cache access time 2 cycle L1, 12 cycles L2
Memory access latency 80 first chunk, 2 inters
Integer ALUs 4 + 1 mult/div unit
Floating-point ALUs 2 + 1 mult/div/sqrt unit
Issue queue size 20 INT, 16 FP, 16 LS
Reorder buffer size 80
LS retire buffer size 64
Physical Register file size 72 INT, 72 FP

Second, the energy computation in the latest MCD simulator [48] uses a formula inher-

ited from Wattch, which computes the energy as the sum of power on a cycle-by-cycle

basis. While this formula works fine for a processor with a fixed frequency, it may give

overly-optimistic energy results for a processor with dynamically varying frequency. So

we modified the energy computation formula to account for the varying frequency in an

MCD processor with DVFS.

We implemented the online DVFS controller for local queues and domains, following

the design in Section 2.3. Also, as in [48, 58], we made the front end domain run at a fixed

maximum speed, and allowed the INT, FP, and LS domains to be controlled by the DVFS

controller. We assume a performance degradation target of about 4%, which is roughly

33

the same as that in [58]. Using the curve in Figure 2.10 as a general guide, we chose the

reference queue point qref as roughly 1
3

of the total size for INT and FP domains. (That is,

qref is 6 for the INT domain, 5 for FP.) Since the LS domain is relatively more critical to the

overall performance as shown in [50], we chose its qref to be 3 which is roughly 1
5

of the

total size. For the µ and f relations in (2.4), we used the piece-wise linear approximation

µ = IPCeffectivef as discussed in Section 2.3.5. Also, we assume clock gating will be

applied whenever the unit is not used. All other architecture parameters are chosen to have

the same values as those in [48, 58]. A summary of all simulation parameters is in Table

2.1.

We want to evaluate our online DVFS scheme with a broad set of applications. To

show variety, we will present results for 6 MediaBench applications, 8 SPECint applica-

tions, and 4 SPECfp applications as shown in Figure 2.12. We chose roughly the same

subset of SPECint and SPECfp as those used in [48, 58]. We believe these programs form

a representative set as they display a range of program behavior. For MediaBench bench-

marks, we use the official data input set in the MediaBench web site and the whole program

as the simulation window; for SPEC2000 benchmarks, we use the reference input set and

choose the simulation window using the published Early SimPoint numbers [56].

As an illustrative example, in Figure 2.11 we show the frequency setting from the on-

line DVFS controller for the benchmark EPIC-Decode. The corresponding average queue

occupancy trace is also shown there. Clearly, there is a strong correlation between the

queue traces and the obtained DVFS frequency settings. This correlation is most obvious

for the FP domain where the FP issue queue is empty except for two distinct phases. At

the beginning, the DVFS controller detected the queue emptiness and gradually reduced

the FP frequency to fmin = 0.25GHz. Then there was a modest frequency recovery in

the first phase. During the second phase, the DVFS controller detected a dramatic increase

of queue entries (i.e. increasing demand to the FP clock domain) and quickly adjusted the

clock frequency to fmax = 1.0GHz. The correlations for the INT and LS domains are

34

0%

5%

10%

15%

20%

25%

ad
pc

m_e
nc

od
e

ad
pc

m_d
ec

od
e

ep
ic_

en
cod

e

ep
ic_

de
cod

e

jpe
g_

en
co

de

jpe
g_

de
co

de

16
4.g

zip

17
1.s

wim

17
3.a

pp
lu

17
5.v

pr

17
6.g

cc
17

9.a
rt

18
1.m

cf

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
6.b

zip
2

Ave
rag

e

Synch
Heuristic
SemiOracle
Analytic

Performance degradation

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

ad
pc

m_e
nc

od
e

ad
pc

m_d
ec

od
e

ep
ic_

en
cod

e

ep
ic_

de
cod

e

jpe
g_

en
co

de

jpe
g_

de
co

de

16
4.g

zip

17
1.s

wim

17
3.a

pp
lu

17
5.v

pr

17
6.g

cc
17

9.a
rt

18
1.m

cf

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
6.b

zip
2

Ave
rag

e

Synch
Heuristic
SemiOracle
Analytic

55

Energy savings

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ad
pc

m_e
nc

od
e

ad
pc

m_d
ec

od
e

ep
ic_

en
cod

e

ep
ic_

de
cod

e

jpe
g_

en
co

de

jpe
g_

de
co

de

16
4.g

zip

17
1.s

wim

17
3.a

pp
lu

17
5.v

pr

17
6.g

cc
17

9.a
rt

18
1.m

cf

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

25
3.p

erl
bm

k

25
6.b

zip
2

Ave
rag

e

Synch
Heuristic
SemiOracle
Analytic

52

EDP improvement

Figure 2.12: Performance degradation, Energy savings, and Energy-delay product improve-
ment for each benchmark; different schemes are Synchronous voltage scaling, Heuristic-
based online DVFS, SemiOracle DVFS, and Analytic online DVFS.

similar, but are less obvious as the queue traces become relatively more complicated.

Next, we will look at the energy/performance efficiency of the proposed online DVFS

controller, and compare results with those from some best-known prior work.

35

2.4.2 Energy and performance results for different approaches

To compare our results to other prior DVFS approaches, we hold performance roughly the

same for all approaches and look at metrics such as energy savings, energy-delay product

improvement, and power/performance ratio. We define the power/performance ratio as

percentage power saved per percentage performance degradation – that is, what percentage

power is saved for one percent performance degradation. Note this definition is the same

as that in [58].

We will present results from our analytic online DVFS scheme (denoted as Analytic).

We compare them to those from the heuristic-based online DVFS in [58] (denoted as

Heuristic), and those from the semi-oracle-based DVFS in [59] (denoted as SemiOracle).

The SemiOracle assumes the DVFS, by oracle, has full knowledge of existing slack in a

program, and uses a Shaker algorithm to decide DVFS settings. So its results are not real-

istic, but serve as a comparison. (However, as stated in [59], the SemiOracle result is not

the upper bound for all possible DVFS results.) The parameters we use for Heuristic and

SemiOracle are taken from [58] and [59], with a 5% performance degradation target for

Heuristic and 1% for SemiOracle because these target values will lead to an actual perfor-

mance degradation similar to Analytic. We also want to compare our results to those from

the conventional (fully) synchronous voltage scaling (denoted as Synchro) which scales the

frequency/voltage for the whole processor. It is set to get roughly the same performance

degradation as other approaches.3

The performance degradation, energy savings, and energy-delay product for each bench-

mark are shown in Figure 2.12. The results are relative to the conventional (fully) syn-

chronous processor without voltage scaling. So all results for MCD include about 1.5%

percent inherited performance and energy overhead from the baseline MCD processor, as

discussed in [58]. The average results over all 18 benchmarks are summarized in Table 2.2.
3We were not able to implement synchronous dynamic voltage scaling, so the Synchro results are for static

scaling which may under-represent the benefit of synchronous voltage scaling.

36

Table 2.2: Average results for different schemes, relative to a conventional (fully) syn-
chronous processor.

Performance Energy Energy-Delay Power/
Schemes degradation savings product Performance

improvement ratio
Analytic 3.6% 19.6% 16.7% 6.2

SemiOracle 3.7% 18.1% 15.0% 5.6
Heuristic 5.8% 11.9% 6.8% 3.0
Synchro 4.7% 7.6% 3.3% 2.5

From Table 2.2 and Figure 2.12, there are several interesting observations. First, the

overall results from Analytic DVFS are very promising. We achieve a power/performance

ratio of 6.2 on average relative to a fully synchronous processor. Second, compared to

results from Heuristic DVFS, Analytic DVFS achieves far better results in terms of Energy-

Delay Product (EDP) improvement and power/performance ratio. For example, the average

EDP improvement by Analytic is 146% higher than that of Heuristic (16.7% vs 6.8%, with

numbers relative to a synchronous processor). Analytic DVFS also produces an average

result better than those of SemiOracle. For example, the average EDP improvement by

Analytic is about 11% higher than that by SemiOracle (16.7% vs 15.0%)4 These results

show the effectiveness of the proposed analytic online DVFS scheme due to the automatic

regulation ability of a DVFS controller.

Lastly, all MCD DVFS results (both analytic and heuristic-based) are much better than

those by the synchronous voltage scaling, which shows the energy savings potential of a

MCD processor due to the extra flexibility in DVFS control. Note that the Synchro numbers

from our experiments are lower than what is usually expected from the fact that perfor-

mance scales linearly with f while energy scales quadratically with v. The main reason is
4The SemiOracle results from our experiments are close to the published results (relative to a synchronous

processor) in [58, 59] . We noticed, however, that the Heuristic results are not close to the results reported
in [58]. We carefully examined the differences and consulted the authors. We found, in addition to the dif-
ferences due to the energy computation formula mentioned earlier, there are other possible reasons including
different simulation windows, different implementations of the voltage changing mechanism in the latest dis-
tribution of the MCD simulation toolset [60], and different ways of computing average numbers for media
benchmarks.

37

the voltage range in our experiments is only half that of the frequency range. As stated in

[58], this reflects the current trend of shrinking voltage ranges in processor designs as the

supply voltage continue to scale aggressively relative to the threshold voltage.

2.4.3 Energy-performance tradeoffs as a function of qref

In the last subsection, the reference queue operating point qref for all benchmarks were

set to the values in Table 2.1—roughly 1
3

of the total size. Also, in Section 2.3.6, we have

shown analytically how the performance and energy vary as a function of qref in general.

In this subsection, we show that experimentally.

We use the 6 MediaBench benchmarks in the last subsection for this study, as they are

relatively small. For each benchmark, we apply the Analytic online DVFS control with

a relative qref varying from 0.0 to 1.0 (the same qref value for all three INT, FP, and LS

queues). We then compute the performance and energy savings relative to the values for

the baseline MCD.

Figure 2.13 shows the relative performance as a function of qref for 3 of the Media-

Bench benchmarks. (Note, in our simulation, each domain has a frequency lower bound

of 0.25GHz, so the lowest relative performance in Figure 2.13 is not 0.) From this figure

we see that, due to different execution variation patterns in different applications, their per-

formance curves have slightly different shapes and slopes. We also computed the average

relative performance over all 6 MediaBench benchmarks, as shown in Figure 2.14, which

has a shape relatively close to the analytic estimation in Figure 2.10.

Recall that from Section 2.3.6, the energy savings is also affected by qref . The general

trend is that energy savings increase as qref increases. Figure 2.15 gives an illustration

of this general trend using the average relative energy savings over the 6 MediaBench

benchmarks.

Thus, we believe the results in this subsection and Section 2.3.6 show both analytically

and experimentally how the energy performance tradeoff is affected by the qref setting in

38

0 0.2 0.4 0.6 0.8 1
30

40

50

60

70

80

90

100

qref

pe
rce

nt
(%

)

Performance for Adpcm: ∆, Jpeg: •, Epic: Box

Figure 2.13: Relative performance degradation as a function of qref for individual bench-
marks – adpcm-encode (4), epic-encode (2), and jpeg-encode (•).

0 0.2 0.4 0.6 0.8 1

40

50

60

70

80

90

100

qref

pe
rce

nt
(%

)

Performance (Average case)

Figure 2.14: Average relative performance degradation over the 6 MediaBench benchmarks
as a function of qref

our DVFS controller.

2.5 Centralized DVFS schemes: A Discussion

The online DVFS scheme studied in previous sections is decentralized. That is, it uses only

local queue information and ignores interactions among multiple queues. The decentralized

DVFS scheme can work fairly well in an MCD processor where frequency change in one

clock domain has negligible or little impact on other domains and queues. For example,

for the 4-domain MCD processor studied in Section 2.4 which has a fan-out structure,

39

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

qref

pe
rce

nt
(%

)

Energy saving (Average case)

Figure 2.15: Average relative energy savings over the 6 MediaBench benchmarks as a
function of qref

decentralized DVFS works quite well, as shown by the experimental results in Section 2.4.

However, for an MCD processor with more elaborate domain partitions and strong

interactions among multiple queues, a centralized online DVFS scheme may be needed in

order to make correct and efficient scaling decisions. For example, in a system where three

clock domains are in series with two queues in between, the status of the first queue will not

only depend on its neighboring domains, but also depend on the status of the downstream

queues and domains. So, in this case, online DVFS needs to look at the status of all queues

to make correct and efficient control actions. Otherwise, a clock domain can be confused

by information from individual local DVFS controllers—one scenario is, when its input

and output queues are both full, the local controller for its input queue will suggest a speed

increase while the local controller for its output queue will suggest the opposite.

A systematic approach to design a centralized DVFS scheme needs to extend the DVFS

framework in Section 2.3 using a global control theory. A new analytic model is first needed

for all queues in an MCD processor which interact with each other. We can generalize the

single queue-domain model used in previous sections into a queue-domain network. For

each clock domain, its input queue can take flows (demand) from multiple sources (either

a upstream domain or an external input source) through a join operation. Also, a clock

domain can send out flows to multiple destinations (either a downstream domain or an

40

external output sink) through a split operation. For this system, due to the interactions

among multiple queues and domains, the actual execution speed µ and the arriving flow

rate (demand) λ for a clock domain will be affected by the status of all related queues.

For example, µ for a domain will be zero if its downstream queue is full. Similarly, λ

for a domain will be zero if its upstream queue is empty. To analytically model these

interactions, we need to use tools like an indicate function 1() and introduce a flow-matrix

A. The indicate function is defined as

1(x) =

1 if x > 0

0 if x ≤ 0
(2.14)

and the flow-matrix A defines how the tasks flow from one domain to another for a given

queue-domain network.

With an analytical model for this system, control can be achieved by feeding back the

state variables (the so-called state feedback with integral control [41]). Intuitively, this

means frequency and voltage are controlled using all queue information as feedback sig-

nals. Note that, the design of an actual control law may need some linearization techniques

in order to eliminate the nonlinearity due to presence of the indicate function.

The above extension to centralized DVFS control is one of the topics we are currently

exploring. We have obtained a detailed analytic model and a practical global DVFS deci-

sion algorithm based on DVFS controllers.

2.6 Summary

We have presented an online scheme for dynamic voltage and frequency scaling (DVFS) in

a multiple clock domain (MCD) processor. The proposed scheme takes a rigorous analytic

approach and is guided by control theory.

We have described the modeling, analysis, design, and implementation of the proposed

DVFS controller. Compared to the best-known prior online DVFS, which is heuristic-

41

based, the proposed DVFS scheme has achieved a 2-3 fold increase in efficiency. In addi-

tion, the control theoretic technique is more resilient and complete. For example, we can

guarantee stability and achieve significant energy savings even under extreme cases.

We believe the techniques and methodology described in this paper can be generalized

for effective energy control in processors other than MCD. For example, there are many

tiled CMPs in research now [22], and the ideas here would translate neatly to DVFS for

them as well. Furthermore, the formal control techniques described here for DVFS can

also serve as examples for applying control theory to other aspects of dynamic execution

in high-performance CPUs.

42

Chapter 3

A Novel Energy Control Scheme With

Adaptive Reaction Time

3.1 Introduction

Most existing hardware-based DVFS schemes (including the one in the previous chapter)

use a fixed time interval to frame possible voltage/frequency changes. Specifically, during

the time interval, certain system metrics or statistics are monitored, such as IPC [24] or

average issue queue occupancy [58, 65]. At the end of the interval, the statistics from the

current and past intervals are used to compute a new voltage/frequency setting for future

intervals. One limitation of the above schemes is that the interval boundaries are prede-

termined and independent of workload changes. Thus, no matter what severe workload

change occurs, the fixed-interval approaches wait and attempt to adjust voltage/frequency

at the end of the interval. In addition, they might miss opportunities to respond to large

activity swings inside the interval. One simple scenario for this case is that the workload

increases dramatically in the first half-interval and decreases in the second half. Average

statistics (for example the average queue occupancy) over the entire interval may not be

able to capture this workload change.

43

Compared to the above fixed-interval schemes, in this work we propose an online DVFS

scheme in which the reaction time for DVFS is not predetermined and is instead determined

by the actual workload variation. In other words, the instant to react is adaptive to large,

severe workload changes, so it could be more responsive. On the other hand, given no or

only minor workload changes, an adaptive scheme will stay inactive for an arbitrarily long

time, so it could also be more cost-effective.

