
ENABLING TRULY COLLABORATIVE WRITING

ON A COMPUTER

JOHN HAINSWORTH

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

APRIL 2006

c© Copyright by John Hainsworth, 2006. All rights reserved.

iii

Abstract

This study explores a new model for computer-based collaborative writing. A prototype

application was built to implement this model, and user tests were performed on the

application. The new model demands that each user have control of both the inflow of

data from others and the outflow of data to others, and that the computer system handle

the memory load required to track unmerged changes. The prototype achieves this goal

by displaying to the user a persistent peer-to-peer multiversion set for each phrase in the

document in which there is a conflict between contributors. This study presents the new

model, describes the insights gained by building the prototype application, and presents

the results of the user tests.

iv

Acknowledgments

This work was partially supported by award number DGE-9972930 of the IGERT Pro-

gram in Integrative and Computational Sciences, funded by the the National Science

Foundation. I thank them for their support.

My thesis committee have all provided significant help to me. Dr. Andrea LaPaugh

introduced me to and guided me through the world of databases and data mining. Dr.

David Dobkin provided me with significant insights about how he collaborates. Dr. Larry

Peterson and Dr. Brian Kernighan provided many pointers and references. And finally

Dr. Perry Cook, my advisor and guide, gave me enough rope to forge ahead into a totally

new area, but not quite enough to hang myself.

I particularly thank Dr. Greg Kochanski for his tireless efforts in testing my prototype.

Many other people have helped me throughout this project. Dr. Otto Anshus spent

hours at a time talking with me in the early stages of this project, when my ideas were so

vague that our conversations had a more impressionistic than concrete flavor. Dr. Charles

Halcomb, Dr. Barbara Chaparro, and Dr. Eszter Hargittai were all instrumental in helping

me to design and run user tests. I would also like to thank Dr. Amit Chakrabarti my theory

consultant, Dr. Adam Finkelstein, and Dr. Ed Felten for helping me along the way.

I am also grateful to my mentors from my summer internships – Dr. Steve Whittaker

at AT&T, Dr. Eric Baum and Igor Durdanovic at NEC, and Dr. Annette Adler, Leigh

Klotz, David Hirsch, Mitch Garnaat, and Dr. Richard Burton at Xerox – for teaching me

how research is done in a laboratory setting.

Finally, I thank my wife Deirdre and my sons Liam and David for encouraging me

and giving me the strength to stick with this project to the end.

John Hainsworth

v

I dedicate this thesis to my wife Deirdre, with love always.

Contents

Abstract . iii

List of Figures . xi

List of Tables . xiii

1 Background 1

1.1 Problems With the Collaborative Editing Model 2

1.2 Efficiency Considerations . 3

1.3 Why Collaborative Writing is Not Done Today 5

1.3.1 Challenges of Writing . 6

1.3.2 Challenges of Collaboration . 7

1.3.3 Additional Challenges of Collaborative Writing 9

1.4 Versioning . 9

1.4.1 Single-Version Systems . 10

1.4.2 Time-Sequenced Versioning . 10

1.4.3 Accumulative Systems . 11

1.4.4 Multiversioning Systems . 12

1.5 Other Collaborative Systems . 13

1.5.1 Collaborative Meeting Software 14

1.5.2 Accumulative Knowledge Bases 15

vi

CONTENTS vii

1.5.3 Collaborative Hypertext Systems 15

1.5.4 Collaborative Object-Based Graphics Editors 18

1.5.5 Source Code Control Systems 19

1.5.6 Collaborative Editing Systems 24

1.6 Summary . 27

2 The CASTER Collaborative Writing System 28

2.1 Design Principles . 29

2.1.1 Giving the User Control of Collaboration 29

2.2 User Interface Implementation . 32

2.2.1 Startup and General Appearance 32

2.2.2 The Add Operation . 34

2.2.3 The Replace Operation . 36

2.2.4 The Delete Operation . 40

2.2.5 The Move Operation . 43

2.2.6 Mechanisms for Building Consensus 43

2.3 Implementation . 45

2.3.1 Database . 45

2.3.2 Overall Configuration . 50

2.4 Summary . 51

3 User Tests and Results 52

3.1 Procedure for Controlled Tests . 53

3.2 Interview Results from Controlled Tests 57

3.3 Observations During Controlled Tests 58

3.3.1 Patterns of Sharing . 58

CONTENTS viii

3.3.2 Learning to Use the Chooser Dialog Box 61

3.3.3 Learning Curve Effects . 61

3.3.4 Getting Started . 61

3.3.5 Narrative Style Versus List Style 63

3.4 Measurements of Inclusivity by Character Counting 63

3.5 Questionnaire Comparison for Controlled Tests 64

3.6 Procedure for Shakeout Test . 67

3.7 Results from the Shakeout Test . 67

3.8 Procedure for Iterative Trials . 69

3.9 Results From Iterative Trials . 70

3.9.1 Word Processor Features . 70

3.9.2 Use of Color . 72

3.9.3 Text Segmentation . 77

3.9.4 Design and Implementation Issues 83

4 Future Directions and Conclusions 87

4.1 Further Testing . 87

4.2 Improvements to the Collaborative Writing Program 88

4.2.1 Content Subset Browser . 88

4.2.2 Feature Refinements Indicated by Testing 89

4.2.3 Alternate Communication Channels 90

4.2.4 Combination With an Outliner 91

4.3 Applying the CASTER Paradigm Beyond Collaborative Writing 92

4.3.1 Hierarchical Document Content 92

4.3.2 Data Repositories That Never Achieve Consensus 93

CONTENTS ix

4.3.3 Data Sets Accumulated by Store and Forward 94

4.4 Extensions to the CASTER Collaborative Model 96

4.4.1 Bulk Decision-Making . 97

4.4.2 Decision Support Information 99

4.5 Summary and Conclusions . 101

A Database Design 103

A.1 Database Design in SQL . 104

A.1.1 Containment Tables . 105

A.1.2 Content Tables . 105

A.1.3 Building the Display List . 107

A.1.4 Controlling the Visibility of Content 108

A.1.5 SQL table definitions . 109

A.2 Update Handling . 110

A.2.1 Commit Processing . 111

A.2.2 Reading the Database Into an Application 113

A.3 Possible Enhancements . 115

A.3.1 A Segmentation-Independent Approach 115

A.3.2 Database Merge . 118

B Test materials 121

B.1 Questionnaire for Controlled Test . 128

B.2 Questionnaire Results for Controlled Test 136

B.3 Questionnaire for Shakeout Test . 138

B.4 Questionnaire Results for Shakeout Test 143

CONTENTS x

Bibliography 144

List of Figures

2.1 CASTER Startup Dialog Box . 33

2.2 CASTER Text Entry Window . 34

2.3 New Text Created by Another User (Bob) 35

2.4 New Text Created by the Current User (Alice) 35

2.5 A Conflict Section . 36

2.6 Conflict Resolution Dialog Box . 37

2.7 Conflicts Segmented by Individual Characters 38

2.8 Segmentation . 38

2.9 A Sequence of Conflict Sections . 39

2.10 Repudiation . 41

2.11 Modifying Another’s Version Repudiates One’s Own 42

2.12 Display of Deleted Text . 42

2.13 Database Organization for a Short Document 47

2.14 Determination of Relative Newness Relationships 50

3.1 First Writing Task . 54

3.2 Second Writing Task . 55

3.3 Sample Document Produced During User Tests 55

xi

LIST OF FIGURES xii

3.4 Consequences of Delayed Reading . 60

3.5 Result of Frequent Reading . 60

3.6 Chat Behavior at the Start of a Writing Task 62

3.7 Coloring by Author . 76

3.8 Conflict Displayed Side by Side . 82

3.9 Conflict Displayed Stacked Up . 82

3.10 Conflict Displayed as HTML Table . 82

A.1 Containment Structure . 106

A.2 Inter-Table Dependencies . 112

B.1 Overall Test Description . 123

B.2 Consent Form for Controlled Tests . 124

B.3 Consent Form for Shakeout Test . 125

B.4 Description of Control System . 126

B.5 Description of CASTER System . 127

List of Tables

1.1 Number of Authors per Paper at Recent ACM CHI Conferences 2

2.1 Database Example Showing Newest Fields 49

3.1 Percentage of Document Contributed by Minority Author 65

3.2 Comparisons of System Quality Based on Questionnaire Responses . . . 66

3.3 Performance Comparison of Display List Datatypes 86

B.1 Questionnaire Data for Controlled Test 137

B.2 Questionnaire Data for Shakeout Test 143

xiii

Chapter 1

Background

Collaborative preparation of documents using computer-based tools is common in our

society and getting more common. As an example, Table 1.1 shows the average number

of authors for technical papers in one technical conference (ACM CHI) for the last ten

years. The average number of authors is increasing, and the percentage of single-author

papers is decreasing. However, the process by which collaborative documents are created

today is not by collaborative writing: rather, this process is better described as non-

collaborative writing followed by collaborative editing. More specifically, collaborative

“writing” today is a three-step process:

1. The group chooses a primary author.

2. The primary author writes the first draft of the document.

3. The group collaboratively edits the draft document.

The second step of this process, which comprises the actual writing, is not collab-

orative. The goal of this study is to explore the possibility of making this second step

collaborative.

1

CHAPTER 1. BACKGROUND 2

number average percent
year of author single

papers count author
1995 76 2.64 13.16
1996 67 2.70 19.40
1997 76 2.64 18.42
1998 81 3.06 17.28
1999 78 3.33 12.82
2000 72 3.29 4.17
2001 69 3.39 11.59
2002 61 3.74 8.20
2003 75 3.55 6.67
2004 93 3.32 4.30

Increase
per 0.56 0.11 -1.49

year

Table 1.1: Number of Authors per Paper at Recent ACM CHI Conferences

1.1 Problems With the Collaborative Editing Model

There are at least two significant problems with the collaborative editing model described

above: first, it creates disproportionate work for the primary author; and second, it gives

disproportionate power to the primary author.

The primary author of a document must do disproportionate work when the writing

is not collaborative, because he or she must do all of the actual writing. Furthermore, this

primary author will often have to work under a lot of time pressure, because he or she

is on the critical path: any time delays in document completion are totally the respon-

sibility of this author until the first draft is complete. The primary author’s workload is

sometimes split up by assigning one chapter to each participant for initial writing, but this

approach ossifies the document structure before the first word is written and also makes

no provision for narrative flow and stylistic consistency.

CHAPTER 1. BACKGROUND 3

The more significant problem with having a single draft author is that he or she

acquires disproportionate power to determine the final contents of the document. The

author of the first draft determines the structure of the document, the ordering of ideas,

and the narrative pattern, which in turn dictates the relative importance accorded to those

ideas. Furthermore, the group will pressure all editors to suggest as few changes as

possible and as short changes as possible, because the amount of work required of the

group during editing increases with the number and scope of changes made. Thus an

idea whose expression requires rewriting a large document section may be effectively

excluded from the process.

This power imbalance can lead to issues of injustice where competing interests are

involved: for example, use of a draft real estate contract written by the seller and slanted

toward the seller’s interests places the buyer at a significant disadvantage in asserting

his or her rights. This imbalance can also lead to significantly sub-optimal documents

even when all collaborators are working to a common goal: the author of the first draft is

not necessarily the best writer, the wisest, or the most knowledgeable. Furthermore,

even if the primary author happens to be a reasonable choice, the constraints of the

collaborative editing process greatly decrease the potential for the document to best

leverage the strengths of all of its contributors.

1.2 Efficiency Considerations

In addition to problems with the quality of the resulting document, the collaborative

editing process can be extremely time-consuming, tedious, and expensive. This section

presents one case study from the research literature to illustrate how bad this process can

get. The case study presented here, Reaching Consensus on the Tampa Bay Estuary

CHAPTER 1. BACKGROUND 4

Program Interlocal Agreement: A Perspective, by Richard Eckenrod[18] describes a

collaboratively written contract between government agencies, and provides an example

of the effort and expense that can be required to achieve consensus on a collaborative

document.

To begin with, this project had one exceptional resource: a champion who single-

handedly solved the majority of the problems:

The individual who championed the agreement not only was instrumental

in overcoming obstacles encountered along the way, but also conceived the

idea of the agreement, drafted the majority of it, and served as its principal

advocate throughout the consensus-building process. His effectiveness as

the champion was enhanced by his ability to appreciate the interests of all

stakeholders in the process and to conceive compromises that preserved the

integrity of the agreement. When obstacles were encountered, he wisely

appointed task forces, with differing viewpoints appropriately represented,

to work through the problem.[18, page 238]

The champion wrote a majority of the agreement; thus most of the actual writing was

definitely not done collaboratively. Nevertheless, the group still needed a considerable

array of other professional services to complete its collaborative document. One of the

these services was professional facilitators, who were used extensively:

Identification of stakeholder interests through interviews with individual par-

ties helped identify most significant issues and avoid pitfalls late in the pro-

cess. Development of a detailed framework for agreement based on the inter-

views helped organize and focus the discussion on key unresolved issues.[18,

pages 236-237]

CHAPTER 1. BACKGROUND 5

Further increasing the expense, the process was also highly dependent on attorneys.

The report states that some of the sections of the document were drafted during meetings

of groups of attorneys – all of whom were thus billing the project for the same time

period.

Perhaps the most significant insight from this study is that it presents this entire

process as a success story. The central theme of this analysis is that the (somewhat

expensive) methods and mechanisms described here were considerably less expensive

than they could have been.

1.3 Why Collaborative Writing is Not Done Today

This section will present some of the reasons why computer programs to enable collab-

orative writing have not been developed before now. First will be an examination of the

prevalent assumption in much of the research community that truly collaborative writing

is simply not possible. The remainder of the section will explore the challenges first of

writing in general, then of collaboration in general, and finally of collaborative writing in

particular.

Historically, the collaborative writing problem as described in the first section has

been largely ignored by the research community in collaborative systems because this

community has somewhat arbitrarily assumed that the problem is insoluble. The fol-

lowing excerpt from a book on collaborative writing clearly states the assumption that is

implicit through much of this research literature:

If we accept a definition of collaborative writing as the activities involved in

the production of a document by more than one author, the pre-draft discus-

CHAPTER 1. BACKGROUND 6

sions and post-draft analyses and debate are the collaborative components.

[14, page 84]

Because of this blind spot in the research community, the term “collaborative writing”

has been co-opted in the literature to refer to the collaborative editing model. The remain-

der of this dissertation will refer to this approach as “collaborative editing” and will only

use the term “collaborative writing” to describe systems that enable collaboration during

the composition stage of writing.

1.3.1 Challenges of Writing

Writing is a difficult process. It involves finding words to represent ideas, crafting sen-

tences to express those ideas, and applying both logical and narrative structure to organize

those sentences – often all at the same time. And if the writing involves creativity, then

the writer must go even a step further. This process requires as close to total concentration

as possible. It is a solitary, individual process that works best when free of distractions.

Anne Lamott describes the depth and spirit of this endeavor in her book on writing, Bird

by Bird:

“You need to trust yourself, especially on the first draft, where amid the

anxiety and self-doubt, there should be a real sense of your imagination and

your memories walking and woolgathering, tramping the hills, romping all

over the place. Trust them. Don’t look at your feet to see if you are doing it

right. Just dance.” [34, page 112]

It is also worth observing here that writing is not modular. A well written document

will have a narrative flow, where each part of the document is designed to not only per-

form its primary purpose but also flow smoothly into the next section. A long document

CHAPTER 1. BACKGROUND 7

or document section will also need to have summaries at the beginning and end, and

signposts throughout to guide the reader. Changing any section thus may require changes

to surrounding sections, and may require changes to introductory and summary sections

as well. A well-written document should also have consistent style conventions, meaning

that a style change in one section may require a cascade of other changes throughout the

document.

Although the challenges of writing outlined here can be adequately addressed for

a single author by traditional word processors – indeed, most solo authors today use a

word processor for some or all of their writing – these applications are inadequate for

multi-author collaboration. Furthermore these challenges of writing greatly complicate

the process of collaboration during writing, in ways that will be explored below.

1.3.2 Challenges of Collaboration

Collaboration in general is also a challenging task. A collaborative system must ensure

that each collaborator is sufficiently aware of the other collaborators’ actions that he

or she can effectively coordinate his or her efforts with theirs. The most demanding

collaborative applications strive to create a continuous, subconscious awareness of the

other participants called “presence”. This awareness is the primary factor that determines

how efficiently collaborative systems perform, and is established and maintained by

a variety of media and techniques, which will be described below in the applications

section.

Although preserving presence is important for collaborative systems, the most im-

portant key to their effectiveness is their role in helping their collaborators deal with

disagreements and conflict. Collaboration is ultimately a process of merging. The starting

point is always ideas within individual people’s heads, and the end product is some form

CHAPTER 1. BACKGROUND 8

of common result of the collaboration, and thus the ultimate effect of the collaboration

is always to somehow merge these inputs into the end product.1 There are two design

parameters here: what degree of disagreement can be handled, and what role the collab-

orative system performs in resolving disagreements.

Collaboration between people who always think exactly the same thing is fairly point-

less, because the reason that we put up with the inefficiencies of collaboration is to get

the unique or best contributions from multiple participants. However, the intensity of

disagreements that must be handled varies by the nature of the collaboration, ranging

from the level of trust and gentleness of long-time collaborators to possible hostility,

vandalism, and floods of unsolicited advertising in systems that are open to the general

public. The most common cases are somewhere between these two extremes. Collabora-

tion typically involves some degree of competition and personal conflict, but generally

can rely on some level of external social structure or relationship to ensure that the

disagreements do not get out of hand.

