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Abstract

The dynamic trees problem is that of maintaining a forest that changesover time through

edge insertions and deletions. We can associate data with vertices or edgesand manip-

ulate this data, individually or in bulk, with operations that deal with whole paths or

trees. E�cien t solutions to this problem have numerousapplications, particularly in algo-

rithms for network o ws and dynamic graphs in general. Several data structures capable

of logarithmic-time dynamic tree operations have beenproposed. The �rst was Sleator and

Tarjan's ST-tree, which represents a partition of the tree into paths. Although reasonably

fast in practice, adapting ST-trees to di�eren t applications is nontrivial. Frederickson's

topology trees, Alstrup et al.'s top trees, and Acar et al.'s RC-trees are based on tree

contractions: they progressively combine verticesor edgesto obtain a hierarchical represen-

tation of the tree. This approach is more exible in theory, but all known implementations

assumethe trees have bounded degree; arbitrary trees are supported only after ternar-

ization. This thesis shows how these two approaches can be combined (with very little

overhead) to produce a data structure that is at least as genericas any other, very easyto

adapt, and as practical as ST-trees. It can be seenas a self-adjusting implementation of

top trees and provides a logarithmic bound per operation in the amortized sense.We also

discussa pure contraction-based implementation of top trees, which is more involved but

guarantees a logarithmic bound in the worst case. Finally, an experimental evaluation of

thesetwo data structures, including a comparisonwith previous methods, is presented.
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Chapter 1

In tro duction

Consider the following problem. We are given an n-vertex forest of rooted trees with costs

on edges.Its structure can be modi�ed by two basic operations: link (v; w; c) adds an edge

with cost c betweena root v and a vertex w in a di�eren t component; cut(v) removes the

edgebetweenv and its parent. At any time, we want to be able to �nd, for any vertex v,

its parent p(v) and the cost of the edge(v; p(v)). All these operations take constant time

with an obvious implementation: with each vertex v, store a pointer to its parent and the

cost of the edgebetweenthem.

Now suppose we also want to �nd the cheapest edgeon the path from a vertex v to

the root, or to add a constant c to the cost of every edge on this path. The obvious

implementation can support theseoperations, but in time proportional to the length of the

path, which could be �( n).

This speci�c problem appears in the context of network o w algorithms [51]. We are

interested in its generalizedversion: a data structure to maintain a forest supporting in

O(log n) time queriesand updates related to vertices and edgesindividually , and to entire

trees or paths. We call this the dynamic trees problem. Other typical operations include

adding a certain value to all vertices in a tree, or asking for the sum of all edgeweights on a

path. Operationssuch astheseareneededin several solutions to the maximum o w problem

[6, 27, 29, 56] and related algorithms [51]. They are also used in algorithms that maintain

1



2

properties of dynamic graphs,such asminimum spanningtreesand connectivity [10, 24, 33,

35]. Applications for maintaining dynamic expressiontreeshave alsobeenreported [16, 25].

The �rst data structure to support every operation in the example application in

O(log n) time was Sleator and Tarjan's ST-tree [51] (also known as the link-cut tree). This

structure partitions the tree into vertex-disjoint paths and represents each one by a binary

tree in which the original vertices appear in symmetric order. The binary trees are then

glued together according to how the paths are connected. The root of each binary tree

becomesa middle child of a node in another binary tree. For the algorithm to be e�cien t,

this hierarchy must be balanced. But making each binary tree balanced is not enough|

the total height of the hierarchy would be O(log2 n). Sleator and Tarjan have shown that

using globally biasedsearch trees [13] one doesachieve O(log n) worst-casetime per oper-

ation. They later showed [52] how splaying greatly simpli�es the data structure while still

achieving the O(log n) bound (now amortized).

ST-trees can be adapted to solve other problems beyond our example,but this requires

an understanding of their inner workings. In particular, Goldberg et al. [27] show how

subtree-related operations (such as adding a value to all vertices in a tree) can be ac-

complishedwith an implicit ternarization of the original tree, which transforms high-degree

vertices into chains of constant-degreeones. The data structure becomesmore complicated,

however.

A simpler and more elegant way to handle subtree-related operations stems from the

observation that a tree can be represented by an Euler tour. Representing tours asstandard

balanced binary trees is the basis of ET-trees, proposedby Henzinger and King [33], and

later simpli�ed by Tarjan [56]. Unfortunately, thesedata structures cannot deal with path-

related operations (such as the onessuggestedin our example), so their applications are

somewhat limited.

A third class of data structures is based on tree contraction. These structures use

two operations proposedby Miller and Reif [43] in the context of parallel algorithms: rake

(which removesleaves)and compress(which removesverticesof degreetwo). Each operation
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replacesthe original elements (vertices and edges)by a cluster that aggregatesinformation

about them. The entire tree is represented by a hierarchy of clusters, which is itself a tree.

In Frederickson's topology trees [23, 24, 25], the contraction works in rounds, each with a

maximal setof independent rakesand compresses. Sincethe tree shrinks by a constant factor

in each round, there areO(log n) rounds. Furthermore, the contraction canbeupdated after

a link or cut in O(log n) worst-casetime. However, the data structure is somewhatinvolved,

sinceit must maintain onetree for each level aswell as the connectionsbetweenthesetrees.

In practical applications, this makes it considerably slower than ST-trees [25]. Recently ,

Acar et al. proposedRC-trees [3], a randomized variant that is conceptually simpler and

runs in O(log n) expectedtime per operation. Both data structures view clustersasvertices,

which, for technical reasons,meansthat the O(log n) bound only appliesto treesof bounded

degree.Arbitrary treescan be handled by ternarization, but this increasesthe tree sizeand

adds an extra level of complexity.

An alternativ e is top trees, proposedby Alstrup et al. [7, 10]. By considering clusters

to be edges(instead of vertices), they avoid the needfor explicit ternarization. In addition,

they provide an interface for handling data independently of the order in which rakes and

compressesare performed, so one can adapt this data structure to di�eren t applications

without modifying its inner workings (a similar interfacewasalsode�ned for RC-trees). Not

only does this simplify the implementation of existing algorithms for various applications,

but it alsomakesit easierto devisenewones. In [10], however, the suggestedimplementation

of top trees is as a layer on top of topology trees, hardly a practical solution.1

In a very broad sense,all thesedata structures have the sameultimate goal: to map an

arbitrary tree into a balanced one. ET-trees do it in a very elegant, direct way, but they

cannot deal with path-related operations. ST-trees represent individual paths as binary

trees, which are then glued together to represent the whole tree. This approach is ideal for

path-related operations, but handling subtreequeriesrequiresternarization. Topology trees

1Holm and de Lichtenberg [34] did suggesta direct implementation of top trees, but they later found their
run-time analysis to be a wed (personal communication). Even if the bound is correct, the implementation
is far from trivial.



4

and RC-trees represent not the tree itself, but the stepsnecessaryto contract it. This can

be viewed as a multi-lev el decomposition of the original tree, which lends itself naturally

to applications related to dynamic graphs. These two data structures, however, can only

deal directly with treesof boundeddegree.Top treeseliminate this constraint and have the

most natural interface, but they achieve this by adding an extra layer to topology treesthat

merely hides the ternarization. Devising a data structure that is at the sametime general,

exible, and practical has beenan elusive goal.

This thesis achievesthis goal. In Chapter 4, we show how the principles behind Sleator

and Tarjan's ST-trees can be used to implement top trees. A partition of the original free

tree into edge-disjoint paths can be directly mapped onto a seriesof rakesand compresses,

which shows that partitions and contractions are essentially equivalent. The end result is

a data structure that is almost as streamlined as the original ST-trees, but as exible as

top trees (with the extra abilit y to handle ordered edgesaround each vertex). Our data

structure usessplaying and can handle dynamic tree operations in O(log n) amortized time.

Wealsopresent, in Chapter 3, a bottom-up, contraction-basedalgorithm for maintaining

and updating top trees in O(log n) time per operation in the worst case. This is the �rst

direct implementation of a worst-casetop tree. (Recall that Alstrup et al.'s original proposal

is to build an interface to topology trees.) Our algorithm consistsof a very simple procedure

to update the tree. Although it is not as practical as the self-adjusting version, it is much

easierto describe and understand, and it doesprovide stronger running-time guarantees.

In Chapter 5, we present an experimental evaluation of our data structures. We compare

the data structures to each other and to ET-trees and ST-trees (the �rst and still fastest of

the dynamic treesdata structures). The experiments uncover the strengths and weaknesses

of each data structure, as well as of the top tree interface itself. Chapter 6 presents some

concluding remarks. Beforewe deal with the new data structures, we provide (in Chapter 2)

a more detailed description of previous methods.



Chapter 2

Existing Data Structures

This chapter presents an overview of existing data structures for maintaining dynamic trees.

As already mentioned, all of them map arbitrary trees into balancedtrees. They usethree

di�eren t approaches: path decomposition (ST-trees), tree contraction (topology trees, top

trees, and RC-trees), and linearization (ET-trees). We discusseach approach in turn, in

Sections2.1, 2.2, and 2.3.

It shouldbenoted, however, that thesearenot the only techniquesusedto map arbitrary

trees into balancedtrees. Tarjan [53], for example,usedone such mapping in an algorithm

that decidesin O(m� (m; n)) time whether a spanning tree of a graph with n vertices and

m edgesis minimum. Koml�os [39] useda di�eren t mapping to show that a linear number

of comparisonssu�ces to solve this veri�cation problem, and his result was later used in

actual linear-time algorithms by Dixon et al. [20] and King [37]. Chazelle[14] de�nes a more

generalcanonical transformation that allows somedata structures that work on lists to be

applied to free trees. In particular, this transformation yields another simple O(m� (m; n))-

time algorithm for minimum spanningtree veri�cation. All thesemappings,however, apply

to static trees only|edges cannot be added or removed.

We limit our discussionto dynamic trees. In particular, all data structures we discuss

below can solve the dynamic connectivity problem for trees: they maintain a forest subject

to edgeinsertions and deletions and support queriesasking whether two vertices belong to

5
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the sametree or not. P�atra�scu and Demaine [45] showed that an 
(log n) lower bound in

the cell-probe model applies to this problem. Mappings that deal with static trees are not

subject to this lower bound, and indeed they can executesomeoperations faster than the

data structures we describe in this chapter.

2.1 Path Decomp osition

The �rst data structures to support dynamic tree operations in O(log n)-time were Sleator

and Tarjan's ST-trees [51, 52], also known as link-cut trees or simply dynamic trees. We

will only use the term ST-trees in this dissertation to avoid any confusion, since the other

two terms could easily apply to any data structure for this problem.

ST-trees are used primarily to represent rooted trees, with all edgesdirected towards

the root. The version of ST-trees proposedin [52] associates a cost with each vertex in the

forest. Costs are handled by the following operations:

� �ndc ost(v): returns the cost of vertex v;

� �ndmin (v): returns the minimum-cost vertex on the path from v to the root of its

tree (in caseof ties, returns the one closestto the root);

� addcost(v; x): adds x to the cost of each vertex on the path from v to the root of its

tree.

In addition, the data structure also provides a pair of operations to query the structure

of the tree itself: �ndr oot(v) returns the root of the tree containing v, and parent(v) returns

the parent of v. Of course,ST-treesalsosupport the usual structural operations: link (v; w)

adds an edgebetweena root v and a vertex w in another tree, and cut(v) deletesthe edge

betweenv and its parent.

2.1.1 Represen tation

Each rooted tree in the forest is represented as follows. First, the tree is partitioned into

vertex-disjoint paths. Edgeswithin a path are called solid (and so is the path itself ). The
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remaining edges,which link solid paths, are dashed. Each solid path is represented as a

solid subtree, a binary search tree in which the original vertices appear in symmetric order:

the bottommost vertex of the original path is represented as the leftmost vertex of the

corresponding solid subtree.1 Finally, the solid subtreesare \glued" together, creating a

shadow(or virtual ) tree. Let v be the topmost vertex of a solid path P, and let p(v) be its

parent (which belongsto someother path Q). The shadow tree represents this relationship

as an edge between the root node r P of the solid subtree representing P and the node

representing p(v); we say that r P becomesa middle child of p(v). There are no pointers

from a node to its middle children; the pointers go from children to parent only. This is

relevant becausea node may have up to �( n) middle children. SeeFigure 2.1.
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Figure 2.1: Example of an ST-tree (adapted from [52]). On the left, the original tree, rooted
at a and already partitioned into solid paths; on the right, a shadow tree that represents it.
In the shadow tree, middle children are connectedto their parents by dotted lines. Values
are not shown.

The implementation of the ST-tree operations described above is basedon the expose

1This description follows the convention adopted in [52]. In [51], the order is reversed,which is equivalent
but lessnatural.
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operation, used internally only. Operation expose(v) ensuresthat the path from v to the

root of its tree is solid and that there is no incoming solid edgeinto v. When theseconditions

hold, we say that v is the exposed vertex of the tree. Each tree in the forest hasexactly one

exposedvertex. In Figure 2.1, the exposedvertex is q. If one were to exposeu instead, for

example, edges(s;m) and (d;c) would be made solid, while (v; u), (r; m) and (f ; c) would

becomedashed.

The conversion of edgesfrom solid to dashed (and vice-versa) in the shadow tree is

performed by the splice operation, used during expose. If v is the root of a solid subtree,

splice(v) makes v the left solid child of its parent|it was formerly a middle child. If the

parent had a left solid child already, it becomesa middle child. The left solid child is always

the one replacedbecausethe subpath it represents is always farther from the root than is

the solid subpath represented by the right child. In fact, splice(v) can only be performed if

the parent of v is itself on the left path of its solid subtree. In Figure 2.1, splice(p) would

make p the left child of l in the shadow tree, and q would becomel 's middle child.

In addition to splices,expose(v) alsoneedsto perform rotations within each solid subtree

on the path from v to the root of the shadow tree. They are usedto ensurethat each solid

subtree is properly balanced. Theseare standard binary tree rotations, and they only take

solid children into account; the middle children of the nodesinvolvedalways remain attached

to their original parents.

2.1.2 Up dating the Tree

The running time of expose (and other structural operations) dependson what data struc-

ture is used to represent solid paths. The obvious candidates are balanced binary trees,

such as red-black trees [31]. Unfortunately, the fact that each individual solid subtree is

balanced does not guarantee that the whole structure will be. Each operation may take

�(log 2 n) amortized time, as shown in [51].

In [51], Sleator and Tarjan suggestedthe use of biased search trees instead. These are

generalizationsof balancedbinary search trees (see[13, 22], for example) that allow weights
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to be assignedto the nodes. They ensure that the time to accessa node with weight w

is proportional to log(W=w), where W is the sum of all weights in the tree. Intuitiv ely,

nodes with higher weights are more likely to be closer to the root. These properties are

relevant to ST-treesbecausethe goal here is to make the entire structure balanced,not just

each individual tree. This can be achieved by making the weight of each node equal to the

number of descendants it hasin the ST-tree structure, including thoselinked to it by dashed

edges.Note that biasedsearch trees are not as simple as weight-balanced search trees [44]:

the latter is a standard binary search tree that usesthe weight of a subtree (de�ned as the

sum of the weights of its nodes) to keepthe tree balanced,but every node has weight one.

Biased search trees allow nodesto have arbitrary weights.

Sleator and Tarjan analyze the use of two di�eren t types of biased trees to implement

ST-trees. Globally biased search trees can achieve O(log n)-time per operation in the worst

case,but they are extremely involved data structures. The authors suggestusing locally

biased search trees as an alternativ e. They are somewhat simpler and still guarantee an

O(log n) bound per operation, but only in an amortized sense:starting from an empty tree,

any sequenceof m dynamic tree operations will take at most O(m logn) time, but some

individual operations may take more than �(log n) time. Unfortunately, locally biased

search trees are still remarkably complicated data structures. For a description of both

locally and globally biasedsearch trees, see[13].

In [52], Sleator and Tarjan proposeda much simpler implementation of ST-trees, where

solid paths are represented as splay trees (also intro duced in [52]). Theseare self-adjusting

binary search trees, and as such they maintain no balancing information whatsoever. In-

stead, whenever a node is accessed,it is splayed, i.e., it is brought to the root of its tree

by a seriesof single and double rotations. The choice of which type of rotation to make in

each step depends only on the local structure of the tree, but it ensuresthat each access

to the splay tree will take logarithmic amortized time. In fact, an even stronger property

holds: each accessto an ST-tree, which involvessplaying on a seriesof splay trees, will also

take O(log n) amortized time.
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2.1.3 Dealing with Values

An obvious way of dealing with valueswould be to store two piecesof information on each

node of the shadow tree: cost(x) would represent the cost of the node itself, and mincost(x)

the minimum cost of a descendant of x in the samesolid subtree (including x itself ).

To implement the addcost operation in O(log n) time, however, one cannot changethe

costs of all a�ected vertices explicitly . After all, a single path may have 
( n) elements.

To update valuesimplicitly , valuesare represented in di�er ence form. More precisely, each

node x in the shadow tree stores two values:

� � cost(x): this is cost(x) if x is the root of a solid subtree, otherwise � cost(x) =

cost(x) � cost(p(x)), where p(x) is the parent of x in the shadow tree;

� � min (x): this represents cost(x) � mincost(x).

With this representation, only the root of a solid subtree is guaranteed to contain an actual

value. Values in all other nodes will be represented relative to this value. Therefore,

changing the value at the root (during the addcost operation) will implicitly change all

values in the tree.

Unfortunately, the useof di�erence form makessomeother operationsmorecomplicated.

Finding the cost of a particular node, for example, now requires traversing the tree, but

it can still be done in O(log n) amortized time. Another important issue with the use

of di�erence form is that these values must be updated appropriately whenever there is

rotation or splice in the ST-tree. Although it is not hard to determine how the values

should be updated in this case, it is not as immediate as it would be if the values were

stored explicitly , even for thesesimple operations.

The application for which ST-treesweredeveloped aims to �nd minima over paths. One

can, however, think of several other applications for which ST-trees could be used. One

could, for instance, use them to compute the sum of the weights of the vertices on a path

instead of picking the minimum. To support a di�eren t application, one would needto (1)

de�ne a new set of valuesto be stored in each node, (2) make sure thesevaluesare updated
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appropriately when the shadow tree changes,and (3) de�ne rules to traversethe tree during

queries. Although this can be done, it is not nearly as simple as one would hope. Sleator

and Tarjan did not de�ne a generic interface to ST-trees, which meansthat value updates

appear interspersedwith structural operations, such as pointer updates.

A natural way of de�ning a genericinterface for ST-trees is to let the user de�ne which

values to store in each node and how to update them after each rotation or splice. This

makeschangesslightly simpler, but �guring out which piecesof information to keepwould

still be a nontrivial task, not least becausevaluesmay have to be kept in di�erence form.

2.1.4 Undirected Trees

ST-treesweredevisedprimarily to handle directed treeswith �xed roots. In this setting, all

path-related queriesrefer to paths betweensomevertex and the root of its tree. In several

applications, however, the root may change,or there may be no root at all: queriesrefer to

arbitrary paths betweendi�eren t vertices of the tree.

To handle these more general cases,ST-trees support the evert operation: evert(v)

makesv the root of its tree. It can be implemented within the sametime bound as expose.

An ST-tree with evert can represent free (unrooted) trees: to query an arbitrary s-t path,

it su�ces to call evert(t) followed by expose(s).

Note, however, that an e�cien t implementation of evert requires a slight changeto the

basic data structure. This operation works by reversing the entire path between the new

root and the original root. This requires the abilit y of reversing, in constant time, all the

left/righ t pointers of the binary tree representing a solid path. Of course,performing this

operation explicitly would be too expensive. The solution is to maintain a reversebit on

each node. If this bit is true, the left and right children must be swapped: to accessthe

right child, one must follow the left pointer, and vice-versa. Moreover, the reversebit must

be stored in di�erence form: the actual value of the reversebit of a node is the exclusive-or

of the valuesstored on its ancestors. With this representation, reversing a path is easy: it

su�ces to negatethe bit stored at the root of the binary tree that represents the path.
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The main drawback of using the reversebit, apart from the extra spaceit requires, is

that it makesqueriesand updates, especially splays and splices,slightly more complicated.

In ternal nodes and evert . As already mentioned, the data structures presented in [51]

and [52] di�er in the choiceof binary search tree usedto represent each solid subtree. They

also di�er in a more subtle way: in how they map solid paths to solid subtrees.

In [51], each vertex of the original path becomesa leaf of the corresponding binary

tree, and internal nodesare added to aggregateinformation. Each of these internal nodes

can be interpreted as representing both a subpath (betweenits leftmost descendant and its

rightmost descendant) and an edge(betweenthe rightmost descendant of its left child and

the leftmost descendant of the right child). In [52], on the other hand, each vertex on the

solid path becomeseither a leaf or an internal node of the corresponding binary search tree,

and no other nodesare added.

Both variants can be used if values are associated with vertices of the original forest.

The �rst variant can also support edgeseasily, since each original edgewill correspond to

a particular node in the tree. To use the secondvariant in this case,one can store values

relative to an edge(x; y) (y being the parent of x) on the node representing x. This can

be done becauseeach node has at most one parent. Supporting evert, however, presents

a problem to this approach. When a path is reversed, the information relative to each of

its edgeswould have to move from one of the endpoints to the other. We would have to

transfer the information about each edge (x; y) on the path being reversed from x to y.

This is too costly.

The obvious solution is to usethe representation suggestedin [51]. It can be usedwith

splay trees with no asymptotic penalty. It does, however, roughly double the number of

nodes in the tree, which may have someadversee�ect on performancein practice.

2.1.5 Aggregating Information over Trees

An important feature of ST-trees is that a node doesnot needto accessits middle children.

Apart from operations that deal with the exposedpath (in which middle children are irrel-
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evant), all operations happen in a bottom-up fashion. For these operations, it su�ces to

have pointers from each middle child to its parent. The fact that there are no pointers from

the parent to the middle children greatly simpli�es the data structure, sincethe number of

children can be arbitrarily large.

Unfortunately, this feature also limits the scope of ST-trees in their original form. In

particular, several application require information to be aggregatednot over paths, but

over trees. In these cases,one does need accessfrom a node to its middle children. The

obvious approach in this casewould be to store, with each node, a list of all of its children.

Aggregating information about all children would take time proportional to the sizeof this

list, which in turn depends on the degreeof the vertex. This will be expensive, unlesswe

can guarantee that all vertices in the original forest have bounded (constant) degree.

Although this assumption is reasonablefor someapplications, in general it is not true.

The usual solution to this problem is to useternarization : whenever the input has a high-

degreevertex, we replace it by a chain of degree-threevertices.2 A common technique is

to replace each vertex with degreek > 3 by a path with k � 2 vertices: the �rst and the

last vertices are each connectedto two of the original neighbors, and each of the remaining

vertices is connectedto one. SeeFigure 2.2.
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Figure 2.2: Example of ternarization. Every vertex with degreefour or greater is replaced
by a chain of vertices of degreethree.

2 In the case of rooted trees, by \degree-three" we mean a vertex with a parent and two children; for
unrooted trees, we mean a node with three neighbors.
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The drawback of this approach is that we must somehow remember which vertices and

edgesare in the original tree and which are special elements created by the ternarization

procedure. Values associated with these extra elements typically need to be handled as

special casesby the data structure.

In the papers that intro duced ST-trees [51, 52], Sleator and Tarjan focused on path

operations only and did not mention ternarization. As a result, the conceptof ternarization

has beendiscovered independently several times, as the following examplesshow.

In [27], Goldberg et al. proposeda faster implementation of Goldfarb and Hao's network

simplex algorithm for the maximum o w problem [30]. The application deals with rooted

trees with labels on vertices. In addition to the operations already supported by ST-trees,

the data structure must be able to determine the vertex of minimum label among all de-

scendants of a vertex v. To implement this, Goldberg et al. use ternarization and call the

transformed tree a phantom tree, which is then represented as an ST-tree with someaddi-

tional operations on values. They use the notion of colors to map vertices of the phantom

tree to vertices of the original tree.

Similarly, Radzik [46] usesternarization to implement \in-subtree" operations: (1) �nd-

ing a vertex with minimum key (value) within a subtree of a rooted tree; and (2) picking a

vertex at random among all that have a �xed key X in a subtree. His solution, although

obtained independently , is essentially the sameas the one obtained by Goldberg et al.

A third instance in which ternarization was discovered independently was within an al-

gorithm of Langerman [41] for the so-called\shooter location problem", which is equivalent

to maintaining the minimum clique cover and the maximum independent set of a circular-

arc graph (a generalization of interval graphs). In order to �nd an e�cien t solution to this

problem, Langerman devisesa generalization of ST-trees that is a little more sophisticated

than the versionsabove. In his setting, each node can have an arbitrary number of children,

and they are ordered. Among the operations supported by his data structure, a contiguous

subset of the children of a vertex v can be moved (in a single O(log n)-time operation) to

another point in the tree, becoming children of a new parent w. Once again, this can be
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achieved through ternarization. The set of children of a node is represented as a binary

search tree, which can be split and joined with another tree when just a subset is required.

Kaplan et al. [36] apply dynamic trees with ternarization to maintain a set of intervals

with priorities so that onecan quickly locate the maximum-priorit y interval that contains a

query point. Dynamic treesareusedfor the specialcasein which the intervalsdo not overlap

(but can be nested). The authors build a containment forest to represent the hierarchy of

intervals, and represent a \binarized" versionof it using ST-trees. This technique is exactly

the sameas ternarization, but applied to rooted trees. As in the previous application, the

order amongthe children of a node is relevant, and a contiguous subsetof the children may

acquire a new parent in a single operation.

Recently , Klein [38] devisedan algorithm for �nding multiple-source shortest paths on

planar graphs that requires �nding minimum labelsover subtrees. Onceagain, the solution

(devised independently of the results above) was to useternarization.

We shall see that two other data structures, topology trees and RC-trees, must use

ternarization as well to handle trees of arbitrary degree. In fact, unlike ST-trees, they

require ternarization even if only path operations are to be supported, unlessall vertices

in the input are guaranteed to have bounded degree.Top trees and ET-trees, on the other

hand, naturally support trees of arbitrary degree.

2.1.6 Other Extensions

Apart from ternarization, we note that ST-trees have beenextendedto support more com-

plicated operations. For instance, Georgiadis et al. [26] have recently shown how one can

merge paths. Their application considerstrees that have �xed roots and are heap ordered:

each vertex is associated with a label that must be greater than that of its parent. Opera-

tion merge(v; w) computesthe nearestcommonancestorx of v and w and mergesthe paths

v � � � x and w � � � x so that the heap order is preserved. Even though a single operation may

causea linear number of edgesto change,Georgiadiset al. show that it can be performed

in O(log2 n) amortized time with ST-trees.
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2.2 Tree Con traction

We have seenthat ST-trees are basedon the technique of path decomposition : the original

tree is partitioned into disjoint paths, and each is represented asa binary tree. Contraction-

baseddata structures take a fundamentally di�eren t approach. Instead of representing the

tree itself, they represent a contraction of the tree, which progressively transforms the

original tree into smaller trees that summarizethe original information.

Section 2.2.1 describes contractions in the parallel setting, where the concept �rst ap-

peared. We then describe three di�eren t contraction-based data structures: topology trees

(Section 2.2.2), RC-trees (Section 2.2.3) and top trees (Section 2.2.4).

2.2.1 The Parallel Setting

Contractions are based on two operations intro duced by Miller and Reif [43]. The rake

operation eliminates vertices of degreeone, while compress eliminates vertices of degree

two. They associate information with vertices. When a degree-onevertex is eliminated,

the information it holds is transferred to its only neighbor (and aggregatedappropriately).

When a degree-two vertex v is eliminated, its two incident edges(u; v) and (v; w) are

replacedby a single edge(u; w). The information associated with v is transferred to u, w,

or both. A contraction is a sequenceof rake and compressmovesthat reducesthe original

tree to a single vertex, which will hold information about the entire tree.

Miller and Reif proposedrake and compress in the context of parallel algorithms, with

each vertex maintained by a di�eren t processor. They assumethat the underlying tree is

rooted. Their contraction algorithm works in rounds. In each round, the rake operation

eliminates all leaves of the tree. Simultaneously, the compress operation will eliminate a

subsetof the vertices of degreetwo. More precisely, let a chain v1; : : : ; vk be a sequenceof

k � 2 vertices such that vi +1 is the only child of vi (for 1 � i < k) and vk has exactly one

child, which is not a leaf. In each chain, the compressoperation works by identifying vertex

vi with vi +1 , for all odd valuesof i < k. Intuitiv ely, vi accumulates the value and inherits

the descendants of vi +1 .
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Miller and Reif show that a constant fraction of the vertices is guaranteed to disappear

after each round, which implies that the total number of rounds is bounded by O(log n).

Sinceeach round can be performed in constant time when there is oneprocessorper vertex,

the total running time of the algorithm is O(log n) as well.

The main application of tree contraction studied by Miller and Reif is the evaluation

of expressiontrees. Each leaf of the original tree is associated with a real value, and each

internal node with an operation (+ or � ) to be performed on its children (assumedto be

exactly two). In each subsequent round, the remaining leaveswill still contain a value, and

each internal node with two children will be associated with an operation. Internal nodes

with a single child will be associated with linear functions of the form aX + b, where a

and b are constants and X is a variable representing the (not yet computed) value of the

remaining child. When a node is eliminated by rake or compress, the linear expression

on the parent is updated accordingly. After all rounds are completed, the only remaining

vertex contains the value of the entire expression.

As observed by Miller and Reif, the rake operation is enoughto ensurea correct evalu-

ation of the expression.If the original tree is very unbalanced,however, up to �( n) rounds

may be neededto contract it. This is why compress is also necessary. One could also

think of using only compress, but that would not even guarantee that the whole tree would

be contracted. The idea of tree contraction, with variants of rake and compress, has been

further studied in the parallel setting by Abrahamsonet al. [1] and by Cole and Vishkin [17].

The subsectionsthat follow describe three contraction-baseddata structures, all of which

usevariants of rake and compress. First, wediscussFrederickson'stopology trees [23,24,25].

As in the Miller and Reif setting, information is associated with vertices. We then briey

describe RC-trees, proposedby Acar et al. [3], which can be seenas a randomized version

of topology trees. We shall seethat storing information on vertices limits the applicabilit y

of these two data structures to trees with bounded vertex degrees,unlessternarization is

used. The third data structure we discuss,Alstrup et al.'s top trees [10], solvesthis problem

by storing information on edgesinstead.
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2.2.2 Topology Trees

The �rst data structure basedon tree contraction was Frederickson's topology trees [23, 24,

25]. Given an underlying tree in which each vertex has no more than three neighbors, the

data structure represents a multilevel partition of the tree. The vertices of the original tree

are partitioned into clusters, each of which contains either a single vertex or a collection

of connectedvertices. After each cluster is contracted into a single vertex, the result will

be another tree, which can be itself partitioned into clusters. This processcontinues until

there is only one cluster left, which will represent the entire tree.

The topology tree is merely a static representation of the hierarchy of clusters. The

original tree is consideredto be level zero of the contraction, with each vertex represented

as an individual cluster. Theseclusters will be the leavesof the topology tree. In general,

a cluster at level ` + 1 is created by combining one or more clusters from level `. The

new cluster will appear in the topology tree as the parent of the clusters it contains. Each

level of the topology tree can be interpreted as a contracted version of the original tree.

Figure 2.3 shows a multilev el partition of the tree and a corresponding topology tree.
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Figure 2.3: Example of a topology tree (adapted from [24]). On the left, the original tree and
a multilev el partition; on the right, a topology tree that represents this partition. Pointers
betweenneighboring clusters at the samelevel are not shown.