Similar to the work in Chapter 2, we design our adaptive DVFS scheme in the context

of a Multiple Clock Domain (MCD) architecture, which is described in Section 2.2. The

triggering condition is based on recent instant queue occupancy for the issue queues. More

specifically, two queue signals are monitored at each sampling period. The first one is the

relative queue occupancy value with respect to a reference value, while the second one is

the difference of queue occupancies between two sampling points. Based on these queue

signals, appropriate DVFS decisions are made through a simple process, which also uses

deviation window and resettable time delay to handle the noise problem and avoid unnec-

essary DVFS actions. After an initial design is done, we wish to obtain some analytical

insights on whether or how the designed DVFS system will work and how to improve it.

So we derive an aggregate continuous model for the designed DVFS controller and use it in

a formal stability analysis. The analytic insight obtained is then used to guide and improve

the design in terms of stability margin and control effectiveness. Finally, we evaluate our

DVFS scheme through a cycle-accurate MCD simulator over a wide set of MediaBench

and SPEC benchmarks.

Compared to the prior fixed-interval DVFS schemes for MCD [58, 65], the decision

process for the new scheme is much simpler, and this leads to smaller and cheaper hard-

ware. Yet, our scheme has achieved a significant amount of energy savings over all stud-

ied benchmarks (about 19% energy savings with 3% performance degradation on average,

which is close to the best results from prior online DVFS schemes). In addition, our scheme

is potentially more responsive. For a group of applications with fast workload variations,

44

our scheme outperforms existing fixed-interval DVFS schemes significantly.

The rest of the chapter is structured as follows. Section 3.2 describes the detailed design

of our adaptive DVFS scheme. In Section 3.3, we model the designed DVFS control and

gain insights through a formal stability analysis. This is followed in Section 3.4 by experi-

mental results. In Section 3.5, we highlight related work. Finally, Section 3.6 summarizes

this chapter.

3.2 Design of Adaptive DVFS Scheme

One key design issue for adaptive DVFS is how sensitive it should be in responding to

workload changes. Another design question is how big the frequency/voltage adjustment

should be for a triggered action. So, before proceeding to an actual design, we first give

some rationale and discussion of these key design issues.

As mentioned in the introduction, a variable-interval DVFS scheme responds imme-

diately to large, severe workload changes. On the other hand, it will stay inactive for an

arbitrarily long time given no or only minor workload change. Therefore, in general, the

number of voltage/frequency adjustments for an adaptive DVFS scheme will ultimately de-

pend on the pattern of workload change in a program. (This is different from that for the

fixed-interval DVFS schemes where only one adjustment is possible for a fixed time inter-

val.) However, for a given program, the number of adjustments will also depend on the

setting of triggering conditions: what size of workload change should be treated as severe

enough to trigger an action?

The main reason for which we want to respond only to severe workload changes is

the DVFS switching cost, which includes both time and energy cost. (The switching cost

is typically proportional to the magnitude of the switching.) The energy cost part for the

DVFS switching comes from the voltage regulator (VR) [12]. Since the capacitor in VR is

relatively small (most VRs are dual-phased so there are two output capacitors), the switch-

45

queue q
clock
domain

load rate λ
frequency f

service rate µ

q

Event-Driven
DVFS controller

f

Figure 3.1: A local control model for a clock domain with an input queue.

ing energy cost is small and is ignored in most DVFS studies [19, 48, 58, 65]. The time cost

is the main concern in DVFS switching. This is basically the transition/switching time and

may include some amount of idle time for the processor waiting for PLL relocking [20].

Because of this DVFS switching cost, the adaptive DVFS action should be triggered

only for large workload changes (in terms of magnitude and duration) such that the benefit

brought by the DVFS is greater than the switching cost (i.e., there is a net gain in terms

of energy-delay product improvement). Therefore, for adaptive DVFS control, the choices

of the triggering condition and the amount of adjustment at each action should be based

on the DVFS switching cost. For a DVFS implementation with relatively fast transition

time and no (or very little) processor idle time (denote this group as XScale-style DVFS

[20]), the triggering condition and adjustment step can be chosen as relatively low or small

in order to have more frequent and fine-grained DVFS control. On the other hand, for

a DVFS implementation with relatively slow transition time and long processor idle time

(denote this group as Transmeta-style DVFS [58]), the triggering condition and adjustment

step should be chosen as relatively high or big in order to reduce the switching overhead;

and we will have less frequent and more coarse-grained DVFS control for this case.

46

3.2.1 A Design for MCD Processors

Conceptually, the online DVFS problem for an MCD processor is to adapt the frequency

(and execution speed) to program phases and workload changes in each clock domain. In

this work, similar to that in [36, 58, 65], we utilize interface queues to guide the DVFS

control. Recall from Section 2.2 that there are interface queues between clock domains for

synchronization. Intuitively, these queues give clues about the speed balance between the

sender domain and the receiver domain. Therefore, an online DVFS controller can use this

queue information, such as the fullness of queues and the rate of queue changes, to detect

workload changes and respond to them by increasing or decreasing voltage and frequency

in a clock domain.

In this work, we will only use local queue/domain information to direct DVFS control

(a so-called decentralized control scheme). In other words, we assume the interactions

between different queues and domains are weak and can be ignored. (This assumption is

typically valid for an MCD implementation with relatively simple structure such as that in

Figure 2.1.) A centralized DVFS scheme which utilizes all queue/domain information may

work better, but is much harder to design, as it is still an open research problem.

Based on the above rationale, we will use the local queue information as trigger signals

for the DVFS actions. Figure 3.1 shows such a local control model, where the circle rep-

resents a clock domain being controlled (such as a floating point function unit). The clock

domain is connected to other domains (such as a decode/issue domain) through an interface

queue (input or output) which has a finite size. The queue occupancy is sampled and used

as a possible triggering signal by the DVFS controller, which controls the frequency (and

hence the voltage) of the clock domain.

More specifically, our DVFS controller monitors two queue signals: the relative queue

occupancy (qi - qref) and the relative queue difference (qi - qi−1); where qi represents the

queue occupancy at the ith sampling point, and qref is the reference queue occupancy, i.e.

the target or nominal queue occupancy. A possible DVFS action will be triggered based on

47

Wait
(reset)

Count Start Act
(f ± step)

if signal falls
outside DW

If time
counter > delay Td

after switching
time Ts

reset

if signal falls inside DW
and counter � Td

Figure 3.2: The state transition graph for our DVFS control, where the signal refers to the
queue signal (qi − qref) or (qi − qi−1); DW is the deviation window.

these two queue signals. To simplify our design, we use a single step of incrementing or

decrementing the clock frequency (and voltage accordingly) as the triggered DVFS action.

As mentioned earlier, in general, the choice of the step size (and the time delay, which will

be defined shortly) depends on the DVFS switching cost. For the MCD processor with an

XScale-style DVFS model described in Section 2.2, we will choose relative small step sizes

in order to have more fine-grained frequency adjustments. For processors with Transmeta-

style DVFS model, the design framework in this section can still be used, but larger values

should be chosen for the step size.

To handle the noise or random short-time variation in the queue occupancy and avoid

unnecessary DVFS actions, we use a combination of deviation windows and time-delay re-

lay. The deviation window (DW) is a small interval around the origin (denoted as [−DW, +DW]),

while the time-delay relay is essentially a re-settable time counter. A signal will activate

the time counter if the signal falls outside the deviation window. If a pre-set time-delay has

passed, a possible DVFS action will be triggered. Note, for the time-delay, there are a num-

ber of design options. For example, it can be set as a simple constant (Td0) , or a constant

with a scaling factor depending on some system statistics. In our design, we design it as a

constant with a scaling factor depending on signal values and current frequency setting.

Figure 3.2 shows the state transition graph for our DVFS design. In the figure, the

signal refers to a queue signal (either qi − qref or qi − qi−1). Initially, the system is in a

48

Wait state. A transition into Count will occur if the queue signal falls outside the deviation

window. The system will stay in the Count state until either the preset time delay (Td)

has passed and a transition is made to the Start state, or the queue signal falls inside the

deviation window before the time delay has passed and a transition is made to the initial

Wait state, which will reset the time counter. The Start state represents that a frequency

(voltage) increment/decrement has been triggered or scheduled. Since it takes a certain

amount of time to physically switch frequency/voltage, the increment/decrement action

will be accomplished (in the Act state) after a switching time Ts. After that, the system

transitions back to the Wait state, resets the time counter, and is ready for a new round

of operations. The detailed finite state machine (FSM) graph for our DVFS controller is

shown in Figure 3.3, where we shown increment and decrement actions separately.

In the above descriptions, for the sake of clarity, we assume that the two finite state

machines (FSM), one for the trigger signal (qi − qref) and one for the signal (qi − qi−1),

operate independently. However, in practice, methods are required to reconcile the Act

operations triggered by different queue signals in different FSMs. So we add a new state

called Schedule into the above operation state graphs. If, at any time, only one queue signal

is triggering the Act operation, then the Scheduler will initiate and start the action in the

same way as we described before. On the other hand, if two queue signals are triggering

DVFS actions at the same time, the system will schedule the two actions depending on the

actions being triggered. Specifically, if two identical actions are being triggered (both are

Up or both are Down), the system will schedule the two actions in sequence (or combine

them into one action with a step size twice as big). On the other hand, if two opposite

actions are being triggered (one is Up while the other one is Down), the system will cancel

them all and reset both signals to the Wait state.

In the above design the reference queue value qref can be any value which is neither full

nor empty. However, similar to the observation in Chapter 2, we notice that the position

of qref specifies the actual tradeoff between performance degradation and energy saving.

49

Wait
(reset counter)

Count-Up
(Counter ++)signal > DW

Count-Down
(Counter ++)

Start-Up

Start-Down

Act-Up
(f += step)

Act-Down
(f -= step)

signal < -DW

counter � Td, signal > DW

counter � T d, signal � DW

counter > Td,
any signal

before Ts, any signal

after Ts,
any signal

any signal

counter � Td, signal < -DW

counter � Td, signal � -DW
counter > Td,any signal

after Ts,
any signal

before Ts, any signal

any signal

Figure 3.3: The detailed finite state machine (FSM) graph for our DVFS control, where the
signal refers to the queue signal (qi − qref) or (qi − qi−1); DW is the deviation window;
Td is the time delay; Ts is the switching time spent for one DVFS action.

We can increase qref to make the DVFS controller more aggressive in saving energy, or de-

crease qref to preserve performance more. The main reason is that the choice of the nominal

operating point qref and its distances to the two queue end-points reflect the relative margin

for the queue to tolerate control errors and input noise before the queue becomes full (will

lose performance) or empty (will waste energy).

Next, we look at the issue of hardware implementation. From the description of the

above design, we see the adaptive DVFS decision logic requires very little hardware in ad-

dition to the existing MCD hardware, since the interface queues and the voltage/frequency

switching mechanism already exist in current MCD implementations [59]. The main addi-

tions are some book-keeping hardware. Figure 3.4 shows the block diagram for a possible

hardware implementation of the basic DVFS decision logic. Specifically, an adder is used

to compute the trigger signal (either qi − qref or qi − qi−1). Since a queue size is around 20

(� 26), a 6-bit adder is sufficient. Then, a 7-bit comparator is used to compare the trigger

signal with the deviation window (DW). The rest is a 5-state finite state machine (FSM)

and a time-delay counter. The FSM corresponds to the left five states in Figure 3.3. For the

counter, if we assume the time delay in Figure 3.3 is ≤ 256, an 8-bit time-delay counter is

sufficient. The two output signals of the FSM, Start-up and Start-down, will be used by the

voltage (and frequency) switching mechanism in the voltage regulator. Note the hardware

50

queue

qref

(or prev q)

compa-
rator

5-state FSM
&

8-bit counter

trigger
signal

s

deviation
window

(DW)

s>DW

s<-DW

start-up

start-down

To voltage
regulator

From voltage
regulator

reset

6

_
6

1
7

1

1

1

Figure 3.4: Block diagram for a possible hardware implementation of the basic DVFS
decision logic.

requirement for this scheme is roughly in the same order as the book-keeping hardware

(like counters) required by the fixed-interval DVFS schemes in [58] and Chapter 2. How-

ever, in those prior approaches, some extra hardware is required to compute appropriate

voltage and frequency settings on a per-interval basis. This extra hardware is more com-

plex than the book-keeping hardware discussed above (for example, multipliers/dividers

or lookup tables are required to implement the PID controller in [65]). So, overall, the

hardware requirement for the present scheme is much smaller and cheaper than those in the

prior fixed-interval schemes.

3.3 Modeling and Stability Analysis of Adaptive DVFS Sys-

tem

In this section, we will look at the adaptive DVFS design from a control system point

of view. The modeling and stability analysis are intended to gain insights and answer

questions such as

• Will the above design work? Under extreme cases, can it lead to unbounded or

unstable results?

• If it works, how well does it work and how can it be improved?

• More specifically, in order to improve the stability margin and control effectiveness,

how should we choose the design options/parameters like the basic time delays?

51

(There are two queue signals, so there are two time delays to pick. Should we use

the same amount of delay for both? If not,which one should be bigger or smaller?)

3.3.1 Overview of Modeling and Stability Analysis

This subsection gives an overview of modeling and analysis of the adaptive DVFS system

without going through the derivation and stability analysis details, which will follow.

In order to analytically evaluate the DVFS design in the previous section, we need to

model the DVFS control operation and the involved queue and clock domain dynamics.

As mentioned earlier, we use the local control model in Figure 3.1. The clock domain has

frequency f and execution capability (or service rate) µ, which is a function of f . The

workload (or arrival rate) is denoted as λ. Note both µ and λ are time varying and we will

denote them as µ(t) and λ(t). Similarly, we denote the queue occupancy at time t as q(t).

With these notations, we are ready to derive a model.

Recall from Section 3.2 that our DVFS controller for MCD processors has fine-grained

step control. We can conveniently approximate the DVFS control by a continuous-time

model1. This model is expressed as

ḟ(t) =
m

h(f)

step

Tm0
(q(t) − qref) +

l

h(f)

step

Tl0
q̇(t) (3.1)

Intuitively, the above equation models the aggregate effects of the frequency control opera-

tion in Figures 3.2 and 3.3. The first part of the right hand side of the equation corresponds

to frequency control operation for the queue signal (qi − qref), while the second part corre-

sponds to the operation for the queue signal (qi − qi−1). Specifically, in the equation, ḟ is

the time derivative of normalized frequency f (i.e. ∂f/∂t); q(t) and qref are the queue and
1For processors with Transmeta-style DVFS, which require more coarse-grained step control, the model-

ing and analysis in this section can still be applied but will be less accurate. A similar but more complicated
discrete-time model can be derived to get a better and more accurate analysis result. We leave this as possible
future work.

52

reference queue occupancy as in Section 3.2; q̇ is the time derivative of queue occupancy;

step is the step size of the frequency change triggered by the queue signals; Tm0 and Tl0

are the basic time delays for the queue signals (qi − qref) and (qi − qi−1) respectively; m

and l are constants which are mainly from the conversion due to the different units used for

queue occupancies and frequencies; h(f) is a function of f which is used to take account of

possible affects of f on the effective time delay.

We then derive a model for the queue and clock domain dynamics. At an aggregate

level, they are modeled as

q̇(t) = γ λ(t) − γ µ(t)

µ(t) = 1
t1+

c2
f(t)

(3.2)

Intuitively, the first equation in (3.2) means the queue occupancy change in a sampling time

unit is equal to the number of arrived elements minus the number of departed/executed

elements in that unit time (this is essentially a continuous-time version of the well-known

Lindley equation [44]); γ is a constant which is proportional to the size of sampling period.

The second equation models the execution/service rate µ in terms of clock frequency f ,

which is essentially a continuous-time version of the model used in [68] and Chapter 2.

The t1 and c2 are constants whose meaning will be explained in detail in Section 3.3.3.

Putting together (3.1) and (3.2), we have a complete model for the involved DVFS

controller, queue, and clock domain dynamics. This model is inherently nonlinear. To

simplify the stability analysis, we linearize the system model through a standard nonlinear

transformation technique [4] (which is essentially done by choosing an appropriate h(f) in

(3.1) to compensate for the nonlinear function in (3.2) – details in Section 3.3.3). Then

we proceed with some classic stability analysis for the linearized DVFS control system.

Through the stability and control performance analysis, we have obtained the following:

• Remark 1: Given any non-zero values of step and basic time delays, the DVFS con-

trol system in Section 3.2 is stable. So, for any workload inputs, the DVFS controller

53

would not lead to unbounded or unstable results.