For a collaboration to complete, all of the conflicts between the contributions of

the collaborators must somehow be resolved. Computer-based systems for different

applications can take very different roles in this resolution process. At one extreme,

the collaborative system can control the collaboration by dictating how all conflicts are

resolved. At the other extreme, the collaborative systems can essentially take no role

in conflict resolution, leaving the collaborators to negotiate their own compromises. In

between, the system can support various levels of advising the participants and pushing

them towards consensus.
1Designing a collaborative system to make these merging decisions automatically is a bad idea,

regardless of how tempting it looks. Harris and Henderson make this argument effectively in A Better
Mythology for System Design[26].

CHAPTER 1. BACKGROUND 9

1.3.3 Additional Challenges of Collaborative Writing

Writing is not a simple or uniform process, and as a result there may be significant,

document-wide disagreement about how the final document should look. These dis-

agreements may take many forms. There may be disagreements in the writing style,

as described earlier, including but not limited to notation and word choice, sentence

structure, narrative flow, and logical organization. There may also be disagreements about

the goals and purpose of the entire document, especially if it is being used for strategy

or planning. These overall disagreements can filter down into smaller conflicts, so that

there may be little or no agreement among the participants even as to what general types

of changes should be considered improvements.

1.4 Versioning

The primary characteristic of a collaborative system that determines how it handles dis-

agreements is its strategy for versioning: specifically, whether or not it allows multiple

versions of conflicting sections of the collaborative product, and at what granularity these

versions are accessible to the participants. There are four basic versioning approaches

found in collaborative systems today. Single version systems allow only one version to

exist. Time-sequenced versioning systems maintain older copies of the current version.

Accumulative systems never delete anything, and thus keep all versions. Finally, multi-

versioning systems present one or more active versions of the content simultaneously to

the participants.

CHAPTER 1. BACKGROUND 10

1.4.1 Single-Version Systems

Single-version collaborative systems are by far the most common. This approach mirrors

how people normally work in non-collaborative settings: When an artist or writer without

a computer makes a mistake, he or she paints over or erases it. In computer-based text

creation with word processors, the operating system does not clutter up its hard disk with

older versions, but rather discards them and keeps only the latest version.2

Collaborative systems that only keep a single version can be thought of as “latest

only” systems: any conflict is (and must be) resolved by accepting the latest version

presented and discarding anything with which it conflicts. Collaboration is achieved by

allowing users to take turns accessing the artifact being created. In turn-taking or shared-

cursor systems, the entire artifact is locked by the user currently modifying it. In multiple-

cursor systems, each user can do whatever he or she wants, wherever he or she wants, at

any time. A common compromise between these two extremes is region locking, where

each user can lock and modify part of the collaborative artifact – a paragraph, a graphic

object, or some similar segment – while still allowing other users to simultaneously

modify other regions.

1.4.2 Time-Sequenced Versioning

The most common type of multiple versioning used in collaborative systems in time-

sequenced versioning. This approach is so common that it is usually simply called “ver-

sioning” in publications of the research community. In a system using time-sequenced

versioning, a new version of one component of the collaborative artifact is created when-
2The VMS operating system developed by Digital Equipment Corporation in the 1970’s kept older

versions of all files, and the plan 9 prototype operating system also had a similar approach. However, no
mainline operating system since has followed this model.

CHAPTER 1. BACKGROUND 11

ever one of the participants locks that component, makes one or more changes to it, and

then releases the lock.

The most widely used collaborative applications with time-sequenced versioning are

the RCS and CVS version control systems, primarily used for the source code of computer

programs. Both will be described in more detail in the applications section.

While a single-version system makes the implicit assumption that any change will

always be an improvement, a time-sequenced versioning system assumes merely that any

change will probably be an improvement. Thus in normal usage the user interface only

shows the latest version of each module, but tools are available to access older versions

in the relatively rare situations when they are needed.

A sequence of versions enables history tracking, which can occasionally be useful,

but the most common use of versioning is to allow changes to be undone. Such undo

operations when done directly using the version database are limited in two ways. First,

all or none of the changes between a newer version and an older version must be undone.

Second, versions can only be uncreated in the reverse order in which they were created.

To work outside of either of these constraints – to undo parts of a version or to undo a

version out of order – will require some manual text modification. Some time-sequenced

versioning systems have tools to make complex undo operations easier, but these tools

themselves can be difficult to learn, understand, and use.

1.4.3 Accumulative Systems

An accumulative system is essentially a system without a delete function – it displays all

contributions from all users to all other users. The most widely used system of this type

is the Usenet newsgroup system, in which anybody with Internet access can contribute

a message to any open newsgroup. Such a system can be thought of as “all versions”

CHAPTER 1. BACKGROUND 12

versioning, because the only way to change something in an accumulative system is to

make a copy of the “old” version, make your changes to it, and write the “new” version

into the system next to the old one. Since every older “version” is displayed, even if all

participants want it gone, an accumulative system is a very noisy and distracting way to

attempt to write.

Most accumulative systems support threading, which is implemented by allowing

each author to submit his or her contribution as a reply to somebody else’s contribution.

A thread is formed by a contribution, a reply to it, a reply to that reply, and so on.

Threads can branch if there are multiple replies to one contribution. Display interfaces

in such systems usually automatically detect threads, organize them, and display them as

tree structures. Threading might seem to naturally support time-sequenced versioning,

but in practice most replies are comments about the previous contribution rather than

replacements of it.

1.4.4 Multiversioning Systems

Multiversioning is a term that appears to have first been proposed by Sun, Chen et.

al.[49]. Multiversioning refers to versions that are alternatives – i.e., only one of them

should appear in the final product – but are considered to be equally valid “peers” until

some process chooses one of them at some later time.

The first application for which Sun and Chen used multiversioning was for support

infrastructure rather than for a user interface. They built a multi-site collaborative editor

called REDUCE[48, 49] that maintained one common view at all sites. To maintain good

responsiveness while running over potentially slow network links, this system imme-

diately reflected all text changes locally, before they had a chance to reach the central

database. This approach meant that the central database might receive conflicting and

CHAPTER 1. BACKGROUND 13

apparently simultaneous text modification commands from multiple sites – multiversions

– in which case it arbitrarily picked one version and broadcast it to all the sites, along with

appropriate undo commands for rejected versions. This approach occasionally caused

some contributor’s change to disappear a few seconds after it was made. This behavior

occurred only rarely because the granularity of the versioned segments was small, and

therefore was tolerated by the users.

Making multiversions visible within a user interface raises some additional chal-

lenges. For display, the granularity of the versions – the size of the smallest segment

of the collaborative artifact that can be represented as multiple alternative versions – is

crucial to the success of the interface. The segments must not be too big or too small, and

the segments must feel natural to the user.

Allowing multiple versions to be present simultaneously creates an additional prob-

lem: how these versions can be merged into a finally collaborative product. As described

earlier, collaboration is ultimately a process of merging multiple inputs into a final prod-

uct, and therefore allowing multiversions to persist in a collaborative artifact is in essence

a mechanism for delaying part of the collaboration. This mechanism in turn creates a

requirement for some other mechanism to complete the merge by choosing one of each

set of multiversion for the final product.

1.5 Other Collaborative Systems

Before considering the implementation of a new collaborative writing system, it is in-

structive to examine other collaborative systems designed for other tasks, to understand

both how their tasks differ from collaborative writing and how their implementation

techniques exploit these differences. This survey will consider collaborative meeting

CHAPTER 1. BACKGROUND 14

support software, accumulative knowledge bases, collaborative hypertext systems, object

based graphics editors, and source control systems for computer programming. It will

then conclude with a survey of systems to support collaborative editing, the closest

currently available substitute for collaborative writing.

1.5.1 Collaborative Meeting Software

Computer and communications technologies have long been used to bring distant people

together for meetings by providing video, audio, and other links between the participants’

sites, and studies have shown such a linkage to be effective by itself[52]. However, com-

puters have also been used to facilitate the business of meetings by providing temporary

common work areas for the collaborative use of the meeting attendees. One common

meeting support tool is shared electronic whiteboard systems such as Tivoli[40]. These

systems usually support only a single version of the display: new writing overlays or

erases old writing, just like on a real whiteboard or bulletin board, respectively. The

single-version approach is not a problem with such systems because the artifact created

is temporary: the principal product of the meeting is the consensus of the participants.

The whiteboard contents occasionally will be archived but usually will be simply erased

when the meeting is concluded. Thus the participants need not be concerned with what is

written, because it will probably never be seen again and they will certainly not be held

responsible for its content.

Decision support systems such as SIBYL[35] and gIBIS[12] provide another type of

meeting support. Again, conflict resolution is not a problem because the permanent

output of the system is only the final decision, not the information supporting it.

CHAPTER 1. BACKGROUND 15

1.5.2 Accumulative Knowledge Bases

Accumulative knowledge bases, at their purest, are simply implementations of accumu-

lative databases, as described above. Such systems never need to deal with conflicting

versions, but they pay a price in lack of coherence. This lack of coherence is not a

problem in such systems because the users do not expect coherence.

An example of such a purely accumulative system is the Usenet news program, men-

tioned earlier. In this system, anybody with an Internet connection can post a message to

a newsgroup, and every other reader of the newsgroup will see that message. Although

Usenet news servers eventually delete old messages, many websites archive the entire

newsgroup hierarchy, so all messages are essentially available forever. The Usenet system

worked extremely well in the 1980’s – before the World Wide Web, Usenet was the

preferred place to find current technical information – but lately its newsgroups have

become so cluttered with advertisements and posts by inexperienced users that today few

people can afford the time and effort read an entire newsgroup. Instead, more people are

relying on text searching to find useful information in newsgroups[42]. Similar systems

on smaller scales, including Lotus Notes and various members-only discussion groups on

the World Wide Web, are able to control their volume of content by limiting membership

and ejecting uncooperative members. Such systems must rely on two factors to work:

posters who sincerely attempt to play by the rules, and readers who are tolerant of a bit

of disorder and confusion.

1.5.3 Collaborative Hypertext Systems

Hypertext systems are a newer type of mostly accumulative knowledge base that has

been gaining popularity within the last few years. In a collaborative hypertext system the

CHAPTER 1. BACKGROUND 16

participants collaboratively create a hierarchical structure and attach notes or articles of

the nodes of the hierarchy.

Another widely cited early collaborative hypertext writing systems is

CoAUTHOR[24], which used region locking in individual hypertext nodes.

Anja and Jörg Haake in 1993 created a collaborative hypertext system called

CoVer[21], which supported multiversions (which they called Multi-state OBjectS, or

MOBS) for leaf nodes in the hierarchy tree. The CoVer user interface allows one to

browse the versions in a MOB object and compare or merge any two such versions,

but does not support the display of multiversion objects inline within the context of

surrounding material.3

However, hypertext systems can also support collaboration fairly well without mul-

tiversions. The relative modularity of their link and node structure (as opposed to a

monolithic narrative document) helps collaboration by reducing the chance of collisions

between possibly conflicting contributions.

Currently one of the most popular classes of collaborative hypertext systems are those

that create and manage wikis. A wiki contains two types of objects, hierarchy nodes and

content (or leaf) nodes. Any wiki user can create, delete, or replace any object of either

type. The document residing at any point in the hypertext structure can consist of a single

leaf node, although in most wikis each hypertext document can be divided into separate

modifiable sections, each represented internally by its own leaf node.

Probably the largest active wiki is Wikipedia[4], a collaboratively built encyclopedia.

The Wikipedia writing system was designed with the articles following a traditional

single-version editing model. Wikipedia also developed a set of flexible and scalable
3This system was built on an earlier project called SEPIA[23] in which each node could be modified in

a shared-cursor session.

CHAPTER 1. BACKGROUND 17

moderation policies and procedures to place limits on version conflicts. These policies

include:

• The “three revert rule”, which forbids any author from undoing another author’s

changes more than three times in a 24-hour period,

• A procedure by which administrators can be recommended by non-administrators

and appointed by a vote of administrators (so power can be distributed while still

emanating from the founders), and

• A procedure by which administrators can suspend or ban disruptive authors.

In practice, disagreements about the hierarchy do not seem to be a problem with

Wikipedia users. This is probably true because cross-references are allowed and thus

the hierarchy can be redundant, and also because most participants agree about what an

encyclopedia structure should look like. The collaboration on articles did not work out

so well. The initial expectation of the Wikipedia designers was probably that contention

would be rare because a small group of people putting together an entire encyclopedia

would have plenty of articles to write without bothering to argue over details. This ap-

proach worked well early on, but as the Wikipedia grew more comprehensive it attracted

a new generation of contributors who write high volumes of material, rewrite others’

articles much more aggressively, and are much less thin-skinned about having their own

articles edited or rewritten by others. Aggressive collaborators even contributed a new

term to the language of collaboration – “revert wars” – to describe the situation where

two people with an intractable disagreement about an article repeatedly replace the other

author’s version of the article with their own version. Many of the original pioneers of

Wikipedia got very frustrated and offended by the new, rougher, less respectful collabora-

CHAPTER 1. BACKGROUND 18

tors, and quit Wikipedia entirely. The following are a few direct quotes from the “Missing

Wikipedians” web page in Wikipedia (keyword WP:MW) expressing this frustration:

“It took me way too long to realize the underlying facts about the way

Wikipedia works. In this libertarian anarchy, any process is only as functional

as it’s most dysfunctional participant. What that means is that in too many

areas the inmates are in charge of the asylum.” - GK

“I’ve gotten tired of the English Wikipedia. It’s gotten so big that I would

have to spent most of my time reverting bad edits to pages on my watchlist,

and that’s not fun. I’ll probably be back, but not until a stable branch is

launched.” - Dori

“Fine. I give up. Delete everything I’ve ever written. There appears to be

some personal thing here where if you’re not part of the clique, you’re not

welcome. Goodbye.” - Corvus13

Perhaps the most important lessons from Wikipedia are that its type of collaboration

is a niche solution, not suitable for everybody, and that both its limitations and its niche

were not apparent until after months of intensive use.

1.5.4 Collaborative Object-Based Graphics Editors

Object-based graphics editors have been a fruitful proving ground for collaborative re-

search prototypes. Many such systems appear to have worked quite well, and have

not been turned into products largely because there is little demand for collaborative

graphics editing. Collaborative graphics editors work well because individual graphics

objects provide convenient and totally independent segments for simultaneous editing

CHAPTER 1. BACKGROUND 19

by multiple users. Sun and Chen developed such a graphics editor[11] on top of the

REDUCE multi-site synchronization engine described earlier on page 12. Sun and Chen

also developed a graphics editor that allowed out-of-sequence undo of previous editing

operations[47]. Stewart et. al.[46] and Bier and Freeman[7] also developed multi-cursor

graphics editors, where multiple users could draw simultaneously, and these systems

worked well in user tests.

The Tivoli team at Xerox PARC also developed a two-site electronic whiteboard

system[38] that implemented true multiversions. Here the modularity of graphic objects

was exploited to build a user interface: in two-site Tivoli, editing an existing object caused

the original object to be moved aside (and sometimes shrunk) and a new copy of the object

produced for editing.

1.5.5 Source Code Control Systems

One of the most widely used classes of collaborative computer applications is source

code control systems used in the development of computer programs. These systems

have caught on for two reasons: first, there is a great need for collaboration in computer

programming, and second because computer program source code lends itself well to

collaboration.

There is a need for collaboration in programming because some programs – most

notably operating systems – must be large, and therefore require a large number of people

working on them. Furthermore, adding people to a project increases the communication

and coordination (i.e., collaboration) overhead, so much so that at a certain point adding

people to a project can slow it down, as described by Frederick Brooks in his famous

essay The Mythical Man Month[10].

CHAPTER 1. BACKGROUND 20

Writing computer program source code works better with collaborative tools than

does writing narrative text. There are many reasons for this, including the following:

• Order does not matter: Reordering an entire module is never necessary – the

compiler does not care. The same is not true of writing.

• Style does not matter: Programmers care about the clarity of presentation in

source code only in support of later debugging and maintenance, and the audience

for code reading is limited to programmers. Writing usually must be accessible to

a wide range of audiences, placing much greater emphasis on style.

• Modularity: Programmers rarely work on the same feature simultaneously. Each

programmer works on a small set of functions which he or she has been assigned

(or, in free software, those in which he or she has an interest).

Although all computer program code must be reachable through a relatively small

programmer interface or user interface (which precludes programmers working

and testing totally alone), in a well-designed program most of the source code to

implement each feature is relatively independent from the code to implement other

features. The implementations of two or more features rarely share lines of code,

and furthermore they are often segregated into separate source code files as well.

On the other hand, writing is not modular in many ways, as described earlier on

page 6.

• Shared goals: Programmers generally agree on the overall goal of a program

before they start coding together. With the exception of experimental prototypes,

most major programming projects start with a planning stage where the desired

function of the program is clearly specified.

CHAPTER 1. BACKGROUND 21

In contrast, collaborating writers may disagree about things as fundamental as the

purpose of the document.

• Consensus as to what constitutes an improvement: Programmers benefit from a

shared, industry-wide consensus of what constitutes an improvement: if a change

adds a feature or fixes a bug, few programmers would argue that such a change is

not an improvement. In the absence of deliberate vandalism, most programmers’

changes do vastly more good than damage, and therefore are usually accepted by

default by all other project members.

These characteristics of programming allow for straightforward version merging

mechanisms. To merge changes to different module files, the user can simply collect the

latest version of every file. To merge changes to different lines in the same file, the system

expresses one of the changes as an ordered sequence of line modifications (add, delete, or

replace) and applies all of these line modifications to a version of the file containing the

other change. The only remaining case, where two participants simultaneously change

the same line of source code, is extremely rare, so it is considered acceptable if the tool

handles this case poorly.

The most universally available version control system – and the one upon which most

others are built – is named RCS4 (which stands for Revision Control System) and was

developed by Tichy in the 1970’s [51]. In the RCS system, a versions file is created

corresponding to each source code file in the program. This versions file contains all

versions of the described source file. It contains an exact copy of the latest version of the

described file, interspersed as necessary with line modification commands which can be
4CVS, which is probably the most popular version control system, is one of the systems built upon the

concepts of RCS.

