Designand Analysisof Data Structuresfor DynamicTrees

Renato F. Wernedk

A Dissertation
Preserted to the Faculty
of Princeton University

in Candidacy for the Degree

of Doctor of Philosopty
Recommendedor Acceptance
by the Department of

Computer Science

June, 2006



¢ Copyright 2006 by Renato F. Werned.

All rights resened.



Abstract

The dynamic trees problem is that of maintaining a forest that changesover time through
edgeinsertions and deletions. We can assiate data with vertices or edgesand manip-
ulate this data, individually or in bulk, with operations that deal with whole paths or
trees. E cien t solutions to this problem have numerous applications, particularly in algo-
rithms for network ows and dynamic graphsin general. Sewral data structures capable
of logarithmic-time dynamic tree operations have beenproposed. The rst was Sleator and
Tarjan's ST-tree, which represerts a partition of the tree into paths. Although reasonably
fast in practice, adapting ST-trees to di erent applications is nontrivial. Frederickson's
topology trees, Alstrup et al.'s top trees, and Acar et al.'s RC-trees are based on tree
contractions: they progressiwely combine vertices or edgesto obtain a hierarchical represen-
tation of the tree. This approad is more exible in theory, but all known implementations
assumethe trees have bounded degree; arbitrary trees are supported only after ternar-
ization. This thesis showvs how these two approadches can be conmbined (with very little

overhead)to produce a data structure that is at least as genericas any other, very easyto

adapt, and as practical as ST-trees. It can be seenas a self-adjusting implementation of
top trees and provides a logarithmic bound per operation in the amortized sense.We also
discussa pure cortraction-based implementation of top trees, which is more involved but

guaranees a logarithmic bound in the worst case. Finally, an experimental evaluation of

thesetwo data structures, including a comparisonwith previous methods, is preserted.



Ac knowledgemen ts

I am deeply indebted to my advisor, Bob Tarjan, for his guidance and patience. | thought
highly of him before | came to Princeton, but now | realize it was not nearly enough.
Working with him was a privilege and, above all, a pleasure.

| thank my readers,Adam Buchsbaum and Bernard Chazelle,for their numerouscom-
merts on this dissertation. | alsothank Robert Sedgewi& and NicholasPippengerfor taking
their time to participate in the thesis committee, and for their questionsand suggestions
during the presenation of the thesis proposal.

I had important discussionsabout dynamic treeswith Umut Acar, Guy Blelloch, Jorge
Vittes, and Loukas Georgiadis. | thank Phil Klein for his many helpful commertis on the
self-adjusting data structure preserted in Chapter 4. Mikk el Thorup and Jakob Holm are
coauthors (with Bob Tarjan and 1) of the worst-casedata structure presened in Chapter 3.

Diego Nehab has provided me with the computational resourcesfor conducting the ex-
periments described in Chapter 5 (i.e., he let me borrow his computer). Kevin Wayne
generouslytaught me how to usethe binding machine, all in exchangefor a mere acknowl-
edgemen | am eternally indebted to him.

| thank everybody at Microsoft Researt Silicon Valley for giving me the peaceof mind
to write this dissertation. There is nothing like having a job.

I would alsolike to thank my coauthorsin projects | worked on while at Princeton but
that are not part of this dissertation. In particular, | thank Ricardo Fukasava, Loukas
Georgiadis, Andrew Goldberg, Haim Kaplan, Jens Lysgaard, Marcus Poggi de Aragao,

Mauricio Resende,and Eduardo Uchoa. As great as dynamic trees are, it is always nice to



work on other topics.

I thank the administrative sta at the Computer Sciencedepartment, in particular
MelissaLawson and Mitra Kelly, for shielding me from the bureaucracy of real life.

During more than a decadeas a Computer Sciencestudent, | was fortunate to have
great mentors and advisors: Joao Carlos Setubal at Unicamp, Marcus Poggi de Aragao
at PUC-Rio, Mauricio Resendeat AT&T Labs Researti, Andrew Goldberg at Microsoft
Researt Silicon Valley, and, of course, Bob Tarjan at Princeton. | cannot thank them
enoughfor their guidance.

On a personalnote, | thank my friends for making my yearsat Princeton unforgettable.
This includes Adrian, Diego, Diogo, Loukas, Thomas, Tony, and especially anyone who is
considering not talking to me anymore just becausel did not mertion you by name.

Most importantly, | dedicate this dissertation to my parents, Dorothea and Rogerio.
Without them | would be nothing]literally

My work wasfunded by Princeton University and the Aladdin Project (National Science
Foundation grant no. CCR-0122581). Additional summerfunding (through internships) was
provided by AT&T (in 2002and 2003) and Microsoft (in 2004 and 2005).



cContents

Abstract

Ac knowledgemen ts

Contents

List of Figures

List of Tables

1 Intro duction

2 Existing Data Structures

2.1 Path Decomposition . . . . . . . . . . . . . . . e

2.2

2.1.1 Represemation . . . . . . . . ...
2.1.2 Updatingthe Tree . . . . . . . . .. . . . ... ...
2.1.3 Dealingwith Values . . ... .. ... .. ... ... .. .. ...
2.1.4 Undirected Trees. . . . . . . . i i it
2.1.5 Aggregating Information over Trees . . . ... ... ... ......
2.1.6 Other EXtensions. . . . . . . . . . . . i i it
TreeContraction . . . . . . . . . . .

221 The Parallel Setting . . . .. .. .. ... .. .. .. .. . . .. ...
222 TopologyTrees. . . . . . . . i i e e e

Vi

vi

Xii

o o o O



223 RC-Trees . . . . . . 21
224 TopTrees. . . . . . e e e 23

2.3 EulerTours . . . . . . . 34
3 Contraction-Based Top Trees 38
3.1 NumberoflLevels. . . . .. . .. . . .. 39
3.2 Updating the Contraction . . . . .. . ... ... . ... ... ... 44
3.2.1 Updates:BasicNotions . .. .. .. .. .. .. ... ......... 47
3.22 ProofOutline . . . . ... ... . .. 51
3.2.3 ReplicatedMoves. . . . . . . .. ... 53
3.24 StableSubtours. . . . . ... 55
3.25 Unstable Subtours . . . . ... ... ... ... 61
3.26 Running Time . . ... ... . . ... 67

3.3 Implementation . . . . . . . . ... e e 71
3.3.1 Represemation . . .. .. .. . .. ... 71
3.3.2 lIdentifying Valid Moves . . . . . .. ... .. ... .. ... 72
3.3.3 Updatingthe Tree . . . . . . .. .. . . . . ... ..., 72
3.34 OtherDetails . . . . ... ... . . 75
3.3.5 Implementing Expose . . . . . . .. ... 76

3.4 AlternativeDesignChoices . . . . . .. .. .. .. ... .. .. .. ... 80
3.4.1 NoC Circular Order . . . . . . . .. . . 80
342 BackRakes . . . . ... ... 82
3.4.3 Alternating Rounds . . . ... ... ... ... . ... .. .. .... 83
3.4.4 Randomization . . . . . . . . ... 83

4 Self-Adjusting Top Trees 85
4.1 Represemation . . . . . . . . ... 85
4.1.1 Order within Binary Trees. . . . . . . . . . . ... . ... ... 90
412 Handles . . . . . . . ... 90

Vii



4.2 Updates . . . . . .. 91
421 SOftEXPOSE. . . . . . . e e 91
4,22 Hard EXpPOSE . . . . . . . i i e e 97
423 CULS . . . . . 98
424 Links . ... 99
4,25 Implementation ISsues. . . . . . . . . . . ... e 100

4.3 Analysis . . . .. 101

4.4 Alternativ e Represemiations . . . . . . . .. .. ... .. .. e 105
4.4.1 PossibleSimplications . ... ... ... ... .. .. ... .. ... 105
442 Unit Trees. . . . . . o o o 106

4.5 Path Decomposition and Tree Contraction . . . . . .. .. ... ... .... 107
4,5.1 Contraction to Decomposition. . . . . . . ... ... ... ...... 108
45.2 Decomposition to Contraction . . . . . ... ... ... ........ 109

4.6 Final Remarks . . . . ... . . . . ... 110

Exp erimen tal Analysis 111

5.1 Experimental Setup . . . . . . . . . . ... 112

5.2 Data Structures . . . . . . . . . 112
5.21 ST-trees. . . . . . . e 113
522 ET-trees. . . . . . . . 115
523 TopTrees. . . . . . . . . e e 115

5.3 Maximum Flows . . . . . . . . ... 117
531 BasiCs . . . . . . . 118
5.3.2 The Shortest Augmerting Path Algorithm . . . . .. ... ... ... 119
5.3.3 Experimental Results . . . .. ... ... ... ... ... ...... 124

5.4 Online Minimum SpanningForests . . . . . .. ... ... ... ....... 128
5.4.1 The Algorithm . . . . . . . . . ... e 128
5.4.2 Experimental Setup . . . .. ... ... 130
543 RandomGraphs . .. ... ... ... .. .. .. ... e 131



5.4.4 Circular Meshes . . . . . . . . . . 135

5.4.5 High-DegreeVertices. . . . . .. . . .. . .. . . o 138

5.4.6 Memory Usageand CacheEects . . . . ... ... .......... 141

5.5 Single-SourceShortestPaths . . . . . . ... ... ... ... ... ... .. 143
5.5.1 Algorithm . . . . . . . ... e 144

5.5.2 EXperiments . . . . . . . . .. e e e e 146

5.6 RandomOperations . . . .. . .. . . . . .. 148
5.7 PreviousWork . . . . ... 151
5.8 Final Remarks . . . . . . . .. . ... .. 154

6 Final Remarks 156
References 160



List of Figures

2.1 ExampleofanST-tree . . . . . . . . . . . e 7
2.2 Ternarization . . . . . . . . . 13
2.3 Topologytree . . . . . . . 18
24 Afreetree. . . . . . e 24
2.5 Toptrees: Basicoperations . .. .. ... ... ... .. ... . ... 24
2.6 A cortraction and the correspondingtop tree . . . . . . ... .. ... ... 26
2.7 A top tree without dummy nodes. . . . . . . ... ... ... .. ... ... 26
2.8 An Eulertour . . . . ... 36
2.9 A binary tree represetting an Eulertour . . . . . ... ... L. 36
3.1 Badcongurations . . . .. .. . . . .. ... e 41
3.2 Good congurations . . . .. ... 42
3.3 A maximal set of movesthat eliminates only 1/6 of the vertices. . . . . . . 45
3.4 A tree that requirestwo rounds to have half of its verticeseliminated. . . . 46
3.5 Updating a cortraction: Anexample . . . . ... ... ... .. ....... 48
3.6 An Euler tour asusedby toptrees . . . .. ... ... ... .. .. .. ... 49
3.7 Propersubtours. . . . . ... 50
3.8 A newmove that involvesno extremearc . ... ... ... ......... 55
3.9 StableSubtours. . . . . ... L 56
3.10 Unstable Subtours . . . . . . . . ... 62
3.11 Implementing expsewith atemporarytree . . . . .. ... .. ... .... 79



3.12 Why pairing up edgesarbitrarily doesnotwork . . . . ... ... ...... 81

4.1 Aunit tree . . . . . e 86
4.2 Anaugmertedtoptree. . . . . . . . . 87
4.3 Completeexample . . . . . . . . . . e e 88
4.4 Augmented top tree corresponding to Figure 4.3 . . . .. . ... ... ... 89
4.5 Actual top tree correspondingto Figure 4.3 . . . . . ... .. L. 89
4.6 Conguration after softexpose . . ... .. ... ... ... .. .. ..... 92
4.7 Rotations in COMPresstrees. . . . . . . . . . o v i i it 93
4.8 Splice: Freetree . . . . . . . . e 94
4.9 Splice: Augmentedtoptree . . . . ... . . .. ... .. 95
410 CUtting . . . . . e 98
411 LINKING . . . 99
4.12 Splice: Phantom tree . . . . . . . . . . . .. e 102
5.1 Maximum ow on layeredgraphs: Relativetimes . . . ... ... ...... 125
5.2 Maximum ow on squaremeshes:Relativetimes . . .. ... ... ..... 127
5.3 Online MSF: Random graphs with edgesin randomorder . . . . . ... .. 131
5.4 Online MSF: Operation counts on randomgraphs. . . . . ... .. .. ... 133
5.5 Online MSF: Random graphs with edgesin increasingorder . . . . .. ... 134
5.6 Online MSF: Random graphswith edgesin decreasingorder. . . . . .. .. 135
5.7 Online MSF. Symmetric circular meshes. . . . . ... ... ... ...... 136
5.8 Online MSF: Circular mesheswith varying diameters. . . . ... ... ... 137
59 Extendedstar . . . . . . . . . . ... 139
5.10 Online MSF: Augmented stars with xed number of vertices. . . . . . ... 140
5.11 Online MSF: Augmented stars with xed spokelength . . . ... ... ... 141
5.12 Online MSF: Cathe e ecCtS . . . . . . . . . o v i ittt 142
5.13 Single-sourceshortest paths: Runningtimes . . . . . . ... ... ...... 147
5.14 Randomlinks andcuts. . . . . . . . . . .. ... .. 149

Xi



List of Tables

5.1 Maximum o ws on layered graphs

5.2 Maximum o ws on squaremeshes.

5.3 Single-sourceshortest paths: Operation counts . . . . . ... ... .....

Xii



Chapter 1

In tro duction

Consider the following problem. We are given an n-vertex forest of rooted trees with costs
on edges.lts structure can be modi ed by two basic operations: link (v; w; ¢) adds an edge
with cost ¢ betweena root v and a vertex w in a di erent componert; cut(v) removesthe
edgebetweenv and its parent. At any time, we want to be ableto nd, for any vertex v,
its parent p(v) and the cost of the edge(v; p(v)). All these operations take constart time
with an obvious implemertation: with ead vertex v, store a pointer to its parent and the
cost of the edgebetweenthem.

Now supposewe also want to nd the cheapest edgeon the path from a vertex v to
the root, or to add a constart ¢ to the cost of every edge on this path. The obvious
implementation can support theseoperations, but in time proportional to the length of the
path, which could be ( n).

This speci c problem appearsin the context of network ow algorithms [51]. We are
interested in its generalizedversion: a data structure to maintain a forest supporting in
O(log n) time queriesand updates related to vertices and edgesindividually , and to ertire
trees or paths. We call this the dynamic trees problem Other typical operations include
adding a certain value to all verticesin a tree, or asking for the sum of all edgeweights on a
path. Operations sud astheseare neededin seweral solutionsto the maximum o w problem

[6, 27, 29, 56] and related algorithms [51]. They are also usedin algorithms that maintain



properties of dynamic graphs, such asminimum spanningtreesand connectivity [10, 24, 33,
35]. Applications for maintaining dynamic expressiontrees have alsobeenreported [16, 25)].

The rst data structure to support every operation in the example application in
O(log n) time was Sleator and Tarjan's ST-tree [51] (also known asthe link-cut tree). This
structure partitions the tree into vertex-disjoint paths and represens ead one by a binary
tree in which the original vertices appear in symmetric order. The binary trees are then
glued together according to how the paths are connected. The root of ead binary tree
becomesa middle child of a node in another binary tree. For the algorithm to be e cien t,
this hierarchy must be balanced. But making ead binary tree balancedis not enough|
the total height of the hierarchy would be O(log?n). Sleator and Tarjan have shown that
using globally biased seard trees [13] one does achieve O(log n) worst-casetime per oper-
ation. They later showed [52] how splaying greatly simpli es the data structure while still
achieving the O(log n) bound (now amortized).

ST-trees can be adapted to solve other problems beyond our example, but this requires
an understanding of their inner workings. In particular, Goldberg et al. [27] shov how
subtree-related operations (such as adding a value to all vertices in a tree) can be ac-
complishedwith an implicit ternarization of the original tree, which transforms high-degree
verticesinto chains of constart-degreeones. The data structure becomesamore complicated,
however.

A simpler and more elegart way to handle subtree-related operations stems from the
obsenation that atree canbe represetted by an Euler tour. Represeting tours asstandard
balancedbinary trees is the basis of ET-trees, proposedby Henzinger and King [33], and
later simpli ed by Tarjan [56]. Unfortunately, thesedata structures cannot deal with path-
related operations (such as the onessuggestedin our example), so their applications are
somewhatlimited.

A third class of data structures is based on tree contraction. These structures use
two operations proposedby Miller and Reif [43] in the context of parallel algorithms: rake

(which removesleaves)and compress(which removesverticesof degreetwo). Each operation



replacesthe original elemerts (vertices and edges)by a cluster that aggregatesnformation
about them. The ertire tree is represerted by a hierarchy of clusters, which is itself a tree.

In Frederidkson'stopology trees [23, 24, 25], the contraction works in rounds, ead with a
maximal setof independert rakesand compresses Sincethe tree shrinks by a constart factor
in ead round, there are O(log n) rounds. Furthermore, the cortraction canbe updated after
alink or cut in O(log n) worst-casetime. However, the data structure is somewhatinvolved,
sinceit must maintain onetree for ead level aswell asthe connectionsbetweenthesetrees.
In practical applications, this makes it considerably slower than ST-trees [25]. Recerily,
Acar et al. proposed RC-trees [3], a randomized variant that is conceptually simpler and
runs in O(log n) expectedtime per operation. Both data structures view clustersasvertices,
which, for technical reasons,meansthat the O(log n) bound only appliesto treesof bounded
degree. Arbitrary treescan be handled by ternarization, but this increaseshe tree sizeand
adds an extra level of complexity.

An alternative is top trees, proposedby Alstrup et al. [7, 10]. By considering clusters
to be edges(instead of vertices), they avoid the needfor explicit ternarization. In addition,
they provide an interface for handling data independertly of the order in which rakes and
compressesare performed, so one can adapt this data structure to di erent applications
without modifying its inner workings (a similar interface wasalsode ned for RC-trees). Not
only doesthis simplify the implementation of existing algorithms for various applications,
but it alsomakesit easierto devisenewones. In [10], however, the suggestedmplementation
of top treesis as a layer on top of topology trees, hardly a practical solution.*

In a very broad senseall thesedata structures have the sameultimate goal: to map an
arbitrary tree into a balancedone. ET-trees do it in a very elegan, direct way, but they
cannot deal with path-related operations. ST-trees represen individual paths as binary
trees, which are then glued together to represen the whole tree. This approad is ideal for

path-related operations, but handling subtree queriesrequiresternarization. Topology trees

1Holm and de Lichtenberg [34] did suggesta direct implementation of top trees, but they later found their
run-time analysis to be a wed (personal communication). Even if the bound is correct, the implementation
is far from trivial.



and RC-trees represern not the tree itself, but the stepsnecessaryto cortract it. This can
be viewed as a multi-lev el decomposition of the original tree, which lends itself naturally
to applications related to dynamic graphs. These two data structures, howewer, can only
deal directly with treesof boundeddegree.Top treeseliminate this constraint and have the
most natural interface, but they achieve this by adding an extra layer to topology treesthat
merely hides the ternarization. Devising a data structure that is at the sametime general,
exible, and practical has beenan elusive goal.

This thesis achievesthis goal. In Chapter 4, we showv how the principles behind Sleator
and Tarjan's ST-trees can be usedto implemert top trees. A partition of the original free
tree into edge-disjoirt paths can be directly mapped onto a seriesof rakes and compresses
which shows that partitions and cortractions are essetially equivalert. The end result is
a data structure that is almost as streamlined as the original ST-trees, but as exible as
top trees (with the extra ability to handle ordered edgesaround ead vertex). Our data
structure usessplaying and can handle dynamic tree operationsin O(log n) amortized time.

We alsopresen, in Chapter 3, a bottom-up, corntraction-based algorithm for maintaining
and updating top treesin O(logn) time per operation in the worst case. This is the rst
direct implemertation of a worst-casetop tree. (Recall that Alstrup et al.'s original proposal
is to build aninterfaceto topology trees.) Our algorithm consistsof a very simple procedure
to update the tree. Although it is not as practical asthe self-adjusting version, it is much
easierto describe and understand, and it doesprovide stronger running-time guarantees.

In Chapter 5, we presen an experimental evaluation of our data structures. We compare
the data structures to ead other and to ET-trees and ST-trees (the rst and still fastest of
the dynamic treesdata structures). The experimernts uncover the strengths and weaknesses
of eadh data structure, as well as of the top tree interface itself. Chapter 6 presens some
concludingremarks. Beforewe dealwith the new data structures, we provide (in Chapter 2)

a more detailed description of previous methods.



Chapter 2

Existing Data Structures

This chapter presers an overview of existing data structures for maintaining dynamic trees.
As already mertioned, all of them map arbitrary treesinto balancedtrees. They usethree
di erent approadces: path decomposition (ST-trees), tree corntraction (top ology trees, top
trees, and RC-trees), and linearization (ET-trees). We discussead approad in turn, in
Sections?2.1, 2.2, and 2.3.

It should be noted, howewer, that theseare not the only techniquesusedto map arbitrary
treesinto balancedtrees. Tarjan [53], for example, usedone such mapping in an algorithm
that decidesin O(m (m;n)) time whether a spanningtree of a graph with n vertices and
m edgesis minimum. Komlos [39] useda di erent mapping to show that a linear number
of comparisonssu ces to solve this veri cation problem, and his result was later usedin
actual linear-time algorithms by Dixon et al. [20] and King [37]. Chazelle[14] de nes a more
generalcanonical transformation that allows somedata structures that work on lists to be
applied to freetrees. In particular, this transformation yields another simple O(m (m; n))-
time algorithm for minimum spanningtree veri cation. All thesemappings, however, apply
to static trees only|edges cannot be added or removed.

We limit our discussionto dynamic trees. In particular, all data structures we discuss
below can solve the dynamic connectivity problem for trees: they maintain a forest subject

to edgeinsertions and deletions and support queriesasking whether two vertices belongto



the sametree or not. Patrascu and Demaine [45] shoved that an (log n) lower bound in
the cell-probe model appliesto this problem. Mappings that deal with static trees are not
subject to this lower bound, and indeed they can execute someoperations faster than the

data structures we describe in this chapter.

2.1 Path Decomp osition

The rst data structures to support dynamic tree operations in O(log n)-time were Sleator
and Tarjan's ST-trees [51, 52], also known as link-cut trees or simply dynamic trees We
will only usethe term ST-trees in this dissertation to avoid any confusion, sincethe other
two terms could easily apply to any data structure for this problem.

ST-trees are used primarily to represen rooted trees, with all edgesdirected towards
the root. The version of ST-trees proposedin [52] ass@iates a cost with ead vertex in the

forest. Costs are handled by the following operations:

ndc ost(v): returns the cost of vertex v;

ndmin (v): returns the minimum-cost vertex on the path from v to the root of its

tree (in caseof ties, returns the one closestto the root);

addwost(v; x): addsx to the cost of ead vertex on the path from v to the root of its

tree.

In addition, the data structure also provides a pair of operations to query the structure
of the tree itself: ndr oot(v) returns the root of the tree cortaining v, and parent(v) returns
the parent of v. Of course,ST-treesalsosupport the usual structural operations: link (v; w)
adds an edgebetweena root v and a vertex w in another tree, and cut(v) deletesthe edge

betweenv and its parert.

2.1.1 Representation

Each rooted tree in the forest is represerted as follows. First, the tree is partitioned into

vertex-disjoint paths. Edgeswithin a path are called solid (and sois the path itself). The



remaining edges,which link solid paths, are dashel. Each solid path is represened as a
solid subtree, a binary seart tree in which the original vertices appear in symmetric order:
the bottommost vertex of the original path is represeried as the leftmost vertex of the
correspnding solid subtree! Finally, the solid subtreesare \glued" together, creating a
shadow (or virtual ) tree. Let v be the topmost vertex of a solid path P, and let p(v) beits
parent (which belongsto someother path Q). The shadow tree represens this relationship
as an edge between the root node rp of the solid subtree represerting P and the node
represening p(v); we say that rp becomesa middle child of p(v). There are no pointers
from a node to its middle children; the pointers go from children to parert only. This is

relevant becausea node may have up to ( n) middle children. SeeFigure 2.1.

W W ©

Figure 2.1: Example of an ST-tree (adapted from [52]). On the left, the original tree, rooted
at a and already partitioned into solid paths; on the right, a shadaw tree that represets it.

In the shadow tree, middle children are connectedto their parents by dotted lines. Values
are not shown.

The implementation of the ST-tree operations described above is basedon the expse

1This description follows the convention adopted in [52]. In [51], the order is reversed, which is equivalent
but lessnatural.



operation, usedinternally only. Operation expsegv) ensuresthat the path from v to the
root of its tree is solid and that there is no incoming solid edgeinto v. When theseconditions
hold, we say that v is the expsal vertex of the tree. Each tree in the forest has exactly one
exposedvertex. In Figure 2.1, the exposedvertex is g. If onewereto exposeu instead, for
example, edges(s; m) and (d;c) would be made solid, while (v;u), (r;m) and (f; c) would
becomedashed.

The cornversion of edgesfrom solid to dashed (and vice-versa) in the shadow tree is
performed by the splice operation, used during exmse If v is the root of a solid subtree,
splice(v) makesv the left solid child of its parert|it was formerly a middle child. If the
parent had a left solid child already, it becomesa middle child. The left solid child is always
the one replaced becausethe subpath it represerts is always farther from the root than is
the solid subpath represered by the right child. In fact, splice(v) can only be performed if
the parent of v is itself on the left path of its solid subtree. In Figure 2.1, splice(p) would
make p the left child of I in the shadaw tree, and g would becomel's middle child.

In addition to splices,expse(v) alsoneedsto perform rotations within ead solid subtree
on the path from v to the root of the shadaw tree. They are usedto ensurethat ead solid
subtree is properly balanced. Theseare standard binary tree rotations, and they only take
solid children into accourt; the middle children of the nodesinvolved always remain attached

to their original parerts.

2.1.2 Updating the Tree

The running time of exmse (and other structural operations) dependson what data struc-
ture is usedto represent solid paths. The obvious candidates are balanced binary trees,
such as red-black trees [31]. Unfortunately, the fact that ead individual solid subtree is
balanced does not guarantee that the whole structure will be. Each operation may take
(log 2n) amortized time, as shovn in [51].

In [51], Sleator and Tarjan suggestedthe use of biasel search trees instead. These are

generalizationsof balancedbinary seard trees (see[13, 22], for example) that allow weights



to be assignedto the nodes. They ensurethat the time to accessa node with weight w
is proportional to log(W=w), where W is the sum of all weights in the tree. Intuitiv ely,
nodes with higher weights are more likely to be closerto the root. These properties are
relevant to ST-treesbecausethe goal hereis to make the ertire structure balanced, not just
ead individual tree. This can be achieved by making the weight of ead node equal to the
number of descendats it hasin the ST-tree structure, including thoselinkedto it by dashed
edges.Note that biasedseard trees are not as simple asweight-balanced seard trees [44]:
the latter is a standard binary seart tree that usesthe weight of a subtree (de ned asthe
sum of the weights of its nodes) to keepthe tree balanced, but every node has weight one.
Biased seard trees allow nodesto have arbitrary weights.

Sleator and Tarjan analyze the use of two di erent typesof biasedtrees to implemert
ST-trees. Glohally biasal search trees can achieve O(log n)-time per operation in the worst
case,but they are extremely involved data structures. The authors suggestusing locally
biasal sarch trees as an alternative. They are somewhat simpler and still guarantee an
O(log n) bound per operation, but only in an amortized sense:starting from an empty tree,
any sequenceof m dynamic tree operations will take at most O(mlogn) time, but some
individual operations may take more than (log n) time. Unfortunately, locally biased
seart trees are still remarkably complicated data structures. For a description of both
locally and globally biasedseard trees, see[13].

In [52], Sleator and Tarjan proposeda much simpler implementation of ST-trees, where
solid paths are represerted as splay trees (also introducedin [52]). Theseare self-adjusting
binary seard trees, and as sud they maintain no balancing information whatsoever. In-
stead, whenewer a node is accessedijt is splaye, i.e., it is brought to the root of its tree
by a seriesof single and double rotations. The choice of which type of rotation to make in
ead step dependsonly on the local structure of the tree, but it ensuresthat ead access
to the splay tree will take logarithmic amortized time. In fact, an even stronger property
holds: eat accesgo an ST-tree, which involvessplaying on a seriesof splay trees, will also

take O(log n) amortized time.



10

2.1.3 Dealing with Values

An obvious way of dealing with valueswould be to store two piecesof information on ead
node of the shadaw tree: cost(x) would represen the cost of the node itself, and mincost(x)
the minimum cost of a descendai of x in the samesolid subtree (including x itself).

To implement the addmst operation in O(log n) time, however, one cannot changethe
costs of all a ected vertices explicitly. After all, a single path may have ( n) elemeris.
To update valuesimplicitly , valuesare represerted in di er ence form. More precisely eah

node x in the shadav tree storestwo values:

cost(x): this is cost(x) if x is the root of a solid subtree, otherwise cost(x) =

cost(x) cost(p(x)), where p(x) is the parent of x in the shadaw tree;
min (x): this represens cost(x) mincost(x).

With this represenation, only the root of a solid subtreeis guaranteedto contain an actual
value. Valuesin all other nodes will be represerted relative to this value. Therefore,
changing the value at the root (during the addast operation) will implicitly change all
valuesin the tree.

Unfortunately, the useof di erence form makessomeother operations more complicated.
Finding the cost of a particular node, for example, now requires traversing the tree, but
it can still be done in O(logn) amortized time. Another important issue with the use
of dierence form is that these values must be updated appropriately whenewer there is
rotation or splice in the ST-tree. Although it is not hard to determine how the values
should be updated in this case,it is not as immediate as it would be if the values were
stored explicitly, even for these simple operations.

The application for which ST-treesweredeveloped aimsto nd minima over paths. One
can, however, think of seweral other applications for which ST-trees could be used. One
could, for instance, usethem to compute the sum of the weights of the vertices on a path
instead of picking the minimum. To support a di erent application, one would needto (1)

de ne a new set of valuesto be storedin ead node, (2) make sure thesevaluesare updated



11

appropriately whenthe shadow tree changes,and (3) de ne rulesto traversethe tree during
queries. Although this can be done, it is not nearly as simple as one would hope. Sleator
and Tarjan did not de ne a genericinterface to ST-trees, which meansthat value updates
appear interspersedwith structural operations, such as pointer updates.

A natural way of de ning a genericinterface for ST-treesis to let the userde ne which
valuesto store in eady node and how to update them after ead rotation or splice. This
makes changesslightly simpler, but guring out which piecesof information to keepwould

still be a nontrivial task, not least becausevaluesmay have to be kept in di erence form.

2.1.4 Undirected Trees

ST-treesweredevisedprimarily to handle directed treeswith xed roots. In this setting, all
path-related queriesrefer to paths betweensomevertex and the root of its tree. In sewral
applications, howewer, the root may change,or there may be no root at all: queriesrefer to
arbitrary paths betweendi erent vertices of the tree.

To handle these more general cases,ST-trees support the evert operation: evert(v)
makesv the root of its tree. It can be implemented within the sametime bound as expse
An ST-tree with evert can represert free (unrooted) trees: to query an arbitrary s-t path,
it suces to call evert(t) followed by exmpse(s).

Note, however, that an e cien t implemertation of evert requiresa slight changeto the
basic data structure. This operation works by reversing the ertire path betweenthe new
root and the original root. This requiresthe ability of reversing, in constart time, all the
left/righ t pointers of the binary tree represening a solid path. Of course, performing this
operation explicitly would be too expensive. The solution is to maintain a reversebit on
eat node. If this bit is true, the left and right children must be swapped: to accessthe
right child, one must follow the left pointer, and vice-versa. Moreover, the reversebit must
be stored in di erence form: the actual value of the reversebit of a node is the exclusive-or
of the valuesstored on its ancestors. With this represertation, reversing a path is easy: it

su ces to negatethe bit stored at the root of the binary tree that represerts the path.



12

The main drawbad of using the reversebit, apart from the extra spaceit requires, is

that it makesqueriesand updates, especially splays and splices,slightly more complicated.

Internal nodes and evert. As already merntioned, the data structures preseried in [51]
and [52] di er in the choice of binary seard tree usedto represen ead solid subtree. They
alsodi er in a more subtle way: in how they map solid paths to solid subtrees.

In [5]], eadh vertex of the original path becomesa leaf of the corresponding binary
tree, and internal nodes are added to aggregateinformation. Each of theseinternal nodes
can be interpreted asrepresening both a subpath (betweenits leftmost descendah and its
rightmost descendat) and an edge(betweenthe rightmost descendan of its left child and
the leftmost descendan of the right child). In [52], on the other hand, eat vertex on the
solid path becomeseither a leaf or an internal node of the corresponding binary seardt tree,
and no other nodesare added.

Both variants can be usedif values are assciated with vertices of the original forest.
The rst variant can also support edgeseasily, since ead original edgewill correspond to
a particular node in the tree. To usethe secondvariant in this case,one can store values
relative to an edge(x;y) (y being the parent of x) on the node represerting x. This can
be done becauseeat node has at most one parent. Supporting evert, however, presens
a problem to this approach. When a path is reversed, the information relative to ead of
its edgeswould have to move from one of the endpoints to the other. We would have to
transfer the information about ead edge (x;y) on the path being reversedfrom x to y.
This is too costly.

The obvious solution is to usethe represernation suggestedin [51]. It can be usedwith
splay trees with no asymptotic penalty. It does, however, roughly double the number of

nodesin the tree, which may have someadversee ect on performancein practice.

2.1.5 Aggregating Information over Trees

An important feature of ST-treesis that a node doesnot needto accessts middle children.

Apart from operations that deal with the exposedpath (in which middle children are irrel-



13

evant), all operations happen in a bottom-up fashion. For these operations, it suces to
have pointers from ead middle child to its parent. The fact that there are no pointers from
the parert to the middle children greatly simpli es the data structure, sincethe number of
children can be arbitrarily large.

Unfortunately, this feature also limits the scope of ST-trees in their original form. In
particular, seweral application require information to be aggregatednot over paths, but
over trees. In these cases,one does need accessfrom a node to its middle children. The
obvious approad in this casewould be to store, with ead node, a list of all of its children.
Aggregating information about all children would take time proportional to the sizeof this
list, which in turn dependson the degreeof the vertex. This will be expensiwe, unlesswe
can guarartee that all verticesin the original forest have bounded (constant) degree.

Although this assumptionis reasonablefor someapplications, in generalit is not true.
The usual solution to this problem is to useternarization : wheneer the input has a high-
degreevertex, we replaceit by a chain of degree-threevertices? A common technique is
to replace eath vertex with degreek > 3 by a path with k 2 vertices: the rst and the
last vertices are ead connectedto two of the original neighbors, and ead of the remaining

vertices is connectedto one. SeeFigure 2.2.

he

o

o(d

Figure 2.2: Example of ternarization. Every vertex with degreefour or greater is replaced
by a chain of vertices of degreethree.

2In the caseof rooted trees, by \degree-three" we mean a vertex with a parent and two children; for
unrooted trees, we mean a node with three neighbors.