• Remark 2: The control effectiveness of our design, in general, is mostly dependent

on the values of time delays. A smaller time delay tends to improve the control

response and settling time, and thus increase the control effectiveness. On the other

hand, a smaller time delay will weaken the system’s noise rejection ability, which

may lead to more unnecessary/incorrect DVFS actions and thus reduce the overall

DVFS efficiency. So there is a tradeoff between the control effectiveness and the

system’s noise rejection ability.

• Remark 3: In order to have small percent transient overshoot in system response,

the values of the time delay for those two queue signals should be constrained by

an inequality constraint (details in Section 3.3.3). With a typical system setting, this

constraint implies that the time delay for the signal (qi − qref) should be relatively

larger than that for (qi − qi−1), and a setting of 2-8 time larger would typically lead

to fairly good results.

In the rest of this section, we will give the derivation and analysis details. People who

are already familiar with these subjects or who are not interested in these details may wish

to skip them and go directly to the experimental evaluation in Section 3.4.

3.3.2 Modeling the Adaptive DVFS controller

The DVFS controller in Section 3.2 is essentially a discrete device with some inherent

deviation windows and adjustable time delays. We will derive a model to capture the

aggregate effect of its adaptive operations. We start by doing it for the queue signal (qi −

qref) only. Later, we will give a complete model for DVFS operations with both queue

signals.

In aggregate, the frequency control operation with the queue signal (q − qref) in Figure

3.2 and 3.3 can be modeled as

54

fi+1 = fi + step · I(qi − qref) (3.3)

where

I(qi − qref) =

1 if (qi − qref) > DW for (Td + Ts)

−1 if (qi − qref) < −DW for (Td + Ts)

0 Otherwise

Intuitively, the above equation means a frequency increment or decrement will occur if

the queue signal (qi − qref) falls outside the deviation window for a consecutive (Td + Ts)

amount of time (in sampling period units). Otherwise, the frequency stays unchanged. In

the equation, DW stands for Deviation Window; Td is the time delay; Ts is the switching

time; and others are defined the same as before.

In the DVFS design in Section 3.2, the discrete step was chosen to be relatively small

in order to have more fine-grained frequency adjustments. With a small step, the above

discrete model can be approximated by a continuous-time model as follows (we use a

combined time delay Tm = Td + Ts).

ḟ(t) =

step
Tm

if (q(t) − qref) > DW

−step
Tm

if (q(t) − qref) < −DW

0 if |q(t) − qref | ≤ DW

(3.4)

The above model captures the aggregate effects of the frequency control operation by ap-

proximating the discrete-time step up or down action in (3.3) with a continuous-time linear

increment or decrement action as illustrated in Figure 3.5 (the slope of the line is step
Tm

). In

the equation, ḟ(t) is the derivative of the frequency f at time t.

As mentioned in the last section, we choose the time delay Tm as a constant with a

scaling factor which is negatively dependent on the absolute value of the queue signal.

55

time

…

frequency

t t + Tm t + 2Tm

f

f + step

f + 2 step

…

…

Figure 3.5: The approximation of the Step-up action modeled in (3.3) by a continuous-time
linear increment action as modeled in (3.4).

That is, Tm is expressed as

Tm = Tm0 ·
1

|q(t) − qref | · m
(3.5)

The above equation means that when the value of the queue signal is larger, the time delay

will be smaller and the DVFS controller will respond more quickly. Specifically, Tm0 is the

basic (constant) time delay; m is a constant which is mainly used to convert the value of

queue occupancy to the scaling factor for time delay.

In addition, we augment the right side of equation (3.5) by a function h(f) to model

possible impacts of frequency f on the time delay. We set h(f) to 1 if the level of frequency

has no effect on the time delay.

Substituting the delay Tm in (3.5) into the continuous-time model in (3.4), assuming

DW ≈ 0, and rearranging algebraically, we have a new model in an ordinary differential

equation (ODE) format as

ḟ(t) =
m

h(f)

·
step

Tm0
· (q(t) − qref) (3.6)

56

Like (3.4), the above equation models the aggregate effects of frequency control operation

in Figures 3.2 and 3.3. However, compared to (3.4), this model is much simpler and more

amenable to analysis.

We follow a similar procedure to derive another similar model for DVFS operations

with the other queue signal (qi − qi−1). Since our DVFS controller is driven by both queue

signals, we combine these two models to get a complete model for our DVFS controller.

ḟ(t) =
m

h(f)

step

Tm0
(q(t) − qref) +

l

h(f)

step

Tl0
q̇(t) (3.7)

The above model captures the control effects of the DVFS operation with both trigger sig-

nals, (qi − qref) and (qi − qi−1). (Note that this equation is the same as (3.1) in the overview

sub-section and is repeated here for convenience). In the equation, q̇(t) is derivative of

queue value at time t; l and Tl0 have similar interpretations as the m and Tm0 in (3.6).

3.3.3 Stability Analysis of the Adaptive DVFS System

As described in the overview subsection, the modeling for the queue and clock domain

dynamics is expressed by the following equations.

q̇(t) = γ λ(t) − γ µ(t) (3.8)

µ(t) =
1

t1 + c2
f(t)

(3.9)

Intuitively, the first equation means the queue occupancy change in a sampling unit time is

equal to the number of arrived elements minus the number of departed/executed elements

in that unit time. γ in the first equation is a constant proportional to the size of the sam-

pling period. The second equation models the execution/service rate µ in terms of clock

frequency f . This µ ∼ f model is essentially a generalization of the model used in [68]

57

and Chapter 2, which is discrete-time and models the average execution speed of a clock

domain as a function of the average frequency in a time interval. The model in the prior

work is based on the observation that, in most clock domains, execution time can be sepa-

rated into two parts, one that is independent of clock frequency and one that is dependent.

For example, in a load/store domain, the time spent for accessing asynchronous memory

due to a cache miss is independent of domain frequency, while the time for querying and

accessing a cache is dependent on frequency. Accordingly, in this model, t1 is the average

amount of unit time per instruction that is independent of frequency, and c2 is the average

number of frequency-dependent cycles per instruction (the value of t1 and c2 can be esti-

mated online or offline using methods similar to those in [19, 68]). In our model in (3.9),

we generalize the model into a continuous-time model by assuming that, at every sampling

time unit, the µ(t) and f(t) satisfies the same relationship as in the discrete µ ∼ f model.

Putting together (3.7), (3.8) and (3.9), we have a complete model for the involved DVFS

controller, queue, and clock domain dynamics. This model is inherently nonlinear. To

simplify the stability analysis, we transform the equation (3.7) in terms of a new state

variable of µ̇(t) through the equation

µ̇(t) = ∂µ
∂f

· ∂f
∂t

= c2
(t1f+c2)2

· ḟ(t)

(3.10)

which is obtained by taking derivatives on both sides of (3.9). After this transformation,

equation (3.7) becomes

µ̇(t) =
c2

(t1f + c2)2
·

1

h(f)

[

m · step

Tm0
(q(t) − qref) +

l · step

Tl0
q̇(t)

]

(3.11)

Like (3.7), this equation also models the frequency control in Figure 3.2 and 3.3, but is

expressed in a different state variable µ(t). We see that, in this equation, if we choose the

function h(f) proportional to c2
(t1f+c2)2

, the non-linear part in it will be compensated for and

58

the above equation becomes linear. Since the function c2
(t1f+c2)2

is relatively complex to

implement in practice, we will approximate it by a simpler quadratic function k
f2 around

the operating point. (Here, k is a constant factor dependent on the µ ∼ f relationship; it

can be estimated using t1 and c2 values.) Then, we can simply choose h(f) = 1
f2 to linearize

the equation (3.11).

Therefore, after the above linearization, we have a new system as

q̇(t) = γ λ(t) − γ µ(t)

µ̇(t) = m·k·step
Tm0

(q(t) − qref) + l·k·step
Tl0

q̇(t)

(3.12)

The above linearized system model is equivalent to the original system model in (3.7) -

(3.9). Therefore, in order to understand the stability and transient behavior of our DVFS

control system, we can conveniently analyze this linearized system model. By classic sta-

bility theory, the stability behavior of a linear system is decided by its characteristic roots

[41]. For the system in (3.12), we can solve the characteristic roots as

s1,2 =
−Kl

2
±

√

K2
l − 4Km

2
(3.13)

where Km = m·γ·k·step
Tm0

and Kl = l·γ·k·step
Tl0

.

Based on the above characteristic roots, we have the following observations and re-

marks.

Remark 1: With a typical system setting (non-zero parameters), the DVFS control

system in Section 3.2 is stable. So, for any kind of workload inputs, our DVFS controller

would not lead to unbounded or unstable results.

The above remark comes from the following. A linear system is stable if all its charac-

teristic roots are negative (i.e. on the left side of the s-plane) [41]. With a typical system

setting, all system parameters are non-zero and positive. So Km, Kl will be positive. Then,

from (3.13), we see both roots will be on the left side of the s-plane. Thus the DVFS control

59

system is stable.

Remark 2: The control effectiveness of our design, in general, is mostly dependent on

the value of time delays. A smaller time delay tends to improve the control response and

settling time, and thus increase the control effectiveness. On the other hand, a smaller time

delay will weaken the actual system’s noise rejection ability (not modeled by the analytical

model), which may lead to more unnecessary/incorrect DVFS actions and thus reduce the

overall DVFS efficiency. So there is a tradeoff between the control effectiveness and the

system’s noise rejection ability.

The above remark is based on the following. Though any positive Km and Kl values

would make the system stable, the control effectiveness is dependent on the actual values

of Km and Kl. Among all the parameters in the Km and Kl definitions, the basic time

delays Tm0 and Tl0 are the most adjustable parameters in the design space. So, in general,

the control effectiveness is mostly dependent on the values of the time delays. More specif-

ically, the control effectiveness is typically characterized by the settling time (ts) and the

rising time (tr) of the system unit-step response [41]. For this system, we have ts = 8
Kl

and tr = 0.8√
Km

+ 1.25Kl

Km
using the formulas in [41]. So, smaller time delays Tm0 and Tl0

(thus larger Km and Kl) will improve the rising and settling time, and increase the control

effectiveness. On the other hand, in our DVFS system, the time delays are used to handle

the noise (i.e. the random short time input variation) and avoid unnecessary DVFS actions.

So, smaller time delays will weaken the system’s noise rejection ability, and may lead to

more unnecessary/incorrect DVFS actions. Therefore, the time delays should be chosen to

balance the control effectiveness and the noise rejection.

Remark 3: In order for the system to have relatively small transient overshoot in the

system response, the values of the time delay for the two queue signals should be con-

strained by an inequality. With a typical system setting, this constraint implies that the time

delay for the signal (qi − qref) should be relatively larger than that for (qi − qi−1), and a

setting of 2-8 time larger would typically lead to fairly good results.

60

The above remark is based on the following. In this system, the maximum percent

transient overshoot is decided by a parameter called damping ratio ξ = Kl

2
√

Km
[41]. To

have a small percent overshoot (say ≤ 15%) and a good rising time also, we have an

inequality constraint of 0.5 ≤ ξ ≤ 1 for this system. Substituting the ξ in the above

inequality with Kl and Km, we have K2
l

4
≤ Km ≤ K2

l . With a typical system setting, we

have Kl < 1. Combining the above two inequalities, we have Km < Kl. Assuming all

other parameters (such as step) are the same for the two queue signals, the above inequality

implies Tm0 > Tl0. In other words, the time delay for the signal (qi − qref) should be

relatively larger than that for (qi − qi−1). For example, if Kl = 1
2
, we have 1

16
≤ Km ≤ 1

4
.

So the time delay Tm0 is 2-8 times larger than Tl0, which would typically lead to fairly

good transient control response. Inside this range, we can take a value close to the upper

end (8 times slower) if overshoot is the major concern, or take a value close to the low end

(2 times slower) if rising time is the major concern.

So far, we have analytically evaluated the adaptive DVFS design in terms of stability

and control effectiveness. In the next section, we will experimentally evaluate the DVFS

design and check how well it works in practice.

3.4 Experimental Results

In this section, we will show experimental results for evaluation. We will compare our

results to those from the conventional synchronous voltage/frequency scaling and to those

from two existing fixed-interval DVFS schemes for MCD processors (the work in [58] and

the work in Chapter 2, which is also in [65]). At the end of this section, we will also

compare our results to Chapter 2 with different and shorter interval lengths.

61

Table 3.1: Summary of All Simulation Parameters
Simulation Parameters Value
Domain frequency range 250MHz – 1.0GHz
Domain voltage range 0.65V - 1.20V
Frequency/voltage change speed 73.3 ns/MHz, 171 ns/2.86mV
Signal sampling rate 250MHz
Time delays (sampling) Tl0 = 10, Tm0 = 50

Step size (f/v) 2.3MHz/2.86mv
Reference queue point 7 INT, 4 FP, 4 LS
Deviation window (DW) ±1 or 0
Domain clock jitter ±110ps, normally distributed
Inter-domain synchro window 300ps
Branch predictor:

2-level L1 1024, hist 10, L2 1024
Bimodal size 1024, BTB 4096 sets, 2-way
Combined size 4096

Decode/Issue/Retire width 4/6/11
L1 data cache 64KB, 2-way
L1 instr cache 64KB, 2-way
L2 unified cache 1MB, direct mapped
Cache access time 2 cycle L1, 12 cycles L2
Memory access latency 80 first chunk, 2 inters
Integer ALUs 4 + 1 mult/div unit
Floating-point ALUs 2 + 1 mult/div/sqrt unit
Issue queue size 20 INT, 16 FP, 16 LS
Reorder buffer size 80
LS retire buffer size 64
Physical Register file size 72 INT, 72 FP

3.4.1 Simulation Methodology and Setup

Our simulation environment is based on that in Chapter 2, which is in turn based on the

SimpleScalar toolset [13] with the Wattch [10] power estimation extension and the MCD

processor extension [48, 59]. The MCD extension by Semeraro et al. in [48, 59] has 4

clock domains as shown in Figure 2.1.

We implemented our DVFS controller for local queues and domains, following the de-

sign and analysis in Sections 3.2 and 3.3 . Also, as in previous work on DVFS in MCD

[48, 58, 65], we made the front end domain run at a fixed maximum speed, and allowed

the INT, FP, and LS domains to be controlled by the DVFS controller. Since we are as-

62

suming an aggressive XScale-like DVFS model as described in Section 2.2, we choose a

fine-grained step size for the frequency increment or decrement (2.4MHz/step, so it takes

320 steps to traverse the total frequency/voltage range). We choose a sampling rate of

250MHz for the queue signals, which corresponds to the lower bound of the frequency

range 250MHz − 1GHz. Based on the remarks 2 and 3 in Section 3.3, we choose the

basic time delays for the queue signals (qi − qi−1) and (qi − qref) as Tl0 = 8 and Tm0 = 50

respectively (in units of sampling period). We emulate the signal-dependent time delay

by having larger time-counter increments in Figures 3.2 and 3.3 for larger signal values.

The time delay for counting-down is also scaled by a factor of (1
f2), where f is the relative

frequency using fmax = 1.0GHz as the base. So, for counting-down in a clock domain,

the time delay would be larger with a lower frequency level and the system would be more

cautious in further scaling down the clock frequency. We choose a qref of 6 for the INT

clock domain which is roughly 1
3

of its total queue size; and a qref of 4 for the FP and LS

clock domains which are 1
4

of their total queue sizes. These numbers are chosen to make the

overall performance degradation around 5%. For the deviation window DW , we choose

DW = ±1 for the queue signal qi − qref , and DW = 0 for the signal qi − qi−1. Also,

we assume an aggressive clock gating that is applied whenever the unit is not used. All

other architecture parameters are chosen to have the same values as those in [48, 58, 65].

A summary of all simulation parameters is shown in Table 3.1.

As an illustrative example, Figure 3.6 shows the frequency settings in the FP domain

obtained from our DVFS controller for the MediaBench benchmark Epic-decode. We chose

this benchmark because its FP issue queue has a very simple workload pattern, in which the

queue is emptying except for two distinct phases, as observed in [58, 65]. From this figure,

we see, in the beginning stage, the adaptive DVFS controller detected the queue emptiness

and quickly reduced the FP frequency to fmin = 0.25GHz. The first non-empty workload

phase occurred around the moment at 2500k instructions when a modest workload increase

was detected and the frequency recovered from fmin = 0.25 to a value around 0.6. After

63

2000 4000 6000 8000
0.2

0.4

0.6

0.8

1

re
la

tiv
e

fre
qu

en
cy

insts (thousands)

frequency in FP domain

Figure 3.6: Frequency settings obtained from our adaptive DVFS in the FP clock domain
for the benchmark of Epic-decode
.

this recovery, the frequency gradually dropped to fmin = 0.25 again as the queue decreased

and became complete empty again around the moment at 4000k instructions. The queue

stayed empty until a dramatic increase occurred around the moment at 8200k instructions.