CHAPTER 1. BACKGROUND 22

applied as an executable script to generate any previous version of the file. RCS is thus a

time-sequenced versioning system.

The RCS content modification user interface contains two basic functions: check out

and check in. When a user checks out a file, RCS gives the user a writable copy of the

desired version of the file (usually the latest version) and records what version of the file

the user chose to check out. The user changes the file, and then checks in a new version

of it containing his or her modifications. When a file is checked in, the RCS system

makes the checked-in file into the latest version, determines the set of line modification

commands required to generate the checked-out version from the checked-in version, and

then appropriately arranges these and all the existing line modification commands so that

all other versions can be created.

If two users simultaneously make changes to the same line of code in the same

version of the same source file, the RCS system accepts the change made by the first

user who checks in and then rejects the change made by the second user when he or she

checks in. The rejection takes the form of a re-checked out, non-functional version of

the file containing conflict sections. This second user must fix the problem manually by

modifying the file and then checking it in again. This merge interface is hard to use, but

is tolerated by users on many projects because it occurs very rarely. Most significantly,

there exist open source projects, within the Linux project and others, with thousands of

developers per product who tolerate these merging inconveniences. On the other hand,

many projects using RCS, especially in a corporate setting, have historically avoided this

merging interface entirely by disallowing multiple simultaneous checkouts of the same

source code file. For example, the author worked on five programming projects using

source control at Digital Equipment Corporation in the 1990’s, and only one allowed

multiple simultaneous checkouts of source code files.

CHAPTER 1. BACKGROUND 23

Since this merge interface is a possible candidate for other collaborative systems, it

is instructive to examine some of what it wrong with it. It has many problems, including

unfairness, uncontrolled risk, and unpredictability. This merge system is unfair because

it arbitrarily places the burden of merging on the second person to check in, regardless

of who that person is. If this person is the programmer most overloaded with critical

tasks, he or she may waste a lot of time researching and merging with changes done

by other programmers with much more spare time. On the other hand, the merge may

be very risky if the second person to check in is a novice programmer who does not

understand the change made by the other person. This merge system can also add a lot

of unpredictability to the development process. While most check-ins take a matter of

seconds, a merge may require time-consuming analysis to understand the other person’s

change. Since many organizations expect programmers to check in their changes at the

end of the day for an overnight build, these merges may end up happening under severe

time pressure, with subsequent increases in error rate. Thus the RCS merge interface is

not a good model for conflict handling in more demanding applications.

RCS Version Comparison Tools

Because versions in RCS are stored as deviations from a reference version, writing version

comparison tools is relatively straightforward. RCS version files are segmented by source

code lines, so displaying conflict sections side-by-side is very natural – however, it re-

quires a wide screen. Some users prefer displaying change sections stacked up. Many

systems offer both options. Other systems such as the ediff feature in emacs show two

synchronized windows displaying the alternative versions. All of these interfaces work

well for comparing two versions, but do not scale as well to comparing three or more

versions.

CHAPTER 1. BACKGROUND 24

CVS Branching

CVS, or the Concurrent Version System[3], is a system that offers all of the functionality

of RCS, and in addition allows variant branches. Each variant branch has its own latest

version, which can be checked out and checked in independently of the “main” branch

or any other branch. CVS also offers what is called a “3-way merge” to merge the latest

version of a variant branch back into the main branch. In this case, the latest versions on

each branch are treated as peers in the user interface – none is necessarily latest or best –

and thus they are equivalent to multiversions.

1.5.6 Collaborative Editing Systems

Collaborative editing systems assist with that part of the process of document preparation

that occurs after a draft of the entire document is in place.

Collaborative editing is an easier task to manage than collaborative writing. It need

not involve creativity, and thus need not provide the freedom from distraction required

for writing.

The remainder of this section will describe three approaches to computer-based col-

laborative editing systems: the “low tech” method using word processing applications

and electronic mail, the “Track Changes” feature in Microsoft Word, and “shared cursor”

systems for text creation and modification. These systems can all be used to implement

the collaborative editing model described earlier: non-collaborative writing followed by

collaborative editing.

CHAPTER 1. BACKGROUND 25

Word Processors, Email, and Meetings

The most common way that collaborative editing is done today does not use specialized

tools, but relies instead on general-purpose word processing applications and communi-

cations channels. First, the primary author writes a first draft of the document and sends

it to the entire collaborative group via electronic mail. Group members then send back

either plain-text lists of suggested changes or new versions of the document with their

suggested changes incorporated. For large projects, one or more editing cycles may be

done through a face-to-face meeting of all participants, with one person recording the

edits desired by the group and integrating them into the final document.

Microsoft Word “Track Changes”

The Microsoft Word program from Microsoft Corporation contains a feature in its

“Tools” menu called “Track Changes”. Once this feature is turned on, all new text

typed will be shown in red, and all text deleted will be shown in red with a strikeout

line through it. Further versions can be created, and their changes will be represented

by colors other than red. The same menu also contains a “Compare Documents” feature

that allows the user to represent the differences between two documents in this colored

and strikeout format. The text produced by this interface can get confusing to read if

it is extensively edited because changes are recorded letter-by-letter, sometimes with no

complete words or phrases to provide a readable context. On the other hand, this can

be a useful interface for experienced and capable users. One group of administrators at

Princeton University[15] uses this “Track Changes” feature to prepare sensitive docu-

ments such as contracts or job offer letters, often having up to five people successively

CHAPTER 1. BACKGROUND 26

editing the same document, each using a different color. In this case the document history

is important, so it is vital that the system record who made each change, when, and why.5

Shared Cursor Systems

A number of research groups have built prototype collaborative text editors using a single-

version “shared cursor” approach. In these systems the users share a common or dupli-

cated view of the document. As in normal writing every change is permanent, including

deletions. Some systems use a “turn taking” approach, where the entire document is

locked by one person currently changing it, and all other users must wait. At the other

extreme, multiple cursor systems allow all participants to make changes simultaneously,

with no locking. In between these extremes, some systems allow each user to lock a

region, usually a paragraph, until that user’s modifications are complete.

The most extensive such prototype was the QUILT system, [19, 36] developed at

Bellcore in the early 1980’s. This system was developed over at least a seven year period,

and included many features. It supported all three types of locking described above. It

also included other communications channels as part of the application: video, audio,

annotations, and an early implementation of a chat window. The system achieved some

success as a collaborative editor, but its intent was never to support collaborative writing

without extra help:

Only if a collaboration has a firm social footing can we expect Quilt to be a

positive element in the attempts to write collaboratively.[19, page 36]
5It is also sometimes important for political and legal reasons that the document history of a contract

not be available to the recipient. For this reason, these documents were exported to PDF format before
being sent.

CHAPTER 1. BACKGROUND 27

Another such system named SubEthaEdit[2]6 is a multi-cursor document editor built

for the Apple Macintosh. This system also displays each author’s contributions in a

different color, with an author key always available onscreen.

1.6 Summary

Although many computer tools have been developed to help people with the process of

assembling and refining documents, few allow collaboration while actually writing the

text of a document. Those that could possibly support collaboration during writing, the

shared cursor systems, have only been successfully used for collaborative editing of text

that was written non-collaboratively. The next chapter will describe a collaborative model

that supports collaboration during creative work and a collaborative writing system built

using that model.

6formerly Hydra[6]

Chapter 2

The CASTER Collaborative Writing

System

This chapter describes a set of design principles for a system to support true collaborative

writing, and a prototype computer program that was built according to these principles.

Both the model and the prototype program are named CASTER.1 This chapter is divided

into three sections. The first section develops the design requirements for a collaborative

writing system. The second section describes the user interface of the prototype and

discusses how it implements the design principles. The final section describes implemen-

tation strategies and details of the prototype that are not visible through the user interface.
1CASTER originally stood for Collaborative Author-Specific Text Editor with Repudiation. This

acronym is obsolete because the CASTER writing system is emphatically not merely a text editor. Thus
CASTER is currently merely a name for this project.

28

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 29

2.1 Design Principles

The primary design requirement for a truly collaborative writing system is that it must

give the user control of the collaboration. This requirement can be deduced logically

from the discussion in the previous chapter. To do so, one starts by considering the

essentially opposite requirements of the two components of collaborative writing, col-

laboration and writing. Writing requires focus and concentration. Collaboration requires

awareness of and engagement with the activities of other, which largely destroys focus

and concentration. To get around this problem, collaboration must be temporarily shut

off when the user is actually writing new material. Furthermore, if a user can be returned

to collaborating mode by any action of anybody else, then this user must continually

remain prepared to deal with unexpected interruptions – which is just about as bad for

concentration as dealing with the interruptions themselves. Therefore each user must be

able to both turn off collaboration and prevent others from turning it back on. 2

2.1.1 Giving the User Control of Collaboration

Collaboration is enabled by communication, and communication occurs in two directions.

This section will describe how and why the user can and should be given control of

communications, and thus collaboration, in each direction.

One side of controlling communication with one’s collaborators is having the abil-

ity to write in privacy, without others being able to see one’s work until one judges it

ready for viewing. While writing in public may not be a distraction in and of itself,
2Some members of the research community have arbitrarily assumed that the goal of giving the user full

control of collaboration is unattainable. Hewitt and Gilbert[27], believe that interruptions are inevitable and
unavoidable in collaborative work. Neuwirth et. al.[39] agree that the closeness of collaborative coupling is
a parameter that varies widely between individuals and between groups, but they argue that the application
can at best offer a few hard-coded modes from which the user can choose.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 30

it is indirectly distracting because the writer must be concerned about writing anything

embarrassing, impolitic, or otherwise unsuitable, even temporarily, for fear that others

will see it. Fortunately, a private-writing feature is easy to implement: all that is needed is

to delay sending messages to the central server until the writer chooses to send them. It is

also easily understood when implemented in the user interface: The Save command from

most traditional applications will be replaced by a Share command, which conceptually

does the same thing.

The other side of controlling communication with one’s collaborators is to have con-

trol of the incoming information from other collaborators. Controlling this communica-

tion requires two things: control over interruptions providing the information and control

over the process of dealing with that information.

It is difficult to concentrate on a creative process like writing when one can be inter-

rupted at any instant. If another contributor can share new material at any time, and

collaborative presence would dictate that other participants must be informed at that

time, then the only way these unpredictable interruptions can be avoided is to tem-

porarily suspend collaborative presence. To avoid shutting off collaboration entirely,

these interruption messages must eventually be delivered, and the only way to make the

eventual time of delivery predictable is to place message delivery under the control of

each participant. This requirement can be implemented relatively simply, by adding a

Read New function in the user interface which will read all new changes from the central

database whenever it is pressed. The information that a change has occurred should be

made immediately available to the user in an unobtrusive fashion: but the specifics of the

actual change should not be supplied until the user requests them.

The more difficult part of controlling incoming communications is keeping track

of what has changed. The next paragraphs will demonstrate why this is necessary by

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 31

exploring the problems that result if the user must manually keep track of changes, and

then describing what types of features are necessary to prevent these problems.

If a collaborative writing system does not show each user all of the changes made

by other users, then each user must either understand and evaluate all changes by others

immediately when they are presented or remember them for later processing. Neither

option is good: both entail distractions that will encroach on the concentration needed

for writing. If the user must process all changes immediately as they are presented,

then the Read New command will entail an unpredictable and possibly large merging

task every time it is used – much like the conflict resolution in RCS, except that it

will happen often. This threat of an unbounded merging task will cause users to either

“self-interrupt” by reading new changes often enough to keep the merging workload low

(and thus never achieving concentration) or to dread integrating and avoid it as long as

possible, essentially killing collaboration. Expecting the user to remember these changes

for later processing is not much better: in this case, the user’s memory load will provide

a continuous background “worrying” distraction that will interfere with concentrating on

writing.

The only way to avoid requiring the user to pay attention to changes in a collaborative

writing system is for the system to remember all of these changes. The user must be able

to view the changes in context, which means with other nearby changes as well as within

the surrounding text. The user must also be able to conveniently choose among or further

modify such changed sections.

The creators of the sam word processor[41] in the plan 9 operating system (among

others) assert that there are four types of text modification operations: add, replace, move,

and delete. However, a functional interface for text creation and modification can be

built with only two of these operations. In the design of this interface, only the add

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 32

and replace operations were directly implemented. A move operation is simulated by

a delete operation followed by an add operation, and a delete operation is simulated by

a replacement with nothing. Remembering an add operation requires marking the new

text so that the user knows that it is waiting for consideration. Remembering a replace

operation requires not only marking the new text, but also displaying the old, replaced

text with the new text for comparison.

2.2 User Interface Implementation

To evaluate the feasibility of the design principles presented in the previous section, a

prototype collaborative writing system called CASTER was constructed following these

principles. This section presents this user interface and describes how it conforms to

these design principles.

The first subsection shows the startup procedure and general appearance of the user

interface.

The next four subsections describe the principal mechanisms for implementing the

design principles: the implementation of the individual text modification operations add,

replace, delete, and move. The last section discusses mechanisms by which the interface

facilitates resolving disagreements and building a final single consensus document.

2.2.1 Startup and General Appearance

At startup the CASTER collaborative writing program presents a dialog box analogous to

the Open and New dialog boxes in word processors, as shown in Figure 2.1. Although the

five selectable items in this dialog box are necessary for the CASTER program, three can

usually be specified by default values. The specific behaviors of this dialog box are not

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 33

necessary to implement the CASTER collaborative writing model, but rather were chosen

to balance ease of use for novice users against the need for flexibility in user testing.

Figure 2.1: CASTER Startup Dialog Box

The five selectable items are:

• Server name: The ability to specify a non-local server address is necessary when

two or more collaborators are using different computers. This field rarely needs to

be entered: it can be set by an environment variable, and it defaults to “localhost”.

• Document name: This field is conceptually analogous to a filename. The user can

either select an existing document from a pulldown menu or type the name of a

new or existing document. This field has no default value.

• Clause type: This field allows the user to determine how the document will be

segmented for the purpose of displaying conflict sections, which will be described

below. It defaults to a segmentation strategy that has been empirically determined

to work best for a document consisting of paragraphs of text.

• Author name: Each user must choose an author name to identify him- or herself

when modifying a document. The user can either select an existing author name

from a pulldown menu or directly type a new or existing author name. This field

has no default value.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 34

• View name: Each author may create multiple views of the same document. This

feature is useful for making sense of large documents, but is rarely needed for short

documents. The user can either select an existing view name from a pulldown menu

or directly type a new or existing view name. This field defaults to “v1”.

In common usage, novice users will generally need to set only the document name and

author name fields. The interface encourages this usage by its use of keyboard focus.

The dialog box first appears with keyboard focus in the document name field. Pressing

the “Enter” key in the document name field advances keyboard focus to the author field.

Pressing the “Enter” key in the author name field advances keyboard focus to the OK

button. The other three fields are still accessible via navigation with the “Tab” key or

explicit selection with a pointing device.

Once the document is opened, a text entry window appears that looks much like a

traditional word processor, as shown in Figure 2.2. The following sections describe the

specialized ways in which CASTER handles traditional text modification operations.

Figure 2.2: CASTER Text Entry Window

2.2.2 The Add Operation

The only requirement for the system to remember add operations is to mark any new

text. The approach chosen for CASTER is to mark all new text created by others with a

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 35

yellow background, simulating the common process of using a yellow highlighter pen to

mark changes in a paper document, as shown in Figure 2.3. The CASTER user interface

implements a function called Mark as Read, which turns the background white for any

yellow marked text in the current text selection. The current text selection is chosen in

exactly the same way it is done for the cut and paste operations in most existing word

processors and widgets. CASTER uses another common highlighter pen color, a light

green, to mark new text created by the user of the program, as shown in Figure 2.4. The

background in all of these green sections is changed to white when the user uses the

Share function to write those changes to the central database.

Figure 2.3: New Text Created by Another User (Bob)

Figure 2.4: New Text Created by the Current User (Alice)

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 36

2.2.3 The Replace Operation

The user interface for implementing the replace operation was the greatest user interface

challenge for CASTER. The old version of any text must be displayed, which is relatively

straightforward at the expense of some screen real estate.3 The bigger challenge is

making the interface seem natural to users of both pen on paper and traditional word

processors who are conditioned to expect old versions to be immediately hidden or de-

stroyed.

The mechanics of the interface for handling text modifications requires support for

displaying conflicting versions, choosing among them, or further modifying them. In

CASTER, conflicting versions of a text segment are presented side by side, with delimiters

around and between them, as shown in Figure 2.5. The delimiters have a red background

to make them stand out. The user can choose between these versions by double-clicking

on a conflict section. Double-clicking on a conflict section brings up a dialog box showing

all active versions, as shown in Figure 2.6. The user can then select one of the displayed

versions. Alternately the user can modify a version directly by clicking anywhere in a

conflict section and then typing.

Figure 2.5: A Conflict Section

3The strikeout approach used in Microsoft Word was considered but rejected because it does not provide
a clear cue to the user that this is a conflict section (between keeping and deleting the text). One possible
project listed in the “Future Work” section is to evaluate this approach.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 37

Figure 2.6: Conflict Resolution Dialog Box

The mechanics of this interface do not address two vital semantic questions: how

the text should be segmented to create conflict sections, and which versions should be

displayed within those sections.

Text Segmentation

To display conflict sections, the text must be broken into segments. These segments must

provide sufficient context for comparing versions while not unduly interrupting the flow

of the document. There are two design parameters for the size of these segments: how

small the smallest sections will be, and how big the biggest sections will be.