14

The drawbadk of this approad is that we must somehav remenber which vertices and
edgesare in the original tree and which are special elemerts created by the ternarization
procedure. Values assaiated with these extra elemers typically needto be handled as
special casesby the data structure.

In the papers that introduced ST-trees [51, 52], Sleator and Tarjan focusedon path
operations only and did not mertion ternarization. As a result, the conceptof ternarization
has beendiscovered independertly seweral times, as the following examplesshow.

In [27], Goldberg et al. proposeda faster implementation of Goldfarb and Hao's network
simplex algorithm for the maximum o w problem [30]. The application dealswith rooted
trees with labels on vertices. In addition to the operations already supported by ST-trees,
the data structure must be able to determine the vertex of minimum label among all de-
scendans of a vertex v. To implement this, Goldberg et al. useternarization and call the
transformed tree a phantom tree, which is then represerted as an ST-tree with someaddi-
tional operations on values. They usethe notion of colors to map vertices of the phantom
tree to vertices of the original tree.

Similarly, Radzik [46] usesternarization to implemernt \in-subtree" operations: (1) nd-
ing a vertex with minimum key (value) within a subtree of a rooted tree; and (2) picking a
vertex at random among all that have a xed key X in a subtree. His solution, although
obtained independerily, is essetially the sameasthe one obtained by Goldberg et al.

A third instancein which ternarization was discovered independerily was within an al-
gorithm of Langerman|[41]for the so-called\shooter location problem", which is equivalert
to maintaining the minimum clique cover and the maximum independernt set of a circular-
arc graph (a generalization of interval graphs). In orderto nd an e cien t solution to this
problem, Langerman devisesa generalization of ST-treesthat is a little more sophisticated
than the versionsabove. In his setting, ead1 node can have an arbitrary number of children,
and they are ordered. Among the operations supported by his data structure, a cortiguous
subsetof the children of a vertex v can be moved (in a single O(log n)-time operation) to

another point in the tree, becoming children of a new parent w. Once again, this can be



15

achieved through ternarization. The set of children of a node is represerted as a binary
seart tree, which can be split and joined with another tree when just a subsetis required.

Kaplan et al. [36] apply dynamic trees with ternarization to maintain a set of intervals
with priorities sothat one can quickly locate the maximum-priority interval that corntains a
query point. Dynamic treesare usedfor the special casein which the intervals do not overlap
(but can be nested). The authors build a containment forest to represern the hierarchy of
intervals, and represen a \binarized" versionof it using ST-trees. This technique is exactly
the sameas ternarization, but applied to rooted trees. As in the previous application, the
order amongthe children of a node is relevant, and a cortiguous subsetof the children may
acquire a new parert in a single operation.

Recerily, Klein [38] devisedan algorithm for nding multiple-source shortest paths on
planar graphsthat requires nding minimum labels over subtrees. Once again, the solution
(devised independertly of the results above) wasto useternarization.

We shall seethat two other data structures, topology trees and RC-trees, must use
ternarization as well to handle trees of arbitrary degree. In fact, unlike ST-trees, they
require ternarization even if only path operations are to be supported, unlessall vertices
in the input are guaranteed to have bounded degree. Top trees and ET-trees, on the other

hand, naturally support trees of arbitrary degree.

2.1.6 Other Extensions

Apart from ternarization, we note that ST-trees have beenextendedto support more com-
plicated operations. For instance, Georgiadis et al. [26] have recertly shavn how one can
merge paths. Their application considerstreesthat have xed roots and are heap ordered:
ead vertex is assaiated with a label that must be greater than that of its parent. Opera-
tion merge(v; w) computesthe nearestcommonancestorx of v and w and mergesthe paths
v xandw x sothat the heaporder is presened. Even though a single operation may
causea linear number of edgesto change, Georgiadiset al. shaw that it can be performed

in O(log?n) amortized time with ST-trees.



16

2.2 Tree Contraction

We have seenthat ST-trees are basedon the technique of path decomposition: the original
tree is partitioned into disjoint paths, and ead is represerted asa binary tree. Contraction-
baseddata structures take a fundamentally di erent approad. Instead of represetting the
tree itself, they represen a contraction of the tree, which progressiely transforms the
original tree into smaller treesthat summarizethe original information.

Section 2.2.1 describes cortractions in the parallel setting, where the concept rst ap-
peared. We then describe three di erent cortraction-based data structures: topology trees

(Section 2.2.2), RC-trees (Section 2.2.3) and top trees (Section 2.2.4).

2.2.1 The Parallel Setting

Contractions are basedon two operations introduced by Miller and Reif [43]. The rake
operation eliminates vertices of degreeone, while compress eliminates vertices of degree
two. They assaiate information with vertices. When a degree-onevertex is eliminated,
the information it holds is transferred to its only neighbor (and aggregatedappropriately).
When a degree-wo vertex v is eliminated, its two incident edges(u;v) and (v;w) are
replacedby a single edge(u; w). The information assaiated with v is transferred to u, w,
or both. A contraction is a sequenceof rake and compress movesthat reducesthe original
tree to a single vertex, which will hold information about the ertire tree.

Miller and Reif proposedrake and compressin the context of parallel algorithms, with
ead vertex maintained by a di erent processor. They assumethat the underlying tree is
rooted. Their contraction algorithm works in rounds. In ead round, the rake operation

eliminates all leaves of the tree. Simultaneously, the compress operation will eliminate a

k 2 verticessuc that vi+1 is the only child of v; (for 1 i < k) and vk has exactly one
child, which is not a leaf. In ead chain, the compressoperation works by identifying vertex
vi with vij41, for all odd valuesof i < k. Intuitiv ely, v; accurrulates the value and inherits

the descendats of vj41 .



17

Miller and Reif shaw that a constart fraction of the verticesis guaranteed to disappear
after eadh round, which implies that the total number of rounds is bounded by O(logn).
Sinceead round can be performedin constart time when there is one processorper vertex,
the total running time of the algorithm is O(log n) aswell.

The main application of tree contraction studied by Miller and Reif is the evaluation
of expressiontrees. Each leaf of the original tree is assaiated with a real value, and eath
internal node with an operation (+ or ) to be performed on its children (assumedto be
exactly two). In ead subsequeh round, the remaining leaveswill still contain a value, and
ead internal node with two children will be assaiated with an operation. Internal nodes
with a single child will be assaiated with linear functions of the form aX + b, where a
and b are constarts and X is a variable represerting the (not yet computed) value of the
remaining child. When a node is eliminated by rake or compress the linear expression
on the parent is updated accordingly. After all rounds are completed, the only remaining
vertex cortains the value of the entire expression.

As obsened by Miller and Reif, the rake operation is enoughto ensurea correct evalu-
ation of the expression.If the original tree is very unbalanced, however, up to ( n) rounds
may be neededto cortract it. This is why compress is also necessary One could also
think of using only compress but that would not even guarartee that the whole tree would
be contracted. The idea of tree cortraction, with variants of rake and compress has been
further studied in the parallel setting by Abrahamsonet al. [1] and by Cole and Vishkin [17].

The subsectionghat follow describe three contraction-based data structures, all of which
usevariants of rake and compress First, we discussFrederidkson'stopology trees[23, 24, 25)].
As in the Miller and Reif setting, information is assaiated with vertices. We then brie y
describe RC-trees, proposedby Acar et al. [3], which can be seenas a randomized version
of topology trees. We shall seethat storing information on vertices limits the applicability
of thesetwo data structures to trees with bounded vertex degrees,unlessternarization is
used. The third data structure we discuss,Alstrup et al.'s top trees [10], solvesthis problem

by storing information on edgesinstead.



18

2.2.2 Topology Trees

The rst data structure basedon tree cortraction was Frederickson's topology trees [23, 24,
25]. Given an underlying tree in which ead vertex has no more than three neighbors, the
data structure represens a multilevel partition of the tree. The vertices of the original tree
are partitioned into clusters, eat of which cortains either a single vertex or a collection
of connectedvertices. After ead cluster is corntracted into a single vertex, the result will
be another tree, which can be itself partitioned into clusters. This processcortin ues until
there is only one cluster left, which will represett the ertire tree.

The topology tree is merely a static represenation of the hierarchy of clusters. The
original tree is consideredto be level zero of the cortraction, with ead vertex represenied
as an individual cluster. These clusters will be the leaves of the topology tree. In general,
a cluster at level * + 1 is created by combining one or more clusters from level . The
new cluster will appear in the topology tree asthe parent of the clustersit contains. Each
level of the topology tree can be interpreted as a cortracted version of the original tree.

Figure 2.3 shavs a multilev el partition of the tree and a corresponding topology tree.

Figure 2.3: Example of atopology tree (adapted from [24]). On the left, the original tree and
a multilev el partition; on the right, a topology tree that represeits this partition. Pointers
betweenneighboring clusters at the samelevel are not shown.

Frederickson preseried at leastthree di erent versionsof topology trees[23, 24, 25]. All



19

three work in rounds, and they require all clusters formed in a round to be independert
(i.e., no original vertex may belong to more than one cluster) and also that no vertex be
left in a cluster by itself if it can legally belongto a composite cluster (i.e., a cluster with
more than one vertex). The three versionsof topology treesdi er basically in the rules for
creating composite clusters.

In [24], eath cluster must have external degreeat most three, i.e., it must be adjacent
to at most three other clusters. Furthermore, if it does have external degreethree, then
it must contain a single vertex. The remaining clusters may have up to two vertices ead.
This meansthat a two-vertex cluster will be either (a) a degree-onevertex matched with
its neighbor; or (2) two neighboring degree-wo vertices matched together. Frederickson
obsenesthat a cluster of type (1) can be seenas represerning a rake move, and those of
type (2) are related to compress The multilevel partition in Figure 2.3 obeys the rules
presened in [24].

The versionof topology treesdiscussedn [25]is very similar but assumeghe underlying
trees are rooted and binary. This still meansthat ead node will have no more than three
neighbors: the parent and two children. The original description of topology trees [23] is
slightly more complicated, and mapping the rules proposedthere to rakes and compresses
is not immediate. Our focusin this sectionis on the newer, simpli ed versions, preseried
in [24] and [25].

In all versions, Frederickson shows that the number of verticesin ead level is reduced
by at least 1/6, which meansthat the height of the topology tree is O(log n).

Whenewer thereis alink or cut, the contraction must be updated. Fredericksonproposes
a bottom-up algorithm to do this. It processesad level in turn, deleting clustersthat are
no longer valid and inserting new onesto replace them. When processinga level, the
algorithm must nd out which clusters of the next level will be a ected. In order to do this
e cien tly, topology trees must maintain not only vertical pointers (i.e., pointers between
parents and children) but horizontal pointers as well (i.e., pointers between neighboring

clusters on the samelevel).



20

Frederickson shows that the update algorithm can be performedin O(log n) time in the
worst case. After a link, the list of clustersthat must be inserted at any given level of the
topology tree actually forms a connectedsubtree of the tree at that level. Moreover, there
are at most two so-calledborder edges i.e., edgesbetweenthis subtree and the remainder
of the tree. If the subtree were isolated, its size should decreaseby at least 1/6 after each
round. Becauseof the border edgesthe actual decreasanay be smaller, but only by a small
additive constart factor. Frederickson shows that at most 14 new clusters may be inserted
at ead level after a link.® The number of original clusters that may be deleted is also
bounded by a constart (although it is not speci ed in either [24] or [25]). According to the

author, the analysis of cut is similar, and equivalent (unspeci ed) bounds can be found.

Basic applications.  In [25], which deals with rooted trees, two main applications are
considered:dynamic expressiontreesand network o ws. The former aggregatesnformation
over the entire tree, while the latter doesso over individual paths.

Dynamic expressiontrees are maintained asin Miller and Reif's original application. A
cluster represeting an original vertex of the tree will contain either a value or an operation
(+ or ), while other clusters aggregateinformation in the form of linear functions.

A more interesting application is network ows. Frederickson was the rst to show
that a contraction-based data structure could support the set of operations for which ST-
trees were designed. We have already seenthem in Section2.1: ndc ost, ndr cot, ndmin ,
addwst, and parent.

We have seenthat the leaves of the topology trees correspond to the vertices of the
original tree and that ead internal node (cluster) of the topology tree can be seenas
represerting a subsetof the original vertices(the onesrepreserted by the leavesthat descend
from the node). Frederickson shonvs how one can also assiate a cluster with so-called
restricted paths, which are upward paths in the original tree. A cluster holds information
about minima over thesepaths. As in ST-trees, thesevaluesare not stored explicitly, since

addmst would require too many updatesto the tree. They are stored in di erence form.

3In [24], Frederickson claims that a more careful analysis might reduce both constants (1/6 and 14).



21

Unfortunately, updating these valuesis even more complicated than in ST-trees, since
the mapping between clusters and paths is not as naturallthere is no correspondence

betweenbinary trees and paths.

Dynamic graphs. It should be noted, however, that topology trees were originally de-
vised to handle dynamic graph applications. In [23], topology trees are usedin the solution
of the dynamic minimum spanning tree problem. The problem is to maintain the minimum
spanning tree of a graph subject to edgeinsertions and deletions. The simplest solution is
to recompute the ertire spanning tree after an insertion or deletion occurs. Frederickson
demonstrated that, with topology trees, updates can actually be supported in sublinear
time. More precisely he showved that an update can be supported in O(IO mlogn) time,
where m and n denote the current number of edgesand verticesin the graph.

Handling insertions is relatively simple: when a new edge (v;w) is inserted into the
graph, all one has to do is ched if it costs lessthan the most expensive edge on the
path betweenv and w on the current minimum spanning tree. This can be done with a
variant of the ndmin operation of ST-treesor topology trees. Deletions, however, are more
complicated. If (v;w) is remaved from the graph and it doesbelongto the tree, one must
nd areplacemen edgeamongall edgesbetweenthe componert containing v and the one
containing w. Frederidkson usestopology treesto accomplishthis. The algorithm itself is
somewhatinvolved, but the basic idea is to make ead cluster C at level = remenber the

minimum edgebetweenC and ead of the other clusters at the samelevel.

2.2.3 RC-Trees

The most recent cortraction-based data structure is RC-trees, proposedby Acar et al. [3, 4].
They closely resenble the original corntraction sdheme by Miller and Reif; in fact, \R C"
stands for \rak e and compress.”

As in topology trees, clusters are vertices, which meansthat the data structure can
only support trees with vertices of bounded degree. RC-trees are, however, slightly more

generalthan topology trees. While the latter requires ead vertex to have degreeat most



22

three, RC-trees naturally support any xed upper bound d. The total spaceusageand the
running time are proportional to d, however. RC-trees assumethe original tree to be free
(unrooted).

RC-trees also work in rounds, but they have dierent cortraction rules. First of all,
the algorithm strictly alternates betweenrake rounds and compressrounds During a rake
round, all degree-onevertices are remaoved. The cortribution of ead eliminated vertex is
stored in its only neighbor. During a compressround, a subsetof the vertices of degreetwo
disappears. The two edgesincident to an eliminated vertex are replaced by a single edge
betweenthe original neighbors. The neighbors are responsible for the information stored
in the disappearing vertex. The algorithm requiresthe compressmovesto be independert,
i.e., if a vertex disappears, both of its neighbors do not. Acar et al. userandomization to
ensureindependence. A hashfunction H is usedto map a vertex and a level to a boolean
value. A vertex v on level © with neighbors u and w will be compressel only if all of the
following conditions hold: v has degreetwo, H(v; ") = true, and H(u; ") = H(w; ") = false.

The height of an RC-tree is logarithmic in the number of verticesin the underlying tree,
but, becausecompressrounds are randomized, this bound only holds in the expected sense.
The expected update time (after a link or cut) is also logarithmic.

Although it does not guararntee good worst-caseperformance, randomization is useful
in other respects. First, it simpli es the updating algorithm, executedwheneer a link or
cut occurs. The algorithm works in a bottom-up fashion, as doesthe updating algorithm
for topology trees, but new moves can be performed independenly of the original ones.
A second(and related) useful aspect of randomization is that it simpli es the proof that
the update algorithm takes constart time per level. As with topology trees, the proof is
basedon the fact that the set of new clusters on ead level forms a subtree that \touc hes"
the rest of the tree in a constart number of places. Finally, randomization makesthe data
structure history-independent i.e., its current state dependsonly on the current free tree
being represeried. In all other data structures for dynamic trees, the current state also

depends on which operations happened before, and on the order in which they occurred.



23

Although this is irrelevant for most applications, it may be usefulin contexts where privacy

or security are important [3].

Handling values. Unliketopology trees, RC-treesare \programmable,” i.e., the usercan
easilyde ne which problem must be solved by de ning what piecesof information should be
stored on eadh node and setting up a few functions to handle them. The update algorithm
will simply call these functions wheneer it decidesa vertex should be eliminated. As
shown in [4], three of these call-back functions are de ned: rake data (which computesthe
contribution of araked vertex and storesit on its neighbor), compressdata (which computes
the contribution of a compressel vertex and storesit on both neighbors), and nalize _data
(which aggregatesinformation on the nal, root cluster). In addition, the user must de ne
a query algorithm to traversethe tree and compute the appropriate information.

Although this interface makes this data structure much easierto use than topology
trees, it still hassomedrawbadks. Perhapsthe most important is the fact that the interface
assumeghat the tree hasboundeddegree. To represen atree T of arbitrarily high degree,
we must rst ternarize it, creating a tree T® The interface will be to T° (which hasseweral
\sp ecial" verticesand edgescreated by the ternarization procedure),not to T, which would
be more natural. Moreover, the query algorithm tends to be as complicated as those for

ST-trees and topology trees, sincevaluesmust still be represerted in di erence form.

224 Top Trees

We now consider top trees proposedby Alstrup et al. [10] (seealso [7, 9]). While still
basedon rake and compress they are more generalthan the other contraction-based data
structures discussedso far, sincethey have no degreeconstraints. In addition, we shall see
that their interface is also the easiestto use.

Before describing top treesin detail, we must note that the notation used here di ers
slightly from the one usedby Alstrup et al., as do someof the assumptionswe make about
the tree being represerted. The essetial ideas, howewer, are the same. A more detailed

discussionof the di erences will be preseried at the end of this section.



24

Figure 2.4: A freetree. Edgesare arrangedin counterclockwise order around ead vertex.

Top trees represen a collection of free trees (i.e., trees that are unrooted and undi-
rected). Furthermore, we assumethere is a circular order of edgesaround every vertex of
the original tree. If the application naturally has such an order, the data structure will
useit; otherwise, an arbitrary order will be de ned. SeeFigure 2.4. In this picture, asin
all other represenations of free trees in this work, we assumethat edgesare organizedin
counterclo ckwise order around ead vertex.

In this setting, we interpret compress and rake as follows. A degree-two vertex v is
compressé if the two edgesincident to it, (u;v) and (v;w), are replacedby a single edge
(u; w). Wealsosay that either edgeis compressel at v. A degree-onevertex v with neighbor
x is rakal if the edge(v;x) and its successolw; x) around x are replacedby a single edge,
alsowith endpoints w and x. We can also say that the edge(v; x) is raked onto (w; x), that
(v;x) is rakad around x, that (w;Xx) receives (v;x), or that (w;Xx) is the target of a rake

SeeFigure 2.5.

Vv

)/O\(_ compress(v) : E
u W u W

. C

X
rake(v)
—_—
Y W W

Figure 2.5: Top trees: Basic operations.



25

Both rake and compressare viewed as manipulating clusters. Each edgeof the original
tree is considereda cluster by itself (a base cluster). When two clusters are combined by
either rake or compress the result will be a new cluster, the parent cluster. Every cluster
(not only baseclusters) will have exactly two endpoints, and can therefore be consideredto
be an edge.

A top tree is a binary tree that enbodiesa cortraction of a freetree into a single cluster
via a sequenceof rake and compress operations. Each leaf of the top tree is a base cluster
represening an original edge,and ead internal node is either a rake cluster or a compress
cluster. A node aggregatesinformation pertaining to all descendats; in particular, the
ertire original tree is represened at the root of the top tree. Since clusters correspond to
edges,a tree with a single vertex will be represerted by an empty top tree.

When an edgeis deleted from or inserted into the original forest, there is no needto
recompute a new cortraction from scratch: it is enoughto update the a ected top treesto
make them consistert with the new underlying forest. Sincechangesto the leavespropagate
to the root, only sequencesf rakes and compressesthat produce balanced top trees can
provide an O(log n) worst-casesolution to the dynamic trees problem.

Onesud sequenceanbe obtained asfollows: work in rounds, and in ead round perform
a maximal set of independent moves (each cluster participates in at most one move, and
no valid move is left undone). Figure 2.6 shows a cortraction of the tree in Figure 2.4 that
obeystheserules; it also shaws the corresponding top tree.

The top tree in the example has four types of nodes. A rake node, showvn as a circle,
represerts a rake of its left child onto the right child. A compressnode, shovn asa square
with two children, represerns the compress of its two children (which can appear in any
order). A dummy node, showvn as a squarewith a single child, represens an edgethat was
not involved in any move in the previous round. Finally, a base node, shovn as a square
with no children, represerts an edgeof the original free tree. Note that dummy nodescould

in principle be eliminated, as shown in Figure 2.7.



26

(9 o] [hi in]

by [ @ [M] @ [

@b @ @ W (W @

ad] [cg] b (] [eg 1] [ ][] ] o] ] e ] ]
n

Figure 2.6: A cortraction (on the left, to be read bottom-up) and the corresponding top
tree (on the right). Circles represen rake nodesin the top tree; squaresrepresen base
nodes, dummy nodes, or compress nodes, depending on whether the number of children is
zero, one, or two.

Figure 2.7: The top tree corresponding to the cortraction in Figure 2.6, without dummy
nodes.



27

Up dates. Although it is fairly simple to show that this round-basedcortraction scheme
doeshave at most O(logn) levels, it is not obvious that it can be updated (after a link or
cut) in O(logn) time. In fact, Holm and de Lichtenberg attempted to prove this in their
joint master's thesis [34] but later found the proof to be awed.

In [10] (seealso[7]), Alstrup et al. do shaw that top treesoperations can be implemented
in O(logn) worst-casetime, but only as a layer on top of topology trees. Recall that
topology trees are de ned for ternary trees. At ead level, topology clusters partition
the tree into vertex-disjoint subtrees linked by boundary edges which do not belong to
any cluster. Vertices incident to boundary edgesare boundary clusters. To represen an
arbitrary free tree, one must rst ternarize it. A topology tree is then built to represert
the transformed tree. To create a top tree, the basic step is to transform ead topology
cluster into a top cluster, which can be done becausea topology cluster is guaraneed to
have at most two boundary vertices (i.e., vertices incident to boundary edges). This is
obviously true for clusters with two or fewer boundary edges. It is also true for clusters
with three incident edges,sincethe cortraction rules for topology trees ensurethat these
clusters must have a single vertex. Every topology cluster is transformed into a top cluster
induced by the verticesand edgesit contains. As mentioned in [10], a topology cluster may
create up to two top clusters, which can make the top tree have twice as many levels asthe
corresponding topology tree.

We will present in Chapter 3 a very simple update algorithm that does guarantee an
O(log n) update time for the contraction scheme usedin the example (based on maximal
independent rounds). Sinceit doesnot rely on topology trees, it is the rst stand-alone
worst-caseimplementation of top trees. Chapter 4 presens another stand-aloneimplemen-
tation of top trees, which is usually faster in practice but hasonly an amortized performance

guarartee.

Interface. In [10], Alstrup et al. focus mainly on the top tree interface and on how
it makes the specialization of top trees to dierent applications extremely simple. The

interface consists of a small set of operations that must be de ned by the user (which



28

we will presert shortly). Just asimportantly, the interface imposesa strict discipline for
accessinghe tree. Instead of allowing the userto traversethe top tree freely, sheis granted
direct accessonly to its root. Eventhough this may appear restrictiv e, they show that this
strategy is just as powerful as any other, and in fact greatly simpli es the implementation
of various applications.

Sincea cluster always has two endpoints, it can be thought of asan edgeon somelevel
of a contraction of the tree. Moreover, it can be naturally mapped to both a path and a
subtree of the original tree. The path is the one betweenits endpoints; the subtree is the
one induced by all base clusters that descendfrom it. Take cluster ei in Figure 2.6. It
represerts not only the path from e to i, but alsothe subtree induced by edges(a;c), (c;g),
(b;c), (d; ), (e;09), (f;9), (i;j), and (g;i). The verticesthat belongto the subtree but are
not endpoints are said to be internal to the cluster: the internal vertices of cluster ei are
a,bcdf,g andj.

With that in mind, top treessupport three basicexternal operations, which the usercan

call directly:

C link(e): adds an edgee = (v;w) to the forest and returns the base cluster
represerning the new edge. If the edgewould form a cycle, it is not added and the

function returns null.
cut(C): removesthe edgerepresened by basecluster C from the forest.

C expsgVv; w): takes at most two vertices as input and ensuresthat they are
endpoints of the root clusters of their trees. If v and w belongto the samecomponen,

the function returns its root cluster; otherwise, it returns null.

The last operation is important becauseof the constraint that the userhasdirect access
only to the root of a top tree. If the useris interestedin somepath v w, shemust rst
call expose(v; w), then look at the cluster returned. If the userwants to deal with the tree
containing v, calling expse(v; ) will give her accesgo the root of the relevant top tree.

To executethese operations, the clustersin the a ected top trees must be rearranged.



29

It is up to the data structure itself to decide how to carry this out. While doing so, it
must update the information stored in ead of the clusters a ected. The exact piecesof
information (and how they are updated) depend on the application the top treesare solving.
Therefore, it is up to the userto de ne what elds ead cluster should have, and how they
should be updated. To that end, the user must provide the implementation of four internal

operations, de ned by Alstrup et al. as follows:
C create(e): makesa basecluster represering edgee;
C join(A; B): performs a rake or compress of two adjacert clusters;
(A; B) split(C): disasserbles a rake or compress cluster and returns its children;
destroy(C): eliminates a basecluster.

When dummy nodes are presen, both join and split must be generalizedto allow
clusterswith a single child. Moreover, both functions should have an additional parameter
specifying the type of move to be made (rake compress or dummy). Following Alstrup
et al., we have not explicitly included this parameter in the de nitions above to simplify
notation. If the move is a rake join assumeshat the rst cluster (A) is to be rakeal onto
the second(B); split adopts the samecorvertion for its output.

The four internal operations are de ned as call-bad functions. The data structure
will transform structural changesto the tree into a seriesof create, destroy, split, and join
operations. At most one create or destoy is executed per external operation, since only
one original edgeis inserted or removed at a time (in the caseof exppse noneis). On the
other hand, O(log n) internal clusters may change, causingas many calls to split and join.

Each application of dynamic trees will have di erent piecesof information assaiated
with ead cluster, and will implement the internal operations to handle this information
appropriately. The remainder of this section preseris a few examplesto illustrate the
power and simplicity of top trees. Unlessotherwise noted, the applications presened here

are described in [10].



30

Aggregating information over trees. Perhapsthe simplest possibleapplication of top
trees is to maintain the sum of the costs of all edgesin a tree. In this case,we store a
single value in ead cluster. The create operation initializes this value as the cost of the
corresponding edge;join storesin the new cluster the sum of the valuesin the children.
Both split and destroy do nothing.

If, instead of nding the sum, we wereinterestedin nding the minimum edgecost, we
would just have to changejoin : instead of computing the sum of the valuesin its children,

it would compute the minimum.

Operations on paths. A slightly more involved application is to nd the length of a
given path in the tree. We store a single value per cluster, corresponding to the length of
the path betweenits two endpoints. As in the previous application, the create operation
initializes this value asthe length of the corresponding edge. The behavior of join depends
on whether the operation being performed is compressor rake When two edges(u; v) and
(v;w) are compressel, join storesthe sum of their valuesin the parent cluster. If (u;v) is
raked around v onto (v;w), join will merely copy the value of (v;w) to the parent cluster.
Note that this capturesthe essencef ead operation: a compresse ectiv ely combines two
paths into one,whereasa rake merely\discards" one of the paths and keepsthe other|after
all, the parent edgehasthe sameendpoints asthe receiver.

Theseupdate rules ensurethat the root cluster of the top tree will contain the length of
the path betweenits endpoints. To compute the length of the path betweentwo arbitrary
vertices v and w, all the user needsto do is call expsgv;w) and read the value in the

cluster returned by the operation.

Main taining diameters. The top tree interface makesit easyto implement applications
that require information about subtreesand paths at the sametime. An exampleis main-
taining the diameter of a dynamic tree, i.e., the largest distance betweentwo verticesin the
tree. Using top trees, Alstrup et al. werethe rst to show that the diameter of a tree can

be updated in O(log n) time after alink or cut. To achieve this, we maintain in ead cluster



31

C = (v;w) not only its diameter|denoted by diam(C)|but alsosomeauxiliary elds that
will allow us to update the diameter e cien tly. We must store the length of the path be-
tweenv and w, denoted by length(C), and the maximum distance from ead endpoint to a
vertex in the subtree represetted by C. This requiresone eld for ead endpoint: max,(C)
and maxy (C).

De ning create and join to update these elds appropriately is quite simple. We have
already seenhow the length eld can be maintained, so we restrict our discussionto the
other three elds. When a new base cluster C represening an e = (v;w) with length °
is created, operation create must set diam(C) = max,(C) = maxw(C) = ~. When two

clusters A and B with a commonvertex v are combined into a cluster C, join must set
diam(C) = maxfdiam(A); diam(B); maxy,(A) + max,(B)ag:

Also, let w be an endpoint w of C that belongsto B but not A. We update max,,(C)
as follows:

maxy (C) = maxf maxy(B);length(B) + max,(A)g

If C is a compress cluster, it will also have an endpoint u that belongsto A but not B.
Field maxy(C) must be updated in a similar fashionto maxy(C). If the move is a rake v

will be an endpoint of C, and we just set max, (C) = maxf max,(A); max,(B)g.

Non-lo cal search. In [10], Alstrup et al. obsene that certain applications require per-
forming a binary seart within the top treeto nd abasecluster with somespeci ¢ property.
These applications include maintaining the center of a dynamic tree (i.e., the vertex that
minimizes the distanceto the farthest vertex) or its median (the vertex that minimizes the
sum of the distancesto all other vertices).

The top tree interface, however, forbids the user from performing the binary seard
directly, sinceit would involve looking at non-root nodes. Instead, the authors proposea
routine that gradually transforms the original top tree into another, with the target edge
represerted at the root. A fth user-de ned internal function, selet, is usedto guide this

construction. Alstrup et al. shav how selet can be implemented independertly of the other



32

operations (link, cut, and exmse) to run in time proportional to the original depth of the
base node represening the target edge. As soon as the desired query is completed, the

original tree is restored.

Implicit values. In the examplespresenred so far, only create and join neededto be
de ned. The other two internal functions, split and destroy, did nothing. They are useful
when values must be represened implicitly . An obvious example is the maximum ow
application that motivated ST-trees. In this case, one must not only nd the edge of
minimum cost along a path, but also have the ability of adding, in a single operation, a
constart value x to eat edgeon a path.

To support these operations, we maintain two valuesin ead cluster C. The rst is
mincost(C), the cost of the minimum edgeon the path betweenthe endpoints of C. The
secondvalue is extra(C): this is a \lazy value" to be addedto all clusters that represen
subpaths of C, excluding C itself.* Theseclustersare all descendats of C in the top tree.
Although essetially equivalert to di erence form, lazy values t more naturally with the
top tree interface and are often easierto reasonabout.

The internal operations are de ned sothat the following invariant always holds: if R is
the root of the top tree, mincost(R) will contain the actual minimum edgecost on the path
betweenthe endpoints of R. This will not necessarilybe true for other clustersin the tree.

The operations are de ned as follows. Operation create, when applied to an edgewith
cost x, initializes mincost to x and extra to zero. Operation C  join (A; B) will always
setextra(C) to zero. The valueit setsfor mincost(C) dependson the operation being per-
formed: if it is compress mincost(C) is setto the minimum of mincost(A) and mincost(B);
if the operation is rake mincost(C) is setto mincost(B) (recall that B is the receiwer).

To add a value x to the cost of eath edgefrom v to w, it suces to call expse(v;w)
and add x to both elds (mincost and extra) of the root cluster. This value will only be
propagated to the rest of the tree when the cluster is split. More precisely when split is

applied to a compresscluster, its extra value is addedto both elds (mincost and extra) of

4Alternativ ely, one could include C, as long as the internal operations are de ned properly.



33

ead children. When applied to arake cluster, split addsthe extra valueto both elds of the
child represetting the receiver; the other child remains unaltered. The destroy operation

doesnothing.

Data on vertices. Sincetop tree clusters correspond to edges,represening edge-related
information is trivial. In many applications, howewver, we must assaiate data with vertices
instead. Alstrup et al. [10] suggestattaching to ead vertex v a special edge (a lakel) to
store vertex-related data; one of its endpoints is v, and the other a dummy vertex with no
other incident edge. Although this approad is generic,adding extra edgesis an undesirable
overhead. For most applications, it is enoughto keepthe data assaiated with the vertices
in a separatearray to which the internal operations (join, split, create, and destroy) have
access.Vertex information would be explicit for exposedvertices (i.e., thosethat are either
isolated or endpoints of root clusters), and implicit for internal ones. Only the values of
exposed vertices could be accessedlirectly. To query v, one would rst call expse(v; ),
then look at the entry for v in the array.

Suppose, for example, that we want to maintain the total weight of the verticesin a
tree. An auxiliary array keepsindividual weights, while ead cluster storesa single value
corresponding to the total weight of its internal vertices (ignoring its endpoints). Operation
create(e) initializes this value as zero, sincea basecluster hasno internal vertices. The join
operation sets the value of the parent cluster to be the sum of the valuesin its children
plus the weight of the disappearing vertex, taken from the auxiliary array. To nd the total
weight of the tree cortaining vertex v, we rst call C  expseg(v; ), then return the value
storedin C plus the weights of its two endpoints, available at the auxiliary array. To change

the weight of a vertex v, we rst exposeit, then changethe value in the auxiliary array.

Notation. In their presenation of top trees[10], Alstrup et al. useadi erent terminology
from the one we adopt here. Instead of dealing with rakes and compresses they think of
join and split as manipulating path clusters and point clusters A path cluster sharesboth

of its endpoints with other clusters; a point cluster sharesat most one. Intuitiv ely, point



34

clusters are those that can be rakel; a path cluster can be compressel if its endpoints have
small enough degree. We believe the notation using rake and compress explicitly is more
natural, and it stressesthe similarity betweentop trees and other corntraction-based data
structures.

Another di erence betweenthe our interface and that of Alstrup et al. is that we explic-
itly support sorted adjacencylists (i.e., there is a circular order around ead vertex). Since

we allow the order to be arbitrary, our represertation is slightly more general.