The adaptive DVFS controller detected this dramatic increase of queue entries and quickly

adjusted the clock frequency to fmax = 1.0GHz.

3.4.2 Benchmark Classifications

We want to evaluate our adaptive DVFS scheme with a broad set of applications. To show

variety, we will present results for 6 MediaBench, 6 SPEC2000int, and 5 SPEC2000fp

applications as shown in Table 3.2. We chose roughly the same subset of SPECint and

SPECfp as those used in [48, 58, 65]. For MediaBench benchmarks, we use the official data

input set in the MediaBench web site and the whole program as the simulation window; for

SPEC2000 benchmarks, we use the reference input set and choose the simulation window

using the published Early SimPoint numbers [56].

Before we start to show the energy/performance results from our DVFS scheme and

64

 10 100 1000 10000
0

1000

2000

3000

4000

variance wavelength (sampling periods)

va
ria

nc
e

de
ns

ity
 (e

nt
rie

s2 /H
z)

Queue Variance Spectrum

Figure 3.7: Variance spectrum for queue entries in the INT domain for the benchmark Epic-
decode. The dotted line marks the interesting frequency/wavelength range used to identify
fast workload variations.

compare them to those from prior fixed-interval DVFS schemes, we want to first look

at some benchmark characteristics which affect the performance of the current and prior

online DVFS schemes. As mentioned in Section 3.1, the current scheme has potentially

better responsiveness due to its adaptive nature and is more suitable for applications with

fast workload changes. Therefore, one benchmark characteristic we might wish to look at

is the workload variability. In the rest of this subsection, we will study this characteristic

and identify applications with relatively fast workload variations.

We use the queue occupancies to characterize the program workload. A metric which

we can use to justify the application workload as varied is the overall variance observed in

the queue occupancy. However, there is a problem with this metric: it only reflects the total

workload variations, and not necessarily the fast variation. To overcome this problem, we

make use of spectrum or spectral analysis [55].

The spectrum of a time series is the distribution of variance as a function of variance

frequency [55]. We will denote the workload variance frequency as ω to distinguish it from

the clock frequency f . Note the basic components for spectrum are the sinusoidal waves of

65

different frequency or wavelengths. Spectral analysis estimates and computes the variance

associated with each frequency component. (The method we use is the Multi-taper method

[55] which utilizes the fast Fourier transform during the estimation process.)

With the spectrum or spectral density function (spectral density is in terms of variance

per unit frequency), we can get the variance associated with any range of frequencies by

integrating the spectral density over the increment of frequency ω. Therefore, in order to

identify fast workload variations, we can compute and inspect the queue variance associated

with high frequencies or short wavelengths only. The question is how to quantify fast, high

or short.

Since we are studying adaptive DVFS as compared to fixed-interval DVFS (which is

assumed to have a fixed interval of length N , N = 5−10k sampling periods normally), we

define any queue variance component with a wavelength of N or less as fast or short. This

is because any queue swings inside the control interval (i.e. with a wavelength of N or less)

will not be captured by the fixed-interval schemes (as the swings offset by the averaging in

the fixed-interval schemes). In addition, queue variance components with extremely short

wavelengths are considered noise and are ignored (i.e. they are too fast to be captured by

either approach). We choose 100 sampling periods as the noise drop-off line because the

basic time-delay for our DVFS scheme is about 50.

Therefore, to identify fast workload variations, we compute and inspect queue variance

with wavelengths in the range of [100, N], where N is the interval length for the fixed-

interval schemes. As an illustrative example, Figure 3.7 shows the variance spectrum of

the queue entries in the INT domain for the benchmark Epic-decode. For convenience, we

show the spectrum as a function of the wavelength, rather than the frequency ω. The queue

variance in the interesting frequency range (marked by the dotted line in Figure 3.7) can

then be computed.

In Table 3.2, we have computed the queue variance associated with the defined interest-

ing frequency/wavelength range for all the benchmarks. Based on these variance numbers

66

Table 3.2: Classification of benchmarks based on workload variation characteristics (num-
bers are in units of queue entry square)

Benchmarks Queue variance Classification
INT FP LS

epic-decode 17.2 0.1 7.3
jpeg-decode 12.4 0.0 8.0
jpeg-encode 14.4 0.0 10.1 Group1
172.mgrid 1.7 14.5 5.7 (fast
173.applu 0.8 16.8 8.3 workload
176.gcc 19.1 0.0 7.1 variation)
183.equake 16.7 0.0 5.1
186.crafty 14.4 0.0 7.0
197.parser 13.6 0.0 6.6
adpcm-decode 2.9 0.0 0.5
adpcm-encode 7.6 0.0 0.8
epic-encode 4.1 3.1 1.6 Group2
164.gzip 9.4 0.0 4.5 (slow or
171.swim 1.0 1.8 1.3 negligible
179.art 4.2 4.6 2.9 variation)
181.mcf 5.1 0.0 4.1
256.bzip2 13.3 0.0 2.1

(larger number means more workload variation), we classify the benchmark set into two

groups with roughly same number of applications: group1 with relatively large workload

variations and group2 with relatively small or negligible variations in the defined frequency

range. (Specifically, in Table 3.2, INT and LS numbers are used to classify integer bench-

marks; while FP and LS numbers are used to classify floating-pointing benchmarks.)

The above benchmark characterization and classification will let us have a better and

deeper understanding of the experimental results in the next subsection.

3.4.3 Energy and Performance Results

We will present energy and performance results from our new adaptive-reaction DVFS

scheme (denoted as adaptive), and compare them to existing fixed-interval DVFS schemes

for MCD processors [58, 65]. The work in [58] is one of the best-known DVFS schemes

for MCD, and is based on a heuristic called AttackDecay (denoted as fixed-heuristic). The

67

0%

5%

10%

15%

20%

25%

ep
ic_

de
cod

e

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gri
d

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
cod

e

16
4.g

zip

17
1.s

wim
17

9.a
rt

18
1.m

cf

25
6.b

zip
2

Ave
rag

e

Synchro
Fixed-heuristic
Fixed-PID
Adaptive

Performance degradation

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

ep
ic_

de
cod

e

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gri
d

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
cod

e

16
4.g

zip

17
1.s

wim
17

9.a
rt

18
1.m

cf

25
6.b

zip
2

Ave
rag

e

Synchro
Fixed-heuristic
Fixed-PID
Adaptive

55

Energy savings

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

ep
ic_

de
cod

e

jpe
g_

de
co

de

jpe
g_

en
co

de

17
2.m

gri
d

17
3.a

pp
lu

17
6.g

cc

18
3.e

qu
ak

e

18
6.c

raf
ty

19
7.p

ars
er

ad
pc

m_d
ec

od
e

ad
pc

m_e
nc

od
e

ep
ic_

en
cod

e

16
4.g

zip

17
1.s

wim
17

9.a
rt

18
1.m

cf

25
6.b

zip
2

Ave
rag

e

Synchro
Fixed-heuristic
Fixed-PID
Adaptive

52

EDP improvement

Figure 3.8: Performance degradation, energy savings, and energy-delay product (EDP)
improvement for each benchmark; different schemes are Synchronous voltage scaling, two
fixed-interval DVFS schemes (fixed-heuristic and fixed-PID), and the DVFS scheme with
adaptive reaction time.

parameters for fixed-heuristic here are taken from [58], with a 5% performance degrada-

tion target because this target value will lead to an actual performance degradation similar

to adaptive. The other scheme to compare with is the previous work in Chapter 2 (also

in [65]). Since this work uses a Proportional Integral Derivative (PID) based DVFS con-

68

Table 3.3: Average results over group1 benchmarks
Performance Energy Energy-Delay

Schemes degradation savings product
improvement

Synchro 4.7% 7.0% 2.6%
fixed-heuristic 5.9% 9.6% 4.3%
fixed-PID 3.2% 16.2% 13.5%
adaptive 3.3% 18.7% 16.0%

troller, we denote it as fixed-PID. Similarly, the parameters for fixed-PID are taken from

Chapter 2 and [65]. For the sake of completeness, we also compare our results to conven-

tional (fully) synchronous voltage/frequency scaling (denoted as Synchro) which scales the

frequency/voltage for the whole processor2.

The performance degradation, energy savings, and energy-delay product (EDP) im-

provement for each benchmark are shown in Figure 3.8. (The benchmarks are arranged

with group1 on the left, and group2 on the right.) The results are relative to the con-

ventional (fully) synchronous processor without voltage scaling. So all results for MCD

include about 1.5% percent inherited performance and energy overhead from the baseline

MCD processor, as discussed in [58]. The average energy savings and performance loss for

adaptive over all 17 benchmarks are 19.2% and 3.3% respectively. This gives an EDP im-

provment of 16.5% for adaptive, as compared to 3.9% for Synchro, 7.6% for fixed-heuristic

and 17.3% for fixed-PID. So we see, despite its simpler design and hardware requirement,

the adaptive results on average are quite close to the best from existing approaches (16.5%

vs. 17.3%)

Furthermore, if we look at the energy/performance results for individual benchmarks,

we have more interesting observations. As we expected, nearly all benchmarks in group1

favor adaptive over other schemes. Table 3.3 shows the average results over the bench-

marks in group1 for different approaches. From Table 3.3, we observe that, for group1
2We were not able to implement synchronous dynamic voltage scaling, so the Synchro results are for static

scaling which may under-represent the benefit of synchronous voltage scaling slightly.

69

Table 3.4: Average results over group2 benchmarks
Performance Energy Energy-Delay

Schemes degradation savings product
improvement

Synchro 3.9% 8.4% 4.8%
fixed-heuristic 5.6% 16.3% 11.6%
fixed-PID 3.7% 24.5% 21.7%
adaptive 3.2% 19.7% 17.1%

benchmarks, adaptive has achieved significantly better energy efficiency than fixed-interval

DVFS schemes. The EDP result from adaptive is about 18% better than that from fixed-PID

(16.0% vs. 13.5%), and nearly 3-fold better than that from fixed-heuristic (16.0% vs 4.3%).

This shows the efficiency of our DVFS design and its self-tuning reactive advantages.

Next, we look at energy/performance results for the group2 benchmarks, which have

relatively slow or negligible workload variations. Table 3.4 show the average results over

the group2 benchmarks for different approaches. We observe that the adaptive results

are still significantly better than those from the Synchro and fixed-heuristic (we attribute

this to the MCD advantage and/or the effective design in Section 3.2 which is guided by

formal stability analysis). However, compared to the fixed-PID result, the adaptive result

lags by about 21% (17.1% vs. 21.7%). To understand the reason, we see that, for the

group2 benchmarks, the adaptive scheme gets little or no useful advantages over fixed-PID

from responsiveness. On the other hand, fixed-PID still has the advantage over adaptive

in terms of more accurate/intelligent DVFS decisions. Recall that, for adaptive, to keep

the design simple and reduce the overhead of the decision process, we used simple time

delays and single frequency increment or decrement for choosing possible DVFS actions.

In general, DVFS actions picked by this mechanism are not as accurate/intelligent as those

chosen by the fixed-PID, which may utilize system information from the current and past

time-intervals and the PID controller to figure out more accurate voltage and frequency

settings (of course, this requires more hardware). Therefore, for the group2 benchmarks,

the advantages associated with fixed-PID prevail and lead to better results for these than

70

adaptive.

3.4.4 Comparison to Fixed-PID with Shorter Intervals

In previous sections, all fixed-PID results were obtained using the default interval-length

in [65] (10k instructions, which is also the interval length for fixed-heuristic in [58]). The

question is what the results would be like for fixed-PID if a very short interval were chosen?

Also, how do the adaptive results compare to those from fixed-PID with shorter intervals?

To answer the above questions, we first look at the pros and cons of reducing the

interval-length for fixed-PID. On one hand, smaller interval length tends to make DVFS

control in fixed-PID more fine-grained, which may lead to more energy savings. On the

other hand, the energy overhead associated with the DVFS decision process and trigger

logic in fixed-PID also increases significantly with shorter intervals. As mentioned in Sec-

tion 3.2, the decision logic in the fixed-PID can be separated into two parts. The first part is

the logic being executed on a per-cycle basis (such as the counters and other book-keeping

logic). The second part is the logic being executed on a per-interval basis; this is the part to

implement the PID controller, and is doing more complicated computations such as multi-

plication and division. Therefore, if the interval is relatively long, the amortized decision

logic overhead will be small and negligible. However, if the interval becomes shorter and

shorter, the amortized overhead will become larger and more significant.

Furthermore, even if we do not count the above decision overhead, the control efficiency

for fixed-PID may still diminish with extremely short intervals. This is because the noise

rejection ability of fixed-PID, which works like a low-pass filter using the average queue

occupancy over the entire interval, begins to deteriorate with very short intervals.

Therefore, because of the above pros and cons, reducing the interval length may not lead

to increased energy efficiency for fixed-PID. In general, there exists a range of medium

interval-length values for which the fixed-PID has the best overall control performance.

(The above discussion is also true for fixed-heuristic. The author of [57] showed that their

71

 1k 10k 100k
0

5

10

15

20

25

interval−length (insns)

pe
rc

en
t (

%
)

EDP improvement

L = 12

L = 0

Figure 3.9: The energy delay product improvement (EDPI) for the benchmark Epic-decode
obtained from fixed-PID (solid lines) as a function of interval lengths, and the increasing
hardware complexity level L. We also show the EDPI from adaptive (the dashed line) as a
comparison

DVFS algorithm works best for a range of interval lengths around 10k instructions).

Figure 3.9 shows the EDP improvement from the fixed-PID controller as a function of

different interval lengths, and different decision logic overhead, for the benchmark Epic-

decode. L in the figure is the scaling factor accounting for different level of hardware

complexity of the fixed-PID decision logic3. (L = 0 is for the ideal and unrealistic case

where the PID controller has zero energy cost). For comparison, we also show the EDP

improvement from the adaptive for Epic-decode (the dashed line).

From Figure 3.9, we see the best control performance did not occur at very short inter-

vals (like 1000 instructions or shorter). Rather, it occurred with an interval length some-

where in the medium range depending on the actual hardware complexity level.
3Specifically, L is used to scale the unit energy cost for fixed-PID decision logic in each time interval.

The unit energy cost is estimated as 3 · α · L · C0 · V 2 · k, where 3 accounts for 3 clock domains; α = 0.5

is the active factor, L · C0 is the total capacitance for the PID controller with C0 chosen as 1% of the total
capacitance of the integer ALU; V is the voltage in the front end; k is the total number of cycles the PID
controller takes to finish the computation.

72

We have also measured the efficiency of the fixed-PID with shorter intervals for other

benchmarks, and compared them to results from adaptive. Overall, the observations and

findings above hold for them as well.

3.5 Related Work

In this section, we highlight important related work that we have not discussed in previous

sections.

As mentioned earlier, most existing hardware-based online intra-task DVFS work uses

a fixed window or time-interval. There is little prior work in the direction of adaptive DVFS

design. One pioneering work in that direction is the Mode-switching algorithm proposed

by Iyer and Marculescu [36]. Their algorithm detects the High or Low queue occupan-

cies (note they only look at the static queue occupancies, and do not use information on

queue occupancy changes). If a High or Low queue condition has been detected for some

consecutive cycles, a possible switch from Fast-mode to Slow-mode (or vice versa) will be

made. We see, though the reaction time in their work is essentially adaptive, the simple

two-mode switching algorithm has not been able to fully utilize the power/benefits brought

by this paper’s approach. For the purpose of comparison, we have re-implemented their

Mode-switching DVFS algorithm and incorporated it into our simulation infrastructure.

Our experimental results show that, in general, an energy-delay product improvement of

6 − 7% has been achieved (over the base case without DVFS). In addition, without more

detailed analysis, it is not analytically clear how to further improve [36].