Preliminary testing indicated that the smallest size of conflict sections should proba-

bly not be individual letters: the hypothetical example in Figure 2.7 shows how confusing

this can get for even the simple modification of changing a sentence from plural to

singular. The design choice for CASTER was to segment by phrase, where a phrase

begins with text and ends with punctuation. Later testing showed that conflict sections

containing both text and carriage returns were hard to understand, and that therefore each

sequence of carriage returns should be its own segment. Figure 2.8 shows an example

of this segmentation. Note in the figure that the segments containing carriage returns

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 38

contain no visible text. During conflict resolution, however, the version-choice dialog

box represents each carriage return with the text “
”.

The database records have pointers to strings.

TheEach database records haves a pointers to one stringves.

TheEach database records haves a pointersreference to one stringves.

Figure 2.7: Conflicts Segmented by Individual Characters

Figure 2.8: Segmentation

The design question concerning the maximum size of a conflict segment is whether

multiple phrases should be combined into a single large conflict segment, or each phrase

should be represented as its own conflict segment. The disadvantage of large conflict

sections is that they may extend over multiple pages, making it difficult for the user to

compare and choose. The disadvantage of using smaller segments is that a large text

modification may create a long sequence of conflict sections, as shown in Figure 2.9.

The design choice in the CASTER system was to limit each segment in a conflict sec-

tion to a single phrase. To deal with possible long sequences of conflict sections, an

Apply and Advance command was added to the conflict resolution dialog box, as shown

in Figure 2.6. This command applies the current version choice and advances both the

main text window and the contents of the conflict resolution dialog box to the next conflict

section in the document. If possible, this update procedure will pre-select a sensible

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 39

default version in the new conflict section: this pre-selected version will be the one written

by the same author as the version selected in the previous conflict section. Thus either

accepting or rejecting all of a multi-section change can be accomplished by making a

decision in the first conflict section and then repeatedly selecting Apply and Advance.

Figure 2.9: A Sequence of Conflict Sections

Choosing Which Versions to Show

Displaying multiple versions of the same text segment is distracting for editing. This

distraction does not extend to the initial writing process, because the writer knows that he

or she can deal with it later. For editing, however, multiversions make the text harder to

read and understand as a unit. There is evidence that a shared view causes difficulties[45],

but these difficulties are not insurmountable. On the other hand, allowing the user to

eliminate something that he or she disagrees with from his or her private view effectively

shuts off collaboration in that region, perhaps leading to significant divergence between

participants’ views, and a difficult and complicated merge process in the future.

Fortunately one mechanism exists to keep the number of versions manageable, which

we call repudiation. If one participant modifies a segment that he or she also created, the

system labels the old version of the segment repudiated, and eliminates it from display

in the views of all participants. This mechanism is based on the idea that each author

is implicitly the advocate for what he or she wrote, and thus a segment discarded by its

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 40

own author has no advocate. An author can also repudiate a version of a segment by

choosing someone else’s version for it. For example, if one participant writes a sentence

containing a misspelled word, a second participant corrects the spelling, and the first

participant chooses the corrected version of that segment, then the version containing the

misspelled word is classified as repudiated by the CASTER program and removed from

all participants’ views. Figure 2.10 shows this process.

One consequence of the repudiation mechanism is that each participant is allowed to

own at most one version in any conflict section. This leads to an unusual behavior when

typing in a conflict section where the user already owns one version. If this user types

into another user’s version in that conflict section, then the first user’s previous version

disappears and is replaced by a modified copy of the version that was edited. An example

of this is shown in Figure 2.11. The first illustration shows one version created by the

current user and one created by another user. The second illustration shows the result

of typing a single letter (“X”) into the version created by the other user: The version

previously created by the current user disappears and is replaced by the version created

by the other user with the “X” added.

2.2.4 The Delete Operation

A change that deletes an entire segment is represented as a conflict section in which one

version is an empty string. This empty string is represented by the placeholder string

“<deleted>” in the conflict resolution dialog box, but it is represented by nothing in the

main text, as shown in Figure 2.12.4

4 Note that the CASTER program does not allow a user to delete a text segment within the conflict
resolution dialog box unless some user has previously deleted that segment. This approach is logically
consistent – this dialog box only allows a user to choose something that somebody else has already done.
However, a user may entirely delete a segment that has never before been deleted simply by deleting all the
content of any version within the conflict section.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 41

Figure 2.10: Repudiation

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 42

Figure 2.11: Modifying Another’s Version Repudiates One’s Own

Figure 2.12: Display of Deleted Text

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 43

Deletion of a large region of text can result in a long sequence of consecutive conflict

sections, which can be handled efficiently by the Apply and Advance feature in the

conflict resolution dialog box, as described earlier.

2.2.5 The Move Operation

A design decision was made for the CASTER system not to implement an atomic move

operation. Moving text in CASTER must be done by deleting it from one place and

inserting it into another. This decision was made because the user interface complexity

required to visualize a block of text in two or more contexts would have made the entire

program more difficult to learn and use, and this feature was not deemed to be worth the

additional complexity. (The file format used by the central CASTER database server has

supported multiple locations for each segment from the beginning, but this feature was

never used).

2.2.6 Mechanisms for Building Consensus

The ultimate goal of collaboration is to achieve a consensus result. In the case of collab-

orative writing, this result is one consensus version of the document being written. This

merging of viewpoint is the final step of most collaborations. This goal conflicts with our

design requirement that each participant have control over his or her own creations. The

only mechanism that is compatible with user control for eliminating a conflicting version

is repudiation, in which a version can be rejected by the same user who created (and thus

controls) it. Thus if one wants to achieve a consensus document in the face of one or more

intractable conflict sections – sections where no author can convince any other author to

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 44

change his or her mind – one must somehow compel one or more authors to repudiate

their contributions, against their will.

Fortunately, the final merging process for collaboration need not consist of browbeat-

ing the participants into recanting their opinions. Merging does require someone with

the power to override others’ decisions, but this overriding is done simply by ignoring

some of the viewpoints presented, without the authors’ consent. Stripped to its essentials,

consensus document building involves resolving all conflicts of opinion in the document,

while doing no other writing or editing.

This process can be done within CASTER using a private view. CASTER can make

such merging very efficient: the group doing the merging work need only discuss the

conflict sections in the document, and the discussion of each conflict section can be

limited to comparing the versions present in that conflict section. Specifically, the final

merge process can be organized as follows:

• Each participant creates a private view of the document with which he or she is

satisfied.

• The entire collaborative writing group meets (or joins in communication) to gener-

ate a merged document.

• The moderator or leader creates a new, “fresh” private view of the document, in

which no personal choices have been made. This view shows every conflict which

could not be resolved by the authors of the candidate versions in its conflict section.

• The group considers these conflict sections in order of occurrence, and the leader

chooses one favored version from each using whatever decision-making mecha-

nisms are consistent with the participants’ organization: voting, persuasion, social

pressure, fiat, etc.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 45

• The contents of this new private view are taken to be the final merged document.

2.3 Implementation

This section will describe aspects of the design and implementation of the CASTER

prototype collaborative writing system that are not visible in the user interface.

2.3.1 Database

This section will highlight features of the CASTER database that directly support the

collaborative features described above. The database format is more fully presented in

Appendix A.

Accumulative Format

The data format in which CASTER documents are stored is basically a sequence of text

modification operations, much like that of the sam[41] word processor in the plan 9 op-

erating system. The database format is purely accumulative: nothing is ever deleted from

the database, and the responsibility for hiding repudiated or otherwise hidden content

lies with the application. The format is designed so that new data can always be stored

by appending data to a single data file, with no forward references. Although the data

is stored that way currently in the CASTER prototype, the data can also be stored in a

relational database format – and was stored that way in early versions of the prototype.

In the following explanations we will use the relational database model to describe the

features because the terminology and concepts are more universally known.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 46

Support for Multiversions

The document contents are stored in three record types: Slot, AtomVersion, and

SiteVersion. Each clause in the document is represented by a Slot, but the Slot record

does not contain any text data. The text data is instead stored in another type of record

called an AtomVersion, which is linked to the Slot. When a user modifies a phrase, a new

version must be created for that phrase. This new version of the text is stored in a new

AtomVersion record, and this new record is linked to the same Slot record as the original

AtomVersion. Thus AtomVersion records containing the text of every version that may

appear in a conflict section – and possibly many versions that will remain hidden – will

all be linked to one Slot. Each SiteVersion record represents a position in the document

at which a text segment might appear, and this position is specified by a link to another

SiteVersion record called its anchor. This SiteVersion record also links to a Slot record to

indicate what text will be shown at that position. Thus the document can be thought of as

an ordered list of SiteVersion records, each pointing to a Slot that describes what will be

shown at that position. The purpose of SiteVersion records is to support move and copy

operations, in which the same text segment can appear in more than one location. The

CASTER prototype writing system does not support move or copy operations through its

user interface, so the Slot and SiteVersion records in a CASTER document are always in

one-to-one correspondence.

Figure 2.13 shows a sample document and the conceptual organization of its un-

derlying database. For the purpose of this illustration, support is assumed for a copy-

text feature not found in the CASTER prototype. Additionally, the connections between

SiteVersion records are simplified in this diagram. Appendix A contains a full specifica-

tion of the exact database format.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 47

Figure 2.13: Database Organization for a Short Document

Support for Choices

The CASTER program allows each of its users to choose a preferred version in any conflict

section. This choice implicitly rejects all other versions visible in the conflict section at

that time. Such a choice is stored in the CASTER database as an AtomChoice record

with a reference to the chosen version and a choiceFlag set to Choose. Such a choice

could more conveniently have been stored instead as a set of AtomChoice records, one

for each visible version that was not chosen, with a choiceFlag set to Reject. However,

the commands to accept one version and to reject every other version are semantically

different, and a user interface that supported both Reject Version and Choose Version

commands might need to preserve this distinction. Although the CASTER prototype does

not support a Reject Version command, its Choose Version function creates a single

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 48

AtomChoice record with a choiceFlag of Choose to preserve this distinction for possible

future use.

The Problem of Newness

In the previous section we observed that each AtomChoice record in CASTER implic-

itly rejects one or more competing AtomVersion records. The nature of the CASTER

model also dictates that any new AtomVersion can override other AtomVersion records

that share its Slot: more precisely, each AtomVersion implies an AtomChoice for itself.

Since CASTER thus heavily uses implicit rejection in its choice records, it must have

a systematic way of figuring out exactly which AtomVersion records are rejected, and

which are not rejected, by any AtomChoice that it encounters. From a user interface

standpoint, this set of AtomVersion records can be stated clearly: the versions affected by

any new choice or modification are the versions that were known within the author’s view

at the time that that author made the change. A new AtomVersion will cause all of these

competing versions to be rejected, and a new AtomChoice record will cause all but one

of them to be rejected. The remainder of this discussion will describe any AtomVersion

or AtomChoice record as being “newer” than this set of competing known versions.

Figuring out this sort of newness is not straightforward in the database. Although each

database record has an ID number corresponding to its write order in the database, storing

newness is not as simple as storing write order. The problem with simple write ordering

is that if two people change the same part of the document simultaneously (meaning that

neither saw the other’s changes while making their own changes) then the system must

not consider either change to be newer than the other. If either of these changes were to

be considered newer, then the author of the ‘newer’ change would never see the ‘older’

change. To correctly figure out such relative newness, another field must be stored in the

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 49

database. In the CASTER database, each AtomVersion or AtomChoice record includes a

pointer to the most recently written AtomVersion (if any) that both shares its Slot and was

present when it was written.

The following sequence of operations by multiple users provides an example of how

these algorithms operate:

• Author A types a phrase

• All authors share and read new

• Author B modifies the phrase

• Author A modifies the phrase

• All authors share and read new

• Author C modifies the phrase

• All authors share and read new

• Author D modifies the phrase

• All authors share

This sequence of operations creates the database shown in Table 2.1.

Record ID newest text
1 NULL original version of phrase, created by A
2 1 Author B’s edited version of the phrase
3 1 Author A’s edited version of the phrase
4 2 Author C’s edited version of the phrase
5 4 Author D’s edited version of the phrase

Table 2.1: Database Example Showing Newest Fields

The partial orderings that can be established in this case are shown in Figure 2.14.

In this figure, a solid arrow means “is newer than” according to the above definition and

a dotted arrow means simply “is written later than”. The rule for determining relative

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 50

newness in this graph is as follows: Version A is newer than Version B if one solid

arrow followed by one or more dotted arrows can be traversed from A to B. Note that

the relative newness of Versions 2, 3, and 4 cannot be established, although Version 5 is

provably newer than all other versions.

Figure 2.14: Determination of Relative Newness Relationships

2.3.2 Overall Configuration

The CASTER prototype collaborative writing program consists of two executable images:

a client that provides a user interface for one author and a server that handles all reading

and writing of data. Only one server should be running at any time, but any number of

clients may be run simultaneously. Both the database server and client writing programs

are written in the Java programming language, and were packaged as self-executing JAR

(Java ARchive) files for ease of copying between machines.5 They were developed

primarily under the Linux operating system. The software runs on both the Linux and

Windows operating systems, but user tests were performed with both server and clients

running on Linux as well.

Communications between the server and the client were performed using a simple

socket interface, with all messages being sent in plain text in both directions. The client-
5The program contains 17040 lines, including both source code and comments. It also contains a total

of 7292 semicolons. The JAR file size is 380512 bytes.

CHAPTER 2. THE CASTER COLLABORATIVE WRITING SYSTEM 51

server communication protocol is completely program-specific: no standard higher-level

protocols were used.

2.4 Summary

This chapter has presented a model for collaboration in which each participant can

achieve the concentration necessary for creative work by controlling his or her collab-

orative linkage to the other participants. This chapter has also described how model has

then been used to build a computer program to facilitate collaborative writing. The next

chapter will present the results of user tests run on the collaborative writing application

and outline a number of possible areas for further research.

Chapter 3

User Tests and Results

Computer applications that involve either creative processes or collaboration are difficult

to test, and systems involving both of these factors are still more difficult to test[20].

In this project a variety of test approaches were used, generating both quantitative and

qualitative data.

Three sets of user tests were run on the CASTER Collaborative writing prototype

program: a controlled user test, a shakeout test in preparation for the controlled test, and

an earlier long-term iterative test that largely shaped the user interface. For each test, one

section will describe the procedure and then one or more sections will describe the results

from that test.

The quantitative information that came out of these tests consisted of counts of char-

acters generated by each author in the controlled tests and statistics from questionnaires

filled out by the participants in both the controlled and shakeout tests. The qualitative

information included observations of users during both the shakeout and controlled tests,

interviews with the participants at the end of each controlled test, and email feedback

from the initial iterative trials. This qualitative information included a large number of

52

CHAPTER 3. USER TESTS AND RESULTS 53

observations about how and when the user interface features succeeded or failed. Also

included in this information were performance considerations for the program, personal

reactions to the task and the program, and some insights into the nature of the writing

process itself.

3.1 Procedure for Controlled Tests

The object of the controlled tests on the CASTER Collaborative writing prototype was

to determine whether or not the CASTER model aided in collaborative writing. For

comparison purposes, a special version of the CASTER collaborative writing program

was developed where the user was not given control over the collaboration. This control

version of the program automatically resolved all conflicts in favor of the latest content.

In this control version of the CASTER prototype, everything that each user typed was

immediately shared with all other participants.1 In short, the control version of the

program functioned like the shared cursor systems described in chapter 1 on page 26.

The tasks for the controlled tests, shown in Figure 3.1 and Figure 3.2, were delib-

erately chosen both to provoke conflicts and to force the participants to deal with those

conflicts using the computer program. The reasons these tasks were chosen are as follows:

• The questions concerned the environment in which the participants live every day,

maximizing the likelihood that they would have strong opinions.
1The difference in the immediacy of sharing – the CASTER program shares content on demand and

the control program shares all content immediately – may appear to be a second parameter that was
varied within this test. However, this difference was dictated entirely by the nature of the conflict
resolution mechanisms. Immediate sharing in the CASTER system would be bad because it would introduce
unnecessary, unpredictable interruptions, thus defeating the fundamental goals of the system. On the other
hand, on-demand sharing in the control system would make its already serious problem (of un-trackable
changes) significantly worse.

CHAPTER 3. USER TESTS AND RESULTS 54

• The questions concerned controversial and nuanced issues upon which there was

strong disagreement on campus, decreasing the likelihood that the participants’

opinions would be exactly the same.

• The tasks could not easily be segmented into pieces that the participants could write

non-collaboratively.

• The tasks intentionally did not suggest any format for the entire document. Thus

part of the task was to determine the layout of the final document, a subtask which

cannot be divided up.

• The time pressure imposed by the 30 minute time limit precluded the more relaxed

collaboration method of passing drafts back and forth.

These tasks achieved their goals well: both participants were engaged, active, and inter-

ested during all of the tests. Figure 3.3 shows a sample document produced during these

tests.

Problem A.

Imagine that you and your collaborator both work in the
Dean’s office at Wichita State University. You have been
asked to propose a policy outlining the conditions under
which University personnel can or cannot enter the dormitory
rooms of students.

Please write this proposed policy jointly with your collaborator.

Figure 3.1: First Writing Task

The tests themselves were each done with two participants. Each pair received a

short introduction to one system, worked for 30 minutes on a collaborative writing task,

received a short introduction to the other system, and then worked for another 30 minutes

CHAPTER 3. USER TESTS AND RESULTS 55

Problem B.

Imagine that you and your collaborator both work in the
Dean’s office at Wichita State University. You have been
asked to propose a policy outlining the conditions under
which alcoholic beverages will or will not be permitted on
campus.

Please write this proposed policy jointly with your collaborator.