Frederickson presented at least three di�eren t versionsof topology trees [23, 24, 25]. All
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three work in rounds, and they require all clusters formed in a round to be independent

(i.e., no original vertex may belong to more than one cluster) and also that no vertex be

left in a cluster by itself if it can legally belong to a composite cluster (i.e., a cluster with

more than one vertex). The three versionsof topology trees di�er basically in the rules for

creating composite clusters.

In [24], each cluster must have external degreeat most three, i.e., it must be adjacent

to at most three other clusters. Furthermore, if it does have external degreethree, then

it must contain a single vertex. The remaining clusters may have up to two vertices each.

This meansthat a two-vertex cluster will be either (a) a degree-onevertex matched with

its neighbor; or (2) two neighboring degree-two vertices matched together. Frederickson

observes that a cluster of type (1) can be seenas representing a rake move, and those of

type (2) are related to compress. The multilev el partition in Figure 2.3 obeys the rules

presented in [24].

The versionof topology treesdiscussedin [25] is very similar but assumesthe underlying

trees are rooted and binary. This still meansthat each node will have no more than three

neighbors: the parent and two children. The original description of topology trees [23] is

slightly more complicated, and mapping the rules proposedthere to rakes and compresses

is not immediate. Our focus in this section is on the newer, simpli�ed versions,presented

in [24] and [25].

In all versions,Frederickson shows that the number of vertices in each level is reduced

by at least 1/6, which meansthat the height of the topology tree is O(log n).

Whenever there is a link or cut, the contraction must be updated. Fredericksonproposes

a bottom-up algorithm to do this. It processeseach level in turn, deleting clusters that are

no longer valid and inserting new ones to replace them. When processinga level, the

algorithm must �nd out which clusters of the next level will be a�ected. In order to do this

e�cien tly , topology trees must maintain not only vertical pointers (i.e., pointers between

parents and children) but horizontal pointers as well (i.e., pointers between neighboring

clusters on the samelevel).
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Frederickson shows that the update algorithm can be performed in O(log n) time in the

worst case. After a link, the list of clusters that must be inserted at any given level of the

topology tree actually forms a connectedsubtree of the tree at that level. Moreover, there

are at most two so-calledborder edges, i.e., edgesbetween this subtree and the remainder

of the tree. If the subtree were isolated, its sizeshould decreaseby at least 1/6 after each

round. Becauseof the border edges,the actual decreasemay be smaller, but only by a small

additiv e constant factor. Frederickson shows that at most 14 new clusters may be inserted

at each level after a link.3 The number of original clusters that may be deleted is also

bounded by a constant (although it is not speci�ed in either [24] or [25]). According to the

author, the analysis of cut is similar, and equivalent (unspeci�ed) bounds can be found.

Basic applications. In [25], which deals with rooted trees, two main applications are

considered:dynamic expressiontreesand network o ws. The former aggregatesinformation

over the entire tree, while the latter doesso over individual paths.

Dynamic expressiontrees are maintained as in Miller and Reif's original application. A

cluster representing an original vertex of the tree will contain either a value or an operation

(+ or � ), while other clusters aggregateinformation in the form of linear functions.

A more interesting application is network o ws. Frederickson was the �rst to show

that a contraction-based data structure could support the set of operations for which ST-

trees were designed.We have already seenthem in Section 2.1: �ndc ost, �ndr oot, �ndmin ,

addcost, and parent.

We have seenthat the leaves of the topology trees correspond to the vertices of the

original tree and that each internal node (cluster) of the topology tree can be seen as

representing a subsetof the original vertices(the onesrepresented by the leavesthat descend

from the node). Frederickson shows how one can also associate a cluster with so-called

restricted paths, which are upward paths in the original tree. A cluster holds information

about minima over thesepaths. As in ST-trees, thesevaluesare not stored explicitly , since

addcost would require too many updates to the tree. They are stored in di�erence form.

3 In [24], Frederickson claims that a more careful analysis might reduce both constants (1/6 and 14).
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Unfortunately, updating these values is even more complicated than in ST-trees, since

the mapping between clusters and paths is not as natural|there is no correspondence

betweenbinary trees and paths.

Dynamic graphs. It should be noted, however, that topology trees were originally de-

vised to handle dynamic graph applications. In [23], topology trees are usedin the solution

of the dynamic minimum spanning tree problem. The problem is to maintain the minimum

spanning tree of a graph subject to edgeinsertions and deletions. The simplest solution is

to recompute the entire spanning tree after an insertion or deletion occurs. Frederickson

demonstrated that, with topology trees, updates can actually be supported in sublinear

time. More precisely, he showed that an update can be supported in O(
p

m logn) time,

where m and n denote the current number of edgesand vertices in the graph.

Handling insertions is relatively simple: when a new edge (v; w) is inserted into the

graph, all one has to do is check if it costs less than the most expensive edge on the

path between v and w on the current minimum spanning tree. This can be done with a

variant of the �ndmin operation of ST-treesor topology trees. Deletions, however, are more

complicated. If (v; w) is removed from the graph and it doesbelong to the tree, one must

�nd a replacement edgeamong all edgesbetweenthe component containing v and the one

containing w. Frederickson usestopology trees to accomplish this. The algorithm itself is

somewhat involved, but the basic idea is to make each cluster C at level ` remember the

minimum edgebetweenC and each of the other clusters at the samelevel.

2.2.3 RC-T rees

The most recent contraction-based data structure is RC-trees,proposedby Acar et al. [3, 4].

They closely resemble the original contraction scheme by Miller and Reif; in fact, \R C"

stands for \rak e and compress."

As in topology trees, clusters are vertices, which means that the data structure can

only support trees with vertices of bounded degree. RC-trees are, however, slightly more

general than topology trees. While the latter requires each vertex to have degreeat most
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three, RC-trees naturally support any �xed upper bound d. The total spaceusageand the

running time are proportional to d, however. RC-trees assumethe original tree to be free

(unrooted).

RC-trees also work in rounds, but they have di�eren t contraction rules. First of all,

the algorithm strictly alternates betweenrake rounds and compressrounds. During a rake

round, all degree-onevertices are removed. The contribution of each eliminated vertex is

stored in its only neighbor. During a compressround, a subsetof the verticesof degreetwo

disappears. The two edgesincident to an eliminated vertex are replaced by a single edge

between the original neighbors. The neighbors are responsible for the information stored

in the disappearing vertex. The algorithm requires the compressmovesto be independent,

i.e., if a vertex disappears, both of its neighbors do not. Acar et al. use randomization to

ensureindependence.A hash function H is used to map a vertex and a level to a boolean

value. A vertex v on level ` with neighbors u and w will be compressed only if all of the

following conditions hold: v has degreetwo, H(v; `) = true, and H(u; `) = H(w; `) = false.

The height of an RC-tree is logarithmic in the number of vertices in the underlying tree,

but, becausecompressrounds are randomized, this bound only holds in the expectedsense.

The expected update time (after a link or cut) is also logarithmic.

Although it does not guarantee good worst-caseperformance, randomization is useful

in other respects. First, it simpli�es the updating algorithm, executedwhenever a link or

cut occurs. The algorithm works in a bottom-up fashion, as does the updating algorithm

for topology trees, but new moves can be performed independently of the original ones.

A second(and related) useful aspect of randomization is that it simpli�es the proof that

the update algorithm takes constant time per level. As with topology trees, the proof is

basedon the fact that the set of new clusters on each level forms a subtree that \touc hes"

the rest of the tree in a constant number of places. Finally, randomization makesthe data

structure history-independent, i.e., its current state depends only on the current free tree

being represented. In all other data structures for dynamic trees, the current state also

depends on which operations happened before, and on the order in which they occurred.
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Although this is irrelevant for most applications, it may be useful in contexts whereprivacy

or security are important [3].

Handling values. Unlike topology trees,RC-treesare \programmable," i.e., the usercan

easilyde�ne which problem must be solved by de�ning what piecesof information should be

stored on each node and setting up a few functions to handle them. The update algorithm

will simply call these functions whenever it decides a vertex should be eliminated. As

shown in [4], three of thesecall-back functions are de�ned: rake data (which computesthe

contribution of a raked vertex and storesit on its neighbor), compressdata (which computes

the contribution of a compressed vertex and stores it on both neighbors), and �nalize data

(which aggregatesinformation on the �nal, root cluster). In addition, the user must de�ne

a query algorithm to traversethe tree and compute the appropriate information.

Although this interface makes this data structure much easier to use than topology

trees, it still hassomedrawbacks. Perhapsthe most important is the fact that the interface

assumesthat the tree has boundeddegree.To represent a tree T of arbitrarily high degree,

we must �rst ternarize it, creating a tree T 0. The interface will be to T 0 (which has several

\sp ecial" verticesand edgescreatedby the ternarization procedure),not to T, which would

be more natural. Moreover, the query algorithm tends to be as complicated as those for

ST-trees and topology trees, sincevaluesmust still be represented in di�erence form.

2.2.4 Top Trees

We now consider top trees, proposed by Alstrup et al. [10] (see also [7, 9]). While still

basedon rake and compress, they are more general than the other contraction-based data

structures discussedso far, sincethey have no degreeconstraints. In addition, we shall see

that their interface is also the easiestto use.

Before describing top trees in detail, we must note that the notation used here di�ers

slightly from the one usedby Alstrup et al., as do someof the assumptionswe make about

the tree being represented. The essential ideas, however, are the same. A more detailed

discussionof the di�erences will be presented at the end of this section.
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Figure 2.4: A free tree. Edgesare arranged in counterclockwise order around each vertex.

Top trees represent a collection of free trees (i.e., trees that are unrooted and undi-

rected). Furthermore, we assumethere is a circular order of edgesaround every vertex of

the original tree. If the application naturally has such an order, the data structure will

use it; otherwise, an arbitrary order will be de�ned. SeeFigure 2.4. In this picture, as in

all other representations of free trees in this work, we assumethat edgesare organized in

coun terclo ckwise order around each vertex.

In this setting, we interpret compress and rake as follows. A degree-two vertex v is

compressed if the two edgesincident to it, (u; v) and (v; w), are replaced by a single edge

(u; w). We alsosay that either edgeis compressed at v. A degree-onevertex v with neighbor

x is raked if the edge(v; x) and its successor(w; x) around x are replacedby a single edge,

alsowith endpoints w and x. We can alsosay that the edge(v; x) is raked onto (w; x), that

(v; x) is raked around x, that (w; x) receives (v; x), or that (w; x) is the target of a rake.

SeeFigure 2.5.

rake(v)

compress(v)

w

x

w

x

v

wuw

v

u

Figure 2.5: Top trees: Basic operations.
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Both rake and compressare viewed as manipulating clusters. Each edgeof the original

tree is considereda cluster by itself (a base cluster). When two clusters are combined by

either rake or compress, the result will be a new cluster, the parent cluster. Every cluster

(not only baseclusters) will have exactly two endpoints, and can therefore be consideredto

be an edge.

A top tree is a binary tree that embodiesa contraction of a free tree into a singlecluster

via a sequenceof rake and compress operations. Each leaf of the top tree is a basecluster

representing an original edge,and each internal node is either a rake cluster or a compress

cluster. A node aggregatesinformation pertaining to all descendants; in particular, the

entire original tree is represented at the root of the top tree. Sinceclusters correspond to

edges,a tree with a single vertex will be represented by an empty top tree.

When an edge is deleted from or inserted into the original forest, there is no need to

recompute a new contraction from scratch: it is enoughto update the a�ected top trees to

make them consistent with the new underlying forest. Sincechangesto the leavespropagate

to the root, only sequencesof rakes and compressesthat produce balanced top trees can

provide an O(log n) worst-casesolution to the dynamic trees problem.

Onesuch sequencecanbeobtained asfollows: work in rounds, and in each round perform

a maximal set of independent moves (each cluster participates in at most one move, and

no valid move is left undone). Figure 2.6 shows a contraction of the tree in Figure 2.4 that

obeys theserules; it also shows the corresponding top tree.

The top tree in the example has four types of nodes. A rake node, shown as a circle,

represents a rake of its left child onto the right child. A compressnode, shown as a square

with two children, represents the compress of its two children (which can appear in any

order). A dummy node, shown as a squarewith a single child, represents an edgethat was

not involved in any move in the previous round. Finally, a base node, shown as a square

with no children, represents an edgeof the original free tree. Note that dummy nodescould

in principle be eliminated, as shown in Figure 2.7.
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Figure 2.6: A contraction (on the left, to be read bottom-up) and the corresponding top
tree (on the right). Circles represent rake nodes in the top tree; squaresrepresent base
nodes,dummy nodes,or compress nodes,depending on whether the number of children is
zero, one, or two.

en

in

in

mn

mnlm

im

im

kmik

mo

hi

ei

gi

gi

giij

fg

eg

eg

egdg

bg

bccg

cgac

Figure 2.7: The top tree corresponding to the contraction in Figure 2.6, without dummy
nodes.
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Up dates. Although it is fairly simple to show that this round-basedcontraction scheme

doeshave at most O(log n) levels, it is not obvious that it can be updated (after a link or

cut) in O(log n) time. In fact, Holm and de Lichtenberg attempted to prove this in their

joint master's thesis [34] but later found the proof to be a wed.

In [10] (seealso[7]), Alstrup et al. do show that top treesoperations can be implemented

in O(log n) worst-case time, but only as a layer on top of topology trees. Recall that

topology trees are de�ned for ternary trees. At each level, topology clusters partition

the tree into vertex-disjoint subtrees linked by boundary edges, which do not belong to

any cluster. Vertices incident to boundary edgesare boundary clusters. To represent an

arbitrary free tree, one must �rst ternarize it. A topology tree is then built to represent

the transformed tree. To create a top tree, the basic step is to transform each topology

cluster into a top cluster, which can be done becausea topology cluster is guaranteed to

have at most two boundary vertices (i.e., vertices incident to boundary edges). This is

obviously true for clusters with two or fewer boundary edges. It is also true for clusters

with three incident edges,since the contraction rules for topology trees ensurethat these

clusters must have a single vertex. Every topology cluster is transformed into a top cluster

induced by the verticesand edgesit contains. As mentioned in [10], a topology cluster may

createup to two top clusters, which can make the top tree have twice as many levels as the

corresponding topology tree.

We will present in Chapter 3 a very simple update algorithm that does guarantee an

O(log n) update time for the contraction scheme used in the example (based on maximal

independent rounds). Since it does not rely on topology trees, it is the �rst stand-alone

worst-caseimplementation of top trees. Chapter 4 presents another stand-aloneimplemen-

tation of top trees,which is usually faster in practice but hasonly an amortized performance

guarantee.

In terface. In [10], Alstrup et al. focus mainly on the top tree interface and on how

it makes the specialization of top trees to di�eren t applications extremely simple. The

interface consists of a small set of operations that must be de�ned by the user (which
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we will present shortly). Just as importantly , the interface imposesa strict discipline for

accessingthe tree. Instead of allowing the user to traversethe top tree freely, sheis granted

direct accessonly to its root. Even though this may appear restrictiv e, they show that this

strategy is just as powerful as any other, and in fact greatly simpli�es the implementation

of various applications.

Sincea cluster always has two endpoints, it can be thought of as an edgeon somelevel

of a contraction of the tree. Moreover, it can be naturally mapped to both a path and a

subtree of the original tree. The path is the one between its endpoints; the subtree is the

one induced by all base clusters that descendfrom it. Take cluster ei in Figure 2.6. It

represents not only the path from e to i , but also the subtree induced by edges(a; c), (c;g),

(b;c), (d;g), (e;g), (f ; g), (i; j ), and (g; i ). The vertices that belong to the subtree but are

not endpoints are said to be internal to the cluster: the internal vertices of cluster ei are

a, b, c, d, f , g, and j .

With that in mind, top treessupport three basicexternal operations, which the usercan

call directly:

� C  link(e): adds an edge e = (v; w) to the forest and returns the base cluster

representing the new edge. If the edgewould form a cycle, it is not added and the

function returns null.

� cut(C): removesthe edgerepresented by basecluster C from the forest.

� C  expose(v; w): takes at most two vertices as input and ensuresthat they are

endpoints of the root clustersof their trees. If v and w belongto the samecomponent,

the function returns its root cluster; otherwise, it returns null.

The last operation is important becauseof the constraint that the userhasdirect access

only to the root of a top tree. If the user is interested in somepath v � � � w, shemust �rst

call expose(v; w), then look at the cluster returned. If the user wants to deal with the tree

containing v, calling expose(v; �) will give her accessto the root of the relevant top tree.

To executethese operations, the clusters in the a�ected top trees must be rearranged.
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It is up to the data structure itself to decide how to carry this out. While doing so, it

must update the information stored in each of the clusters a�ected. The exact piecesof

information (and how they are updated) depend on the application the top treesare solving.

Therefore, it is up to the user to de�ne what �elds each cluster should have, and how they

should be updated. To that end, the user must provide the implementation of four internal

operations, de�ned by Alstrup et al. as follows:

� C  create(e): makesa basecluster representing edgee;

� C  join (A; B ): performs a rake or compressof two adjacent clusters;

� (A; B )  split(C): disassembles a rake or compresscluster and returns its children;

� destroy(C): eliminates a basecluster.

When dummy nodes are present, both join and split must be generalized to allow

clusters with a single child. Moreover, both functions should have an additional parameter

specifying the type of move to be made (rake, compress, or dummy). Following Alstrup

et al., we have not explicitly included this parameter in the de�nitions above to simplify

notation. If the move is a rake, join assumesthat the �rst cluster (A) is to be raked onto

the second(B ); split adopts the sameconvention for its output.

The four internal operations are de�ned as call-back functions. The data structure

will transform structural changesto the tree into a seriesof create, destroy, split, and join

operations. At most one create or destroy is executed per external operation, since only

one original edgeis inserted or removed at a time (in the caseof expose, none is). On the

other hand, O(log n) internal clusters may change,causingas many calls to split and join .

Each application of dynamic trees will have di�eren t piecesof information associated

with each cluster, and will implement the internal operations to handle this information

appropriately. The remainder of this section presents a few examples to illustrate the

power and simplicit y of top trees. Unlessotherwise noted, the applications presented here

are described in [10].
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Aggregating information over trees. Perhapsthe simplest possibleapplication of top

trees is to maintain the sum of the costs of all edgesin a tree. In this case,we store a

single value in each cluster. The create operation initializes this value as the cost of the

corresponding edge; join stores in the new cluster the sum of the values in the children.

Both split and destroy do nothing.

If, instead of �nding the sum, we were interested in �nding the minimum edgecost, we

would just have to changejoin : instead of computing the sum of the valuesin its children,

it would compute the minimum.

Op erations on paths. A slightly more involved application is to �nd the length of a

given path in the tree. We store a single value per cluster, corresponding to the length of

the path between its two endpoints. As in the previous application, the create operation

initializes this value as the length of the corresponding edge. The behavior of join depends

on whether the operation being performed is compressor rake. When two edges(u; v) and

(v; w) are compressed, join stores the sum of their values in the parent cluster. If (u; v) is

raked around v onto (v; w), join will merely copy the value of (v; w) to the parent cluster.

Note that this captures the essenceof each operation: a compresse�ectiv ely combines two

paths into one,whereasa rake merely \discards" oneof the paths and keepsthe other|after

all, the parent edgehas the sameendpoints as the receiver.

Theseupdate rules ensurethat the root cluster of the top tree will contain the length of

the path between its endpoints. To compute the length of the path betweentwo arbitrary

vertices v and w, all the user needsto do is call expose(v; w) and read the value in the

cluster returned by the operation.

Main taining diameters. The top tree interfacemakesit easyto implement applications

that require information about subtreesand paths at the sametime. An example is main-

taining the diameter of a dynamic tree, i.e., the largest distancebetweentwo vertices in the

tree. Using top trees, Alstrup et al. were the �rst to show that the diameter of a tree can

be updated in O(log n) time after a link or cut. To achieve this, we maintain in each cluster
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C = (v; w) not only its diameter|denoted by diam(C)|but alsosomeauxiliary �elds that

will allow us to update the diameter e�cien tly . We must store the length of the path be-

tweenv and w, denoted by length(C), and the maximum distance from each endpoint to a

vertex in the subtree represented by C. This requiresone �eld for each endpoint: maxv(C)

and maxw(C).

De�ning create and join to update these �elds appropriately is quite simple. We have

already seenhow the length �eld can be maintained, so we restrict our discussionto the

other three �elds. When a new base cluster C representing an e = (v; w) with length `

is created, operation create must set diam(C) = maxv(C) = maxw(C) = `. When two

clusters A and B with a common vertex v are combined into a cluster C, join must set

diam(C) = maxf diam(A); diam(B ); maxv(A) + maxv(B )g:

Also, let w be an endpoint w of C that belongsto B but not A. We update maxw(C)

as follows:

maxw(C) = maxf maxw(B ); length(B ) + maxv(A)g

If C is a compress cluster, it will also have an endpoint u that belongs to A but not B .

Field maxu(C) must be updated in a similar fashion to maxw(C). If the move is a rake, v

will be an endpoint of C, and we just set maxv(C) = maxf maxv(A); maxv(B )g.

Non-lo cal search. In [10], Alstrup et al. observe that certain applications require per-

forming a binary search within the top tree to �nd a basecluster with somespeci�c property.

These applications include maintaining the center of a dynamic tree (i.e., the vertex that

minimizes the distance to the farthest vertex) or its median (the vertex that minimizes the

sum of the distancesto all other vertices).

The top tree interface, however, forbids the user from performing the binary search

directly, since it would involve looking at non-root nodes. Instead, the authors proposea

routine that gradually transforms the original top tree into another, with the target edge

represented at the root. A �fth user-de�ned internal function, select, is used to guide this

construction. Alstrup et al. show how select can be implemented independently of the other



32

operations (link, cut, and expose) to run in time proportional to the original depth of the

base node representing the target edge. As soon as the desired query is completed, the

original tree is restored.

Implicit values. In the examplespresented so far, only create and join neededto be

de�ned. The other two internal functions, split and destroy, did nothing. They are useful

when values must be represented implicitly . An obvious example is the maximum o w

application that motivated ST-trees. In this case, one must not only �nd the edge of

minimum cost along a path, but also have the abilit y of adding, in a single operation, a

constant value x to each edgeon a path.

To support these operations, we maintain two values in each cluster C. The �rst is

mincost(C), the cost of the minimum edgeon the path between the endpoints of C. The

secondvalue is extra(C): this is a \lazy value" to be added to all clusters that represent

subpaths of C, excluding C itself.4 Theseclusters are all descendants of C in the top tree.

Although essentially equivalent to di�erence form, lazy values �t more naturally with the

top tree interface and are often easierto reasonabout.

The internal operations are de�ned so that the following invariant always holds: if R is

the root of the top tree, mincost(R) will contain the actual minimum edgecost on the path

betweenthe endpoints of R. This will not necessarilybe true for other clusters in the tree.

The operations are de�ned as follows. Operation create, when applied to an edgewith

cost x, initializes mincost to x and extra to zero. Operation C  join (A; B ) will always

set extra(C) to zero. The value it sets for mincost(C) dependson the operation being per-

formed: if it is compress, mincost(C) is set to the minimum of mincost(A) and mincost(B );

if the operation is rake, mincost(C) is set to mincost(B ) (recall that B is the receiver).

To add a value x to the cost of each edgefrom v to w, it su�ces to call expose(v; w)

and add x to both �elds (mincost and extra) of the root cluster. This value will only be

propagated to the rest of the tree when the cluster is split. More precisely, when split is

applied to a compresscluster, its extra value is added to both �elds (mincost and extra) of

4Alternativ ely, one could include C, as long as the internal operations are de�ned properly.
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each children. When applied to a rake cluster, split addsthe extra value to both �elds of the

child representing the receiver; the other child remains unaltered. The destroy operation

doesnothing.

Data on vertices. Sincetop tree clusters correspond to edges,representing edge-related

information is trivial. In many applications, however, we must associate data with vertices

instead. Alstrup et al. [10] suggestattaching to each vertex v a special edge(a label) to

store vertex-related data; one of its endpoints is v, and the other a dummy vertex with no

other incident edge. Although this approach is generic,adding extra edgesis an undesirable

overhead. For most applications, it is enoughto keepthe data associated with the vertices

in a separatearray to which the internal operations (join , split, create, and destroy) have

access.Vertex information would be explicit for exposedvertices (i.e., those that are either

isolated or endpoints of root clusters), and implicit for internal ones. Only the values of

exposedvertices could be accesseddirectly. To query v, one would �rst call expose(v; �),

then look at the entry for v in the array.

Suppose, for example, that we want to maintain the total weight of the vertices in a

tree. An auxiliary array keepsindividual weights, while each cluster stores a single value

corresponding to the total weight of its internal vertices(ignoring its endpoints). Operation

create(e) initializes this value aszero, sincea basecluster hasno internal vertices. The join

operation sets the value of the parent cluster to be the sum of the values in its children

plus the weight of the disappearing vertex, taken from the auxiliary array. To �nd the total

weight of the tree containing vertex v, we �rst call C  expose(v; �), then return the value

stored in C plus the weights of its two endpoints, available at the auxiliary array. To change

the weight of a vertex v, we �rst exposeit, then changethe value in the auxiliary array.

Notation. In their presentation of top trees[10], Alstrup et al. usea di�eren t terminology

from the one we adopt here. Instead of dealing with rakes and compresses, they think of

join and split as manipulating path clusters and point clusters. A path cluster sharesboth

of its endpoints with other clusters; a point cluster sharesat most one. Intuitiv ely, point
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clusters are those that can be raked; a path cluster can be compressed if its endpoints have

small enough degree. We believe the notation using rake and compress explicitly is more

natural, and it stressesthe similarit y between top trees and other contraction-based data

structures.

Another di�erence betweenthe our interface and that of Alstrup et al. is that we explic-

itly support sorted adjacencylists (i.e., there is a circular order around each vertex). Since

we allow the order to be arbitrary , our representation is slightly more general.

2.3 Euler Tours

The third basicapproach for representing dynamic trees is that usedby Euler tour trees, or

ET-trees. They wereoriginally intro ducedby Henzingerand King [32, 33] to help maintain

dynamic graph properties (connectivity, bipartiteness, and approximate minimum spanning

trees) in polylogarithmic time per edgeinsertion or deletion. The data structure was later

simpli�ed by Tarjan [56]. We focus on Tarjan's version of the data structure.

Tarjan usesET-trees to aggregateinformation over the vertices of a tree. Every vertex

v has an associated value val(v). Apart from the usual link and cut operations, the data

structure must support operations that deal with values. Two operations deal with indi-

vidual vertices: �ndval (v) returns val(v) and changeval(v; x) sets val(v) to x. Two other

operations deal with information about the entire tree: �ndmin (v) returns the vertex of

minimum value in the tree containing v, and addval(v; x) adds x to all vertex valuesin the

tree containing v.

The data structure is basedon a very simple idea: represent the tree by an Euler tour

of its edges,and represent the tour itself asa binary tree. The Euler tour of a tree is a tour

that traverseseach edgeof the graph twice (once in one direction, once in the other). In

general,a tree may have exponentially many Euler tours. Any one of them can be usedby

the data structure.

Besidesarcs, the Euler tour also includes nodes representing the vertices of the tree.

Each vertex w corresponds to a single node in the Euler tour, and it appears right after a
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node representing an arc (v; w), for somev. Note that, if w has degreegreater than one,

there will be more than one such arc in the tree (and the tour). Any one can be chosento

be the predecessorof the node representing vertex w. SeeFigure 2.8.

The data structure represents a forest as a collection of Euler tours. If an edge(v; w)

is cut from the forest, we must remove the arcs (v; w) and (w; v) from the Euler tour and

patch the remaining nodes into two independent Euler tours. Conversely, if an edge(v; w)

is inserted into the forest (by a link operation), we do the opposite: we insert arcs (v; w)

and (w; v) to combine two Euler tours.

The obvious representation of the tour itself is as a doubly-linked list. This allows an

arc to be inserted or deleted in constant time, given a pointer to it. Operations such as

�ndmin or addval, however, would take linear time, sincethey would require traversing the

entire tour.

To make theseoperations more e�cien t, ET-trees represent the tours as binary search

trees. We �rst convert the tour into a linear list by breaking it at somearbitrary point, then

we build a binary search tree in which the elements of the list appear in symmetric order.

The binary tree in Figure 2.9 is a possiblerepresentation of the circular list in Figure 2.8.

This representation allows links and cuts to be performed in O(log n) time with a con-

stant number of joins and splits of binary trees. In his presentation of ET-trees [56], Tarjan

suggestsusing splay trees [52], which guarantee that each of theseoperations takesO(log n)

amortized time. Slightly more complicated alternativ es, such as red-black trees [31], guar-

antee a bound of O(log n) in the worst case.

Note that O(log n) time per link or cut is worsethan what we would have with doubly-

linked lists. But now we can perform �ndmin and addval in O(log n) time, much faster

than before. This can be done if valuesare stored in di�erence form, as in ST-trees. Each

node x in the binary tree stores two values:

� � val(x): the di�erence between the actual value of x and that of its parent in the

binary tree (except if x is the root, in which case� val(x) represents the actual value);

� � minval (x): the di�erence between val(x) and the minimum value in the subtree
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Figure 2.8: An Euler tour (as used by ET-trees) corresponding to the tree in Figure 2.4.
To be read in counterclockwise order.

m

gc

b

ca

abc

cb

c

ij

ji

igj

om

k

kimk

o

mo

gi

ml

mn

n

nm

lm

l

hi

km

ik

ih

hi

e

f

fgg

gfeg

gd

dg

ged

ac

cg

Figure 2.9: A binary search tree representing the Euler tour in Figure 2.8.
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rooted at x in the binary tree.

If valuesare stored in this form, addval and �ndmin can be easily implemented in O(log n)

time. Note that only nodesrepresenting verticesof the original tree will have valuesassoci-

ated with them. In the de�nitions above, a node representing an arc has no value by itself;

it simply relays the information from its descendants to its ancestors. If a node representing

an arc has no descendant, � val(x) and � minval (x) can be simply ignored.

ET-trees are signi�cantly simpler than the other data structures discussedso far, which

at �rst glance would make them the preferred choice in dynamic tree applications. The

trouble with them is that they cannot handle path queries e�cien tly . Each edge in the

forest appears as two nodes in the representation, and they may be arbitrarily far apart.

This makesit hard to aggregateinformation about a speci�c path. Aggregating information

over the entire tree, however, is relatively simple.



Chapter 3

Con traction-Based Top Trees

This chapter presents a very simple implementation of the top tree interface that supports

link, cut, and expose in logarithmic time in the worst case. Our data structure usesthe

contraction procedure proposedby Holm and de Lichtenberg [34]. The contraction works

in rounds. The set of moves performed in each round is independent and maximal: each

edgecan participate in at most one move, and no legal move is left undone. Section 3.1

will show that this strategy is guaranteed to eliminate a constant fraction of the original

vertices after each iteration, which implies that the top tree will have logarithmic height.

We are interested in the update problem: given a contraction C of a forest F , �nd a

contraction C0 of a forest F 0 that di�ers from F in at most oneedge(which hasbeenadded

or deleted). The goal is to obtain C0 from C with at most O(log n) modi�cations, where n

is the total number of vertices in the trees involved.

Section 3.2 suggestsa very simple greedy algorithm for updating the tree and proves

that it actually achieves this goal. After a structural operation (link or cut), it simply

keepsthe original clusters that remain valid and greedily creates new clusters to ensure

maximalit y. Section 3.3 details how the update algorithm can actually be implemented.

Finally, Section 3.4 discussessome alternativ e design choices that could be made in the

implementation of the data structure.