Two other DVFS algorithms for MCD architectures which we have not discussed are

the Shaker algorithm in [59] and the profile-based algorithm in [48]. They both use offline

analysis to obtain optimal DVFS settings for a program. In constrast, the focus of this work

is on architectural level hardware-based online DVFS schemes.

Recently, there have been increasing research efforts in applying control theory or other

73

system theories in CPU design and control [62, 65]. One example is the applying of control

theory in thermal control [62]. Another example is the previous work described in Chapter

2, which is on applying control theory to DVFS control for MCD processors (also in [65]).

The theoretical analysis in [65] is close to this work since the same architecture and the

same system dynamics are being considered. However, the focus of the theoretical analysis

in [65] is on the design, that is, how to model the controlled system and use control theory as

guidances in designing a standard PID-based controller. On the other hand, the theoretical

part of this work is focused on modeling and stability analysis of an existing DVFS design.

So in this work we derive a mathematical model for an existing design to be used in the

analysis. Then, the obtained analytic insight is used to tune and improve the original design.

3.6 Summary

This chapter presents a novel DVFS scheme for multiple-clock-domain (MCD) processors.

Compared to existing control schemes, which use fixed control intervals, this new interval-

less scheme has reaction time that is not predetermined, but self-tuned and adaptive to

application and workload changes.

Overall, we feel the proposed adaptive DVFS scheme is a promising alternative to the

existing fixed-interval DVFS schemes. Designers may choose the new scheme for pro-

cessors with limited hardware budget, or if the type of application behavior is known in

advance to have high workload variability. In addition, the modeling and analysis tech-

niques in this work serve as examples of using stability analysis in other aspects of high-

performance CPU design and control.

74

Chapter 4

A Dynamic Compilation Framework for

Controlling Microprocessor Energy and

Performance

4.1 Introduction

The previous chapters have discussed architectural level hardware-based energy control

techniques. In addition to hardware, the compiler and system software can also play an

important role in energy and performance management. While existing software-driven

energy control techniques are primarily based on OS time-interrupt [19, 64] or static com-

piler techniques [31, 68], very little has been done to explore DVFS control opportunities in

a dynamic compilation or optimization environment. In this chapter, we consider dynamic

compiler DVFS techniques, which optimize the application binary code and insert DVFS

control instructions at program execution time.

A dynamic compiler is a run-time software system that compiles, modifies, and opti-

mizes a program’s instruction sequence as it runs. In recent years, dynamic compilation is

becoming increasingly important as a foundation for run-time optimization, binary trans-

75

lation, and information security. Examples of dynamic compiler based infrastructures in-

clude HP Dynamo [5], IBM DAISY [21], Intel IA32EL [6], and Intel PIN [47]. Since most

DVFS implementations allow direct software control via mode set instructions (by access-

ing special mode set registers), a dynamic compiler can be used to insert DVFS mode set

instructions into application binary code at run time. If there exists CPU execution slack

(i.e., CPU idle cycles waiting for memory), these instructions will scale down the CPU

voltage and frequency to save energy with no or little impact on performance.

Using dynamic compiler driven DVFS offers some unique features and advantages not

present in other approaches. Most importantly, it is more fine-grained and more code-aware

than hardware or OS interrupt based schemes. Also it is more adaptive to the run-time envi-

ronment than static compiler DVFS. In Section 4.2, we will give statistical results to further

motivate dynamic compiler driven DVFS, and discuss its advantages and disadvantages as

compared to existing techniques.

This work presents a design framework of the run-time DVFS optimizer (RDO) in a

dynamic compilation environment. Key design issues that have been considered include

code region selection, DVFS decision, and code insertion/transformation. In particular, we

propose a new DVFS decision algorithm based on an analytic DVFS decision model. A pro-

totype of the RDO is implemented and integrated into an industrial-strength dynamic opti-

mization system (a variant of the Intel PIN system [47]). The obtained optimization system

is deployed into a real hardware platform (an Intel development board with a Pentium-M

processor), that allows us to directly measure CPU current and voltage for accurate power

and energy readings. The evaluation is based on experiments with physical measurements

for over 40 SPEC or Olden benchmarks. Evaluation results show that significant energy ef-

ficiency is achieved. For example, up to 70% energy savings (with 0.5% performance loss)

is accomplished for SPEC benchmarks. On average, the technique leads to energy delay

product (EDP) improvements of 22.4% for SPEC95 FP, 21.5% for SPEC2K FP, 6.0% for

SPEC2K INT, and 22.7% for Olden benchmarks. These average results are 3X-5X better

76

0 1000 2000 3000 4000
0

5

10

15

L2
 m

iss
es

 (t
ho

us
an

ds
)

Time (million instructions)

Average L2 cache misses

^ ^ ^

1

2

3

4
5

Figure 4.1: Number of L2 cache misses for every million instructions retired during the
execution of SPEC2000 benchmark 173.applu. Numbers 1 to 5 mark five memory char-
acteristic phases. The symbol ˆ in the figure marks the recurring point of the program
phases.

than those from static voltage scaling (22.4% vs. 5.6%, 21.5% vs. 6.8%, 6.0% vs. -0.3%,

22.7% vs.6.3%), and are more than 2X better (21.5% vs. 9%) than those reported by a

static compiler DVFS scheme [31].

The structure for the rest of the chapter is as follows. Section 4.2 further motivates

dynamic compiler DVFS. Section 4.3 presents the design framework of the RDO. Section

4.4 describes the implementation and deployment of the RDO system. This is followed by

the experimental results in Section 4.5. Section 4.6 highlights related work. Section 4.7

discusses possible future work. Finally, Section 4.8 summarizes this chapter.

4.2 Why Dynamic Compiler Driven DVFS?

In this section, we discuss in more detail the unique features, advantages, and disadvantages

of dynamic compiler driven DVFS, as compared to existing DVFS techniques.

77

4.2.1 Advantages over hardware or OS DVFS

Existing hardware or OS time-interrupt based DVFS techniques typically monitor some

system statistics (such as issue queue occupancy [58]) in fixed time intervals, and decide

DVFS settings for future time intervals [19, 49, 58, 64]. Since the time intervals are pre-

determined and independent of program structure, DVFS control by these methods may

not be efficient in adapting to program phase changes. One reason is that program phase

changes are generally caused by the invocation of different code regions, as observed in

[33]. Thus, the hardware or OS techniques may not be able to infer enough about the

application code attributes and find the most effective adaptation points. Another reason is

that program phase changes are often recurrent (i.e., loops). In this case, the hardware or

OS schemes would need to detect and adapt to the recurring phase changes repeatedly.

To illustrate the above reasoning, Figure 4.1 shows an example trace of program phase

changes for the SPEC2000 benchmark 173.applu. (The trace is from a part of the program

with about 4.5 billion instructions.) The y-axis is the number of L2 cache misses for every

1M instructions during the program execution. (All results in the section were obtained

using hardware performance counters in a processor setup described in Section 4.5.) From

the figure, we see that there are about 5 distinct memory phases characterized by different

L2 cache miss values and duration. As will be shown in Section 4.5, these phases actually

correspond to 5 distinct code regions (functions) in the program. Also, we see the phase

changes are recurrent, as shown by the marked points in the figure.

Compiler driven DVFS schemes (static or dynamic) can apply DVFS to fine-grained

code regions so as to adapt naturally to program phase changes. Hardware or OS-based

DVFS schemes with fixed intervals lack this fine-grained, code-aware adaptation.

4.2.2 Advantages over static compiler DVFS

Existing compiler DVFS work is primarily based on static compiler techniques [31, 68].

Typically profiling is used to learn about program behavior. Then some offline analysis

78

0.01 0.1 1 10 50 100
0

2000

4000

6000

8000
Average memory bus transactions

M
em

or
y

tra
ns

ac
tio

ns

Qsort() input size (millions)
Figure 4.2: Average number of memory bus transactions (per 1M instructions) for the func-
tion qsort() (as in stdlib.h) with different input sizes and different input patterns (random
input:• versus pre-sorted input: ∗).

techniques (such as linear programming [31]) are used to decide DVFS settings for some

code regions.

One limitation to static compiler DVFS is that, due to different runtime environments

for the profiler and the actual program, the DVFS setting obtained at static compile time

may not be appropriate for the program at runtime. The reasoning is that DVFS deci-

sions are dependent on the program’s memory boundedness (i.e., the CPU can be slowed

down if it is waiting for memory operation completion). Then, the program behavior in

term of memory boundedness is in turn dependent on run-time system settings such as

machine/architecture configuration, program input size and patterns. For example, ma-

chine/architecture settings such as cache configuration or memory bus speed may affect

how much CPU slack or idle time exists. Also, different program input sizes or patterns

may affect how much memory is to be used and how it is going to be used.

As an illustration, Figure 4.2 shows the average number of memory bus transactions

(per 1M instructions) for the function qsort() (as in the stdlib). The curve with • is for

random input elements with different input sizes, while the curve with ∗ is for pre-sorted

input elements. Figure 4.2 shows that the average numbers of memory bus transactions

79

vary significantly for different input sizes and input patterns. (Not surprisingly, larger input

sizes lead to more L2 cache misses and thus more memory bus transactions.)

While the above example is from a small program for illustration, Table 4.1 shows

examples of different memory behavior from the SPEC programs with reference or train

inputs. We show the average number of L2 cache misses and the average number of mem-

ory bus transactions (per 1M instructions) for some example code regions. Similarly, we

see these numbers may become very different if input is changed from reference to train,

or vice versa.

Based on the above observation, we see, for different input sizes or patterns, differ-

ent DVFS might be needed to have the best energy/performance results. For the qsort()

example in Figure 4.2, a more aggressive (i.e., lower) DVFS setting should be used for a

large input size (like 100M) to take advantage of the memory boundedness in the program

and save more energy. Conversely, a more conservative (i.e., higher) DVFS setting should

be used for a small input size (like 10K) to avoid excessive performance losses. For the

SPEC benchmark 103.su2cor in Table 4.1, the code region in the function sweep() might

need different DVFS settings for different input sets. Our empirical experience on the Intel

Pentium-M processor shows that, assuming a performance loss constraint of 4%, this code

region can be clocked at 1.0Ghz with the reference input, while it has to be clocked at the

maximum 1.6Ghz for the train input.

While it is inherently difficult for a static compiler to make DVFS decisions adaptive

to the above factors, dynamic compiler DVFS can utilize run-time system information and

make input-adaptive and architecture-adaptive decisions.

4.2.3 Disadvantages and challenges

Having discussed its advantages, we would like to point out that dynamic compiler DVFS

also has its disadvantages. The most significant one is that, just as for any dynamic opti-

mization technique, every cycle spent for optimization might be a cycle lost to execution

80

Table 4.1: Examples of different memory behavior for SPEC programs with reference and
train inputs.

L2: Average Num of L2 cache misses per 1M instructions
Mem: Average Num of memory bus transactions per 1M inst
4L sweep(): means 4th loop in function sweep()

Benchmark Code reference train
region L2 Mem L2 Mem

103.su2cor corr() 3.9K 13.6K 1.4K 5.7K
103.su2cor 4L sweep() 4.3K 14.4K 1.8K 6.1K
107.mgrid mg3p() 2.6K 9.5K 0.6K 2.3K
189.lucas fftSquare() 6.8K 18.1K 0.06K 0.1K

DoRevers-
256.bzip2 Transform() 7.8K 11.9K 1.3K 3.1K

(unless optimizations are performed as side-line optimizations on a chip multi-processor

[11]). Therefore, one challenge to dynamic compiler driven DVFS is to design simple and

inexpensive analysis and decision algorithms in order to minimize the run-time optimiza-

tion cost.

4.3 Design Framework and DVFS Decision Algorithms

In this section, we present a design framework for the run-time DVFS optimizer (RDO)

in a dynamic compilation and optimization environment. We start by considering some

key design issues in general. Then we give the detailed design of a new DVFS decision

algorithm.

4.3.1 Key design issues

Candidate code region selection: Like other dynamic optimization techniques, we want

only to optimize those frequently executed code regions (so-called hot code regions), in

order to be cost effective. In addition, since DVFS is a relative slow process (the voltage

transition rate is typically around 1mv/1µs), we also want to only optimize long-running

code regions. In our design, we choose functions and loops as candidate code regions.

81

Since most dynamic optimization systems are already equipped with some light-weight

profiling mechanism to identify hot code regions (for example DynamoRio profiles every

possible loop target [11]), we will extend the existing profiling infrastructure to monitor

and identify hot functions or loops.

DVFS decisions: For each candidate code region, an important step is to decide whether

it is beneficial to apply DVFS to it (i.e., whether it can operate at a lower voltage and fre-

quency to save energy without significant impact on the overall performance) and what the

appropriate DVFS setting is. As we mentioned earlier, for a dynamic optimization sys-

tem, the analysis or decision algorithm needs to be simple and fast to minimize overhead.

Thus, the offline analysis techniques used by static compiler DVFS [31] are typically too

time-consuming and are not appropriate here. For our work, we have designed a fast DVFS

decision algorithm, which is based on an analytical decision model and uses hardware

feedback information.

DVFS code insertion and transformation: If a candidate code region is found ben-

eficial for DVFS, DVFS mode set instructions will be inserted at every entry point of the

code region to start the DVFS, and at every exit point of the code region to restore the

voltage level. One design question is how many adjusted regions we want to have in a

program. Some existing static compiler algorithms choose only a single DVFS code region

for a program [31] (to avoid the excessively long analysis time). In our design, we will

allow/identify multiple DVFS regions to provide more energy saving opportunities. But

things become complicated when two DVFS regions are nested. (If a child region is nested

in a parent region, then a child may not know the DVFS setting for the parent at its exit

points.) We provide two design solutions. One is to maintain a relation graph at run time,

and only allow the parent region to be scaled. The other one is to have a DVFS-setting

stacked so that both the parent and the child regions can be scaled. In addition to the code

insertion, the dynamic compiler can also perform code transformation to create more en-

ergy saving opportunities. One example is to merge two separate (small) memory bound

82

Dispatcher Monitor Dynamic
Optimizer

Run-time
DVFS

Optimizer
(RDO)

Start

Hot code
execution

Cold code
execution

OS and hardware

Figure 4.3: The overall block diagram showing the operation and interactions among dif-
ferent components of a dynamic compiler DVFS optimization system.

code regions into one big one. Of course, we need to check that this code merging does not

hurt the performance (or the correctness) of the program. So there will exist interactions

among the DVFS optimizer and the conventional performance optimizer.

Overall operation block diagram: The block diagram in Figure 4.3 shows the overall

operation and interactions between different components of a dynamic compiler DVFS

optimization system. At the start, the dynamic optimizer dispatches or patches original

binary code and delivers the code to execution by the hardware. At this moment, the system

is in a cold-code execution mode. While the cold code is being executed, the dynamic

optimization system monitors and identifies the frequently executed or hot code regions.

Then, the RDO optimization is applied to the hot code regions, either before or after the

conventional performance optimizations have been conducted. (For a hot code region,

the RDO optimization can be applied once per program execution, or multiple times —

which we call periodic re-optimization.) Lastly, if a code transformation is desirable, the

RDO will query the regular performance optimizer to check the feasibility of the code

83

transformation.

Next, we describe in detail a key design component: the DVFS decision algorithm.

4.3.2 DVFS decision algorithms

To make DVFS decisions, RDO first inserts some testing and decision code at the entry

and exit points of a candidate code region. (A candidate region can be viewed as a single

entry, multiple exits code region.) The testing and decision code collects some run-time

information (such as number of cache misses or memory bus transactions for this code

region). If enough information has been collected, RDO decides the appropriate DVFS

setting for a candidate code region based on the collected information and the RDO setup.

After a decision is made, RDO removes the testing and decision code and prepares for

possible DVFS code insertion and transformation.

The above testing steps assume that a candidate code region has relatively stable or

slowly-varying run-time characteristics for a given input. Therefore, the obtained decision

based on the testing information will be valid for the rest of the program execution, or valid

until the next re-optimization point if we choose periodic re-optimizations. Note that this

assumption has been shown reasonable or valid in practice by studies such as [66].

The key testing step in the above is the DVFS decision making. As we mentioned

earlier, in order to be beneficial for DVFS, a code region first needs to be long-running,

which can be easily checked. The harder question is, for a long running code region, how

to decide whether it is beneficial to have DVFS and what an appropriate DVFS setting is.

To answer this question, we first look at an analytical decision model for DVFS.