Figure 3.2: Second Writing Task

Wichita State University Alcoholic Breverage Policy:
Policies must be followed by all studenst and staffs in WSU
1) No Alcoholic beverages are allowed on campus .
2) Alcoholic beverages are allowed on campus on special occasion under
restriction.
3) As Drunken and Driving is strictly probited by law ,the students may be
checked for some drunken and drive test if suspected.
4) If any Student disobeys these policies they will be a warning for the first
time and if its repeated again they will be suspended from the semester .
5)The alcohol content of all the drinks will be checked before it is sold in the
Rhatigan student center to ensure the ALCOHOLIC BEVERAGE POLICY.
6) The alcoholic beverages can cause problems to who drink and also people
around them, so strictly should be prohibited while driving.
7) Age limit should be there for students for alcohol consumption.
8) All the students should co-operate with the officials to make things
working and life easier for people who drink as well as people around.
Wichit

Figure 3.3: Sample Document Produced During User Tests

CHAPTER 3. USER TESTS AND RESULTS 56

on another collaborative writing task. The participants filled out questionnaires before,

during, and after the tests. The primary purpose of the questionnaires was to determine

the participants’ background and stimulate conversation about test experiences. However,

the questionnaire also included a block of 13 questions that were asked twice, once for

each system. The questionnaires and writing task statements are shown in Appendix B,

along with histogram tables of the answers to the questions selected by the participants.

The entire test process for one pair of subjects took approximately two hours. The tester

observed the subjects while they performed the tests, and interviewed each pair together

after the tests were completed. The materials given to the participants during these tests

are presented in Appendix B.

The tests described above were done in blocks of four to control for two variables:

learning effects and task difficulty. One test in each block used the first of two writing

tasks and used the CASTER system before the control system. The second test in the

block used the second writing task and also used CASTER before the control system. The

remaining two tests in each block were similar to the first two except that they used the

control system before the CASTER system. Two complete blocks of controlled tests were

run: a total of eight two-hour tests involving 16 test subjects.

All of the tests were performed at Wichita State University. The participants were

mostly students in the departments of Computer Science and Psychology. All of the

test participants had written at least one five page paper in their lifetimes, but only a

minority had written ten or more such papers. All were passable typists and comfortable

using computers. The test procedures were approved by the university’s Internal Review

Board, and every test participant signed a consent form.

CHAPTER 3. USER TESTS AND RESULTS 57

3.2 Interview Results from Controlled Tests

All of the participants reported that they enjoyed the tests. Both the CASTER system and

the control system were sufficiently usable for the participants to complete the assigned

tasks, and the test subjects liked the novelty both of the tasks and of the computer

interfaces.

Of the eight pairs of participants in the controlled tests, six pairs preferred the

CASTER system, one pair was split – one participant preferred the CASTER system and

one liked them equally – and the remaining pair both preferred the control system.

Of those test subjects who preferred the CASTER system, the most common first

impression that they expressed about the CASTER system was that it was less disruptive,

less distracting, and less pressuring – in other words, they first noticed and appreciated

the delayed reading feature. When questioned further, however, they expressed some

disagreement about whether delayed sharing or delayed reading was more important.

Although there was no consensus about which of these two features is more important,

there were advocates for each feature, and their opinions were often quite strong. These

results suggest that building a system with either one of these features, even if the other

could not be included, would still be worthwhile.

The pair of test subjects who preferred the control system to the CASTER collab-

orative writing system was asked some additional questions. Although they had never

worked together before, they completed their tasks quickly and easily, and agreed that

their work flowed well in both systems. This pair of participants found that they thought

similarly, agreed most of the time, and coordinated well: one participant stated, “I knew

what she was going to write about.” They preferred the control system’s immediate

exchange of ideas because its immediacy allowed them to work faster. When questioned

CHAPTER 3. USER TESTS AND RESULTS 58

further, they stated that they thought that they might have preferred the CASTER system

if there had been more participants, and that the CASTER interface might make a good

training interface for others. This idea of a training interface was discussed with the

participants of all remaining tests, but it did not resonate with any of them. They all

said that they would prefer to use the CASTER interface always, and that they would

never reach an experience level where they wanted to “graduate” to the control system’s

immediate-exchange interface.

3.3 Observations During Controlled Tests

The test administrator observed the test participants during each writing exercise, lis-

tening to their comments and questions and helping them with interface problems. The

following sections will describe problems, usage patterns, and behaviors that were ob-

served. Most of the interface problems were due to interface features that performed in

ways that were non-obvious or unexpected by the participants.

3.3.1 Patterns of Sharing

When they first started writing, participants testing the CASTER interface often forgot to

either share their contributions or read the contributions of their partner. After having to

remind every participant to share and read during the first few tests, the test administrator

modified the initial instructions for the CASTER interface to specifically stress that they

should do this. Unfortunately, reminder mechanisms within the program such as blinking

the Share and Read buttons would have been sufficiently distracting to violate the design

requirements, so the best available solution to this problem is probably to find a way to

CHAPTER 3. USER TESTS AND RESULTS 59

stress these features in the instructions. As the ideas from this interface are integrated

into consumer products, a good tutorial of these features will be vital.

After the first few tests, the test administrator recommended to every participant

that he or she always share and read at the same time. The participants consistently

did this, and rarely invoked either of these functions without invoking the other. This

seems to be a useful usage pattern, and might make a good default for the system:

perhaps Share and Read New should be one command, and the separate Share and Read

commands could be made somewhat less accessible.

Once they got into the habit sharing, however, the participants quickly figured out

that there were disadvantages to sharing too infrequently: if one worked for too long

without sharing, the chance of doing the same thing twice increased, and sorting out too

many interwoven changes could get confusing. Figures 3.4 and 3.5 show a hypothetical

example of this situation: in Figure 3.4 the author has typed in a paragraph before

checking with his coauthor, and when merging has discovered that the coauthor typed

essentially the same thing. All of the information is available to merge the two author’s

versions, but the process will be tedious: whoever does the merge must merge his or her

ideas into the text created by the other author and then delete his or her own version.

Merging is much simpler if an author frequently reads the other author’s contributions,

as shown in Figure 3.5. In this case this author can interleave his or her new ideas with

those of the other author, with much less merging required. The participants therefore

developed a habit of sharing once for every sentence typed, and sometimes once for every

phrase. This behavior was necessary because of the exceptional intensity of collaboration

required by the design of the writing tasks, discussed earlier.

CHAPTER 3. USER TESTS AND RESULTS 60

Figure 3.4: Consequences of Delayed Reading

Figure 3.5: Result of Frequent Reading

CHAPTER 3. USER TESTS AND RESULTS 61

3.3.2 Learning to Use the Chooser Dialog Box

The use of a dialog box for conflict resolution was not obvious: most participants

did not think to double-click on conflict sections even when this feature was described

beforehand. Once the participants had seen it demonstrated once, however, they found it

very natural to use.

3.3.3 Learning Curve Effects

The two problems described in the preceding paragraphs were both specific to the

CASTER interface: they presented no problems in the control system, because it did not

support those features. More generally, the CASTER interface was more complex to learn

than the control system because the instructions for the control system were almost a

strict subset of those for the CASTER system. This increased complexity is shown by

the relative lengths of the instruction sheets for each interface given to the participants,

shown in Appendix B. The tasks in these tests were sufficiently short in duration that the

participants spent a significant portion of their work time learning the interfaces, and this

extra complexity meant that in a comparative test the CASTER system was operating at a

slight disadvantage.

3.3.4 Getting Started

Test participants were isolated in separate rooms and required to communicate only

through the collaborative writing program. As a result, most groups started out by using

the text entry window as a chat window. Figure 3.6 shows an example of this usage.

The participants quickly figured out, however, that the best way to discuss the task was

CHAPTER 3. USER TESTS AND RESULTS 62

Do u get my msgs?
hellooooo

Yes i do get ur messages
good
what do u propose
personnel can or cannot enter?

I propose they cannot enter without the permission of the student
yeah. that’s write

nobody can enter their personal lives unless it is essential

so what would be the policy say?

WOW u r doing great

If they enter they have to have a written document of the student
.......giving the permission to enter

Figure 3.6: Chat Behavior at the Start of a Writing Task

CHAPTER 3. USER TESTS AND RESULTS 63

to simply write something and see how their coauthor reacted. The time pressure of the

30-minute test also pushed them away from chatting and into writing.

3.3.5 Narrative Style Versus List Style

The writing tasks both required the participants to write a policy. Such a policy can

be written either in narrative form or as a bulleted or numbered list, and some participant

groups chose each approach. Participant groups who used list formats spent a lot of time

rearranging the list items. This behavior suggests that for more list-oriented tasks a move

function may be worth the trouble of the additional interface complexity. It also suggests

that a collaborative outline generator would be helpful to generate the skeleton of the

document prior to collaborative writing.2

3.4 Measurements of Inclusivity by Character Counting

The controlled tests generated a total of 16 collaboratively written documents: one from

the control system and one from the CASTER system for each pair of test subjects. A

quantitative measure of the inclusivity, or balance of participation, for each system was

generated by calculating the percentage of the characters in each document that were

written by the minority author. For this metric, the best possible inclusivity score is 50%,

and the worst possible inclusivity score is 0%.

The analysis started with the computation of the number of characters in the final

document that were generated by each author. To accumulate these counts, each clause

that was originally written by one author was credited wholly to that author. Each clause

that was generated by modifying another clause was assumed to have been a modification

of that older clause residing in the same slot that was most similar to the new clause.
2This collaborative outliner may be an easier task using existing technology: evidence exists that some

older attempts at collaborative writing systems work best in list-oriented tasks[50]

CHAPTER 3. USER TESTS AND RESULTS 64

The changed characters in the new clause were then credited to the new author, and the

ownership credits for the remaining characters were inherited from the older clause. In the

CASTER system the contents of conflict sections were amortized: the ownership credits

for the contents of each conflict section still pending at the end of the test session were

divided by the number of visible versions in that conflict section.

The results of these calculations are shown in Table 3.1. The inclusivity metrics for

the documents generated with the CASTER program were on average 4% higher than

those for the documents generated by the control program. The testing factor for the

hypothesis that the CASTER system significantly improves inclusivity, based on these

tests, is Z=0.7149 [29, page 313], where a Z of 2.0 would correspond with a 95%

confidence factor. Based on these results, the probability that the CASTER program

significantly increases inclusivity is 76%.

Based on these data, the hypothesis-testing factor for the hypothesis that the second

system tested by each pair was easier to use (i.e., that the learning effect between tests

significantly affects performance) was 0.5653, corresponding to a probability of 72%.

The hypothesis-testing factor for the hypothesis that the first writing task was easier than

the second writing task was 0.5127, corresponding to a probability of 69%.

3.5 Questionnaire Comparison for Controlled Tests

The questionnaires that were given to the participants during the controlled tests contain

one block of 13 questions that were asked identically about both the CASTER system

and the control system. A simple numerical analysis was done on these test results to

determine whether the CASTER system or the control system performed better according

to the criteria asked by those questions. The results of this analysis are shown in Table 3.2.

CHAPTER 3. USER TESTS AND RESULTS 65

Test number Control System CASTER system Improvement
1 33% 39% +6%
2 37% 20% -17%
3 46% 50% +4%
4 46% 38% -8%
5 31% 41% +10%
6 30% 48% +18%
7 15% 46% +31%
8 49% 41% -8%

Average 36% 41% +4%
Standard Deviation 11% 9%

Z0 0.7149

Table 3.1: Percentage of Document Contributed by Minority Author

The questionnaires from which these questions were extracted are shown in Appendix B.

The procedure for performing numerical comparisons was as follows:

1. Consideration was limited to the 13 questions that were asked identically for each

system.

2. Consideration was further limited to the ten questions where there were clearly

identifiable “best” and “worst” responses. Sometimes the “best” response was the

leftmost one, and sometimes it was the rightmost one.3 The table identifies which

response was considered “best” for each question.

3. A numerical score was generated for each question response. The worst possible

response for each question was assigned a value of 0, and the other responses were

assigned values that counted up their distances from the worst response (1, 2, 3,

etc.). Thus for each question where the leftmost response was the worst, the score

for each answer was the position of the response counting from the left. For each
3In a well-designed questionnaire, approximately half of the questions should be reversed in this way. If

the “best” answer is always to the left or always the right, then the respondents get in the habit of choosing
answers on the left or right side, thus skewing the test results.

CHAPTER 3. USER TESTS AND RESULTS 66

question where the rightmost response was worst, this scoring was reversed: the

score for each answer was the position of the response counting from the right.

4. Table 3.2. shows three values for each question computed from these scores. The

first value is the average score for each question, averaged over all respondents and

both systems. The second value is the average difference in score for each question,

computed by subracting the control system’s score from the CASTER system’s

score, averaged over all respondents. The third column is the total difference in

score for each question, which is the previous column multiplied by the number of

respondents.

Quest “best” Avg Avg Total
Gist of Question response Score Diff Diff
1 we agreed/disagreed left 2.4/3 -0.19 -3
2 confident I was heard left 2.4/3 -0.13 -2
3 did (not) feel time pressure right 2.1/3 -0.31 -5
4 felt (un)worried as I wrote left 2.5/3 +0.38 +6
5 did (not) edit myself right 2.2/3 +0.25 +4
6 easy/hard to understand other’s changes left 1.9/3 +0.06 +1
7 confident other understood your changes left 2.8/4 -0.56 -9
8 who had bigger role - - - -
9 did/didn’t ”agree to disagree” right 2.6/3 +0.06 +1
10 other wrote stuff that surprised you - - - -
11 other wrote stuff you hadn’t thought of - - - -
12 was this document complete? right 1.6/3 -0.44 -7
13 was this experience pleasant? right 2.8/4 +0.06 +1

Total for All Questions -13
Average for All Questions 73% -0.08 -1

Table 3.2: Comparisons of System Quality Based on Questionnaire Responses

These results do not significantly indicate that either system is better or worse. The

averages over both systems show that overall the respondents liked both systems. The

average differences show that the respondents liked both systems about equally according

to these measures. The total differences show how few response shifts (moving an answer

CHAPTER 3. USER TESTS AND RESULTS 67

one position to the left or right) were responsible for these variations. Over all the

questions, the CASTER system scored worse on average by a factor of 0.08 point, which

corresponds to one question in twelve being scored one choice lower. Because these

questions focus primarily on factors that would be influenced by the expertise of the

system user, these data primarily indicate that the advantages of the CASTER system are

approximately balanced by the increased difficulty of learning the CASTER system in the

factors described above.

3.6 Procedure for Shakeout Test

The shakeout test was the first “live” user test performed on the CASTER collaborative

writing prototype. This test was run using 33 subjects simultaneously for approximately

two hours. The intended purpose of this test was to ensure that the program was ready

for the controlled tests, but many interesting observations came out of this test as well.

The test was free-form: the tester explained the program to the group, allowed the users

to work or play with it however they wished, and watched and talked to them during and

after the test. Data were collected using a preliminary version of the questionnaire used

for the controlled tests, and the documents generated were also examined.

3.7 Results from the Shakeout Test

The informal nature of the shakeout test led to a number of discoveries related to how

the program worked with inexperienced users. Much of what worked with an expert user

whose usage had evolved with the system did not work so well with beginners. Two

significant areas for improvement were found: the need for direct modification of text

CHAPTER 3. USER TESTS AND RESULTS 68

within conflict sections and the need for better terminology. Finally, there were some

surprises in the usage patterns chosen by the participants.

At the time of this test, the only operation that a user could perform on a conflict

section was to resolve the conflict. To modify one of a set of conflicting versions,

the user was required to select a preferred version and then modify it after the conflict

section disappeared. This “resolve first” approach led to a well-ordered task flow that was

acceptable to the experienced programmers who had hitherto tested the system. However,

essentially all of the beginner users in this test wanted to be able to position the cursor

anywhere within any version, whether conflicting or not, and start typing. This feature

was added for the later controlled tests, and worked well.

Another advantage of modifiable conflict sections is that it enables use of a common

view instead of private views. It was observed that private views caused document

coherence to deteriorate rapidly, and thus a shared common view mode was essentially

required for the controlled tests. Developers of other collaborative systems[23] have

argued that both common and private views are necessary. In a common shared view, the

only way to resolve a conflict is to repudiate your own version. Thus with the “resolve

first” approach, an intractable conflict was not modifiable by anybody. Allowing direct

modification of conflict sections solved this problem.

The shakeout test exposed some terminology problems. First and foremost, all icons

in the toolbar had to be replaced by text, because icons for the novel operations in this

application were invariably more misleading than helpful. Beyond that, the database

term Commit was removed from the interface and replaced with the term Share, which

is also used throughout this dissertation. Similarly, the database-oriented term Update

was replaced with Read New, and the term Accept was replaced with Mark as Read.

The questionnaire was also fine-tuned based on feedback from the shakeout test.

CHAPTER 3. USER TESTS AND RESULTS 69

The usage patterns of the system also held some surprises. Most significantly, the in-

vestigator considerably underestimated the degree to which users, even beginners, would

find collaborative writing to be fun. Some of the documents created by these beginners

were exploratory, containing phrases like “What does this do?” However, at least one ad

hoc group wrote a collaborative story, and one user in one of the two test labs experi-

mented with mildly vandalizing a document created by users in the other lab.

3.8 Procedure for Iterative Trials

Learning to use the CASTER collaborative writing program was anticipated (correctly)

to be a doubly difficult process: users had to learn not only an entirely new interface

but also a totally new approach to writing. Many iterations of the user interface were

necessary to lower this barrier to learning sufficiently so that the system would be even

accessible to non-expert users. To develop the interface to this point, the author and

one other computer-proficient user developed and tuned the interface over a period of

five months using iterative trials. The author’s partner in this effort was an experienced

professional researcher.4 This testing partner occasionally tested the system with one or

more associates willing to experiment with the system with him. These iterative trials

were conducted by sending a copy of the program to the tester, having him install and

run it, and receiving comments back by electronic mail or telephone. The results of these

iterations were a large list of suggestions for changes to the user interface, most of which

were adopted. These iterative trials were the biggest formative factor in the user interface

for the CASTER collaborative writing prototype program: aside from the features directly
4This test partner for the iterative tests was Dr. Gregory P. Kochanski, then at AT&T Research and

currently at Oxford University.