2.3 Euler Tours

The third basicapproad for represerting dynamic treesis that usedby Euler tour trees or
ET-trees. They were originally introducedby Henzingerand King [32, 33] to help maintain
dynamic graph properties (connectivity, bipartiteness, and approximate minimum spanning
trees) in polylogarithmic time per edgeinsertion or deletion. The data structure was later
simplied by Tarjan [56]. We focus on Tarjan's version of the data structure.

Tarjan usesET-trees to aggregateinformation over the vertices of a tree. Every vertex
v has an assaiated value val(v). Apart from the usual link and cut operations, the data
structure must support operations that deal with values. Two operations deal with indi-
vidual vertices: ndval (v) returns val(v) and changeva(v;x) setsval(v) to x. Two other
operations deal with information about the entire tree: ndmin (v) returns the vertex of
minimum value in the tree containing v, and addval(v; x) addsx to all vertex valuesin the
tree containing v.

The data structure is basedon a very simple idea: represen the tree by an Euler tour
of its edges,and represen the tour itself asa binary tree. The Euler tour of a tree is a tour
that traversesead edgeof the graph twice (once in one direction, oncein the other). In
general,a tree may have exponertially many Euler tours. Any one of them can be usedby
the data structure.

Besidesarcs, the Euler tour also includes nodes represerting the vertices of the tree.

Each vertex w corresponds to a single node in the Euler tour, and it appearsright after a



35

node represetting an arc (v;w), for somev. Note that, if w has degreegreater than one,
there will be more than one such arc in the tree (and the tour). Any one can be chosento
be the predecessonf the node represening vertex w. SeeFigure 2.8.

The data structure represerts a forest as a collection of Euler tours. If an edge(v;w)
is cut from the forest, we must remove the arcs (v;w) and (w;v) from the Euler tour and
patch the remaining nodesinto two independert Euler tours. Conversely if an edge(v;w)
is inserted into the forest (by a link operation), we do the opposite: we insert arcs (v; w)
and (w;v) to combine two Euler tours.

The obvious represertation of the tour itself is as a doubly-linked list. This allows an
arc to be inserted or deleted in constart time, given a pointer to it. Operations sucd as
ndmin or addval however, would take linear time, sincethey would require traversing the
ertire tour.

To make these operations more e cien t, ET-trees represen the tours as binary search
trees We rst convert the tour into alinear list by breaking it at somearbitrary point, then
we build a binary seard tree in which the elemens of the list appear in symmetric order.
The binary tree in Figure 2.9 is a possiblerepreseration of the circular list in Figure 2.8.

This represenation allows links and cuts to be performedin O(logn) time with a con-
stant number of joins and splits of binary trees. In his presenation of ET-trees [56], Tarjan
suggestsusing splay trees[52], which guarantee that ead of theseoperations takesO(log n)
amortized time. Slightly more complicated alternativ es, such as red-blac trees[31], guar-
antee a bound of O(log n) in the worst case.

Note that O(logn) time per link or cut is worsethan what we would have with doubly-
linked lists. But now we can perform ndmin and addval in O(logn) time, much faster
than before. This can be doneif valuesare stored in di erence form, asin ST-trees. Each

node x in the binary tree storestwo values:

val(x): the dierence betweenthe actual value of x and that of its parert in the

binary tree (exceptif x is the root, in which case val(x) represens the actual value);

minval (x): the dierence betweenval(x) and the minimum value in the subtree



36

Figure 2.8: An Euler tour (as usedby ET-trees) corresponding to the tree in Figure 2.4.
To beread in cournterclockwise order.

(9 (69
€] (m) (i) o]
(d) (hi) @, (o) (i) () (ca)
@) @ [o (@ @) &y (m[] [o] 1] o) [c] (o [al
(9 [d] @E9@) [ME& 0 @ @«

Figure 2.9: A binary seart tree represetting the Euler tour in Figure 2.8.



37

rooted at x in the binary tree.

If valuesare stored in this form, addval and ndmin can be easily implemented in O(logn)
time. Note that only nodesrepreserting vertices of the original tree will have valuesassai-
ated with them. In the de nitions above, a node represeiing an arc has no value by itself;
it simply relays the information from its descendats to its ancestors.If a hode represetting
an arc hasno descendafy val(x) and minval(x) can be simply ignored.

ET-trees are signi cantly simpler than the other data structures discussedso far, which
at rst glance would make them the preferred choice in dynamic tree applications. The
trouble with them is that they cannot handle path queriese cien tly. Each edgein the
forest appears as two nodesin the represenation, and they may be arbitrarily far apart.
This makesit hard to aggregateinformation about a speci ¢ path. Aggregating information

over the ertire tree, however, is relatively simple.



Chapter 3

Contraction-Based Top Trees

This chapter presens a very simple implementation of the top tree interface that supports
link, cut, and expse in logarithmic time in the worst case. Our data structure usesthe
contraction procedure proposedby Holm and de Lichtenberg [34]. The contraction works
in rounds The set of moves performed in ead round is independent and maximal: ead
edgecan participate in at most one move, and no legal move is left undone. Section 3.1
will show that this strategy is guararnteed to eliminate a constart fraction of the original
vertices after ead iteration, which implies that the top tree will have logarithmic height.

We are interested in the update problent given a contraction C of a forest F, nd a
cortraction C0of a forest F that di ers from F in at most one edge(which hasbeenadded
or deleted). The goalis to obtain C°from C with at most O(log n) modi cations, wheren
is the total number of verticesin the treesinvolved.

Section 3.2 suggestsa very simple greedy algorithm for updating the tree and proves
that it actually achievesthis goal. After a structural operation (link or cut), it simply
keepsthe original clusters that remain valid and greedily creates new clusters to ensure
maximality. Section 3.3 details how the update algorithm can actually be implemented.
Finally, Section 3.4 discussessome alternative design choicesthat could be made in the

implementation of the data structure.

38



39

3.1 Num ber of Levels

A necessary|but not su cien t|condition for updating a top tree on n nodesin O(logn)
time in the worst caseis that its height (i.e., the number of levels of the cortraction it
represerts) never exceedsO(logn). Before consideringthe update problem itself, we prove

that the contraction rules we usedo result in a top tree with at most O(log n) levels.

Lemma 1 If a contraction procedure is guaranteed to eliminate a fraction > 0 of all

nodesin each round, then the number of roundsin the contraction is at mostlog;—; ) n.

Pro of. Let h be the round after which there are only two vertices (i.e., an edge)left. The
relation

na ) 2

can be derived directly from the hypothesis: we start with n vertices, and a fraction of at
most 1 will remain after eac step. Taking the binary logarithm of both sides and
rearranging the terms, we get

1 logn _ log(n=2)
log(1 ) log(l )

as desired. 2

l0g1-q )M

Given the lemma, all we neednow is a constart  that appliesto the corntraction rules

usedby our data structure. The following result will help us determine this constan.

Lemma 2 Let D; be the number of verticeswith degreei on afreetree T. If T hasat least

two vertices, the following identity holds:
Di(i 2)= 2 (3.1)

Pro of. SinceiD; is the total degreeof all vertices of degreei and the number of edgesis

n 1, we have that
R
iDj=2(n 1)
i=1

YIn this dissertation all logarithms are basetwo, except when another baseis given explicitly .



40

Replacing n, we get |
* * '
iD= D; 2.
i=1 i=1
The lemma follows by rearranging the terms of this expression. 2

Lemma 3 In any tree T, more than half of the vertices have degree one or two.

Pro of. In the summation in Equation 3.1, ead degree-onevertex has a negative cortribu-
tion of one unit, vertices of degreetwo have no cortribution at all, and vertices of degree
three or greater have positive contributions (of at least one unit ead). Becausethe nal
result is negative (  2), there must be more vertices of degreeone than of degreethree or

more. Sinceall other vertices have degreetwo, the lemma follows. 2

This is relevant to our algorithm, becauseevery degree-onevertex is a rake candidate

and every degree-o vertex is a compress candidate.
Lemma 4 If n 3, at least 1/6 of the vertices disapgear from one round to the next.

Pro of. Let n be the number of verticesin the tree. If n 6, the lemma.is trivial: at least
one move will be performed. Assumethat n > 6. We would like to show that each move
that actually happenswill block at most two other potential moves(i.e., at most two other
potential moveswould involve edgesthat participate in the move that actually happens).
Sincethere are at least n=2 potential moves, this would su ce to shaw that at least n=6
moves will happen. We shall seethat this is not actually true: there are casesin which
a move may block three other potential moves. These casescan be handled separately
however.

Consider what happenswhen an edge (v;w) is raked around v onto some edge (v; x).
If v has degreetwo, only two moves can be blocked: compresqv) and a move around X
involving (v; x) (which could be either compresqx) or rake with (v;x) asa receiwer).

If v hasdegreegreater than two, the following movesmay be blocked: (i) a rake around

v with (v;w) as a receiver; (ii) a rake of (v;x) around v; (iii) a move around x involving



41

(v;x) (which could be either a rake with (v;x) as a receiver or compresgx)). These are
three cases,but case(ii) requires x to have degreeone, and case(iii) can only happen if
degreeof x is greater than one. Therefore, at most two of these casescan actually happen
simultaneously. Note, howewer, that case(iii) may actually represen two moves (both a
rake and a compress), aslong as x has degreetwo and its other neighbor (besidesx) has

degreeone. This correspondsto con guration (a) in Figure 3.1.

(@) (b) (c)

<
@ ----
c

u w eV
X <.W

y & x

oY

Figure 3.1: The three bad con gurations, in which a single move (rake(w) in con guration
(a), compresqw) in the other two con gurations) can block three other moves. The vertex
attached to the rest of the tree (v in the rst two con gurations, u in the third) may
have arbitrarily high degree. The remaining vertices have exactly the degreesshown in the
picture.

Now considerwhat happenswhen a vertex w with neighbors v and x is compressel. It
may block the following moves: (i) compresqVv); (ii) a rake around v with with (v;w) as
the receiver; (i) compresqx); and (iv) a rake around x with (w;x) asthe receiver. For all
four movesto be candidates,v, w and x must have degreetwo and the other neighbors of
v and x (besidesw) must have degreeone. Therefore, the tree must actually be a 5-vertex
path. Since we are assumingthat n > 6, at most three of these moves may actually be

candidates. For exactly three to be candidates, without loss of generality, X must have



42

degreetwo and y must have degreeone, where y is x's other neighbor besidesw. This

correspondsto con gurations (b) and (c) in Figure 3.1.

(d) (e)

\" u

Figure 3.2: Two gaod con gur ations that must replacethe bad con gurations in Figure 3.1
in the proof of Lemma 4. Con guration (d) replaces(a) or (b), and (d) replaces(c).

We say that the con gurations in Figure 3.1 are bad. If thesecon gurations are absen
from the tree in a given round, it is easyto show that the lemma holds, since ead move
actually executed will block at most two other moves. When these con gurations are
preser, however, we needto be more careful. Wewill shav that, whenk bad con gurations
occur in the original freetree T, the number of potential movesis guararteed to be at least
n=2+ k. This is large enoughto accourt for the extra movesblocked by bad con gurations.

More precisely considerwhat happenswhen we replaceead of the k bad con gurations
in T with one of the alternativ e con gurations depictedin Figure 3.2 (which we call good).
Each bad con guration of type (a) or (b) must be replacedby a good con guration of type
(d); a bad con guration of type (¢) must be replacedby a good con guration of type (e).
Let TObe the tree thus obtained.

Now considerthe properties of these con gurations. First, ead good con guration has
the samenumber of vertices asthe bad con guration it replaces. Second,the degreeof the
boundary vertex (the only vertex adjacernt to the remainder of the tree) in con guration
(d) is always greater than two, asit is in the bad con gurations it replaces;in con guration

(e), the boundary vertex will have the samedegreeasin the original tree, which is at least



43

two. Third, ead good con guration has exactly three non-boundary vertices of degreeone
or two; ead bad con guration, on the other hand, has four such vertices.

Both T and T?have n vertices. Lemma 3 ensuresthat at least n=2 of the vertices in
T9have degreeone or two. Togetherwith the properties above, this ensuresthat T has at
least n=2 + k vertices of degreeone or two.

Let a bad move be a move that blocks three other potential moves;all other movesare
gaod moves There is at most one bad move per bad con guration. Considera maximal set
of movesin T. Each good move will block at most two other moves; each bad move will
block three other moves, but there can be at most k of those. Becausethere are n=2 + k
potential movesin T, a maximal set of actual moves must have cardinality at least n=6.

This completesthe proof. 2

This establishesa lower bound on the number of edgeseliminated. This is enoughto

bound the height of the top tree.

Lemma 5 Any top tree representinga tree on n verticesusing a maximal setof independent

moveson each level will have height at most 3:802logn.

Pro of. Together,Lemmas1 and 4 ensurethat the height will be at most logg_5 n, which is

lessthan 3:802logn. 2

The next lemma shows that the bound given by Lemma 4 is tight up to a small additive

factor.

Lemma 6 There existsa family of treessuchthat a tree with n vertices hasa maximal set

of independent valid movesthat eliminates no more than n=6+ O(1) of its vertices.

Pro of. Considera tree formed by a root r with three neighbors, ead of which is itself the
root of a complete binary tree of sizek = 2¢ 1, for somepositive integer c. This graph

has 3k + 1 vertices, 3(k + 1)=2 of which are leaves;all other vertices have degreethree. Now



44

replace eat degree-onevertex v by con guration (b) depicted in Figure 3.1. (One could
also replacethem with con guration (a).) SeeFigure 3.3.

The transformed tree will have 4[3(k + 1)=2] = 6(k + 1) more vertices than the original
tree. The total number of vertices will thereforeben = 3k+ 1+ 6(k+ 1) = 9%k + 7. A
maximal set of moves can be obtained by executing compresgw) in ead copy of con gu-
ration (b), where w is the degree-tvo node adjacert to the original vertex v, as shown in
Figure 3.1. The total number of moves performed in this caseis 3(k + 1)=2 = 1.5k + 1:5
(one per original leaf). Note that 1.5k + 1:5= (9k + 7)=6+ 1=3, which meansthat exactly

n=6+ 1=3 vertices will be eliminated from this n-vertex tree. 2

Note that this worst-case example has a very restricted structure. The author has
not beenable to nd an example where 1/6 of all vertices are eliminated in two or more
consecuti\e rounds, even ignoring additive constart factors. A particularly bad casein
the long run (acrossmore than oneround) is that of three complete binary trees with the
same number of vertices and whoseroots are all adjacert to a common vertex, as shavn
in Figure 3.4. Ignoring additive terms, only 1/4 of the vertices (half of the leaves) are
eliminated in the rst round. In the following round, 1/3 of the vertices will be removed:
ewvery leaf edgewill be conmbined with its neighbor, either by rake or compress The result
will be once again a set of three complete binary trees. Therefore, the algorithm will
alternate betweenremoving 1/4 and 1/3 of the vertices, which amounts to removing 1/2 of

all vertices after ead pair of rounds.

3.2 Updating the Contraction

We have proved that any corntraction that works in maximal independert rounds will have
at most O(log n) levels,wheren is the number of verticesin the forest. Although necessary
this condition is not su cien t for our purposes. We must prove that we can update any
sud cortraction in O(log n) time after a link or cut. This requires\repairing” the original

contraction by undoing someof the existing moves and performing new ones. Our goal is



45

Figure 3.3: A tree with n verticesin which a maximal setof moveseliminatesonly n=6+ O(1)
vertices (those represenied as hollow circles). Edgesare in cournterclockwise order around

ead vertex.



46

Figure 3.4: A family of trees that requires two rounds to eliminate half of all vertices.
Starting from the tree on top, a maximal set of moveswill eliminate 1/4 of all vertices. The
elemeris of one such maximal set are shovn as hollow circles. The resulting tree will be
the oneat the bottom; a maximal set of moveswill eliminate 1/3 of the remaining vertices.

The resulting tree will be similar to the one on top, but with one fewer level and half as
many vertices.



47

to prove that this canindeed be carried out in O(log n) time.

When describing the algorithm, we will use the terms original contraction and new
contraction to refer to the initial forest and to the forest after the link or cut operation,
respectively. The update algorithm transforms the original contraction into the new one.
To make the discussionsimpler, however, we will describe the algorithm as if it created
the new contraction from scratch. This involvessaying that somemoveswill be replicated,
which just meansthat the original cluster represering the move will be presened.

The rules for repairing the corntraction are very simple. For ead level (starting from
the bottommost), we just replicate all original movesthat can be replicated, then perform
new movesuntil maximality is achieved. There is no additional constraint on the set of new
moves: any maximal setis a valid choice. Figure 3.5 shaovs an example of how an original
corntraction may be updated after a link.

The rst step of the algorithm (replicating original moves) is done implicitlylw e just
keepthe original clusters. Only the secondstep|p erforming new moves|is doneexplicitly.
In this section, we shall prove that (1) the number of new clusters per level is constart after
alink or cut? and (2) theseclusterscan be processedn constart time. To do this, we need

someadditional concepts.

3.2.1 Updates: Basic Notions

Activ e clusters. A basecluster is inactive if it appearsin both cortractions. A rake or
compress(or dummy) cluster is inactiveif it appearsin both cortractions and hasthe same
children (both inactive). All other clusters are active. Note that the active clustersin the
new contraction are the clusters created by the update algorithm; only on those do we need
to call join (or, in the caseof a basecluster, create). In Figure 3.5, active clustersin the
new contraction are represened asthicker edges.Activ e clustersin the original cortraction
are those that must be deleted; we must call split on them (or, in the caseof a basecluster,

destroy).

2This is also true for expse but we will only deal with it in Section 3.3.5.



48

e
2%
5
.

Figure 3.5: Updating a contraction: an example. On the left, the rst four rounds of a
maximal cortraction, starting from the bottom. On the right, the rst four rounds of the
updated cortraction after a link operation. The active (new) clustersin the new cortraction
are highlighted. Note that all original movesthat can be replicated are replicated.

% R



49

Consider a xed level * in the new cortraction. We call the subgraph induced by
the active edgesthe core of this level. The subgraph induced by the active edgeson the

corresponding level in the original cortraction is the core image.

Euler tours. The existenceof a circular order around ead vertex (i.e., the fact that
the adjacency lists are sorted) de nes a unique Euler tour of ead tree in the forest. For
our purposes,an Euler tour of a tree is de ned as a circular list of arcs. Each original
(undirected) edge(u;v) will be represerted as two (directed) arcsin the Euler tour: (u;Vv)
and (v;u). We sa that these arcs are twins. If edge (v;w) succeedsedge (v;u) in the
adjacencylist of v, then arc (v; w) will be the immediate successonf arc (u;v) in the Euler
tour. In particular, if v has degreeone, the successorof arc (u;v) will be arc (v;u). See

Figure 3.6.

Figure 3.6: The Euler tour (as usedby top trees) corresponding to the tree in Figure 2.4.
It should be read in courterclockwise order.

The circular order in the original forest inducesa unique circular order of the clusters
presen onthe other levelsof the cortraction. (Recall that the original forest canberegarded
aslevel zero.) Therefore, eat level is assaiated with a unique Euler tour.

Each arc in the Euler tour maintains a pointer to its successorand to its twin arc.

With that information, the data structure can easily detect valid moves. Let a be any



50

arc, with b as its successora® as its twin, and kP as its successor'swin. Assumethat b
is dierent from both a and a®> Arc a can be raked onto b if and only if suc(a® = a.
Looking only at Figure 3.6, we know, for example, that vertex g could be rakel, sincearc
fg is immediately followed by gf. Similarly, an arc a can be compresse with its successor
b if and only if suac(b®) = a In Figure 3.6, we know that vertex k could be compressel

becausesua(ik) = km and suac(mk) = Ki.

Subtours. At any level of the update algorithm, an inactive subtour of an Euler tour E
is a nonempty, maximal, cortiguous sublist of E cortaining only inactive arcs. A proper
subtour of an Euler tour E is an inactive subtour that starts and endsat the samevertex v.
In other words, the tail of its rst arc (the only arc without a predecessoin the subtour)
and the head of its last arc (the only arc without a successorjre the samevertex v, which
we refer to as the anchor of the subtour. Note that, if a proper subtour contains an arc
(u;w), it will alsocontain (w;u). A proper subtour represerts a subtree of the original tree,
and its andhor is the intersection betweenthe proper subtour and its complemerti (i.e., the
sublist of E containing the arcsthat are not in the proper subtour). Figure 3.7 shaws the

four proper subtours of the secondlevel (level 1) of the contraction shawvn in Figure 3.5.

Figure 3.7: The four proper subtours of the secondlevel of the cortraction in Figure 3.7.



51

Intuitiv ely, a proper subtour can be thought of asa generalizedleaf of the original tree,
sinceit only touchesthe remainder of the tree in onevertex. An arbitrary inactive subtour
doesnot necessarilyhave this property. Take Figure 2.4, and supposethat both (d;g) and
(i; k) are active and all other edgesinactive. The inactive subtour consisting of arcs km,
ml, Im, mn, nm, mo, om, and mk is a proper subtour (anchored at k). In cortrast, the
inactive subtour consisting of arcsij, ji, ig, gc, ch bg ca, ac, cgis not a proper subtour,
sinceits rst vertex (i) is di erent from the last (g); in particular, ig belongsto the subtour
but gi doesnot.

Our update algorithm is suc that the set of active edgeswithin a componert is always

cortiguous, which ensuresthat every inactive subtour it dealswith is alsoa proper subtour.

3.2.2 Pro of Outline

Recall that our goal is to shaw that the update algorithm performs a constart number of
new movesin ead level. To that end, we will show that there can be no more than four
proper subtours in any level. This meansthat the core only touchesthe rest of the tree
in four points, which has two consequences:rst, the number of new edgesadded to the
corein ead level is bounded by a constart; second,the core behaves\almost" like a free
tree, in the sensethat a constart fraction of its original edges(minus a constart) must be
eliminated from one round to the next due to rakes and compresses Sincethe core starts
the algorithm with at most one edge, these facts guarantee that it will not grow beyond
constart size. To complete the proof, it suces to show that all new moves performed by
the algorithm involve either the core or an edgewithin constart distance (in the Euler tour)
from it.

The remainder of this section makesthe main points of this argumert more precise.

The notion of proper subtours is helpful becauseit allows us to identify regions of the
tree that neednot be processedexplicitly by the update algorithm. Intuitiv ely, one expects
that a move involving two inactive arcsthat are adjacert only to inactive neighbors should

have no problem being replicated. In fact, if we state this intuition more formally, it is



52

indeed true:

Lemma 7 LetE, be a proper subtour anchored at v at the beginning of round *. Any new
move involving arcs of E, at this level must involve the rst, the second, or the last arc of

this subtour.

We delay the proof of this lemma until Section 3.2.3. It ensuresthat the update algo-
rithm only needsto processclustersthat are active or are closeto the extremesof a proper
subtour. All other moveswill be replicated, i.e., processedmplicitly .

To prove that the number of processedclustersis bounded by a constart, all we needis

the following result:

Theorem 1 During the update algorithm, the inactive edgesof the Euler tour at any level

can be partitioned into at most four inactive subtours, all of them proper.

This is clearly true at level zero. When an edge(v;w) is addedto (by link) or removed
from (by cut) the forest, it will determine exactly two proper subtours: one anchored at v
and the other at w.2 We shall see,however, that these subtours are unstable either can
be split into two proper subtours at a subsequen level. We will show that, whenewer an
unstable subtour is indeed split, the two resulting subtours will be stable they cannot be
further subdivided in two until one of them disappears completely.* We say that these
two subtours are couplal: the existenceof one ensuresthe stability of the other, essetially
becausethe path betweenthe two anchors restricts the types of new moves that can be
performed. When one of the subtours disappears (becauseall of its edgeshave become
active), the other becomesunstable.

More formally, let the parent set of a proper subtour be the set of all inactive parents
of the clusters represened in the subtour. We shall prove the following facts about stable

and unstable subtours:

SFor simplicity, we consider only these links and cuts now; expse will be analyzed independertly later.
4A formal de nition of stable and unstable subtours will be given in Section 3.2.4.



53

Lemma 8 Let E be an unstable subtour at level *. If the parent set of E is nonempty,
the correspnding arcs at level " + 1 will either form a single unstable subtour or a pair of

couplal stable subtours.

Lemma 9 Let E, and E, be a pair of coupled stable subtoursat level *. If both have non-
empty parent setsat level * + 1, the correspnding arcs will form a pair of couplad stable

subtours. If only one of the parent setsis non-empty, it will form an unstable subtour.

Together with the fact that level zero has at most two subtours, both unstable, these
lemmas imply that ead level of the cortraction may have no more than two unstable
subtours or four stable subtours (or, combining thesetwo conditions, one unstable and two
stable subtours).

This proves Theorem 1, modulo the proofs of Lemmas7, 8, and 9. Thesewill be given
in Sections3.2.3,3.2.5,and 3.2.4, respectively. Section 3.2.6 gives more precisebounds on

the number of active edgesthat must be processedby the algorithm in ead level.

3.2.3 Replicated Moves

To prove Lemma 7, we needthe following result:

Lemma 10 Let E be an Euler tour of the new contraction at somelevel *, and let E, be
a proper subtour of E anchored at v. Any original move involving two edgesof E, will be
replicated, with the possibleexaption of a movethat involves both the rst and the last arcs

of the tour.

Pro of. As already obsened, to determine whether a rake or compress move is valid, we
only needto look at the two arcs involved and at their twin arcs. We claim that a valid
move involving a and its successob may ceaseto be valid only if the successornf a, a®
(the twin arc of a), or b° (the twin arc of b) changes.For both rake and compress we must
still have suac(a) = b in the new cortraction. For rake we also needto guarartee that
sux(ad = a; the successorof b and k° are irrelevant. For compress the move will remain

valid only if sua(b?) = a® the successor®f b and al are irrelevant.



54

Supposeboth a and b belongto E, (which implies that their twins also do). SinceE,
is a proper subtour, the only arc in E, that may changeits successots the last one. Any
original move that doesnot involve this arc will therefore be replicated. A move involving
the rst arc of the tour and its predecessomay not be replicated either, but in this casethe
predecessokither doesnot belongto the subtour or coincideswith its last edge;therefore,

the lemma still holds. 2

We are now ready to prove Lemma 7. Assumethere is a new move involving two arcse
and f that appear consecutiely in E, (i.e., f is the successoof ). If either e or f (or any
of their twins) is an extreme arc, we are done: the lemma is not violated. So assumethat
neither of these arcs (or their twins) is the rst or the last arc of the subtour. We claim
that this situation can only happen when e is the secondarc of the tour.

In the original cortraction, e and f could not have both stayed unmatched, or elsethat
cortraction would not be maximal. Sincethe move is new, at least one of these arcs must
have beeninvolved in someother move, which could not be replicated. Call it the blocked
move Becausewe are assumingthat neither e nor f is an extreme arc, both edgesinvolved
in the blocked move must belongto E,. If one of them did not, then the other arc would
necessarilybe an extreme arc of E,.

From the proof of Lemma 10, we know that exactly three typesof movesmay be blocked
in this case: (1) compresqv), which conmbines that last arc with the rst (this is the case
where the successonf a or b° changes):(2) a rake of the last arc around v onto the rst arc
(this is the casewherethe successonf a changes);or (3) rake(v), wherethe rst arc (which
is the twin of the last) is raked onto its successof(this is the casewhere the successorof
al changes). The rst two casesonly involve extreme edges;case(3) is the only one that

may involve an arc that is not extreme: the secondarc of the subtour. This arc must be e.2

Note that the only possible new move that involves neither the rst nor the last arc

happensin avery speci ¢ situation: whenthe anchor v wasrakel in the original cortraction



55

Figure 3.8: The only casein which a new move between inactive edgesdoes not involve
either the rst or the last arc of a proper subtour. The two con gurations refer to the same
level, but the oneon the left refersto the original cortraction and the onethe right to the
new contraction. The only di erence betweenthem is that v hasan additional set of active
edgesincident to it (shown asthe subtreeD). This makesv the anchor of a proper subtour
with rst arc (v;x) and last arc (x;v). Becausev now has degreegreater than one, edge
(v;x) can no longer be raked onto (x; w). This freesedge(w;x) to be raked onto (x;y) as
a new movelone that doesnot involve either the rst or the last arc of the tour.

but cannot be in the new one becauseit has at least oneincident active edge. This caseis
depicted in Figure 3.8. We shall seethat, if a subtour is stable, its anchor cannot be raked
in either contraction. Therefore, the casedepicted in Figure 3.8 can only happenwhenv is

the anchor of an unstable subtour.

3.2.4 Stable Subtours

This section is dedicated to the proof of Lemma 9. To that end, we rst needa precise
de nition of stable subtours. Let E, be a proper subtour at level = anchored at vertex v.

We say that E, is stableif all of the following conditions are satis ed:

There exists a vertex v 6 v in the sameconnectedcomponert asv in both cortrac-

tions (old and new) with at least oneincident inactive edge.
In both contractions, the path betweenv and v cortains only active edges.

Let (v;w) bethe rst edgeof E,: its predecessoaround v belongsto the path between



56

v andv. Similarly, the predecessoaround v of the rst arcin the subtour anchored

at v alsobelongsto this path.

If there is no vertex v satisfying the properties above, E, is said to be an unstable subtour.
Otherwise, E, and E, (the proper subtour anchored at v ) will ead be stable, and they

will be coupled. Figure 3.9 depicts a genericstable subtour.

first/(=last)

path to another anchor path to another anchor

Figure 3.9: The two possiblecon gurations of a generic stable subtour anchored at v. On
the left, the rst and the last arcsrepresen two di erent edges;on the right, they represen
the same edge. The subtreesdenoted by A, B, and C belong to the stable subtour and
contain only inactive edges.The subtreedenotedby D doesnot belongto the stable subtour
and contains only active edges.Any of thesesubtrees(A, B, C, or D) may beabsen. There
must be at least two edgesincident to v: at least one must be inactive and at least one
active (the rst on the path to another anchor, which consistsonly of active edges).

We shall prove that a stable subtour cannot be divided into two proper subtours in a
single iteration. More precisely let E° be the parent set of E,, i.e., the collection of all
clusterson level * + 1 that are parents of arcsin E, and are still inactive. The conditions
above ensurethat, if Eis non-empty, it will form a proper subtour.

To prove this, we must establish two facts. We rst shaow that, even though the last
arc of the subtour may be involved in a new move, the resulting active parent edge will

always belong to the extreme of the inactive subtour (and therefore will not partition it



57

in two). Second,we prove that any new move involving the rst arc of the subtour will
necessarilyinvolve the last arc aswell. This is a direct result of the de nition of a proper
subtour: the three properties above ensurethat the rst arc cannot be a receiver around
v in either contraction (old or new) and that it cannot be raked around its other endpoint
(besidesv). This limits the possibleoutcomesfor this arc. In particular, it ensuresthat the
casedepicted in Figure 3.8 cannot happen, and therefore we only needto worry about new
movesinvolving the rst and the last arc.

We will analyze eadt casein turn in the next two subsections. The analysis consistsof
enumerating all possibleoutcomesfor ead relevant edgeof the subtour (rst and last), and
showing that no outcome violates the lemma. The caseanalysisis somewhattedious, but
straightforward. We just needto make sure to consider, for ead possible outcome for an
edgein the original contraction, all possibleoutcomesin the new cortraction. Recall that
there are sewven possibleoutcomesfor an edge(v; w): raked around v, raked around w, com-
presse at v, compresse at w, receiver around v, receiver around w, and unmatched. Since
we must deal with outcomesin both cortractions, in principle there are 49 combinations to

considerfor eat edge.

The Last Arc

Let (u;Vv) be the last arc of a stable subtour anchored at v, and assumethat the subtour
has at least two edges(if it hasonly one, it cannot possibly be split in two). We will shov
that, although there can be a new move involving the last arc of the original subtour, it
will never split the subtour in two pieces.

If the original move involving (u; V) is replicated, its parent cluster will beinactive. This
will always happen if (u;v) was a receiver around u, compresse at u, or a receiver around
v (in the latter case,stability ensuresthat (v;u) is not the rst arc). Therefore, we do not
needto worry about these cases. In addition, we can discard the casein which (u;v) is
raked around u: this cannot happen in either cortraction, sincestability guaraneesthat v

will have degreeat least two in both contractions.



58

In the remaining cases,(u;v) may be involved in a new move, in which caseits parert

cluster will be active. There are three possibleoriginal outcomesfor (u; v):

1. (u;v) was originally raked around v. This can only happen if u had degreeone in
the original contraction (and therefore in the new one). This fact eliminates three
possibleoutcomesfor (u;v) in the new contraction: (u;v) cannot be raked around u,

compressel at u, or a receiver around u. The only possibleoutcomesare:

(@) (u;v) israked around v (onto an active edge). In this case,v cortinuesto be the
andhor of the subtour, unlessthe subtour becomesempty.

(b) (u;v) is compresse at v: sinceu has degreeone, this can only happen if (u;v)
is the only edgein the subtour, which will becomeempty.

(c) (u;v) either remainsunmatched or becomesa receiver around v: the parent edge
(also (u;Vv)) will be active, but, becauseu has degreeone, it will not split the

subtour. Vertex v will continue to be the anchor.

2. (u;v) was originally compressel at v. Becausethe subtour is stable, v must have
exactly oneinactive neighbor in the new corntraction, and at least one active neighbor
(the rst edgeon the path to v ). The parent edgeof (u; v) will always be active, and
the anchor will move. The following outcomesare possiblefor edge(u;v) in the new

contraction:

(@) compressé at v: u becomesthe new anchor of the subtour.

(b) compresse at u: u's other neighbor (besidesv) becomesthe new anchor of the

subtour.

(c) rakead around v: this can only happen if (u;v) is the only edgein the subtour,

which becomesempty after the move.

(d) receiver around u or unmatched: u becomesthe new anchor of the subtour.

None of these outcomes splits the original tour. The remaining two outcomes are

impossible. Edge (u;v) cannot be raked around u becausev has degreeat least two,



59

and it cannot be areceiver around v becausehe predecessonf (u; v) around v belongs

to the path to v , and therefore is not a leaf.

3. (u;v) wasoriginally unmatched. The edgecan stay unmatched in the new cortraction
as well, in which caseits parent will be inactive. It cannot be compresse at u or
a receiver around u, since these moves could have been performed in the original
cortraction. The edgecannot be a receiver around v either, since stability ensures
that the edgeraked onto it must be inactive, and therefore the move could have
beenperformed in the original cortraction. Also, it cannot be raked around u, since
stability guaranteesthat v has degreegreater than one. The only possiblenew moves

are:

(@) (u;v) israke around v: v remains the andchor of the subtour.

(b) (u;v) is compressel at v: u becomesthe new anchor of the subtour.

The subtour will disappear if the new anchor has no remaining inactive neighbors.

The First Arc

It remainsto be shown that movesinvolving the rst arc will not split the tour either. Let
(v;w) bethe rst arc of a stable subtour anchored at v.

If the original subtour has only one edge,either (v;w) will remain unmatched in both
contractions (in which casethe whole tour will survive) or its parent edgewill be active
(in which casethe subtour will simply disappear). The analysis that follows handlesthe
nontrivial case,in which the original subtour has at least two edges.