An analytical decision model for DVFS

The discussion and analysis model in this section assume that the goal of our energy con-

trol is to minimize the energy consumption, subject to some performance constraints. (Note

that the analytical model for a different objective, such as thermal control, might be differ-

84

tasyn_mem

Memory
operation

CPU
operation

execution
time

Nconcurrent

f

Ndependent

f
Figure 4.4: An analytical decision model for DVFS. tasyn mem is the asynchronous memory
access time, Nconcurrent is the number of execution cycles for the concurrent CPU opera-
tion, Ndependent is the number of cycles for the dependent CPU operation, f is the CPU
frequency.

ent.)

In general, scaling down the CPU voltage and frequency will certainly reduce processor

power consumption, but it will also slow down the CPU execution speed (and the result-

ing energy delay product improvement might be low or even negative). The key insight

to a beneficial DVFS (which saves energy but with no or little performance impact) is

that there exists an asynchronous memory system, which is independent of the CPU clock

and is many times slower than the CPU. Therefore, if we can identify the CPU execution

slack (i.e., CPU stall or idle cycles waiting for the completion of memory operations), we

can scale down the CPU voltage and frequency to save energy without much performance

impact.

Based on the above rationale, Figure 4.4 shows our analytical decision model for DVFS,

which is an extension of the analytical model proposed in [68]. As in Figure 4.4, the pro-

cessor operations are categorized into two groups: memory operation and CPU operation.

Since memory is asynchronous with respect to the CPU frequency f , we denote the time for

memory operation as tasyn mem. The CPU operation time can be further separated into two

85

parts: part 1 is those CPU operations that can run concurrently with memory operations,

and part 2 is those CPU operations that depend on the final results of the pending memory

operations. Since the CPU operation time is dependent on the CPU frequency f , we denote

the concurrent CPU operation time as Nconcurrent/f , where Nconcurrent is the number of

clock cycles for the concurrent CPU operation. Similarly, we denote the dependent CPU

operation time as Ndependent/f . (In actual program execution, the memory operation and

the CPU operation, either concurrent or dependent, will be interleaved somehow. However,

for an analytical model, we abstract the execution model by lumping all the occurrences of

each category together. This is the same treatment as in [68].)

From Figure 4.4, we see if the overlap period is memory bound, i.e tasyn mem >

Nconcurrent

f
, there exists a CPU slack time defined as

CPU slack time = tasyn mem −
Nconcurrent

f
(4.1)

Ideally, the concurrent CPU operation can be slowed down to consume the CPU slack time.

With the above model, we want to decide the frequency scaling factor β for a candidate

code region. (So, if the original clock frequency is f , the new clock frequency will be β f ;

and the voltage will be scaled accordingly.) We assume the execution time for a candidate

code region can be categorized according to Figure 4.4. So frequency scaling will have two

effects on the CPU operation. First, it will increase the concurrent CPU operation time and

reduce the CPU slack time (if any). Second, it will dilate the dependent CPU operation

time, which will cause performance loss unless Ndependent = 0.

Next we will give a detailed method to select or compute the scaling factor β.

DVFS selection method

We introduce a new concept called relative CPU slack time. Based on the definition of

CPU slack time in (4.1), we define

relative CPU slack time = tasyn mem − Nconcurrent/f

total time
(4.2)

86

where the total time is the total execution time in Figure 4.4. For a memory bound case,

total time = tasyn mem + Ndependent/f . From Figure 4.4, we see the larger the relative

CPU slack, the more frequency reduction the system can have without affecting the overall

performance. So the frequency reduction (i.e., 1 − β) is proportional to the relative CPU

slack time. We have

(1 − β) = k0

(

tasyn mem

total time
−

Nconcurrent/f

total time

)

(4.3)

where k0 is a constant coefficient. Note that the value of k0 can be chosen to be either

relatively large to have more aggressive energy reduction, or relatively small to preserve

performance more. Therefore, to take into account the effect of the maximum allowed

performance loss Ploss, we replace k0 in (4.3) by k0 Ploss, and we have

β = 1 − Ploss k0
tasyn mem

total time
+ Ploss k0

Nconcurrent/f

total time
(4.4)

Intuitively, the above equation means the scaling factor is negatively proportional to the

memory intensity level (the term with tasyn mem), and positively proportional to the CPU

intensity level (the term with Nconcurrent). The time ratios in the above equation can be esti-

mated using hardware feedback information such as hardware performance counter (HPC)

events. For example, for an x86 processor, the two time ratios in the above equation can be

estimated by ratios of some HPC events [25].

tasyn mem

total time
' k1

Num of mem bus transactions
Num of µops retired (4.5)

Nconcurrent/f

total time
' k2

Num of FP INT instructions
Num of µops retired (4.6)

where in (4.5) the first HPC event is the number of memory bus transaction, which is

what we have used in Section 4.2 to measure memory busy-ness. The second HPC event

is the total number of µops retired. The ratio of these two events is used to estimate the

87

relative memory busy-ness. Similarly, in (4.6), the first HPC event is the number of FP/INT

instruction retired (while there is an outstanding memory operation). The second event is

also the number of µops retired. The ratio of these two HPC event is used to estimate the

concurrent CPU busy-ness. Like k0 in (4.3), k1 and k2 in the above are constant coefficients

which depend on machine configurations and can be estimated empirically and reset at the

installation time of a dynamic compiler.

Because the above method computes β directly from some run-time hardware infor-

mation, it is simple and fast. The downside is that the formulation is relatively ad-hoc,

especially the way it considers the constraint Ploss. We have also developed an alternative

method which is more precise in handling the performance constraint Ploss, but is more

complicated. We see this alternative method as a complement to the above method.

4.4 Implementation and Deployment: Methodology and

Experience

We have implemented a prototype of the proposed run-time DVFS optimizer (RDO), and

integrated the RDO into a real dynamic compilation system. To evaluate it, our results

present live-system physical power measurements.

4.4.1 Implementation

We use the Intel PIN system [47] as the basic software platform to implement our DVFS

algorithm and develop the RDO. PIN is a dynamic instrumentation and compilation system

developed at Intel and is publicly available. The PIN system which we use is based on

the regular PIN but has been modified to be more suited and more convenient for dynamic

optimizations. (For convenience, we refer it as O-PIN, i.e., Optimization PIN.) Compared

to the standard PIN package, O-PIN has added more features to support dynamic opti-

mizations, such as adaptive code replacement (i.e., the instrumented code can update and

88

Start

Instrument code region for profiling
[all functions, plus loops in main()]

executing code region
becomes hot?

Make DVFS decision
[check memory boundness]

Remove profiling
instrumentation and

insert DVFS instruction
Remove profiling
instrumentation

Application execution

No

Medium case

JIT and instrument all
loops inside the function

a long-running
function

with loops?

memory
bound?

CPU
bound?

Yes

Yes Yes

Yes

No

No

No

Figure 4.5: The operation flow diagram for our prototype implementation of the RDO.

replace itself at run time) and customized trace or code region selection. In addition, unlike

the basic PIN which is JIT-based and executes the generated code only [47], O-PIN takes

a partial-JIT approach and executes a mix of the original code and the generated code. For

example, O-PIN can be configured to first patch, instrument, and profile the original code

at a coarse granularity (such as function calls only). Then, at run time, it selectively gener-

ates (JIT) code and does more fine-grained profiling and optimization of the dynamically

compiled code (such as all loops inside a function). Therefore, O-PIN has less operation

overhead, compared to regular PIN [1].

Figure 4.5 shows the operation flow graph for our prototype implementation of the

89

RDO system. At the start, RDO instruments all function calls in the program, and all

loops in the main() function, in order to monitor and identify the frequently executed code

regions. (Strongly connected components in the call graph are treated as single nodes.) If a

candidate code region is found hot (i.e. the execution count is greater than a hot threshold),

DVFS testing and decision code will be started to collect run-time information and decide

how memory bound the code region is. If the code region is found to be memory bound,

RDO will remove the instrumentation code, insert DVFS mode set instructions, and resume

the program execution. On the other hand, if a code region is found CPU bound, no DVFS

instructions will be inserted. There is still a medium case where the candidate code region

may exhibit mixed memory behavior (likely because it contains both memory-bound and

CPU-bound sub-regions). For this case, RDO will check if it is a long-running function

containing loops. If it is, a copy of this function will be dynamically generated and all loops

inside this function will be identified1 and instrumented. The process will then continue at

the loop granularity.

The DVFS selection method in Section 4.3.2 is used to check the memory boundedness

of a code region and select a DVFS setting. The required HPC events in equation (4.5),

Number of memory bus transactions and Number of µops retired, are among the roughly

100 countable HPC events provided by a Pentium-M processor [35]. (This will be the core

of our hardware platform, as to be discussed in the next subsection.) However, the HPC

event in equation (4.6) to estimate the time ratio Nconcurrent/f
total time

is not available for Pentium-M

processors. Instead, we approximate the estimation in (4.6) by a new ratio obtained from

available but less-related HPC events. There are several ways to choose the HPC events for

this. For our implementation, we used the ratio of Number of µops retired over Number of

instructions retired. Based on our empirical experience, we found that the larger this ratio

is, the more concurrent CPU instructions there are for a code region. (Note, in Section 4.5,
1To identify loops, some linear-time loop analysis techniques such as that in [52] can be used. For our implementation, to reduce

the run-time analysis overhead, a simple and fast loop-identification heuristic is used. A likely loop is identified if a conditional branch
is going from a higher address to a lower address. Our experience shows this heuristic works quite well for most applications in practice.

90

Signal conditioning unit
(noise reduction)

Data acquisition unit
(sampling and reading)

Data logging unit
(processing unit)

Running system
(V/I measurement)

(a) (b) (c) (d)
Figure 4.6: Processor power measurement setup. This setup consists of four components.

we will actually show the inverse of this ratio, i.e., the average number of instructions per

1M µops retired.)

Based on the scaling factor β obtained from the DVFS decision algorithm, we choose

the actual DVFS setting for a code region (i.e., new f = β old f). Since most existing

processors have only a limited number of DVFS setting points (e.g., six to eight), we pick

the setting point close to the desired DVFS setting. (If the desired setting is between two

available setting points, we pick the more conservative or higher one. Of course, the more

fine-grained DVFS settings available, the better the control effectiveness.)

4.4.2 Deployment in a real system

We have deployed our RDO system in a real running system. The hardware platform we

use is an Intel development board with a Pentium-M processor (855GME, FW82801DB),

which is shown in Figure 4.6a. The Pentium-M processor we use has a maximum clock

frequency of 1.6GHz, two 32K L1 caches, and one unified 1M L2 cache. The board has a

400MHz FSB bus and 512M DDR RAM.

There are 6 DVFS settings or so-called SpeedSteps for Pentium-M (expressed in fre-

quency/voltage pairs): 1.6GHz/1.48v, 1.4GHz/1.42v, 1.2GHz/1.27v, 1.0GHz/1.16v, 800MHz/1.04v,

and 600MHz/ 0.96v. The voltage transition rate for DVFS is about 1mv/1µs (based on our

own measurements).

91

The OS is Linux kernel 2.4.18 (with gcc updated to 3.3.2). We have implemented two

loadable kernel modules (LKM) to provide user level support for DVFS control and HPC

reading in the form of system calls.

The above system allows accurate power measurements. The overall procedure for

power measurements is that we first collect sampling points of CPU voltage and current

values. We then compute the power trace and the total energy from these sampling points.

Figure 4.6 shows the processor power measurement setup, which includes four compo-

nents, as detailed below.

Running system voltage/current measurement unit: This unit isolates and measures

CPU voltage and current signals. The reason for isolating and measuring the CPU power

(instead of power for the whole board) is that we want to have more deterministic and

accurate results, not affected by other random factors on the board. Figure 4.7 is a system

diagram showing the CPU voltage and current measurement points (marked with + and

−) on the 855GME development board. As seen in the figure, we use the output sense

resistors of the main voltage regulator (precision resistors of 2mΩ each) to measure the

current going to the CPU (i.e. measure the voltage drop, then use ICPU = Vdrop/Rsense),

and use the bulk capacitor to measure the CPU voltage. Note that, as shown in Figure 4.7,

if we simply measure the power supply line going to the voltage regulator, the obtained

power reading will undesirably include power consumed by components other than the

CPU (such as the I/O Hub).

Signal conditioning unit: This unit reduces the measurement noise to get more accu-

rate readings. Measurement noise is inevitable because of the noise sources like the CPU

board itself. In particular, since the voltage drop across the sense resistor in Figure 4.7

is on the order of 1mv while the noise is on the order of 10mv in practice, the noise for

our system is 10 times larger than the measured signal. Because noise typically has much

higher frequency than the measured signals, we use a two-layer low-pass filter to reduce the

measurement noise, which includes a National Instrument (NI) signal conditioning module

92

���	��
������������������
����
� �!�#"%$ �� "%�'&(
*)+��,-$�

. "0/

13241�5 6�5

7�895

: ;=<?>�@=A#B
CEDGFH>JI'K�L�M'2

5ON�N�P

QSR TVUWRHX�RSUWYZUW[+\']�U

^_@3`ba
M'cedfc MhgiLWj=k

5ON�Pml

n

o
o

o

n
n

p�q�rts �	u��3�
v � s�s �+w

Figure 4.7: A system diagram showing the CPU voltage and current measurement points
(marked by + and −) on the development board.

AI05 and a simple RC filter as shown in Figure 4.6b. With these filters, we are able to

reduce the relative noise error to less than 1%.

Data acquisition (DAQ) unit: This unit samples and reads the voltage and current

signals. In order to capture the program behavior variations (especially with DVFS), a fast

sampling rate is required. We use the NI data acquisition system DAQPad-6070E [53],

which has a maximum sampling rate of 1.2M/s (aggregate), as shown in Figure 4.6c. Since

three measurement channels are needed – two for the CPU current and one for the CPU

voltage, we set a sampling rate of 200K/s for each channel (so a total of 600K/s is used).

This gives a 5µs sample length for each channel. Given that the minimum voltage transition

time is 20 − 100µs [25], the 5µs sampling length is adequate.

Data logging and processing unit: This is the host logging machine which processes

the sampling data. Every 0.1 seconds, the DAQ unit sends collected data to the host logging

machine via a high-speed fire-wire cable. (For each channel, 20K samples are first stored

in an internal buffer in the DAQ unit before they are sent out.) The logging machine then

processes the received data. We use a regular laptop running NI Labview DAQ software

to process the data. We have configured Labview for various tasks: monitoring, raw data

recording, and power/energy computation.

93

4.5 Experimental Results

4.5.1 Experimental setup

For all experiments, we use the software and hardware platforms described in previous sec-

tions. Our run-time DVFS optimization system is set to have a performance loss constraint

Ploss of 5%. (If a larger Ploss were used, the resulting frequency settings would be lower,

allowing more aggressive energy savings. Conversely, a smaller Ploss would lead to larger

and more conservative DVFS settings.) For a candidate code region, the hot threshold is

chosen to be 4 (i.e., a code region is hot if it has executed at least 4 times). But we found

our results are not sensitive to this value when it is varied from 3 − 20. Since the voltage

transition time between different SpeedSteps is about 100µs−500µs for our machine [25],

we set the long-running threshold for a code region (as described in our DVFS algorithm

in Section 4.3) to be 1.5ms (or 2.4M cycles for a 1.6GHz processor) to make it as least

3X bigger than the voltage transition time. For nested functions, we handle them using a

relation graph as described in Section 4.3

For evaluation, we use all SPEC2K FP and SPEC2K INT benchmarks. Since previous

static compiler DVFS work in [31] used SPEC95 FP benchmarks, we also include them

in our benchmark suites. In addition, we include some Olden benchmarks [15] as they

are popular integer benchmarks for studying program memory behavior.2 For each bench-

mark, the Intel C++/Fortran compiler V8.1 is used to get the application binary (compiled

with -O2). We test each benchmark with the largest ref input set (running to completion).

The power and performance results reported here are average results obtained from three

separate runs.

To illustrate and give insight for RDO operation, Table 4.2 shows some statistical re-

sults obtained from the RDO system for some SPEC benchmarks. In the table, we give

total number of hot code regions in the program and total number of DVFS regions iden-
2 Olden manipulates 7 different kinds of data organizations and structures ranging from linked list to heterogeneous OcTree. We

choose the first 7 benchmarks which cover all 7 kinds of data organizations being studied.