CHAPTER 3. USER TESTS AND RESULTS 70

dictated by the design requirements, most of the design decisions for this user interface

were based on empirical results from these iterative trials.

3.9 Results From Iterative Trials

The user interface for the CASTER prototype started with the core functions required to

satisfy the design requirements, as described earlier. Beyond this core, most of the other

features of the system evolved extensively by trial and error through iterative testing.

The discoveries made in these tests were many and varied, but the most significant

user interface findings can be grouped into three areas: features analogous to those in a

traditional word processor, usage of color, and issues concerned with text segmentation.

This section presents these findings and concludes with a few observations about the

development and runtime platforms.

3.9.1 Word Processor Features

Early in the iterative testing an understanding was developed that seems obvious in

retrospect: that because non-collaborative writing is done with word processors, user will

find it easier to do collaborative writing if the system looks and feels as much as possible

like a single-user word processor. Duplication of all of the features of a word processor

was not feasible, not only because of the prohibitive amount of development effort but

also because of the complications that such features would introduce into the relatively

short duration controlled tests. However, user testing identified a minimal necessary set

of these features, and also showed ways of mapping some of the collaborative features of

the CASTER prototype to features commonly found in word processors.

CHAPTER 3. USER TESTS AND RESULTS 71

One area that benefited from the emulation of word processors was the startup pro-

cess. Creation of a CASTER session requires four pieces of information: a document

name, a clause type or segmentation rule if the document is new (discussed in greater

detail below), an author name, and a view name. This information quadruple together

is roughly analogous to the filename in a single-user word processor. The first design

iterations allowed selection of these fields directly in the frame displaying the text, but

it was quickly discovered that a separate dialog box analogous to a file selection dialog

was much easier to use, as shown in Figure 2.1 on page 33. Furthermore, all of these

fields other than the document name confused most users. Although the author field

selection is absolutely necessary and unavoidable, the clause type and view fields can be,

and were, set to default values so that the user did not have to deal with them. The clause

type, which appears in the dialog box immediately below the document name, is set in

a new document to a default value that works fairly well for the most common types of

document. The view field for a new author is set by the program to a default name, and

the view field for an existing author with a single defined view (the most common case

for beginning users) is set to the name of that view. These fields not only are defaulted,

but they are also skipped in normal workflow. When the user selects a document name

and presses the Enter key, cursor focus is moved past the defaulted clause type to the

author selection field. Similarly, when the user selects an author name and presses the

Enter key, cursor focus is moved past the view field to the OK button. Thus users can –

and do – use the interface without understanding or caring what the clause type and view

fields do.

The dialog box described above is removed before the frame displaying the text is

presented, as a file selection box in a word processor would be. Thus a separate function

is needed to open a different view. This function was implemented as a New Window. . .

CHAPTER 3. USER TESTS AND RESULTS 72

button in the File menu, similar to that found in most web browsers. This button presents

a new version of the dialog box described above.

For creating and modifying large documents, a Find Next dialog box was determined

to be necessary. This box, however, was never used by any participant in either the

shakeout tests or the controlled tests.

The CASTER system handles plain text, and thus serves as a good front end for text-

based document production systems such as TEX[31]. To achieve this type of integration,

import and export functions were found to be necessary. A checkpoint file, written to

a filename based on the document name every time text is shared, was found to be

extremely useful for document generation controlled from a makefile. Users never wanted

to generate final documents from text source with unresolved conflicts, so no effort was

deemed necessary on rendering conflict sections cleanly – any conflict sections were

just included verbatim in the exported document, delimiters and all. A set of conflict

delimiters that turned each conflict section into an HTML table was tried, but in user tests

proved to be not worth the trouble to use.

3.9.2 Use of Color

The CASTER collaborative writing program makes extensive use of color in its user

interface. This section describes what was learned through iterative testing about color

use. The first subsection will describe how the colors were chosen, and the second

subsection will describe which properties were (or were not) usefully represented by

these colors.

CHAPTER 3. USER TESTS AND RESULTS 73

Color Choice

The first question to ask when choosing colors is whether or not color should be used at

all. Ben Shneiderman’s first rule of thumb in color use is to “Use color

conservatively”[44]. Other available appearance cues for text include blinking, under-

lining, size, typeface, bolding, and italics. Unfortunately, none of these other cues proved

suitable for CASTER. Blinking is too intrusive and distracting for writing. Underlined

text segments proved during testing to be surprisingly difficult to identify quickly and ac-

curately. The remaining appearance cues listed above are all traditionally made available

to the user for the presentation of text in documents, and thus should not be overlaid with

program-specific meanings in a writing application.

During testing two methods of marking text with color were tried: coloring the text

itself, generally referred to as “foreground color”, and coloring the background around

the text. Both were eventually used in the interface, but for different purposes.

A foreground color provides a subtle cue: the user notices it if he or she is specifically

looking for it, but may overlook it when considering the document as a whole. Although

lighter colors are more noticeable, they were discovered to be significantly less readable

because of their reduced contrast. Therefore, only fairly dark foreground colors were

used.

Background colors provide a much more noticeable cue. Text with even a very pastel

background color was discovered to stand out extremely well against the surrounding

text with white background. Contrast for readability is not an issue here as it was

with foreground colors – rather, background colors must be kept very pastel to avoid

an overwhelming amount of visual noise.

Testing also showed that there was significant value to be added by using the most

common colors of highlighter pens to exploit the pen and paper metaphor. Specifi-

CHAPTER 3. USER TESTS AND RESULTS 74

cally, the interface uses a bright yellow background, corresponding to the most common

highlighter pen color, and a light green background, corresponding to another common

highlighter pen color. Pink, the third common highlighter color, was not used so that the

color red could be used for other visual cues. The gray levels of the yellow and green

backgrounds are sufficiently different from each other that they should be distinguishable

by a color-blind user; however, if color-blind users were common then making one of

these backgrounds have a fine pattern would make them more distinguishable for these

users.

Applications of Color

The CASTER interface went through many design iterations before it was determined

how to use color most effectively to advance the process of collaborative writing.

In early iterations several attempts were made to present the data model to users,

based on a mistaken assumption that users would need to understand the data model to

effectively use the system.

The earliest trials gave text a bright pink background if it was in an active conflict and

a pastel pink background if it was in a resolved conflict. This approach was a complete,

unquestionable failure: coloring of already-marked conflict sections is redundant, and

nobody cared about conflicts once they were resolved.

The next trial used a unique background color to distinguish each of the visibility

classes used to determine what is shown or hidden in a view. These visibility classes are:

• repudiated by this view (hidden by default)

• repudiated by another view (hidden by default)

• rejected by this view (hidden by default)

CHAPTER 3. USER TESTS AND RESULTS 75

• explicitly chosen from a conflict section by this view (visible by default)

• accepted (marked as read) by this view (visible by default)

• new and not yet acknowledged by this view (visible by default)

This color coding was coupled with a feature that allowed the user to individually

show or hide each of these classes of text. This text class interface was created for a

number of reasons, all of which were shown during testing to be largely wrong:

• It was thought that users would be confused by the disappearance of versions in

conflict sections, and would need a tutorial on text classes to understand what was

happening. Testing showed that the behavior of conflict sections made intuitive

sense to the users, even those who knew nothing about how or why it was done.

• A user who deleted the wrong thing by mistake would need to turn on the visibility

of the “Rejected” or “Repudiated by this view” text classes to get the deleted thing

back. Testing showed that the undo feature performed the same function and was

much more natural to use. Furthermore, users of word processors are conditioned

to retype things that they accidentally delete, so users experienced with single-user

word processors would not even bother to look for such a recovery feature.

• A user who changed his or her mind about something he or she had deleted and

then committed could go back and find it. Testing showed that in essentially all

cases the user would prefer to just retype the deleted text.

• If one user repudiated text that another user had accepted (marked as read), then

that second user might wish to retrieve the original text. This potential problem was

never encountered by any actual users during testing, but might arise more often in

CHAPTER 3. USER TESTS AND RESULTS 76

documents with many authors. These features were left in the interface as options

for advanced users, but were so rarely used that they cannot be considered to have

been tested.

Another color scheme that was tried was to alternate the colors of the clauses, as a

method for teaching the user about the clause divisions used for conflict sections in the

document. This feature was useful to the developer for debugging, but testing showed

that users did not care about the clause structure of the document.

The color scheme for text that was finally settled upon was to represent the text created

by the current view in black and to use a unique color for text created by each other view,

as shown in Figure 3.7. The colors used were relatively dark foreground colors to make

this cue subtle. User feedback was that this coloring was nice but not necessary. Although

information about the view that created a clause should be available on demand, it need

not be immediately shown in the user interface. For future tests with large numbers of

users, a simpler scheme might be preferable in which text created by the active view is

shown in black and text created by any other view is shown in one other color.

Figure 3.7: Coloring by Author

CHAPTER 3. USER TESTS AND RESULTS 77

3.9.3 Text Segmentation

Whenever multiple views create two or more different versions of the same text fragment,

one or more conflict sections will be presented to the users showing the different versions.

A predefined segmentation of the text – done by an algorithmic rule – is used to determine

how much text will be displayed in each conflict section. If the conflicting text region is

smaller than one text segment, then each version of that conflicting text will be presented

within the context of the (identical) remainder of its segment. Similarly, a disagreement

about text that extends over multiple text segments will be displayed as multiple conflict

sections. The choice of this text segmentation rule is crucial to whether conflict displays

seem natural and informative or unnatural and confusing. This section describes the many

design iterations undergone by the segmentation algorithms of the CASTER collaborative

writing system.

The first subsection will describe the specific rules that were tried for segmenting text,

and the experiences of users with each. The next subsection will describe the need for

multiple segmentation rules. The final section will describe test results concerning the

related problem of how to best display conflict sections for effective understanding and

manipulation.

Segmentation Algorithms

The first design iteration defined a document segment as a single line, consisting of zero

or more non-carriage return characters followed by a single carriage return:

line-segment := <non-CR> ∗ <CR>

CHAPTER 3. USER TESTS AND RESULTS 78

This text segmentation is identical to that used in change sections of RCS files. This

segmentation performed poorly for text entry: modern text widgets only use explicit

carriage return characters to indicate paragraph breaks, and thus each segment is an entire

paragraph.

The idea of segmenting by the line breaks (i.e., implicit carriage returns) in the

text widget display was not even tried because of its instability: each change near the

beginning of a paragraph would change the segmentation for the entire paragraph. In this

case, even resizing the window would radically change the segmentation.

The next text segmentation rule tried was to segment by phrase. Specifically, a phrase

text segment consists of text followed by punctuation:

phrase-segment := text-char∗ punct

text-char := <regular-character> | <space-character>

punct := <punctuation-character> end-punct-char∗

end-punct-char := <punctuation-character> | <space-character> | <CR>

Note that there may be a fractional segment at the end of the document. This rule

worked well, dividing flowing text into manageable segments for conflict sections.

One refinement that was discovered in testing is that the hyphen character (‘-’) must be

treated as a non-punctuation character. This was true for two reasons. First, importing text

with hyphenated word breaks made a terrible mess when one removed all the hyphens.

Second, it was seen by users as unnatural to have naturally hyphenated words split

between segments.

In the shakeout testing, however, the test users created many short paragraphs sepa-

rated by carriage returns, and in these short paragraphs it was discovered that segments

CHAPTER 3. USER TESTS AND RESULTS 79

containing both text and carriage returns were extremely confusing for beginners to

understand, both in the in-line conflict display and in the conflict resolution dialog box. A

new segmentation rule was therefore designed in which each sequence of carriage returns

is treated as its own segment and the remaining text is divided into phrases as before:

phrase-or-cr-segment := phrase | <CR><CR> ∗

phrase := text-char∗ punct

text-char := <regular-character> | <space-character>

punct := <punctuation-character> end-punct-char∗

end-punct-char := <punctuation-character> | <space-character>

This final segmentation rule was used in the controlled tests and worked well enough

that it was not noticed by the participants.

Implicit in the preceding segmentation discussions is the assumption that any conflict

spanning multiple segments will be presented as a sequence of single-segment conflict

sections rather than one multi-segment section. This is indeed the case in the CASTER

prototype. This approach was taken for two reasons. First, it was thought that a large

conflict section, potentially many times the size of the screen window, would be difficult

for a user to read, understand, and manipulate. Second, a small change made within a

large conflict section would require the conflict section to be split, which would cause a

radical and confusing change to the display. Third, as a practical matter it was thought that

keeping the conflict sections small would reduce the chance of the text within them losing

synchronization. The author has frequently found using RCS for source code that when a

major change is made, such as moving an entire procedure to another place in the file, that

the version comparison functions become unsynchronized, recognizing hardly any of the

CHAPTER 3. USER TESTS AND RESULTS 80

matching text in the old and new file versions. Since this sort of de-synchronization would

permanently destroy effective collaboration in the document, the size of text segments

was limited to minimize the risk of this happening.

Keeping conflict sections short led to another problem: a long change might lead

to a long series of conflict sections. In practice this did not happen with text changes:

the way the interface works, rewriting a paragraph almost always results in a deleted

paragraph followed by a newly written replacement. In practice the only long sequences

of conflict sections result from large deletions. These long deletion sequences can only

be conveniently resolved (accepted or rejected) by providing a single action that can be

repeated for each segment. This repeated action is provided by the Apply and Advance

button in the conflict resolution dialog box. This Apply and Advance button is cur-

rently the only reason that the conflict resolution dialog box is necessary: otherwise a

direct-manipulation conflict resolution interface would be possible, where the user simply

double-clicked on the desired version in a conflict section to select it. Unfortunately, the

equivalent of the Apply and Advance function in such a direct manipulation interface

would require warping both the text pointer and the cursor pointer after each double-

click, which is extremely disorienting for users. If a specialized interface were used

for conflict sections containing deleted text, such as the strikeout font used in Microsoft

Word, then the need for a conflict resolution dialog box would be removed and the direct

manipulation interface could be used. This change would make a suitable subject for a

follow-up research project.

The Need for Multiple Segmentation Rules

Throughout these design iterations an understanding evolved about how flexible the pro-

cess of text segmentation needs to be. The initial goal of testing was to find one optimal

CHAPTER 3. USER TESTS AND RESULTS 81

text segmentation rule, but early testing showed that different document styles, such as

flowing text or TEX source, required different segmentation rules. The interface was

modified to allow a choice of segmentation styles at document creation time. More

recent empirical observations have indicated that advanced users might like to change the

text segmentation for generating conflict sections interactively, and furthermore that text

segmentation conceptually should be a display attribute rather than a database attribute.

Unfortunately the prototype system was entirely designed around a database composed of

segmented text. Future database designs for collaborative writing systems will be vastly

improved if they store documents independently of the segmentation rule used to generate

conflict sections. One such database design is outlined at the end of Appendix A on page

115.

Conflict Display

Each conflict section in a document is displayed within the body of the text by showing

all currently eligible versions of the segment separated by delimiters. A number of

delimiter configurations were tried, but the first and simplest one worked best. With

this option, shown in Figure 3.8, the entire conflict section is surrounded by brackets

and the conflicting versions are separated by the vertical bar character. Another strategy

set off each conflict section by indenting it and stacking up its versions, as shown in

Figure 3.9. This configuration proved not to be very useful, because the conflict sections

were not significantly easier to interpret and the resulting disruption of the narrative flow

of the text was significant. A set of HTML delimiters to build a table around each conflict

section for export and external display was also tried, as shown in Figure 3.10. Testing

showed that users did not want to see conflict sections outside of the CASTER program,

and thus would resolve conflicts before exporting.

CHAPTER 3. USER TESTS AND RESULTS 82

Figure 3.8: Conflict Displayed Side by Side

Figure 3.9: Conflict Displayed Stacked Up

Figure 3.10: Conflict Displayed as HTML Table

CHAPTER 3. USER TESTS AND RESULTS 83

Displaying conflict sections for deleted text, where one version is the empty string,

proved to be another challenge for the user interface. The design question that was

empirically tested was whether to display the empty version as some tag text such as

“<deleted>” or to not display it at all. It was found that displaying nothing for the

deleted version worked better in the text window, because users quickly got used to it and

found the tag text to be distracting. On the other hand, the tag text was necessary in the

conflict resolution dialog box: the blank version was not only invisible in the window,

it was also not selectable because the Java list selection interface would trim it from the

display. Figure 2.12 in chapter 2 on page 42 shows this final design.

3.9.4 Design and Implementation Issues

The previous sections describe user interface issues encountered during iterative testing.

This final section describes the problems encountered during iterative testing that were

not directly related to the user interface. These areas of concern are the database design

and performance optimization.

Database Issues

The original database design was a relational database, accessed using SQL and stored

using the MySQL free software database server on Linux. Unfortunately, MySQL is quite

difficult to install, configure, and manage. This difficulty not only essentially precluded

a downloadable kit for testing by non-programmers, but also made the kit too difficult

for software professionals and students to install as well. A relational database was also

massive overkill for this application, for the following reasons:

CHAPTER 3. USER TESTS AND RESULTS 84

• The CASTER database is purely accumulative. No SQL table row, once written, is

ever modified or deleted.

• The CASTER database is never inconsistent, even temporarily: each CASTER

transaction can be written entirely with single-row insertion SQL transactions, and

any client reading any of these intermediate states will not only get a self-consistent

database but also will automatically fill in any gaps during the next incremental

read.

• The CASTER client uses most of the database to generate the display. Testing

experience shows that the majority of text is visible and uncontested, and thus most

of the actual text in the database will be displayed in most clients. There is no

indication that the number of database records used used for client display would

ever be expected to be less than O(N), where N is the number of records in the

database. Thus data filtering via a SELECT statement is unnecessary.