Of all possibleoriginal outcomesfor (v; w), three will always bereplicated: raked around
v, receiver around w, or compressel at w. Stability ensuresthat two original moves are
impossible: (v;w) cannot have beena receiver around v (since its predecessombelongsto
the path to another anchor), and it cannot be raked around w (since v has degreegreater
than onein both contractions). This leavesonly two original outcomesto be considered:

(v;w) being compresseé at v or remaining unmatched. We consideread casein turn.



60

First, assume(v; w) wasoriginally compressel at v. If this is the case,v's original degree
wastwo. Its degreein the new contraction must be at least two, with a singleinactive edge
incident to it, (v;w) itself. The edge corresponding to the secondoriginal inactive edge
must be on the path to the other anchor. This meansthat edge(v;w) correspondsto both
the rst arc and the last arc of the subtour, and we have already seenthat movesinvolving
the last arc never split the subtour.

Now consider what may happen in the new contraction if (v;w) was originally un-

matched:
1. (v;w) remains unmatched in the new cortraction: the parent will beinactive.

2. (v;w) is compressel at v: this meansthat v hasdegreetwo, and therefore (w; V) is the

last arc of the subtour; as already obsened, this new move will not split the subtour.

3. (v;w) is raked around v: this can only happen if the target is the last edge of the

tour; otherwise, the move could have beenperformedin the original contraction.

All other outcomesfor (v; w) areimpossible. It cannot be areceiver around w or compressel
at w, sincethose movescould have beenperformedin the original cortraction (and therefore
the edgeshould not have remainedunmatched). It cannot be raked around w becausev has
degreegreater than one. Finally, it cannot be a receiver around v becauseits predecessor

around v belongsto the path from v to v (and thereforeis not a leaf).

Completing the Pro of

The caseanalysis above has shavn that a stable subtour at level = cannot be split into two
parts in a singleround: its parent setwill either be empty or form a proper subtour at level
"+ 1. To nish the proof of Lemma 9, all we have to do is prove that, in the latter case,
the proper subtour at level * + 1 will also be stable.

Let v» and v- be the anchors of a pair of coupled subtours at level °, and let v-4; and
v-,; be the anahors of the corresponding subtours at level * + 1 (we may have v- = V-4

and v. = v.,,, but not necessarily). Becausethe original tours are stable, v- and v- belong



61

to the sameconnectedcomponert in the original corntraction, and the path betweenthem
contains active edgesonly. Sincemovescannot disconnectthe graph, the samewill be true
for v.41 and v, at level " + 1.

It remainsto prove that the predecessowf the rst arc of ead subtour doesbelong to
the path betweenv-,; andv.,,; (in both cortractions). This follows from the caseanalysis:
wheneer there is a new move involving the rst edgeof a stable subtour at level °, it must
involveits last edgeaswell. This will causethe anchor to change. Only oneedgeincident to
the new anchor will participate in a move at level °, and its parent will belongto the path to
the other anchor at level * + 1. No other edgearound the new anchor will be active, which
implies that the rst arc of the proper subtour must have the path to the other anchor as
its predecessoin both contractions.

This completesthe proof of Lemma 9. 2

3.2.5 Unstable Subtours

We now prove Lemma 8. We will show that (1) only a move involving the rst arc of an
unstable subtour may causeit to be split; and (2) if such a split doesoccur, it will always
create a pair of stable subtours. Once again, the proof is based on case analysis. For
reference,Figure 3.10 preseris a genericrepresenation of an unstable subtour.

The analysis will considertwo types of rounds: standard rounds in which the anchor
v does not disappear in either contraction (old and new), and special rounds in which v
disappearsin at least one of the contractions. During a standard round, only the rst arc
can split the tour; a move involving the last arc will split the tour only if it involvesthe last
arc aswell. Sincethe anchor is not allowedto disappear, we do not needto worry speci cally
about a new move involving the secondarc during a standard round|if it happens, the
rst arc will be involved as well. The secondarc will be consideredduring the analysis of
special rounds, however.

In seweral of the casesanalyzed in this section, the original subtour will be split into



62

first/(=last)

Figure 3.10: The two possible con gurations of a generic unstable subtour anchored at
v. On the left, the rst arc and the last arc represen dierent edges;on the right, they
represen the sameedge. The subtreesdenoted by A, B, and C belong to the unstable
subtour and contain only inactive edges.The subtree denotedby D doesnot belongto the
unstable subtour and has only active edgesincident to v. Any of thesesubtrees(A, B, C,
or D) may be absen. In particular, there may be no active edgeincident to the anchor v.

two subtours. These subtours will always be stable and coupled, but we will not prove this
in every case. The reader can easily verify in ead casethat (1) the anchors of the two
subtours are connectedby a path containing only active edges;and (2) the last active edge
in the circular order around ead anchor belongsto this path. This is enoughto ensure
the subtours are stable. Of course,if one of the subtours created is empty, the other will

actually be unstable. If both are empty, the original subtour simply disappears.

Standard Rounds: First Arc

We rst considerwhat happenswith the rst arc (v;w) of an unstable subtour anchored at
v during a round in which v doesnot disappear in either cortraction.

If the original move involving (v;w) is replicated, the parent edgewill be inactive, and
therefore the subtour cannot be split as a result. We only needto worry about the cases
where the parent of (v;w) is active. During a standard round, the following outcomesfor

(v; w) in the new corntraction may result in an active parent: (1) unmatched; (2) compressel



63

at w; (3) rakel around v; (4) receiver around v; and (5) receiver around w. Any of these
Vv e outcomesis possible, for instance, if the arc was a receiver around v in the original
cortraction.

In all these cases,let (v;x) be the new parert edgeof (v;w). It is active. There are

three casesto consider:

1. If both x and v have at least oneinactive neighbor at the end of the round, the original

tour will be split in two, and x and v will eat be the anchor of a stable subtour.

2. If v endsup with at least oneinactive neighbor and x with none, the original subtour
will not be split and v will remain the anchor of an unstable subtour. The casein
which x endsup with at least oneinactive neighbor and v doesnot is symmetric, the

only di erence being that x becomesthe new anchor.

3. If both x and v end up with no inactive neighbors, the subtour simply disappears.

Standard Rounds: Last Arc

We now considerthe last arc (u; v) of a stable subtour rooted at v during a standard round.
It cansplit the tour wheninvolvedin a move with the rst arc. We have seen,however, that
if a move involving the rst arc splits the subtour, the result will be a pair of coupled stable
subtours. Therefore, we only needto worry here about the caseswhere (u; v) is involvedin
a new move by itself. In such cases,we shall seethat tour will not be split. The possible

original outcomesfor (u;v) during a standard round are:

1. (u;Vv) is compressel at u or a receiver around u: the move will be replicated.

2. (u;v) is rakad around v: This meansu has degreeone. The only possible outcomes

in the new contraction during a standard round are:

(@) (u;v) is raked around v: its target is either already active (in which casethe
subtour will not be split by the new move) or the rst arc of the subtour (which

we have already considered).



64

(b) (u;v) is a receiver around v or remains unmatched: the parent edge becomes

active, but the original tour will not be split, becauseu has degreeone.

The other caseseither are impossible: they either causev to disappear (which cannot

happen during a standard round) or require u to have degreegreater than one.

3. (u;Vv) is a receiver around v: the move will be replicated, unlessthe predecessorof
(u;v) around v is active. But this can only happen if (u;v) is the only inactive edge
incident to v, which meansthat it is alsothe rst arc of the stable subtour. This case

has already beenconsidered.

4. (u;v) remains unmatched: In the new cortraction, the edge cannot be a receiver
around u or compressel at u, since these moves could have been performed in the

original cortraction. The only possibleoutcomesduring a standard round are:

(@) (u;v) is a receiver around v: This can only happen if either (u;v) or its pre-
decessorare the rst arc of the subtour, otherwise the move could have been
performed in the original cortraction. In either case,the new move will involve

the rst arc.

(b) (u;v) isaraked around v: If the target is an active edge,the subtour will not be

split; if the target is inactive, it must be the rst arc of the subtour.

(c) (u;v) remains unmatched: the edgeremainsinactive.

The remaining two casescausev to disappear, which cannot happen during a standard

round.

The caseanalysis above has shavn that the last edgeof a subtour will never split the tour,

unlessit is alsothe rst edgeor participates in a move with the rst edge.

Special Rounds

We now considerspecial rounds in which the anchor v doesdisappearin at least one of the

contractions. The analysis usesthe fact that, when v has no incident active edgein one



65

of the corntractions (old or new), it must have at least one additional incident edgein the
other contraction. If this were not true, both contractions would be exactly the same.

The possibilities for v are as follows:

1. v is rakad in the new contraction (regardlessof what happensin the original con-
traction). Let (v;w) be the only edgeincident to it in the new cortraction at the
beginning of the round, and let (w;Xx) be the edgeonto which (v;w) is raked. This
must be a new move, sincev has degreeat least two in the original cortraction, and
(w; x) must have beenoriginally unmatched. Both w and x will becomeanchors of

coupled stable subtours.

2. v is compresse in the new contraction: Let (v;w) and (v;u) be the edgesadjacert
to v in the new corntraction. Without lossof generality, assume(v;u) is inactive|at
least one of the edgesmust be, or elsev would not be an anchor. There are two cases

to consider:

(@) (v;w) is alsoinactive: The move must be new, sincev has degreegreater than
two in the original cortraction. In addition, (v;u) must not have beeninvolved
in a move around u and (v;w) must not have beeninvolved in a move around
w, since such moveswould have beenreplicated. After the move, both u and w

becomeanchors of coupled stable subtours.

(b) (v;w) is active: The subtour will not be split; it will remain stable with u asits

new anchor.

3. v doesnot disappear in the new contraction but is raked around its neighbor x in the
original cortraction. This is the casedepicted in Figure 3.8. In the new cortraction,
(x; v) is the only inactive edgeincident to v, and there must be at least one active
edgeincident to it aswell. Let (x; w) be the receiwver of the original rake; it is inactive
in both cortractions. The parents of (x; v) and (x; w) in the new cortraction will be

active.



66

If (x; w) is compresse at x in the new cortraction, then w becomesthe anchor of an

unstable subtour. In this case,(x; v) and (x; w) will have the sameparert.

If x is not compresse, (x; v) will either remain unmatched or becomea receiwer; in
either case,the parent edgewill be active. (In Figure 3.8, it becomesa receiver around
x.) Edge (x; w) can stay unmatched, be compresse at w, becomea receiver around
w, or be raked around x (the latter is what happensin Figure 3.8). In any of these
cases,let y be the other endpoint (besidesx) of the parent cluster of (x; w). At the
end of the round, both x and y will be anchors of coupled stable subtours, unless
one of the subtours is empty, in which casethe other vertex will be the anchor of an

unstable subtour.

. v doesnot disappear in the new cortraction, but is compresse in the original con-
traction. There are two casesto consider,depending on the number of inactive edges

incident to v in the new cortraction at the beginning of the round:

(a) One inactive edge(v;w). Regardlessof the outcome of this edge,its parent will
be active in the new cortraction. Sincewe are assumingv does not disappear,

the possibleoutcomesfor (v;w) are:

i. receiver around w, receiver around v, or unmatched: w becomesthe anchor
of the unstable subtour;

ii. raked around v: this can only happen when w has degreeone, and the
subtour simply disappears;

iii. compresse at w: w's other neighbor (besidesv) becomesthe anchor of the

unstable subtour.

(b) Two inactive edges,(u; Vv) and (v;w). Without lossof generality, suppose(u; V)
immediately precedes(v;w) in the tour. The successorf (v;w) is active, since
there must be at least one additional edgeincident to v in the new cortraction.
If (u;v) israkel onto (v;w), w will becomethe anchor of an unstable subtour. If

(v;w) is itself raked, the receiver will be active and the subtour will not be split.



67

Its anchor will be u, unless(u;Vv) is combined (by compressg with some other
edge(u; x). In this case,the new anchor will be x.

If neither (u;v) nor (v;w) is raked around v, ead will participate in a move
by itself, and two active parents will be created. More precisely (v;w) may
be compresse at w, a receiver around w, or unmatched. Similar outcomesare
possible for (u;v), which can also be a receiver (of an active edge) around v.
In every case,the endpoint of ead parert cluster that is dierent from v will

becomethe anchor of a stable subtour, and the two subtours will be coupled.

Completing the Pro of

In the analysis of standard rounds, we have shown that only a move involving the rst

edgeof an unstable subtour may causeit to be split in two, but, wheneer this happens,
the subtours thus created will be coupled and stable. For special rounds, we have shovn
that an unstable subtour may be split into at most two parts and, when there are two, the

resulting subtours will also be coupled and stable. This provesLemma 8. 2

3.2.6 Running Time

Now that we have proved the lemmas necessaryto establish Theorem 1, we can nally
bound the number of clusters that needto be processedby the update algorithm. Recall
(from Section 3.2.1) that the core at level * is the subgraphinduced by all active edgesin
the new cortraction at that level, and that the core image is the subgraph induced by the

active edgesin the original contraction.

Lemma 11 At each level, the sizesof the core and of the core image are boundel by a

constant.

Pro of. When consideredasan isolated graph, the coreis a forest (and sois the coreimage).

Lemma 4 would guarartee that a fraction of at most q of its original vertices will remain



68

after ead round, with g = 5=6. The lemma cannot be applied in full, however: some of
the edgesthat look like candidatesfor rake and compress may not actually be eliminated,
either becausetheir degreeis higher in the actual tree or becausetheir actual successors
or predecessorslo not belongto the core. What the lemma does guarartee is that, if the
number of suc \false candidates” is at most someconstart ky, then at least[(1 g)s] kp
verticeswill be eliminated after a round (s being the original number of vertices). We must
alsotake into accourt the fact that more edgesmay be incorporated into the core from one
round to the next. We will shaw that there is a constart upper bound kg on the number of
such additional edges.

If s; is the number of edgesin the core after round i, the following recurrencerelation

holds for all i > O:
Si 0Si i+ ka+ kp:

Its solution is _
, (kat ko)1 )
1 g '

where sg is the number of edgesin the core before the update procedure begins. Its value

si qso

is onefor links and zerofor cuts. Using the fact that q= 5=6, s; can be upper bounded by

S So 1 = 1+ 6(ky + Kkp); (3.2)

which is a constart. 2

We have shawn that, in any round, there are no more than four proper subtours touching
the core (or the core image). More precisely the following combinations are possible: (a)
two pairs of coupled stable subtours; (b) one unstable subtour and one pair of coupled
stable subtours; (c) two unstable subtours; (d) one pair of coupled stable subtours; (e) one
unstable subtour; and (f) no subtour (all edgesare active). For the purposeof bounding k4

and kp, the rst three casesdominate the other three.



69

Bounding ks. A coreexmnsion at level © occurswhen an active cluster with only inactive
children (i.e., inactive clustersat level © 1) is created. Similarly, a core image expansion at
level * occurs whenever a cluster of the coreimage at level * has only inactive children. An
exmnsion cluster at level * therefore represerts a move that happensin only one cortraction
and does not involve any active edges. These are the clusters we have to count to bound
ka. All other clusters are irrelevant: an inactive cluster will not belongto the core, and
we court an active cluster with an active child as belongingto the core already|although
technically the parent belongsto the core at one level, and the child to the core at the
previous level.

Considerthe core rst. At most oneexpansioncluster will be createdper stable subtour,
sinceany new move must involve its last edge. For eat unstable subtour, there can be no
more than two expansionclusters. In general,one expansioncluster will be the parent of the
rst edgeand another the parent of the last. The con guration depicted in Figure 3.8is a
special case: one expansioncluster is the parent of the secondedge,and another the parent
of both the rst and last edges,which coincide. Sincethere can be at most two unstable
subtours or at most four stable subtours, the coremay have at most four expansionclusters.

Now consider the core image. We must count the number of clusters that have only
inactive children and must be deleted.

On a stable subtour, there can be at most one of those: the parent of a previously
unmatched edgethat becomesmatched as a new move involving the last arc. No rake or
compressinvolving only edgesof a stable subtour will be blocked, and therefore the cluster
represerting such a move cannot be an expansioncluster.

On an unstable subtour, however, an original move involving only inactive edgescan be
blocked (and the cluster represetting it will be an expansioncluster). Furthermore, ead of
the clusters originally involved in this move can be combined with a previously unmatched
edge. The original dummy parents of these edgeswill also be expansion clusters. As a
result, there can be up to three expansionclustersin the coreimage.

This happens, for instance, in the situation depicted in Figure 3.8. An edge(X; V) is



70

originally raked around x but the move cannot be replicated becausethe anchor v has one
additional incident edgein the new cortraction. Let (x; w) be (X; v)'s successorround X
(the original target edge), and let (x; u) be (x; v)'s predecessor.As shovn in Figure 3.8,
both (x; u) and (x; w) may be raked asnew moves. In this case,the original dummy parents
of (x; u) and of (x; w)'s successoilwhich is (x;y) in the picture) will be expansionclusters
of the coreimage, aswill the original parent of (x; v) and (x; w).

In the worst case,when there are two unstable subtours, the core image will have six

expansionclusters, which meansthat k, 6.

Bounding kp. Recallthat ky is an upper bound on the number of movesthat are assumed
to be possibleby Lemma 4 but end up being blocked becausethe core and the core image
are not isolated trees.

First, considerthe core. A stable subtour may block only one move, involving the
successorof its last arc. Each unstable subtour, on the other hand, may block no more
than two moves: one involving the successorof the subtour, and another involving the
predecessor. The same analysis holds for the core image. Therefore, we can ensurethat

ko 4.

Final bound. Recallfrom the proof of Lemmallthat s; 1+ 6(ky+ Kky). For the core,
ka + kp = 8, which meansthat it will contain no more than 49 clustersin any given level.

For the coreimage, k, + kp = 10, which boundsits number of clustersby 61.
Theorem 2 A contraction can be updated in O(log n) worst-casetime after a link or cut.

Pro of. To update a level, we only have to deal with clustersin the core or the coreimage,
inactive clusters that are adjacent to them, and sometimeswith the immediate successor
of one of these inactive clustersin the Euler tour. Lemma 11 ensuresthat both the core
and the coreimage have a constart number of clusters. Moreover, the inactive edgesof the
graph will be partitioned into at most four proper subtours. Sinceonly the rst two arcs

and the last arc of eadh subtour must be chedked for new moves, we have to deal with a



71

constart number of clusters per level. The number of levelsin the top tree is logarithmic

(by Lemma 1), sothe total running time of the update procedureis O(logn). 2

The samebound holds for expse as Section 3.3.5will show.

3.3 Implemen tation

The update algorithm has beendescribed as building a new contraction that resenblesthe
original contraction as much as possible. In practice, of course,we needto modify the top
tree represeiing the original corntraction to make it represent the new one, and we must

do soin O(logn) time. This section describeshow this can be achieved.

3.3.1 Representation

The main structure we maintain is the top tree itself. Each cluster is represened as a
separate record, with pointers to its parent and its children (of which there can be zero,
one, or two). The cluster also storesthe user-de ned, application-speci ¢ data.

To implemert the updating algorithm, we also maintain an Euler tour of ead level of
the top tree. This is a double-linked list of arcs. Each cluster in the level is assaiated with
two arcs, one in ead direction. Since ead cluster must have accessto thesetwo arcs, we
actually make the arcs part of the record that represens the cluster. Each arc a hasthree
pointers: to its successoin the Euler tour, to its predecessoin the tour, and to the cluster
itself.> We denotethese elds by sua(a), pred(a), and cluster(a), respectively. Each arc a
alsoneedsaccesgo its twin arc (which we denote by twin (a)), but an explicit pointer is not
neededfor that: the twin can be retrieved from the cluster. We also store with ead arc the

identi er of its head. These elds are also usedby the cluster to determine its endpoints.

5In asucien tly low-level programming language, one could actually do without a pointer to the cluster;
since the arc is represerted inside the cluster, the cluster could be retrieved with some pointer arithmetic.



72

3.3.2 Identifying Valid Moves

With this represenation, identifying valid movesis straightforward. Consideran arc a and
its successob on the tour. To test whether a and b de ne a valid move, we must rst verify
that cluster(a) 6 cluster(b) and that both clusters are freg, i.e., they do not participate in
a move. More concretely, a cluster is free if its parert cluster is null, dummy, or deleted.
If both conditions are satis ed, we perform the tests outlined in Section3.2.1. We know
that cluster(a) can be raked onto cluster(b) if and only if pred(a) = twin(a). Similarly,

cluster(a) and cluster(b) can be compresse if and only if sua(twin (b)) = twin (a).

3.3.3 Updating the Tree

We update the tree in a bottom-up fashion, starting from the baselevel. To update a level
*, all we needis alist | of clustersto be inserted and a list of D of clustersto be deleted.

Processingead level requires four sequetiial steps:
1. Remove from the tree (and the Euler tour) all clustersin D.
2. Insert into the tree (and the Euler tour) all clustersin | .
3. Verify if any previously valid move becomesinvalid.
4. Perform new movesuntil the corntraction is maximal.

While we executethe stepsabove, we must also Il two lists, D%and | 2 Initially empty,
they will cortain the clustersto be deletedfrom and inserted into level * + 1. After all steps
above are completed,weset| | %and D D %and start processingthe level above (unless
both | ®and D® are empty, in which caseupdate of the ertire tree will be complete).

To perform the last two steps of the algorithm e cien tly, we maintain yet another list
on ead level, a neighlor list (denoted by N). This list starts ead level empty, but will
evertually contain all original clusters that are inactive (i.e., not themseles inserted or
deleted) but are closeenoughto the core or core image to merit special attention. More

precisely an inactive cluster will be inserted into the list if its successoior predecessoi(in



73

either the new or the old cortraction) is active, or if the original move it wasinvolved in is
no longer valid. This secondcriterion addresseghe special casedepicted in Figure 3.8.

The following subsectionsanalyze each step in turn.

Step 1. Removal

The rst step of the algorithm at level * is to remove every cluster C in D from the top tree
and from the Euler tour. If the twin arcs represeting the cluster in the Euler tour are a
and b, we remove them from the tour by directly connectingpred(a) to sua(b) and pred(b)
to sua(a). We also insert the original parent of C into D% since C is being deleted, its
ancestorsmust also be. The clusters adjacert to C are addedto N, unlessthey belongto

D already.

Step 2: Insertion

After the rst step, the Euler tour at level * will contain only inactive clusters. The second
step inserts the new clusters (those in |) into the Euler tour. The nontrivial aspect of this
procedureis to determine the appropriate insertion positions.

When updating the baselevel, the user can specify explicitly wherein the circular order
a new edge(v;w) is to be inserted. For this, it su ces to specify two predecessomrcs, one
having v asits head and the other having w asits head.

To processlevel ~ (with © > 1), we must uselevel © 1 (which will already have a
complete Euler tour) to determine the appropriate position of eath new arc. Let (v;w)
be the arc to be inserted into the Euler tour, and let C be the cluster assaiated with it.
To determine the successor(or predecessor)of (v;w), we must look at the successor(or
predecessor)of one of C's children, then take the appropriate arc of its parert.

More precisely to determine the successoif arc (v;w) at level *, we must look at the
appropriate child cluster A of C. If C is a dummy cluster, A is C's only child; if C is arake
cluster, A is C's right child (represerting the target cluster); if C is a compresscluster, A is

the only child of C that hasw asan endpoint. Let a bethe arc of A that hasw asits head.



74

Let bbe a's successorlet B be the cluster assaiated with b, and let P be B's parent. Note
that B belongsto level © 1 and P to level °. The successof (v;w) is the arc of P that
hasw asits tail.

The procedureto determine the predecessonf (v; w) at level " is similar. We must also
look at an appropriate child A of C. If C is a dummy cluster, A is its only child; if C is a
rake cluster, C is its right child; if C is a compress cluster, A is the only child that hasv
asan endpoint. Let a be the arc of A that hasv asits tail. Let b be a's predecessor|et B
the cluster assaiated with b, and let P be B's parent. The predecessownf (v;w) is the arc
of P that hasv asits head.

The strategy outlined above is generic enough to allow arcs on the samelevel to be
insertedin any order. In particular, an arc may belinkedto its predecessoand its successor
even if these have not beeninserted into the tour yet.

Identifying whereead new arc should be inserted takesconstart time, but the constarts
involved can be quite high. To avoid doing more work than necessaryat the beginning of
the step we set the predecessomnd the successonf ead arc that needsto be inserted to
null. When we are about to nd the successomf an arc a, we rst ched if its successor
is still null. If not, there is no needto apply the procedure above, sincethe successomill
have already been determined (when the successoritself was inserted into the tour and
determined that its predecessomwas a). Similarly, we only needto actively compute the
predecessomnf a if its current value is null.

During the insertion procedure,we must insert the clusters corresponding to the prede-

cessorand to the successoof ead new arc into N, unlessthey belongto | already.

Step 3: Detecting Invalid Moves

After the rst two stepsof the algorithm, the updated Euler tour at level * will be complete.
The third step veri es if the original movesinvolving only inactive edgesare still valid. For
a move to becomeinvalid, at least one of the vertices involved in the move must have

had its neighborhood changed. This meansit suces to chedk whether the clusters that



75

currently belongto N (inserted in the previous two steps) still participate in valid moves.
Each cluster is tested explicitly using the procedureoutlined in Section 3.3.2. If a move is
deemedinvalid, it may happenthat one of the clustersinvolvedin the moveis not in N yet
(if it doesnot touch the coreor coreimage). In this case,we add it to N . Also, the parent

cluster representing an invalid move must be inserted into D°

Step 4: New Moves

The fourth step of the algorithm performs a maximal set of new moves. It does so by
explicitly testing (in any order) ead cluster in I and ewvery clusterin N that is not already
matched. For every new move, a new parent cluster P is created, the pointers betweenP
and its children are initialized, and P is inserted into 1% If a cluster involved in a new
move had a dummy parert, the parent is inserted into D% After all clusters are tested, for
ewery clusterin I and N that remains unmatched we create a new dummy parent cluster

P, initialize the pointers betweenP and the unmatched cluster, and insert P into | ©

3.3.4 Other Details

List management. As described, the algorithm may try to insert a cluster into more
than onelist, or into the samelist more than once. To avoid multiple insertions, we needto
know whether the cluster already belongsto the list of not. Traversingthe list beforeevery
insertion would be too expensiwe (although it would still take constart time). A better
approad is to make ead cluster remember whether it belongsto a list or not. Note that
a single bit per cluster su ces for this, sinceduring a call to the update algorithm ewvery
cluster can belongto at most onelist. This is obvious for new clusters: they canonly belong
to the insertion list of their level. Existing clusters, on the other hand, can belong either to
a deletion list or to a neighboring list. Recall that, if a cluster on level ~ is ever inserted into
a deletion list, this will happen during the update of level © 1; whenwe nally getto level
*, the cluster will not be inserted into the neighbor list if it is already marked, regardless

of whether the mark is due to a deletion, to an insertion, or to the fact that the cluster



76

belongsto N already.

Managing values. As the update algorithm progresseswe must call the internal top tree
functions in the appropriate order. Whenewer the algorithm decidesthat a cluster must be
deleted, we must actually mark all of its ancestorsas\scheduled for deletion" and call split
on ead of them in a top-down fashion. This ensuresthat, whenewer split is called on a
cluster, it will be the root of its tree. Note, howeer, that the clusters will not be actually
deleted (or removed from the Euler tour) until the level to which they belongis processed.
When a new cluster is created, on the other hand, we can immediately call join to initialize

its value, sinceit will be a root at this point.

Handles. Each vertex in the tree maintains a pointer to one of its incoming arcs on the
baselevel. We call this arc the handle of the vertex, and it is null if the vertex has degree
zero. The handle allows us to go from a vertex to a cluster in the tree that is incident to
that vertex.

The handle is also useful when inserting a new arc into the baselevel. A new arc (v; w)
is inserted right after handle(w) on the Euler tour. To setthe exact position in which a new
arc must be inserted around w, the usercan explicitly de ne which of the existing incoming
arcs should be w's handle.

One must be careful to keepthe handle updated when an edge(v;w) is removed from
the tree by the cut operation. If (v;w) happensto be handle of w, we set handle(w)
pred(twin (v; w)). If this is also(v;w) (which canhappenonly whenw had degreeonebefore

the cut), we set handle(w) null.

3.3.5 Implemen ting Exp ose

Exposing a vertex is to ensureit doesnot disappear in the contraction. When building a
contraction from scratdh, it is easyto take exposedvertices into accourt. One just marks
them as being exposed and modi es the routines that test for valid moves. Besidesthe

conditions listed in Section 3.3.2, a valid move must be sud that the disappearing vertex



77

is not exposed.
In our case,we must assumewe already have a valid cortraction when we decide to
expose a vertex v. We considertwo di erent ways of exposing a vertex: rebuilding the

original cortraction or building a temporary tree.

Rebuilding the Original Contraction

The obvious way to implement exmse is to rebuild the original corntraction so that the
exposedvertices are never eliminated. A rst step to achieve this is to changethe routine
that tests whether a move is valid, as mentioned above.

To exposea vertex v, we must rst nd the cluster P that represerts the move that
makesv disappear in the original contraction. (If there is no sud cluster, there is nothing
to be done: v is already exposed, and we just mark it assud.) To nd P, we start with
a basecluster that hasv as an endpoint (we can usehandle(v) to nd suc a cluster) and
follow parent pointers until we reac the rst (i.e., lowest) cluster that doesnot have v as
an endpoint. Let = bethe level that contains this cluster, and let the children of P be A and
B. We must mark v as exposedand call the update procedurefrom level© 1with | = ;,
D= ;,and N = fA; Bg. With these parameters, no cluster will actually be inserted into
or removed from level © 1. New movesinvolving clusters at this level will be performed,
however, and as a result deletions and insertions will occur at level © and above.

Oncev is marked as exposed,future changesto the tree (for instance, when we want to
exposea secondvertex) will never make a move that eliminates v.

Of course, vertex v cannot remain exposedforever. We might want to exposeanother
vertex u instead of v in the same componert. Before that, we must unexmpse v. The
implementation of this operation is very similar to that for expse Starting from a base
cluster that hasv asendpoint, we follow parent pointers until we reac alevel * in which a
cluster C containing v could have beeninvolved in a valid move but remained unmatched
(becausev was exposed). We then mark v as not exposedand start the update procedure

from level * with | = ;, D=;,and N = fCgqg.



78

Updating the cortraction from a level © > 0 during expmse or unexmpse takesno more
time than updating the corntraction from the baselevel after alink. Onejust hasto consider
the clustersin N to bethe coreof that of level . In both exmpse and unexmseg the clusters
that are not in N de ne at most two proper subtours in the componert. From this point
on, the update algorithm proceedsas before.

Moreover, becausethe number of exposedverticesin a componert is never greater than
two, one can still guaranee that, from a level with n nodes, at leastn=6 2 vertices will

be eliminated. This meansthat the height of the top tree is still logarithmic.

Building a Temporary Tree

In [10], Alstrup et al. suggesta much simpler implementation of expse They obsene that
it can be implemented independertly of link and cut, as long as the height of the top tree
is guaranteed to be logarithmic (asis the casehere). They usethe fact that, eventhough a
vertex v can appear asan endpoint of up to ( n) clusters, it canonly appear asan internal
vertex in at most one cluster per top tree level.

This suggeststhe following implementation of exmpse(v;w). First, we call split on all
clustersthat have v or w asinternal vertices; there will be at most O(logn) of those. The
result will be a collection of O(log n) root clusters that partition the edgesof the original
tree among themseles. Interpreting ead root cluster as an individual edge(even though
it may actually represen a path in the original tree), we can then build a cortraction from
scratch in such a way that v and w are exposed,which takesO(log n) time.

More concretely, Figure 3.11 shows the sametop tree as Figure 2.6, with the clusters
that would be split during a call to expose(c; k) shavn in white. The roots of the remaining
subtrees can be thought of as represetting edges(c;g), (b;c), (e;9), (g;i), (h;i), (m;o0),
(i; k), (k;m), and (m;n). The exmse procedure would build a top tree represeriing a
cortraction of the free tree induced by these O(log n) edgesonly.

Note that we do not have to worry about keepingthe entire tree balancedat this point.

There are only O(log n) root clustersand ead is guaranteed to have O(log n) height, which



79

e [

b W @ [ @
@M @ B @ MK M o
ad] [eg] [o9] (G [eg][fa] (i (][] [ [ i ] o

Figure 3.11: Toptree corresponding to the cortraction in Figure 2.6, with clusterscontaining
candk asinternal verticesshawvn in white. Thesewould be split during a call to exmsdc; k).

meansthat the height of the new top tree will be O(log n) regardlessof the order in which
the new rakes and compressesare performed. Before making any other modi cation to
the tree (such as a link, a cut, or another expse), however, we must restore the original
cortraction, or elsewe losethe guarantee that the individual componerts have logarithmic
height.

To make it possibleto restore the original cortraction e cien tly, we do the following.
When the call to expse(v; w) splits a cluster containing v or w, we only mark it asdeleted,;
we actually retain the cluster in memory, including the pointers to its original children. We
then build a temporary top tree on the unmarked root clusters. We mark all new clusters
as temporary and store in the new root R a pointer to the root cluster R of the original
top tree.

Before performing an expse link, or cut, we rst ched if the root R of eat a ected
top tree is temporary. If it is, we split R and all descendets that are alsotemporary, and
call join on all clusters of the original tree that have beenmarked as deleted. A pointer to
the original root will be available at R. In accordanceto the top tree interface, the splits

must be performed top-down, and the joins bottom-up. This will restore the original top



80

tree.

Note that this implementation of expose never changesthe Euler tour represening the
original contraction, sinceit will evertually be reused. This makes this approach much
more e cien t in practice than actually updating the original cortraction, as suggestedin
the previous section.

It is corveniert, however, to createa temporary Euler tour whenbuilding the temporary
trees, since we have to make sure that the adjacencylists are sorted consisterly with the
original tree. But one doesnot needto create a temporary Euler tour for ead level of the
temporary contraction. It suces to create a basetour only, and to gradually shortcut it
as the cortraction progresses.This tour can be discarded once the temporary top tree is

built.

3.4 Alternativ e Design Choices

This section discussessomenatural alternativesto someof the choicesmadein the design

of our data structure.

3.4.1 No Circular Order

As already mentioned, de ning a circular order of edgesaround ead vertex makesthe data
structure more general, but it imposeswhat may seemto be excessiely tight constraints
on rakes What would happen if adjacencylists were unordered? In other words, what if a
leaf adjacert to a vertex v could be raked onto any other edgeadjacernt to v?

This would obviously help the round-basedcontraction scheme. If the cortraction works
in maximal rounds, its height will still be boundedby O(log n). We canshow, however, that
updating a cortraction with theserules (after a link or cut) may take asmuch as (log 2n)
time. Considera star, i.e., atree with a distinguished center v and all other verticesdirectly
connectedto it. Any contraction of this tree will consist only of rakes around v (except
possibly for the last move, which may be a compress). If the number of edgeson a level is

ewven, all edgeswill be paired up in the contraction; if the number is odd, exactly one edge



81

will remain unmatched.