94

Table 4.2: Statistical results obtained for some SPEC benchmarks.
Average number is for per 1M µops; 4L main() means 4th loop in main()

total total region total Average Average Average DVFS
Benchmark hot DVFS name µops L2 cache Memory Inst setting

regions regions misses trans (Hz)
4L main() 23M 3.9K 14.4K 0.99M 1.0G

101.tomcatv 63 4 11L main() 5M 9.1K 44.7K 0.99M 0.6G
14L main() 3M 10.0K 49.4K 0.98M 0.6G
16Lmain() 2M 12.7K 69.1K 0.97M 0.6G

tistep() 11M 4.5K 18.6K 0.91M 1.0G
104.hydro2d 184 3 advnce() 284M 4.9K 21.5K 0.87M 1.2G

check() 14M 5.3K 22.9K 0.85M 1.2G
jacld() 208M 12.4K 24.8K 0.99M 0.8G
blts() 286M 5.9K 11.5K 0.99M 1.2G

173.applu 72 5 jacu() 156M 12.7K 25.6K 0.99M 0.8G
buts() 254M 7.0K 12.9K 0.99M 1.2G
rhs() 188M 4.2K 8.2K 1.0M 1.4G

176.gcc 5673 0 Mem: 0.01K - 1.0K for candidate regions; No DVFS
181.mcf 34 2 name1() 3644M 21.0K 83.0K 0.85M 1.0G

flowcost() 20M 32.0K 112K 0.94M 0.6G
186.crafty 588 0 Mem: 0.00K - 0.01K for candidate regions; No DVF S
187.facerec 207 2 9L name2() 22M 3.4K 11.0K 0.95M 1.2G

16L name2() 11M 3.4K 10.5K 0.96M 1.2G
254.gap 823 1 name3() 315M 6.6K 17.0K 0.86M 1.4G

Name 1: primal net simplex(); 2: gaborroutines mp gabortra to(); 3:collectGaib()

tified. For each DVFS code region, we show the total number of µops retired for the code

region (in a single invocation), average L2 cache misses, average number of memory bus

transactions, average number of instructions retired (per 1M µops), and the obtained DVFS

settings. The DVFS settings are based on the average number of memory bus transactions

and the average number of instructions retired. In general, the higher these two numbers

are, the lower the DVFS setting. Taking the benchmark 104.hydro2d as an example, we

see both numbers contributed to the final DVFS settings. The quantitative relationship be-

tween those numbers and the DVFS setting is based on the formulas in Section 4.3. Since

there are only 6 available frequency/voltage settings for our system, the obtained β needs

to be rounded up to an available frequency point. Overall, we see the number of DVFS

opportunities identified by RDO ranges from large (e.g. as low as 0.6Ghz for 101.tomcatv)

to small (e.g. no DVFS for 176.gcc).

In order to look more closely at RDO operation, we next examine in detail one partic-

95

0 2 4 6
0.8

1

1.2

1.4

1.6

CPU Voltage/Power

Vo
lta

ge
 (V

)

1.6GHZ

800MHZ

1.2GHZ
1.4GHZ

0 2 4 6
0

5

10

Po
we

r (
W

)

Time (seconds)
Figure 4.8: A partial trace of the CPU voltage and power for SPEC benchmark 173.applu
running with the RDO

96

ular benchmark: 173.applu. Recall in Section 4.2 we observed recurring memory phase

behavior for 173.applu. Analysis by RDO further reveals that those phase changes are

mainly caused by invocations of the 5 different functions shown in Table 4.2. The 5 func-

tions have different memory behavior in terms of average number of L2 cache misses and

average number of memory bus transactions. This observation is consistent with the be-

havior shown in Figure 4.1. By inserting DVFS instruction directly in the code regions,

RDO adjusts the CPU voltage and frequency to adapt to the program phase changes (with

frequency settings of 0.8GHz for two regions, 1.2GHz for two other, and 1.4GHz for the

last region). Figure 4.8 shows a part of the CPU voltage and power trace for 173.applu

running with RDO. If we compare this figure with the figures in Section 4.2, it is inter-

esting to see the CPU voltage/frequency are being adjusted to adapt to the recurring phase

changes shown in Figure 4.1 (with lower clock frequencies corresponding to higher L2

cache misses). The power trace is also interesting. Initially it fluctuates around the value

of 11W (due to different system switching activities). After the program execution enters

into the DVFS code regions, the power drops dramatically to a level as low as 2.5W . As

will be shown by the experimental results in Section 4.5.2, the DVFS optimization applied

to the code regions in 173.applu has led to considerable energy savings (∼35%) with little

performance loss (∼5%).

4.5.2 Energy and performance results

We view the run-time DVFS optimizer (RDO) as an addition to the regular dynamic (per-

formance) optimization system as shown in Figure 4.3. So, to isolate the contribution of

the DVFS optimization, we will first report the energy and performance results relative to

the O-PIN system without DVFS (i.e., we do not want to mix the effect of our DVFS opti-

mization and that of the underlying dynamic compilation and optimization system, which

is being developed heavily by researchers at Intel and U. of Colorado [1]). In addition, as a

comparison, we will also report the energy results from a static voltage scaling, which sim-

97

Table 4.3: Average results for each benchmark suite: RDO versus StaticScale.
Benchmark Performance Energy Energy-Delay
Suite degradation savings product

improvement
RDO Static RDO Static RDO Static

SPEC95 FP 2.1% 7.9% 24.1% 13.0% 22.4% 5.6%
SPEC2K FP 3.3% 7.0% 24.0% 13.5% 21.5% 6.8%
SPEC2K INT 0.7% 11.6% 6.5% 11.5% 6.0% -0.3%
Olden 3.7% 7.8% 25.3% 13.7% 22.7% 6.3%

ply scales the supply voltage and frequency statically for all benchmarks to get roughly the

same amount of average performance loss as those in our results. (We chose f = 1.4Ghz

for static voltage scaling, which is the only voltage setting point in our system to get an

average performance loss around 5%.)

Figures 4.9 and 4.10 show the performance loss, energy savings, and energy delay prod-

uct (EDP) improvement results for all SPEC95 FP, SPEC2K FP/INT, and Olden bench-

marks. Note that these results have taken into account all DVFS optimization overhead,

such as the time cost to check memory boundedness of a code region. For convenience, we

refer to the result from our runtime DVFS optimizer as RDO, and refer to results by static

voltage scaling as StaticScale. There are several interesting observations.

First, in terms of EDP improvement, RDO outperforms StaticScale by a big margin

for nearly all benchmarks. This shows the efficiency of our design with fast and effective

DVFS decisions.

Second, the energy and performance results for individual benchmarks in each bench-

mark suite vary significantly. On the high end, we have achieved up to 64% energy savings

(4.9% performance loss) for SPEC95 FP (101.tomcatv), up to 70% energy savings (0.5%

performance loss) for SPEC2K FP (171.swim), up to 44% energy savings (with 5% perfor-

mance loss) for SPEC2K INT (181.mcf), and up to 61% energy savings (4.5% performance

loss) for Olden benchmarks (Health). On the low end, we see close-to-zero (or even slightly

negative) EDP improvement for some benchmarks in each benchmark suite. To understand

98

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wa
ve

5

FP
95

_A
vg

16
8.

wu
pw

ise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

2k
FP

_A
vg

StaticScale
RDO

Performance degradation

-5%

5%

15%

25%

35%

45%

55%

65%

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wa
ve

5

FP
95

_A
vg

16
8.

wu
pw

ise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

2k
FP

_A
vg

StaticScale
RDO

70%Energy savings

-10%

0%

10%

20%

30%

40%

50%

60%

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wa
ve

5

95
FP

_A
vg

16
8.

wu
pw

ise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

2K
FP

_A
vg

StaticScale
RDO

69%

EDP improvement

-14

Figure 4.9: Performance degradation, energy savings, and energy-delay product (EDP)
improvement for SPEC95 FP benchmarks (on the left) and SPEC2K FP benchmarks (on
the right). We show results for both our runtime DVFS optimizer (RDO) and the StaticScale
voltage scaling.

the reasons, we see that the efficiency of a DVFS control is largely constrained by the mem-

ory boundedness of an application. The more memory bound an application is, the more

opportunities and energy saving potentials there are for DVFS. Relative to our experimen-

tal system in Figure 4.6 (with a large 1M L2 cache), these benchmarks show a variety of

memory boundedness which leads to a variety of the EDP results. Overall, the distribution

99

0%

5%

10%

15%

20%

25%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

2K
IN

T_
Av

g

BH

Bi
so

rt

Em
3D

He
al

th

M
st

Pe
rim

et
er

Po
we

r

O
ld

en
_A

vg

StaticScale
RDO

Performance degradation

-5%

5%

15%

25%

35%

45%

55%

65%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

2K
IN

T_
Av

g

BH

Bi
so

rt

Em
3D

He
al

th

M
st

Pe
rim

et
er

Po
we

r

O
ld

en
_A

vg

StaticScale
RDO

Energy savings

-10%

0%

10%

20%

30%

40%

50%

60%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

2K
IN

T_
Av

g

BH

Bi
so

rt

Em
3D

He
al

th

M
st

Pe
rim

et
er

Po
we

r

O
ld

en
_A

vg

StaticScale
RDO

EDP improvement

-14

Figure 4.10: Performance degradation, energy savings, and energy-delay product (EDP)
improvement for SPEC2K INT benchmarks (on the left) and Olden benchmarks (on the
right). We show results for both our runtime DVFS optimizer (RDO) and the StaticScale
voltage scaling.

of the SPEC2K-INT EDP results is concentrated and close to the low end, while the overall

distribution of the Olden and SPEC-FP EDP results is very spread out between the high

end and the low end.

The average results for each benchmark suite are summarized in Table 4.3. We show

both the results from our techniques and the StaticScale results. On average, we have

100

achieved an EDP improvement of 22.4% for SPEC95 FP, 21.5% for SPEC2K FP, 6.0% for

SPEC2K INT, and 22.7% for Olden benchmarks. These represent 3−5 fold better results as

compared to the StaticScale EDP improvement: 5.6% for SPEC95 FP, 6.8% for SPEC2K

FP, -0.3% for SPEC2K INT, and 6.3% for Olden benchmarks. (The average SPEC2K

INT EDP result is relatively lower compared to the other three benchmark suites. This

is because SPEC2K INT benchmarks are dominantly CPU bound as shown by previous

studies [31]. There is nothing intrinsic about floating point versus integer data. It is just

about the amount of memory traffic.)

We also want to have a rough comparison with the static compiler DVFS results in

[31] based on the reported energy performance numbers in that paper. (We were not able

to re-implement their optimizer and replicate the experiments in [31].) Compared to the

reported results for SPEC95 FP benchmarks in [31] (on average: 2.1% performance loss,

11.0% energy savings, 9.0% EDP improvement), we have achieved on average twice as

much energy savings for the same amount of performance loss. Apart from the dynamic

versus static benefits described in Section 4.2, there are two other key factors contributing

to the different results. First, the static compiler DVFS algorithm in [31] picks only a single

DVFS code region for a program (to avoid the excessive offline analysis time), while our

online DVFS design can identify multiple DVFS code regions in a program as long as they

are beneficial, as illustrated by examples in Table 4.2. Second, the decision algorithm in

[31] is based on (offline) timing profiling for each code region, while our algorithm is more

microarchitecture oriented and directly uses information about run-time environment, such

as hardware performance counts.

Overall, the results in Figures 4.9 and 4.10 and Table 4.3 show the proposed technique

is promising in addressing the energy and performance control problem in microprocessors.

We attribute the promising results to the efficiency of our design and to the advantages of

the dynamic compiler driven approach.

101

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

10
1.

to
m

ca
tv

10
2.

sw
im

10
3.

su
2c

or

10
4.

hy
dr

o2
d

10
7.

m
gr

id

11
0.

ap
pl

u

12
5.

tu
rb

3d

14
1.

ap
si

14
5.

fp
pp

p

14
6.

wa
ve

5

95
FP

_A
vg

16
8.

wu
pw

ise

17
1.

sw
im

17
2.

m
gr

id

17
3.

ap
pl

u

17
7.

m
es

a

17
8.

ga
lg

el

17
9.

ar
t

18
3.

eq
ua

ke

18
7.

fa
ce

re
c

18
8.

am
m

p

18
9.

lu
ca

s

19
1.

fm
a3

d

20
0.

six
tra

ck

30
1.

ap
si

2K
FP

_A
vg

Performance
Energy

O-PIN Overhead

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

16
4.

gz
ip

17
5.

vp
r

17
6.

gc
c

18
1.

m
cf

18
6.

cr
af

ty

19
7.

pa
rs

er

25
2.

eo
n

25
3.

pe
rlb

m
k

25
4.

ga
p

25
5.

vo
rte

x

25
6.

bz
ip

2

30
0.

tw
ol

f

2K
IN

T_
Av

g

BH

Bi
so

rt

Em
3D

He
al

th

M
st

Pe
rim

et
er

Po
we

r

O
ld

en
_A

vg

Performance
Energy

O-PIN Overhead

Figure 4.11: Performance and Energy overhead for the basic O-PIN infrastructure without
applying optimizations.

4.5.3 Basic O-PIN overhead

A dynamic optimization system has basic setup/operation overhead (i.e., the time spent to

do basic setup, to monitor/identify frequently executed code regions, etc). This overhead

must be offset or amortized by the subsequent performance optimization gain before we can

see any net performance improvement. It has been shown that a dynamic optimizer with

aggressive performance optimizations will have significant performance gains for various

benchmarks [5, 11].

The O-PIN system we use is a dynamic-optimization infrastructure and does not include

implemented performance optimizations. (Users can use this infrastructure to implement

their own performance optimizations like loop unrolling and data prefetching, but this is

beyond the scope of this paper.) So compared to the native application, the basic O-PIN

system has a negative performance gain. In other words, there is a performance and energy

102

overhead associated with the basic O-PIN infrastructure. Next, to give a complete picture

of this work, we will also show results for O-PIN and DVFS relative to the native.

Figure 4.11 shows the performance and energy overhead for the basic O-PIN infras-

tructure (computed relative to the native). For individual benchmarks, the performance

overhead is as low as 0.5% for benchmarks like 164.gzip or 171.swim, and is as high as

15% for benchmarks like 176.gcc. On average, the performance overhead for O-PIN is

about 3.3% for SPEC95 FP, 1.8% for SPEC2K FP, 3.7% for SPEC2K INT, and 0.5% for

Olden benchmarks. The energy overhead values are similar. These values are significantly

lower than the basic overhead for a regular PIN system [47], because of the low-overhead

implementation in O-PIN as described in Section 4.4.

If we look at the DVFS results from our scheme when computed with the inherited

infrastructure overhead, the EDP numbers will be lower than those in the last subsection,

as we expected. On average, the EDP improvement with the inherited overhead is about

16.7% for SPEC95 FP, 17.9% for SPEC2K FP, -1.4% for SPEC2K INT, and 20.9% for

Olden benchmarks. In general, these are clearly still promising results.

4.5.4 Discussion and micro-architectural suggestions

For experimental results in this section, it would be desirable to have some potential or

upper-bound DVFS numbers, and show how far our results are from these upper-bound

numbers. However, it is still an open research question how to effectively and accurately

compute the upper-bound DVFS results. One possible way to estimate the upper bound is

to extend the mathematical formulation in [67] from optimizing multiple sequential scal-

ing points to optimizing multiple DVFS code regions. We leave this for possible future

exploration.

While the experimental results in this section are promising, they could be further im-

proved if more micro-architectural support were available. One possible support could

be logic to identify and predict CPU execution slack such as that proposed in [23]. This

103

would make the DVFS computation easier and more accurate. Another possible support

could be some power-aware hardware monitoring counters and events to monitor the power

consumption in a processor unit and the voltage variations. In addition, more fine-grained

DVFS settings could make the intra-task DVFS design more effective. Our experience

shows that, for many code regions in the benchmarks, RDO was forced to select an un-

necessarily high voltage/frequency setting due to a lack of enough intermediate settings

between the current six SpeedSteps in Pentium-M processors.

4.6 Related Work

As we mentioned in the introduction, nearly all existing intra-task DVFS schemes are based

on hardware [49, 58], OS time-interrupt [19, 64], or static compiler [31, 68] techniques.

Very little has been done in the direction of dynamic compiler driven DVFS.