38
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3.1 Num ber of Levels

A necessary|but not su�cien t|condition for updating a top tree on n nodes in O(log n)

time in the worst caseis that its height (i.e., the number of levels of the contraction it

represents) never exceedsO(log n). Before consideringthe update problem itself, we prove

that the contraction rules we usedo result in a top tree with at most O(log n) levels.

Lemma 1 If a contraction procedure is guaranteed to eliminate a fraction � > 0 of all

nodes in each round, then the number of rounds in the contraction is at most log1=(1� � ) n.

Pro of. Let h be the round after which there are only two vertices (i.e., an edge) left. The

relation

n(1 � � )h � 2

can be derived directly from the hypothesis: we start with n vertices, and a fraction of at

most 1 � � will remain after each step. Taking the binary logarithm of both sides1 and

rearranging the terms, we get

h �
1 � logn

log(1 � � )
= �

log(n=2)
log(1 � � )

� log1=(1� � ) n;

as desired. 2

Given the lemma, all we neednow is a constant � that applies to the contraction rules

usedby our data structure. The following result will help us determine this constant.

Lemma 2 Let D i be the number of vertices with degree i on a free tree T. If T has at least

two vertices, the following identity holds:

1X

i =1

D i (i � 2) = � 2: (3.1)

Pro of. Since iD i is the total degreeof all vertices of degreei and the number of edgesis

n � 1, we have that
1X

i =1

iD i = 2(n � 1):

1 In this dissertation all logarithms are basetwo, except when another base is given explicitly .
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Replacing n, we get
1X

i =1

iD i = 2

 1X

i =1

D i

!

� 2:

The lemma follows by rearranging the terms of this expression. 2

Lemma 3 In any tree T, more than half of the vertices havedegree one or two.

Pro of. In the summation in Equation 3.1, each degree-onevertex has a negative contribu-

tion of one unit, vertices of degreetwo have no contribution at all, and vertices of degree

three or greater have positive contributions (of at least one unit each). Becausethe �nal

result is negative (� 2), there must be more vertices of degreeone than of degreethree or

more. Sinceall other vertices have degreetwo, the lemma follows. 2

This is relevant to our algorithm, becauseevery degree-onevertex is a rake candidate

and every degree-two vertex is a compresscandidate.

Lemma 4 If n � 3, at least 1/6 of the vertices disappear from one round to the next.

Pro of. Let n be the number of vertices in the tree. If n � 6, the lemma is trivial: at least

one move will be performed. Assumethat n > 6. We would like to show that each move

that actually happenswill block at most two other potential moves(i.e., at most two other

potential moves would involve edgesthat participate in the move that actually happens).

Since there are at least n=2 potential moves, this would su�ce to show that at least n=6

moves will happen. We shall seethat this is not actually true: there are casesin which

a move may block three other potential moves. These casescan be handled separately,

however.

Consider what happens when an edge(v; w) is raked around v onto someedge(v; x).

If v has degreetwo, only two moves can be blocked: compress(v) and a move around x

involving (v; x) (which could be either compress(x) or rake with (v; x) as a receiver).

If v hasdegreegreater than two, the following movesmay be blocked: (i) a rake around

v with (v; w) as a receiver; (ii) a rake of (v; x) around v; (iii) a move around x involving
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(v; x) (which could be either a rake with (v; x) as a receiver or compress(x)). These are

three cases,but case(ii) requires x to have degreeone, and case(iii) can only happen if

degreeof x is greater than one. Therefore, at most two of thesecasescan actually happen

simultaneously. Note, however, that case(iii) may actually represent two moves (both a

rake and a compress), as long as x has degreetwo and its other neighbor (besidesx) has

degreeone. This corresponds to con�guration (a) in Figure 3.1.

(c)

y

x

w

v

u

(b)

y

x

wu

v

(a)

y

x
w

u

v

Figure 3.1: The three bad con�gurations, in which a single move (rake(w) in con�guration
(a), compress(w) in the other two con�gurations) can block three other moves. The vertex
attached to the rest of the tree (v in the �rst two con�gurations, u in the third) may
have arbitrarily high degree.The remaining vertices have exactly the degreesshown in the
picture.

Now considerwhat happenswhen a vertex w with neighbors v and x is compressed. It

may block the following moves: (i) compress(v); (ii) a rake around v with with (v; w) as

the receiver; (iii) compress(x); and (iv) a rake around x with (w; x) as the receiver. For all

four moves to be candidates,v, w and x must have degreetwo and the other neighbors of

v and x (besidesw) must have degreeone. Therefore, the tree must actually be a 5-vertex

path. Since we are assuming that n > 6, at most three of these moves may actually be

candidates. For exactly three to be candidates, without loss of generality, x must have



42

degreetwo and y must have degreeone, where y is x's other neighbor besidesw. This

corresponds to con�gurations (b) and (c) in Figure 3.1.

(e)

z

yw

v

u

(d)

zy

wu

v

Figure 3.2: Two good con�gur ations that must replacethe bad con�gurations in Figure 3.1
in the proof of Lemma 4. Con�guration (d) replaces(a) or (b), and (d) replaces(c).

We say that the con�gurations in Figure 3.1 are bad. If thesecon�gurations are absent

from the tree in a given round, it is easy to show that the lemma holds, since each move

actually executed will block at most two other moves. When these con�gurations are

present, however, weneedto bemorecareful. Wewill show that, whenk bad con�gurations

occur in the original free tree T, the number of potential movesis guaranteed to be at least

n=2+ k. This is large enoughto account for the extra movesblocked by bad con�gurations.

More precisely, considerwhat happenswhen we replaceeach of the k bad con�gurations

in T with oneof the alternativ e con�gurations depicted in Figure 3.2 (which we call good).

Each bad con�guration of type (a) or (b) must be replacedby a good con�guration of type

(d); a bad con�guration of type (c) must be replacedby a good con�guration of type (e).

Let T0 be the tree thus obtained.

Now consider the properties of thesecon�gurations. First, each good con�guration has

the samenumber of vertices as the bad con�guration it replaces.Second,the degreeof the

boundary vertex (the only vertex adjacent to the remainder of the tree) in con�guration

(d) is always greater than two, as it is in the bad con�gurations it replaces;in con�guration

(e), the boundary vertex will have the samedegreeas in the original tree, which is at least
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two. Third, each good con�guration has exactly three non-boundary vertices of degreeone

or two; each bad con�guration, on the other hand, has four such vertices.

Both T and T0 have n vertices. Lemma 3 ensuresthat at least n=2 of the vertices in

T0 have degreeone or two. Together with the properties above, this ensuresthat T has at

least n=2 + k vertices of degreeone or two.

Let a bad move be a move that blocks three other potential moves;all other movesare

good moves. There is at most onebad move per bad con�guration. Considera maximal set

of moves in T. Each good move will block at most two other moves; each bad move will

block three other moves, but there can be at most k of those. Becausethere are n=2 + k

potential moves in T, a maximal set of actual moves must have cardinalit y at least n=6.

This completesthe proof. 2

This establishesa lower bound on the number of edgeseliminated. This is enough to

bound the height of the top tree.

Lemma 5 Any top tree representinga tree on n verticesusing a maximal setof independent

moveson each level wil l haveheight at most 3:802logn.

Pro of. Together, Lemmas1 and 4 ensurethat the height will be at most log6=5 n, which is

lessthan 3:802logn. 2

The next lemma shows that the bound given by Lemma 4 is tight up to a small additiv e

factor.

Lemma 6 There exists a family of trees such that a tree with n vertices has a maximal set

of independent valid movesthat eliminates no more than n=6 + O(1) of its vertices.

Pro of. Consider a tree formed by a root r with three neighbors, each of which is itself the

root of a complete binary tree of size k = 2c � 1, for somepositive integer c. This graph

has3k + 1 vertices, 3(k + 1)=2 of which are leaves;all other verticeshave degreethree. Now
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replace each degree-onevertex v by con�guration (b) depicted in Figure 3.1. (One could

also replacethem with con�guration (a).) SeeFigure 3.3.

The transformed tree will have 4[3(k + 1)=2] = 6(k + 1) more vertices than the original

tree. The total number of vertices will therefore be n = 3k + 1 + 6(k + 1) = 9k + 7. A

maximal set of moves can be obtained by executing compress(w) in each copy of con�gu-

ration (b), where w is the degree-two node adjacent to the original vertex v, as shown in

Figure 3.1. The total number of moves performed in this caseis 3(k + 1)=2 = 1:5k + 1:5

(one per original leaf). Note that 1:5k + 1:5 = (9k + 7)=6 + 1=3, which meansthat exactly

n=6 + 1=3 vertices will be eliminated from this n-vertex tree. 2

Note that this worst-case example has a very restricted structure. The author has

not been able to �nd an example where 1/6 of all vertices are eliminated in two or more

consecutive rounds, even ignoring additiv e constant factors. A particularly bad case in

the long run (acrossmore than one round) is that of three complete binary trees with the

samenumber of vertices and whoseroots are all adjacent to a common vertex, as shown

in Figure 3.4. Ignoring additiv e terms, only 1/4 of the vertices (half of the leaves) are

eliminated in the �rst round. In the following round, 1/3 of the vertices will be removed:

every leaf edgewill be combined with its neighbor, either by rake or compress. The result

will be once again a set of three complete binary trees. Therefore, the algorithm will

alternate betweenremoving 1/4 and 1/3 of the vertices, which amounts to removing 1/2 of

all vertices after each pair of rounds.

3.2 Up dating the Con traction

We have proved that any contraction that works in maximal independent rounds will have

at most O(log n) levels,wheren is the number of vertices in the forest. Although necessary,

this condition is not su�cien t for our purposes. We must prove that we can update any

such contraction in O(log n) time after a link or cut. This requires \repairing" the original

contraction by undoing someof the existing moves and performing new ones. Our goal is
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Figure 3.3: A tree with n verticesin which a maximal setof moveseliminatesonly n=6+ O(1)
vertices (those represented as hollow circles). Edgesare in counterclockwise order around
each vertex.
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Figure 3.4: A family of trees that requires two rounds to eliminate half of all vertices.
Starting from the tree on top, a maximal set of moveswill eliminate 1/4 of all vertices. The
elements of one such maximal set are shown as hollow circles. The resulting tree will be
the oneat the bottom; a maximal set of moveswill eliminate 1/3 of the remaining vertices.
The resulting tree will be similar to the one on top, but with one fewer level and half as
many vertices.
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to prove that this can indeed be carried out in O(log n) time.

When describing the algorithm, we will use the terms original contraction and new

contraction to refer to the initial forest and to the forest after the link or cut operation,

respectively. The update algorithm transforms the original contraction into the new one.

To make the discussionsimpler, however, we will describe the algorithm as if it created

the new contraction from scratch. This involvessaying that somemoveswill be replicated,

which just meansthat the original cluster representing the move will be preserved.

The rules for repairing the contraction are very simple. For each level (starting from

the bottommost), we just replicate all original moves that can be replicated, then perform

new movesuntil maximalit y is achieved. There is no additional constraint on the set of new

moves: any maximal set is a valid choice. Figure 3.5 shows an example of how an original

contraction may be updated after a link.

The �rst step of the algorithm (replicating original moves) is done implicitly|w e just

keepthe original clusters. Only the secondstep|p erforming new moves|is doneexplicitly .

In this section,we shall prove that (1) the number of new clustersper level is constant after

a link or cut2 and (2) theseclusterscan be processedin constant time. To do this, we need

someadditional concepts.

3.2.1 Up dates: Basic Notions

Activ e clusters. A basecluster is inactive if it appears in both contractions. A rake or

compress(or dummy) cluster is inactive if it appearsin both contractions and has the same

children (both inactive). All other clusters are active. Note that the active clusters in the

new contraction are the clusterscreatedby the update algorithm; only on thosedo we need

to call join (or, in the caseof a basecluster, create). In Figure 3.5, active clusters in the

new contraction are represented as thicker edges.Activ e clusters in the original contraction

are those that must be deleted;we must call split on them (or, in the caseof a basecluster,

destroy).

2This is also true for expose, but we will only deal with it in Section 3.3.5.
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Figure 3.5: Updating a contraction: an example. On the left, the �rst four rounds of a
maximal contraction, starting from the bottom. On the right, the �rst four rounds of the
updated contraction after a link operation. The active (new) clusters in the new contraction
are highlighted. Note that all original movesthat can be replicated are replicated.
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Consider a �xed level ` in the new contraction. We call the subgraph induced by

the active edgesthe core of this level. The subgraph induced by the active edgeson the

corresponding level in the original contraction is the core image.

Euler tours. The existence of a circular order around each vertex (i.e., the fact that

the adjacency lists are sorted) de�nes a unique Euler tour of each tree in the forest. For

our purposes,an Euler tour of a tree is de�ned as a circular list of arcs. Each original

(undirected) edge(u; v) will be represented as two (directed) arcs in the Euler tour: (u; v)

and (v; u). We say that these arcs are twins. If edge (v; w) succeedsedge (v; u) in the

adjacencylist of v, then arc (v; w) will be the immediate successorof arc (u; v) in the Euler

tour. In particular, if v has degreeone, the successorof arc (u; v) will be arc (v; u). See

Figure 3.6.

ca

bc
cbgcigjiijkimkommo

nm

mn

lm

ml

km
ik hi ih gi fg gf eg ge dg

gd

cg

ac

Figure 3.6: The Euler tour (as used by top trees) corresponding to the tree in Figure 2.4.
It should be read in counterclockwise order.

The circular order in the original forest induces a unique circular order of the clusters

present on the other levelsof the contraction. (Recall that the original forest canberegarded

as level zero.) Therefore, each level is associated with a unique Euler tour.

Each arc in the Euler tour maintains a pointer to its successorand to its twin arc.

With that information, the data structure can easily detect valid moves. Let a be any
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arc, with b as its successor,a0 as its twin, and b0 as its successor'stwin. Assume that b

is di�eren t from both a and a0. Arc a can be raked onto b if and only if succ(a0) = a.

Looking only at Figure 3.6, we know, for example, that vertex g could be raked, since arc

fg is immediately followed by gf. Similarly, an arc a can be compressed with its successor

b if and only if succ(b0) = a0. In Figure 3.6, we know that vertex k could be compressed

becausesucc(ik ) = km and succ(mk) = ki .

Subtours. At any level of the update algorithm, an inactive subtour of an Euler tour E

is a nonempty, maximal, contiguous sublist of E containing only inactive arcs. A proper

subtour of an Euler tour E is an inactive subtour that starts and endsat the samevertex v.

In other words, the tail of its �rst arc (the only arc without a predecessorin the subtour)

and the head of its last arc (the only arc without a successor)are the samevertex v, which

we refer to as the anchor of the subtour. Note that, if a proper subtour contains an arc

(u; w), it will alsocontain (w; u). A proper subtour represents a subtreeof the original tree,

and its anchor is the intersection betweenthe proper subtour and its complement (i.e., the

sublist of E containing the arcs that are not in the proper subtour). Figure 3.7 shows the

four proper subtours of the secondlevel (level 1) of the contraction shown in Figure 3.5.

Figure 3.7: The four proper subtours of the secondlevel of the contraction in Figure 3.7.
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Intuitiv ely, a proper subtour can be thought of as a generalizedleaf of the original tree,

sinceit only touchesthe remainder of the tree in one vertex. An arbitrary inactive subtour

doesnot necessarilyhave this property. Take Figure 2.4, and supposethat both (d;g) and

(i; k) are active and all other edgesinactive. The inactive subtour consisting of arcs km,

ml , lm, mn, nm, mo, om, and mk is a proper subtour (anchored at k). In contrast, the

inactive subtour consisting of arcs ij , j i , ig, gc, cb, bc, ca, ac, cg is not a proper subtour,

sinceits �rst vertex (i ) is di�eren t from the last (g); in particular, ig belongsto the subtour

but gi doesnot.

Our update algorithm is such that the set of active edgeswithin a component is always

contiguous, which ensuresthat every inactive subtour it dealswith is alsoa proper subtour.

3.2.2 Pro of Outline

Recall that our goal is to show that the update algorithm performs a constant number of

new moves in each level. To that end, we will show that there can be no more than four

proper subtours in any level. This means that the core only touches the rest of the tree

in four points, which has two consequences:�rst, the number of new edgesadded to the

core in each level is bounded by a constant; second,the core behaves \almost" like a free

tree, in the sensethat a constant fraction of its original edges(minus a constant) must be

eliminated from one round to the next due to rakes and compresses. Since the core starts

the algorithm with at most one edge, these facts guarantee that it will not grow beyond

constant size. To complete the proof, it su�ces to show that all new moves performed by

the algorithm involve either the coreor an edgewithin constant distance(in the Euler tour)

from it.

The remainder of this section makesthe main points of this argument more precise.

The notion of proper subtours is helpful becauseit allows us to identify regions of the

tree that neednot be processedexplicitly by the update algorithm. Intuitiv ely, oneexpects

that a move involving two inactive arcs that are adjacent only to inactive neighbors should

have no problem being replicated. In fact, if we state this intuition more formally, it is
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indeed true:

Lemma 7 Let Ev be a proper subtour anchored at v at the beginning of round `. Any new

move involving arcs of Ev at this level must involve the �rst, the second, or the last arc of

this subtour.

We delay the proof of this lemma until Section 3.2.3. It ensuresthat the update algo-

rithm only needsto processclusters that are active or are closeto the extremesof a proper

subtour. All other moveswill be replicated, i.e., processedimplicitly .

To prove that the number of processedclusters is boundedby a constant, all we needis

the following result:

Theorem 1 During the update algorithm, the inactive edgesof the Euler tour at any level

can be partitioned into at most four inactive subtours, all of them proper.

This is clearly true at level zero. When an edge(v; w) is added to (by link ) or removed

from (by cut) the forest, it will determine exactly two proper subtours: one anchored at v

and the other at w.3 We shall see,however, that thesesubtours are unstable: either can

be split into two proper subtours at a subsequent level. We will show that, whenever an

unstable subtour is indeed split, the two resulting subtours will be stable: they cannot be

further subdivided in two until one of them disappears completely.4 We say that these

two subtours are coupled: the existenceof one ensuresthe stabilit y of the other, essentially

becausethe path between the two anchors restricts the types of new moves that can be

performed. When one of the subtours disappears (becauseall of its edgeshave become

active), the other becomesunstable.

More formally, let the parent set of a proper subtour be the set of all inactive parents

of the clusters represented in the subtour. We shall prove the following facts about stable

and unstable subtours:
3For simplicit y, we consider only these links and cuts now; expose will be analyzed independently later.
4A formal de�nition of stable and unstable subtours will be given in Section 3.2.4.
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Lemma 8 Let E be an unstable subtour at level `. If the parent set of E is nonempty,

the corresponding arcs at level ` + 1 wil l either form a single unstablesubtour or a pair of

coupled stablesubtours.

Lemma 9 Let Ev and Ew be a pair of coupled stablesubtours at level `. If both have non-

empty parent sets at level ` + 1, the corresponding arcs wil l form a pair of coupled stable

subtours. If only one of the parent sets is non-empty, it wil l form an unstablesubtour.

Together with the fact that level zero has at most two subtours, both unstable, these

lemmas imply that each level of the contraction may have no more than two unstable

subtours or four stable subtours (or, combining thesetwo conditions, one unstable and two

stable subtours).

This provesTheorem 1, modulo the proofs of Lemmas7, 8, and 9. Thesewill be given

in Sections3.2.3, 3.2.5, and 3.2.4, respectively. Section 3.2.6 givesmore precisebounds on

the number of active edgesthat must be processedby the algorithm in each level.

3.2.3 Replicated Mo ves

To prove Lemma 7, we needthe following result:

Lemma 10 Let E be an Euler tour of the new contraction at some level `, and let Ev be

a proper subtour of E anchored at v. Any original move involving two edgesof Ev wil l be

replicated, with the possibleexception of a move that involvesboth the �rst and the last arcs

of the tour.

Pro of. As already observed, to determine whether a rake or compress move is valid, we

only need to look at the two arcs involved and at their twin arcs. We claim that a valid

move involving a and its successorb may ceaseto be valid only if the successorof a, a0

(the twin arc of a), or b0 (the twin arc of b) changes.For both rake and compress, we must

still have succ(a) = b in the new contraction. For rake, we also need to guarantee that

succ(a0) = a; the successorsof b and b0 are irrelevant. For compress, the move will remain

valid only if succ(b0) = a0; the successorsof b and a0 are irrelevant.



54

Supposeboth a and b belong to Ev (which implies that their twins also do). Since Ev

is a proper subtour, the only arc in Ev that may change its successoris the last one. Any

original move that doesnot involve this arc will therefore be replicated. A move involving

the �rst arc of the tour and its predecessormay not be replicated either, but in this casethe

predecessoreither doesnot belong to the subtour or coincideswith its last edge;therefore,

the lemma still holds. 2

We are now ready to prove Lemma 7. Assumethere is a new move involving two arcs e

and f that appear consecutively in Ev (i.e., f is the successorof e). If either e or f (or any

of their twins) is an extreme arc, we are done: the lemma is not violated. So assumethat

neither of these arcs (or their twins) is the �rst or the last arc of the subtour. We claim

that this situation can only happen when e is the secondarc of the tour.

In the original contraction, e and f could not have both stayed unmatched, or elsethat

contraction would not be maximal. Since the move is new, at least one of thesearcs must

have been involved in someother move, which could not be replicated. Call it the blocked

move. Becausewe are assumingthat neither e nor f is an extreme arc, both edgesinvolved

in the blocked move must belong to Ev . If one of them did not, then the other arc would

necessarilybe an extreme arc of Ev .

From the proof of Lemma 10, we know that exactly three typesof movesmay be blocked

in this case: (1) compress(v), which combines that last arc with the �rst (this is the case

where the successorof a or b0 changes);(2) a rake of the last arc around v onto the �rst arc

(this is the casewhere the successorof a changes);or (3) rake(v), where the �rst arc (which

is the twin of the last) is raked onto its successor(this is the casewhere the successorof

a0 changes). The �rst two casesonly involve extreme edges;case(3) is the only one that

may involve an arc that is not extreme: the secondarc of the subtour. This arc must be e.2

Note that the only possible new move that involves neither the �rst nor the last arc

happensin a very speci�c situation: when the anchor v wasraked in the original contraction
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Figure 3.8: The only casein which a new move between inactive edgesdoes not involve
either the �rst or the last arc of a proper subtour. The two con�gurations refer to the same
level, but the one on the left refers to the original contraction and the one the right to the
new contraction. The only di�erence betweenthem is that v has an additional set of active
edgesincident to it (shown as the subtreeD). This makesv the anchor of a proper subtour
with �rst arc (v; x) and last arc (x; v). Becausev now has degreegreater than one, edge
(v; x) can no longer be raked onto (x; w). This freesedge(w; x) to be raked onto (x; y) as
a new move|one that doesnot involve either the �rst or the last arc of the tour.

but cannot be in the new one becauseit has at least one incident active edge. This caseis

depicted in Figure 3.8. We shall seethat, if a subtour is stable, its anchor cannot be raked

in either contraction. Therefore, the casedepicted in Figure 3.8 can only happen when v is

the anchor of an unstable subtour.

3.2.4 Stable Subtours

This section is dedicated to the proof of Lemma 9. To that end, we �rst need a precise

de�nition of stable subtours. Let Ev be a proper subtour at level ` anchored at vertex v.

We say that Ev is stable if all of the following conditions are satis�ed:

� There exists a vertex v� 6= v in the sameconnectedcomponent as v in both contrac-

tions (old and new) with at least one incident inactive edge.

� In both contractions, the path betweenv� and v contains only active edges.

� Let (v; w) be the �rst edgeof Ev : its predecessoraround v belongsto the path between
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v� and v. Similarly, the predecessoraround v� of the �rst arc in the subtour anchored

at v� also belongsto this path.

If there is no vertex v� satisfying the properties above, Ev is said to be an unstablesubtour.

Otherwise, Ev and Ev� (the proper subtour anchored at v� ) will each be stable, and they

will be coupled. Figure 3.9 depicts a genericstable subtour.

BA C

D

last first

path to another anchor

v

C=A

D

first  (=last)

path to another anchor

v

Figure 3.9: The two possiblecon�gurations of a genericstable subtour anchored at v. On
the left, the �rst and the last arcs represent two di�eren t edges;on the right, they represent
the sameedge. The subtrees denoted by A, B , and C belong to the stable subtour and
contain only inactiveedges.The subtreedenotedby D doesnot belongto the stablesubtour
and contains only active edges.Any of thesesubtrees(A, B , C, or D) may be absent. There
must be at least two edgesincident to v: at least one must be inactive and at least one
active (the �rst on the path to another anchor, which consistsonly of active edges).

We shall prove that a stable subtour cannot be divided into two proper subtours in a

single iteration. More precisely, let E0 be the parent set of Ev , i.e., the collection of all

clusters on level ` + 1 that are parents of arcs in Ev and are still inactive. The conditions

above ensurethat, if E0 is non-empty, it will form a proper subtour.

To prove this, we must establish two facts. We �rst show that, even though the last

arc of the subtour may be involved in a new move, the resulting active parent edgewill

always belong to the extreme of the inactive subtour (and therefore will not partition it
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in two). Second,we prove that any new move involving the �rst arc of the subtour will

necessarilyinvolve the last arc as well. This is a direct result of the de�nition of a proper

subtour: the three properties above ensurethat the �rst arc cannot be a receiver around

v in either contraction (old or new) and that it cannot be raked around its other endpoint

(besidesv). This limits the possibleoutcomesfor this arc. In particular, it ensuresthat the

casedepicted in Figure 3.8 cannot happen, and therefore we only needto worry about new

moves involving the �rst and the last arc.

We will analyze each casein turn in the next two subsections.The analysis consistsof

enumerating all possibleoutcomesfor each relevant edgeof the subtour (�rst and last), and

showing that no outcome violates the lemma. The caseanalysis is somewhat tedious, but

straightforward. We just need to make sure to consider, for each possibleoutcome for an

edgein the original contraction, all possibleoutcomesin the new contraction. Recall that

there are seven possibleoutcomesfor an edge(v; w): raked around v, raked around w, com-

pressed at v, compressed at w, receiver around v, receiver around w, and unmatched. Since

we must deal with outcomesin both contractions, in principle there are 49 combinations to

consider for each edge.

The Last Arc

Let (u; v) be the last arc of a stable subtour anchored at v, and assumethat the subtour

has at least two edges(if it has only one, it cannot possibly be split in two). We will show

that, although there can be a new move involving the last arc of the original subtour, it

will never split the subtour in two pieces.

If the original move involving (u; v) is replicated, its parent cluster will be inactive. This

will always happen if (u; v) was a receiver around u, compressed at u, or a receiver around

v (in the latter case,stabilit y ensuresthat (v; u) is not the �rst arc). Therefore, we do not

need to worry about these cases. In addition, we can discard the casein which (u; v) is

raked around u: this cannot happen in either contraction, sincestabilit y guaranteesthat v

will have degreeat least two in both contractions.
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In the remaining cases,(u; v) may be involved in a new move, in which caseits parent

cluster will be active. There are three possibleoriginal outcomesfor (u; v):

1. (u; v) was originally raked around v. This can only happen if u had degreeone in

the original contraction (and therefore in the new one). This fact eliminates three

possibleoutcomesfor (u; v) in the new contraction: (u; v) cannot be raked around u,

compressed at u, or a receiver around u. The only possibleoutcomesare:

(a) (u; v) is raked around v (onto an active edge). In this case,v continuesto be the

anchor of the subtour, unlessthe subtour becomesempty.

(b) (u; v) is compressed at v: since u has degreeone, this can only happen if (u; v)

is the only edgein the subtour, which will becomeempty.

(c) (u; v) either remainsunmatched or becomesa receiver around v: the parent edge

(also (u; v)) will be active, but, becauseu has degreeone, it will not split the

subtour. Vertex v will continue to be the anchor.

2. (u; v) was originally compressed at v. Becausethe subtour is stable, v must have

exactly one inactive neighbor in the new contraction, and at least oneactive neighbor

(the �rst edgeon the path to v� ). The parent edgeof (u; v) will always be active, and

the anchor will move. The following outcomesare possiblefor edge(u; v) in the new

contraction:

(a) compressed at v: u becomesthe new anchor of the subtour.

(b) compressed at u: u's other neighbor (besidesv) becomesthe new anchor of the

subtour.

(c) raked around v: this can only happen if (u; v) is the only edgein the subtour,

which becomesempty after the move.

(d) receiver around u or unmatched: u becomesthe new anchor of the subtour.

None of these outcomes splits the original tour. The remaining two outcomes are

impossible. Edge (u; v) cannot be raked around u becausev has degreeat least two,
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and it cannot bea receiver around v becausethe predecessorof (u; v) around v belongs

to the path to v� , and therefore is not a leaf.

3. (u; v) wasoriginally unmatched. The edgecan stay unmatched in the new contraction

as well, in which caseits parent will be inactive. It cannot be compressed at u or

a receiver around u, since these moves could have been performed in the original

contraction. The edgecannot be a receiver around v either, since stabilit y ensures

that the edge raked onto it must be inactive, and therefore the move could have

beenperformed in the original contraction. Also, it cannot be raked around u, since

stabilit y guaranteesthat v has degreegreater than one. The only possiblenew moves

are:

(a) (u; v) is raked around v: v remains the anchor of the subtour.

(b) (u; v) is compressed at v: u becomesthe new anchor of the subtour.

The subtour will disappear if the new anchor has no remaining inactive neighbors.

The First Arc

It remains to be shown that movesinvolving the �rst arc will not split the tour either. Let

(v; w) be the �rst arc of a stable subtour anchored at v.

If the original subtour has only one edge,either (v; w) will remain unmatched in both

contractions (in which casethe whole tour will survive) or its parent edgewill be active

(in which casethe subtour will simply disappear). The analysis that follows handles the

nontrivial case,in which the original subtour has at least two edges.

Of all possibleoriginal outcomesfor (v; w), three will always be replicated: raked around

v, receiver around w, or compressed at w. Stabilit y ensuresthat two original moves are

impossible: (v; w) cannot have been a receiver around v (since its predecessorbelongsto

the path to another anchor), and it cannot be raked around w (since v has degreegreater

than one in both contractions). This leaves only two original outcomesto be considered:

(v; w) being compressed at v or remaining unmatched. We considereach casein turn.
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First, assume(v; w) wasoriginally compressed at v. If this is the case,v's original degree

was two. Its degreein the new contraction must be at least two, with a single inactive edge

incident to it, (v; w) itself. The edge corresponding to the secondoriginal inactive edge

must be on the path to the other anchor. This meansthat edge(v; w) corresponds to both

the �rst arc and the last arc of the subtour, and we have already seenthat movesinvolving

the last arc never split the subtour.

Now consider what may happen in the new contraction if (v; w) was originally un-

matched:

1. (v; w) remains unmatched in the new contraction: the parent will be inactive.

2. (v; w) is compressed at v: this meansthat v hasdegreetwo, and therefore (w; v) is the

last arc of the subtour; as already observed, this new move will not split the subtour.

3. (v; w) is raked around v: this can only happen if the target is the last edgeof the

tour; otherwise, the move could have beenperformed in the original contraction.

All other outcomesfor (v; w) are impossible. It cannot be a receiver around w or compressed

at w, sincethosemovescould have beenperformedin the original contraction (and therefore

the edgeshould not have remainedunmatched). It cannot be raked around w becausev has

degreegreater than one. Finally, it cannot be a receiver around v becauseits predecessor

around v belongsto the path from v� to v (and therefore is not a leaf).

Completing the Pro of

The caseanalysisabove has shown that a stable subtour at level ` cannot be split into two

parts in a single round: its parent set will either be empty or form a proper subtour at level

` + 1. To �nish the proof of Lemma 9, all we have to do is prove that, in the latter case,

the proper subtour at level ` + 1 will also be stable.