Take a star with exactly n = 2X+ 1 vertices, for someintegerk > 1. It is easyto seethat
ewvery level of any cortraction of this tree will have an odd number of edges,and therefore
exactly one edgewill be unmatched® We say that all ancestorsof an unmatched cluster
(excluding the cluster itself) are tainted: if the tree changesand the unmatched cluster
participates in someother move, the ancestorswill have to be deleted.

Consider a particular cortraction of the star above. Let (i) = 2¢ ' + 1 be the number
of nodeson the i-th level of the top tree (starting at level zero). On the ead level, label
the nodesfrom 1to (i), from left to right. On the i-th level, let the unmatched node be
the onelabeledd (i)=2'e= 2% 2 + 1. Figure 3.12shaws an examplewith k = 7. Note that

this distribution is sud that the unmatched vertices have few common ancestors.

! &

Figure 3.12: Why pairing up edgesarbitrarily doesnot work. This top tree is a possible
represenation of a star with 129 edges. Tainted clusters (ancestorsof unmatched clusters)
are marked as hollow squares. They would all have to be split if an edgewereremoved from
the original tree. In general,a top tree with n verticesmay have (log 2n) tainted clusters.

More precisely let h be the height of the tree, i.e., the number of vertices on a path
from a leaf to the root. Ignoring the root, we seethat the unmatched node at level zero

will have h 2 tainted ancestors. The unmatched node at level 1 will have h 4 tainted

®There is only one exception: the level immediately below the root.



82

ancestors(excluding the onesalready tainted by level 0). In general, the unmatched node
at level i will taint h  2(i + 1) previously untainted clusters, for i < h=2. To simplify the
analysis, we ignore the nodestainted becauseof unmatched nodeson level dh=2e or above.

The total number Ty, of tainted clusterswill be at least

b(hy1)=2c
Th (h 23+ 1)):
i=0
When h is even, this translates into
" 1 h2 X2 n2 n
Th (h 2(+1)=— 2 i=— =
i=0 2 i=1 4 2

For h odd, the asymptotic bound is similar:

(hyD)=2 ) (h@) =2 )
T (h 2(i+1)):h;h 2 =
i=0 i=1 4

NI S
+
e

Sinceh = (log n), this result implies that (log 2n) clusters will be tainted in this
case. When an edgeis cut from the original tree, every level will have an even number of
edges,which meansthat every originally unmatched edgewill have to be matched, causing

all tainted clustersto be split. We have thus proven the following:

Theorem 3 A contraction schemethat requires maximality but hasno ordering constraint

needs at least (log 2n) time to be updated in the worst case.

Interestingly, the original top tree interface de ned by Alstrup et al. [10] doesnot have
any ordering constraint. In principle, any two edgesadjacert to the samevertex can be
combined, as long as the other endpoint of one of them has degreeone. Both implemen-
tations they suggestedfor the top tree interface, howewver, do end up imposing an order
on the adjacency lists: the direct (a wed) implementation in [34] does so explicitly; the

implementation that usestopology trees doesso implicitly , through ternarization.

3.4.2 Back Rakes

Eliminating the circular order would be an e ectiv e way of increasingthe number of moves

in ead level of the contraction, but the previous sectionhasshown that it posesproblemsif



83

we still require maximality. A simpler, lessdrastic alternative would be to allow back rakes
As previously described, the corntraction algorithm only allows a leaf edgeto be raked onto
its successore could allow it to be rakead onto the predecessomswell. Although the case
analysiswould haveto be redoneto considerthis case,this changeseemgo be small enough
for us to assumethat we would still be able to perform updatesin O(logn) time. Its e ect
in practice would have to be tested. It is reasonableto expect that the averagenumber of
levels on a tree would decreaseslightly, but the cost of processingead level could increase
becausenew types of moves have to be tested. It is not clear what the balance between
thesetwo e ects would be. Using a strict circular order (with forward rakesonly) simpli es

the analysisand is enoughto guarartee a logarithmic worst-caseperformance.

3.4.3 Alternating Rounds

An early version of our data structure alternated betweenrake and compressrounds. Each
round still had to be maximal, but only one kind of move could be performed. These
constraints make the analysis of the update algorithm slightly simpler, at the expenseof
doubling the expected number of rounds necessaryto perform a corntraction. This hasbeen
done before: RC-trees alternate between rake and compress rounds (also to simplify the
analysis). The analysisof RC-treesis further simplied by the fact that treeshave bounded

degreeand that information is accunulated on vertices, not edges.

3.4.4 Randomization

Another reasonwhy the analysis of RC-trees might be simpler than ours is the fact that
RC-trees are randomized. When there are two con icting moves within the sameround,
an implementation of our algorithm can arbitrarily pick either one. RC-trees, on the other
hand, use consistert hash functions to make consistert choiceseven when the underlying
tree changes. This makesthe update algorithm simpler, but it endsup performing fewer
movesper level that it could, which results in more rounds. Another undesirablefeature is

that the O(logn) bound on update times is randomized, not worst-case.



84

We note, however, that randomization is not a necessaryfeature of RC-trees. Inspired
by our results on top trees, the creators of RC-trees managedto prove an O(logn) worst-
casebound for updates on their data structure [2]. Instead of using the randomized oracle
to decide which movesto make during an update, the worst-caseversion tries to imitate
as many moves as possible from the original contraction. The analysis of the worst-case
version of RC-treesis not much more complicated than that of the randomized version.

An obvious question regarding our data structure is whether randomization would help.
In light of the nding regarding RC-trees, that does not seemto be the case. In fact, it
might actually make the proof more complicated. WhereasRC-trees needrandomization to
deal with conicting compress movesonly (since rakes do not interfere with one another),

our data structure would needrandomization to organizerakes as well.



Chapter 4

Self-Adjusting Top Trees

This chapter preserns self-adjusting top trees, a data structure that implemernts the top tree
interface using path decomposition techniquessimilar to those usedin Sleator and Tarjan's
ST-trees. Self-adjusting top treeswere rst introduced by Tarjan and Werned [57].

The chapter is organized as follows. Section 4.1 describes how a forest is represerted
by our data structure. Section4.2 shows how queriesand updates are handled. Section 4.3
establishesthe O(logn) amortized time per operation. Section 4.4 suggestspossible sim-
pli cations to the data structure and alternativ e design choices. Section 4.5 discusseshe
relationship betweentree cortraction and path decomposition. Final remarks are made in

Section 4.6.

4.1 Representation

As in ST-trees, we will represen a partition of the tree into disjoint paths. Instead of
making them vertex-disjoint, however, the paths will be edge-disjoint. More precisely to
represern afreetree we rst pick a degree-onerertex asthe root and direct all edgestowards
it. We call this (a directed tree whoseroot has degreeone) a unit tree. We then partition
the tree into non-crossing,edge-disjoirt paths that begin at a leaf and end at another path.
The only exceptionis the root path (or exposel path), which endsat the root.

Sincewe are supposedto implement the top tree interface, our goalis to createa cluster

85



86

to represen the ertire unit tree. Any internal vertex v of the root path P has exactly two
neighbors on the path and zero or more outer neighlors (i.e., neighbors that do not belong
to the root path). Sinceedgesaround a vertex are arrangedin circular order, the list of arcs
incident to v is divided by P into two (possibly empty) subsequencegseeFigure 4.1). Each
elemen of these subsequencess a unit tree rooted at v, and therefore can be recursively
represened by a single cluster. Clusters in the samesubsequenceare progressiely paired
up to create a rake tree: its root represetts the ertire subsequenceleavesrepresen unit

trees, and ead internal node is the rake of the left onto the right child.

Figure 4.1: A unit tree rooted at z. The root path is uvwxyz. Trianglesrepresen subtrees
rooted at the root path.

We are now left with a path cortaining somek baseclustersand at most 2k 2 incident
outer clusters, ead represeiing a subtree. Empty subtreeswill have no assaiated cluster.
Ignoring the outer clusters, we could represen the path by a compresstree, a binary tree
whoseleaves are baseclusters, and whoseinternal nodesrepresett compressesof adjacert
clusters. Each node in the compresstree represeits a subpath of the original path: leaves
represen original edgesand internal nodesrepresen nontrivial subpaths.

We deal with the outer clusters by raking them onto the root path. This is doneas late
as possible: an outer cluster incident to vertex v is rakal just beforev is compressel. In
the data structure, it will becomea foster child of the node represening compresqVv); the
two original children are proper children. The left foster child is raked onto the proper left
child, and the right foster child onto the proper right child. The resulting clusters are then

compressel.



87

/\

D [Ny C [Ny
G
E |x

I\ I\
Nx

Yz

I\

H
F |wx

y

Figure 4.2: An augmerted top tree represening the tree in Figure 4.1. Foster children are
represerted in white; all other nodesbelongto the compresstree.

Figure 4.2 is a possible represertation of the unit tree in Figure 4.1. Shaded nodes
belong to the compresstree. Internal nodes are labeled by the vertices compressel (e.g.,
Ny represerts compresgy)). Each internal node has up to four children and represerts
at most three clusters: two rakes (one for ead foster child) and one compress (of the
clusters generated by the rakeg. Each foster child is shovn in white and is adjacert to
the corresponding proper child (the one onto which it is raked). Recall that a foster child
is actually the root of a binary (rake) tree whoseleavesrepresen unit trees. We call the
represettation in Figure 4.2 an augmental top tree, since its compress nodes have up to
four children.®

Summing up, we represen a unit tree as follows:
1. Recursively compute clustersto represen ead unit tree incident to the root path P.
2. Create rake treesto represen ead contiguous sequenceof unit treesincident to P.

3. Create a binary tree of compressnodesto represen the root path, with the rake trees

appearing as foster children.

This method works for the ertire tree, which is itself a unit tree. The end result is a

hierarchy of alternating rake and compresstrees.

In fact, Phil Klein hassuggestedusing the term \splice node" to refer to a compressnode of an augmerted
top tree. Although this notation is not used here, it is equally valid.



88

For a better understanding of this represenation, Figures 4.3, 4.4, and 4.5 shov a
complete example. The left part of Figure 4.3 shows a free tree, with edgesordered in
courterclockwise around ead vertex. To represen it, we rst pick a degree-onevertex as
the root and direct all edgestowards it. In the example, z is the root. We then patrtition
the tree into maximal non-crossingedge-disjoirt paths, all starting at someleaf. The right

part of Figure 4.3 shows a possible partition.

Figure 4.3: A complete example. On the left, the original free tree to be represened. On
the left, the tree partitioned into vertex-disjoint paths and rooted at z. The root path is
abcwpz.

An augmerted top tree corresponding to this partition is shovn in Figure 4.4. Basenodes
are represenied as shadedrectangles,compress nodesare white rectangles,and rake nodes
are circles. When nodesappear paired up, the foster child is on the left, and the proper child
on the right. Nodesthat are not paired up are always proper children. Figure 4.5 shows
the actual top tree corresponding to this augmerted top tree. Note that the basenodes
appear in the sameorder in both trees, and that new rake nodesneedto be introducedto
represen the movesbetweenfoster and proper children.

The root path in the exampleis abcwpz. It is represened by the top compresstree in
Figure 4.4, which has Ny, N¢, Ny, and Ny as internal nodes, and ab, bg cw, pw, and pz

as leaves. Although the leavesrepresen the edgeson the path, they need not appear in



89

—
oM
ow [wy] [N |[bt]abl [pw] [px]pz]

=
rEERoT
Vi
GElEE ®

N @ R
7 AN
] [ N [ef] [eg] [ohlai
/|
EElE

Figure 4.4: Augmented top tree corresponding to Figure 4.3. Basenodes are shadedrect-
angles,compress nodesare white rectangles,rake nodesare circles.

@ =

(@)
=]

o] |wy ow (@

(in) (cf)
(9]
W [nv 9 |ed oh] [gi]

Figure 4.5: Top tree corresponding to the augmerted top tree of Figure 4.4.



90

symmetric order, as Section 4.1.1 will explain. For example, edge ab appears before bc on
the root path, but cluster bcappearsto the left of cluster abin the top tree.

The largest rake tree in the example has three internal nodes( , , and ") and four
leaves (Ng, Ne, cf, and Ng). The leaves of this rake tree all represert unit trees that are
rooted at ¢ and occur between(b;c) and (c;w) in the circular order. (These are edgesof the
path that hasc asan internal vertex.) The rst (leftmost) unit tree is composedby edges

(d;r) and (c;d); the rightmost contains (g; h), (g;j), and (c;g).

4.1.1 Order within Binary Trees

We have seenthat a rake tree represetts in symmetric order a sequenceof clusters that
appear consecutiely around the samevertex. The leaves of a compresstree represen the
edgesof a path and in principle could also appear in symmetric order. To handle path
reversalse cien tly, however, we use a more relaxed condition. Given a node represetting
compresgVv) with endpoints u and w, one of its subtreesmust represent the path u v,
and the other v w. Left and right subtreescan be interchanged freely. The \correct"
order among children can be retrieved from the cluster endpoints.

ST-trees use a similar technique to support the evert (changeroot) operation, with a
reversebit usedto retrieve the correct order when necessaryas mertioned in Section2.1.4.
This may seemlesscostly than our approad, sincethey usejust onebit per node, whereas
we usetwo words (one for eac endpoint). However, endpoints must be kept in the top tree

clusters anyway, sothe information is essetially free?

41.2 Handles

Someof the external top tree operations (link and expose) are de ned in terms of vertices,
but the top tree itself is a hierarchy of clusters and nodes, which can be viewed as edgesor

paths|not vertices. Therefore, we assaiate with ead vertex v a handle Ny. If the degree

20f course, one could argue that \necessary features" such as this may make top trees lessthan ideal for
certain applications. There will always be sometrade-o between easeof use and e ciency , but here the
cost should not be too high.



91

of v is at least two, Ny is the node represening compresqv). If the degreeis one, Ny is
the topmost non-rake node that hasv asan endpoint, which is either the root of the ertire
tree or a leaf of a rake tree. Isolated vertices have no handle. A node may be the handle
of asmany asthree vertices. In Figure 4.2, for example, the root (N) represens both the
path from u to z and compresgw); therefore, it is the handle of u, w, and z. The map from
verticesto handlesis maintained explicitly .

Note that this de nition of handlesdiers from the one usedin cortraction-based top
trees (see Section 3.3.4). In that case, handlesrefer to clusters (or, rather, arcs) at the
baselevel, since the update procedure always works bottom-up. In both data structures,

however, handles have the samepurpose: mapping ead vertex to a cluster containing it.

4.2 Up dates

Before operating on a path, the top tree interface mandates that we rst exmse it, i.e.,
make it represetted at the root node. The represenation described in Section 4.1 requires
both endpoints of the root path to have degreeone. To handle an arbitrary path v w,
we rst pick aroot path that contains v~ w asa subpath, then we temporarily corvert up
to two compress clusters into rake clusters. We call the rst step a soft exmpse of vertices
v and w, and the seconda hard exmse of the path v w. We discussead in turn, in
Sections4.2.1and 4.2.2. We then detail how to implement cut in Section4.2.3and link in

Section 4.2.4. Additional implemertation issuesare discussedin Section4.2.5.

4.2.1 Soft Exp ose

The outcome of soft_exmsegv; w) dependson how v and w are related to ead other. If the
vertices are isolated, nothing is done. If v= w or v and w are in di erent componerts, Ny
(v's handle) and Ny, (w's handle) are simply brought to the root of their componerts.
The interesting casehappenswhenv and w are di erent verticesin the samecomponert:
in this case,soft_exmpseg(v; w) ensuresthat a cluster vw (represerting the path v w) exists

and is closeto the root of the top tree. It works by rst making N, the root, then bringing



92

Ny as closeto the root as possible (preserving Ny). When both v and w have degreetwo
or greater, all three nodes (N, Ny, and vw) are dierent, and the outcome is the one
depicted in Figure 4.6. If only one of the endpoints has degreeone, we will have Ny = Ny;
if both have degreeone, we will have Ny = Ny = vw. To simplify hard expose,we require
soft_ exppseto make both N and vw right children (unlessthey coincidewith the root Ny,).
Note that this can always be accomplished,since the proper children of a compress node

can be exchangedfreely.

Figure 4.6: Con guration after soft. exmpse(v;w). This is the most general case,in which
both v and w have degreeat least two.

The soft_expse operation usesthe same basic tools as the amortized version of ST-

trees[52]: splay and splice. We discussead in turn.

Splaying

Splaying [52] is a heuristic for rebalancing binary trees using rotations. After a node X is
accessedit is rotated up to the root. The precisenature of ead rotation dependson the
relative positions of x, its current parert p, and its current grandparert g. If x and p are
both right (or both left) children (zig-zig case),we rst rotate edge(p;Q), then (x; p). If
the edgesalternate (zig-zagcase)we rotate (x; p) rst, then (x;g). When p is the root (zig
case),we just rotate (x; p).

In self-adjusting top trees, rotations (and splaying) happen only within individual rake

or compresstrees|w e never splay acrossdi erent subtrees. We therefore perform guarded



93

splays, which stop when x, the node being splayed, becomesthe child of a referencenode
(the guad). An ordinary splay can be thought of as guarded by null.

As described, the rules for splaying apply to binary trees. However, compresstrees have
internal nodeswith up to four children. From the point of view of the splaying rules, only
proper children are considered. As shawvn in Figure 4.7, foster children are not a ected by
rotations: they always keeptheir original parents. The proper siblings they are raked onto

may change, howewer.

N rotate-right Ny
I T IO
C Ny D |wz A luv B [Ny
/\\ -~ /K
Aluvll B8 Tww rotate-left c lwd | D lwz

Figure 4.7: Rotations in compress trees. Note that foster children always presene their
original parents.

Splaying requiresthe left and right children of all nodesvisited to appearin a consisten
(symmetric) order. In general,we cannot assumethat this is true for compresstrees, since
the children of compressnodescan be swapped freely. Therefore, before splaying on a node
N we must rectify all compress nodeson the path from N to the root of its top tree (rake
nodes always have the correct order). If a node X has parent Ny and grandparert N,
then X, Ny, and N, must form a zig-zagif and only if the endpoints of X arey and z.
We ensurethis by ipping the children of Ny appropriately. To presene the circular order
when proper children are ipp ed, we ip the foster children aswell. Each compress node
visited has two proper children, ead represeriing a path. Recti cation ensuresthat the
path that is farthest from the root of the corresponding unit tree is represened at the left
child. Recti cation is performedin a top-down fashion.

We note that splaying is performed for balancing purposesonly. It changesthe order

in which di erent moves (rake and compressg of the sametype occur, but presenes the



94

original partition into paths. In both top treesin Figure 4.7, the root node represeits the
path uvwz. On the left, vertex v is compressel before w; on the right, w is compressel

beforev.

Splice

The operation that changesthe partition of the original tree into paths is splice. A vertex v
that isinternal to a path partitions this path into two segmets. Splicereplacesthe segmem
that is farthest from the root with an outer path incident to v (i.e., with the root path of a

unit tree rooted at v). In Figure 4.8,x v isreplacedby y v on the exposedpath.

Figure 4.8: Splice:y v  zreplacesx Vv z asthe exposedpath. Trianglesrepresen
subtreesincident to v, and curved lines represen paths; subtreesincident to these paths
are omitted.

Figure 4.9 shows a possiblecon guration of the corresponding augmerted top trees. The
original proper children of N, (v's handle) are vx and vz, represerting x vandv z.
We shall seethat splicesonly occur after a seriesof local splays (within compressand rake
trees). As a result, Ny will be the root of a compresstree, and there will be at most two
rake nodes between vy, which represens the subpath we want to expose,and N,. Splice
makes vy the left child of N, and incorporates the former left child (vx) into a rake tree,
whereit appearsbetweenA and B asrequired by the circular order.

Figures 4.8 and 4.9 represen the most general out of seweral possible casesfor splice.
The precise outcome depends on which foster child of Ny contains vy (the subpath to be

exposed)and on whether someof the rake subtrees(A, B, or C) are absen. Figuring out



95

Figure 4.9: Splice: Augmerted top trees corresponding to Figure 4.8. Circles represer rake
nodes.

what to do in ead situation is simple: one must always replacethe left child of Ny (which,
after recti cation, represetts the subpath that is farthest from the root of the unit tree)
while ensuringthat the circular order of the up to six relevant subtreesrooted at v (denoted

by A, vx, B, vy, C, and vz in Figure 4.9) is presened.

Exp osing the Target

Now that we have the necessarybuilding blocks, we return to the implementation of
soft_expse(v;w). Its rst step is to exposethe target vertex w, making its handle N,

the root node3 The function starts from N, itself, and works in three passes:

1. (Local Splay) Splay within eat compressand rake subtree on the top tree path from

N, to the root.

2. (Splice) Perform a seriesof splicesfrom N, to the root, making N, part of the topmost

compress subtree.
3. (Global Splay) Splay on Ny, making it the root of the ertire top tree.

We call this sequenceof operations a generlized splay.
The rst passis divided into seweral subpassesead starting from a di erent compress
tree. Let N be a node of this tree (initially , N = Ny). Splay on it, making N the root of

its compresstree and a leaf of the rake tree immediately above. If the rake tree corntains

SWe refer to w as the \target" for convenienceonly; the path v w is actually undirected.



96

other nodesbesidesN, splay on N's parent, P, within the rake tree. If N endsup with a
new parent P° splay on P°with P asa guard. This concludesthe subpass.

The left of Figure 4.9 shawvs a possible con guration after a subpassassaiated with
node vy. This node becomesthe root of a compresstree (not shown), and betweenitself
and the closestcompress ancestor (Ny), there are at most two rake nodes( and ). In
fact, we splay twice on the rake tree precisely to divide this tree into three subsequences:
B, vy, and C.

After the rst passis completed, every node on the path (in the top tree) betweenN,,
and the root will be as close as possibleto the root of the corresponding subtrees (rake
trees or compresstrees). This allows us to perform a seriesof splices, the secondpass of
the algorithm outlined above. As a result, w will becomepart of the root path, and N,
part of the topmost compresstree.

At this point, we can executethe third passof the algorithm, global splay. It consists
of splaying within the topmost compresstree to make N, its root, and therefore the root
of the ertire top tree.

Although the algorithm is easierto analyzeif we think of it as having three passes,n
our implementation we actually perform the rst two passessimultaneously. Moreover, to
avoid splaying twice within ead rake tree, we actually perform a special splaying split to
obtain the three subsequencesnertioned above (B, vy, and C). The procedureis very
similar to splaying on vy directly, but it is not exactly the same. In general, splaying on vy
canmake it aninternal node of the rake tree, and somerake nodesmay becomeleaves. This
is not allowed by our represettation. A splaying split doessplay on vy, but in the process
removesfrom the tree its immediate predecessornd its immediate successoin symmetric
order (which are both rake nodes). These nodes are reinserted into the top tree by splice,

which happensimmediately after the splaying split.

Exp osing the Source

Having seenhow to exposethe target w, we now considerthe sourcev.



97

After the target is exposed, Ny, will be the root. If v is an endpoint of N, or if Ny,
represens compresgVv) (in which casew must be an endpoint of N,), we are done: N, is
v's handle aswell. Otherwise, we must bring v's handle (N,) ascloseto the root aspossible.

The basicidea is to apply to N, a three-passprocedure similar to the one applied to
Nw. While doing so, we must ensurethat the root of the top tree will remain the handle of
w. The exact proceduredependson the degreeof w.

If w has degreeone, it will be one of the endpoints N, the root of the top tree. To
exposev, we rst make sure that the right child of Ny, has w as an endpoint; if it does
not, it suces to ip the children of Ny. This guaranteesthat w will remain part of the
root path even after a splice, which always removesleft children. We then apply to Ny a
generalizedsplay, the three-passprocedure previously applied to N,,. This will make Ny
the root, with w guaranteed to be one of its endpoints: N, and N, will coincide.

If w has degreetwo or greater, then N, will represenn compresgw). To exposev, we
apply to Ny a generalizedsplay, but guardedby N,,: every splay in the procedureis guarded
by Ny. This ensuresthat no node will replace N, at the root, so either N, will end up
as Ny's child (when v has degreeat least two), or v will becomean endpoint of N, (and
Nw = Ny will be the root).

To follow the speci cation of soft.expse we may needto ip the children of N,, and
Ny. If Ny 6 Ny, Ny must be Ny,'s right child; if the node represetting v w is not N, it
must be Ny's right child. If v and w arein di erent componerts, the generalizedsplay will

end up exposing N, asif it werethe target, asrequired by the speci cation.

4.2.2 Hard Expose

In general,soft_ expse(v; w) doesnot make v and w the endpoints of the root node. Instead,
asFigure 4.6 shows, the root node will represen somepath u  z, with vw asthe rightmost
grandchild. To x this, hard expsetemporarily converts to rake the (at most two) compress
ancestorsof vw. In Figure 4.6, N, and N, would be a ected. Beforeanother pair of vertices

is exposed,thesemodi cations are undoneto bring the tree bad to its \normalized" form.



98

423 Cuts

To cut an edge(v; w), we rst executesoft_exmseg(v;w), making N, the root. In the general
case,both v and w have degreeat least two. As the tree on the left of Figure 4.10 shows,

Ny 's right child will be Ny, and N,'s right child will be the basenode represeting (v;w).

N
N T X~
/\ cut(v,w) D (wz C' [wx
D (wz C Ny —_—
740N e
A luv|| B [vw /\
Aluv| |B'|vy

Figure 4.10: Cutting edge(v;w). The augmerted top tree on the left is the one obtained
after soft_exmpse(v;w), sovw is a basecluster. Clusters A, B, C and D are foster subtrees.
During the cut, B is partitioned into vy (the rightmost leaf of the rake tree) and B
Similarly, C is partitioned into wx and C° Note that the circular order is presened in the
new trees.

We must destroy the basenode and reorganizethe remaining nodesinto two valid top
trees. In the original augmened top tree, N, represers a unit tree with root path u  z.
The subtree rooted at N, (the right child of N,,) represers a unit tree rooted at w with
(v;w) asthe only edgeincident to the root. If we remove the link betweenN, and Ny, Ny
will be the root of a tree containing only the vertices in w's componert. Similarly, if we
remove the right child of N, only verticesin v's componert will remain.

In both cases,the original right child must be replaced. First consider how to replace
the right child of N, which is N,. To presene the circular order around w, the replacemen
must be either the immediate successonf vw around w (the leftmost leaf of the left foster
subtree of Ny, denoted by D in Figure 4.10) or the immediate predecessoi(the rightmost
leaf of the right foster subtree of N,,, denoted by C). To extract the appropriate leaf, we
simply splay on its parert. If N,, hasno foster child, we delete N, and make its left proper

child the new root.



99

The right child of Ny (which is vw itself) can be replacedin a similar fashion, but
consideringthe circular order around v instead: either the leftmost leaf of A or the rightmost

leaf of B can be used.

4.2.4 Links

To insert an edge(v; w) asthe successoof path a v aroundv and of path b w around
w, we rst perform soft_expse(a;v) and soft_exmpse(b;w). Of course,av or bw can be single
edgesinstead of paths. If both v and w have degreegreater than one, we will have the two
augmerted top trees shown on the left of Figure 4.11. To link them, we do the opposite
of cut: we rst replacethe right child of N, with vw, making the original right child (Nj)
the rightmost leaf of the right foster subtree of N,. (If this foster subtree is originally
non-empty, a new rake node must be created.) Then we do the samefor N, making N,

its new right child.

Nw

Nw
P NN | chd (I
Cpxwl |D[No link(v,w)

—_—

Ny D[[No| | Aluv|(b Jvwi
/\
Aluv B [Na B ||Na

Figure 4.11: Linking v and w. The augmerted top trees on the left are the result of calls
to soft exmpse(a; v) and soft expse(b;w). Nodesare rearrangedso asto make vw (the new
edge)the successoof path a v around v and of path b w around w.

The caserepreserted in Figure 4.11 is the most general. We rearrange vertices in a
similar way when v or w have degreeone or zero. In particular, when v has degreeone
beforethe link, it is an endpoint of Ny; to add (v;w) to the tree, we create a new compress
node with the old N, and the basenode represening (v;w) as children. A new compress

node is also necessarywhen w has degreeone.



100

4.2.5 Implemen tation Issues
Handling Data

Sofar, we have discussedonly structural changesto the top trees. To update the valuesin
ead cluster, we needthe user-de ned functions create, destroy, join, and split. Rotations
and splicescan be easily expressedin terms of a seriesof splits and joins. Howeer, since
the top tree is modi ed in a bottom-up fashion, thesefunctions cannot be called as we go:
they can only be applied to root clusters. Instead, before exposing a vertex, we mark all
a ected clusters, then split them in a top-down fashion. (We can actually do this together
with the recti cation pass.) Only then do we perform all structural modi cations. A simple
recursive function unmarks all clusters and calls join in a bottom-up fashion onceall the

structural operations are performed.

Non-lo cal Search

As mentioned in Section2.2.4,the top tree interface can be augmerted to include the select
operation, usedto guide a simulated binary seart on the top tree. The actual running time
of the binary seard is proportional to the depth (in the top tree) of the last cluster visited.
Let this cluster be C. Although its depth canbelinear in the self-adjusting implementation,
the amortized cost of the binary seart will be logarithmic, aslong as it is immediately

followed by a generalizedsplay on C. Splaying will amortize the cost appropriately.

No des and Clusters

Strictly speaking, our represeration doesnot implemert top treesdirectly. We have nodes
with up to four children, whereastop trees are binary. For a direct implementation, it
su ces to replace ead compress node by the three corresponding clusters (one compress
two rakes), asshawn in Figures 4.3 and 4.4. Unfortunately, splay and splice would become
considerably more complex, since they would have to account for the fact that compress

trees now have interspersedrake nodes.



101

4.3 Analysis

The run-time analysis of the routines to update the data structure doesnot considerthe
augmerned top tree itself but rather an equivalent phantomtree. In the augmeried top tree,
compressnodeshave up to four children; in the phantom tree, up to three: left, middle, and
right. Tocorvert afour-child top tree nodeto a phantom tree node, we createan articulation
node (the new middle child) and make it the parent of the original foster children. The
articulation node is inserted only when there are two foster children. Figure 4.12 shows the
phantom trees corresponding to the augmerted top treesin Figure 4.9.

While a tree with n vertices may be represerted by augmerted top trees with various
numbers of nodes, phantom trees will have exactly n 1 nodes; this greatly simpli es
the analysis. Phantom trees are used in the analysis only; they do not appear in the
implemerntation.

We extend Sleator and Tarjan's analysis of ST-trees [52]. The rank of a node N is
dened asr(N) = logs(N ), wheres(N), the size of N, is the number of nodesdescending
from N in the phantom tree. Note that the rank is at most logn. The potential of the
phantom tree is de ned as g times the sum of the ranks of all nodes, where g is a constart
to be chosenlater. The amortized cost of the i-th operation in a sequenceis de ned as
a =G+ i+ i; where ¢; is the actual cost of the operation, and ; and .1 are the
potentials beforeand after it is performed. A bound on the total amortized time translates
into a bound on the actual time [55].

In general, the operations we perform within a passtake an active node and move it
upward in the tree. The nodethat is active may evenchangeduring the process,n particular
during a spliceand betweenlocal splays. The depth of the active node (regardlessof whether
it is a di erent node or not) is guaraneed to decreasefrom one step to the next, however.
Each basic operation (rotation, double rotation, or splice) dealswith a constart number of
nodes, and therefore takes constart time. We de ne the actual cost of the i-th operation
(¢) asthe amount by which the depth of the active node is reduced.

Rotations within rake and compress trees follow Sleator and Tarjan's analysis [52].



102

Their AccessLemma states that the amortized time for a zig-zig or a zig-zag on a node
N is 3q(rqN) r(N)), wherer(N) and rAN) denote the rank of N before and after the
operation. Moreover, the amortized costof a zigis 3g(rAN) r(N))+ 1. Sleatorand Tarjan
useq = 1 in the analysis of standard splay trees and g = 2 when analyzing ST-trees, but
any constart q 1 can be used.

We need to obtain a similar result for splices. Figure 4.12 shavs how splices work
on phantom trees: just asin Figure 4.9, with articulation nodes( and ) added where
necessary The active node is vy before the operation, and N, after. We can prove the

following:

splice(y)

—_——

vy| | C

Figure 4.12: Splicing on the phantom tree corresponding to the tree on Figure 4.9, with
and addedasarticulation nodes.

Lemma 12 The amortized cost of a splice is at most 3g(rAN9% r(N)) + 4, where N is

the active node before the operation, and N Ojs the active nodes afterwards.

Pro of. The actual cost of the operation is at most 4, an upper bound on the amount by
which the depth of the active node is reducedin the phantom tree. SeeFigure 4.12: the
active node is N = vy beforethe splice,and N°= N, after. The only nodeswhoseranks
changeare those labeledwith Greekletters in the gure; all otherswill keepthe exact same

set of descendats. All three a ected nodeson the left are ancestorsof the original active



103

node N = vy, sotheir combined rank is at least 3r(N); the a ected nodeson the right are
all descendats of the nal active node N°= N,, which meanstheir combined rank is at

most 3rAN 9. The amortized cost a of the operation is therefore
a=c+ ° 4+ q@BrANY)  a@r(N));

as claimed. Note that the cortribution of all other nodes (besidesthe oneslabeled with
Greek letters) to the potential can be ignored, since their ranks are the samebefore and
after the operation.

A similar analysisholds if there are fewer than three nodesbetweenN and N ¢ the only
di erence is in the additive constart: instead of 4, we will have 3, 2, or 1. The caseshown

in Figure 4.12is the most expensiwe. 2

We can now bound the amortized cost of soft.exmpse(v;w). It is enoughto bound the
time to exposethe target vertex w; the samebound applies to the sourcev. We analyze
ead pass(local splays, splices,and global splay) in turn.

Consider the rst pass. If k is the number of compress trees on the path from N, to
the root of the top tree, we will splay within k compresstrees and within up to k 1 rake
trees (twice in ead such rake tree). We can analyzethis astwo subpasseghat go strictly
upwards. The rst subpassaccourts for all rotations within compresstreesand for the rst
splay within ead rake tree; the secondsubpassaccourts for the secondsplay within ead
rake tree.

Each subpasscan be further divided into steps, which are either rotations (zigs) or
double rotations (zig-zigs or zig-zags). Let s be the total number of stepsin a subpass.
Also let N; be the active node before step i and NP be the active node immediately after
stepi. The amortized cost of the rst subpassis

x
A1=3q (AN r(N)+ 2k L
i=1

1=
Note that the 2k 1 term accouns for all zigsin the subpass(at most k within compress

treesand k 1 within rake trees). Becausethe passonly movesup the tree, we know that



104

r(Ni+1) rqND9. Using this fact and de ning r(Ns:1) to be equalto r(N9), we have:
x3
A1 3 (r(Nisx) r(Ni)+2k L
i=1

Becausethe summation telescopes, we have that
A;  3q(r(Ns+1) r(Ny))+2k 1 3glogn+ 2k 1

The secondinequality usesthe fact that no rank is greater than logn, wheren is the total
number of nodesin the tree.