One piece of related work along that direction is the Java virtual machine DVFS pre-

sented in [27]. Their work is similar to ours in the sense that both use run-time software

to decide DVFS settings for the application. However, their work differs from ours in the

following aspect. First, they use the Java virtual machine to target Java applications at the

granularity of Java method, while we use a general dynamic optimization system to target

general applications at a more fine-grained granularity including code regions like loops.

Second, their DVFS algorithm does not take into account the memory boundedness of a

code region (they assume the execution time of a code region always scales linearly with

the frequency, no matter how memory bound it is). Also, their DVFS algorithm assumes

some sort of time budget (so called projected time), and compares the current execution

time with the time-budget to decide how much to scale. This treatment might be suitable

for multimedia applications which have a pre-determined time-budget for each frame, but

might not be as suitable to general applications. In contrast, our DVFS algorithm consid-

ers the memory boundedness of a code region, and works well for general applications.

104

Third, the power evaluation in [27] is based on simulation, while our evaluation is based

on live-system physical power measurements.

4.7 Future Work

There are several possible avenues for future work. The focus of this work is on the new

concept of dynamic compiler driven DVFS and the overall design framework. A direct

follow-up work would look at specific design issues and techniques in more depth, such as

code transformation and periodic re-optimization for DVFS. Also deeper analysis could be

done for the experimental results, such as a breakdown of the results/benefits by regions

or by different contributing factors. However, since we use a real system as opposed to

simulation, it will be challenging to break down the results/benefits in an effective way.

Another possible future work is to implement some conventional performance opti-

mizations (like loop unrolling and data prefetching), and study the interactions between

energy optimizations and performance optimizations in a run-time system. In addition,

some new processors allow DVFS for the memory bus as well. A possible future direction

is to generalize the analytical decision model and the DVFS algorithm in this paper for the

case where both CPU and memory can have DVFS.

4.8 Summary

This Chapter has given reasoning and statistical results to highlight the unique features and

advantages of dynamic compiler driven DVFS over existing techniques. We have presented

a design framework of the run-time DVFS optimizer in a general dynamic compilation

system. We have described the methodology and reported our experiences in implementing

and deploying a real DVFS optimization system. Experimental results based on physical

measurements show that our technique leads to significant energy delay product (EDP)

improvement in a real computer system.

105

Overall, we feel the dynamic compiler driven control technique is a good complement

to existing techniques, and offers great promise for active power and performance manage-

ment in modern processors.

106

Chapter 5

Conclusions and Future Directions

5.1 Concluding Remarks

The work in this thesis studies both architectural level and compiler level techniques for

controlling power and performance in microprocessors. The overall contributions of this

work are the proposed new concepts, methods, and framework for intelligent power and

performance management.

This research has shown that formal control techniques for architectural level power

management are applicable and effective on modern processors. It has investigated both

fixed-interval and adaptive-interval control schemes, which are both hardware-efficient.

This research has also shown dynamic compiler driven energy control can lead to signif-

icant energy efficiency in real computer systems. Because of its orthogonal features and

advantages, dynamic compiler driven techniques can be an effective complement to exist-

ing hardware-based techniques, and allow us to work toward a multi-layer (hardware and

software) collaborative control scheme.

While this work focuses on power and performance management only, the methodology

and design framework described in this thesis are more broadly applicable, and can be

generalized for other emerging issues such as thermal control, DI/dt, and system reliability.

107

5.2 Future Directions

There are several future directions, which are directly or indirectly related to this work.

One direction is to look at multi-modal software/hardware techniques for power-efficient

computing. Nearly all existing work in this area uses a single-loop local control mecha-

nism, which looks at one control device and one metric at a time and ignores interactions

among different control loops. A multi-loop global control mechanism is needed to achieve

the best control effectiveness. The formal control techniques in this thesis can be applied to

study the interacting effects of multiple control loops. Also, Chip multi-processors (CMPs)

constitute a new complexity-efficient and power-efficient architecture. Many CMP design

and control issues can be studied, especially those issues that link architecture, circuits

and clocks. For example, there are questions about how to design the interface circuit be-

tween different cores, what the best energy control strategy is for each clocking style, and

how to use an analytical or hybrid (analytical-simulation) approach to evaluate thread level

parallelism potential in applications.

Another direction is to look at the analysis and design techniques for variation-tolerant

architecture. As technology scales, process variation will increase dramatically for future

processors and lead to critical variability in terms of path delay, leakage current, threshold

voltage, etc. In addition, operating variations of supply voltage and temperature will also

cause increased variability at run-time. There are two main issues with the increasing

parameter variations. First, there will be a widening gap between the target performance

(or yield) and the actual performance (or yield). Second, extra guard bands are needed to

critical path timing to account for variability, which may lead to lower target performance

and sub-optimal operations.

One important question for computer architects and system software writers is how to

design a variation-tolerant system that maximizes performance, power efficiency, and yield

even with the increasing variability. This is an open and challenging research problem.

Many ideas can be explored. One idea is to use multiple voltage levels and multiple clock

108

islands to accommodate process variations, especially within-die variations. Another idea

is to design the processor not constrained by the worst case delay, but by the nominal or

expected delay of critical paths. Some kind of self-adjusting mechanism might then be

used to test and detect the actual delay (or even errors) at run-time, and adjust design pa-

rameters like supply voltage or body bias voltage to ensure correctness, performance, and

power efficiency. This is essentially a feedback control problem. Some formal control-

theoretic techniques can be used here for an effective and robust design. Besides the design

techniques, new modeling and analysis techniques may be needed. For example, proba-

bilistic techniques may be necessary to account for variability, as opposed to conventional

deterministic techniques.

Overall, I feel the techniques and schemes outlined in this thesis have great applicability

potential in addressing many of the upcoming challenges in the design of future computing

systems.

109

Bibliography

[1] PIN manuals and APIs. In Website http://rogue.colorado.edu/Pin/index.html, August
2005.

[2] D.H. Albonesi. Selective cache ways: On-demand cache resource allocation. In
Proceedings of MICRO, Dec. 1999.

[3] C. Anderson. Tuning and optimization of a 170m transistor microprocessor. In Pro-
ceedings of the IEEE/ACM International Workshop on Timing Issue in the Specifica-
tion and Synthesis of Digital System (TAU2000), Dec 2000.

[4] K.J. Astrom and B. Wittenmark. Adaptive Control. Addison-Wesley, 1995.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: a transparent dynamic optimiza-
tion system. In Proceedings of PLDI, June 2000.

[6] L. Baraz, T. Devor, O. Etzion, S. Gondenberg, A. Skaletsky, Y. Wang, and Y. Zemach.
IA-32 execution layer: a two-phase dynamic translator designed to support IA-32
applications on itanium-based systems. In Proc. of the 36th Micro, Dec 2003.

[7] L.A. Barroso. The price of performance. ACM Queue, 3(7), September 2005.

[8] S. K. Bose. An Introduction to Queueing Systems. Kluwer Academic, 2002.

[9] D. Brooks and M. Martonosi. Dynamic thermal management for high performance
processors. In Proceedings of HPCA, Feb 2001.

[10] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level
power analysis and optimization. In Proc. of the ISCA-27, June 2000.

[11] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastructure for adaptive dynamic
optimization. In Proceedings of CGO’03, March 2003.

[12] T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. In Proceedings
of ISLPED, August 2000.

[13] D. Burger and T. M. Austin. The SimpleScalar tool set version 2.0. Technical Report
97-1342, Department of Computer Science, University of Wisconsin-Madison, June
1997.

110

[14] A. Buyuktosunoglu, T. Karkhanis, D.H. Albonesi, and P. Bose. Energy efficient co-
adaptive instruction fetch and issue. In Proceedings of ISCA, pages 147–156, June
2003.

[15] M.C. Carlisle, A. Rogers, J. H. Reppy, and L. J. Hendren. Early experiences with
Olden. In Proceedings of the 6th International Workshop on Languages and Compil-
ers for Parallel Computing, August 1993.

[16] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen. Low-power cmos digital design.
IEEE Journal of Solid-State Circuits, 27(4):473–484, April 1992.

[17] J. Chase, D. Anderson, P. Thakar, A. Vahdat, and R. Doyle. Managing energy and
server resources in hosting centers. In Proceedings of 18th Symposium on Operating
Systems Principles (SOSP), Oct. 2001.

[18] T. Chelcea and S. M. Nowick. Robust interfaces for mixed-timing systems with ap-
plication to latency-insensitive protocols. In Proc. of DAC-2001, pages 21–26, 2001.

[19] K. Choi, R. Soma, and M. Pedram. Fine-grained dynamic voltage and frequency
scaling for precise energy and performance trade-off based on the ratio of off-chip
access to on-chip computation times. In Proceedings of DATE, Feb 2004.

[20] L.T. Clark. Circuit design of XScale microprocessors. In Proceedings of the 2001
Symposium on VLSI Circuits, June 2001.

[21] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for 100% architectural
compatibility. In Proceedings of ISCA, June 1997.

[22] M. Taylor et al. The RAW processor - a scalable 32-bit fabric for embedded and
general purpose computing. In Proceedings of Hot Chips XIII, August 2001.

[23] B. Fields, R. Bodik, and M. D. Hill. Slack: Maximizing performance under techno-
logical constraints. In Proceedings of ISCA, May 2002.

[24] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation in workloads with
externally specified rates to reduce power consumption. In Workshop on Complexity
Effective Design, Vancouver, Canada, June 2000., June 2000.

[25] S. Gochman, R. Ronen, et al. The Intel Pentium M processor: Microarchitecture and
performance. Intel Technology Journal, 07(2), 2003.

[26] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke. DRPM: Dynamic
speed control for power management in server class disks. In Proceedings of ISCA,
June 2003.

[27] V. Haldar, C. Probst, V. Venkatachalam, and M. Franz. Virtual machine driven dy-
namic voltage scaling. Technical Report CS-03-21, University of California, Irvine,
CA, Oct 2003.

111

[28] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Code transformations
for energy-efficient device management. IEEE Transactions on Computers, 53(8),
August 2004.

[29] J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, 3rd Edition, 2003.

[30] R.V. Hogg and A.T. Craig. Introduction to Mathematical Statistics, Fifth edition.
Prentice Hall, 1995.

[31] C-H Hsu and U. Kremer. The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. In Proc. of PLDI-2003, pages 38–48, June 2003.

[32] S. Hu, M. Valluri, and L. John. Effective adaptive computing environment manage-
ment via dynamic optimization. In Proceedings of CGO’05, March 2005.

[33] M.C. Huang, J. Renau, and J. Torrellas. Positional adaptation of processors: Applica-
tion to energy reduction. In Proceedings of ISCA, June 2003.

[34] C.J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy with architectural and
frequency adaptations for multimedia applications. In Proceedings of Micro-34, Dec.
2001.

[35] Intel Corporation, Santa Clara, CA. Intel Architecture Software Developer’s Manual,
Volume 3: System Programming Guide, 2005.

[36] A. Iyer and D. Marculescu. Power efficiency of multiple clock multiple voltage cores.
In Proceedings of the IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), Nov 2002.

[37] A. Iyer and D. Marculescu. Power-performance evaluation of globally asynchronous,
locally synchronous processors. In Proc. of the 26th ISCA, May 2002.

[38] R. Joseph, D. Brooks, and M. Martonosi. Control techniques to eliminate voltage
emergencies in high performance processors. In Proceedings of HPCA, Feb 2003.

[39] I. Kadayif, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and A Sivasubramaniam.
EAC: a compiler framework for high-level energy estimation and optimization. In
Proceedings of DATE, March 2002.

[40] A. Kansal and M.B. Srivastava. An environmental energy harvesting framework for
sensor networks. In Proceedings of ISLPED, August 2003.

[41] B.C. Kuo. Automatic Control Systems. , 7th edition. Prentice Hall, 1995.

[42] A.R. Lebeck, X. Fan, H. Zeng, and C.S. Ellis. Power aware page allocation. In
Proceedings of ASPLOS-IX, pages 105–116, Nov. 2000.

112

[43] X. Li, Z. Li, F. M. David, P. Zhou, Y.Y. Zhou, S.V. Adve, and S. Kumar. Performance
directed energy management for main memory and disks. In Proceedings of ASPLOS-
XI, Oct. 2004.

[44] D.V. Lindley. The theory of queues with a single server. In Proceedings of the Cam-
bridge Philosophical Society, pages 277–289, 1952.

[45] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithm with PACE.
In Proceedings of the SIGMETRICS-2001, pages 50–61, June 2001.

[46] Z. Lu, J. Hein, M. Stan, J. Lach, and K. Skadron. Control-theoretic dynamic fre-
quency and voltage scaling. In Proc. of the Intl. Conference on Compiler, Architec-
ture, and Synchesis for Embedded Systems (CASES), October 2002.

[47] C-K Luk, R. Cohn, R. Muth, R. Muth, H. Patil, A. Kaluser, G. Lowney, S. Wallace,
V.J. Reddi, and K. Hazelwood. PIN: Building customized program analysis tools with
dynamic instrumentation. In Proceedings of PLDI’05, June 2005.

[48] G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi, and S. Dropsho. Profile-based
dynamic voltage and frequency scaling for a multiple clock domain microprocessor.
In Proc. of the 30th ISCA, June 2003.

[49] D. Marculescu. On the use of microarchitecture-driven dynamic voltage scaling. In
In Workshop on Complexity Effective Design, Vancouver, Canada, June 2000., June
2000.

[50] D. Marculescu, D.H. Albonesi, A. Buyuktosunoglu, and P. Bose. Partially asyn-
chronous microprocessors (PAMs). In ISCA 2003 Tutorial, June 2003.

[51] D. Matzke. Will physical scalability sabotage performance gains? IEEE Computer,
pages 37–39, Sep 1997.

[52] Steven Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-
man Publishers, 1997.

[53] National Instruments. Data Acquisition (DAQ) Hardware,
http://www.ni.com/dataacquisition, 2005.

[54] K. Olukotun and L. Hammond. The future of microprocessors. ACM Queue, 3(7):27–
34, September 2005.

[55] D.B. Percival and A.T. Walden. Spectral Analysis for Physical Applications. Cam-
bridge University Press, 1993.

[56] E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early simula-
tion points. In Proc. of the PACT-2003, September 2003.

[57] G. Semeraro. Multiple clock domain microarchitecture design and analysis. In Ph.D
Thesis, University of Rochester, August 2003.

113

[58] G. Semeraro, D.H. Albonesi, S.G. Dropsho, G. Magklis, S. Dwarkadas, and M.L.
Scott. Dynamic frequency and voltage control for a multiple clock domain microar-
chitecture. In Proc. of the 35th Micro, pages 356–367, November 2002.

[59] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas, and
M.L. Scott. Energy efficient processor design using multiple clock domains with
dynamic voltage and frequency scaling. In Proc. of the 8th HPCA, pages 29–40,
February 2002.

[60] G. Semeraro, G. Magklis, and Y. Zhu. Personal communications. December 2003.

[61] A.E. Sjogren and C.J. Myers. Interfacing synchronous and asynchronous modules
within a high-speeed pipeline. In Proceedings of the 17th International Conference
on Advanced Research in VLSI, pages 47–61, Sept 1997.

[62] K. Skadron, T. Abdelzaher, and M. Stan. Control-theoretic techniques and thermal-
RC modeling for accurate and localized dynamic thermal management. In Proc. of
the 8th HPCA, February 2002.

[63] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU en-
ergy. In Proceedings of the 1st USENIX Symp. on Operating Systems Design and
Implementation (OSDI), Nov. 1994.

[64] A. Weissel and F. Bellosa. Process cruise control: Event-driven clock scaling for
dynamic power management. In Proceedings of CASE’02, Oct 2002.

[65] Q. Wu, P. Juang, M. Martonosi, and D.W. Clark. Formal online methods for volt-
age/frequency control in multiple clock domain microprocessors. In Proceedings of
the 11th ASPLOS, October 2004.

[66] Y. Wu, M. Breternitz, J.Quek, O. Etzion, and J. Fang. The accuracy of initial pre-
diction in two-phase dynamic binary translators. In Proceedings of CGO’04, March
2004.

[67] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using runtime dynamic
voltage/frequency scaling: An exact algorithm and a linear-time heuristic approxima-
tion. In Proc. of ISLPED, August 2005.

[68] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage
scaling settings: Opportunities and limits. In Proc. of 2003 PLDI, June 2003.

[69] K.Y. Yun and A. E. Dooply. Pausible clocking based heterogeneous systems. IEEE
Transactions on VLSI Systems, 7(4):482–487, December 1999.

114