Let v` and v�
` be the anchors of a pair of coupled subtours at level `, and let v`+1 and

v�
`+1 be the anchors of the corresponding subtours at level ` + 1 (we may have v` = v`+1

and v�
` = v�

`+1 , but not necessarily).Becausethe original tours are stable, v` and v�
` belong
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to the sameconnectedcomponent in the original contraction, and the path between them

contains active edgesonly. Sincemovescannot disconnectthe graph, the samewill be true

for v`+1 and v�
`+1 at level ` + 1.

It remains to prove that the predecessorof the �rst arc of each subtour doesbelong to

the path betweenv`+1 and v�
`+1 (in both contractions). This follows from the caseanalysis:

whenever there is a new move involving the �rst edgeof a stable subtour at level `, it must

involve its last edgeaswell. This will causethe anchor to change. Only oneedgeincident to

the new anchor will participate in a move at level `, and its parent will belongto the path to

the other anchor at level ` + 1. No other edgearound the new anchor will be active, which

implies that the �rst arc of the proper subtour must have the path to the other anchor as

its predecessorin both contractions.

This completesthe proof of Lemma 9. 2

3.2.5 Unstable Subtours

We now prove Lemma 8. We will show that (1) only a move involving the �rst arc of an

unstable subtour may causeit to be split; and (2) if such a split doesoccur, it will always

create a pair of stable subtours. Once again, the proof is based on caseanalysis. For

reference,Figure 3.10 presents a genericrepresentation of an unstable subtour.

The analysis will consider two types of rounds: standard rounds, in which the anchor

v does not disappear in either contraction (old and new), and special rounds, in which v

disappears in at least one of the contractions. During a standard round, only the �rst arc

can split the tour; a move involving the last arc will split the tour only if it involvesthe last

arc aswell. Sincethe anchor is not allowed to disappear, wedo not needto worry speci�cally

about a new move involving the secondarc during a standard round|if it happens, the

�rst arc will be involved as well. The secondarc will be consideredduring the analysis of

special rounds, however.

In several of the casesanalyzed in this section, the original subtour will be split into
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Figure 3.10: The two possible con�gurations of a generic unstable subtour anchored at
v. On the left, the �rst arc and the last arc represent di�eren t edges;on the right, they
represent the same edge. The subtrees denoted by A, B , and C belong to the unstable
subtour and contain only inactive edges.The subtree denoted by D doesnot belong to the
unstable subtour and has only active edgesincident to v. Any of thesesubtrees(A, B , C,
or D) may be absent. In particular, there may be no active edgeincident to the anchor v.

two subtours. Thesesubtours will always be stable and coupled, but we will not prove this

in every case. The reader can easily verify in each casethat (1) the anchors of the two

subtours are connectedby a path containing only active edges;and (2) the last active edge

in the circular order around each anchor belongs to this path. This is enough to ensure

the subtours are stable. Of course, if one of the subtours created is empty, the other will

actually be unstable. If both are empty, the original subtour simply disappears.

Standard Rounds: First Arc

We �rst considerwhat happenswith the �rst arc (v; w) of an unstable subtour anchored at

v during a round in which v doesnot disappear in either contraction.

If the original move involving (v; w) is replicated, the parent edgewill be inactive, and

therefore the subtour cannot be split as a result. We only need to worry about the cases

where the parent of (v; w) is active. During a standard round, the following outcomesfor

(v; w) in the new contraction may result in an active parent: (1) unmatched; (2) compressed
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at w; (3) raked around v; (4) receiver around v; and (5) receiver around w. Any of these

�v e outcomes is possible, for instance, if the arc was a receiver around v in the original

contraction.

In all these cases,let (v; x) be the new parent edgeof (v; w). It is active. There are

three casesto consider:

1. If both x and v have at least oneinactive neighbor at the end of the round, the original

tour will be split in two, and x and v will each be the anchor of a stable subtour.

2. If v endsup with at least one inactive neighbor and x with none, the original subtour

will not be split and v will remain the anchor of an unstable subtour. The casein

which x endsup with at least one inactive neighbor and v doesnot is symmetric, the

only di�erence being that x becomesthe new anchor.

3. If both x and v end up with no inactive neighbors, the subtour simply disappears.

Standard Rounds: Last Arc

We now considerthe last arc (u; v) of a stable subtour rooted at v during a standard round.

It can split the tour when involved in a move with the �rst arc. We have seen,however, that

if a move involving the �rst arc splits the subtour, the result will be a pair of coupledstable

subtours. Therefore, we only needto worry here about the caseswhere (u; v) is involved in

a new move by itself. In such cases,we shall seethat tour will not be split. The possible

original outcomesfor (u; v) during a standard round are:

1. (u; v) is compressed at u or a receiver around u: the move will be replicated.

2. (u; v) is raked around v: This meansu has degreeone. The only possibleoutcomes

in the new contraction during a standard round are:

(a) (u; v) is raked around v: its target is either already active (in which casethe

subtour will not be split by the new move) or the �rst arc of the subtour (which

we have already considered).



64

(b) (u; v) is a receiver around v or remains unmatched: the parent edge becomes

active, but the original tour will not be split, becauseu has degreeone.

The other caseseither are impossible: they either causev to disappear (which cannot

happen during a standard round) or require u to have degreegreater than one.

3. (u; v) is a receiver around v: the move will be replicated, unless the predecessorof

(u; v) around v is active. But this can only happen if (u; v) is the only inactive edge

incident to v, which meansthat it is also the �rst arc of the stable subtour. This case

has already beenconsidered.

4. (u; v) remains unmatched: In the new contraction, the edge cannot be a receiver

around u or compressed at u, since these moves could have been performed in the

original contraction. The only possibleoutcomesduring a standard round are:

(a) (u; v) is a receiver around v: This can only happen if either (u; v) or its pre-

decessorare the �rst arc of the subtour, otherwise the move could have been

performed in the original contraction. In either case,the new move will involve

the �rst arc.

(b) (u; v) is a raked around v: If the target is an active edge,the subtour will not be

split; if the target is inactive, it must be the �rst arc of the subtour.

(c) (u; v) remains unmatched: the edgeremains inactive.

The remaining two casescausev to disappear, which cannot happenduring a standard

round.

The caseanalysisabove has shown that the last edgeof a subtour will never split the tour,

unlessit is also the �rst edgeor participates in a move with the �rst edge.

Special Rounds

We now considerspecial rounds, in which the anchor v doesdisappear in at least oneof the

contractions. The analysis usesthe fact that, when v has no incident active edge in one
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of the contractions (old or new), it must have at least one additional incident edgein the

other contraction. If this were not true, both contractions would be exactly the same.

The possibilities for v are as follows:

1. v is raked in the new contraction (regardlessof what happens in the original con-

traction). Let (v; w) be the only edge incident to it in the new contraction at the

beginning of the round, and let (w; x) be the edgeonto which (v; w) is raked. This

must be a new move, sincev has degreeat least two in the original contraction, and

(w; x) must have been originally unmatched. Both w and x will becomeanchors of

coupled stable subtours.

2. v is compressed in the new contraction: Let (v; w) and (v; u) be the edgesadjacent

to v in the new contraction. Without lossof generality, assume(v; u) is inactive|at

least one of the edgesmust be, or elsev would not be an anchor. There are two cases

to consider:

(a) (v; w) is also inactive: The move must be new, since v has degreegreater than

two in the original contraction. In addition, (v; u) must not have been involved

in a move around u and (v; w) must not have been involved in a move around

w, sincesuch moveswould have beenreplicated. After the move, both u and w

becomeanchors of coupled stable subtours.

(b) (v; w) is active: The subtour will not be split; it will remain stable with u as its

new anchor.

3. v doesnot disappear in the new contraction but is raked around its neighbor x in the

original contraction. This is the casedepicted in Figure 3.8. In the new contraction,

(x; v) is the only inactive edge incident to v, and there must be at least one active

edgeincident to it aswell. Let (x; w) be the receiver of the original rake; it is inactive

in both contractions. The parents of (x; v) and (x; w) in the new contraction will be

active.
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If (x; w) is compressed at x in the new contraction, then w becomesthe anchor of an

unstable subtour. In this case,(x; v) and (x; w) will have the sameparent.

If x is not compressed, (x; v) will either remain unmatched or becomea receiver; in

either case,the parent edgewill be active. (In Figure 3.8, it becomesa receiver around

x.) Edge (x; w) can stay unmatched, be compressed at w, becomea receiver around

w, or be raked around x (the latter is what happens in Figure 3.8). In any of these

cases,let y be the other endpoint (besidesx) of the parent cluster of (x; w). At the

end of the round, both x and y will be anchors of coupled stable subtours, unless

one of the subtours is empty, in which casethe other vertex will be the anchor of an

unstable subtour.

4. v does not disappear in the new contraction, but is compressed in the original con-

traction. There are two casesto consider,depending on the number of inactive edges

incident to v in the new contraction at the beginning of the round:

(a) One inactive edge(v; w). Regardlessof the outcome of this edge,its parent will

be active in the new contraction. Since we are assumingv does not disappear,

the possibleoutcomesfor (v; w) are:

i. receiver around w, receiver around v, or unmatched: w becomesthe anchor

of the unstable subtour;

ii. raked around v: this can only happen when w has degree one, and the

subtour simply disappears;

iii. compressed at w: w's other neighbor (besidesv) becomesthe anchor of the

unstable subtour.

(b) Two inactive edges,(u; v) and (v; w). Without lossof generality, suppose(u; v)

immediately precedes(v; w) in the tour. The successorof (v; w) is active, since

there must be at least one additional edgeincident to v in the new contraction.

If (u; v) is raked onto (v; w), w will becomethe anchor of an unstable subtour. If

(v; w) is itself raked, the receiver will be active and the subtour will not be split.
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Its anchor will be u, unless (u; v) is combined (by compress) with some other

edge(u; x). In this case,the new anchor will be x.

If neither (u; v) nor (v; w) is raked around v, each will participate in a move

by itself, and two active parents will be created. More precisely, (v; w) may

be compressed at w, a receiver around w, or unmatched. Similar outcomesare

possible for (u; v), which can also be a receiver (of an active edge) around v.

In every case,the endpoint of each parent cluster that is di�eren t from v will

becomethe anchor of a stable subtour, and the two subtours will be coupled.

Completing the Pro of

In the analysis of standard rounds, we have shown that only a move involving the �rst

edgeof an unstable subtour may causeit to be split in two, but, whenever this happens,

the subtours thus created will be coupled and stable. For special rounds, we have shown

that an unstable subtour may be split into at most two parts and, when there are two, the

resulting subtours will also be coupled and stable. This provesLemma 8. 2

3.2.6 Running Time

Now that we have proved the lemmas necessaryto establish Theorem 1, we can �nally

bound the number of clusters that need to be processedby the update algorithm. Recall

(from Section 3.2.1) that the core at level ` is the subgraph induced by all active edgesin

the new contraction at that level, and that the core image is the subgraph induced by the

active edgesin the original contraction.

Lemma 11 At each level, the sizes of the core and of the core image are bounded by a

constant.

Pro of. When consideredasan isolated graph, the coreis a forest (and sois the coreimage).

Lemma 4 would guarantee that a fraction of at most q of its original vertices will remain
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after each round, with q = 5=6. The lemma cannot be applied in full, however: someof

the edgesthat look like candidates for rake and compress may not actually be eliminated,

either becausetheir degreeis higher in the actual tree or becausetheir actual successors

or predecessorsdo not belong to the core. What the lemma does guarantee is that, if the

number of such \false candidates" is at most someconstant kb, then at least [(1 � q)s] � kb

verticeswill be eliminated after a round (s being the original number of vertices). We must

also take into account the fact that more edgesmay be incorporated into the core from one

round to the next. We will show that there is a constant upper bound ka on the number of

such additional edges.

If si is the number of edgesin the core after round i , the following recurrencerelation

holds for all i > 0:

si � qsi � i + ka + kb:

Its solution is

si � qi s0 +
(ka + kb)(1 � qi )

1 � q
;

where s0 is the number of edgesin the core before the update procedurebegins. Its value

is one for links and zero for cuts. Using the fact that q = 5=6, si can be upper bounded by

si � s0 +
ka + kb

1 � q
= 1 + 6(ka + kb); (3.2)

which is a constant. 2

Wehaveshown that, in any round, there areno more than four proper subtours touching

the core (or the core image). More precisely, the following combinations are possible: (a)

two pairs of coupled stable subtours; (b) one unstable subtour and one pair of coupled

stable subtours; (c) two unstable subtours; (d) one pair of coupled stable subtours; (e) one

unstable subtour; and (f ) no subtour (all edgesare active). For the purposeof bounding ka

and kb, the �rst three casesdominate the other three.
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Bounding ka. A core expansion at level ` occurswhen an active cluster with only inactive

children (i.e., inactive clustersat level ` � 1) is created. Similarly, a core imageexpansion at

level ` occurs whenever a cluster of the core image at level ` has only inactive children. An

expansion cluster at level ` thereforerepresents a move that happensin only onecontraction

and does not involve any active edges. These are the clusters we have to count to bound

ka. All other clusters are irrelevant: an inactive cluster will not belong to the core, and

we count an active cluster with an active child as belonging to the core already|although

technically the parent belongs to the core at one level, and the child to the core at the

previous level.

Considerthe core�rst. At most oneexpansioncluster will be createdper stable subtour,

sinceany new move must involve its last edge. For each unstable subtour, there can be no

more than two expansionclusters. In general,oneexpansioncluster will be the parent of the

�rst edgeand another the parent of the last. The con�guration depicted in Figure 3.8 is a

special case:oneexpansioncluster is the parent of the secondedge,and another the parent

of both the �rst and last edges,which coincide. Since there can be at most two unstable

subtours or at most four stable subtours, the coremay have at most four expansionclusters.

Now consider the core image. We must count the number of clusters that have only

inactive children and must be deleted.

On a stable subtour, there can be at most one of those: the parent of a previously

unmatched edgethat becomesmatched as a new move involving the last arc. No rake or

compress involving only edgesof a stable subtour will be blocked, and therefore the cluster

representing such a move cannot be an expansioncluster.

On an unstable subtour, however, an original move involving only inactive edgescan be

blocked (and the cluster representing it will be an expansioncluster). Furthermore, each of

the clusters originally involved in this move can be combined with a previously unmatched

edge. The original dummy parents of these edgeswill also be expansion clusters. As a

result, there can be up to three expansionclusters in the core image.

This happens, for instance, in the situation depicted in Figure 3.8. An edge(x; v) is
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originally raked around x but the move cannot be replicated becausethe anchor v has one

additional incident edgein the new contraction. Let (x; w) be (x; v)'s successoraround x

(the original target edge), and let (x; u) be (x; v)'s predecessor.As shown in Figure 3.8,

both (x; u) and (x; w) may be raked asnew moves. In this case,the original dummy parents

of (x; u) and of (x; w)'s successor(which is (x; y) in the picture) will be expansionclusters

of the core image, as will the original parent of (x; v) and (x; w).

In the worst case,when there are two unstable subtours, the core image will have six

expansionclusters, which meansthat ka � 6.

Bounding kb. Recall that kb is an upper bound on the number of movesthat are assumed

to be possibleby Lemma 4 but end up being blocked becausethe core and the core image

are not isolated trees.

First, consider the core. A stable subtour may block only one move, involving the

successorof its last arc. Each unstable subtour, on the other hand, may block no more

than two moves: one involving the successorof the subtour, and another involving the

predecessor.The sameanalysis holds for the core image. Therefore, we can ensure that

kb � 4.

Final bound. Recall from the proof of Lemma 11 that si � 1+ 6(ka + kb). For the core,

ka + kb = 8, which meansthat it will contain no more than 49 clusters in any given level.

For the core image, ka + kb = 10, which bounds its number of clusters by 61.

Theorem 2 A contraction can be updated in O(log n) worst-casetime after a link or cut.

Pro of. To update a level, we only have to deal with clusters in the core or the core image,

inactive clusters that are adjacent to them, and sometimeswith the immediate successor

of one of these inactive clusters in the Euler tour. Lemma 11 ensuresthat both the core

and the core imagehave a constant number of clusters. Moreover, the inactive edgesof the

graph will be partitioned into at most four proper subtours. Since only the �rst two arcs

and the last arc of each subtour must be checked for new moves, we have to deal with a
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constant number of clusters per level. The number of levels in the top tree is logarithmic

(by Lemma 1), so the total running time of the update procedure is O(log n). 2

The samebound holds for expose, as Section 3.3.5 will show.

3.3 Implemen tation

The update algorithm has beendescribed as building a new contraction that resembles the

original contraction as much as possible. In practice, of course,we needto modify the top

tree representing the original contraction to make it represent the new one, and we must

do so in O(log n) time. This section describeshow this can be achieved.

3.3.1 Represen tation

The main structure we maintain is the top tree itself. Each cluster is represented as a

separate record, with pointers to its parent and its children (of which there can be zero,

one, or two). The cluster also stores the user-de�ned, application-speci�c data.

To implement the updating algorithm, we also maintain an Euler tour of each level of

the top tree. This is a double-linked list of arcs. Each cluster in the level is associated with

two arcs, one in each direction. Since each cluster must have accessto these two arcs, we

actually make the arcs part of the record that represents the cluster. Each arc a has three

pointers: to its successorin the Euler tour, to its predecessorin the tour, and to the cluster

itself.5 We denote these�elds by succ(a), pred(a), and cluster(a), respectively. Each arc a

alsoneedsaccessto its twin arc (which we denoteby twin (a)), but an explicit pointer is not

neededfor that: the twin can be retrieved from the cluster. We alsostore with each arc the

identi�er of its head. These�elds are also usedby the cluster to determine its endpoints.

5 In a su�cien tly low-level programming language, one could actually do without a pointer to the cluster;
since the arc is represented inside the cluster, the cluster could be retrieved with somepointer arithmetic.
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3.3.2 Iden tifying Valid Mo ves

With this representation, identifying valid movesis straightforward. Consider an arc a and

its successorb on the tour. To test whether a and b de�ne a valid move, we must �rst verify

that cluster(a) 6= cluster(b) and that both clusters are free, i.e., they do not participate in

a move. More concretely, a cluster is free if its parent cluster is null, dummy, or deleted.

If both conditions are satis�ed, we perform the tests outlined in Section3.2.1. We know

that cluster(a) can be raked onto cluster(b) if and only if pred(a) = twin (a). Similarly,

cluster(a) and cluster(b) can be compressed if and only if succ(twin (b)) = twin (a).

3.3.3 Up dating the Tree

We update the tree in a bottom-up fashion, starting from the baselevel. To update a level

`, all we need is a list I of clusters to be inserted and a list of D of clusters to be deleted.

Processingeach level requires four sequential steps:

1. Remove from the tree (and the Euler tour) all clusters in D.

2. Insert into the tree (and the Euler tour) all clusters in I .

3. Verify if any previously valid move becomesinvalid.

4. Perform new movesuntil the contraction is maximal.

While we executethe stepsabove, we must also �ll two lists, D0 and I 0. Initially empty,

they will contain the clusters to be deletedfrom and inserted into level ` + 1. After all steps

above are completed, we set I  I 0 and D D 0 and start processingthe level above (unless

both I 0 and D0 are empty, in which caseupdate of the entire tree will be complete).

To perform the last two steps of the algorithm e�cien tly , we maintain yet another list

on each level, a neighbor list (denoted by N ). This list starts each level empty, but will

eventually contain all original clusters that are inactive (i.e., not themselves inserted or

deleted) but are closeenough to the core or core image to merit special attention. More

precisely, an inactive cluster will be inserted into the list if its successoror predecessor(in
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either the new or the old contraction) is active, or if the original move it was involved in is

no longer valid. This secondcriterion addressesthe special casedepicted in Figure 3.8.

The following subsectionsanalyzeeach step in turn.

Step 1: Remo val

The �rst step of the algorithm at level ` is to remove every cluster C in D from the top tree

and from the Euler tour. If the twin arcs representing the cluster in the Euler tour are a

and b, we remove them from the tour by directly connectingpred(a) to succ(b) and pred(b)

to succ(a). We also insert the original parent of C into D0: since C is being deleted, its

ancestorsmust also be. The clusters adjacent to C are added to N , unlessthey belong to

D already.

Step 2: Insertion

After the �rst step, the Euler tour at level ` will contain only inactive clusters. The second

step inserts the new clusters (those in I ) into the Euler tour. The nontrivial aspect of this

procedure is to determine the appropriate insertion positions.

When updating the baselevel, the usercan specify explicitly where in the circular order

a new edge(v; w) is to be inserted. For this, it su�ces to specify two predecessorarcs, one

having v as its head and the other having w as its head.

To processlevel ` (with ` > 1), we must use level ` � 1 (which will already have a

complete Euler tour) to determine the appropriate position of each new arc. Let (v; w)

be the arc to be inserted into the Euler tour, and let C be the cluster associated with it.

To determine the successor(or predecessor)of (v; w), we must look at the successor(or

predecessor)of one of C's children, then take the appropriate arc of its parent.

More precisely, to determine the successorof arc (v; w) at level `, we must look at the

appropriate child cluster A of C. If C is a dummy cluster, A is C's only child; if C is a rake

cluster, A is C's right child (representing the target cluster); if C is a compresscluster, A is

the only child of C that hasw asan endpoint. Let a be the arc of A that hasw as its head.
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Let b be a's successor,let B be the cluster associated with b, and let P be B 's parent. Note

that B belongsto level ` � 1 and P to level `. The successorof (v; w) is the arc of P that

has w as its tail.

The procedureto determine the predecessorof (v; w) at level ` is similar. We must also

look at an appropriate child A of C. If C is a dummy cluster, A is its only child; if C is a

rake cluster, C is its right child; if C is a compress cluster, A is the only child that has v

as an endpoint. Let a be the arc of A that has v as its tail. Let b be a's predecessor,let B

the cluster associated with b, and let P be B 's parent. The predecessorof (v; w) is the arc

of P that has v as its head.

The strategy outlined above is generic enough to allow arcs on the same level to be

inserted in any order. In particular, an arc may be linked to its predecessorand its successor

even if thesehave not beeninserted into the tour yet.

Identifying whereeach new arc should be inserted takesconstant time, but the constants

involved can be quite high. To avoid doing more work than necessary, at the beginning of

the step we set the predecessorand the successorof each arc that needsto be inserted to

null. When we are about to �nd the successorof an arc a, we �rst check if its successor

is still null. If not, there is no need to apply the procedureabove, since the successorwill

have already been determined (when the successoritself was inserted into the tour and

determined that its predecessorwas a). Similarly, we only need to actively compute the

predecessorof a if its current value is null.

During the insertion procedure,we must insert the clusters corresponding to the prede-

cessorand to the successorof each new arc into N , unlessthey belong to I already.

Step 3: Detecting In valid Mo ves

After the �rst two stepsof the algorithm, the updated Euler tour at level ` will be complete.

The third step veri�es if the original movesinvolving only inactive edgesare still valid. For

a move to become invalid, at least one of the vertices involved in the move must have

had its neighborhood changed. This means it su�ces to check whether the clusters that



75

currently belong to N (inserted in the previous two steps) still participate in valid moves.

Each cluster is tested explicitly using the procedureoutlined in Section 3.3.2. If a move is

deemedinvalid, it may happen that oneof the clusters involved in the move is not in N yet

(if it doesnot touch the core or core image). In this case,we add it to N . Also, the parent

cluster representing an invalid move must be inserted into D0.

Step 4: New Mo ves

The fourth step of the algorithm performs a maximal set of new moves. It does so by

explicitly testing (in any order) each cluster in I and every cluster in N that is not already

matched. For every new move, a new parent cluster P is created, the pointers betweenP

and its children are initialized, and P is inserted into I 0. If a cluster involved in a new

move had a dummy parent, the parent is inserted into D0. After all clusters are tested, for

every cluster in I and N that remains unmatched we create a new dummy parent cluster

P, initialize the pointers betweenP and the unmatched cluster, and insert P into I 0.

3.3.4 Other Details

List managemen t. As described, the algorithm may try to insert a cluster into more

than one list, or into the samelist more than once. To avoid multiple insertions, we needto

know whether the cluster already belongsto the list of not. Traversing the list beforeevery

insertion would be too expensive (although it would still take constant time). A better

approach is to make each cluster remember whether it belongsto a list or not. Note that

a single bit per cluster su�ces for this, since during a call to the update algorithm every

cluster can belongto at most onelist. This is obvious for new clusters: they can only belong

to the insertion list of their level. Existing clusters, on the other hand, can belongeither to

a deletion list or to a neighboring list. Recall that, if a cluster on level ` is ever inserted into

a deletion list, this will happen during the update of level ` � 1; when we �nally get to level

`, the cluster will not be inserted into the neighbor list if it is already marked, regardless

of whether the mark is due to a deletion, to an insertion, or to the fact that the cluster
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belongsto N already.

Managing values. As the update algorithm progresses,we must call the internal top tree

functions in the appropriate order. Whenever the algorithm decidesthat a cluster must be

deleted, we must actually mark all of its ancestorsas \scheduled for deletion" and call split

on each of them in a top-down fashion. This ensuresthat, whenever split is called on a

cluster, it will be the root of its tree. Note, however, that the clusters will not be actually

deleted (or removed from the Euler tour) until the level to which they belong is processed.

When a new cluster is created,on the other hand, we can immediately call join to initialize

its value, since it will be a root at this point.

Handles. Each vertex in the tree maintains a pointer to one of its incoming arcs on the

baselevel. We call this arc the handle of the vertex, and it is null if the vertex has degree

zero. The handle allows us to go from a vertex to a cluster in the tree that is incident to

that vertex.

The handle is also useful when inserting a new arc into the baselevel. A new arc (v; w)

is inserted right after handle(w) on the Euler tour. To set the exact position in which a new

arc must be inserted around w, the usercan explicitly de�ne which of the existing incoming

arcs should be w's handle.

One must be careful to keep the handle updated when an edge(v; w) is removed from

the tree by the cut operation. If (v; w) happens to be handle of w, we set handle(w)  

pred(twin (v; w)). If this is also(v; w) (which can happen only when w had degreeonebefore

the cut), we set handle(w)  null.

3.3.5 Implemen ting Exp ose

Exposing a vertex is to ensureit does not disappear in the contraction. When building a

contraction from scratch, it is easyto take exposedvertices into account. One just marks

them as being exposed and modi�es the routines that test for valid moves. Besidesthe

conditions listed in Section 3.3.2, a valid move must be such that the disappearing vertex
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is not exposed.

In our case,we must assumewe already have a valid contraction when we decide to

expose a vertex v. We consider two di�eren t ways of exposing a vertex: rebuilding the

original contraction or building a temporary tree.

Rebuilding the Original Con traction

The obvious way to implement expose is to rebuild the original contraction so that the

exposedvertices are never eliminated. A �rst step to achieve this is to changethe routine

that tests whether a move is valid, as mentioned above.

To exposea vertex v, we must �rst �nd the cluster P that represents the move that

makesv disappear in the original contraction. (If there is no such cluster, there is nothing

to be done: v is already exposed,and we just mark it as such.) To �nd P, we start with

a basecluster that has v as an endpoint (we can usehandle(v) to �nd such a cluster) and

follow parent pointers until we reach the �rst (i.e., lowest) cluster that doesnot have v as

an endpoint. Let ` be the level that contains this cluster, and let the children of P be A and

B . We must mark v as exposedand call the update procedurefrom level ` � 1 with I = ; ,

D = ; , and N = f A; B g. With these parameters, no cluster will actually be inserted into

or removed from level ` � 1. New moves involving clusters at this level will be performed,

however, and as a result deletions and insertions will occur at level ` and above.

Once v is marked as exposed,future changesto the tree (for instance, when we want to

exposea secondvertex) will never make a move that eliminates v.

Of course,vertex v cannot remain exposedforever. We might want to exposeanother

vertex u instead of v in the same component. Before that, we must unexpose v. The

implementation of this operation is very similar to that for expose. Starting from a base

cluster that has v as endpoint, we follow parent pointers until we reach a level ` in which a

cluster C containing v could have been involved in a valid move but remained unmatched

(becausev was exposed). We then mark v as not exposedand start the update procedure

from level ` with I = ; , D = ; , and N = f Cg.
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Updating the contraction from a level ` > 0 during expose or unexpose takes no more

time than updating the contraction from the baselevel after a link. One just hasto consider

the clusters in N to be the coreof that of level `. In both exposeand unexpose, the clusters

that are not in N de�ne at most two proper subtours in the component. From this point

on, the update algorithm proceedsas before.

Moreover, becausethe number of exposedvertices in a component is never greater than

two, one can still guarantee that, from a level with n nodes, at least n=6 � 2 vertices will

be eliminated. This meansthat the height of the top tree is still logarithmic.

Building a Temp orary Tree

In [10], Alstrup et al. suggesta much simpler implementation of expose. They observe that

it can be implemented independently of link and cut, as long as the height of the top tree

is guaranteed to be logarithmic (as is the casehere). They usethe fact that, even though a

vertex v can appear asan endpoint of up to �( n) clusters, it can only appear asan internal

vertex in at most one cluster per top tree level.

This suggeststhe following implementation of expose(v; w). First, we call split on all

clusters that have v or w as internal vertices; there will be at most O(log n) of those. The

result will be a collection of O(log n) root clusters that partition the edgesof the original

tree among themselves. Interpreting each root cluster as an individual edge(even though

it may actually represent a path in the original tree), we can then build a contraction from

scratch in such a way that v and w are exposed,which takesO(log n) time.

More concretely, Figure 3.11 shows the sametop tree as Figure 2.6, with the clusters

that would be split during a call to expose(c;k) shown in white. The roots of the remaining

subtrees can be thought of as representing edges(c;g), (b;c), (e;g), (g; i ), (h; i ), (m; o),

(i; k), (k; m), and (m; n). The expose procedure would build a top tree representing a

contraction of the free tree induced by theseO(log n) edgesonly.

Note that we do not have to worry about keepingthe entire tree balancedat this point.

There are only O(log n) root clustersand each is guaranteed to have O(log n) height, which
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Figure 3.11: Top tree corresponding to the contraction in Figure 2.6,with clusterscontaining
c and k asinternal verticesshown in white. Thesewould besplit during a call to expose(c;k).

meansthat the height of the new top tree will be O(log n) regardlessof the order in which

the new rakes and compressesare performed. Before making any other modi�cation to

the tree (such as a link, a cut, or another expose), however, we must restore the original

contraction, or elsewe losethe guarantee that the individual components have logarithmic

height.

To make it possible to restore the original contraction e�cien tly , we do the following.

When the call to expose(v; w) splits a cluster containing v or w, we only mark it asdeleted;

we actually retain the cluster in memory, including the pointers to its original children. We

then build a temporary top tree on the unmarked root clusters. We mark all new clusters

as temporary and store in the new root R a pointer to the root cluster R0 of the original

top tree.

Before performing an expose, link, or cut, we �rst check if the root R of each a�ected

top tree is temporary. If it is, we split R and all descendents that are also temporary, and

call join on all clusters of the original tree that have beenmarked as deleted. A pointer to

the original root will be available at R. In accordanceto the top tree interface, the splits

must be performed top-down, and the joins bottom-up. This will restore the original top
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tree.

Note that this implementation of expose never changesthe Euler tour representing the

original contraction, since it will eventually be reused. This makes this approach much

more e�cien t in practice than actually updating the original contraction, as suggestedin

the previous section.

It is convenient, however, to createa temporary Euler tour when building the temporary

trees, since we have to make sure that the adjacency lists are sorted consistently with the

original tree. But one doesnot needto create a temporary Euler tour for each level of the

temporary contraction. It su�ces to create a basetour only, and to gradually shortcut it

as the contraction progresses.This tour can be discarded once the temporary top tree is

built.