The secondsubpass(corresponding to the secondsplay within ead rake tree) can be
analyzedin a similar fashion. The only di erence is that it splaysin at mostk 1 trees,
making the amortized cost at most 3glogn + k 1.

Therefore, the total amortized cost of the rst passof the algorithm is 6glogn+ 3k 2.

The secondpassperformsk 1 splices. From Lemma 12, the total amortized cost is at
most 3glogn + 4(k 1). Once again, the sum of ranks telescoges.

Considering just the rst two passes,the total amortized cost of the procedure is
9glogn + 7k 6. This would be O(logn), except for the 7k term, which can be up to
( n). The third passof the algorithm (global splay) will pay for this extra term.

The global splay reducesthe depth of the active nodefrom k 1to Owith k 1 rotations
within the samecompresstree. The total amortized cost of the step is 3glogn + 1. Our
potential function chargesqtime units per rotation, but the actual costis one, which leaves
us (g 1)k 1) \unused" units. Setting g = 8, we will be only one unit short of fully
paying for the extra 7k 6 units spert on the rst two passes.

Adding up the amortized costs of all three passes,we conclude that the total cost of
exposingthe target vertex is boundedby 12glogn + 2= 96logn + 2= O(logn). The same
appliesto the source.

We claim both link and cut alsotake O(log n) amortized time.

The link operation starts with a call soft_expse which takes O(log n) amortized time.

It then performs a constart number of pointer modi cations. Becauseall a ected nodes



105

have constart depth (i.e., they are within a constart distance from the root), ead of them
cannot increasethe overall potential by more than O(logn).

The cut operation alsostarts with a soft_.exmpseand modi es node pointers that are close
to the root, with the samebounds as link. Moreover, a cut also performs one additional
splay within a foster subtree of eadh new root. These splays may visit nodes of arbitrary
depth, but, becausethey are just standard splays, their total amortized time is O(log n) as
well.

We have thus proved the following:

Theorem 4 Self-adjusting top trees support link, cut, and exposein O(logn) amortized

time.

4.4 Alternativ e Representations

4.4.1 Possible Simplications

Although self-adjusting top trees have somefeaturesin common with ST-trees, they are
much more general: they support subtree operations on trees of unbounded degree,ordered
incidencelists, and unrooted trees (without the needfor the evert operation). Many appli-
cations, however, have no needfor one or more of theseextra abilities. In fact, using suc a
generaldata structure could have a negative e ect on performance. This section discusses

how our data structure can be simplied when its full power is not needed.

Unordered Adjacency Lists

We rst consider applications in which the order among the edgesincident to a vertex is
irrelevant. In such cases,jnstead of maintaining two foster children per compress node, we
can replace them with a single middle child, in a manner similar to phantom trees. This
middle child must be interpreted asbeing raked onto either proper child. Not only doesthe
represeration itself get simpler, but it alsobecomeseasierto update: there are fewer cases

(and nodes) to handle when performing splices cuts, and links.



106

Trivial Rakes

Further simpli cation is possiblefor applications in which rakeshave no e ect on the target
cluster, i.e., when the data in the parent cluster is a copy of that in the target. This is
what happensin applications that deal exclusively with paths, not trees or subtrees. In
sud situations, an edgeis only raked when we know it doesnot belongto the path we are
interestedin, and therefore we can ignore the information it holds. Then we can completely
eliminate rake trees and link the root node of ead compresstree directly to the compress
node above, mimicking the dashededgesof ST-trees [51].

WhereasST-treesdo not needpointers from a node to its dashedchildren, howewer, our
data structure needsat least one such pointer. The reasonis that, during a cut operation,
we might needto replacea proper child of a node with oneof its foster children. Sincethere
is no circular order, any foster child is good enough. Therefore, it su ces to keepa pointer
from a node to one of its foster children, as long as the foster children are maintained in
a circular list. The list must be doubly-linked, becauseit must allow arbitrary deletions
during splices. Whenewer a foster child is \promoted" to be a proper child, it is removed

from its circular list and replacedby its successor.

Rooted Trees

Another special caseis that of rooted trees. ST-treesassumethe underlying treesare rooted;
to handle free trees, there is a special operation to changethe root (evert). Although our
data structure already incorporatesevert into exmse it doesget slightly simpler whenroots

are xed, sincethe recti cation step becomesunnecessary

442 Unit Trees

One aspect of our represenation that seemsarbitrary is the notion of unit trees. Recall
that the root path must begin and end at vertices of degreeone. ST-trees have no sud
constraint. Unit treesare the only reasonwhy we must have hard expse which temporarily

converts up to two compressclustersinto rake clustersin order to make a subpath of a root



107

path exposed. If we did not have the notion of rooted trees, a single expose operation would
su ce. Why did we chooseto useunit trees?

We choseit mainly for symmetry, which in turn results in fewer special cases.Consider
the top tree in Figure 4.2, which represens the tree in Figure 4.1. Every node of the
compresstree is matched with a foster sibling, with the exception of the root. Every cluster
with a foster sibling will be the target of a rake inside this tree.

Now consider what would happen if we allowed compress trees to be more general:
instead of represerting paths that start at a degree-onevertex, it could represen paths
starting at arbitrary vertices. In other words, considera tree similar to that of Figure 4.1,
but with an extra subtree U rooted at u (besidesthe subtreesA to H, already drawn).
How would U be representied within the binary tree? Clearly, it must be raked onto some
cluster. The obvious alternatives are to rake it onto the basecluster uv or maybe onto
the root cluster of the top tree|the one represeting the ertire uv path (represeried as
Ny in the top tree). In either case,a new rake cluster would have to be incorporated into
the compress tree. Every elemen of the update of algorithm (in particular, splicesand
rotations) would have to accourt for this special node.

Requiring eadh path to start at a degree-onenode eliminates this special casein all
but one compress tree, and that is why we chosethis represernation. The compress tree
that needsspecial treatment in our represeration is the topmost one, which represens the

exposedpath. Treating this one special caseis the purposeof hard expse

4.5 Path Decomp osition and Tree Contraction

Our data structure demonstratesthat the two main approactesusedto represen dynamic
trees are, in a sense,equivalent. ST-trees represen a partition of the trees into disjoint
paths. Topology trees, RC-trees, and top trees are basedon tree cortraction. Frederick-
son [25] noticed that partitions and cortractions have similarities, and Alstrup et al. [10]
even showed that topology trees can be implemented using ST-trees. The transformation

is far from direct, however, asthe authors themselvesobsene. In cortrast, there is no need



108

to \map" our data structure from one framework to the other. One can simply interpret it
in two di erent ways.

From the point of view of the interface, our data structure is a pure top tree: a single
tree with internal nodes represeting either rakes or compresses and leaves represerting
baseclusters. As sud, it is as powerful (and as general) as any other implementation of
top trees.

From the point of view of the update algorithms (exmse link, and cut), our data
structure followsthe path decomposition framework; it is interpreted not asa singletree, but
asa hierarchy of binary trees(rake treesor compresstrees). This makesthe implemertation
almost as simple as the implemertation of ST-trees.

The correspondencebetweentree contraction and edge-disjoint path decomposition is
not always that obvious, but it always exists. Any valid tree cortraction can be assaiated

with a valid path decomposition, and vice-versa. We consideread direction in turn.

45.1 Contraction to Decomp osition

First, note that any sequenceof rakes and compressescan be translated into a unique
partition of the original tree into edge-disjoint paths. Two edgesa and b will belong to
the samesolid path if and only if there is a node in the top tree with endpoints s and t
such that both a and b belong to the (unique) path betweens and t in the original tree.
Intuitiv ely, solid paths are \grown" by compress moves. A compressnode C with children
A and B indicates that the path represened by A and the path represerted by B belong
to the samesolid path.

The simplest way to identify solid paths, however, is by looking at the rake moves. A
rake cluster indicates that one path (the one represerted by the cluster being raked) will
stop growing. This implies that the solid paths in which the original tree is partitioned are
exactly the paths represerted by all the left children of rake clusters, plus the root of the
ertire top tree (the only path that is not raked).

In the examplein Figure 2.6, the solid paths are ac, dg, ij , Im, fg, mo, bg hi, and en



109

(the root). This being a very small example, only two solid paths (bg and en) have more
than one edge.

A larger exampleis the top tree presered in Figure 4.5. By taking the root of the tree
and the left children of rake nodes, we seethat the solid paths are: ow, wy, lv, nu, in, ck,
cr, ¢j, es, cq cf, gh, bt, az (the root), and px (the nodesare listed in symmetric order).

These are exactly the solid paths depicted in Figure 4.3.

4.5.2 Decomp osition to Contraction

If every contraction can be mapped into a partition, the corverseis also true: any parti-
tion into paths can be translated into a sequenceof rakes and compresses(although not
necessarilyunique).

In the represertation suggestedin this chapter, ead solid path is represerned as a
compress tree. Despite the name, these trees have more than compress nodes: there may
be rake nodes amid them. Furthermore, our represenation imposesa particular set of
constraints on theserake trees. We know, for instance, that there can be no more than one
rake node betweena compress node (or a basenode) and the compress node immediately
above it in the samecompresstree.

The top trees resulting from the worst-casealgorithm proposedin Chapter 3 have no
such constraint. There can be an arbitrary number of rake nodes betweentwo consecutive
clusters belongingto the samesolid path. In Figure 2.6, for example, the basenode gi and
the compress node ei are elemeris of the samesolid path (from e to n), but there are two
rake nodes betweenthem.

This is an exampleof a contraction that the worst-casealgorithm can represen, but the
self-adjusting version cannot. The corversecan also happen: sometop treesrepreserted by
the self-adjusting algorithm would never be created by the worst-caseversion. For example,
the self-adjusting algorithm can, after somesequenceof operations, create a top tree with
height greater than (log n). Thesetwo implementations of the top tree interface are not

in any way equivalert.



110

4.6 Final Remarks

This chapter preserted a self-adjusting data structure for maintaining dynamic trees. Be-
causeit implements the top tree interface, it is as generalas any other data structure for
this problem. Furthermore, it doesso using path decomposition directly, which resultsin a
represenation with very little overhead,as a singletree with a direct correspopndence(even
one-to-one,depending on the implemertation) betweennodesand clusters.

The bottom-up implementation of top trees described in Chapter 3, in contrast, rep-
resents a round-based cortraction sdheme, which is much stricter. Its implementation re-
quires keepingan Euler tour to represen ead level, as well as dummy nodesto represen
unmatched clusters. This is similar to what happenswith topology trees.

Besidesthe fact that it makesthe data structure conceptually simpler to update, the
top-down view o ered by path decomposition makesit clear how the data structure can
be simplied to handle common special cases. As shavn in Section 4.4.1, it is relatively
straightforward to specialize self-adjusting top treesto handle applications in which adja-
cency lists are unordered or in which only path operations needto be performed. It is not
obvious how this can be done for cortraction-based worst-casetop trees.

One could conceivably use path decomposition to implement worst-casetop trees by
using globally biasedbinary seard treesinstead of splay treesto represert compresstrees.
As already mentioned, thesedata structures are signi cantly more complicated. Moreover,
the fact that splay treeswork by bringing accessedhodesto the root greatly simpli es the

implemertation of dynamic trees. Biased seart trees are much less exible.



Chapter 5

Exp erimen tal Analysis

We have seenthat top treesare more genericand easierto usethan previousdata structures,
such as ST-trees and ET-trees. This chapter preseris experiments whose main goal is to
evaluate how much this costsin terms of performance. Both versions of top trees are
compared to ST-trees and ET-trees, and also to ead other. As one would expect, the
simpler amortized version is usually faster than the worst-caseone. Perhaps surprisingly,
howewer, there are restricted situations in which the worst-caseversionis superior.

Another important questionis: how practical are dynamic treesin general? All of the
data structures preseried in Chapter 2 are relatively complicated. The experiments will
show that, in practice, it is often worth it to rely on simple linear-time implementations of
the dynamic tree operations.

This chapter is organized as follows. Section 5.1 describes the experimental setup.
Section 5.2 briey describes the implementation of the data structures tested. We then
present experimental studies of three di erent applications that use dynamic tree data
structures: maximum o ws (Section 5.3), online minimum spanning forests (Section 5.4),
and single-sourceshortest paths (Section5.5). Section5.6 preserts an additional experiment
with random dynamic tree operations. Section 5.7 briey summarizesthe experimental
results previously reported in the literature and comparesthem with the onesdescribed

here. Final remarks are made in Section5.8.

111



112

5.1 Experimental Setup

All data structures and algorithms were implemented by the author in C++ and compiled
with g++ version 3.4.4 with full optimization (-O4). The experiments were performed on
a Pertium IV running Gentoo Linux 2.16.14.2at 2.0 GHz with 1 GB of RAM, 8 KB of
L1 cache and 512 KB of L2 cache. While the tests were running, no other CPU-intensive
processwas being executed.

All times reported are CPU times measuredwith the getrusage function, whosepreci-
sionis 1/60 of a second. To determine the running time of a given computation, we actually
ran it seweral times until the aggregatetime was at least two seconds. To determine the
time of ead individual run, we divide the aggregatetime (which we measureddirectly) by
the number of runs. To ensureall runs were essetially equivalent, the timed executions
were precededby a single untimed run, usedto warm up the cace.

We stressthat all \runs" mentioned above are calls to a speci ¢ function, not calls to
the ertire program. The program is called only once and has an internal loop that calls
the timed functions. The running times do not include the time to generateor read the
input data (which is done only onceby the erntire program), but they do include the time
to allocate, initialize, and destroy the data structures (each done once per run within the
program).

Input graphs for the maximum ow algorithm studied in Section 5.3 were generated
with Anderson's washington generator [11]. The remaining inputs were generated by
the author. The pseudorandomnumber generator used was Matsumoto and Nishimura's

Mersenne Twister [42].

5.2 Data Structures

As already mertioned, the experimental analysisincludestop trees, ST-trees, and ET-trees,
aswell aslinear-time implementations of the ST-tree interface. Reasonablee ort wasmade

to make them e cien t, but further improvemerts might be possible. When feasible, the



113

data structures share common subroutines. In particular, the routine for splaying on a
binary tree was implemented only onceas a template function, and usedby ST-trees, ET-
trees, and top trees. The values maintained by the data structures (such as edge weights
and vertex distances) are stored as 64-bit double s; switching to 32-bit integerswould not
have a major e ect on performance.

All data structures are initialized with the number of vertices n in the forest they
represert; this number doesnot changeduring the execution. This allows the data structure
to preallocate, whenit is created, all the memory it can possibly need. For instance, worst-
casetop trees need no more than 7n clusters, and ET-trees no more than 3n nodes. Of
course, not all elemerts (nodesor clusters) are neededat all times. Therefore, eadh data
structure maintains a list of available elemeris. Whenewer a new elemern is needed,it is
removed from this list; when an elemen is no longer necessaryit returns to the list. The
list is implemented as a stack, which meansthat the most recertly discarded elemen will
bethe rst to bereused.

All data structures wereimplemented with full functionalit y; no simpli ed versionswere
tested. For example,the ST-tree implementation always supports both evert and the ability
to add a constart to all vertices of the path, even though the maximum- o w algorithm we
tested doesnot needthe former, and the online minimum spanning forest application does
not needthe latter. Similarly, ET-trees support the ability of nding the minimum-value
vertex in a subtree, but the single-sourceshortest path application (the only one to use
ET-trees) doesnot needit. None of the applications tested requiresorderedadjacencylists,
but both implementations of top trees support it.

The subsectionsthat follow discussspeci ¢ details of ead data structure implemented.

5.2.1 ST-trees

Self-adjusting ST-trees were implemented with costs on vertices, following the description

in [52]1 This implemertation will be referredto asst-v . As mertioned in Section2.1.4, it

! Actually , the implementation of addwst di ers slightly from [52]: a command to update min is missing
from the original paper.



114

can also support costson arcsaslong asno evert is ever performed. It su ces to interpret
the cost of a vertex v asthe cost of the arc from v to its parent, and to make the costs of
all root verticesin nite.

The experiments, howewer, do include an application that requires both arc costs and
the ability to changeroots (evert). For this, we use another version of the data structure,
which we call st-e . Instead of implemerting st-e from scratch, we madeit an interface to
st-v . An arc a = (v;w) with cost x in the original tree is represened in the st-v data
structure as a dummy vertex D, with cost x and exactly two incident arcs, (v;D3) and
(w;Da). The nodesrepreserning the original vertices of the tree have cost 1 . The st-e
interface merely converts operationsin the original forestinto operationsin the transformed
forest, and vice-versa.

Although st-e is not a direct implementation of ST-trees with costson edges(such as
the one described in [51]), it doeshave the samesize: ead vertex or edgeof the original
forest becomesa node in the data structure. Some of the operations, however, might be
slightly costlier. For instance,to cut an arc a from the tree, we must cut both edgesincident
to the dummy vertex D, in st-v . Similarly, every link in the original tree will correspond
to two links in st-v . Becauseof splaying, the secondcall is likely to be cheaper than the
rst, but someoverheadis to be expected.

The experiments alsoinclude a direct implementation of the ST-tree interface, in which
rooted trees are represerted explicitly: ead vertex maintains a pointer to its parent and an
assaiated cost. With this represertation, operations link, cut, ndc ost, and parent can be
implemented in constart time. The other operations ( ndr oot, evert, ndmin , and addast)
require traversing the path from a vertex to the root of its tree, however, and therefore
take time linear on the length of this path. To make this implementation consistert with
the self-adjusting version of ST-trees, link (v; w) also takes linear time, sinceit must rst
conrm that ndr oot(w) 6 v, i.e., that v and w actually belongto di erent componerts.

As in the self-adjusting case,two versionsof this linear-time implementation weretested:

lin-v , which assaiates valueswith vertices, and lin-e , which assaiates valueswith arcs.



115

Both actually store valueson vertices, and di er only in how these values are interpreted:
in lin-v , the value represents the cost of the vertex itself, whereasin lin-e it represens
the cost of the arc betweenv and its parent. Both variants implement most operations in
essetially the sameway, with the exception of evert(v). While lin-v simply reversesthe
arcs of the path from v to the root by changing the parent pointers of all vertices visited,
lin-e alsohasto changethe costsof thesevertices. More precisely the cost of an arc (v; w),

originally stored at v, must be stored at w after the arc is reversedduring an evert

5.2.2 ET-trees

The implementation of ET-trees usedin the experimert is the self-adjusting versionoutlined
in Section 2.3 (and described in detail in [56]). Each original tree is represened as a splay
tree where eac original arc appearstwice and ead original vertex once. In total, no more

than 3n nodesare used. We refer to this implemertation aset-s .

5.2.3 Top Trees

We implemented both versionsof top trees for the experiments. The contraction-based im-
plemertation, which supports eat operation in O(log n) worst-casetime, will be referredto
astop-w . It implements exmse by building temporary trees, asexplainedin Section 3.3.5.
The self-adjusting versionis called top-s . Both take asinput the total number of vertices, a
data type (which de nes what elds should be maintained in ead cluster), and a processor,
an object that implements methods create, join, split, and destroy. Note that, since one of
the inputs to the data structures is a type, they must be implemented as templates. One
could usevirtual functions instead, but, becausethese cannot be inlined, the performance
would be much worse.

The data structure calls the appropriate method from the processorwhenewer it needs
to update the valuesin somecluster. Becausethe processoris an object (and not just a
collection of functions), it can easily keepa state, which is usefulin many applications. For

example,the single-sourceshortest path algorithm studied in Section5.5 needsto maintain



116

a separatearray to handle the values of exposedvertices. This array is maintained inside
the processor.

For eadh application tested we developed a di erent processor,and useda di erent data
typeto represen the elds to be stored. Given a particular application, the sameprocessor

can be usedby both top tree implementations.

Implemen ting the ST-tree interface. Top trees are genericenoughto implement all
the functions of the ST-tree interface. In [8], Alstrup et al. detail how this can be done.
To maintain rooted trees, they suggestadopting the cornvertion that the secondexposed
vertex in eac componert (there are two) always represerts its root vertex. To implemert
the ST-tree operations e cien tly, we maintain in ead cluster C = (v;w) the following

elds:
mincost(C): the cost of the minimum-cost edgeon the path from v to w;
extra(C): avalue to be addedto all clustersthat represen subpathsofv  w;

extreme,(C) and extreme, (C): the baseclustersrepreseiing the edgesincident to v

and w, respectively, on the path from v to w;

minvertex,(C) and minvertex,,(C): among the two endpoints of the minimum-cost
edgeon the path from v to w, minvertexy is the one farthest from v, and minvertex,,
the onefarthest from w. If there are ties, minvertex, will refer to the minimum edge

that is closerto v, and minvertex,, to the one closerto w.

With these elds, implementing ead ST-tree operation is straightforward. We give a few
examples. To implement evert(v), one would call expse( ;v). To implement ndr oot(v),
one would call C exmsgV; ) and return the secondendpoint of C. To implement
ndmin (v), one would call C expse(v; ) and return minvertexy (C), where w is the
secondendpoint of C. For parent(v), one would call C expse(v; ), and return the
endpoint of extreme,(C) that di ers from v. The remaining operations can be implemented

similarly.



117

This approad doesmake it very corveniert to usethe data structure: the sameimple-
mentation of the maximum o w algorithm can use either ST-trees or top trees seamlessly
It may have a negative e ect on performance, however. The ST-tree interface is natural
for how ST-trees are implemented but much lessso for top trees. For instance, ST-tree
operations are vertex-oriented, with the parent operation usedto accessan edge. Top trees,
on the other hand, can manipulate edgesdirectly in a much more natural way. Moreover,
the implementation proposedby Alstrup et al. assumesthat top trees can remenber not
only which vertices are exposedin ead componert, but alsowhich, among the two, is the
rst exposedvertex and which is the second. Implemerting this is relatively straightfor-
ward, but it makesthe data structure more complicated, and technically this feature is not
a requiremert of the top tree interface.

In the experiments, we refer to the implementation of the ST-tree interface on top of
self-adjusting top trees astopst-s , and on top of worst-casetop trees astopst-w . Both
implement the sameinterface as st-e . We shall seethat they are considerably slower than
top-s and top-w even on the application for which ST-trees were originally designed,a

maximum- o w algorithm.

5.3 Maxim um Flows

When developing ST-trees, the rst data structure to support every dynamic tree operation
in O(log n) time, one of the main motivations of Sleator and Tarjan wasto make maximum
o w algorithms more e cien t. In particular, in [51] they preser an algorithm to compute
a blocking ow on an acyclic graph in O(mlogn) time, where m is the number of arcs
and n the number of vertices in the graph.?  This can be used as a subroutine of an
O(nm logn)-time implementation of Dinic's maximum o w algorithm [19].

The experiments in this section test the dynamic tree data structures on a dierent

maximum o w algorithm, basedon distance lakels (which we shall describe shortly). Al-

2A blocking ow is a ow from the sources to the sink t of an acyclic graph graph such that ead s-t
path contains an edgewhose o w equalsits capacity.



118

though it doesnot usethe notion of blocking o ws explicitly, the algorithm is very similar
to Dinic's algorithm, as mentioned in [5, Section 7.5]. It usesdynamic treesin a similar
way and achievesthe sameworst-caserunning time. It is, however, simpler to implement,

as Section 5.3.2 will show.

5.3.1 Basics

To describe the algorithm, let us rst formalize the problem.® Let G = (V;A) be adirected
graph with two distinguished vertices, a source s and a sink t (reachable from s). Each arc
(i; ) hasan assaiated positive capacity ¢ . To simplify notation, assumethat c; = O for
ewvery pair (i; j) that isnot anarc. A ow f isanassignmen A 7! R such that, for all i and
j,0 f5 ¢ and, for every vertex i (excepts andt), P i fii = P « Tik - The value of the
ow is P i Tsi, which is equal to P i fit. The maximum ow problem s that of determining
a ow of maximum value.

Given any ow f, we de ne the residual capacity of an arc (i;j) asrj = ¢  fj.
Intuitiv ely, the residual capacity represerts how much more ow the arc supports. When
the residual capacity is zero, the arc is said to be saturated. For most maximum ow
algorithms, it helpsto assumethat, for every original arc (i; j) with ow fj there is also
areversearc (j,i) with residual capacity fj; . Therefore, reducingthe ow on (i; j) can be
interpreted asincreasingthe ow on (j;i). The residual network of G is the subgraph of G
induced by the arcs (both original and reverse)with strictly positive residual capacity.

The residual capacity of a path in G is de ned asthe minimum residual capacity of its
arcs. If apath from sto t haspositive residual capacity, we say that it is an augmentingpath.
Based on this notion, one can de ne a simple algorithm for the maximum ow problem:
In eadh step, nd an augmening path and sendas much ow as possiblealong it; repeat
until no augmerting path exists. It is not hard to prove that this generic algorithm will
eventually nd the maximum ow, but the algorithm will not be strongly polynomial if

the choice of augmerting paths is left unconstrained. Fortunately, there are slightly more

SWe assumethe reader is familiar with the basic concepts of network o ws, so the description will be
very terse. For a more complete discussion, see[5], for example.



119

sophisticated algorithms that can guarantee polynomial-time corvergence,suc asthe one

described in the next section.

5.3.2 The Shortest Augmen ting Path Algorithm

The algorithm implemented for the experimerts is the shortestaugmenting path algorithm,
due to Edmonds and Karp [21]. In ead iteration, it performs an augmertation along the
s-t path in the residual network that has the fewest arcs (ties are broken arbitrarily). To
nd this path e cien tly, we usethe notion of distance lakels. The distancelabel of a vertex
v, denoted by d(v), is a lower bound on the distancein the residual network (in number of
arcs) from v to the sink t. An arc (i; j) is called admissibleif d(i) = d(j ) + 1. The admissible
network is the subgraph of the residual network containing only admissiblearcs. It is easy
to seethat any path from s to t in the admissible network is a shortest augmerting path.

The algorithm works as follows. It starts at the sources and grows a path one vertex
at a time, always picking an admissible outgoing arc. Whenewer it reachesa deadend (i.e.,
a vertex with no outgoing admissible arc), the algorithm backtracks and tries a di erent
outgoing arc from the previous vertex. Evertually, it will either reach t (and perform an
augmenation) or con rm that no augmerting path exists.

More precisely let v be the current vertex being processedby the algorithm. Initially ,
v s. At the beginning of an iteration, we chedk whether there is an admissiblearc (v;w)
leaving v. If there is, we advane by setting v w and pred(w) v, where pred denotes
the predecessoron the current tentativ e path; if v = t after advancing, we augmert and
start over from s. If there is no outgoing admissiblearc from v, we retreat: rst we update
d(v) (i.e., we set d(v) d(u) + 1, where u is, among all vertices for which (v;u) is not
saturated, the one with the minimum distance label), then setv  pred(v).

The algorithm proceedsuntil d(s) = n, at which point the admissible network is guar-
anteed to have no augmerting path. A tighter stopping criterion in practice is the gap
heuristic: stop when there is an integeri between0 and d(s) sud that there are no vertices

with distancelabeli. It is easyto implement this stopping criterion using counters to keep



120

track of the number of vertices with ead distance label at any time.

The running time of the maximum o w algorithm can be shown to be O(m?n). If one
maintains a current arc data structure, which keepstrack of the most recent arc taken out
of ead vertex, the total running time can be reducedto O(n?m). The reader is referred
to [5] for further details on the algorithm and its analysis.

Our implemerntation usesboth the gap heuristic and the current arc data structure.

Using ST-T rees

One of the \n" factors in the O(n?m) expressionaccourts for the fact that ead augmen-
tation may take ( n) time, sincean augmerting path may have up to ( n) arcs. If we use
a dynamic tree data structure, the time per augmeriation is reducedto O(logn), even for
sud long paths.

The data structure is usedto maintain a forest of admissiblearcs. Each tree of the forest
is rooted, and every arc (i; j ) is such that j is the parert of i in the tree and d(i) = d(j) + 1.
The costof (i; j ) in the forest represerts its residual capacity in the graph. In every iteration,
the current vertex v will be the root of the tree that contains s. Initially , v s and the
forest has no arcs.

Each iteration starts by verifying if there is an admissiblearc (v; w) leaving v. If there
is, we advane by adding this arc to the forest (with the link operation) with costr,,, and
making v ndr oot(w). If there is no admissible arc leaving v, we retreat by removing
from the forest (with cut) all arcsincident to v, updating the distance label of v (we set
d(v) d(u) + 1, where u is, among all vertices for which (v;u) is not saturated, the one
with the minimum distance label), and, nally , setting v ndr oot(s). To execute this
step e cien tly, it is conveniert to maintain for ead vertex v a list of all incoming arcsin
the forest.

After advancing, we chedk whether the current vertex v is t. If it is, we have found an
augmerting path from s to t and must sendas much ow as possiblealongit. We do this

with dynamic tree operations: we call v ndmin (s) and ndc ost(v) to determine



121

the amount by which the ow can be increased(i.e., the residual capacity of the path),
then addmst(s; ) to update the residual capacity of all arcson the path. We then remove
all newly saturated arcs from the forest by cutting all arcsthat have zeroresidual capacity.
Thesearcs can be found with repeated calls to ndmin (s).

Note that the version of dynamic trees required for this application has very restricted
properties: the data structure must maintain rooted trees, and the roots do not change
during the algorithm (exceptdueto link and cut); there is no evert operation. Furthermore,
data must be aggregatedonly along paths, not trees. Not coincidertally, these are the
properties that are handled naturally by ST-trees.

An important aspect of this application is that structural operations (link and cut) con-
stitute a large fraction of all operations. Every non-structural operation ( ndmin , addast,

ndc ost, or ndr oot) is soon followed by a structural operation.

Using Top Trees

The obvious way of using top trees within the shortest augmerting path maximum ow
algorithm is to implement the ST-tree interface on top of it. As already mentioned, this
may have an adversee ect on performance. A better alternative is to de ne the internal
operations of top trees so asto satisfy the speci ¢ needsof the maximum o w application,
but without implementing the ST-tree interface directly.

There is more than one way of doing this; we describe the one usedin the experiments.
Sincethe application hasto represen directed treeswith no evert operation, one can inter-
pret ead cluster C of the top tree asrepresening both a directed path and a rooted subtree
of the original tree. More precisely the application maintains the following elds in eat

cluster:
root(C): This is the root vertex of the subtree represenied by cluster C.

minarc(C): If root(C) is an endpoint of C, minarc(C) is a pointer to the basecluster

represerting the minimum-cost arc on the path from the other endpoint of C to the



122

root. If thereis atie, the arc closestto the root is picked. If root(C) is not an endpoint

of C, minarc(C) is null (unde ned).

mincost(C): If minarc(C) is not null, mincost(C) is the cost (i.e., residual capacity)

of the minimum arc. Otherwise, mincost(C) is unde ned.

extra(C): A lazy value to be addedto all arcs on the path represened by C. It will

always be zeroif minarc(C) is unde ned.

In general, all arcs in the subtree represerted by C will be directed towards one of
the endpoints of C (its root). The only exception is if the cluster actually contains, as
an internal vertex, the root r of the ertire tree. In this case,root(C) will be r and both
minarc(C) and mincost(C) will be unde ned. To ensurethat theseinvariants hold, the

internal operations are de ned asfollows:

C create(e): Let the endpoints of e bev and w, and assumethe edgeis directed from
v to w. The basecluster C will be initialized with root(C)  w, minarc(C) C,

mincost(C)  ryw, and extra(C) 0.

C join(A;B). Let A= (u;v) and B = (v;w). We always set extra(C) 0, but

the other elds depend on whether minarc(A) and minarc(B) are both de ned.

If oneof them is not de ned, the other will be: minarc is only unde ned for clusters
that contain the root as an internal vertex, and A and B intersect only at v. We set
root(C) to be the root of the cluster (either A or B) whoseminarc eld is unde ned,

and keepboth minarc(C) and mincost(C) unde ned.

If both minarc(A) and minarc(B) are de ned, the outcome depends on the move

being performed:

1. The move is a rake This meansthat u will disappear. If root(A) = u, we set
root(C) u and keepminarc(C) and mincost(C) unde ned. Otherwise, we set

root(C), minarc(C), and mincost(C) to the corresponding valuesin B.

2. The move is a compress There are two subcasesto consider.



123

(a) root(A) 6 root(B). In this case,paths (u;Vv) and (v;w) are oriented consis-
tently, i.e., eitheru! v! worw! v! u. Thesecasesare symmetric, SO
assumethe rst orientation holds. We setroot(C)  w and make minarc(C)
and mincost(C) refer to the minimum among the two clusters. If there is a

tie, we set minarc(C)  minarc(B), sinceB is closerto the root than A is.

(b) root(A) = root(B). In this case,v must be the root of the ertire tree, and
the two paths are not oriented consisterily: they both cornvergeto v. We

setroot(C) v, but keepboth minarc(C) and mincost(C) unde ned.

(A; B) split(C). If C is a compress cluster, we add extra(C) to the extra and
mincost elds of both child clusters. If C is a rake cluster, we add extra(C) to

extra(B) and mincost(B) only. All other elds remain unchanged.
destroy(C) doesnothing.

With these elds, using top trees within the shortest augmerting path network ow
algorithm is straightforward. For example,to nd the root of the subtree containing some
vertex v (which is necessaryafter an advanceor retreat), it suces to callC  exmpsev; )
and pick root(C).

To perform an augmenation, we rst call C expse(s;t). The current residual
capacity of the path isc  mincost(C). We decremen both extra(C) and mincost(C) by c.
We must then remove every arc that has zero residual capacity from the path represened
by C. While mincost(C) = 0, we do the following: (1) let M minarc(C); (2) call cut(M);
and (3) setC  expse(s;u), whereu is the endpoint of M that is farthest from the root
(i.e., the tail of the directed arc M represerts). At the end of this loop, we return to the
main loop of the algorithm from vertex v root(C).

Note that a single call to expseis enoughto retrieve the cost of the minimum-capacity
arc on a path, the arc itself, and the root of the path. ST-trees require calls to separate
functions ( ndmin , ndc ost, and ndr oot) to achieve the samegoal. This may be a potential

advantage of top trees over ST-trees in this application. Of course, this is an interface



124

issueonly. The top tree interface dictates that as much information as possibleshould be
made available at the root. In cortrast, eat ST-tree operation gathers a single piece of
information, but one could conceiably changethe interface of ST-treesto allow it to gather

more information in ead access.In somesensethat is what self-adjusting top trees do.

5.3.3 Exp erimen tal Results

The rst classof graphson which the maximum o w algorithm wastested is that of random
layered graphs, created with Anderson's washington generator [11]. These graphs are
de ned by two structural parameters,the number of rows (r) and the number of columns
(¢). From ead vertex in columni (1 i < c) there are outgoing arcs to three vertices
picked at random in column i + 1. The sources is connectedby an outgoing arc to all
verticesin the rst column, and the sink t hasan incoming arc from ead vertex in the last
column. Arcs incident to s and t have in nite capacity; all others have integral capacities
chosenuniformly at random from the interval [1;22°]. Note that the graph is acyclic, with
n=rc+2andm=3r(c 1)+ 2r = 3rc r.