• The CASTER program determines visibility within each conflict section by scan-

ning the conflict and display directives for that section in the order they were written

in the database. Thus database write order is the ideal order for reading data into a

client, and thus SQL’s indexing features are unnecessary.

To simplify the configuration and leverage the characteristics of the CASTER

database, a simpler database server was implemented in Java that stored the same in-

formation from the original MySQL table rows in a single flat file for each document.

The actual contents of the database are detailed in Appendix A.

CHAPTER 3. USER TESTS AND RESULTS 85

Performance Optimization

The CASTER program was typically tested in the iterative trials with documents about

the size of a ten-page technical paper. During these trials only one performance problem

caused by program algorithms was found, and this problem was fixed by a change of data

structure.

The function that was unacceptably slow determines the SiteVersion record (the seg-

ment or conflict section) that contains a given text cursor position (number of characters

from the start of the document). This function is used during text insertion, text deletion,

cut, paste, and choice handling. It was originally implemented as a linear search, iterating

through the display list and accumulating SiteVersion lengths until it reached the desired

position. This algorithm introduced significant delays, especially during operations near

the end of the document. The performance problem resulting from this approach was

fixed by re-implementing the display list as a balanced binary tree. Each node of this tree,

whether an internal node or a leaf, contains a SiteVersion. Each tree node also contains

a text offset relative to its immediate parent. Thus for a reasonable large document

the root node contains the SiteVersion halfway through the document and an offset of

approximately half the document length. The left child of the root node contains the

SiteVersion one-quarter of the way through the document, and its offset is approximately

negative one-quarter of the document length. This document data structure fixed the

performance problems by allowing all formerly O(N) interactive operations to happen

in O(lg N) time. Table 3.3 shows the number of data manipulations required to use

and maintain this data structure for all significant operations. In this table, N is the total

number of SiteVersion records in the document and K is the number of SiteVersion records

affected by the operation, which is usually small relative to N.

CHAPTER 3. USER TESTS AND RESULTS 86

Operation linear list red-black tree
Insert character at start O(1) O(lg N)
Insert character at end O(N) O(lg N)
Insert character, average O(N) O(lg N)
Delete character O(N) O(lg N)
Resolve conflict O(N) O(lg N)
Initial read O(N) O(N lg N)
Read new O(K) O(K lg N)
Cut O(N+K) O(K lg N)
Paste O(N+K) O(K lg N)
Share (not affected) O(K) O(K)

Table 3.3: Performance Comparison of Display List Datatypes

No other algorithms in the program required O(N) computation for any single text

modification operation. Thus a large document may take a significant time to read at

application startup, but will not significantly slow down any normal operations.

Chapter 4

Future Directions and Conclusions

This chapter enumerates and describes a number of areas in which this research can be

continued and extended, both within and beyond the application of collaborative writing.

The final section of this chapter then selects and summarizes both the most significant

results and the most promising directions for continuation of this work.

In this project a novel collaborative model was invented and a collaborative writing

system was developed using this model. Future directions in which this project can be

taken can naturally be divided into four categories: further testing, improvements to the

collaborative writing program, applications of the collaborative model to areas beyond

collaborative writing, and extensions to the collaborative model itself.

4.1 Further Testing

The controlled tests performed in this study were highly focused on the conflict resolution

mechanisms of the program, and were designed to compare these mechanisms to those

of shared-cursor systems, the only other approach that has been tried for synchronous

collaborative writing.

87

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 88

There are a number of dimensions in which testing could be extended:

• Increase the number of simultaneous document authors to three or more.

• Lengthen the test time and increase the difficulty of the problem. To avoid excess

fatigue, it may be best for such tests to have the authors work together for a short

time each day over the course of many days.

• Test the system in a partly or fully adversarial environment, such as the drafting of

contracts.

4.2 Improvements to the Collaborative Writing Program

This section outlines a number of possible improvements to the CASTER collaborative

writing program. These features all have the potential to greatly increase the usability

of the program. The possible features described here are a content subset browser,

a collection of feature refinements suggested by the test results, addition of alternate

communication channels, and integration of an outliner into the program.

4.2.1 Content Subset Browser

Although the text data in the CASTER collaborative writing system is presented as a

single narrative sequence, the text itself is generated by different authors at different

times. These differences define a number of interesting subsets that a user may wish to

explore and manipulate. These subsets include the following:

• Everything new (not marked as read) in the view. By default, this subset is always

highlighted in yellow.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 89

• The contents of a single transaction: everything written by a single Share com-

mand.

• All contributions created within one view, or all contributions created within all

views owned by one author.

• The current view’s contrarian opinions. This feature could be used to predict

trouble spots in merging this view with others. Part of the problem of developing

this feature will be to determine a good definition of what makes a contribution

“contrarian”.

• A customized subset containing one or more of the above, such as multiple views

or multiple transactions, selectable via a query interface.

The user interface for selecting and manipulating such a subset would minimally

include the following features:

• A selector for subset type, where the types are as defined above.

• A function to select the subset matching the text at the current cursor position.

• Navigation between non-contiguous parts of the subset: these functions would

minimally include first, last, previous, and next.

• Use of the Find command within the selected subset.

• Select-all and reject-all commands that apply to the subset.

4.2.2 Feature Refinements Indicated by Testing

This section summarizes the feature refinements indicated in the earlier sections of test

results.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 90

• Make the text segmentation for conflict sections interactively selectable within an

existing view, instead of being stored in the database.

• Make every deletion, no matter how large, be a single segment for conflict display

purposes. These segments could be displayed using a strike-through font as is done

in Microsoft Word.

• Allow the user to choose a direct-manipulation interface for conflict resolution,

avoiding the popup dialog box.

• Invent and implement an intuitive user interface for an atomic text-move operation.

Such an interface might use the content subset browser described above to allow

the user to browse among the potential locations for a block of text.

4.2.3 Alternate Communication Channels

For the purpose of controlled testing the CASTER Collaborative writing program al-

lows no interaction between users outside of the written document content. The QUILT

system[19, 36] and others provide a number of alternate channels to allow co-writers

to communicate, including audio, video, and instant messaging. On the other hand,

others have suggested that there is no benefit to including these channels in a monolithic

application.1 The effect of such additional channels on the effectiveness of the CASTER

writing system, whether integrated into the application or provided separately, would

make a worthwhile study.
1One practitioner, Brooke, states the case as follows:

[D]esigners of CSCW systems should be striving to construct many small, interrelated
applications, rather than building monolithic applications which encompass the whole
spectrum of tasks that go to make up cooperative work in any particular sphere.[9, page
29]

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 91

In addition, QUILT and others have found that annotations greatly increase the ef-

fectiveness of collaboration. An annotation is a note which is not part of the artifact

being created but which is anchored to some point within it. Threaded discussion within

an annotation can be implemented simply by allowing an annotation to be anchored to

another annotation. An annotation type would be straightforward to implement in the

CASTER database, perhaps simply as a specially marked AtomVersion. Further study

could evaluate how much annotations increase the effectiveness of the CASTER collabo-

rative writing system.

4.2.4 Combination With an Outliner

One significant observation from the controlled tests was that some participants spent a

lot of their time rearranging lists of items, which is an outlining task. These outlining

actions were not universal: groups who generated their task solutions in the form of

bulleted lists did outlining tasks, but groups who generated their solutions in narrative

form did not. However, there is evidence that outlining is a part of most or all writing of

any significant size. Lowry et. al.[37], in a nomenclature proposal based on an extensive

literature review, suggest that all writing consists of three steps – planning, drafting and

reviewing – and that the most common planning activity is outlining. Of these steps, the

CASTER Collaborative Writing System effectively addresses the last two, drafting and

reviewing.

The CoVer system described earlier (on page 16) implements multiversioning for hy-

pertext. Their display mechanism consists of either showing a single version or showing

two versions for comparison. Although the authors of CoVer assert that “Any application

domain that can be modeled by interrelated objects can be mapped into hypertext.”[21,

page 413], mapping each phrase to a hypertext node would cause problems with both

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 92

readability and modification of the text. Left with large single- or multi-paragraph mod-

ifiable object nodes – as were shown in the CoVer papers – the CASTER model should

provide a useful complement within single hypertext nodes representing documents or

paragraphs. A combination of features from these two systems would make a powerful

next-generation collaborative writing system. Such a combined system would generate

some significant user interface challenges, as two very different conflict-resolution mech-

anisms must be sufficiently rationalized that users can easily understand both of them.

4.3 Applying the CASTER Paradigm Beyond Collabora-

tive Writing

The CASTER collaborative model has been shown to be useful for collaborative writing,

but it is also applicable to other applications. This section discusses a sampling of

promising applications for this model: hierarchical content, data repositories that never

achieve consensus, and data bodies built collaboratively by storing and forwarding.

4.3.1 Hierarchical Document Content

While the CoVer project has demonstrated how multiversions can be implemented for a

hierarchical outline or body of hypertext, as described on page 16, it should be noted that

this approach is also fully compatible with the CASTER database structure, and could be

used for any hierarchical data.

Although the current CASTER writing application is implemented as a flat list of sites,

the CASTER document model supports a hierarchical organization of document elements.

While sites in the writing application are assumed to be all of the same type (each site

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 93

currently represents one clause of text), a single site-type parameter could be added to the

site record to support a structured hierarchy of data. The hierarchy features supported by

the database could be used in many ways, including the following:

• An outliner: store an outline or the section structure of a document by making each

subsection a child of its outline topic.

• Hypertext: store a site for each link as a child of the site that points to that link.

Each site can be pointed to by multiple other sites.

• Formatted documents: implement text rendition, text fonts, and so on by making

each such formatting directive a special type of site and making the formatted text

clauses be children of the formatting directive site.

• A parser for a structured language: the CASTER database with support for hierar-

chy and site typing could be used to store a parse tree representing a document or

program written in an arbitrary language.

Another research problem is that these different hierarchical organizations may in-

terfere with each other if used together. For example, if a formatting directive begins in

the middle of one outline point and ends the middle of another, then the outline points

and the formatting directives cannot both be specified by one hierarchy without splitting

either an outline point or a formatting directive.

4.3.2 Data Repositories That Never Achieve Consensus

The CASTER model is applicable beyond producing a single consensus document. It can

also be used to develop a constellation of partially shared documents generated by groups

of people with partially shared goals.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 94

An example of such a system might be a position paper on the death penalty. Both pro-

death-penalty and anti-death-penalty groups could use the same document. They could

reject each others’ conclusions and arguments while still sharing common data such as

statistics and definitions of terms.

Another example of such a system would be a set of course outlines, curricula, or

lecture slides shared by instructors at different schools. Each instructor would create a

view for his or her course in which he or she would choose material provided by others

and create new content to fill any gaps. There would be no definitive “consensus course”;

rather, each instructor would create a course tailored to the needs of his or her school.

4.3.3 Data Sets Accumulated by Store and Forward

The CASTER database has no dependency loops in its causality determination: the time

ordering of database elements, encoded in the ids of the database elements, can be ex-

pressed as a directed acyclic graph (DAG). It can be proved that two such databases

representing the same document can be merged simply by iteratively increasing ids of

database elements to preserve causality, and that this iterative process terminates. This

algorithm is described in Appendix A on page 118.

This merge procedure can be used to replace the central database with a local data

file that can either be sent to others or merged with data received from others, both on

demand by the local user. Thus an update operation becomes a database merge operation

instead of a database read operation.

Such a store-and-forward version of the CASTER application could establish point-

to-point communication links with other CASTER application instances, but it would be

more convenient and powerful to use an email or Usenet notes system as the transport for

such communications.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 95

This updating strategy enables an entirely new class of applications. The following

sections are a sampling of the possibilities.

Sharing Cooperatively Built Configuration Information

There are some types of configuration information that quickly grow sufficiently large

that one person cannot easily maintain them. Such configuration information could be

built collaboratively by a community of cooperating users. A store-and-forward

CASTER-style database could be used to allow people to evaluate the suggestions of

others, probably incorporating most and rejecting a few.

Applications where this mechanism would be useful include the following:

• anti-spam address lists

• regular expressions to recognize spam

• web browser cookie accept/reject lists

Because these lists are fully under the control of their users, they are defensible

against attack. For example, a spammer might wish to attack this system by sending out

his or her own suggested anti-spam address list gleaned from the net, but with “allow”

directives for the spammer’s own addresses. In such a case, merging the spammer’s

contribution with those of others would highlight the “allow” directives, so that the

recipient could not only reject them but also leave a record of the attack in the database

as a warning to others.

Sharing Cooperatively Built Collections

The CASTER database format could also be used to cooperatively build useful reference

collections from semi-structured atomic objects contributed by the participants. This

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 96

approach would work for any collection where overall coherence between the entries is

unimportant. The following are some examples of objects that could be contributed by

individuals and built into useful collections:

• dictionary definitions

• bibTex entries for citations

• playlists for CDs

• diagnostic flowcharts for doctors

• legal precedent flowcharts for lawyers

Again, a store-and-forward approach allows users to build personal collections from

contributions by friends without relying on central repositories.

4.4 Extensions to the CASTER Collaborative Model

The function of the CASTER collaborative model, essentially, is to share work between

collaborators while allowing the collaborators to ignore this shared work whenever they

feel like doing so. The feature set that makes this possible is a fully visible history of

changes by others that persists until the user chooses to process it. The most prominent

feature within this set is the display of persistent conflict sections.

These features all work well as far as they go, but the true work of collaboration

falls within this “processing” of the change history. For the small test documents used in

this study the tools provided for processing changes have been fully adequate. However,

this processing task will become increasingly onerous for large documents, contentious

documents, or documents with large numbers of authors. In particular, such documents

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 97

will contain many conflict sections representing complex webs of interwoven changes by

many authors. Choosing versions to resolve such conflicts will be a daunting task.

Fortunately, a large body of research work has been done recently, in many application

domains, to address the fundamental problem of intelligently choosing from a large set of

interrelated choices. The common thread in this work is the generation and application of

decision support data. This data can be exposed to the user through two interfaces: bulk

decision making and choice ranking by recommender systems.

4.4.1 Bulk Decision-Making

One decision often predicts another. If one person likes a sentence that another person

wrote, there is a significant chance that he or she will choose to accept everything that

that other person wrote during that session – or maybe everything that that other person

wrote in the entire document. Great efficiency, along with some risk, could be introduced

by allowing a user to make one decision to select or reject an entire class of data. The

following paragraphs describe four such data classifications for which bulk decisions

could be made. The resulting features are transaction aggregation, view inheritance, latest

version selection, and view freezing.

Transaction aggregation is the simultaneous acceptance or rejection of all changes

made in one other view during one session – i.e., between two successive invocations

of the Share command. Such a set of changes is extremely likely to be self-coherent,

and most likely will focus on a single theme. This feature probably will largely replace

single-version selection for many users. This feature would need to be supported by a

transaction browser as described in the earlier on page 88.

In view inheritance, a collaborator takes this aggregation approach one step further

and specifies that all decisions and change made in another specified view be reflected

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 98

in the current view, the only exception being when the current view explicitly contains

a conflicting decision or change. Inheritance so defined can be cyclic: this definition

allows two or more collaborators who trust each other to inherit each others’ views and

thus share the task of resolving the conflicts in a rapidly changing document. Each

conflict is resolved by whomever encounters it first. There is no practical barrier to

such inheritance being recursive, so a recursion option could be offered to users as well.

Recursive inheritance would simply involve inserting the inherited view’s inherited view

list into the current view’s inherited view list.

The latest-is-best rule for resolving conflicts, as discussed earlier, is the method used

by the class of simpler editing systems that the CASTER system was designed to replace.

However, there are some cases where it would be useful to have an option to resolve all

outstanding conflicts by this simplistic rule. Temporary application of this rule would

allow a new participant to get a quick overview of a complex collaborative document.

This rule might also be useful for a collaborator who decides that he or she completely

trusts the other collaborators, and thus need not question their changes. This rule could

also be useful in sections of the document about which the user has no interest.

Finally, version control can be implemented by having an option to freeze a view. In

database terms, view freezing is one bulk decision to reject any contributions newer than

a given timestamp, usually the timestamp of the freeze-view directive itself. This feature

would allow a frozen version of an entire collaborative document to be preserved for

publication, while allowing the collaborative writing database to remain active developing

the next version.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 99

4.4.2 Decision Support Information

Decision support information can be used to help the user answer the following two

questions:

• Which version choice is best for me in this conflict section?

• Which other view is the best candidate for me to inherit?

The decision support information will provide not merely yes-or-no answers to these

questions, but rather scores for each candidate (version choice or view, respectively) to

help the user compare these candidates to each other. The decision support information

can be presented as a list of candidates sorted by rank, optionally annotated with quality

scores. The scored view information should be used to present a ranked list of desirable

views for possible view inheritance, and the scored version information should be used

to determine the display order of the choices in conflict sections.

These rankings can be done by either recommender systems or authority systems.

Recommender systems rank others’ opinions by similarity to one’s own related opinions.

Authority systems rank others’ opinions by overall popularity.

Recommender Systems

Recommender systems are based on pattern matching mechanisms, which determine a

similarity score between two vectors of choices. In general, an overall similarity score

is accumulated by increasing it for matching choices and decreasing it for conflicting

choices. Many systems modify the weights given to choices based on factors such as the

frequency of the choice, the presence of another choice often found with the choice in

question, or other more complex factors. The details of the actual matching algorithms

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 100

have become extremely complex, but the above description still sufficiently describes

their function.

This technique has been applied in many application areas. The GroupLens[32,

42] Usenet news recommender asks each user to rate a small number of Usenet news

postings and then uses these ratings to present other articles that were of interest to

people with similar interests. Avery and Zeckhauser[5] added rewards for users who

provide newsgroup ratings. Video recommender systems[28] have also been built on this

principle.