3.4 Alternativ e Design Choices

This section discussessomenatural alternativ es to someof the choicesmade in the design

of our data structure.

3.4.1 No Circular Order

As already mentioned, de�ning a circular order of edgesaround each vertex makesthe data

structure more general, but it imposeswhat may seemto be excessively tight constraints

on rakes. What would happen if adjacencylists were unordered? In other words, what if a

leaf adjacent to a vertex v could be raked onto any other edgeadjacent to v?

This would obviously help the round-basedcontraction scheme. If the contraction works

in maximal rounds, its height will still be boundedby O(log n). We can show, however, that

updating a contraction with theserules (after a link or cut) may take as much as �(log 2 n)

time. Considera star, i.e., a tree with a distinguished center v and all other verticesdirectly

connected to it. Any contraction of this tree will consist only of rakes around v (except

possibly for the last move, which may be a compress). If the number of edgeson a level is

even, all edgeswill be paired up in the contraction; if the number is odd, exactly one edge
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will remain unmatched.

Take a star with exactly n = 2k + 1 vertices, for someinteger k > 1. It is easyto seethat

every level of any contraction of this tree will have an odd number of edges,and therefore

exactly one edgewill be unmatched.6 We say that all ancestorsof an unmatched cluster

(excluding the cluster itself ) are tainted: if the tree changesand the unmatched cluster

participates in someother move, the ancestorswill have to be deleted.

Consider a particular contraction of the star above. Let � (i ) = 2k� i + 1 be the number

of nodes on the i -th level of the top tree (starting at level zero). On the each level, label

the nodes from 1 to � (i ), from left to right. On the i -th level, let the unmatched node be

the one labeled d� (i )=2i e = 2k� 2i + 1. Figure 3.12 shows an examplewith k = 7. Note that

this distribution is such that the unmatched vertices have few common ancestors.

Figure 3.12: Why pairing up edgesarbitrarily does not work. This top tree is a possible
representation of a star with 129 edges.Tainted clusters (ancestorsof unmatched clusters)
are marked ashollow squares.They would all have to be split if an edgewereremoved from
the original tree. In general,a top tree with n vertices may have �(log 2 n) tainted clusters.

More precisely, let h be the height of the tree, i.e., the number of vertices on a path

from a leaf to the root. Ignoring the root, we seethat the unmatched node at level zero

will have h � 2 tainted ancestors. The unmatched node at level 1 will have h � 4 tainted
6There is only one exception: the level immediately below the root.
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ancestors(excluding the onesalready tainted by level 0). In general, the unmatched node

at level i will taint h � 2(i + 1) previously untainted clusters, for i < h=2. To simplify the

analysis,we ignore the nodestainted becauseof unmatched nodeson level dh=2e or above.

The total number Th of tainted clusters will be at least

Th �
b(h� 1)=2cX

i =0

(h � 2(i + 1)):

When h is even, this translates into

Th �
h=2� 1X

i =0

(h � 2(i + 1)) =
h2

2
� 2

h=2X

i =1

i =
h2

4
�

h
2

:

For h odd, the asymptotic bound is similar:

Th �
(h� 1)=2X

i =0

(h � 2(i + 1)) =
h2 + h

2
� 2

(h+1) =2X

i =1

i =
h2

4
�

h
2

+
1
4

:

Since h = �(log n), this result implies that 
(log 2 n) clusters will be tainted in this

case. When an edgeis cut from the original tree, every level will have an even number of

edges,which meansthat every originally unmatched edgewill have to be matched, causing

all tainted clusters to be split. We have thus proven the following:

Theorem 3 A contraction schemethat requires maximality but has no ordering constraint

needs at least 
(log 2 n) time to be updated in the worst case.

Interestingly, the original top tree interface de�ned by Alstrup et al. [10] doesnot have

any ordering constraint. In principle, any two edgesadjacent to the samevertex can be

combined, as long as the other endpoint of one of them has degreeone. Both implemen-

tations they suggestedfor the top tree interface, however, do end up imposing an order

on the adjacency lists: the direct (a wed) implementation in [34] does so explicitly; the

implementation that usestopology trees doesso implicitly , through ternarization.

3.4.2 Back Rak es

Eliminating the circular order would be an e�ectiv e way of increasingthe number of moves

in each level of the contraction, but the previous sectionhasshown that it posesproblemsif
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we still require maximalit y. A simpler, lessdrastic alternativ e would be to allow back rakes.

As previously described, the contraction algorithm only allows a leaf edgeto be raked onto

its successor;we could allow it to be raked onto the predecessoras well. Although the case

analysiswould have to be redoneto considerthis case,this changeseemsto be small enough

for us to assumethat we would still be able to perform updates in O(log n) time. Its e�ect

in practice would have to be tested. It is reasonableto expect that the averagenumber of

levels on a tree would decreaseslightly , but the cost of processingeach level could increase

becausenew types of moves have to be tested. It is not clear what the balance between

thesetwo e�ects would be. Using a strict circular order (with forward rakesonly) simpli�es

the analysis and is enoughto guarantee a logarithmic worst-caseperformance.

3.4.3 Alternating Rounds

An early version of our data structure alternated betweenrake and compressrounds. Each

round still had to be maximal, but only one kind of move could be performed. These

constraints make the analysis of the update algorithm slightly simpler, at the expenseof

doubling the expectednumber of rounds necessaryto perform a contraction. This hasbeen

done before: RC-trees alternate between rake and compress rounds (also to simplify the

analysis). The analysisof RC-trees is further simpli�ed by the fact that treeshave bounded

degreeand that information is accumulated on vertices, not edges.

3.4.4 Randomization

Another reasonwhy the analysis of RC-trees might be simpler than ours is the fact that

RC-trees are randomized. When there are two conicting moves within the sameround,

an implementation of our algorithm can arbitrarily pick either one. RC-trees, on the other

hand, use consistent hash functions to make consistent choiceseven when the underlying

tree changes. This makes the update algorithm simpler, but it ends up performing fewer

movesper level that it could, which results in more rounds. Another undesirablefeature is

that the O(log n) bound on update times is randomized, not worst-case.
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We note, however, that randomization is not a necessaryfeature of RC-trees. Inspired

by our results on top trees, the creators of RC-trees managedto prove an O(log n) worst-

casebound for updates on their data structure [2]. Instead of using the randomized oracle

to decide which moves to make during an update, the worst-caseversion tries to imitate

as many moves as possible from the original contraction. The analysis of the worst-case

version of RC-trees is not much more complicated than that of the randomized version.

An obvious question regarding our data structure is whether randomization would help.

In light of the �nding regarding RC-trees, that does not seemto be the case. In fact, it

might actually make the proof more complicated. WhereasRC-treesneedrandomization to

deal with conicting compress movesonly (since rakes do not interfere with one another),

our data structure would needrandomization to organizerakes as well.



Chapter 4

Self-Adjusting Top Trees

This chapter presents self-adjusting top trees, a data structure that implements the top tree

interface using path decomposition techniquessimilar to thoseusedin Sleator and Tarjan's

ST-trees. Self-adjusting top trees were �rst intro duced by Tarjan and Werneck [57].

The chapter is organized as follows. Section 4.1 describes how a forest is represented

by our data structure. Section 4.2 shows how queriesand updates are handled. Section 4.3

establishesthe O(log n) amortized time per operation. Section 4.4 suggestspossiblesim-

pli�cations to the data structure and alternativ e design choices. Section 4.5 discussesthe

relationship betweentree contraction and path decomposition. Final remarks are made in

Section 4.6.

4.1 Represen tation

As in ST-trees, we will represent a partition of the tree into disjoint paths. Instead of

making them vertex-disjoint, however, the paths will be edge-disjoint. More precisely, to

represent a free tree we �rst pick a degree-onevertex asthe root and direct all edgestowards

it. We call this (a directed tree whoseroot has degreeone) a unit tree. We then partition

the tree into non-crossing,edge-disjoint paths that begin at a leaf and end at another path.

The only exception is the root path (or exposed path), which endsat the root.

Sincewe are supposedto implement the top tree interface, our goal is to createa cluster

85
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to represent the entire unit tree. Any internal vertex v of the root path P has exactly two

neighbors on the path and zero or more outer neighbors (i.e., neighbors that do not belong

to the root path). Sinceedgesaround a vertex are arrangedin circular order, the list of arcs

incident to v is divided by P into two (possibly empty) subsequences(seeFigure 4.1). Each

element of these subsequencesis a unit tree rooted at v, and therefore can be recursively

represented by a single cluster. Clusters in the samesubsequenceare progressively paired

up to create a rake tree: its root represents the entire subsequence,leaves represent unit

trees, and each internal node is the rake of the left onto the right child.

GE
CA

HF
DB

z
yx

wv
u

Figure 4.1: A unit tree rooted at z. The root path is uvwxyz. Triangles represent subtrees
rooted at the root path.

We are now left with a path containing somek baseclustersand at most 2k � 2 incident

outer clusters, each representing a subtree. Empty subtreeswill have no associated cluster.

Ignoring the outer clusters, we could represent the path by a compresstree, a binary tree

whoseleavesare baseclusters, and whoseinternal nodes represent compressesof adjacent

clusters. Each node in the compress tree represents a subpath of the original path: leaves

represent original edgesand internal nodesrepresent nontrivial subpaths.

We deal with the outer clusters by raking them onto the root path. This is doneas late

as possible: an outer cluster incident to vertex v is raked just before v is compressed. In

the data structure, it will becomea foster child of the node representing compress(v); the

two original children are proper children. The left foster child is raked onto the proper left

child, and the right foster child onto the proper right child. The resulting clusters are then

compressed.
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yzG

xyEwxF

NxH

NyC

vwAuvB

NvD

Nw

Figure 4.2: An augmented top tree representing the tree in Figure 4.1. Foster children are
represented in white; all other nodesbelong to the compress tree.

Figure 4.2 is a possible representation of the unit tree in Figure 4.1. Shaded nodes

belong to the compress tree. Internal nodes are labeled by the vertices compressed (e.g.,

Ny represents compress(y)). Each internal node has up to four children and represents

at most three clusters: two rakes (one for each foster child) and one compress (of the

clusters generatedby the rakes). Each foster child is shown in white and is adjacent to

the corresponding proper child (the one onto which it is raked). Recall that a foster child

is actually the root of a binary (rake) tree whoseleaves represent unit trees. We call the

representation in Figure 4.2 an augmented top tree, since its compress nodes have up to

four children.1

Summing up, we represent a unit tree as follows:

1. Recursively compute clusters to represent each unit tree incident to the root path P.

2. Create rake trees to represent each contiguous sequenceof unit trees incident to P.

3. Create a binary tree of compressnodesto represent the root path, with the rake trees

appearing as foster children.

This method works for the entire tree, which is itself a unit tree. The end result is a

hierarchy of alternating rake and compress trees.

1 In fact, Phil Klein hassuggestedusing the term \splice node" to refer to a compressnode of an augmented
top tree. Although this notation is not used here, it is equally valid.
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For a better understanding of this representation, Figures 4.3, 4.4, and 4.5 show a

complete example. The left part of Figure 4.3 shows a free tree, with edgesordered in

counterclockwise around each vertex. To represent it, we �rst pick a degree-onevertex as

the root and direct all edgestowards it. In the example, z is the root. We then partition

the tree into maximal non-crossingedge-disjoint paths, all starting at someleaf. The right

part of Figure 4.3 shows a possiblepartition.
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Figure 4.3: A complete example. On the left, the original free tree to be represented. On
the left, the tree partitioned into vertex-disjoint paths and rooted at z. The root path is
abcwpz.

An augmented top tree corresponding to this partition is shown in Figure 4.4. Basenodes

are represented as shadedrectangles,compressnodesare white rectangles,and rake nodes

are circles. When nodesappear paired up, the foster child is on the left, and the proper child

on the right. Nodes that are not paired up are always proper children. Figure 4.5 shows

the actual top tree corresponding to this augmented top tree. Note that the basenodes

appear in the sameorder in both trees, and that new rake nodesneedto be intro duced to

represent the movesbetweenfoster and proper children.

The root path in the example is abcwpz. It is represented by the top compress tree in

Figure 4.4, which has Nb, Nc, Nw , and Np as internal nodes, and ab, bc, cw, pw, and pz

as leaves. Although the leaves represent the edgeson the path, they need not appear in
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Figure 4.4: Augmented top tree corresponding to Figure 4.3. Basenodesare shadedrect-
angles,compressnodesare white rectangles,rake nodesare circles.
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Figure 4.5: Top tree corresponding to the augmented top tree of Figure 4.4.
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symmetric order, as Section 4.1.1 will explain. For example, edgeab appears before bc on

the root path, but cluster bc appears to the left of cluster ab in the top tree.

The largest rake tree in the example has three internal nodes (� , � , and ") and four

leaves (Nd, Ne, cf, and Ng). The leaves of this rake tree all represent unit trees that are

rooted at c and occur between(b;c) and (c;w) in the circular order. (Theseare edgesof the

path that has c as an internal vertex.) The �rst (leftmost) unit tree is composedby edges

(d; r ) and (c;d); the rightmost contains (g; h), (g; j ), and (c;g).

4.1.1 Order within Binary Trees

We have seenthat a rake tree represents in symmetric order a sequenceof clusters that

appear consecutively around the samevertex. The leavesof a compress tree represent the

edgesof a path and in principle could also appear in symmetric order. To handle path

reversalse�cien tly , however, we use a more relaxed condition. Given a node representing

compress(v) with endpoints u and w, one of its subtreesmust represent the path u � � � v,

and the other v � � � w. Left and right subtrees can be interchanged freely. The \correct"

order among children can be retrieved from the cluster endpoints.

ST-trees use a similar technique to support the evert (change root) operation, with a

reversebit usedto retrieve the correct order when necessary, as mentioned in Section2.1.4.

This may seemlesscostly than our approach, sincethey usejust onebit per node, whereas

we usetwo words (one for each endpoint). However, endpoints must be kept in the top tree

clusters anyway, so the information is essentially free.2

4.1.2 Handles

Someof the external top tree operations (link and expose) are de�ned in terms of vertices,

but the top tree itself is a hierarchy of clusters and nodes,which can be viewed as edgesor

paths|not vertices. Therefore, we associate with each vertex v a handle N v . If the degree

2Of course,one could argue that \necessary features" such as this may make top trees lessthan ideal for
certain applications. There will always be some trade-o� between easeof use and e�ciency , but here the
cost should not be too high.
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of v is at least two, Nv is the node representing compress(v). If the degreeis one, Nv is

the topmost non-rake node that has v as an endpoint, which is either the root of the entire

tree or a leaf of a rake tree. Isolated vertices have no handle. A node may be the handle

of as many as three vertices. In Figure 4.2, for example, the root (Nw) represents both the

path from u to z and compress(w); therefore, it is the handle of u, w, and z. The map from

vertices to handles is maintained explicitly .

Note that this de�nition of handles di�ers from the one used in contraction-based top

trees (see Section 3.3.4). In that case,handles refer to clusters (or, rather, arcs) at the

baselevel, since the update procedure always works bottom-up. In both data structures,

however, handleshave the samepurpose: mapping each vertex to a cluster containing it.

4.2 Up dates

Before operating on a path, the top tree interface mandates that we �rst expose it, i.e.,

make it represented at the root node. The representation described in Section 4.1 requires

both endpoints of the root path to have degreeone. To handle an arbitrary path v � � � w,

we �rst pick a root path that contains v � � � w asa subpath, then we temporarily convert up

to two compress clusters into rake clusters. We call the �rst step a soft expose of vertices

v and w, and the seconda hard expose of the path v � � � w. We discusseach in turn, in

Sections4.2.1 and 4.2.2. We then detail how to implement cut in Section 4.2.3 and link in

Section 4.2.4. Additional implementation issuesare discussedin Section 4.2.5.

4.2.1 Soft Exp ose

The outcomeof soft expose(v; w) dependson how v and w are related to each other. If the

vertices are isolated, nothing is done. If v = w or v and w are in di�eren t components, N v

(v's handle) and Nw (w's handle) are simply brought to the root of their components.

The interesting casehappenswhenv and w are di�eren t verticesin the samecomponent:

in this case,soft expose(v; w) ensuresthat a cluster vw (representing the path v � � � w) exists

and is closeto the root of the top tree. It works by �rst making Nw the root, then bringing
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Nv as closeto the root as possible(preserving Nw). When both v and w have degreetwo

or greater, all three nodes (Nw , Nv , and vw) are di�eren t, and the outcome is the one

depicted in Figure 4.6. If only one of the endpoints has degreeone, we will have N v = Nw ;

if both have degreeone, we will have Nv = Nw = vw. To simplify hard expose,we require

soft expose to make both Nv and vw right children (unlessthey coincidewith the root Nw).

Note that this can always be accomplished,since the proper children of a compress node

can be exchangedfreely.

D

B

C

A wzD

vwBuvA

NvC

Nw
z

w
v

u

Figure 4.6: Con�guration after soft expose(v; w). This is the most general case,in which
both v and w have degreeat least two.

The soft expose operation usesthe same basic tools as the amortized version of ST-

trees [52]: splay and splice. We discusseach in turn.

Splaying

Splaying [52] is a heuristic for rebalancing binary trees using rotations. After a node x is

accessed,it is rotated up to the root. The precisenature of each rotation depends on the

relative positions of x, its current parent p, and its current grandparent g. If x and p are

both right (or both left) children (zig-zig case),we �rst rotate edge(p;g), then (x; p). If

the edgesalternate (zig-zagcase)we rotate (x; p) �rst, then (x; g). When p is the root (zig

case),we just rotate (x; p).

In self-adjusting top trees, rotations (and splaying) happen only within individual rake

or compress trees|w e never splay acrossdi�eren t subtrees. We therefore perform guarded
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splays, which stop when x, the node being splayed, becomesthe child of a referencenode

(the guard). An ordinary splay can be thought of as guarded by null.

As described, the rules for splaying apply to binary trees. However, compresstreeshave

internal nodeswith up to four children. From the point of view of the splaying rules, only

proper children are considered. As shown in Figure 4.7, foster children are not a�ected by

rotations: they always keeptheir original parents. The proper siblings they are raked onto

may change,however.

rotate-left

rotate-right

wzDvwC

NwBuvA

Nv

wzD

vwBuvA

NvC

Nw

Figure 4.7: Rotations in compress trees. Note that foster children always preserve their
original parents.

Splaying requiresthe left and right children of all nodesvisited to appear in a consistent

(symmetric) order. In general,we cannot assumethat this is true for compress trees, since

the children of compressnodescan be swapped freely. Therefore, beforesplaying on a node

N we must rectify all compress nodeson the path from N to the root of its top tree (rake

nodes always have the correct order). If a node X has parent Ny and grandparent Nz,

then X , Ny , and Nz must form a zig-zag if and only if the endpoints of X are y and z.

We ensurethis by ipping the children of Ny appropriately. To preserve the circular order

when proper children are ipp ed, we ip the foster children as well. Each compress node

visited has two proper children, each representing a path. Recti�cation ensuresthat the

path that is farthest from the root of the corresponding unit tree is represented at the left

child. Recti�cation is performed in a top-down fashion.

We note that splaying is performed for balancing purposesonly. It changesthe order

in which di�eren t moves (rake and compress) of the same type occur, but preserves the
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original partition into paths. In both top trees in Figure 4.7, the root node represents the

path uvwz. On the left, vertex v is compressed before w; on the right, w is compressed

beforev.

Splice

The operation that changesthe partition of the original tree into paths is splice. A vertex v

that is internal to a path partitions this path into two segments. Splicereplacesthe segment

that is farthest from the root with an outer path incident to v (i.e., with the root path of a

unit tree rooted at v). In Figure 4.8, x � � � v is replacedby y � � � v on the exposedpath.

C

B

A

C

B

A

splice(y)

z
v

y

x
z

v

y

x

Figure 4.8: Splice: y � � � v � � � z replacesx � � � v � � � z as the exposedpath. Triangles represent
subtrees incident to v, and curved lines represent paths; subtrees incident to these paths
are omitted.

Figure 4.9 shows a possiblecon�guration of the corresponding augmented top trees. The

original proper children of Nv (v's handle) are vx and vz, representing x � � � v and v � � � z.

We shall seethat splicesonly occur after a seriesof local splays (within compressand rake

trees). As a result, Nv will be the root of a compress tree, and there will be at most two

rake nodes between vy, which represents the subpath we want to expose,and N v . Splice

makes vy the left child of Nv and incorporates the former left child (vx) into a rake tree,

where it appearsbetweenA and B as required by the circular order.

Figures 4.8 and 4.9 represent the most general out of several possiblecasesfor splice.

The preciseoutcome depends on which foster child of Nv contains vy (the subpath to be

exposed)and on whether someof the rake subtrees(A, B , or C) are absent. Figuring out
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splice(y) vzC

Bvx

zA

vye

Nv

Cvy

gB

vzbvxA

Nv

Figure 4.9: Splice: Augmented top treescorresponding to Figure 4.8. Circles represent rake
nodes.

what to do in each situation is simple: one must always replacethe left child of N v (which,

after recti�cation, represents the subpath that is farthest from the root of the unit tree)

while ensuringthat the circular order of the up to six relevant subtreesrooted at v (denoted

by A, vx, B , vy, C, and vz in Figure 4.9) is preserved.

Exp osing the Target

Now that we have the necessarybuilding blocks, we return to the implementation of

soft expose(v; w). Its �rst step is to expose the target vertex w, making its handle Nw

the root node.3 The function starts from Nw itself, and works in three passes:

1. (Local Splay) Splay within each compressand rake subtree on the top tree path from

Nw to the root.

2. (Splice) Perform a seriesof splicesfrom Nw to the root, making Nw part of the topmost

compresssubtree.

3. (Global Splay) Splay on Nw , making it the root of the entire top tree.

We call this sequenceof operations a generalized splay.

The �rst passis divided into several subpasses,each starting from a di�eren t compress

tree. Let N be a node of this tree (initially , N = Nw). Splay on it, making N the root of

its compress tree and a leaf of the rake tree immediately above. If the rake tree contains
3We refer to w as the \target" for convenienceonly; the path v � � � w is actually undirected.
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other nodesbesidesN , splay on N 's parent, P, within the rake tree. If N endsup with a

new parent P0, splay on P0 with P as a guard. This concludesthe subpass.

The left of Figure 4.9 shows a possible con�guration after a subpassassociated with

node vy. This node becomesthe root of a compress tree (not shown), and between itself

and the closestcompress ancestor (Nv), there are at most two rake nodes ( and � ). In

fact, we splay twice on the rake tree precisely to divide this tree into three subsequences:

B , vy, and C.

After the �rst passis completed, every node on the path (in the top tree) betweenNw

and the root will be as close as possible to the root of the corresponding subtrees (rake

trees or compress trees). This allows us to perform a seriesof splices, the secondpassof

the algorithm outlined above. As a result, w will becomepart of the root path, and Nw

part of the topmost compress tree.

At this point, we can executethe third passof the algorithm, global splay. It consists

of splaying within the topmost compress tree to make Nw its root, and therefore the root

of the entire top tree.

Although the algorithm is easierto analyze if we think of it as having three passes,in

our implementation we actually perform the �rst two passessimultaneously. Moreover, to

avoid splaying twice within each rake tree, we actually perform a special splaying split to

obtain the three subsequencesmentioned above (B , vy, and C). The procedure is very

similar to splaying on vy directly, but it is not exactly the same. In general,splaying on vy

can make it an internal node of the rake tree, and somerake nodesmay becomeleaves. This

is not allowed by our representation. A splaying split doessplay on vy, but in the process

removesfrom the tree its immediate predecessorand its immediate successorin symmetric

order (which are both rake nodes). Thesenodesare reinserted into the top tree by splice,

which happens immediately after the splaying split.

Exp osing the Source

Having seenhow to exposethe target w, we now consider the sourcev.
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After the target is exposed, Nw will be the root. If v is an endpoint of Nw or if Nw

represents compress(v) (in which casew must be an endpoint of Nw), we are done: Nw is

v's handle aswell. Otherwise, we must bring v's handle (Nv) ascloseto the root aspossible.

The basic idea is to apply to Nv a three-passprocedure similar to the one applied to

Nw . While doing so, we must ensurethat the root of the top tree will remain the handle of

w. The exact proceduredependson the degreeof w.

If w has degreeone, it will be one of the endpoints Nw , the root of the top tree. To

exposev, we �rst make sure that the right child of Nw has w as an endpoint; if it does

not, it su�ces to ip the children of Nw . This guarantees that w will remain part of the

root path even after a splice, which always removes left children. We then apply to N v a

generalizedsplay, the three-passprocedure previously applied to Nw . This will make Nv

the root, with w guaranteed to be one of its endpoints: Nv and Nw will coincide.

If w has degreetwo or greater, then Nw will represent compress(w). To exposev, we

apply to Nv a generalizedsplay, but guardedby Nw : every splay in the procedureis guarded

by Nw . This ensuresthat no node will replace Nw at the root, so either Nv will end up

as Nw 's child (when v has degreeat least two), or v will becomean endpoint of Nw (and

Nw = Nv will be the root).

To follow the speci�cation of soft expose, we may need to ip the children of Nw and

Nv . If Nv 6= Nw , Nv must be Nw 's right child; if the node representing v � � � w is not Nv , it

must be Nv 's right child. If v and w are in di�eren t components, the generalizedsplay will

end up exposing Nv as if it were the target, as required by the speci�cation.

4.2.2 Hard Exp ose

In general,soft expose(v; w) doesnot make v and w the endpoints of the root node. Instead,

asFigure 4.6 shows, the root node will represent somepath u � � � z, with vw asthe rightmost

grandchild. To �x this, hard exposetemporarily converts to rake the (at most two) compress

ancestorsof vw. In Figure 4.6, Nv and Nw would be a�ected. Beforeanother pair of vertices

is exposed,thesemodi�cations are undone to bring the tree back to its \normalized" form.
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4.2.3 Cuts

To cut an edge(v; w), we �rst executesoft expose(v; w), making Nw the root. In the general

case,both v and w have degreeat least two. As the tree on the left of Figure 4.10 shows,

Nw 's right child will be Nv , and Nv 's right child will be the basenode representing (v; w).

cut(v,w)

vyB'uvA

Nv

wxC'wzD

Nw

vwBuvA

NvCwzD

Nw

Figure 4.10: Cutting edge(v; w). The augmented top tree on the left is the one obtained
after soft expose(v; w), so vw is a basecluster. Clusters A, B , C and D are foster subtrees.
During the cut, B is partitioned into vy (the rightmost leaf of the rake tree) and B 0.
Similarly, C is partitioned into wx and C0. Note that the circular order is preserved in the
new trees.

We must destroy the basenode and reorganizethe remaining nodes into two valid top

trees. In the original augmented top tree, Nw represents a unit tree with root path u � � � z.

The subtree rooted at Nv (the right child of Nw) represents a unit tree rooted at w with

(v; w) as the only edgeincident to the root. If we remove the link betweenN v and Nw , Nw

will be the root of a tree containing only the vertices in w's component. Similarly, if we

remove the right child of Nv , only vertices in v's component will remain.

In both cases,the original right child must be replaced. First consider how to replace

the right child of Nw , which is Nv . To preserve the circular order around w, the replacement

must be either the immediate successorof vw around w (the leftmost leaf of the left foster

subtree of Nw , denoted by D in Figure 4.10) or the immediate predecessor(the rightmost

leaf of the right foster subtree of Nw , denoted by C). To extract the appropriate leaf, we

simply splay on its parent. If Nw hasno foster child, we deleteNw and make its left proper

child the new root.
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The right child of Nv (which is vw itself ) can be replaced in a similar fashion, but

consideringthe circular order around v instead: either the leftmost leaf of A or the rightmost

leaf of B can be used.

4.2.4 Links

To insert an edge(v; w) as the successorof path a � � � v around v and of path b� � � w around

w, we �rst perform soft expose(a; v) and soft expose(b;w). Of course,av or bw can be single

edgesinstead of paths. If both v and w have degreegreater than one, we will have the two

augmented top trees shown on the left of Figure 4.11. To link them, we do the opposite

of cut: we �rst replace the right child of Nv with vw, making the original right child (Na)

the rightmost leaf of the right foster subtree of Nv . (If this foster subtree is originally

non-empty, a new rake node must be created.) Then we do the samefor Nw , making Nv

its new right child.

link(v,w)

vw

NaB

buvA

Nv

NbD

axwC

Nw

NaBuvA

Nv

NbDxwC

Nw

Figure 4.11: Linking v and w. The augmented top trees on the left are the result of calls
to soft expose(a; v) and soft expose(b;w). Nodesare rearrangedso as to make vw (the new
edge)the successorof path a � � � v around v and of path b� � � w around w.

The caserepresented in Figure 4.11 is the most general. We rearrange vertices in a

similar way when v or w have degreeone or zero. In particular, when v has degreeone

before the link, it is an endpoint of Nv ; to add (v; w) to the tree, we create a new compress

node with the old Nv and the basenode representing (v; w) as children. A new compress

node is also necessarywhen w has degreeone.
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4.2.5 Implemen tation Issues

Handling Data

So far, we have discussedonly structural changesto the top trees. To update the valuesin

each cluster, we need the user-de�ned functions create, destroy, join , and split. Rotations

and splicescan be easily expressedin terms of a seriesof splits and joins. However, since

the top tree is modi�ed in a bottom-up fashion, thesefunctions cannot be called as we go:

they can only be applied to root clusters. Instead, before exposing a vertex, we mark all

a�ected clusters, then split them in a top-down fashion. (We can actually do this together

with the recti�cation pass.) Only then do we perform all structural modi�cations. A simple

recursive function unmarks all clusters and calls join in a bottom-up fashion once all the

structural operations are performed.

Non-lo cal Search

As mentioned in Section2.2.4, the top tree interface can be augmented to include the select

operation, usedto guide a simulated binary search on the top tree. The actual running time

of the binary search is proportional to the depth (in the top tree) of the last cluster visited.

Let this cluster be C. Although its depth can be linear in the self-adjusting implementation,

the amortized cost of the binary search will be logarithmic, as long as it is immediately

followed by a generalizedsplay on C. Splaying will amortize the cost appropriately.

No des and Clusters

Strictly speaking, our representation doesnot implement top trees directly. We have nodes

with up to four children, whereastop trees are binary. For a direct implementation, it

su�ces to replace each compress node by the three corresponding clusters (one compress,

two rakes), as shown in Figures 4.3 and 4.4. Unfortunately, splay and splice would become

considerably more complex, since they would have to account for the fact that compress

trees now have interspersedrake nodes.



101

4.3 Analysis

The run-time analysis of the routines to update the data structure does not consider the

augmented top tree itself but rather an equivalent phantom tree. In the augmented top tree,

compressnodeshave up to four children; in the phantom tree, up to three: left, middle, and

right. To convert a four-child top tree nodeto a phantom tree node,wecreatean articulation

node (the new middle child) and make it the parent of the original foster children. The

articulation node is inserted only when there are two foster children. Figure 4.12shows the

phantom trees corresponding to the augmented top trees in Figure 4.9.

While a tree with n vertices may be represented by augmented top trees with various

numbers of nodes, phantom trees will have exactly n � 1 nodes; this greatly simpli�es

the analysis. Phantom trees are used in the analysis only; they do not appear in the

implementation.

We extend Sleator and Tarjan's analysis of ST-trees [52]. The rank of a node N is

de�ned as r (N ) = logs(N ), where s(N ), the size of N , is the number of nodesdescending

from N in the phantom tree. Note that the rank is at most logn. The potential of the

phantom tree is de�ned as q times the sum of the ranks of all nodes,where q is a constant

to be chosen later. The amortized cost of the i -th operation in a sequenceis de�ned as

ai = ci + � i +1 � � i ; where ci is the actual cost of the operation, and � i and � i +1 are the

potentials beforeand after it is performed. A bound on the total amortized time translates

into a bound on the actual time [55].