In our experiments, we usedr = 4 and varied ¢ from 128to 32768. The fact that r isa
small constart ensuresthat every augmerting path will have ( n) vertices. For ead set of
parameters, we generated v e graphs with di erent random seeds.We ran ead algorithm
on all v e graphs and computed the averagetime. The results are showvn in Table 5.1.
Figure 5.1 refersto the sameexperimert, with times given as multiples of st-v .

Among the O(log n)-time dynamic tree implementations, vertex-basedself-adjusting ST-
trees(st-v ) led to the fastestalgorithm on all cases.Eventhough the application assaiates
values with edges,we can usethis data structure here becausethe evert operation is not
needed. This is fortunate, sinceit is almost twice as fast as the more generic edge-based
self-adjusting ST-trees (st-e ). In fact, st-e is even slower than self-adjusting top trees
(top-s ) whenthe number of verticesis small; only whenthe graph is big enoughdoesst-e ,
which is more cadhe-e cient, become(slightly) faster.

Among application-speci ¢ top trees, the self-adjusting variant (top-s ) is 3 to 4 times



125

Table 5.1: Performance of the shortest augmerting path maximum o w algorithm (imple-
mented with di erent data structures) on random layered graphs with four rows. Times
are averagestaken over v e graphsand given in milliseconds. The best time for ead input

sizeis marked in bold.

ver tices lin-v st-v st-e  top-s  topst-s top-w  topst-w
514 1.2 5.3 10.9 8.7 22.9 35.3 71.3
1026 4.8 11.2 23.2 194 48.3 82.7 160.3
2050 16.1 20.6 42.1 39.0 92.0 160.9 343.6
4098 62.3 42.8 85.4 89.6 193.0 341.2 787.3
8194 2304 95.2 186.8 206.3 407.5 818.3 1693.6
16386 903.4 189.9 351.9 4395 805.4 1481.6 3466.1
32770 6588.8 440.3 808.6 1041.6 1804.6 3714.2 7714.4
65538 59247.2 806.5 1444.3 19725 3312.3 6369.6 15302.5
131074 229333.1 1610.4 2862.6 39194 6323.8 13964.3 30632.5
256 T T T T T T T
TOPST-W —+—
128 | TOP-W % 4
TOPST-S ---%---
TOP-S & .
64 - ST-E —=— A i
STV - o~
> LIN-V e
8 32t i
(%]
o
v 16 K ]
£
S 8L ORI N i O B v A N *-mmmTTTT E
gn 4 ¥ oK Kooommmmmmmmes Koomoooeoos Rk R ~§ rrrrrrrrrrrrrr Ko Hemom o
§ e - a 0
g 3 - ———— »——ix—;;.v/-fﬁm,,,,_ﬁ ,,,,,, - - E
g -®
% 1o [ i} fffffffffffff o O R Q- SR E
05 | . e
025k i
0125 1 1 1 1 1 1 1
514 1024 2050 4098 8194 16386 32770 65538 131074
vertices

Figure 5.1: Running times of the maximum o w algorithm on random layered graphs with

four rows; all times are relative to ST-V.



126

faster than the worst-caseimplementation (top-w ), which is not surprising: the latter is a
more involved algorithm. Moreover, in this application consecutiwe callsto the dynamic tree
data structure are heavily correlated: the algorithm performsa seriesof operationsinvolving
a single path in the tree until it becomesan augmerting path. Becauseof splaying, self-
adjusting data structures are better equipped to take advantage of this locality of access.

As anticipated, application-specic top trees are signi cantly more e cien t than top
trees with the ST-tree interface. Comparing the worst-caseversions, we seetopst-w is
more than twice as slowv as top-w . The dierence between the self-adjusting versions
(topst-s and top-s ) is slightly smaller, especially when the number of vertices is large.
This discrepancy can once again be explained by the fact that the extra calls made to
implement the ST-tree interface are correlated, and self-adjusting data structures can take
more advantage of this. Eventhough topst-s performs more operations than top-s , these
operations are still well correlated.

Finally, we obsene that the obvious, linear-time implementation of the ST-tree interface
(lin-v ) doesrather well on small graphs: up to around 3000vertices, it leadsto the fastest
algorithm. Sincethe length of the augmening paths growslinearly with graph size,however,
the algorithm is evertually surpassedby the other methods.

To test the maximum o w algorithms on graphswith smaller diameter, we useddirected
squaremeshes also created by the washington generator. A meshwith parameter k has
a special sources, a special sink t, and k? other vertices arranged as a squaregrid. Each of
thesek? verticeshas an outgoing arc to ead of its up to four neighborsin the grid. Vertices
on the border will have fewer grid neighbors. In addition, there is an outgoing arc from s
to eadt vertex of the rst column of the grid and an outgoing arc from ead vertex of the
last columnto t. The arcsincident to s andt have in nite capacity; all other capacitiesare
integers picked uniformly at random from the interval [1;22°]. Nine valuesof k were tested
(16, 22, 32, 45, 64, 90, 128, 181, and 256) with v e graphs ead (with di erent random
seeds).Sincegraph sizeis proportional to k?, it roughly doublesfrom one value of k to the

next.



127

Table 5.2: Performanceof the shortestaugmerting path maximum o w algorithm on square
meshes(with additional sourceand sink). All times given in milliseconds. The best time
for ead input sizeis marked in bold.

ver tices lin-v st-v st-e top-s  topst-s top-w  topst-w
258 0.7 3.8 8.5 5.6 16.0 19.6 30.3
486 1.7 8.4 18.3 12.6 34.6 48.6 72.3
1026 4.4 20.0 45.2 31.2 82.6 135.8 192.0
2027 13.6 52.2 115.2 82.2 206.1 373.3 521.4

4098 55.3 167.8 356.7 272.2 605.0 1247.4 1660.9
8102 218.4 506.8 1041.5 781.5 1616.4 3836.8 4703.5
16386 992.3 1835.4 35679 2668.6 5216.2 12964.8 16030.6
32763 34953 5333.4 9939.3 7543.7 13926.3 38102.0 47082.0
65538 16040.0 23617.4 43374.4 30434.8 59309.8 176539.8 207077.3

16 T T T T T T T
8 [ [ VS Xommmmmm s X ORI -3
- e -
> k
e 4 ¥ e SEEETEEEEERRRRS S % . 4
e ke
g [
=1 . | P e
g 5 = - P - e
g p E o S ° -8 =} B
E‘” ]
£ 1 O O e O [FCEN - [ [ [ E
5
o) e
)
s 05 IR -
& . TOPST-W —+—
. OP-W —x—-
TOPST-S ---%---
L e TOP-S —&—
0.25 T Ps o
. STV —o -
LIN-V ----e
0125 1 1 1 1 1 1 1
258 514 1026 2050 4098 8194 16386 32770 65538
vertices

Figure 5.2: Running times of the maximum o w algorithm on squaremeshes;all times are
relative to ST-V.



128

Table 5.2 shows the averagerunning times of the maximum o w algorithm with various
dynamic-tree data structures. Figure 5.2 refersto the sameexperiment, but with running
times given with respect to st-v .

The results are consistent with those obtained for random layered graphs, with one
main exception: now that augmerting paths have length ( P n), lin-v remainsthe fastest
alternativ e for much larger graphs. Its speedupwith respectto the O(log n) data structures
doesget smaller as n increases,but with as many as 65538 verticeslin-v is still the best
option.

Also, in this classof graphstop-s is consistenly fasterthan st-e , and for larger graphs
it takeslessthan 50% more time than st-v . This good performancecan be explained by the
fact that the top tree interface allows us to gather more information from the root cluster.
A single call to expose givesus accesdo the root vertex, the minimum arc, and the cost of
the minimum arc on the path. In corntrast, with st-v onemust call three separatemethods

to get this information.

5.4 Online Minim um Spanning Forests

The secondapplication we consideris the online minimum spanning forest problem, also
known asthe semi-dynamic spanning forest problem. The goalis to maintain the minimum
spanning forest of a graph to which edgesare added one at a time. The number of vertices
in the graph (n) is given in advance,but the set of edgesis initially empty. We denote the

total number of edgesevertually addedto the graph by m.

5.4.1 The Algorithm

Dynamic tree data structures can be usedto processead new edgein O(logn) time. At
all times, the data structure maintains the current minimum spanning forest (MSF). When
a new edgee = (v;w) with costc is addedto the graph, we determine if v and w are in the
samecomponert of the MSF. If they are not, we just add e to the forest. If they are in the

samecomponert, we determine the maximum-cost edgee® on the current path betweenv



129

and w in the MSF. If e°costsmore than ¢, we remove e’ from the forest and add e; otherwise
we discard e. This algorithm is a straightforward application of the \red rule" described by
Tarjan in [54, Chapter 6]. It statesthat, if an edgeis the most expensive of some cycle in

the graph, then it doesnot belongto the minimum spanning forest.

Implemen tation with ST-trees. To determine if v and w are in the same componert
using ST-trees, we rst call evert(v) then ched if ndr oot(w) = v. If this is not true, we
simply call link (v;w;c). Otherwise, we call u ndmax (w), then c° ndc ost(u). If
> ¢, we perform cut(u), then link (v; w; c).

Obsene that ndmax technically doesnot belongto the ST-tree interface. Although
implemerting it would be relatively easy (it is analogousto ndmin ), we can actually pre-
sene the original interface by negating all the weights when dealingwith the data structure.
Whenewer an edgewith costc is to be inserted into the tree, we do it with cost c¢. When-
ever we needto call ndmax, we call ndmin . Finally, if ndcost returns a value c, we
interpret it as c.

Since the algorithm needsthe evert operation, we cannot use the simpli ed version of
ST-trees that assaiates values with vertices (st-v ). We must use st-e , which explicitly

maintains valueson edges.

Implemen tation with top trees. Toimplemert the algorithm usingtop trees, it su ces
to keeptwo piecesof information in ead cluster C = (v;w): the cost of the most expensivwe
edgeon the path from v to w, and a pointer to the basecluster represening this edge. Ties
are broken arbitrarily . Implementing the internal top tree operations to maintain these
values appropriately is trivial: the only actual processingoccurs when the join operation
processes compresscluster, when it copiesthe information from the child with maximum
cost.

To processan edge (v; w) with cost ¢, the online minimum spanning forest algorithm
rst callsC  exmseg(v;w). If C = null (meaningthat v andw arein di erent componerts)

welink v and w. Otherwise, if the value storedin C is greaterthan c, we cut the maximum-



130

length edgeand uselink to add (v;w) to the forest.

5.4.2 Exp erimental Setup

Four di erent data structures were tested in the solution of the online minimum spanning
tree problem: edge-basedself-adjusting ST-trees (st-e ), the obvious linear time implemen-
tation of the ST-tree interface (lin-e ), worst-casetop trees (top-w ), and self-adjusting top
trees (top-s ). Both versionsof top trees are application-speci c: topst-s and topst-w
which are much slower, have not beentested.

For reference,we also ran Kruskal's algorithm for the (o ine) minimum spanning tree
problem[18,40,54]. Our implementation copiesthe ertire list of edgesto atemporary array,
sorts them by costwith quicksort with the median-of-three pivot-selection strategy [18, 49,
then processeghem in this order. Every edgethat doesnot create a cycle is marked as
belongingto the forest. The algorithm stopswhenn 1 edgesare inserted or (if the graph
is disconnected)when all m edgesare processed.To keeptrack of connectedcomponerts
and detect cycles, we use a union- nd data structure with path compressionand union
by rank [18, 54]. It ensuresthat ead edgeis processedin (m;n) amortized time, where

is an extremely slow-growing functional inverse of Ackermann's function. The running
time of the algorithm is therefore dominated by the time to sort the input list, which is
O(mlogm). The online algorithms have the same asymptotic bound (as long asm is a
polynomial function of n, which is the casein our experimernts), but we shall seethat the
constarts assaiated with Kruskal's algorithm are much lower.

In the maximum ow algorithm studied in Section 5.3, the number of queriesto the
forest was roughly the sameasthe number of structural operations (links and cuts). With
online minimum spanning forests, this is not necessarilytrue, since a query ( nding the
maximum-weight edge on a path) might not be followed by a link or cut. As a result,
queriesmay be asymptotically more numerousthan structural operations. In fact, we will
seethat the number of structural operations performed by the algorithm when processing

a xed graph dependson the order in which the edgesare processed.



131

5.4.3 Random Graphs

To create a random graph with n vertices and m edges,we generate ead edgein turn
by picking a pair of distinct endpoints uniformly at random. Note that the graph is not
necessarilyconnectedand that multiple edgesbetweenthe samepair of verticesare allowed.
Edge costs are also picked uniformly at random from the interval [1;1000]. For every set
of parameters, v e graphs with di erent random seedswere tested; we report the average
results.

In our rst experiment, we xed the number of verticesat n = 4096 and varied m, the
number of edges. Figure 5.3 shows how the performance of the MSF algorithm depends
on m when edgesare processedn random order. For ead value of m, the plot shows the

averagetime to processan edge.

72 T T T T T T

LIN-E 8
KRUSKAL -

36 E

microseconds per edge

24 b .

TS .

””” ]
0 L » b J . J b o L o
8192 16384 32768 65536 131072 262144 524288 1048576
number of edges

Figure 5.3: Online minimum spanningforests: Averageprocessingtime per edgefor random
graphs with 4096 vertices. Edgesare processedn random order.

The rst obsenation to make is that lin-e is signi cantly faster than all O(logn)-time



132

data structures. Becausethe graphs are random, all paths traversedare expectedto have
only O(logn) edges. The running time of Kruskal's algorithm is comparable to that of
lin-e ; it is even slightly faster when the number of edgesis large.

When there are few edges,the relative performanceof the other data structures is the
same as with maximum- ow algorithms: st-e is faster than top-s , which is faster than
top-w . As the number of edgesincreases,however, top-w evertually becomesfaster
than top-s . The reasonis that the fraction of edgesthat are actually inserted into the
forest decreasesas the graph becomesdenser. More precisely if m is the number of edges

processedthe expected fraction of edgesthat are actually inserted is O((log m)=m):

Lemma 13 Let G be a random weightal multigraph on n vertices and m edges,with edge
weights assignel independently at random. If the edgesare processel in random order, the
expected number of edgesactually inserted by the online minimum spanning forestalgorithm

(i.e., the numker of links) is O(nlogm).

Pro of. Let g be the i-th edgeprocessedby the algorithm, and let p; be the probability
that it is inserted into the current minimum spanning forest. By de nition, this is exactly
the probability that e belongsto the minimum spanning forest of the subgraph G; of G
containing only the rst i edgesof the sequence.Becausethe sequences random, G; is
alsoa random multigraph with random edgeweights. Every edgein the sequencéiasequal
probability of belongingto the minimum spanningforest. Sincethe forest hasno more than
n 1edges,p < n=i. By linearity of expectation, the total number of insertions is bounded

P P
by I, p< 2 n=i=0(nlogm). 5

When m is large enough, the running time of the online algorithms is dominated by
exmse operations, which are much cheaper for the worst-casedata structure than links and
cuts are. Recall that expose doesnot require top-w to actually rebuild the contraction: it
just builds a temporary tree on the side.

Figure 5.4 refersto the sameexperiment: random graphs with 4096 vertices and edges

processedin random order. Instead of comparing running times, it shows the average



133

number of calls to join per edgeas a function of the total number of edgesprocessed.

50 | P .

joins per edge

/
/
45 | / .
/
/

35 1 1 1 1 1 1
8192 16384 32768 65536 131072 262144 524288 1048576

number of edges

Figure 5.4: Online minimum spanning forests: Average number of calls to join per edge
processedon random graphs with 4096 vertices.

The plot shows that top-w must create more new clusters to processead edgein
the input than top-s does. As the number of edgesincreases,the di erence betweenthe
algorithms starts to decrease.The averageexpmse operation in top-w clearly a ects fewer
clustersthan in top-s , but links and cuts in top-w are somuch more expensiwe that top-s
still dominates with more than one million edges. Comparing Figures 5.3 and 5.4, we see
that not only doestop-w needto manipulate more clusters than top-s when performing
structural operations, but the running time per cluster is also larger. When m = 16384,
for instance, top-w executesonly 30% more joins on average, but is twice as slow. The
situations is reversed when exmse operations are more numerous: with 1048576 edges,
top-w still executesmore operations on average,but it is faster.

In another experiment with the samegraphs, we considerwhat happenswhen edgesare

processedn increasing order of cost. In this case,there will be no more than n 1 links,



134

and cut will never be called. One expects an even greater fraction of the running time to
be dominated by expose operations. Figure 5.5 con rms that the performanceof top-w is
even better than when edgesare processedn random order. The self-adjusting algorithms
(st-e andtop-s ) are alsofaster than before,but by a much smaller factor. Both lin-e and

Kruskal's algorithm remain largely una ected.

72 T . . . I I
TOP-W —+—
TOP-S ——-x—--
°T ST-E ------ |
LIN-E &
KRUSKAL --m-—
o 48[ _
>
o
]
@
o
2]
2 36 _
<}
(5]
@
%)
o
S
E 24 _
- CeXemmmmmT T Xemmmmmmmmmooo K-
L2F = e | }
! [ S GRREEEEEEE R Koo R e . I
0 | w S % N . i
8192 16384 32768 65536 131072 262144 524288 1048576

number of edges

Figure 5.5: Online minimum spanningforests: Averageprocessingiime per edgefor random
graphs with 4096 vertices. Edgesare processedn increasingorder of cost.

Figure 5.6 presens the opposite extreme. When edgesare processedn decreasingorder
of cost, every edgewill causea structural operation, exceptin the rare caseof a tie. All
algorithms are signi cantly a ected, but nonemore than top-w , which becomesalmost v e
times slower than when edgesare given in increasing order. Not only do the self-adjusting
data structures have simpler update algorithms (they do not needto maintain Euler tours,
for example), but they also benet from the fact that structural operations are always
performed on paths that are already exposed. Due to splaying, the relevant nodestend to

be closerto the root of the top tree.



135

72

60 | E ke .
LIN-E g
KRUSKAL --m--

48

©
=)
ke)
@
@
o
2]

T 36 | _
<}
(5]
@
I}
o
S

E 24 + [V Memmmmmmmmmmm o i EO E

N
X
7 O e B R Koo Koo ¥
0 o L] L] o e
8192 16384 32768 65536 131072 262144 524288 1048576

number of edges

Figure 5.6: Online minimum spanningforests: Averageprocessingiime per edgefor random
graphs with 4096 vertices. Edgesare processedn decreasingorder of cost.

5.4.4 Circular Meshes

We also tested the minimum spanning forest algorithm on circular meshes. In a circular
meshwith r rows and ¢ columns, the vertices are organizedasanr c grid, with edges
between eat vertex and its four neighbors. To handle the borders, we considerthe rst
and last columnsto be adjacent; the sameholds for the rst and last rows. The number
of verticesis n = rc and the number of edgesis m = 2rc. Edge weights are picked at
random from the interval [1;1000]. In the experiment, edgeswere always processedin
random order. Once again, we generated v e graphsfor ead set of parametersand report
the averageresults.

We rst consider symmetric circular meshes,i.e., those with r = c. Figure 5.7 shows
the averagetime necessaryto processan edgewhenr and c vary from 16 to 512.

An important di erence betweenthe results for meshesand random graphsis that on
meshesthe performance of top-w is relatively worse, compared to the other methods.

Becausethe graph is very sparse,links and cuts make up a much larger fraction of the



136

60 T T T T

microseconds per edge

256 1024 4096 16384 65536 262144
vertices

Figure 5.7: Online minimum spanning forests: Average processingtime per edgefor sym-
metric circular mesheswith varying number of vertices.

operations than on denserrandom graphs.

But the most obvious di erence betweenthese results and those obtained for random
graphsis that the linear-time implementation of ST-trees(lin-e ) is no longer superior to the
other data structures for every value of n. This can be explained by the fact that symmetric
circular mesheshave diameter ( P n), asopposedto (log n) for random graphs. Oncen
is large enough, the linear-time algorithm ceasedo be the best option. This only happens
for valuesof n as high as 100000, however.

It should be noted that the ndmin operation is not the bottleneck of lin-e . When an
edge(v;w) is examined, the expected length of the path betweenv and w is actually quite
small, given the restricted topology of meshes. In the experiment, the averagelength of
the exposedpaths increasesvery slowly, from 7.5 edgeswhen n = 256 to 46.2 edgeswhen
n = 262144. However, before actually calling ndmin (v), we must call evert(w), which
reversesthe path betweenw and the current root. Since the current root is a random

vertex (one of the endpoints of the previous edge processed),the expected length of this



137

path is proportional to the diameter of the tree. In the experimerts, the average number
of vertices visited by evert ranged from 13.1to 790.3,thus making evert the bottleneck of
the algorithm.

To better understand how the algorithms depend on the diameter of the graph, we
performed a secondexperiment in which the number of vertices n was kept constart at
65536, but the number of rows and columns varied. We tested values from r = 2 (and

c= 32768)to r = 256 (and ¢ = 256). The results are preseried in Figure 5.8.

70 T T T T T T

60 ST-E % P 4
LIN-E &
KRUSKAL - -#

50 i

microseconds per edge

R

il

256 512 1024 2048 4096 8192 16384 32768
columns

Figure 5.8: Online minimum spanningforests: Averageprocessingtime per edgefor circular
mesheswith 65536 vertices and varying number c¢ of columns. The number of rows, which
is 65536=¢c, varies accordingly.

Onceagain, the behavior of lin-e standsout. The diameter of the graph is proportional
to the number of columns. An increasein this number should hurt the performanceof the
algorithm, and this is indeed what happens as long as the number of columns is not too
large. When it is large, there are very few rows, and as a result the graph has ( n)

balanced cuts of very small size(i.e., cuts with few edgesthat separatethe graph into two



138

large componerts). Sincethe edgesare processedn random order, it takeslonger until very
large componerts are formed. The algorithm will eventually have to deal with componerts
that have very high diameter, but it spends most of its time processingmuch smaller
componerts. The fact that it takeslonger for large componerts to form also explains why
the other implementations (using st-e , top-s , and top-w ) becomefaster as the number
of rows decreases.As expected, changesin the graph topology have no measurablee ect

on the performanceof Kruskal's algorithm.

5.4.5 High-Degree Vertices

An important di erence between self-adjusting top trees and ST-trees is how they handle
vertices of high degree. While ST-trees use dashededgesto link children directly to their
high-degreeparert, self-adjusting top trees must build rake treesto aggregateinformation
stored in the children.

To asseshiow high-degreeverticesa ect the relative performanceof the data structures,
we tested the online minimum spanningforest algorithm on augmentel stars. An augmened
star is a graph with three parameters: the number of spokes (which we denote by k), the
length of eat spoke (*), and the total number of edges(m, which must be at leastk’). It
cortains a certral vertex from which k paths of length * (the spokes) emanate;we call this
subgraph a star. The remainingm k™ edgesconsist of pairs of distinct vertices picked at
random from the spokes. Parallel edgesare allowed. Figure 5.9 shows an augmened star
with k = 8 spokesof length ~ = 6.

In the experiments, the costsof the k™ edgeson the star were setto 1 and the costs of
the remaining edgesto 2. In order to create a vertex of high degreeas soon as possible,we
make the minimum spanning forest algorithm processthe edgesof the star rst, and only
then, in random order, the remaining edges.Only the rst n 1 edgeswill be inserted into
the tree. The others will essetially amount to queries: to test an edge (v;w), the data
structure must nd the most expensivwe edgeon the path betweenv and w in the star. For

large valuesof k, this path is very likely to contain the certer, which at this point will have



139

Figure 5.9: An extended star with eight spokes of six vertices eath. The star itself is
the minimum spanning tree, and its edges(represened by solid lines) are the rst to be
processedn the experiment. The additional edgeqrepreseried by dashedlines) link random
pairs of vertices and are never added to the minimum spanning tree.

very high degreewithin the tree.

We rst considergraphsof xed size(n = 65537and m = 655370),but with a varying
number k of spokes. Of course,the length ~ of ead spoke must vary aswell: for any xed
value of k, © must be 65536=k. Figure 5.10 shaws the averagetime to processan edgeasa
function of k. Five graphs were tested for ead value of k.

For k = 2, the star has only two spokes, which makesit a path on n vertices. As k
increasesthe diameter of the tree decreasesbecomingas small as2 whenk = 65536. This
has an obvious e ect on the linear-time data structure, whoserunning time per operation
is proportional to the diameter. Evertually, lin-e becomesthree times as fast as Kruskal's
algorithm. ST-treesalsobenet from an increasein k. When k = ( n), there will be ( n)
splay trees of constart size linked by dashed edgesto the node represeting the certral
vertex of the star. When k = 65536,the algorithm is four times asfast aswhenk = 2.

In cortrast, top treesdo not benet from an increasein k. As already mentioned, self-

adjusting top trees must maintain a rake tree (or two, becauseof the circular order) to



140

N s
S i}
o
s ;
g 20 ; :
@ ;
<] S
c
8 —_—
@ k----=2 K== AR X=mmm= X=mm LT TN Xombolg ox
g 15| X e e T o
3 S R
L k
1S KL
10 8 * 4
5 ) <7
K3
B
g . - - - - | . - S Wl
O 1 1 1 1 1 1 1 1 1 1 1 1 [l

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
number of spokes

Figure 5.10: Online minimum spanning forests: Averageprocessingtime per edgefor aug-
mented stars with 65537vertices and varying number of spokes.

aggregatethe information about the edgesincident to the high-degreevertex, and accessing
this tree already takes logarithmic time. Worst-casetop trees do not have explicit rake
trees, but they still have logarithmic height regardlessof whether more rakesor compresses
are performed. Onceagain, the performanceof Kruskal's algorithm doesnot depend on the

topology of the graph.

With the sameclassof graphs, we performed a secondexperimert in which the length °
of eadh spoke was xed at 64, but the number of spokesvaried from k = 2to k = 1024. The
total number of vertices varied accordingly, from 128to 65536. In ead case,the number
of edgesin the graph wassetto 10n. Figure 5.11 shows how the averagetime to processan
edgevariesask increases.

In this experiment, onewould expect the time it takesfor st-e to processan edgeto be
independent of the number of spokes. Indeed, this is what happensup to around 32 spokes,
at which point the running time slowly starts to increase. As Section 5.4.6 will show, this

can be attributed to cace e ects: querieson larger trees have lesslocality, and therefore



141

30 T T T T T T T T

KRUSKAL --m-

microseconds per edge

number of spokes

Figure 5.11: Online minimum spanning forests: Averageprocessingtime per edgefor aug-
mented stars with spokesof length 64.

accessmain memory more often.

Cadhe e ects also explain why the slopesof the curvesrepreseting top-w , top-s , and
lin-e increasewhen the number of spokesreachesa certain value. Note that the in ection
point is approximately 32 for top-w , 64 for top-s , and 256 for lin-e : the more space-

e cien t the algorithm is, the later the in ection point is readed.

5.4.6 Memory Usage and Cache E ects

In this section, we investigate in more detail how the performance of the data structures
is a ected by the memory hierarchy. If there were no memory hierarchy (i.e., no cade),
running the online minimum spanning tree algorithm on a random graph on n nodes and
m edgesshould be no more expensive (per edge) than processingtwo or more copies of
this graph at once. Due to cacing, one should expect all algorithms to slow down as the
number of copiesincreases.

To test this hypothesis, we created a family of graphswith three parameters: the num-



142

ber of componerts (c), the number of vertices per componert (n9, and the averagenumber
of edgesper componert (m9. The graph will have n = cn®vertices, partitioned (at random)
into ¢ componerts with n°vertices each, and m = cm®edgesin total. Each edgeis gener-
ated by rst picking a componert uniformly at random, then a pair of vertices from this
componert (also at random). Edge costsare drawn from the interval [1;1000]. Figure 5.12
shaws the running time (per edge) of the online minimum spanning forest algorithm using

n%= 32 and m®= 128, with the number of componerts varying from 1 to 65536.

25 T T T T T T T

20 - KRUSKAL --m- b

microseconds per edge

o ) @ h
.7<!/'/"/VEI*’""’4._7_._7_|
T e B
ol = i = I e Ho i | 7 1 1
1 4 16 64 256 1024 4096 16384 65536

components

Figure 5.12: Online minimum spanning forests: Performanceof the online minimum span-
ning forest algorithm on graphs consisting of 32-vertex componerts with 128 edgesead (on
average). The number of componerts varies.

In theory, the averagerunning time per edgeof all online algorithms should be inde-
pendent of c. As long asthe number of componerts is small, this is indeed what happens.
Howewer, once c is large enough, every algorithm starts to get slower as c increases|this
indicates that the data structures no longer t in cacte, and main memory is accesseanore

often. Eventually, all curvesessetially level o, indicating that most of the computation



143

happensin main memory. The running time of some of the algorithms (notably top-w
and top-s ) actually starts increasing again after this plateau is reathed, however, which
indicates that they occasionally make use of virtual memory:.

The plot makes it clear that data structures that require more bytes per vertex are
a ected sooner: top-w readiesan in ection point rst, then top-s , then st-e , and nally
lin-e . Interestingly, the data structure whoseperformanceis most dependert on the mem-
ory hierarchy is the simplest one, lin-e . When the number of componerts is small, lin-e
can processead edgein around 0.2 microseconds|the actual valueis 0.23for c= 512. Due
to cadhe e ects, however, the algorithm becomesalmost 15 times slowver: with 16384 com-
ponerts, eat edgeis processedn 2.9 microsecondson average. The other data structures
only slow down by a factor of 2 to 3.

The lin-e algorithm is more dependent on cade precisely becauseit is so simple: it
essetially does nothing but memory accesses.Most of its methods consist of following
parent pointers, with little (if any) additional computation. If its nodesdo not t in cace,
the algorithm will spend most of its time accessingnain memory. The other data structures
must accessmore data, but included in their original running time is the time to actually
processthe data: performing rotations, testing for new moves, updating vertex ID's, and so
on. When the number of vertices increases the time to processthe data doesnot increase
asmuch asthe time to fetch it from memory. The overall e ect on performanceis therefore
not as pronouncedas with lin-e .

Kruskal's algorithm has running time O(clogc) when n® and m® are constart, which is
asymptotically worsethan the online algorithms. Becauseit hasbetter locality, however, it
actually becomesghe fastestof all algorithms (evenlin-e ) when operating in main memory,

at least for the graph sizestested.

5.5 Single-Source Shortest Paths

Both applications discussedso far, maximum o ws and online minimum spanning trees,

require dynamic trees to perform only path operations. We now consider an application



144

that requiresinformation to be aggregatedover ertire trees: a label-correcting single-source
shortest path algorithm. Given a directed graph G = (V;A) (with jVj = n and jAj = m)
with arbitrary arc lengths *( ) and a sources 2 V, the algorithm either nds the distances
from s to every vertex in V, or detects a negative cycle if there is one. A negative cycle is

a directed cycle suc that the sum of the lengths of its arcsis negative.

5.5.1 Algorithm

A genericlabel-correcting algorithm assignsto ead vertex v a distance lakel d(v) represert-
ing an upper bound on the distancefrom sto v.* Initially , wesetd(s) Oandd(v) 1
for all other verticesv. When an arc (v;w) 2 A is such that d(w) > d(v) + “(v;w), we can
relax it by setting d(w) d(v) + “(v;w). While there are arcs that can be relaxed, the
algorithm picks one and relaxesit. If there are no negative cycles, evertually there will be
no arc to be relaxed, and the algorithm terminates with exact distancelabels,i.e., d(v) will
represen the actual distance from s, for all v.

The algorithm will be correct regardlessof which arcis relaxedin ead step. To guarantee
that it will be e cien t, howewver, we need a more restrictiv e selection scheme. A possible
rule is to arrange the arcsin some xed order (it doesnot matter which) and to work in
passes Each passprocessesad arc in the list exactly once, relaxing those that can be
relaxed. The algorithm stopsassoon asthere is a passthat relaxesno arc. This rule ensures
that, after k passes,all shortest paths with k arcs or fewer will have beenfound. When
there are no negative cycles,no shortest path will have morethan n 1 arcs, which means
the algorithm will never executemore than n passes.In fact, an edgewill be relaxed during
the n-th passif and only if there is a negative cycle in the graph. Since ead passcan be
implemerted in O(m) time, the total running time of this algorithm (due to Bellman [12])
is O(mn).

When we relax an arc (v; w), we are e ectiv ely making v the parent of w in a candidate

shortest path tree rooted at s. Moreover, we are reducing the distance label of w by some

“Once again, the description of the algorithm will be terse; for more details, see[5], for example.



145

value . At this point, we know that the distance labels of all descendais of w in the
current tree could also be reducedby at least . This is not done automatically, however;
it may take seweral passeauntil all the arcsin the subtree are processedn the correct order

and the distance labels are updated.

Using ET-trees. The updatescan be performed automatically with a dynamic tree data
structure that allows aggregation over trees. This meansthat standard ST-trees cannot
be used, but ET-trees can. The data structure is usedto represen the current tentative
shortest path tree, and the value of a vertex refers to its distance label. To processan
arc (v;w), we call ndval (v) and ndval (w) to nd the distance labels of v and w. If
d(w) < d(v) + “(v;w), werelax the arc asfollows: (1) cut the arc betweenw and its current
parent; (2) call addval(w;d(v) + “(v;w) d(w)) (thus decreasingthe distance labels of all
edgesin the subtree rooted at w); and (3) link the new edge. The data structure interface
is de ned sothat the link operation fails if (v; w) createsa cycle; sincethis can only happen

when the cycle is negative, we can stop at this point.

Unfortunately, this algorithm doesnot reducethe number of passeghat may be neces
sary in the worst case:it is still ( n). Sinceead edgecan be processedin O(logn) time
using ET-trees, the total running time of the algorithm is O(mn logn), which is actually
worse than Bellman's original implementation. The algorithm using dynamic trees could
conceiwably require fewer passego corverge,however. Moreover, it detectsa negative cycle
assoon asoneis created, thus eliminating the needto keepthe algorithm running until the
n-th pass.

In practice, a simple modi cation of Bellman's algorithm|p eriodically running a linear-
time cycle-detecting routine|will  also eliminate the needto run all n passesand will be
much faster than the algorithm using dynamic trees. For an experimental evaluation of this

and other algorithms for this problem, the readeris referred to [15].

Using top trees. Evidently, we can usetop treesinstead of ET-trees. We keepa global

array a[ ] of sizen to represen distance labels and maintain a single eld extra(C) in each



146

cluster C represerting a value to be added to all internal vertices of the cluster. When
create or join are applied to the cluster, this value is set to zero. When it is split, we
increment the extra elds of both children by extra(C) and do the samefor a[v], wherev
is the vertex eliminated by the move C represens. To query the actual distance label of v,
we must rst exposev, then look at aJv]. To decremen by the distance label of every
vertex in atree rooted at v, we rst run C  exms€Vv) then decremen extra(C), av], and

ajw] by , wherew is the secondendpoint of C (besidesv).