In general, the operations we perform within a pass take an active node and move it

upward in the tree. The nodethat is activemay evenchangeduring the process,in particular

during a spliceand betweenlocal splays. The depth of the activenode(regardlessof whether

it is a di�eren t node or not) is guaranteed to decreasefrom one step to the next, however.

Each basic operation (rotation, double rotation, or splice) dealswith a constant number of

nodes, and therefore takes constant time. We de�ne the actual cost of the i -th operation

(ci ) as the amount by which the depth of the active node is reduced.

Rotations within rake and compress trees follow Sleator and Tarjan's analysis [52].
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Their AccessLemma states that the amortized time for a zig-zig or a zig-zag on a node

N is 3q(r 0(N ) � r (N )), where r (N ) and r 0(N ) denote the rank of N before and after the

operation. Moreover, the amortized cost of a zig is 3q(r 0(N ) � r (N )) + 1. Sleator and Tarjan

use q = 1 in the analysis of standard splay trees and q = 2 when analyzing ST-trees, but

any constant q � 1 can be used.

We need to obtain a similar result for splices. Figure 4.12 shows how splices work

on phantom trees: just as in Figure 4.9, with articulation nodes (� and � ) added where

necessary. The active node is vy before the operation, and Nv after. We can prove the

following:

splice(y)

vz

Bvx

zA

Ce

dvy

Nv

vz

Cvy

gB

bA

avx

Nv

Figure 4.12: Splicing on the phantom tree corresponding to the tree on Figure 4.9, with �
and � added as articulation nodes.

Lemma 12 The amortized cost of a splice is at most 3q(r 0(N 0) � r (N )) + 4, where N is

the active node before the operation, and N 0 is the active nodesafterwards.

Pro of. The actual cost of the operation is at most 4, an upper bound on the amount by

which the depth of the active node is reduced in the phantom tree. SeeFigure 4.12: the

active node is N = vy before the splice, and N 0 = Nv after. The only nodes whoseranks

changeare those labeledwith Greek letters in the �gure; all others will keepthe exact same

set of descendants. All three a�ected nodeson the left are ancestorsof the original active
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node N = vy, so their combined rank is at least 3r (N ); the a�ected nodeson the right are

all descendants of the �nal active node N 0 = Nv , which meanstheir combined rank is at

most 3r 0(N 0). The amortized cost a of the operation is therefore

a = c + � 0� � � 4 + q(3r 0(N 0)) � q(3r (N )) ;

as claimed. Note that the contribution of all other nodes (besidesthe ones labeled with

Greek letters) to the potential can be ignored, since their ranks are the samebefore and

after the operation.

A similar analysisholds if there are fewer than three nodesbetweenN and N 0; the only

di�erence is in the additiv e constant: instead of 4, we will have 3, 2, or 1. The caseshown

in Figure 4.12 is the most expensive. 2

We can now bound the amortized cost of soft expose(v; w). It is enough to bound the

time to exposethe target vertex w; the samebound applies to the sourcev. We analyze

each pass(local splays, splices,and global splay) in turn.

Consider the �rst pass. If k is the number of compress trees on the path from Nw to

the root of the top tree, we will splay within k compress trees and within up to k � 1 rake

trees (twice in each such rake tree). We can analyze this as two subpassesthat go strictly

upwards. The �rst subpassaccounts for all rotations within compresstreesand for the �rst

splay within each rake tree; the secondsubpassaccounts for the secondsplay within each

rake tree.

Each subpasscan be further divided into steps, which are either rotations (zigs) or

double rotations (zig-zigs or zig-zags). Let s be the total number of steps in a subpass.

Also let N i be the active node before step i and N 0
i be the active node immediately after

step i . The amortized cost of the �rst subpassis

A1 = 3q
sX

i =1

(r 0(N 0
i ) � r (N i )) + 2k � 1:

Note that the 2k � 1 term accounts for all zigs in the subpass(at most k within compress

trees and k � 1 within rake trees). Becausethe passonly movesup the tree, we know that
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r (N i +1 ) � r 0(N 0
i ). Using this fact and de�ning r (Ns+1 ) to be equal to r (N 0

s), we have:

A1 � 3q
sX

i =1

(r (N i +1 ) � r (N i )) + 2k � 1:

Becausethe summation telescopes,we have that

A1 � 3q(r (Ns+1 ) � r (N1)) + 2k � 1 � 3qlogn + 2k � 1:

The secondinequality usesthe fact that no rank is greater than logn, where n is the total

number of nodes in the tree.

The secondsubpass(corresponding to the secondsplay within each rake tree) can be

analyzed in a similar fashion. The only di�erence is that it splays in at most k � 1 trees,

making the amortized cost at most 3qlogn + k � 1.

Therefore, the total amortized cost of the �rst passof the algorithm is 6qlogn + 3k � 2.

The secondpassperforms k � 1 splices. From Lemma 12, the total amortized cost is at

most 3qlogn + 4(k � 1). Once again, the sum of ranks telescopes.

Considering just the �rst two passes,the total amortized cost of the procedure is

9qlogn + 7k � 6. This would be O(log n), except for the 7k term, which can be up to

�( n). The third passof the algorithm (global splay) will pay for this extra term.

The global splay reducesthe depth of the active node from k � 1 to 0 with k � 1 rotations

within the samecompress tree. The total amortized cost of the step is 3qlogn + 1. Our

potential function chargesq time units per rotation, but the actual cost is one,which leaves

us (q � 1)(k � 1) \un used" units. Setting q = 8, we will be only one unit short of fully

paying for the extra 7k � 6 units spent on the �rst two passes.

Adding up the amortized costs of all three passes,we conclude that the total cost of

exposing the target vertex is bounded by 12qlogn + 2 = 96logn + 2 = O(log n). The same

applies to the source.

We claim both link and cut also take O(log n) amortized time.

The link operation starts with a call soft expose, which takesO(log n) amortized time.

It then performs a constant number of pointer modi�cations. Becauseall a�ected nodes
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have constant depth (i.e., they are within a constant distance from the root), each of them

cannot increasethe overall potential by more than O(log n).

The cut operation alsostarts with a soft exposeand modi�es nodepointers that areclose

to the root, with the samebounds as link. Moreover, a cut also performs one additional

splay within a foster subtree of each new root. These splays may visit nodes of arbitrary

depth, but, becausethey are just standard splays, their total amortized time is O(log n) as

well.

We have thus proved the following:

Theorem 4 Self-adjusting top trees support link , cut, and expose in O(log n) amortized

time.

4.4 Alternativ e Represen tations

4.4.1 Possible Simpli�cations

Although self-adjusting top trees have some features in common with ST-trees, they are

much more general: they support subtreeoperations on treesof unboundeddegree,ordered

incidencelists, and unrooted trees (without the needfor the evert operation). Many appli-

cations, however, have no needfor oneor more of theseextra abilities. In fact, using such a

generaldata structure could have a negative e�ect on performance. This section discusses

how our data structure can be simpli�ed when its full power is not needed.

Unordered Adjacency Lists

We �rst consider applications in which the order among the edgesincident to a vertex is

irrelevant. In such cases,instead of maintaining two foster children per compressnode, we

can replace them with a single middle child, in a manner similar to phantom trees. This

middle child must be interpreted asbeing raked onto either proper child. Not only doesthe

representation itself get simpler, but it alsobecomeseasierto update: there are fewer cases

(and nodes) to handle when performing splices, cuts, and links.
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Trivial Rak es

Further simpli�cation is possiblefor applications in which rakeshave no e�ect on the target

cluster, i.e., when the data in the parent cluster is a copy of that in the target. This is

what happens in applications that deal exclusively with paths, not trees or subtrees. In

such situations, an edgeis only raked when we know it doesnot belong to the path we are

interested in, and therefore we can ignore the information it holds. Then we can completely

eliminate rake trees and link the root node of each compress tree directly to the compress

node above, mimicking the dashededgesof ST-trees [51].

WhereasST-treesdo not needpointers from a node to its dashedchildren, however, our

data structure needsat least one such pointer. The reasonis that, during a cut operation,

we might needto replacea proper child of a node with oneof its foster children. Sincethere

is no circular order, any foster child is good enough. Therefore, it su�ces to keepa pointer

from a node to one of its foster children, as long as the foster children are maintained in

a circular list. The list must be doubly-linked, becauseit must allow arbitrary deletions

during splices. Whenever a foster child is \promoted" to be a proper child, it is removed

from its circular list and replacedby its successor.

Ro oted Trees

Another specialcaseis that of rooted trees. ST-treesassumethe underlying treesare rooted;

to handle free trees, there is a special operation to change the root (evert). Although our

data structure already incorporatesevert into expose, it doesget slightly simpler when roots

are �xed, sincethe recti�cation step becomesunnecessary.

4.4.2 Unit Trees

One aspect of our representation that seemsarbitrary is the notion of unit trees. Recall

that the root path must begin and end at vertices of degreeone. ST-trees have no such

constraint. Unit treesare the only reasonwhy we must have hard expose, which temporarily

converts up to two compressclusters into rake clusters in order to make a subpath of a root



107

path exposed. If we did not have the notion of rooted trees,a singleexposeoperation would

su�ce. Why did we chooseto useunit trees?

We choseit mainly for symmetry, which in turn results in fewer special cases.Consider

the top tree in Figure 4.2, which represents the tree in Figure 4.1. Every node of the

compresstree is matched with a foster sibling, with the exceptionof the root. Every cluster

with a foster sibling will be the target of a rake inside this tree.

Now consider what would happen if we allowed compress trees to be more general:

instead of representing paths that start at a degree-onevertex, it could represent paths

starting at arbitrary vertices. In other words, considera tree similar to that of Figure 4.1,

but with an extra subtree U rooted at u (besidesthe subtrees A to H , already drawn).

How would U be represented within the binary tree? Clearly, it must be raked onto some

cluster. The obvious alternativ es are to rake it onto the base cluster uv or maybe onto

the root cluster of the top tree|the one representing the entire uv path (represented as

Nw in the top tree). In either case,a new rake cluster would have to be incorporated into

the compress tree. Every element of the update of algorithm (in particular, splices and

rotations) would have to account for this special node.

Requiring each path to start at a degree-onenode eliminates this special case in all

but one compress tree, and that is why we chose this representation. The compress tree

that needsspecial treatment in our representation is the topmost one, which represents the

exposedpath. Treating this one special caseis the purposeof hard expose.

4.5 Path Decomp osition and Tree Con traction

Our data structure demonstratesthat the two main approachesusedto represent dynamic

trees are, in a sense,equivalent. ST-trees represent a partition of the trees into disjoint

paths. Topology trees, RC-trees, and top trees are basedon tree contraction. Frederick-

son [25] noticed that partitions and contractions have similarities, and Alstrup et al. [10]

even showed that topology trees can be implemented using ST-trees. The transformation

is far from direct, however, as the authors themselvesobserve. In contrast, there is no need
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to \map" our data structure from one framework to the other. One can simply interpret it

in two di�eren t ways.

From the point of view of the interface, our data structure is a pure top tree: a single

tree with internal nodes representing either rakes or compresses, and leaves representing

baseclusters. As such, it is as powerful (and as general) as any other implementation of

top trees.

From the point of view of the update algorithms (expose, link, and cut), our data

structure follows the path decomposition framework; it is interpreted not asa singletree, but

asa hierarchy of binary trees(rake treesor compresstrees). This makesthe implementation

almost as simple as the implementation of ST-trees.

The correspondencebetween tree contraction and edge-disjoint path decomposition is

not always that obvious, but it always exists. Any valid tree contraction can be associated

with a valid path decomposition, and vice-versa. We considereach direction in turn.

4.5.1 Con traction to Decomp osition

First, note that any sequenceof rakes and compressescan be translated into a unique

partition of the original tree into edge-disjoint paths. Two edgesa and b will belong to

the samesolid path if and only if there is a node in the top tree with endpoints s and t

such that both a and b belong to the (unique) path between s and t in the original tree.

Intuitiv ely, solid paths are \grown" by compress moves. A compress node C with children

A and B indicates that the path represented by A and the path represented by B belong

to the samesolid path.

The simplest way to identify solid paths, however, is by looking at the rake moves. A

rake cluster indicates that one path (the one represented by the cluster being raked) will

stop growing. This implies that the solid paths in which the original tree is partitioned are

exactly the paths represented by all the left children of rake clusters, plus the root of the

entire top tree (the only path that is not raked).

In the example in Figure 2.6, the solid paths are ac, dg, ij , lm, fg, mo, bg, hi , and en
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(the root). This being a very small example, only two solid paths (bg and en) have more

than one edge.

A larger example is the top tree presented in Figure 4.5. By taking the root of the tree

and the left children of rake nodes,we seethat the solid paths are: ow, wy, lv, nu, in , ck,

cr, cj , es, cq, cf , gh, bt, az (the root), and px (the nodes are listed in symmetric order).

Theseare exactly the solid paths depicted in Figure 4.3.

4.5.2 Decomp osition to Con traction

If every contraction can be mapped into a partition, the converse is also true: any parti-

tion into paths can be translated into a sequenceof rakes and compresses(although not

necessarilyunique).

In the representation suggestedin this chapter, each solid path is represented as a

compress tree. Despite the name, these trees have more than compress nodes: there may

be rake nodes amid them. Furthermore, our representation imposesa particular set of

constraints on theserake trees. We know, for instance, that there can be no more than one

rake node betweena compress node (or a basenode) and the compress node immediately

above it in the samecompress tree.

The top trees resulting from the worst-casealgorithm proposedin Chapter 3 have no

such constraint. There can be an arbitrary number of rake nodesbetweentwo consecutive

clusters belonging to the samesolid path. In Figure 2.6, for example, the basenode gi and

the compress node ei are elements of the samesolid path (from e to n), but there are two

rake nodesbetweenthem.

This is an exampleof a contraction that the worst-casealgorithm can represent, but the

self-adjusting versioncannot. The conversecan alsohappen: sometop trees represented by

the self-adjusting algorithm would never be createdby the worst-caseversion. For example,

the self-adjusting algorithm can, after somesequenceof operations, create a top tree with

height greater than �(log n). These two implementations of the top tree interface are not

in any way equivalent.
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4.6 Final Remarks

This chapter presented a self-adjusting data structure for maintaining dynamic trees. Be-

causeit implements the top tree interface, it is as general as any other data structure for

this problem. Furthermore, it doesso using path decomposition directly, which results in a

representation with very little overhead,as a single tree with a direct correspondence(even

one-to-one,depending on the implementation) betweennodesand clusters.

The bottom-up implementation of top trees described in Chapter 3, in contrast, rep-

resents a round-basedcontraction scheme, which is much stricter. Its implementation re-

quires keepingan Euler tour to represent each level, as well as dummy nodes to represent

unmatched clusters. This is similar to what happenswith topology trees.

Besidesthe fact that it makes the data structure conceptually simpler to update, the

top-down view o�ered by path decomposition makes it clear how the data structure can

be simpli�ed to handle common special cases. As shown in Section 4.4.1, it is relatively

straightforward to specialize self-adjusting top trees to handle applications in which adja-

cency lists are unordered or in which only path operations needto be performed. It is not

obvious how this can be done for contraction-based worst-casetop trees.

One could conceivably use path decomposition to implement worst-casetop trees by

using globally biasedbinary search trees instead of splay trees to represent compress trees.

As already mentioned, thesedata structures are signi�cantly more complicated. Moreover,

the fact that splay trees work by bringing accessednodesto the root greatly simpli�es the

implementation of dynamic trees. Biased search trees are much lessexible.
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Exp erimen tal Analysis

Wehaveseenthat top treesaremoregenericand easierto usethan previousdata structures,

such as ST-trees and ET-trees. This chapter presents experiments whosemain goal is to

evaluate how much this costs in terms of performance. Both versions of top trees are

compared to ST-trees and ET-trees, and also to each other. As one would expect, the

simpler amortized version is usually faster than the worst-caseone. Perhaps surprisingly,

however, there are restricted situations in which the worst-caseversion is superior.

Another important question is: how practical are dynamic trees in general? All of the

data structures presented in Chapter 2 are relatively complicated. The experiments will

show that, in practice, it is often worth it to rely on simple linear-time implementations of

the dynamic tree operations.

This chapter is organized as follows. Section 5.1 describes the experimental setup.

Section 5.2 briey describes the implementation of the data structures tested. We then

present experimental studies of three di�eren t applications that use dynamic tree data

structures: maximum o ws (Section 5.3), online minimum spanning forests (Section 5.4),

and single-sourceshortestpaths (Section5.5). Section5.6presents an additional experiment

with random dynamic tree operations. Section 5.7 briey summarizes the experimental

results previously reported in the literature and comparesthem with the ones described

here. Final remarks are made in Section 5.8.

111
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5.1 Exp erimen tal Setup

All data structures and algorithms were implemented by the author in C++ and compiled

with g++ version 3.4.4 with full optimization (-O4). The experiments were performed on

a Pentium IV running Gentoo Linux 2.16.14.2at 2.0 GHz with 1 GB of RAM, 8 KB of

L1 cache and 512 KB of L2 cache. While the tests were running, no other CPU-intensive

processwas being executed.

All times reported are CPU times measuredwith the getrusage function, whosepreci-

sion is 1/60 of a second.To determine the running time of a given computation, we actually

ran it several times until the aggregatetime was at least two seconds. To determine the

time of each individual run, we divide the aggregatetime (which we measureddirectly) by

the number of runs. To ensureall runs were essentially equivalent, the timed executions

were precededby a single untimed run, usedto warm up the cache.

We stressthat all \runs" mentioned above are calls to a speci�c function, not calls to

the entire program. The program is called only once and has an internal loop that calls

the timed functions. The running times do not include the time to generateor read the

input data (which is done only onceby the entire program), but they do include the time

to allocate, initialize, and destroy the data structures (each done once per run within the

program).

Input graphs for the maximum o w algorithm studied in Section 5.3 were generated

with Anderson's washington generator [11]. The remaining inputs were generated by

the author. The pseudorandomnumber generator used was Matsumoto and Nishimura's

Mersenne Twister [42].

5.2 Data Structures

As already mentioned, the experimental analysisincludestop trees,ST-trees,and ET-trees,

aswell as linear-time implementations of the ST-tree interface. Reasonablee�ort wasmade

to make them e�cien t, but further improvements might be possible. When feasible, the
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data structures share common subroutines. In particular, the routine for splaying on a

binary tree was implemented only onceas a template function, and usedby ST-trees, ET-

trees, and top trees. The values maintained by the data structures (such as edgeweights

and vertex distances) are stored as 64-bit double s; switching to 32-bit integers would not

have a major e�ect on performance.

All data structures are initialized with the number of vertices n in the forest they

represent; this number doesnot changeduring the execution. This allows the data structure

to preallocate, when it is created,all the memory it can possibly need. For instance, worst-

casetop trees need no more than 7n clusters, and ET-trees no more than 3n nodes. Of

course,not all elements (nodes or clusters) are neededat all times. Therefore, each data

structure maintains a list of available elements. Whenever a new element is needed,it is

removed from this list; when an element is no longer necessary, it returns to the list. The

list is implemented as a stack, which meansthat the most recently discardedelement will

be the �rst to be reused.

All data structures were implemented with full functionalit y; no simpli�ed versionswere

tested. For example,the ST-tree implementation always supports both evert and the abilit y

to add a constant to all vertices of the path, even though the maximum-o w algorithm we

tested doesnot needthe former, and the online minimum spanning forest application does

not need the latter. Similarly, ET-trees support the abilit y of �nding the minimum-value

vertex in a subtree, but the single-sourceshortest path application (the only one to use

ET-trees) doesnot needit. None of the applications tested requiresorderedadjacencylists,

but both implementations of top trees support it.

The subsectionsthat follow discussspeci�c details of each data structure implemented.

5.2.1 ST-trees

Self-adjusting ST-trees were implemented with costs on vertices, following the description

in [52].1 This implementation will be referred to asst-v . As mentioned in Section2.1.4, it

1Actually , the implementation of addcost di�ers slightly from [52]: a command to update � min is missing
from the original paper.
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can also support costson arcs as long as no evert is ever performed. It su�ces to interpret

the cost of a vertex v as the cost of the arc from v to its parent, and to make the costsof

all root vertices in�nite.

The experiments, however, do include an application that requires both arc costs and

the abilit y to changeroots (evert). For this, we useanother version of the data structure,

which we call st-e . Instead of implementing st-e from scratch, we made it an interface to

st-v . An arc a = (v; w) with cost x in the original tree is represented in the st-v data

structure as a dummy vertex Da with cost x and exactly two incident arcs, (v; D a) and

(w; Da). The nodes representing the original vertices of the tree have cost 1 . The st-e

interfacemerely converts operations in the original forest into operations in the transformed

forest, and vice-versa.

Although st-e is not a direct implementation of ST-trees with costson edges(such as

the one described in [51]), it does have the samesize: each vertex or edgeof the original

forest becomesa node in the data structure. Someof the operations, however, might be

slightly costlier. For instance, to cut an arc a from the tree, we must cut both edgesincident

to the dummy vertex Da in st-v . Similarly, every link in the original tree will correspond

to two links in st-v . Becauseof splaying, the secondcall is likely to be cheaper than the

�rst, but someoverheadis to be expected.

The experiments also include a direct implementation of the ST-tree interface, in which

rooted treesare represented explicitly: each vertex maintains a pointer to its parent and an

associated cost. With this representation, operations link, cut, �ndc ost, and parent can be

implemented in constant time. The other operations (�ndr oot, evert, �ndmin , and addcost)

require traversing the path from a vertex to the root of its tree, however, and therefore

take time linear on the length of this path. To make this implementation consistent with

the self-adjusting version of ST-trees, link (v; w) also takes linear time, since it must �rst

con�rm that �ndr oot(w) 6= v, i.e., that v and w actually belong to di�eren t components.

As in the self-adjusting case,two versionsof this linear-time implementation weretested:

lin-v , which associates valueswith vertices, and lin-e , which associates valueswith arcs.
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Both actually store valueson vertices, and di�er only in how thesevaluesare interpreted:

in lin-v , the value represents the cost of the vertex itself, whereasin lin-e it represents

the cost of the arc betweenv and its parent. Both variants implement most operations in

essentially the sameway, with the exception of evert(v). While lin-v simply reversesthe

arcs of the path from v to the root by changing the parent pointers of all vertices visited,

lin-e alsohasto changethe costsof thesevertices. More precisely, the cost of an arc (v; w),

originally stored at v, must be stored at w after the arc is reversedduring an evert.

5.2.2 ET-trees

The implementation of ET-trees usedin the experiment is the self-adjusting versionoutlined

in Section 2.3 (and described in detail in [56]). Each original tree is represented as a splay

tree where each original arc appearstwice and each original vertex once. In total, no more

than 3n nodesare used. We refer to this implementation as et-s .

5.2.3 Top Trees

We implemented both versionsof top trees for the experiments. The contraction-based im-

plementation, which supports each operation in O(log n) worst-casetime, will be referred to

as top-w . It implements exposeby building temporary trees, asexplained in Section3.3.5.

The self-adjusting versionis called top-s . Both take asinput the total number of vertices,a

data type (which de�nes what �elds should be maintained in each cluster), and a processor,

an object that implements methods create, join , split, and destroy. Note that, sinceone of

the inputs to the data structures is a type, they must be implemented as templates. One

could usevirtual functions instead, but, becausethesecannot be inlined, the performance

would be much worse.

The data structure calls the appropriate method from the processorwhenever it needs

to update the values in somecluster. Becausethe processoris an object (and not just a

collection of functions), it can easily keepa state, which is useful in many applications. For

example, the single-sourceshortest path algorithm studied in Section5.5 needsto maintain
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a separatearray to handle the values of exposedvertices. This array is maintained inside

the processor.

For each application tested we developed a di�eren t processor,and useda di�eren t data

type to represent the �elds to be stored. Given a particular application, the sameprocessor

can be usedby both top tree implementations.

Implemen ting the ST-tree in terface. Top trees are genericenough to implement all

the functions of the ST-tree interface. In [8], Alstrup et al. detail how this can be done.

To maintain rooted trees, they suggestadopting the convention that the secondexposed

vertex in each component (there are two) always represents its root vertex. To implement

the ST-tree operations e�cien tly , we maintain in each cluster C = (v; w) the following

�elds:

� mincost(C): the cost of the minimum-cost edgeon the path from v to w;

� extra(C): a value to be added to all clusters that represent subpaths of v � � � w;

� extremev(C) and extremew(C): the baseclusters representing the edgesincident to v

and w, respectively, on the path from v to w;

� minvertexv(C) and minvertexw(C): among the two endpoints of the minimum-cost

edgeon the path from v to w, minvertexv is the one farthest from v, and minvertexw

the one farthest from w. If there are ties, minvertexv will refer to the minimum edge

that is closer to v, and minvertexw to the one closer to w.

With these�elds, implementing each ST-tree operation is straightforward. Wegivea few

examples. To implement evert(v), one would call expose(�; v). To implement �ndr oot(v),

one would call C  expose(v; �) and return the second endpoint of C. To implement

�ndmin (v), one would call C  expose(v; �) and return minvertexw(C), where w is the

secondendpoint of C. For parent(v), one would call C  expose(v; �), and return the

endpoint of extremev(C) that di�ers from v. The remaining operations can be implemented

similarly.
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This approach doesmake it very convenient to usethe data structure: the sameimple-

mentation of the maximum o w algorithm can useeither ST-trees or top trees seamlessly.

It may have a negative e�ect on performance, however. The ST-tree interface is natural

for how ST-trees are implemented but much less so for top trees. For instance, ST-tree

operations are vertex-oriented, with the parent operation usedto accessan edge. Top trees,

on the other hand, can manipulate edgesdirectly in a much more natural way. Moreover,

the implementation proposedby Alstrup et al. assumesthat top trees can remember not

only which vertices are exposedin each component, but also which, among the two, is the

�rst exposedvertex and which is the second. Implementing this is relatively straightfor-

ward, but it makesthe data structure more complicated, and technically this feature is not

a requirement of the top tree interface.

In the experiments, we refer to the implementation of the ST-tree interface on top of

self-adjusting top trees as topst-s , and on top of worst-casetop trees as topst-w . Both

implement the sameinterface as st-e . We shall seethat they are considerablyslower than

top-s and top-w even on the application for which ST-trees were originally designed,a

maximum-o w algorithm.

5.3 Maxim um Flo ws

When developing ST-trees, the �rst data structure to support every dynamic tree operation

in O(log n) time, oneof the main motivations of Sleator and Tarjan was to make maximum

o w algorithms more e�cien t. In particular, in [51] they present an algorithm to compute

a blocking o w on an acyclic graph in O(m logn) time, where m is the number of arcs

and n the number of vertices in the graph.2 This can be used as a subroutine of an

O(nm logn)-time implementation of Dinic's maximum o w algorithm [19].

The experiments in this section test the dynamic tree data structures on a di�eren t

maximum o w algorithm, basedon distance labels (which we shall describe shortly). Al-

2A blocking o w is a o w from the source s to the sink t of an acyclic graph graph such that each s-t
path contains an edgewhose o w equals its capacity.
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though it doesnot usethe notion of blocking o ws explicitly , the algorithm is very similar

to Dinic's algorithm, as mentioned in [5, Section 7.5]. It usesdynamic trees in a similar

way and achieves the sameworst-caserunning time. It is, however, simpler to implement,

as Section 5.3.2 will show.

5.3.1 Basics

To describe the algorithm, let us �rst formalize the problem.3 Let G = (V; A) be a directed

graph with two distinguished vertices, a source s and a sink t (reachable from s). Each arc

(i; j ) has an associated positive capacity cij . To simplify notation, assumethat cij = 0 for

every pair (i; j ) that is not an arc. A ow f is an assignment A 7! R such that, for all i and

j , 0 � f ij � cij and, for every vertex i (except s and t),
P

j f j i =
P

k f ik . The value of the

o w is
P

i f si , which is equal to
P

i f it . The maximum ow problem is that of determining

a o w of maximum value.

Given any o w f , we de�ne the residual capacity of an arc (i; j ) as r ij = cij � f ij .

Intuitiv ely, the residual capacity represents how much more o w the arc supports. When

the residual capacity is zero, the arc is said to be saturated. For most maximum o w

algorithms, it helps to assumethat, for every original arc (i; j ) with o w f ij there is also

a reversearc (j ; i ) with residual capacity f ij . Therefore, reducing the o w on (i; j ) can be

interpreted as increasingthe o w on (j ; i ). The residual network of G is the subgraph of G

induced by the arcs (both original and reverse)with strictly positive residual capacity.

The residual capacity of a path in G is de�ned as the minimum residual capacity of its

arcs. If a path from s to t haspositive residualcapacity, wesay that it is an augmentingpath.

Based on this notion, one can de�ne a simple algorithm for the maximum o w problem:

In each step, �nd an augmenting path and send as much o w as possiblealong it; repeat

until no augmenting path exists. It is not hard to prove that this generic algorithm will

eventually �nd the maximum o w, but the algorithm will not be strongly polynomial if

the choice of augmenting paths is left unconstrained. Fortunately, there are slightly more

3We assumethe reader is familiar with the basic concepts of network o ws, so the description will be
very terse. For a more complete discussion, see[5], for example.
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sophisticated algorithms that can guarantee polynomial-time convergence,such as the one

described in the next section.

5.3.2 The Shortest Augmen ting Path Algorithm

The algorithm implemented for the experiments is the shortest augmentingpath algorithm,

due to Edmonds and Karp [21]. In each iteration, it performs an augmentation along the

s-t path in the residual network that has the fewest arcs (ties are broken arbitrarily). To

�nd this path e�cien tly , we usethe notion of distance labels. The distance label of a vertex

v, denoted by d(v), is a lower bound on the distance in the residual network (in number of

arcs) from v to the sink t. An arc (i; j ) is called admissibleif d(i ) = d(j ) + 1. The admissible

network is the subgraph of the residual network containing only admissiblearcs. It is easy

to seethat any path from s to t in the admissiblenetwork is a shortest augmenting path.

The algorithm works as follows. It starts at the sources and grows a path one vertex

at a time, always picking an admissibleoutgoing arc. Whenever it reachesa dead end (i.e.,

a vertex with no outgoing admissible arc), the algorithm backtracks and tries a di�eren t

outgoing arc from the previous vertex. Eventually , it will either reach t (and perform an

augmentation) or con�rm that no augmenting path exists.

More precisely, let v be the current vertex being processedby the algorithm. Initially ,

v  s. At the beginning of an iteration, we check whether there is an admissiblearc (v; w)

leaving v. If there is, we advance by setting v  w and pred(w)  v, where pred denotes

the predecessoron the current tentativ e path; if v = t after advancing, we augment and

start over from s. If there is no outgoing admissiblearc from v, we retreat : �rst we update

d(v) (i.e., we set d(v)  d(u) + 1, where u is, among all vertices for which (v; u) is not

saturated, the one with the minimum distance label), then set v  pred(v).

The algorithm proceedsuntil d(s) = n, at which point the admissiblenetwork is guar-

anteed to have no augmenting path. A tighter stopping criterion in practice is the gap

heuristic: stop when there is an integer i between0 and d(s) such that there are no vertices

with distance label i . It is easyto implement this stopping criterion using counters to keep
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track of the number of vertices with each distance label at any time.

The running time of the maximum o w algorithm can be shown to be O(m2n). If one

maintains a current arc data structure, which keepstrack of the most recent arc taken out

of each vertex, the total running time can be reduced to O(n2m). The reader is referred

to [5] for further details on the algorithm and its analysis.

Our implementation usesboth the gap heuristic and the current arc data structure.

Using ST-T rees

One of the \ n" factors in the O(n2m) expressionaccounts for the fact that each augmen-

tation may take �( n) time, sincean augmenting path may have up to �( n) arcs. If we use

a dynamic tree data structure, the time per augmentation is reducedto O(log n), even for

such long paths.

The data structure is usedto maintain a forest of admissiblearcs. Each tree of the forest

is rooted, and every arc (i; j ) is such that j is the parent of i in the tree and d(i ) = d(j ) + 1.

The costof (i; j ) in the forest represents its residualcapacity in the graph. In every iteration,

the current vertex v will be the root of the tree that contains s. Initially , v  s and the

forest has no arcs.

Each iteration starts by verifying if there is an admissiblearc (v; w) leaving v. If there

is, we advance by adding this arc to the forest (with the link operation) with cost r vw and

making v  �ndr oot(w). If there is no admissible arc leaving v, we retreat by removing

from the forest (with cut) all arcs incident to v, updating the distance label of v (we set

d(v)  d(u) + 1, where u is, among all vertices for which (v; u) is not saturated, the one

with the minimum distance label), and, �nally , setting v  �ndr oot(s). To execute this

step e�cien tly , it is convenient to maintain for each vertex v a list of all incoming arcs in

the forest.

After advancing, we check whether the current vertex v is t. If it is, we have found an

augmenting path from s to t and must sendas much o w as possiblealong it. We do this

with dynamic tree operations: we call v  �ndmin (s) and �  �ndc ost(v) to determine
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the amount � by which the o w can be increased(i.e., the residual capacity of the path),

then addcost(s; � �) to update the residual capacity of all arcson the path. We then remove

all newly saturated arcs from the forest by cutting all arcs that have zero residual capacity.

Thesearcs can be found with repeated calls to �ndmin (s).

Note that the version of dynamic trees required for this application has very restricted

properties: the data structure must maintain rooted trees, and the roots do not change

during the algorithm (except due to link and cut); there is no evert operation. Furthermore,

data must be aggregatedonly along paths, not trees. Not coincidentally , these are the

properties that are handled naturally by ST-trees.

An important aspect of this application is that structural operations (link and cut) con-

stitute a large fraction of all operations. Every non-structural operation (�ndmin , addcost,

�ndc ost, or �ndr oot) is soon followed by a structural operation.

Using Top Trees

The obvious way of using top trees within the shortest augmenting path maximum o w

algorithm is to implement the ST-tree interface on top of it. As already mentioned, this

may have an adversee�ect on performance. A better alternativ e is to de�ne the internal

operations of top trees so as to satisfy the speci�c needsof the maximum o w application,

but without implementing the ST-tree interface directly.

There is more than one way of doing this; we describe the one usedin the experiments.

Sincethe application has to represent directed treeswith no evert operation, onecan inter-

pret each cluster C of the top tree asrepresenting both a directed path and a rooted subtree

of the original tree. More precisely, the application maintains the following �elds in each

cluster:

� root(C): This is the root vertex of the subtree represented by cluster C.

� minarc(C): If root(C) is an endpoint of C, minarc(C) is a pointer to the basecluster

representing the minimum-cost arc on the path from the other endpoint of C to the
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root. If there is a tie, the arc closestto the root is picked. If root(C) is not an endpoint

of C, minarc(C) is null (unde�ned).

� mincost(C): If minarc(C) is not null, mincost(C) is the cost (i.e., residual capacity)

of the minimum arc. Otherwise, mincost(C) is unde�ned.

� extra(C): A lazy value to be added to all arcs on the path represented by C. It will

always be zero if minarc(C) is unde�ned.

In general, all arcs in the subtree represented by C will be directed towards one of

the endpoints of C (its root). The only exception is if the cluster actually contains, as

an internal vertex, the root r of the entire tree. In this case,root(C) will be r and both

minarc(C) and mincost(C) will be unde�ned. To ensure that these invariants hold, the

internal operations are de�ned as follows:

� C  create(e): Let the endpoints of e bev and w, and assumethe edgeis directed from

v to w. The basecluster C will be initialized with root(C)  w, minarc(C)  C,

mincost(C)  r vw , and extra(C)  0.

� C  join (A; B ). Let A = (u; v) and B = (v; w). We always set extra(C)  0, but

the other �elds depend on whether minarc(A) and minarc(B ) are both de�ned.

If one of them is not de�ned, the other will be: minarc is only unde�ned for clusters

that contain the root as an internal vertex, and A and B intersect only at v. We set

root(C) to be the root of the cluster (either A or B ) whoseminarc �eld is unde�ned,

and keepboth minarc(C) and mincost(C) unde�ned.

If both minarc(A) and minarc(B ) are de�ned, the outcome depends on the move

being performed:

1. The move is a rake. This meansthat u will disappear. If root(A) = u, we set

root(C)  u and keepminarc(C) and mincost(C) unde�ned. Otherwise, we set

root(C), minarc(C), and mincost(C) to the corresponding values in B .

2. The move is a compress. There are two subcasesto consider.
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(a) root(A) 6= root(B ). In this case,paths (u; v) and (v; w) are oriented consis-

tently , i.e., either u ! v ! w or w ! v ! u. Thesecasesare symmetric, so

assumethe �rst orientation holds. We set root(C)  w and make minarc(C)

and mincost(C) refer to the minimum among the two clusters. If there is a

tie, we set minarc(C)  minarc(B ), sinceB is closer to the root than A is.

(b) root(A) = root(B ). In this case,v must be the root of the entire tree, and

the two paths are not oriented consistently: they both converge to v. We

set root(C)  v, but keepboth minarc(C) and mincost(C) unde�ned.

� (A; B )  split (C). If C is a compress cluster, we add extra(C) to the extra and

mincost �elds of both child clusters. If C is a rake cluster, we add extra(C) to

extra(B ) and mincost(B ) only. All other �elds remain unchanged.

� destroy(C) doesnothing.

With these �elds, using top trees within the shortest augmenting path network o w

algorithm is straightforward. For example, to �nd the root of the subtree containing some

vertex v (which is necessaryafter an advanceor retreat), it su�ces to call C  expose(v; �)

and pick root(C).

To perform an augmentation, we �rst call C  expose(s; t). The current residual

capacity of the path is c  mincost(C). We decrement both extra(C) and mincost(C) by c.

We must then remove every arc that has zero residual capacity from the path represented

by C. While mincost(C) = 0, we do the following: (1) let M  minarc(C); (2) call cut(M );

and (3) set C  expose(s;u), where u is the endpoint of M that is farthest from the root

(i.e., the tail of the directed arc M represents). At the end of this loop, we return to the

main loop of the algorithm from vertex v  root(C).

Note that a single call to expose is enoughto retrieve the cost of the minimum-capacity

arc on a path, the arc itself, and the root of the path. ST-trees require calls to separate

functions (�ndmin , �ndc ost, and �ndr oot) to achieve the samegoal. This may be a potential

advantage of top trees over ST-trees in this application. Of course, this is an interface
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issueonly. The top tree interface dictates that as much information as possibleshould be

made available at the root. In contrast, each ST-tree operation gathers a single piece of

information, but onecould conceivably changethe interfaceof ST-treesto allow it to gather

more information in each access.In somesense,that is what self-adjusting top trees do.

5.3.3 Exp erimen tal Results

The �rst classof graphson which the maximum o w algorithm wastested is that of random

layered graphs, created with Anderson's washington generator [11]. These graphs are

de�ned by two structural parameters, the number of rows (r ) and the number of columns

(c). From each vertex in column i (1 � i < c) there are outgoing arcs to three vertices

picked at random in column i + 1. The source s is connectedby an outgoing arc to all

vertices in the �rst column, and the sink t has an incoming arc from each vertex in the last

column. Arcs incident to s and t have in�nite capacity; all others have integral capacities

chosenuniformly at random from the interval [1;220]. Note that the graph is acyclic, with

n = r c + 2 and m = 3r (c � 1) + 2r = 3r c � r .

In our experiments, we usedr = 4 and varied c from 128 to 32768. The fact that r is a

small constant ensuresthat every augmenting path will have �( n) vertices. For each set of

parameters,we generated�v e graphs with di�eren t random seeds.We ran each algorithm

on all �v e graphs and computed the average time. The results are shown in Table 5.1.

Figure 5.1 refers to the sameexperiment, with times given as multiples of st-v .

Among the O(log n)-time dynamic tree implementations, vertex-basedself-adjustingST-

trees(st-v ) led to the fastestalgorithm on all cases.Even though the application associates

values with edges,we can use this data structure here becausethe evert operation is not

needed. This is fortunate, since it is almost twice as fast as the more generic edge-based

self-adjusting ST-trees (st-e ). In fact, st-e is even slower than self-adjusting top trees

(top-s ) when the number of vertices is small; only when the graph is big enoughdoesst-e ,

which is more cache-e�cien t, become(slightly) faster.

Among application-speci�c top trees, the self-adjusting variant (top-s ) is 3 to 4 times
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Table 5.1: Performanceof the shortest augmenting path maximum o w algorithm (imple-
mented with di�eren t data structures) on random layered graphs with four rows. Times
are averagestaken over �v e graphs and given in milliseconds. The best time for each input
size is marked in bold.

ver tices lin-v st-v st-e top-s topst-s top-w topst-w
514 1.2 5.3 10.9 8.7 22.9 35.3 71.3

1026 4.8 11.2 23.2 19.4 48.3 82.7 160.3
2050 16.1 20.6 42.1 39.0 92.0 160.9 343.6
4098 62.3 42.8 85.4 89.6 193.0 341.2 787.3
8194 230.4 95.2 186.8 206.3 407.5 818.3 1693.6

16386 903.4 189.9 351.9 439.5 805.4 1481.6 3466.1
32770 6588.8 440.3 808.6 1041.6 1804.6 3714.2 7714.4
65538 59247.2 806.5 1444.3 1972.5 3312.3 6369.6 15302.5

131074 229333.1 1610.4 2862.6 3919.4 6323.8 13964.3 30632.5
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Figure 5.1: Running times of the maximum o w algorithm on random layered graphs with
four rows; all times are relative to ST-V.
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faster than the worst-caseimplementation (top-w ), which is not surprising: the latter is a

more involved algorithm. Moreover, in this application consecutive calls to the dynamic tree

data structure areheavily correlated: the algorithm performsa seriesof operations involving

a single path in the tree until it becomesan augmenting path. Becauseof splaying, self-

adjusting data structures are better equipped to take advantage of this locality of access.

As anticipated, application-speci�c top trees are signi�cantly more e�cien t than top

trees with the ST-tree interface. Comparing the worst-caseversions, we seetopst-w is

more than twice as slow as top-w . The di�erence between the self-adjusting versions

(topst-s and top-s ) is slightly smaller, especially when the number of vertices is large.

This discrepancy can once again be explained by the fact that the extra calls made to

implement the ST-tree interface are correlated, and self-adjusting data structures can take

more advantage of this. Even though topst-s performs more operations than top-s , these

operations are still well correlated.

Finally, we observe that the obvious, linear-time implementation of the ST-tree interface

(lin-v ) doesrather well on small graphs: up to around 3000vertices, it leadsto the fastest

algorithm. Sincethe length of the augmenting paths grows linearly with graph size,however,

the algorithm is eventually surpassedby the other methods.

To test the maximum o w algorithms on graphswith smaller diameter, we useddirected

squaremeshes,also created by the washington generator. A meshwith parameter k has

a special sources, a special sink t, and k2 other vertices arranged as a squaregrid. Each of

thesek2 verticeshasan outgoing arc to each of its up to four neighbors in the grid. Vertices

on the border will have fewer grid neighbors. In addition, there is an outgoing arc from s

to each vertex of the �rst column of the grid and an outgoing arc from each vertex of the

last column to t. The arcs incident to s and t have in�nite capacity; all other capacitiesare

integerspicked uniformly at random from the interval [1;220]. Nine valuesof k were tested

(16, 22, 32, 45, 64, 90, 128, 181, and 256) with �v e graphs each (with di�eren t random

seeds).Sincegraph sizeis proportional to k2, it roughly doublesfrom one value of k to the

next.
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Table 5.2: Performanceof the shortest augmenting path maximum o w algorithm on square
meshes(with additional sourceand sink). All times given in milliseconds. The best time
for each input size is marked in bold.

ver tices lin-v st-v st-e top-s topst-s top-w topst-w
258 0.7 3.8 8.5 5.6 16.0 19.6 30.3
486 1.7 8.4 18.3 12.6 34.6 48.6 72.3

1026 4.4 20.0 45.2 31.2 82.6 135.8 192.0
2027 13.6 52.2 115.2 82.2 206.1 373.3 521.4
4098 55.3 167.8 356.7 272.2 605.0 1247.4 1660.9
8102 218.4 506.8 1041.5 781.5 1616.4 3836.8 4703.5

16386 992.3 1835.4 3567.9 2668.6 5216.2 12964.8 16030.6
32763 3495.3 5333.4 9939.3 7543.7 13926.3 38102.0 47082.0
65538 16040.0 23617.4 43374.4 30434.8 59309.8 176539.8 207077.3
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Table 5.2 shows the averagerunning times of the maximum o w algorithm with various

dynamic-tree data structures. Figure 5.2 refers to the sameexperiment, but with running

times given with respect to st-v .

The results are consistent with those obtained for random layered graphs, with one

main exception: now that augmenting paths have length 
(
p

n), lin-v remains the fastest

alternativ e for much larger graphs. Its speedupwith respect to the O(log n) data structures

does get smaller as n increases,but with as many as 65538 vertices lin-v is still the best

option.

Also, in this classof graphs top-s is consistently faster than st-e , and for larger graphs

it takeslessthan 50%more time than st-v . This good performancecan be explainedby the

fact that the top tree interface allows us to gather more information from the root cluster.

A single call to expose givesus accessto the root vertex, the minimum arc, and the cost of

the minimum arc on the path. In contrast, with st-v onemust call three separatemethods

to get this information.

5.4 Online Minim um Spanning Forests

The secondapplication we consider is the online minimum spanning forest problem, also

known asthe semi-dynamic spanning forest problem. The goal is to maintain the minimum

spanning forest of a graph to which edgesare added one at a time. The number of vertices

in the graph (n) is given in advance,but the set of edgesis initially empty. We denote the

total number of edgeseventually added to the graph by m.

5.4.1 The Algorithm

Dynamic tree data structures can be used to processeach new edgein O(log n) time. At

all times, the data structure maintains the current minimum spanning forest (MSF). When

a new edgee = (v; w) with cost c is added to the graph, we determine if v and w are in the

samecomponent of the MSF. If they are not, we just add e to the forest. If they are in the

samecomponent, we determine the maximum-cost edgee0 on the current path between v
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and w in the MSF. If e0costsmore than c, we remove e0 from the forest and add e; otherwise

we discard e. This algorithm is a straightforward application of the \red rule" described by

Tarjan in [54, Chapter 6]. It states that, if an edgeis the most expensive of some cycle in

the graph, then it doesnot belong to the minimum spanning forest.

Implemen tation with ST-trees. To determine if v and w are in the samecomponent

using ST-trees, we �rst call evert(v) then check if �ndr oot(w) = v. If this is not true, we

simply call link (v; w; c). Otherwise, we call u  �ndmax (w), then c0  �ndc ost(u). If

c0 > c, we perform cut(u), then link (v; w; c).

Observe that �ndmax technically does not belong to the ST-tree interface. Although

implementing it would be relatively easy(it is analogousto �ndmin ), we can actually pre-

serve the original interfaceby negating all the weights when dealing with the data structure.

Whenever an edgewith cost c is to be inserted into the tree, we do it with cost � c. When-

ever we need to call �ndmax , we call �ndmin . Finally, if �ndc ost returns a value c, we

interpret it as � c.

Since the algorithm needsthe evert operation, we cannot use the simpli�ed version of

ST-trees that associates values with vertices (st-v ). We must use st-e , which explicitly

maintains valueson edges.

Implemen tation with top trees. To implement the algorithm using top trees, it su�ces

to keeptwo piecesof information in each cluster C = (v; w): the cost of the most expensive

edgeon the path from v to w, and a pointer to the basecluster representing this edge. Ties

are broken arbitrarily . Implementing the internal top tree operations to maintain these

values appropriately is trivial: the only actual processingoccurs when the join operation

processesa compresscluster, when it copiesthe information from the child with maximum

cost.

To processan edge(v; w) with cost c, the online minimum spanning forest algorithm

�rst calls C  expose(v; w). If C = null (meaning that v and w are in di�eren t components)

we link v and w. Otherwise, if the value stored in C is greater than c, we cut the maximum-
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length edgeand uselink to add (v; w) to the forest.

5.4.2 Exp erimen tal Setup

Four di�eren t data structures were tested in the solution of the online minimum spanning

tree problem: edge-basedself-adjusting ST-trees (st-e ), the obvious linear time implemen-

tation of the ST-tree interface (lin-e ), worst-casetop trees(top-w ), and self-adjusting top

trees (top-s ). Both versionsof top trees are application-speci�c: topst-s and topst-w ,

which are much slower, have not beentested.

For reference,we also ran Kruskal's algorithm for the (o�ine) minimum spanning tree

problem [18,40,54]. Our implementation copiesthe entire list of edgesto a temporary array,

sorts them by cost with quicksort with the median-of-threepivot-selectionstrategy [18, 49],

then processesthem in this order. Every edgethat does not create a cycle is marked as

belonging to the forest. The algorithm stops when n � 1 edgesare inserted or (if the graph

is disconnected)when all m edgesare processed.To keep track of connectedcomponents

and detect cycles, we use a union-�nd data structure with path compressionand union

by rank [18, 54]. It ensuresthat each edgeis processedin � (m; n) amortized time, where

� is an extremely slow-growing functional inverseof Ackermann's function. The running

time of the algorithm is therefore dominated by the time to sort the input list, which is

O(m logm). The online algorithms have the same asymptotic bound (as long as m is a

polynomial function of n, which is the casein our experiments), but we shall seethat the

constants associated with Kruskal's algorithm are much lower.

In the maximum o w algorithm studied in Section 5.3, the number of queries to the

forest was roughly the sameas the number of structural operations (links and cuts). With

online minimum spanning forests, this is not necessarilytrue, since a query (�nding the

maximum-weight edge on a path) might not be followed by a link or cut. As a result,

queriesmay be asymptotically more numerous than structural operations. In fact, we will

seethat the number of structural operations performed by the algorithm when processing

a �xed graph dependson the order in which the edgesare processed.
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5.4.3 Random Graphs

To create a random graph with n vertices and m edges,we generate each edge in turn

by picking a pair of distinct endpoints uniformly at random. Note that the graph is not

necessarilyconnectedand that multiple edgesbetweenthe samepair of verticesare allowed.

Edge costs are also picked uniformly at random from the interval [1;1000]. For every set

of parameters, �v e graphs with di�eren t random seedswere tested; we report the average

results.

In our �rst experiment, we �xed the number of vertices at n = 4096and varied m, the

number of edges. Figure 5.3 shows how the performance of the MSF algorithm depends

on m when edgesare processedin random order. For each value of m, the plot shows the

averagetime to processan edge.
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Figure 5.3: Online minimum spanningforests: Averageprocessingtime per edgefor random
graphs with 4096vertices. Edgesare processedin random order.

The �rst observation to make is that lin-e is signi�cantly faster than all O(log n)-time
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data structures. Becausethe graphs are random, all paths traversedare expected to have

only O(log n) edges. The running time of Kruskal's algorithm is comparable to that of

lin-e ; it is even slightly faster when the number of edgesis large.

When there are few edges,the relative performanceof the other data structures is the

same as with maximum-o w algorithms: st-e is faster than top-s , which is faster than

top-w . As the number of edgesincreases,however, top-w eventually becomesfaster

than top-s . The reason is that the fraction of edgesthat are actually inserted into the

forest decreasesas the graph becomesdenser. More precisely, if m is the number of edges

processed,the expected fraction of edgesthat are actually inserted is O((log m)=m):

Lemma 13 Let G be a random weighted multigraph on n vertices and m edges,with edge

weightsassigned independently at random. If the edgesare processed in random order, the

expected number of edgesactually inserted by the online minimum spanning forest algorithm

(i.e., the number of links) is O(n logm).

Pro of. Let ei be the i -th edgeprocessedby the algorithm, and let pi be the probabilit y

that it is inserted into the current minimum spanning forest. By de�nition, this is exactly

the probabilit y that ei belongsto the minimum spanning forest of the subgraph Gi of G

containing only the �rst i edgesof the sequence.Becausethe sequenceis random, Gi is

alsoa random multigraph with random edgeweights. Every edgein the sequencehasequal

probabilit y of belongingto the minimum spanningforest. Sincethe forest hasno more than

n � 1 edges,pi < n=i. By linearit y of expectation, the total number of insertions is bounded

by
P m

i=1 pi <
P m

i=1 n=i = O(n logm). 2

When m is large enough, the running time of the online algorithms is dominated by

exposeoperations, which are much cheaper for the worst-casedata structure than links and

cuts are. Recall that expose doesnot require top-w to actually rebuild the contraction: it

just builds a temporary tree on the side.

Figure 5.4 refers to the sameexperiment: random graphs with 4096vertices and edges

processedin random order. Instead of comparing running times, it shows the average
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number of calls to join per edgeas a function of the total number of edgesprocessed.
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The plot shows that top-w must create more new clusters to processeach edge in

the input than top-s does. As the number of edgesincreases,the di�erence between the

algorithms starts to decrease.The averageexpose operation in top-w clearly a�ects fewer

clusters than in top-s , but links and cuts in top-w are somuch more expensive that top-s

still dominates with more than one million edges. Comparing Figures 5.3 and 5.4, we see

that not only does top-w need to manipulate more clusters than top-s when performing

structural operations, but the running time per cluster is also larger. When m = 16384,

for instance, top-w executesonly 30% more joins on average,but is twice as slow. The

situations is reversed when expose operations are more numerous: with 1048576 edges,

top-w still executesmore operations on average,but it is faster.

In another experiment with the samegraphs,we considerwhat happenswhen edgesare

processedin increasing order of cost. In this case,there will be no more than n � 1 links,
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and cut will never be called. One expects an even greater fraction of the running time to

be dominated by expose operations. Figure 5.5 con�rms that the performanceof top-w is

even better than when edgesare processedin random order. The self-adjusting algorithms

(st-e and top-s ) are also faster than before,but by a much smaller factor. Both lin-e and

Kruskal's algorithm remain largely una�ected.
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Figure 5.5: Online minimum spanningforests: Averageprocessingtime per edgefor random
graphs with 4096vertices. Edgesare processedin increasingorder of cost.

Figure 5.6 presents the opposite extreme. When edgesare processedin decreasingorder

of cost, every edgewill causea structural operation, except in the rare caseof a tie. All

algorithms are signi�cantly a�ected, but nonemore than top-w , which becomesalmost �v e

times slower than when edgesare given in increasingorder. Not only do the self-adjusting

data structures have simpler update algorithms (they do not needto maintain Euler tours,

for example), but they also bene�t from the fact that structural operations are always

performed on paths that are already exposed. Due to splaying, the relevant nodes tend to

be closer to the root of the top tree.
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Figure 5.6: Online minimum spanningforests: Averageprocessingtime per edgefor random
graphs with 4096vertices. Edgesare processedin decreasingorder of cost.

5.4.4 Circular Meshes

We also tested the minimum spanning forest algorithm on circular meshes. In a circular

mesh with r rows and c columns, the vertices are organized as an r � c grid, with edges

between each vertex and its four neighbors. To handle the borders, we consider the �rst

and last columns to be adjacent; the sameholds for the �rst and last rows. The number

of vertices is n = r c and the number of edgesis m = 2r c. Edge weights are picked at

random from the interval [1;1000]. In the experiment, edgeswere always processedin

random order. Once again, we generated�v e graphs for each set of parametersand report

the averageresults.

We �rst consider symmetric circular meshes,i.e., those with r = c. Figure 5.7 shows

the averagetime necessaryto processan edgewhen r and c vary from 16 to 512.

An important di�erence between the results for meshesand random graphs is that on

meshesthe performance of top-w is relatively worse, compared to the other methods.

Becausethe graph is very sparse, links and cuts make up a much larger fraction of the
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Figure 5.7: Online minimum spanning forests: Averageprocessingtime per edgefor sym-
metric circular mesheswith varying number of vertices.

operations than on denserrandom graphs.

But the most obvious di�erence between these results and those obtained for random

graphsis that the linear-time implementation of ST-trees(lin-e ) is no longersuperior to the

other data structures for every value of n. This can be explainedby the fact that symmetric

circular mesheshave diameter �(
p

n), as opposedto �(log n) for random graphs. Once n

is large enough, the linear-time algorithm ceasesto be the best option. This only happens

for valuesof n as high as 100000, however.

It should be noted that the �ndmin operation is not the bottleneck of lin-e . When an

edge(v; w) is examined, the expected length of the path betweenv and w is actually quite

small, given the restricted topology of meshes. In the experiment, the average length of

the exposedpaths increasesvery slowly, from 7.5 edgeswhen n = 256 to 46.2 edgeswhen

n = 262144. However, before actually calling �ndmin (v), we must call evert(w), which

reversesthe path between w and the current root. Since the current root is a random

vertex (one of the endpoints of the previous edgeprocessed),the expected length of this
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path is proportional to the diameter of the tree. In the experiments, the averagenumber

of vertices visited by evert ranged from 13.1 to 790.3, thus making evert the bottleneck of

the algorithm.

To better understand how the algorithms depend on the diameter of the graph, we

performed a secondexperiment in which the number of vertices n was kept constant at

65536, but the number of rows and columns varied. We tested values from r = 2 (and

c = 32768) to r = 256 (and c = 256). The results are presented in Figure 5.8.
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Figure 5.8: Online minimum spanningforests: Averageprocessingtime per edgefor circular
mesheswith 65536 vertices and varying number c of columns. The number of rows, which
is 65536=c, varies accordingly.

Onceagain, the behavior of lin-e standsout. The diameter of the graph is proportional

to the number of columns. An increasein this number should hurt the performanceof the

algorithm, and this is indeed what happens as long as the number of columns is not too

large. When it is large, there are very few rows, and as a result the graph has 
( n)

balancedcuts of very small size(i.e., cuts with few edgesthat separatethe graph into two
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large components). Sincethe edgesare processedin random order, it takeslonger until very

large components are formed. The algorithm will eventually have to deal with components

that have very high diameter, but it spends most of its time processingmuch smaller

components. The fact that it takes longer for large components to form also explains why

the other implementations (using st-e , top-s , and top-w ) becomefaster as the number

of rows decreases.As expected, changesin the graph topology have no measurablee�ect

on the performanceof Kruskal's algorithm.

5.4.5 High-Degree Vertices

An important di�erence between self-adjusting top trees and ST-trees is how they handle

vertices of high degree. While ST-trees use dashededgesto link children directly to their

high-degreeparent, self-adjusting top trees must build rake trees to aggregateinformation

stored in the children.

To assesshow high-degreeverticesa�ect the relative performanceof the data structures,

wetested the online minimum spanningforest algorithm on augmented stars. An augmented

star is a graph with three parameters: the number of spokes (which we denote by k), the

length of each spoke (`), and the total number of edges(m, which must be at least k`). It

contains a central vertex from which k paths of length ` (the spokes) emanate;we call this

subgraph a star. The remaining m � k` edgesconsist of pairs of distinct vertices picked at

random from the spokes. Parallel edgesare allowed. Figure 5.9 shows an augmented star

with k = 8 spokesof length ` = 6.

In the experiments, the costsof the k` edgeson the star were set to 1 and the costsof

the remaining edgesto 2. In order to create a vertex of high degreeas soon as possible,we

make the minimum spanning forest algorithm processthe edgesof the star �rst, and only

then, in random order, the remaining edges.Only the �rst n � 1 edgeswill be inserted into

the tree. The others will essentially amount to queries: to test an edge (v; w), the data

structure must �nd the most expensive edgeon the path betweenv and w in the star. For

large valuesof k, this path is very likely to contain the center, which at this point will have
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Figure 5.9: An extended star with eight spokes of six vertices each. The star itself is
the minimum spanning tree, and its edges(represented by solid lines) are the �rst to be
processedin the experiment. The additional edges(represented by dashedlines) link random
pairs of vertices and are never added to the minimum spanning tree.

very high degreewithin the tree.

We �rst considergraphs of �xed size (n = 65537and m = 655370),but with a varying

number k of spokes. Of course,the length ` of each spoke must vary as well: for any �xed

value of k, ` must be 65536=k. Figure 5.10 shows the averagetime to processan edgeas a

function of k. Five graphs were tested for each value of k.

For k = 2, the star has only two spokes, which makes it a path on n vertices. As k

increases,the diameter of the tree decreases,becomingas small as 2 when k = 65536. This

has an obvious e�ect on the linear-time data structure, whoserunning time per operation

is proportional to the diameter. Eventually , lin-e becomesthree times as fast as Kruskal's

algorithm. ST-trees also bene�t from an increasein k. When k = �( n), there will be �( n)

splay trees of constant size linked by dashed edgesto the node representing the central

vertex of the star. When k = 65536,the algorithm is four times as fast as when k = 2.

In contrast, top trees do not bene�t from an increasein k. As already mentioned, self-

adjusting top trees must maintain a rake tree (or two, becauseof the circular order) to
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Figure 5.10: Online minimum spanning forests: Averageprocessingtime per edgefor aug-
mented stars with 65537vertices and varying number of spokes.

aggregatethe information about the edgesincident to the high-degreevertex, and accessing

this tree already takes logarithmic time. Worst-casetop trees do not have explicit rake

trees, but they still have logarithmic height regardlessof whether more rakesor compresses

are performed. Onceagain, the performanceof Kruskal's algorithm doesnot depend on the

topology of the graph.

With the sameclassof graphs, we performed a secondexperiment in which the length `

of each spoke was �xed at 64, but the number of spokesvaried from k = 2 to k = 1024. The

total number of vertices varied accordingly, from 128 to 65536. In each case,the number

of edgesin the graph was set to 10n. Figure 5.11shows how the averagetime to processan

edgevaries as k increases.

In this experiment, onewould expect the time it takesfor st-e to processan edgeto be

independent of the number of spokes. Indeed, this is what happensup to around 32 spokes,

at which point the running time slowly starts to increase. As Section 5.4.6 will show, this

can be attributed to cache e�ects: querieson larger trees have lesslocality, and therefore
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Figure 5.11: Online minimum spanning forests: Averageprocessingtime per edgefor aug-
mented stars with spokesof length 64.

accessmain memory more often.

Cache e�ects also explain why the slopesof the curvesrepresenting top-w , top-s , and

lin-e increasewhen the number of spokesreachesa certain value. Note that the inection

point is approximately 32 for top-w , 64 for top-s , and 256 for lin-e : the more space-

e�cien t the algorithm is, the later the inection point is reached.

5.4.6 Memory Usage and Cache E�ects

In this section, we investigate in more detail how the performance of the data structures

is a�ected by the memory hierarchy. If there were no memory hierarchy (i.e., no cache),

running the online minimum spanning tree algorithm on a random graph on n nodes and

m edgesshould be no more expensive (per edge) than processingtwo or more copies of

this graph at once. Due to caching, one should expect all algorithms to slow down as the

number of copiesincreases.