5.5.2 Experiments

Wetestedthe single-sourceshortest path algorithm on random graphswith an addedHamil-
tonian cycle. A graph with n verticesand m edgegwith m  n) is generatedby rst picking
arandom circular permutation of the verticesand creating a cyclein which adjacert vertices
in the permutation are connected;the remainingm n edgesare then addedat random. We
always usedm = 4n and varied n. For eat value of n, v edi erent graphsweretested. Arc
lengths are chosenat random from the interval [1;10] for arcsin the original Hamiltonian
cycle, and from [1;1000]for the remaining arcs.

Since all arc lengths are positive, the graph is guararteed to have no negative cycle.
But, asdescribed, it has no negative path either, which makesit lessinteresting. To create
negative paths, we assigneda potential (v) chosenat random between 1000and 1000to
ead vertex v in the graph and replacedthe length " (v;w) of ead arc (v;w) by its reduced
cost, de ned as qv;w) = “(v;w) (v) + (w). This transformation doesnot changethe
length of any cycle in the graph, sincethe sum of the potentials telescopes. In particular,
no negative cycle will be created, but paths with negative lengths will.

Figure 5.13 shaws the averagetime per edgeper iteration required by ead algorithm.
Three of the algorithms (top-w , top-s , and et-s ) usea dynamic tree data structure; the
fourth, which we refer to as bellman , is a direct implementation of Bellman's algorithm.
All four algorithms processthe edgesin the sameorder in ead iteration, but the order is

determined at random.



147

45 T T T T T T T T T

40 TOP-W —+— A

ET-S ---%--

35 L BELLMAN & ]

microseconds per edge per iteration

O i £ & & £ & & & & oo h
64 128 256 512 1024 2048 4096 8192 16384 32768 65536
vertices

Figure 5.13: Single Source Shortest Paths: Averagetime to processan edgeon random
graphs with an added Hamiltonian cycle.

The gure shawsthat worst-casetop trees are competitiv e with self-adjusting top trees.
This indicates that a sizeableportion of the arcs processedare not actually inserted into
the tree: only exmse is performed. Table 5.3 con rms that this is indeed what happens,
especially as the number of vertices increases: evertually, lessthan a tenth of the arcs
processedcausean insertion into the tree.

The gure alsoshowsthat ET-trees are 2 to 3 times faster than self-adjusting top trees.
This can be explained by the fact that ET-trees are more space-e cient and simpler to
update. Rather than being a collection of rake and compress trees, an ET-tree is just a
splay tree. A typical query will require a single splay in the tree.

Eventhough ET-trees are more e cien t than the other O(log n) data structures, nding
shortest paths using them is still much slower than using the standard implementation of
Bellman's algorithm, which can processan edge hundreds of times faster. As Table 5.3
shaws, ET-trees do reducethe number of iterations, but by an amount not nearly enough

to o set the extra cost per iteration. For every graph sizetested, Bellman's algorithm was



148

Table 5.3: Single-sourceshortest paths: For eatd graph size, the table shaws the average
number of iterations, the averagepercertage of arcsthat causelinks to be performed (i.e.,
are relaxed), and the averagerunning time of the ertire algorithm (in milliseconds). The
corresponding valuesfor top-w and top-s are identical to those obtained by et-s , except
for the running time.

itera tions links (%) tot al time (ms)

ver tices  bellman et-s  bellman et-s  bellman et-s
64 15.6 6.0 10.1 128 0.04 3.70
128 20.0 6.8 9.0 11.6 0.10 9.63
256 21.0 8.0 9.1 10.3 0.22 25.34
512 26.0 8.6 7.8 9.5 0.52 63.11
1024 286 8.8 7.8 10.0 1.21 143.17
2048 31.0 10.0 7.8 9.3 2.68 361.80
4096 35.8 10.2 7.4 9.0 6.40 843.94
8192 39.2 114 7.1 8.4 17.04 2351.04
16384 40.8 12.2 7.2 8.2 35.22 6623.59
32768 486 12.8 6.5 8.2 119.68 17571.73
65536 49.0 134 6.8 7.8 907.20 44273.27

at least 48 times faster than ET-trees.

5.6 Random Op erations

The experiments described so far use dynamic trees within more involved algorithms, in
which structural operations (links and cuts) are typically correlated. In the maximum ow
application, a query is always followed by a link or cut involving an edgeon the samepath.
For online minimum spanning forests, a cut is always performed on an edgefrom the path
queried immediately before.

In this section, we comparethe algorithms when executing a random sequenceof links
and cuts on an n-vertex forest, with no queries. A sequenceof m operations is determined
(a priori ) asfollows. The rst n 1 operationsare links that createa random spanningtree.
The m n+ 1remaining operations are alternating cuts and links: we remove a random
edgefrom the current tree and replaceit with a random edge between the two resulting
componerts.

We repeated this experiment for seweral valuesof n, always with m = 10n. Sincethere



149

are no queries,we ran this algorithm with ET-trees, all variants of ST-trees, and top trees.
For top trees, we maintained in ead cluster the same elds asin the minimum spanning
forest application. For ead value of n, v e input sequenceswere tested. The average

running times per operation are reported in Figure 5.14.

s 8 o Lk B ]
ki » x "gl e B = L ;7,
Y S e
o ¥  me—me
5 [
Q I S
8 2 g I . 4
©
S - .
3 e e
g ir o’ o T
o L.
g .
05 F o TOP-W —+— -
o - TOP-S ---x---
-7 ET-S ---%---
0.25 - e P ST-E 8- 4
o o STV ——m—
- LIN-E - -0 -
oazs | e LIN-V e |
Pag .. -
e
0.0625 L—=—1 L L L L L . . \
64 128 256 512 1024 2048 4096 8192 16384 32768 65536
vertices

Figure 5.14: Performanceof various data structures while executing a randomized sequence
of links and cuts, with no queries.

As one would expect from previous experiments, worst-casetop trees (top-w ) are the
slowest among the O(log n)-time data structures. Howewer, top-w is only roughly twice
as slow as top-s ; within the maximum o w algorithms, top-s is 3 to 4 times faster, as
Figures 5.1 and 5.2 show. This con rms that self-adjusting top trees do benet from the
fact that consecutive operations within the maximum o w algorithm tend to be correlated.

Among the other O(log n)-time algorithms, st-v is the fastest, roughly twice as fast
astop-s , st-e, and et-s when the number of vertices is small. These three algorithms
have similar performancewhen n is small, but when the graph sizeincreasesst-e becomes

the fastest amongthem, followed by et-s and top-s . This is exactly the order one would



150

expect taking just spaceusageinto accourt.

Generating a random sequence of links and cuts. An interesting asideto this ex-
periment is how onecan generatethe test sequenceof links and cuts e cien tly. Givenatree
with n 1 edgesi,it is trivial to pick one edgeat random to be cut. One can, for instance,
keepa separatearray with a list of the current edgesin the tree, and pick an elemern from
this list at random. Supposethe edgeis (v;w). We must now selectan edgeto replaceit,
which requires picking a vertex at random from ead of the two componerts formed after
(v;w) isremoved. This canbe donetrivially in linear time, but onewould like to do it more
e cien tly, in O(logn) time.

We can do it using top trees. To pick a random vertex from a top tree, it suces to
maintain two elds in ead cluster C. The rst isintcount(C), the total number of internal
verticesin the cluster. The secondis rand(C), a random internal vertex. When intcount(C)
is zero, rand(C) is unde ned. Maintaining intcount(C) is trivial: the create operation sets
it to zero,and join setsit to the sum of the valuesin the children plus one(to accourt for the
onevertex that becomesnternal). Updating rand(C) during a join is also straightforward.
Let A and B bethe child clustersof C, and let v be the vertex that disappearswhen A and
B are combined. We pick rand(C) from the set frand(A); rand(B);vg, with probabilities
weighted by intcount(A), intcount(B), and 1, respectively.

To pick a vertex at random from the componert cortaining v, we call C  expse(Vv)
and pick either rand(C) (with probability weighted by intcount(C)) or one of the endpoints
of C (each with weight 1). If r = rand(C) is selected,we must call exmpse(r) after the
operation. If we do not do this, the distribution will not be uniform: further attempts to
pick random vertices from the samecomponerts would tend to return somevertices more
often than others.

To seewhy this istrue, it is corvenien to interpret the top tree asatournament between
the internal vertices, with r = rand(R) (where R is the root cluster) asthe winner. To be
the winner, it must have beenselectedevery time a cluster containing it asan internal vertex

was joined with another cluster. The purposeof the tournament is to give the application



151

accesdo a random vertex. Oncethe application actually picks this vertex, in principle the
data structure should simulate another tournament to selectanother random winner.

We claim this is actually not necessary:it su ces to reewaluate the clustersthat haver
asthe winner, which are exactly the clustersthat haver asan internal vertex. The purpose
of exmpse(r) is to split theseclusters.

Note that theseare the only clusters whoserandomnesswe have used. More precisely
let C be a cluster with children A and B. We know that rand(C) may be either rand(A) or
rand(B) (or neither oneof them). The \c hoice" betweenthem doesnot depend on the actual
valuesofthe rand eld; it dependsonly onthe intcount elds. Supposerand(C) 6 rand(A).
Then, even though we know what rand(A) is, we do not useit to determine the winner of
the \matc h" betweenA and B (or of the ertire tournament). When a new tournament is
needed, the original outcome of the \subtournament" represernied by A is still a random

variable. Therefore, A doesnot needto be split.

5.7 Previous Work

This section summarizesthe experimental results previously reported in the literature.

Topology trees. In [25], Frederidkson comparestopology treesto a self-adjusting imple-
mertation of ST-trees (both \coded by an undergraduate under careful supervision"). The
data structures are usedwithin the pre ow-push maximum o w algorithm of Goldberg and
Tarjan [29]. Topology treestook on average44% more time than ST-treesto executethe
dynamic tree operations. The actual di erence ranged from 32% to 60% on graphs with

10000 nodesand number of arcs ranging from 10000 to 90000.

Top trees. In an unpublished manuscript [8], Alstrup, Holm and Thorup perform a pre-
liminary experimental comparison betweentop trees and other dynamic tree data struc-
tures. Unfortunately, although someof the theoretical results presened in this manuscript

appearedlater in [10], the experimental part has never beenpublished.



152

Rather than comparethe algorithms within an actual application, the authors choseto
focus on the data structure itself. Their test procedure consistsof building a free tree with
n vertices, then going through n rounds of operations. Each round consistsof picking two
verticesv and w at random, performing evert(w) and then calling parent(v), ndr oot(v),
ndc ost(v), ndmin (v), and cut(v). Finally, link is called to restore a single componert.
The input trees were guaranteed to have large diameter (long paths). Three classesof
inputs were tested, with diameters (log n), ( pﬁlog n) and ( n). All data structures
were implemented with the ST-tree interface with weights on edges.

The authors concludedthat self-adjusting ST-treeswerethe fastestof the data structures
tested. They werearound 6 times faster than an implementation of ST-treesusing weighted
treaps [50], which are a randomized version of globally biased seard trees that are much
simpler to implement but guarantee only expected bounds. Self-adjusting ST-trees were
roughly 15 times faster than a direct implemertation of top trees (presumably using the
update algorithm suggestedin [34]).> Somewhat surprisingly, topology trees were even
slower than top trees, by a factor of approximately 2.5.

They also comparedthesedata structures with the obvious linear-time implementation
of the ST-interface. This simple algorithm was the fastest for treeswith diameter (log n)
(by a factor of 5 to 10), regardlessof graph size. For graphs with larger diameter, self-
adjusting ST-trees are faster for long enough paths (in the order of hundreds of edges).

This is in line with the experiments reported here.

RC-trees. In [4], Acar et al. present an experimertal evaluation of their implementation
of RC-trees, which they compare with this author's implementation of self-adjusting top
trees (st-e ).

Their simplest test consisted of building a tree on n nodes and performing a seriesof
cuts, eadh immediately followed by a link that restoresthe original edge. In this caseST-
treesare around v e times faster than RC-trees, exceptwhen almost all verticesin the tree

have degreetwo: in this case,RC-treesbecomeup to 12times slower than ST-trees. This is

5As already mentioned, the authors later found the analysis of the algorithm to be awed.



153

due to the randomized nature of compressesmertioned in Section 2.3: the probability of a
degree-tvo vertex being eliminated in any given round is only 1/8, regardlessof the degree
of its neighbors.

If only non-structural operations are performed, RC-trees and ST-trees have similar
performance. RC-trees are faster for path queriesand when changing edgeweights, while
ST-trees are faster when adding weights to paths. The data structures are always within a
factor of two of one another, however.

The authors also studied more realistic usesof dynamic trees, within two basic applica-
tions: online minimum spanning forestsand Dinic's maximum o w algorithm (implemented
following the description provided by Sleator and Tarjan in [51]).

The maximum o w algorithm was tested on random layered graphs with 5 rows, n=5
columns, and capacity of up to 22°. They tested values of n between 400 and 102400.
Self-adjusting ST-trees consisterily outperform RC-trees by a factor of eight.

The online minimum spanningforest algorithm wastested on random graphswith 32768
vertices. The graphs are initially empty, and new edgesare processedone at a time (with
random endpoints and random weights). After 32768edgesare processedST-treesare more
than twice as fast as RC-trees. The di erence in performance becomesgradually smaller,
until, after about one million edges,RC-trees becomefaster. The denserthe original graph
becomesthe lesslikely it is that a new edgewill be inserted, which meansthat the running
time will be dominated by queries. As pointed out by the authors, queries are cheap in
RC-trees, sincethey do not require any changesto the tree. The authors tested graphswith
up to 16 million edges,and in the limit RC-trees are about twice as fast as ST-trees. We
have obsened a similar phenomenonwith worst-casetop trees, but lesspronounced: after
all, the top tree interface requires the tree to be partially rebuilt even when only expses
are performed.

It should be noted that in all experiments the authors carefully choosethe inputs soas
to guarantee that no vertex would ever have degreegreater than a constart (four or eight,

depending on the experimert) in the tree. This is necessarybecauseRC-treesonly support



154

vertices of bounded degree. Top trees have no such constraint.

5.8 Final Remarks

With the experiments in this chapter, our goal was to provide a general overview of the
strengths and weaknesse®f the data structures presened in Chapters 3 and 4. Although
the results might change slightly if dierent implementations are tested or if a dierent
architecture is used, somegeneral obsenations can be made.

The rst isthat, for path operations on graphswith small diameter, none of the existing
O(log n) dynamic tree data structures is competitiv e with the trivial linear-time solution.
Even for graphs with ( P n) diameter and tens of thousands of vertices, lin-v and lin-e
are the fastest data structures. On random graphs, the linear-time algorithm was always
the fastest.

Even though top trees are much more general(and easyto use)than either ST-treesor
ET-trees, their running times are not much worse. Self-adjusting top trees, in particular,
were usually no more than a factor of 3 slower than these more speci ¢ data structures
(except on graphs with very high degree); they were occasionally faster. The worst-case
versionof top treeswasup to eight times slower than ST-trees, particularly when structural
operations were numerous. On the other hand, when the number of queries (expseg is
large in comparisonto links and cuts, worst-casetop trees are remarkably e cien t, being
ewven faster than self-adjusting top trees.

The e ciency of worst-casetop trees when just queriesare performed suggestsan ex-
tension to the top tree interface to include an operation C  rootcluster(v), which returns
the root cluster of the top tree containing v. In the original top tree interface, one would
call expose(v) for this purpose,but expse also guaranteesthat v will be an endpoint of the
root cluster. In someof the applications we have seenthis requiremert is unnecessary For
example, when the maximum o w algorithm advances(i.e., an arc (v;w) is added to the
forest), we must know the root vertex of the componert cortaining w, sinceit will be the

next vertex to be processed.We implemert it by calling exmpse(w) and looking at the root



155

eld of the cluster returned. This eld would still have the correct information ewven if the
returned cluster did not have w as an endpoint, which meanswe could call rootcluster(w)
instead. In the worst-caseversion, this operation would not needto modify the tree at all.
The self-adjusting version still requires the tree to be modi ed, since a generalizedsplay
must pay for the accessput it would be unnecessaryto call hard expse which temporarily

transforms up to two compress nodesinto rake nodesnear the root.



Chapter 6

Final Remarks

We have presenrtied two new data structures for maintaining dynamic trees. They are the
rst direct implementations of the generictop tree interface, and as such are very exible.
They can naturally represen rooted or unrooted trees, aggregateinformation over paths or
entire trees, and even support ordered adjacencylists.

The rst data structure, corntraction-based top trees, can perform ead dynamic tree
operation in O(logn) time in the worst case,and is a straightforward application of the
concept of tree contraction. At all times, it maintains a round-based contraction of the
current forest. Whenewer there is a link or cut, it builds a new cortraction in the most
natural way: by greedily trying to minimize the damageto the original contraction.

Although the update algorithm is conceptually very simple, the proof that it indeed
takesO(log n) time is rather involved, relying on extensive caseanalysis, which is somewhat
unsatisfying. Fortunately, the profusion of caseds not re ected in the actual implementation
of the algorithm. Nevertheless,the implementation is still far from trivial, sinceit must
maintain a signi cant amount of information. Simplifying both the run-time analysis and
the implementation of the algorithm are obvious directions for future researd.

Self-adjusting top trees, the seconddata structure we described, are a step towards
simpli cation. Instead of explicitly maintaining a contraction in a bottom-up fashion, they

usewhat at rst may seemto be a completely di erent technique: path decomposition. The

156



157

original tree is partitioned into edge-disjoint paths, which are represerted by binary trees
that are then glued together appropriately. But the data structure still supports the top
tree interface, which strictly follows the tree contraction paradigm. In fact, self-adjusting
top trees demonstrate that path decomposition and tree cortraction, rather than being
mutually exclusive paradigms for dynamic trees, can be seenas alternativ e ways of looking
at the samedata structure. This is useful becausepath decomposition leadsto a simpler
and faster update algorithm, but tree contraction is a much more conveniernt abstraction
for the user.

Unfortunately, much of the simplicity of the self-adjusting data structure results from
its use of splaying, which only guarartees good amortized performance. For good worst-
caseperformance, splay trees could probably be replaced by globally biased seard trees,
but these are very complicated data structures. A promising researt topic is to devise
an alternative that is simple enough to make worst-case data structures based on path
decomposition (ST-trees or top trees) practical. This simpler classof binary trees would
not have to be asgeneralas globally biasedseard trees. Globally biasedseart trees allow
nodesto changetheir weights arbitrarily , and have no restrictions on the range of allowed
weights. Within a dynamic tree application, weights are always between1 and n, wheren
is the total number of nodesin the original forest. Moreover, node weights do not change
arbitrarily: they only changeduring splice, whosespeci ¢ properties could be exploited.

Our experimental analysis has shavn that, although our data structures are not as fast
as ST-trees or ET-trees (which are more restricted), they are still competitive. The self-
adjusting version, in particular, is usually within a factor of two of ST-treesand ET-trees.
Sincethe top tree interface makes our data structure the easiestto adapt, it should have
practical applications. The importance of adaptability cannot be understated. No known
dynamic tree data structure is particularly easyto implement. Once a data structure is
implemented, one should be able to useit in as many applications as possible.

In fact, one could even considerextending the top tree interface to support even more

applications. The current interface was dewveloped to handle casesin which structural op-



158

erations changeonly one edgeat a time, asis the caseof link and cut. Someapplications
do not fall into this category For example, Langerman’s algorithm for the shooter location
problem [41] and Kaplan et al.'s algorithm for intersecting intervals with priorities [36],
both mentioned in Section 2.1.5, require an operation in which a subset of the children of
a vertex acquire a new parert. Both data structures we proposedcan easily support this
operation, but not with the top tree interface.

Another problem that allows more than one structural changeto the tree at a time is
the mergeabletrees problem [26]. Recall from Section 2.1.6 that this is the problem of
maintaining rooted dynamic trees with one additional operation: merging paths so as to
presene heaporder amongthe nodes. Georgiadiset al. have shavn that standard dynamic-
tree data structures (ST-trees or top trees) can perform ead operation, including merges
in O(log® n) amortized time. They have also preserted a new data structure that supports
links and mergesin O(logn) time, aslong as cuts are not allowed. Supporting links, cuts,
and mergesin logarithmic time is an interesting open problem.

Yet another direction for future researt is to generalizethe data structures presened
herein order to deal with inputs that are lessrestricted than trees. Of course,the ultimate
goal would be to deal with arbitrary graphs. A lessambitious goal would be to deal with
with something in between these two extremes, such as graphs with bounded treewidth,
planar graphs, or even grids.

The caseof grids is more easily seenas a dynamic matrix problem. Concretely, suppose
we are given a matrix M and that we are allowed to perform the following operations:
(1) changea single entry of M ; (2) add a constart k to all entries in a given cortiguous
submatrix of M ; and (3) nd the minimum entry in the matrix. One would like to perform
theseoperations in logarithmic time. Eventhe special casein which the submatricesin the
secondoperation are always entire rows or ertire columnswould be useful. For instance, it
would speedup the local seard algorithm for the k-median and facility location problems
preseried by Resendeand Werned in [47].

A related problem s that of maintaining the minimum value of an array while supporting



159

an operation that addsa constart valueto a subsetof its entries. If only contiguous subsets
are allowed, a simple binary tree can solve this problem. A more generalversionis to allow
these subsetsto be arithmetic progressions:one could specify its rst entry, the number of
erntries, and the common di erence. This problem also generalizesthe special caseof the
dynamic matrix problem required by Resendeand Werned.

Another interesting generalization of dynamic trees is the problem of performing path-
related operations on a planar graph. Klein [38] hasrecertly preserted an e cien t solution
a special caseof this problem: given a vertex t on the boundary of the in nite face of an
n-vertex planar graph and an arbitrary vertex s, his data structure can nd the distance
betweens and t in O(logn) time. The data structure can be built in O(nlogn) time and
requiresO(n logn) space. It would be desirableto extend this result to all pairs on a planar
graph.

In practice, the logarithmic bound seemscloseto being achieved for someimportant
classesof graphs. Sandersand Scultes [48] and Goldberg et al. [28] have recertly proposed
algorithms capable of nding the length of the shortest path betweenany two points of a
real-world road network extremely fast, and they presen experimental evidencethat the
algorithm dependslogarithmically on the graph size. Proving that this is indeed the case,

whether for any of thesealgorithms or for a third one,is a challenging open problem.



References

[1] K. Abrahamson, N. Dadoun, D. G. Kirkpatric k, and T. Przytycka. A simple parallel
tree contraction algorithm. Journal of Algorithms, 10(2):287{302,1989.

[2] U. Acar, 2005. Personal Communication.

[3] U. A. Acar, G. E. Blelloch, R. Harper, J. L. Vittes, and S. L. M. Woo. Dynamizing
static algorithms, with applications to dynamic treesand history independence.Iln Pro-
ceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages524{533. SIAM, 2004.

[4] U. A. Acar, G. E. Blelloch, and J. L. Vittes. An experimental analysisof changepropa-
gation in dynamic trees. In Proceedings of the 7th Workshop on Algorithm Engineering
and Experiments (ALENEX) , pages41{54, 2005.

[5] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, algorithms, and appli-

cations. Prentice-Hall, 1993.

[6] R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved time bounds for the maximum

ow problem. SIAM Journal on Computing, 18(5):939{954,1989.

[7] S. Alstrup, J. Holm, K. de Lichtenberg, and M. Thorup. Minimizing diameters of
dynamic trees. In Proceedings of the 24th International Colloquium on Automata,
Languagesand Programming (ICALP) , volume 1256 of Lecture Notes in Computer

Sciene, pages270{280. Springer-Verlag, 1997.

160



161

[8] S.Alstrup, J. Holm, and M. Thorup. On the power and speedof top trees. Unpublished

manuscript, 1999.

[9] S. Alstrup, J. Holm, and M. thorup. Maintaining certer and median in dynamic
trees. In Proceedings of the 7th Sandinavian Workshop on Algorithm Theory (SWAT),
volume 1851 0of Lecture Notesin Computer Sciene, pages46{56. Springer-Verlag, 2000.

[10] S. Alstrup, J. Holm, M. Thorup, and K. de Lichtenberg. Maintaining information in
fully dynamic trees with top trees. ACM Transactions on Algorithms, 1(2):243{264,
2005.

[11] R. Anderson. The washington graph generator. In D. S. Johnson
and C. C. McGeoch, editors, DIMACS Series in Discrete Mathemat-
ics and Computer Sciene, pages 580{581. AMS, 1993. Available at

http://www.avglab.com/andrew/CATS/gens/washington/ .
[12] R. Bellman. On a routing problem. Quarterly Mathematics, 16:87{90, 1958.

[13] S. W. Bent, D. D. Sleator, and R. E. Tarjan. Biased seard trees. SIAM Journal of
Computing, 14(3):545{568,1985.

[14] B. Chazelle. Computing on a free tree via complexity-preserving mappings. Algorith-

mica, 2(3):337{361,1987.

[15] B. Cherkassky A. V. Goldberg, and T. Radzik. Shortest path algorithms: Theory and
experimental evaluation. Mathematical Programming Series A, 73(2):129{174,1996.

[16] R. F. Cohenand R. Tamassia.Dynamic expressiontrees. Algorithmica, 13(3):245{265,
1995.

[17] R. Coleand U. Vishkin. The acceleratedcerntroid decomposition technique for optimal

parallel tree evaluation in logarithmic time. Algorithmica, 3:329{346,1988.

[18] T. Cormen, C. Leiserson,R. Rivest, and C. Stein. Intr oduction to Algorithms. MIT

Press, secondedition, 2001.



162

[19] E. A. Dinic. Algorithm for solution of a problem of maximum ow in networks with

power estimation. Soviet Mathematics Doklady, 11:1277{1280,1970.

[20] B. Dixon, M. Rauch, and R. E. Tarjan. Veri cation and sensitivity analysisof minimum

spanningtreesin linear time. SIAM Journal on Computing, 21(6):1184{1192,1992.

[21] J. Edmonds and R. M. Karp. Theoretical improvemeris in algorithmic e ciency for

network ow problems. Journal of the ACM, 19:248{264.

[22] J. Feigerbaum and R. E. Tarjan. Two new kinds of biased seard trees. The Bell

SystemTechnical Journal, 62(10):3139{3158,1983.

[23] G. N. Frederickson. Data structures for on-line update of minimum spanning trees,

with applications. SIAM Journal of Computing, 14(4):781{798,1985.

[24] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectiviy and

k smallest spanning trees. SIAM Journal of Computing, 26(2):484{538,1997.

[25] G. N. Frederickson. A data structure for dynamically maintaining rooted trees. Journal

of Algorithms, 24(1):37{65, 1997.

[26] L. Georgiadis,R. E. Tarjan, and R. F. Wernedk. Design of data structures for merge-
able trees. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages394{403, 2006.

[27] A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan. Useof dynamic treesin a network
simplex algorithm for the maximum o w problem. Mathematical Programming, 50:277{

290, 1991.

[28] A. V. Goldberg, H. Kaplan, and R. F. Wernedk. Read for A : E cien t point-to-p oint
shortest path algorithms. In Proceedings of the 8th Workshop on Algorithm Engineering
and Experiments (ALENEX) , pages129{143. SIAM, 2006.

[29] A. V. Goldberg and R. E. Tarjan. A new approad to the maximum- ow problem.

Journal of the ACM, 35(4):921{940, 1988.



163

[30] D. Goldfarb and J. Hao. A primal simplex algorithm that solvesthe maximum ow
problem in at most nm pivots and O(n?m) time. Mathematical Programming, 47:353{

365, 1990.

[31] L. J. Guibas and R. Sedgewik. A dichromatic framework for balancedtrees. In Pro-
ceedings of the 19th Annual Symposium on Foundations of Computer Sciene (FOCS),
pages8{21, 1978.

[32] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with
polylogarihmic time per operation. In Proceedings of the 27th Annual ACM Symposium
on Theory of Computing (STOC), pages519{527, 1997.

[33] M. R. Henzinger and V. King. Randomized fully dynamic graph algorithms with
polylogarihmic time per operation. Journal of the ACM, 46(4):502{516,1999.

[34] J. Holm and K. de Lichtenberg. Top-treesand dynamic graph algorithms. Tednical
Report DIKU-TR-98/17, Department of Computer Science,University of Copenhagen,
1998.

[35] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanningtree, 2-edge,and biconnectiv-

ity. Journal of the ACM, 48(4):723{760,2001.

[36] H. Kaplan, E. Molad, and R. E. Tarjan. Dynamic rectangular intersection with pri-
orities. In Proceedings of the 35th Annual ACM Sympmsium on Theory of Computing
(STOC), pages639{648, 2003.

[37] V. King. A simpler minimum spanning tree veri cation algorithm. Algorithmica,

18(2):263{270,1997.

[38] P. N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages146{155,
2005.



164

[39] J. Komlos. Linear veri cation for spanning trees. Combinatorica, 5(1):57{65, 1985.

[40] J. B. Kruskal. On the shortest spanning tree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical Scriety, 7:48{50, 1956.

[41] S. Langerman. On the shooter location problem: Maintaining dynamic circular-arc
graphs. In Proceedings of the 12th Canadian Conference on Computational Geometry

(CCCQG), pages29{35, 2000.

[42] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally equidis-
tributed uniform pseudorandomnumber generator. ACM Transactions on Modeling

and Computer Simulation, 8(1):3{30, 1998.

[43] G. L. Miller and J. H. Reif. Parallel tree corntraction and its applications. In Proceedings
of the 26th Annual IEEE Symposium on Foundations of Computer Sciene (FOCS),
pages478{489, 1985.

[44] J. Nievergelt and E. M. Reingold. Binary seart trees of bounded balance. SIAM
Journal of Computing, 2(1):33{43, 1973.

[45] M. Patrascu and E. D. Demaine. Lower bounds for dynamic connectivity. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pages
546{553, 2004.

[46] T. Radzik. Implementation of dynamic treeswith in-subtree operations. ACM Journal

of Experimental Algorithmics, 3(9), 1998.

[47] M. G. C. Resendeand R. F. Werne&. On the implementation of a swap-basedlocal
seard procedurefor the p-median problem. In R. E. Ladner, editor, Proceedings of the
5th Workshop on Algorithm Engineering and Experiments (ALENEX) , pages119{127.
SIAM, 2003.



165

[48] P. Sandersand D. Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries.
In Proceedings of the 13th European Symposium on Algorithms (ESA), volume 3669 of
Lecture Notes in Computer Sciene, pages568{579. Springer, 2005.

[49] R. Sedgewi&. Algorithms in C. Addison-Wesley third edition, 1998.
[50] R. Seideland C. R. Aragon. Randomizedseard trees. Algorithmica, 16:464{497,1996.

[51] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of

Computer and System Scienes 26(3):362{391,1983.

[52] D. D. Sleator and R. E. Tarjan. Self-adjusting binary seart trees. Journal of the
ACM, 32(3):652{686,1985.

[53] R. E. Tarjan. Applications of path compressionon balancedtrees. Journal of the ACM,

26(4):690{715,1979.

[54] R. E. Tarjan. Data Structures and Network Algorithms. SIAM Press, Philadelphia,
PA, 1983.

[55] R. E. Tarjan. Amortized computational complexity. SIAM Journal on Algebric and

Discrete Methods, 6(2):306{318, 1985.

[56] R. E. Tarjan. Dynamic trees as seard trees via Euler tours, applied to the network

simplex algorithm. Mathematical Programming, 78:169{177,1997.

[57] R. E. Tarjan and R. F. Wernek. Self-adjusting top trees. In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) , pages813{822,2005.



Index

active cluster, 47

admissible network, 119

amortized vs. actual cost, 101

anahor, 50

articulation node, 101
augmerted star, 138
augmernted top tree, 87

augmening path, 118

biasedseard trees, 2
globally vs. locally, 9
blocking ow, 117

call-bad functions
in RC-trees, 23
in top trees, 29

certer (of atree), 31

circular order, 24

always counterclockwise, 24

eliminating, 80
cluster
expansion, 69
in RC-trees, 21
in top trees, 25

in topology trees, 18

166

compress
in RC-trees, 22
in topology trees, 19
parallel, 16
compresstree, 86
cortraction, 2
original vs. new, 47
parallel, 16
core, 49
expansion, 69
size,67
coreimage, 49
size, 67
coupled subtours, 56

create, 29

dashededges
in ST-trees, 7
in top trees, 106
destmoy, 29
di erence form
in ET-trees, 35
in ST-trees, 10

in topology trees, 20



reversebit, 11

vs. lazy values, 32
distance label

for maximum ows, 119

for shortest paths, 144
dynamic connectivity, 5

dynamic minimum spanning tree, 21

ET-trees, 2
et-s, 115
Euler tour
in ET-trees, 34
in top trees, 49, 71
evert, 11

expose

by creating a temporary top tree, 78

by rebuilding the top tree, 77

hard, 97

in ST-trees, 7

soft vs. hard, 91
exposedvertex (in ST-trees), 8
expressiontrees, 17

dynamic, 20

foster child, 86

guarded splay, 93

handle
in contraction-based top trees, 76

in self-adjusting top trees, 90

hard expose,97

inactiv e cluster, 47

internal vertex, 28

join, 29

lazy values, 32
lin-e , 114
link-cut trees, see ST-trees

lin-v , 114

maximum ow, 20, 32,118
maximume-priorit y interval, 15, 158
median (of a tree), 31
mergeabletrees, 15, 158

middle child, 2, 7

multilev el partition, 18

network simplex, 14

non-local seard, 31

online minimum spanning forest, 128
outer neighbors, 86

outer path, 94

parent set (of a subtour), 52
phantom tree, 14

of atop tree, 101
potential (of a phantom tree), 101
proper child, 86

rake

167



168

in RC-trees, 22 solid paths (in ST-trees), 6
in top trees, 25 solid subtree, 7
in topology trees, 19, 25 splay trees, 2, 9, 35
parallel, 16 splaying
rake tree, 86, 138 guarded, 92
random layered graph, 124 within self-adjusting top trees, 92
rank (of a top tree node), 101 splaying split, 96
RC-trees, 3, 21, 152 splice
alternating rounds, 83 in ST-trees, 8
compress,22 in top trees, 94
rake, 22 split, 29
randomization, 83 ST-trees, 2, 6
recti cation, 93, 95, 100 st-e, 114
residual capacity, 118 st-v , 113
residual network, 118 subtour
reversebit inactive, 50
in ST-trees, 11 proper, 50
in top trees, 90 stable, 55
root path, 85 unstable, 56
rotation

ternarization, 2, 3, 13
in ST-trees, 8
top trees, 3, 151
within compresstrees, 93
self-adjusting, 85

saturated arc, 118 topology trees, 3, 18, 151
select, 31 compress,19
self-adjusting top trees, 85 rake, 19

shadow tree, 7 top-s , 115

shooter location problem, 14, 158 top-w , 115

soft expose,91 tree cortraction, see contraction



169

twin arcs, 49

unit tree, 85

virtual tree, 7