To test this hypothesis,we created a family of graphs with three parameters: the num-
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ber of components (c), the number of vertices per component (n0), and the averagenumber

of edgesper component (m0). The graph will have n = cn0vertices,partitioned (at random)

into c components with n0 vertices each, and m = cm0 edgesin total. Each edgeis gener-

ated by �rst picking a component uniformly at random, then a pair of vertices from this

component (also at random). Edge costsare drawn from the interval [1;1000]. Figure 5.12

shows the running time (per edge)of the online minimum spanning forest algorithm using

n0 = 32 and m0 = 128, with the number of components varying from 1 to 65536.
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Figure 5.12: Online minimum spanning forests: Performanceof the online minimum span-
ning forest algorithm on graphsconsistingof 32-vertex components with 128edgeseach (on
average). The number of components varies.

In theory, the averagerunning time per edgeof all online algorithms should be inde-

pendent of c. As long as the number of components is small, this is indeed what happens.

However, once c is large enough, every algorithm starts to get slower as c increases|this

indicates that the data structures no longer �t in cache, and main memory is accessedmore

often. Eventually , all curves essentially level o�, indicating that most of the computation
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happens in main memory. The running time of some of the algorithms (notably top-w

and top-s ) actually starts increasing again after this plateau is reached, however, which

indicates that they occasionallymake useof virtual memory.

The plot makes it clear that data structures that require more bytes per vertex are

a�ected sooner: top-w reachesan inection point �rst, then top-s , then st-e , and �nally

lin-e . Interestingly, the data structure whoseperformanceis most dependent on the mem-

ory hierarchy is the simplest one, lin-e . When the number of components is small, lin-e

can processeach edgein around 0.2 microseconds|the actual value is 0.23for c = 512. Due

to cache e�ects, however, the algorithm becomesalmost 15 times slower: with 16384 com-

ponents, each edgeis processedin 2.9 microsecondson average. The other data structures

only slow down by a factor of 2 to 3.

The lin-e algorithm is more dependent on cache precisely becauseit is so simple: it

essentially does nothing but memory accesses.Most of its methods consist of following

parent pointers, with little (if any) additional computation. If its nodesdo not �t in cache,

the algorithm will spend most of its time accessingmain memory. The other data structures

must accessmore data, but included in their original running time is the time to actually

processthe data: performing rotations, testing for new moves,updating vertex ID's, and so

on. When the number of vertices increases,the time to processthe data doesnot increase

asmuch as the time to fetch it from memory. The overall e�ect on performanceis therefore

not as pronouncedas with lin-e .

Kruskal's algorithm has running time O(clogc) when n0 and m0 are constant, which is

asymptotically worsethan the online algorithms. Becauseit has better locality, however, it

actually becomesthe fastest of all algorithms (even lin-e ) when operating in main memory,

at least for the graph sizestested.

5.5 Single-Source Shortest Paths

Both applications discussedso far, maximum o ws and online minimum spanning trees,

require dynamic trees to perform only path operations. We now consider an application
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that requiresinformation to be aggregatedover entire trees: a label-correcting single-source

shortest path algorithm. Given a directed graph G = (V; A) (with jV j = n and jAj = m)

with arbitrary arc lengths `(�) and a sources 2 V , the algorithm either �nds the distances

from s to every vertex in V , or detects a negative cycle if there is one. A negative cycle is

a directed cycle such that the sum of the lengths of its arcs is negative.

5.5.1 Algorithm

A genericlabel-correcting algorithm assignsto each vertex v a distance label d(v) represent-

ing an upper bound on the distance from s to v.4 Initially , we set d(s)  0 and d(v)  1

for all other vertices v. When an arc (v; w) 2 A is such that d(w) > d(v) + `(v; w), we can

relax it by setting d(w)  d(v) + `(v; w). While there are arcs that can be relaxed, the

algorithm picks one and relaxesit. If there are no negative cycles,eventually there will be

no arc to be relaxed, and the algorithm terminates with exact distance labels, i.e., d(v) will

represent the actual distance from s, for all v.

The algorithm will becorrect regardlessof which arc is relaxedin each step. To guarantee

that it will be e�cien t, however, we need a more restrictiv e selection scheme. A possible

rule is to arrange the arcs in some�xed order (it does not matter which) and to work in

passes. Each pass processeseach arc in the list exactly once, relaxing those that can be

relaxed. The algorithm stopsassoon asthere is a passthat relaxesno arc. This rule ensures

that, after k passes,all shortest paths with k arcs or fewer will have been found. When

there are no negative cycles,no shortest path will have more than n � 1 arcs, which means

the algorithm will never executemore than n passes.In fact, an edgewill be relaxed during

the n-th passif and only if there is a negative cycle in the graph. Since each passcan be

implemented in O(m) time, the total running time of this algorithm (due to Bellman [12])

is O(mn).

When we relax an arc (v; w), we are e�ectiv ely making v the parent of w in a candidate

shortest path tree rooted at s. Moreover, we are reducing the distance label of w by some

4Once again, the description of the algorithm will be terse; for more details, see[5], for example.
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value �. At this point, we know that the distance labels of all descendants of w in the

current tree could also be reducedby at least �. This is not done automatically, however;

it may take several passesuntil all the arcs in the subtreeare processedin the correct order

and the distance labels are updated.

Using ET-trees. The updatescan be performed automatically with a dynamic tree data

structure that allows aggregation over trees. This means that standard ST-trees cannot

be used, but ET-trees can. The data structure is used to represent the current tentativ e

shortest path tree, and the value of a vertex refers to its distance label. To processan

arc (v; w), we call �ndval (v) and �ndval (w) to �nd the distance labels of v and w. If

d(w) < d(v) + `(v; w), we relax the arc as follows: (1) cut the arc betweenw and its current

parent; (2) call addval(w; d(v) + `(v; w) � d(w)) (thus decreasingthe distance labels of all

edgesin the subtree rooted at w); and (3) link the new edge. The data structure interface

is de�ned sothat the link operation fails if (v; w) createsa cycle; sincethis can only happen

when the cycle is negative, we can stop at this point.

Unfortunately, this algorithm doesnot reducethe number of passesthat may be neces-

sary in the worst case: it is still �( n). Since each edgecan be processedin O(log n) time

using ET-trees, the total running time of the algorithm is O(mn logn), which is actually

worse than Bellman's original implementation. The algorithm using dynamic trees could

conceivably require fewer passesto converge,however. Moreover, it detectsa negative cycle

assoon asone is created, thus eliminating the needto keepthe algorithm running until the

n-th pass.

In practice, a simple modi�cation of Bellman's algorithm|p eriodically running a linear-

time cycle-detecting routine|will also eliminate the need to run all n passesand will be

much faster than the algorithm using dynamic trees. For an experimental evaluation of this

and other algorithms for this problem, the reader is referred to [15].

Using top trees. Evidently , we can usetop trees instead of ET-trees. We keepa global

array a[�] of sizen to represent distance labels and maintain a single �eld extra(C) in each



146

cluster C representing a value to be added to all internal vertices of the cluster. When

create or join are applied to the cluster, this value is set to zero. When it is split, we

increment the extra �elds of both children by extra(C) and do the samefor a[v], where v

is the vertex eliminated by the move C represents. To query the actual distance label of v,

we must �rst exposev, then look at a[v]. To decrement by � the distance label of every

vertex in a tree rooted at v, we �rst run C  expose(v) then decrement extra(C), a[v], and

a[w] by �, where w is the secondendpoint of C (besidesv).

5.5.2 Exp erimen ts

Wetested the single-sourceshortestpath algorithm on random graphswith an addedHamil-

tonian cycle. A graph with n verticesand m edges(with m � n) is generatedby �rst picking

a random circular permutation of the verticesand creating a cycle in which adjacent vertices

in the permutation are connected;the remaining m� n edgesare then addedat random. We

always usedm = 4n and varied n. For each value of n, �v e di�eren t graphsweretested. Arc

lengths are chosenat random from the interval [1;10] for arcs in the original Hamiltonian

cycle, and from [1;1000] for the remaining arcs.

Since all arc lengths are positive, the graph is guaranteed to have no negative cycle.

But, as described, it has no negative path either, which makesit lessinteresting. To create

negative paths, we assigneda potential � (v) chosenat random between� 1000and 1000to

each vertex v in the graph and replacedthe length `(v; w) of each arc (v; w) by its reduced

cost, de�ned as `0(v; w) = `(v; w) � � (v) + � (w). This transformation doesnot changethe

length of any cycle in the graph, since the sum of the potentials telescopes. In particular,

no negative cycle will be created, but paths with negative lengths will.

Figure 5.13 shows the averagetime per edgeper iteration required by each algorithm.

Three of the algorithms (top-w , top-s , and et-s ) usea dynamic tree data structure; the

fourth, which we refer to as bellman , is a direct implementation of Bellman's algorithm.

All four algorithms processthe edgesin the sameorder in each iteration, but the order is

determined at random.
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Figure 5.13: Single Source Shortest Paths: Average time to processan edge on random
graphs with an added Hamiltonian cycle.

The �gure shows that worst-casetop treesare competitiv e with self-adjusting top trees.

This indicates that a sizeableportion of the arcs processedare not actually inserted into

the tree: only expose is performed. Table 5.3 con�rms that this is indeed what happens,

especially as the number of vertices increases: eventually , less than a tenth of the arcs

processedcausean insertion into the tree.

The �gure alsoshows that ET-trees are 2 to 3 times faster than self-adjusting top trees.

This can be explained by the fact that ET-trees are more space-e�cient and simpler to

update. Rather than being a collection of rake and compress trees, an ET-tree is just a

splay tree. A typical query will require a single splay in the tree.

Even though ET-trees are more e�cien t than the other O(log n) data structures, �nding

shortest paths using them is still much slower than using the standard implementation of

Bellman's algorithm, which can processan edge hundreds of times faster. As Table 5.3

shows, ET-trees do reduce the number of iterations, but by an amount not nearly enough

to o�set the extra cost per iteration. For every graph sizetested, Bellman's algorithm was
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Table 5.3: Single-sourceshortest paths: For each graph size, the table shows the average
number of iterations, the averagepercentage of arcs that causelinks to be performed (i.e.,
are relaxed), and the averagerunning time of the entire algorithm (in milliseconds). The
corresponding valuesfor top-w and top-s are identical to those obtained by et-s , except
for the running time.

itera tions links (%) tot al time (ms)
ver tices bellman et-s bellman et-s bellman et-s

64 15.6 6.0 10.1 12.8 0.04 3.70
128 20.0 6.8 9.0 11.6 0.10 9.63
256 21.0 8.0 9.1 10.3 0.22 25.34
512 26.0 8.6 7.8 9.5 0.52 63.11

1024 28.6 8.8 7.8 10.0 1.21 143.17
2048 31.0 10.0 7.8 9.3 2.68 361.80
4096 35.8 10.2 7.4 9.0 6.40 843.94
8192 39.2 11.4 7.1 8.4 17.04 2351.04

16384 40.8 12.2 7.2 8.2 35.22 6623.59
32768 48.6 12.8 6.5 8.2 119.68 17571.73
65536 49.0 13.4 6.8 7.8 907.20 44273.27

at least 48 times faster than ET-trees.

5.6 Random Op erations

The experiments described so far use dynamic trees within more involved algorithms, in

which structural operations (links and cuts) are typically correlated. In the maximum o w

application, a query is always followed by a link or cut involving an edgeon the samepath.

For online minimum spanning forests, a cut is always performed on an edgefrom the path

queried immediately before.

In this section, we compare the algorithms when executing a random sequenceof links

and cuts on an n-vertex forest, with no queries. A sequenceof m operations is determined

(a priori ) asfollows. The �rst n � 1 operations are links that createa random spanningtree.

The m � n + 1 remaining operations are alternating cuts and links: we remove a random

edgefrom the current tree and replace it with a random edgebetween the two resulting

components.

We repeated this experiment for several valuesof n, always with m = 10n. Sincethere
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are no queries,we ran this algorithm with ET-trees, all variants of ST-trees, and top trees.

For top trees, we maintained in each cluster the same�elds as in the minimum spanning

forest application. For each value of n, �v e input sequenceswere tested. The average

running times per operation are reported in Figure 5.14.
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Figure 5.14: Performanceof various data structures while executing a randomizedsequence
of links and cuts, with no queries.

As one would expect from previous experiments, worst-casetop trees (top-w ) are the

slowest among the O(log n)-time data structures. However, top-w is only roughly twice

as slow as top-s ; within the maximum o w algorithms, top-s is 3 to 4 times faster, as

Figures 5.1 and 5.2 show. This con�rms that self-adjusting top trees do bene�t from the

fact that consecutive operations within the maximum o w algorithm tend to be correlated.

Among the other O(log n)-time algorithms, st-v is the fastest, roughly twice as fast

as top-s , st-e , and et-s when the number of vertices is small. These three algorithms

have similar performancewhen n is small, but when the graph sizeincreasesst-e becomes

the fastest among them, followed by et-s and top-s . This is exactly the order one would
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expect taking just spaceusageinto account.

Generating a random sequence of links and cuts . An interesting aside to this ex-

periment is how onecan generatethe test sequenceof links and cuts e�cien tly . Given a tree

with n � 1 edges,it is trivial to pick one edgeat random to be cut. One can, for instance,

keepa separatearray with a list of the current edgesin the tree, and pick an element from

this list at random. Supposethe edgeis (v; w). We must now selectan edgeto replace it,

which requires picking a vertex at random from each of the two components formed after

(v; w) is removed. This can be donetrivially in linear time, but onewould like to do it more

e�cien tly , in O(log n) time.

We can do it using top trees. To pick a random vertex from a top tree, it su�ces to

maintain two �elds in each cluster C. The �rst is intcount(C), the total number of internal

verticesin the cluster. The secondis rand(C), a random internal vertex. When intcount(C)

is zero, rand(C) is unde�ned. Maintaining intcount(C) is trivial: the create operation sets

it to zero,and join setsit to the sum of the valuesin the children plus one(to account for the

onevertex that becomesinternal). Updating rand(C) during a join is alsostraightforward.

Let A and B be the child clustersof C, and let v be the vertex that disappearswhen A and

B are combined. We pick rand(C) from the set f rand(A); rand(B ); vg, with probabilities

weighted by intcount(A), intcount(B ), and 1, respectively.

To pick a vertex at random from the component containing v, we call C  expose(v)

and pick either rand(C) (with probabilit y weighted by intcount(C)) or oneof the endpoints

of C (each with weight 1). If r = rand(C) is selected,we must call expose(r ) after the

operation. If we do not do this, the distribution will not be uniform: further attempts to

pick random vertices from the samecomponents would tend to return somevertices more

often than others.

To seewhy this is true, it is convenient to interpret the top tree asa tournament between

the internal vertices, with r = rand(R) (where R is the root cluster) as the winner. To be

the winner, it must havebeenselectedevery time a cluster containing it asan internal vertex

was joined with another cluster. The purposeof the tournament is to give the application
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accessto a random vertex. Once the application actually picks this vertex, in principle the

data structure should simulate another tournament to selectanother random winner.

We claim this is actually not necessary:it su�ces to reevaluate the clusters that have r

as the winner, which are exactly the clusters that have r asan internal vertex. The purpose

of expose(r ) is to split theseclusters.

Note that theseare the only clusters whoserandomnesswe have used. More precisely,

let C be a cluster with children A and B . We know that rand(C) may be either rand(A) or

rand(B ) (or neither oneof them). The \choice" betweenthem doesnot dependon the actual

valuesof the rand �eld; it dependsonly on the intcount �elds. Supposerand(C) 6= rand(A).

Then, even though we know what rand(A) is, we do not use it to determine the winner of

the \matc h" betweenA and B (or of the entire tournament). When a new tournament is

needed,the original outcome of the \subtournament" represented by A is still a random

variable. Therefore, A doesnot needto be split.

5.7 Previous Work

This section summarizesthe experimental results previously reported in the literature.

Topology trees. In [25], Frederickson comparestopology trees to a self-adjusting imple-

mentation of ST-trees (both \coded by an undergraduate under careful supervision"). The

data structures are usedwithin the preo w-push maximum o w algorithm of Goldberg and

Tarjan [29]. Topology trees took on average44% more time than ST-trees to execute the

dynamic tree operations. The actual di�erence ranged from 32% to 60% on graphs with

10000 nodesand number of arcs ranging from 10000 to 90000.

Top trees. In an unpublished manuscript [8], Alstrup, Holm and Thorup perform a pre-

liminary experimental comparison between top trees and other dynamic tree data struc-

tures. Unfortunately, although someof the theoretical results presented in this manuscript

appearedlater in [10], the experimental part has never beenpublished.
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Rather than comparethe algorithms within an actual application, the authors choseto

focus on the data structure itself. Their test procedureconsistsof building a free tree with

n vertices, then going through n rounds of operations. Each round consistsof picking two

vertices v and w at random, performing evert(w) and then calling parent(v), �ndr oot(v),

�ndc ost(v), �ndmin (v), and cut(v). Finally, link is called to restore a single component.

The input trees were guaranteed to have large diameter (long paths). Three classesof

inputs were tested, with diameters �(log n), �(
p

n logn) and �( n). All data structures

were implemented with the ST-tree interface with weights on edges.

The authors concludedthat self-adjustingST-treeswerethe fastestof the data structures

tested. They werearound 6 times faster than an implementation of ST-treesusing weighted

treaps [50], which are a randomized version of globally biased search trees that are much

simpler to implement but guarantee only expected bounds. Self-adjusting ST-trees were

roughly 15 times faster than a direct implementation of top trees (presumably using the

update algorithm suggestedin [34]).5 Somewhat surprisingly, topology trees were even

slower than top trees, by a factor of approximately 2.5.

They also comparedthesedata structures with the obvious linear-time implementation

of the ST-interface. This simple algorithm was the fastest for trees with diameter �(log n)

(by a factor of 5 to 10), regardlessof graph size. For graphs with larger diameter, self-

adjusting ST-trees are faster for long enough paths (in the order of hundreds of edges).

This is in line with the experiments reported here.

RC-trees. In [4], Acar et al. present an experimental evaluation of their implementation

of RC-trees, which they compare with this author's implementation of self-adjusting top

trees (st-e ).

Their simplest test consistedof building a tree on n nodes and performing a seriesof

cuts, each immediately followed by a link that restoresthe original edge. In this caseST-

trees are around �v e times faster than RC-trees, except when almost all vertices in the tree

have degreetwo: in this case,RC-treesbecomeup to 12 times slower than ST-trees. This is

5As already mentioned, the authors later found the analysis of the algorithm to be a wed.
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due to the randomized nature of compressesmentioned in Section 2.3: the probabilit y of a

degree-two vertex being eliminated in any given round is only 1/8, regardlessof the degree

of its neighbors.

If only non-structural operations are performed, RC-trees and ST-trees have similar

performance. RC-trees are faster for path queriesand when changing edgeweights, while

ST-trees are faster when adding weights to paths. The data structures are always within a

factor of two of one another, however.

The authors also studied more realistic usesof dynamic trees, within two basic applica-

tions: online minimum spanningforestsand Dinic's maximum o w algorithm (implemented

following the description provided by Sleator and Tarjan in [51]).

The maximum o w algorithm was tested on random layered graphs with 5 rows, n=5

columns, and capacity of up to 220. They tested values of n between 400 and 102400.

Self-adjusting ST-trees consistently outperform RC-trees by a factor of eight.

The online minimum spanningforest algorithm wastestedon random graphswith 32768

vertices. The graphs are initially empty, and new edgesare processedone at a time (with

random endpoints and random weights). After 32768edgesareprocessed,ST-treesaremore

than twice as fast as RC-trees. The di�erence in performancebecomesgradually smaller,

until, after about one million edges,RC-trees becomefaster. The denserthe original graph

becomes,the lesslikely it is that a new edgewill be inserted, which meansthat the running

time will be dominated by queries. As pointed out by the authors, queries are cheap in

RC-trees,sincethey do not require any changesto the tree. The authors tested graphswith

up to 16 million edges,and in the limit RC-trees are about twice as fast as ST-trees. We

have observed a similar phenomenonwith worst-casetop trees, but lesspronounced: after

all, the top tree interface requires the tree to be partially rebuilt even when only exposes

are performed.

It should be noted that in all experiments the authors carefully choosethe inputs so as

to guarantee that no vertex would ever have degreegreater than a constant (four or eight,

depending on the experiment) in the tree. This is necessarybecauseRC-trees only support
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vertices of bounded degree.Top trees have no such constraint.

5.8 Final Remarks

With the experiments in this chapter, our goal was to provide a general overview of the

strengths and weaknessesof the data structures presented in Chapters 3 and 4. Although

the results might change slightly if di�eren t implementations are tested or if a di�eren t

architecture is used,somegeneralobservations can be made.

The �rst is that, for path operations on graphswith small diameter, noneof the existing

O(log n) dynamic tree data structures is competitiv e with the trivial linear-time solution.

Even for graphs with �(
p

n) diameter and tens of thousands of vertices, lin-v and lin-e

are the fastest data structures. On random graphs, the linear-time algorithm was always

the fastest.

Even though top trees are much more general(and easyto use) than either ST-trees or

ET-trees, their running times are not much worse. Self-adjusting top trees, in particular,

were usually no more than a factor of 3 slower than these more speci�c data structures

(except on graphs with very high degree); they were occasionally faster. The worst-case

versionof top treeswasup to eight times slower than ST-trees,particularly when structural

operations were numerous. On the other hand, when the number of queries (exposes) is

large in comparison to links and cuts, worst-casetop trees are remarkably e�cien t, being

even faster than self-adjusting top trees.

The e�ciency of worst-casetop trees when just queriesare performed suggestsan ex-

tension to the top tree interface to include an operation C  rootcluster(v), which returns

the root cluster of the top tree containing v. In the original top tree interface, one would

call expose(v) for this purpose,but exposealsoguaranteesthat v will be an endpoint of the

root cluster. In someof the applications we have seenthis requirement is unnecessary. For

example, when the maximum o w algorithm advances(i.e., an arc (v; w) is added to the

forest), we must know the root vertex of the component containing w, since it will be the

next vertex to be processed.We implement it by calling expose(w) and looking at the root
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�eld of the cluster returned. This �eld would still have the correct information even if the

returned cluster did not have w as an endpoint, which meanswe could call rootcluster(w)

instead. In the worst-caseversion, this operation would not needto modify the tree at all.

The self-adjusting version still requires the tree to be modi�ed, since a generalizedsplay

must pay for the access,but it would be unnecessaryto call hard expose, which temporarily

transforms up to two compressnodes into rake nodesnear the root.



Chapter 6

Final Remarks

We have presented two new data structures for maintaining dynamic trees. They are the

�rst direct implementations of the generic top tree interface, and as such are very exible.

They can naturally represent rooted or unrooted trees, aggregateinformation over paths or

entire trees, and even support ordered adjacencylists.

The �rst data structure, contraction-based top trees, can perform each dynamic tree

operation in O(log n) time in the worst case,and is a straightforward application of the

concept of tree contraction. At all times, it maintains a round-based contraction of the

current forest. Whenever there is a link or cut, it builds a new contraction in the most

natural way: by greedily trying to minimize the damageto the original contraction.

Although the update algorithm is conceptually very simple, the proof that it indeed

takesO(log n) time is rather involved, relying on extensive caseanalysis,which is somewhat

unsatisfying. Fortunately, the profusion of casesis not reected in the actual implementation

of the algorithm. Nevertheless, the implementation is still far from trivial, since it must

maintain a signi�cant amount of information. Simplifying both the run-time analysis and

the implementation of the algorithm are obvious directions for future research.

Self-adjusting top trees, the seconddata structure we described, are a step towards

simpli�cation. Instead of explicitly maintaining a contraction in a bottom-up fashion, they

usewhat at �rst may seemto be a completely di�eren t technique: path decomposition. The

156
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original tree is partitioned into edge-disjoint paths, which are represented by binary trees

that are then glued together appropriately. But the data structure still supports the top

tree interface, which strictly follows the tree contraction paradigm. In fact, self-adjusting

top trees demonstrate that path decomposition and tree contraction, rather than being

mutually exclusive paradigms for dynamic trees, can be seenas alternativ e ways of looking

at the samedata structure. This is useful becausepath decomposition leads to a simpler

and faster update algorithm, but tree contraction is a much more convenient abstraction

for the user.

Unfortunately, much of the simplicit y of the self-adjusting data structure results from

its use of splaying, which only guarantees good amortized performance. For good worst-

caseperformance, splay trees could probably be replaced by globally biased search trees,

but these are very complicated data structures. A promising research topic is to devise

an alternativ e that is simple enough to make worst-casedata structures based on path

decomposition (ST-trees or top trees) practical. This simpler classof binary trees would

not have to be as generalas globally biasedsearch trees. Globally biasedsearch trees allow

nodes to change their weights arbitrarily , and have no restrictions on the range of allowed

weights. Within a dynamic tree application, weights are always between1 and n, where n

is the total number of nodes in the original forest. Moreover, node weights do not change

arbitrarily: they only changeduring splice, whosespeci�c properties could be exploited.

Our experimental analysishas shown that, although our data structures are not as fast

as ST-trees or ET-trees (which are more restricted), they are still competitiv e. The self-

adjusting version, in particular, is usually within a factor of two of ST-trees and ET-trees.

Since the top tree interface makes our data structure the easiestto adapt, it should have

practical applications. The importance of adaptabilit y cannot be understated. No known

dynamic tree data structure is particularly easy to implement. Once a data structure is

implemented, one should be able to use it in as many applications as possible.

In fact, one could even consider extending the top tree interface to support even more

applications. The current interface was developed to handle casesin which structural op-
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erations changeonly one edgeat a time, as is the caseof link and cut. Someapplications

do not fall into this category. For example,Langerman'salgorithm for the shooter location

problem [41] and Kaplan et al.'s algorithm for intersecting intervals with priorities [36],

both mentioned in Section 2.1.5, require an operation in which a subset of the children of

a vertex acquire a new parent. Both data structures we proposedcan easily support this

operation, but not with the top tree interface.

Another problem that allows more than one structural change to the tree at a time is

the mergeabletrees problem [26]. Recall from Section 2.1.6 that this is the problem of

maintaining rooted dynamic trees with one additional operation: merging paths so as to

preserve heaporder amongthe nodes. Georgiadiset al. have shown that standard dynamic-

tree data structures (ST-trees or top trees) can perform each operation, including merges,

in O(log2 n) amortized time. They have also presented a new data structure that supports

links and merges in O(log n) time, as long as cuts are not allowed. Supporting links, cuts,

and merges in logarithmic time is an interesting open problem.

Yet another direction for future research is to generalizethe data structures presented

here in order to deal with inputs that are lessrestricted than trees. Of course,the ultimate

goal would be to deal with arbitrary graphs. A lessambitious goal would be to deal with

with something in between these two extremes, such as graphs with bounded treewidth,

planar graphs, or even grids.

The caseof grids is more easily seenasa dynamic matrix problem. Concretely, suppose

we are given a matrix M and that we are allowed to perform the following operations:

(1) change a single entry of M ; (2) add a constant k to all entries in a given contiguous

submatrix of M ; and (3) �nd the minimum entry in the matrix. One would like to perform

theseoperations in logarithmic time. Even the special casein which the submatricesin the

secondoperation are always entire rows or entire columns would be useful. For instance, it

would speedup the local search algorithm for the k-median and facilit y location problems

presented by Resendeand Werneck in [47].

A related problem is that of maintaining the minimum valueof an array while supporting
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an operation that addsa constant value to a subsetof its entries. If only contiguous subsets

are allowed, a simple binary tree can solve this problem. A more generalversion is to allow

thesesubsetsto be arithmetic progressions:one could specify its �rst entry , the number of

entries, and the common di�erence. This problem also generalizesthe special caseof the

dynamic matrix problem required by Resendeand Werneck.

Another interesting generalization of dynamic trees is the problem of performing path-

related operations on a planar graph. Klein [38] has recently presented an e�cien t solution

a special caseof this problem: given a vertex t on the boundary of the in�nite face of an

n-vertex planar graph and an arbitrary vertex s, his data structure can �nd the distance

betweens and t in O(log n) time. The data structure can be built in O(n logn) time and

requiresO(n logn) space.It would be desirableto extend this result to all pairs on a planar

graph.

In practice, the logarithmic bound seemsclose to being achieved for some important

classesof graphs. Sandersand Schultes [48] and Goldberg et al. [28] have recently proposed

algorithms capable of �nding the length of the shortest path between any two points of a

real-world road network extremely fast, and they present experimental evidencethat the

algorithm depends logarithmically on the graph size. Proving that this is indeed the case,

whether for any of thesealgorithms or for a third one, is a challenging open problem.
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active cluster, 47

admissiblenetwork, 119

amortized vs. actual cost, 101

anchor, 50

articulation node, 101

augmented star, 138

augmented top tree, 87

augmenting path, 118

biasedsearch trees, 2

globally vs. locally, 9

blocking o w, 117

call-back functions

in RC-trees, 23

in top trees, 29

center (of a tree), 31

circular order, 24

always counterclockwise, 24

eliminating, 80

cluster

expansion,69

in RC-trees, 21

in top trees, 25

in topology trees, 18

compress

in RC-trees, 22

in topology trees, 19

parallel, 16

compresstree, 86

contraction, 2

original vs. new, 47

parallel, 16

core, 49

expansion,69

size,67

core image, 49

size,67

coupled subtours, 56

create, 29

dashededges

in ST-trees, 7

in top trees, 106

destroy, 29

di�erence form

in ET-trees, 35

in ST-trees, 10

in topology trees, 20
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reversebit, 11

vs. lazy values,32

distance label

for maximum o ws, 119

for shortest paths, 144

dynamic connectivity, 5

dynamic minimum spanning tree, 21

ET-trees, 2

et-s , 115

Euler tour

in ET-trees, 34

in top trees, 49, 71

evert, 11

expose

by creating a temporary top tree, 78

by rebuilding the top tree, 77

hard, 97

in ST-trees, 7

soft vs. hard, 91

exposedvertex (in ST-trees), 8

expressiontrees, 17

dynamic, 20

foster child, 86

guarded splay, 93

handle

in contraction-based top trees, 76

in self-adjusting top trees, 90

hard expose,97

inactive cluster, 47

internal vertex, 28

join , 29

lazy values,32

lin-e , 114

link-cut trees, see ST-trees

lin-v , 114

maximum o w, 20, 32, 118

maximum-priorit y interval, 15, 158

median (of a tree), 31

mergeabletrees, 15, 158

middle child, 2, 7

multilev el partition, 18

network simplex, 14

non-local search, 31

online minimum spanning forest, 128

outer neighbors, 86

outer path, 94

parent set (of a subtour), 52

phantom tree, 14

of a top tree, 101

potential (of a phantom tree), 101

proper child, 86

rake
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in RC-trees, 22

in top trees, 25

in topology trees, 19, 25

parallel, 16

rake tree, 86, 138

random layered graph, 124

rank (of a top tree node), 101

RC-trees, 3, 21, 152

alternating rounds, 83

compress,22

rake, 22

randomization, 83

recti�cation, 93, 95, 100

residual capacity, 118

residual network, 118

reversebit

in ST-trees, 11

in top trees, 90

root path, 85

rotation

in ST-trees, 8

within compresstrees, 93

saturated arc, 118

select, 31

self-adjusting top trees, 85

shadow tree, 7

shooter location problem, 14, 158

soft expose,91

solid paths (in ST-trees), 6

solid subtree, 7

splay trees, 2, 9, 35

splaying

guarded, 92

within self-adjusting top trees, 92

splaying split, 96

splice

in ST-trees, 8

in top trees, 94

split, 29

ST-trees, 2, 6

st-e , 114

st-v , 113

subtour

inactive, 50

proper, 50

stable, 55

unstable, 56

ternarization, 2, 3, 13

top trees, 3, 151

self-adjusting, 85

topology trees, 3, 18, 151

compress,19

rake, 19

top-s , 115

top-w , 115

tree contraction, see contraction
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twin arcs, 49

unit tree, 85

virtual tree, 7