These algorithms would be applied to CASTER-style views and choices by first com-

puting scores for views and then using the view scores as weights when scoring choices

made by those views. To find similar views, recommender system algorithms are applied

to the vectors of all choices made by each view in the document, and the output is a

vector of similarity scores between the current view and each other view. To find likely

choices for the current view, each of the choices made by each other view is weighted by

the choice’s view’s similarity to the current view, and these choices are accumulated for

each possible choice in the current view.

Authority Systems

Authority systems rank views and opinions by overall popularity. The simplest authority

system is straight voting: the quality of a choice is assumed to be directly proportional to

the number of views that have chosen it.

A more comprehensive general-purpose approach is provided by Kleinberg’s hubs

and authorities model[30], whose basic algorithm can be summarized within this domain

by the following pair of interdependent rules:

• A hub is a view that shares many opinions with other authorities.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 101

• An authority is a view whose opinions are shared by many hubs.

These rules define an iterative process by which the quality of each view can be calculated

as the degree to which it is a hub or an authority.

More ad hoc rules can be used to determine or modify view quality metrics, including

the following:

• How much or how often a view has contributed content and/or choices

• A view’s author’s name, institutional affiliation, or other external information used

by human users to assess the reputation of an author

• Other viewers’ opinions of the author, such as the friends, fans, and foes model

used by slashdot[1].

4.5 Summary and Conclusions

This dissertation has presented the following novel contributions:

• A model for collaboration in which all participants have full control of their link-

age to their coworkers, designed to allow concentration when necessary within a

collaborative setting.

• A prototype collaborative writing application which implements the above model,

thus demonstrating the feasibility of the model.

• A body of test results that demonstrate the usability of this application, primarily

in intensive two-person collaboration.

CHAPTER 4. FUTURE DIRECTIONS AND CONCLUSIONS 102

• A database design for this application that straightforwardly supports the handling

of multiversions, and incidentally supports concurrent transactions and store-and-

forward merging.

This work can provide a springboard for future work in many directions, including but

not limited to the following:

• Further testing in different domains.

• Enhancements to the collaborative writing application.

• Integration of the collaborative writing application with a multiversion outliner.

• Application of the collaborative model to other application domains.

• Integration of the collaborative model with decision support technology.

The author believes that this project has opened a new area for research in collaborative

systems, and looks forward to participating in further study in this area.

Appendix A

Database Design

This appendix contains a comprehensive description of the database used in the prototype

CASTER collaborative writing system.

The novel features of this database design are as follows:

1. Support for an unlimited number of conflicting versions of every user-visible seg-

ment of text.

2. Support for an unlimited number of candidate positions within the document (i.e.,

within its display list) for every user-visible segment of text.

3. A forward-only cross-referencing construction that allows any collection of

database changes to be written as a sequence of single-row-insert transactions,

arbitrarily interleaved with other concurrent database changes from other users.

4. A novel mechanism for storing random insertions into an ordered list without

requiring any changes to existing elements of the list.

103

APPENDIX A. DATABASE DESIGN 104

This design can be implemented either as a relational database or as a flat file. It was

implemented as a relational database in the early iterations of the prototype program, and

was reimplemented as a flat file in later versions of the prototype.

The first section in this appendix will describe the database design as it was imple-

mented in relational database format, because the terminology for relational databases

is standardized and widely known. The next section will describe the ramifications of

changing the database to a flat file format. The remaining section will describe possible

database enhancements and extensions.

A.1 Database Design in SQL

The design presented here assumes that each CASTER document is stored in its own SQL

database. The tables in this database can be logically divided into two sets: content tables

and containment tables. The content tables hold the records of the text modification

actions by which the users created the document. The containment tables provide the

organizational framework for this content. The first two following subsections describe

these two classes of tables.

The next two following subsections explain two important functions of the database

that cannot be inferred from its record structure: specifically, how visibility of content is

controlled and how the display list is built.

The final subsection shows the complete database design definition in the form of the

sequence of SQL statements required to create it.

APPENDIX A. DATABASE DESIGN 105

A.1.1 Containment Tables

The containment tables, Author, View, and Transaction, provide the organizational frame-

work for the application data, telling the application how (or whether) to use it. This

database is organized on the principle that an arbitrary number of participants may wish

both to contribute new content and to filter the existing content displayed to them. Each

such participant is an Author, and each display filter created by any Author is represented

as a View. All new content is entered from within a View, and thus both contributions and

filter choices are associated with a View. Each application user is intended to modify the

text locally until he or she has a consistent View and then to commit all local changes to

the database. The set of contributions and filter choices committed together within a View

are grouped together as a Transaction. Figure A.1 shows this structure.

An Author record can be uniquely identified by its username field. A View record can

be uniquely identified by its author and name fields. A Transaction record never needs

to be looked up for reuse, so it does not need a unique identifier other than its database

record id.

A.1.2 Content Tables

The content tables together store a journal of every text modification action performed

within every view. These tables can be briefly described as follows:

• A Slot record provides a hub to connect all information about one segment of text.

• An AtomVersion record specifies a string of text that can potentially appear in

its specified Slot. The CASTER collaborative writing program displays a conflict

section when more than one of these records are visible for the same Slot.

APPENDIX A. DATABASE DESIGN 106

Figure A.1: Containment Structure

APPENDIX A. DATABASE DESIGN 107

• A SiteVersion record specifies a document location in which the contents of a Slot

may appear. SiteVersion records support atomic text-move and text-copy opera-

tions, which were not implemented in the CASTER prototype.

• An AtomChoice record specifies whether or not an AtomVersion record should be

displayed in its creator’s view. If an AtomChoice record hides an AtomVersion

created within the same view, then this AtomVersion is repudiated and will be

hidden in all views. Otherwise, the effect of an AtomChoice is local to the view

that created it.

• A SiteChoice record specifies whether or not a SiteVersion is considered visible in

its creator’s view. As with AtomChoice records, a SiteChoice record’s effect is local

unless it repudiates.

A.1.3 Building the Display List

The SiteVersion records in a document together form a list that describes the structure of

the document. The anchorID and anchorType fields in the SiteVersion record provide the

information required to link the SiteVersion records together into a display list.

The CASTER application starts its display list by retrieving the first SiteVersion record

in the document. This SiteVersion serves as the root node for the display tree. The

application then links each remaining SiteVersion (in the order they were read from

the database) immediately before or after the SiteVersion specified by its anchorID. The

anchorType field specifies whether the SiteVersion appears before or after its anchor. If

two or more SiteVersion records are linked before a common anchor, then the latest one

appears closest to the anchor in the final display list. Similarly, if two or more SiteVersion

APPENDIX A. DATABASE DESIGN 108

records are linked after a common anchor, then the latest one appears closest to the anchor

in the final display list.

A.1.4 Controlling the Visibility of Content

Each AtomChoice or AtomVersion record affects the visibility of one or more AtomVersion

records in its Slot. Similarly, a SiteChoice or SiteVersion record affects the visibility

of one or more SiteVersion records in its Slot. This section will describe the form and

function of the database fields that determine visibility. The design rationale for these

functions is explained in Chapter 2, starting at page 39.

An AtomChoice record with a choiceFlag of Accept or Reject affects only the Atom-

Version record that it specifies, and this effect is always local to the view in which

the AtomChoice record was created. For these flag values, the newestID field in the

AtomChoice record is ignored.

An AtomChoice record with a choiceFlag of Choose, however, implicitly rejects

all other visible AtomVersion records in the same Slot. The newestID field specifies

the newest AtomVersion record that was visible at the time the AtomChoice record was

created. Thus any AtomVersion record newer than that specified by the newestID field

is not affected by the AtomChoice, and remains visible. The design rationale for the

function of the newestID field is explained in chapter 2 on page 48.

If an AtomChoice implicitly rejects another AtomVersion created within the same

View as the AtomChoice record, then that AtomVersion is considered repudiated. The

repudiated AtomVersion is hidden in all views, but all other records rejected by this

directive (those created within other views) are only hidden locally.

An AtomVersion can also be hidden by replacing it with a newer AtomVersion. The

semantics of this hiding are straightforward: Each AtomVersion record is treated as if

APPENDIX A. DATABASE DESIGN 109

it was accompanied by an implicit AtomChoice record, choosing itself. This implicit

AtomChoice record has a choiceFlag of Choose, and thus follows the rules described in

the previous paragraph.

The visibility logic associated with SiteChoice and SiteVersion records is identical

to that associated with AtomChoice and AtomVersion records. This logic is not used,

however, because the CASTER prototype uses only one SiteVersion record per Slot and

never creates SiteChoice records.

A.1.5 SQL table definitions

This section presents the complete database design definition in the form of the sequence

of SQL statements required to create it.

CREATE TABLE Parameters (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
atomType ENUM(’Phrase’, ’Line’, ’Phrase2’),
databaseVersion INT NOT NULL);

containment
CREATE TABLE Author (

id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
username CHAR(50) NOT NULL,
password CHAR(20),
UNIQUE (username));

CREATE TABLE View (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
authorID INT NOT NULL,
name CHAR(10) NOT NULL,
UNIQUE (authorID,name));

CREATE TABLE Transaction (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
viewID INT NOT NULL,
timeCommit DATETIME NOT NULL,
UNIQUE (viewID,timeCommit));

content

APPENDIX A. DATABASE DESIGN 110

CREATE TABLE Slot (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL);

CREATE TABLE AtomVersion (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT DEFAULT 0,
slotID INT NOT NULL,
content TEXT NOT NULL);

CREATE TABLE SiteVersion (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT DEFAULT 0,
slotID INT NOT NULL,
anchorID INT NOT NULL,
anchorType ENUM(’After’, ’Before’) NOT NULL
UNIQUE (transactionID,slotID,anchorType,anchorID));

CREATE TABLE AtomChoice (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT NOT NULL,
choiceID INT NOT NULL,
flag ENUM(’Rejected’, ’Chosen’, ’Accepted’) NOT NULL,
UNIQUE (transactionID,choiceID));

CREATE TABLE SiteChoice (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT NOT NULL,
choiceID INT NOT NULL,
flag ENUM(’Rejected’, ’Chosen’, ’Accepted’) NOT NULL,
UNIQUE (transactionID,choiceID));

A.2 Update Handling

This section describes how data can be updated both to the database and from the

database. The first subsection describes how commit (or share) operations are processed,

APPENDIX A. DATABASE DESIGN 111

including the handling of race conditions. The second subsection describes how the data

displayed locally in an application can be refreshed from the central database.

A.2.1 Commit Processing

The database design allows a self-consistent body of content of arbitrary size to be written

to the database (committed) at any time. No matter how big this change list is, each

database row on the list can be written by a separate database transaction. The following

features work together to make this possible:

1. Auto-increment id fields: The primary key of every table is an auto-incremented

integer. Thus each row of each table can be identified by one integer. If auto-

increment fields are not supported by the database management system being used,

they can be simulated by locking the table (which is otherwise unnecessary) and

querying for the maximum id value.

2. Function to retrieve last written auto-increment id. After the commit, this value

can be easily retrieved and stored into the client-side copy of the record using the

mysql insert id() function. Most SQL database servers have a similar function.

3. Non-circular dependencies: The inter-table dependencies in this database are

shown in figure A.2. There are no loops in this diagram, which means that no for-

ward references need ever be written to satisfy such dependencies if each depended-

on record is written before the record that depends on it. The only intra-table depen-

dency is the dependence of a SiteVersion record on another SiteVersion record (its

anchor), and in this case the anchor SiteVersion must exist before a new SiteVersion

record can refer to it. Again, no forward reference need ever be written to satisfy

such dependencies.

APPENDIX A. DATABASE DESIGN 112

Figure A.2: Inter-Table Dependencies

In the middle of a commit operation (i.e., when some but not all of its component

single-write transactions have been completed) the database may contain some non-

functional constructs. However, these constructs are always self-consistent. Some ex-

amples of such a non-functional constructs are a Slot record used by no AtomVersion

records, a Slot record used by no SiteVersion records, an unused Transaction record, an

unused View record, or an unused Author record.

These records can be handled cleanly by the client application: they will be read

and stored, but will generate no display changes. Furthermore, the remaining records to

complete the partially read transaction will be picked up later when new records are read

from the database, and at that time the client can construct the proper display changes

just as if it had read the whole transaction at once.

APPENDIX A. DATABASE DESIGN 113

Race Conditions

The following is a complete list of the race conditions that can occur when the single-

write transactions of two or more commit operations are arbitrarily interleaved:

1. Document - two users try to create documents with the same name. The second

user’s CREATE DATABASE command will fail. The application can then prompt

the user to select a new document name, and the commit can proceed with the new

document name with no loss of data.

2. Author - two users try to claim the same author name in an existing document.

The second user’s INSERT ROW command in the Author table will fail. The

application can then prompt the user to select a new author name, and the commit

can proceed with the new author name with no loss of data.

3. View - one author tries to simultaneously create the same View from within two

application instances. This is a user error, so the application has some latitude in

handling it. The CASTER application ignores the failure of the second INSERT

ROW command in the View table, thus putting the results of both commit opera-

tions into the same new View. An alternate approach would be to prompt the user

for a new view name, allowing him or her to use the existing view if desired.

A.2.2 Reading the Database Into an Application

When an application using this database design starts running, it can get the data it

needs by simply doing bulk reads of the database tables. If the bulk reads are done in

an order such that each table is read after the tables that depend on it (see Figure A.2)

then the application will have a self-consistent snapshot of the data even if other authors

APPENDIX A. DATABASE DESIGN 114

are committing their results while the application is reading. This reverse-dependency-

order reading will mean that the application must create dummy objects for dependencies

during the read process, but will guarantee that all of these dependencies will be resolved

by the time the read operation is complete.

To support dynamic updating, the application need only know the highest id number

that it has read from each table. The SQL queries to do the dynamic update are then the

exact same queries as those used for the initial read, except that they have an additional

condition that the id number of the row read must be greater than the highest id number

previously seen. Such an update will always get a self-consistent snapshot of the database,

and is guaranteed to not miss any data committed before the latest data shown.

The Possibility of Incremental Reading

Instead of bulk reading each table, the application can choose instead to read the docu-

ment data incrementally by traversing the SiteVersion tree of the document. This process

makes many more database queries (one per table row instead of one per table) but might

be justified for reading a very small subset of a huge document. Such a traversal should

start at the first SiteVersion in the desired subset and proceed according to the following

recursive algorithm:

readSite(SiteVersion t)
if (display is not full)

read the Slot for this SiteVersion
find and read all AtomVersions associated with this Slot
for each SiteVersion (tChild) anchored to this SiteVersion

readSite(tChild)
endfor tChild

endif display is not full
end readSite()

APPENDIX A. DATABASE DESIGN 115

Doing a dynamic update incrementally would involve re-traversing the SiteVersion

tree and re-doing each query with the extra minimum-id condition described above.

However, doing a bulk read for update would work fine in this case, even if the database

were initially read incrementally. Such a bulk update would probably be the best approach

unless the document update rate was on the same order as the (huge) document size.

A.3 Possible Enhancements

This section describes two possible database enhancements. The first subsection de-

scribes an alternate design for this database that is independent of the text segmentation.

The second subsection describes a merge algorithm that enables the use of this database

in a store-and-forward application.

A.3.1 A Segmentation-Independent Approach

The database design presented here requires that the segmentation rule be known and

fixed before the database is generated. However, many of the concepts used in this

database can be reused to create a multi-author, multi-version database independent of

segmentation. This section will present one such design for document content.

The containment records for such a design – Author, View, and Transaction – will

be identical to what they are in the CASTER database. The basic starting point for

designing the content records is to assume that each character is its own segment, and

then to aggregate Slot records (and their attendant SiteVersion and AtomVersion) together

for efficiency.

One possible design resulting from such an approach is to create one database record

for each text modification operation, regardless of how large or small the operation is. As

APPENDIX A. DATABASE DESIGN 116

described earlier on page 31, the four basic text modification operations are add, delete,

replace, and move. The move operation can be treated as a delete followed by an add, as

it is in the existing CASTER prototype. The add and delete operations can be treated as

special cases of the replace operation, where the before text or the after text, respectively,

are null. Thus all that is needed for content representation is a replace record.

This Replace record, which would replace the Slot, SiteVersion, and AtomVersion

records in the CASTER prototype would specify two things:

1. the before text

2. the after text

The after text can be represented simply as a variable-length array of text characters.

The before text, however, must be specified as a range of existing text in the document.

Such a range is best represented as a start position and an end position. Each of these

positions, in turn, is best represented by another Replace record and a byte offset into that

record. Thus the content of the Replace record so far is as follows:

1. the after text

2. the Replace record at which the replacement starts

3. an offset into this start record

4. the Replace record at which the replacement ends

5. an offset into this end record

To handle concurrent updates, a newestID field should be included. This field can be

simply the newest committed Replace record in the document.1

1This field should ideally be the id of the newest committed Replace record whose scope overlaps the
scope of the Replace record being created. However, the slight efficiencies realized by using this more

APPENDIX A. DATABASE DESIGN 117

To create private views, a mechanism is required to accept or reject a Replace record

in the database. This will be a ReplaceChoice record, similar to the AtomChoice record

in the CASTER database.

Following the principles used in designing the CASTER prototype database, the for-

mal SQL definition of these new records would be as follows:

CREATE TABLE Replace (
id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT,
startID INT,
startOffset INT NOT NULL,
endID INT,
endOffset INT NOT NULL,
replacementText TEXT

);
CREATE TABLE ReplaceChoice (

id INT AUTO_INCREMENT PRIMARY KEY NOT NULL,
transactionID INT NOT NULL,
newestKnownID INT,
choiceID INT NOT NULL,
choiceType ENUM(’Reject’, ’Choose’, ’Accept’) NOT NULL

);

This database approach creates significantly more work (and thus software complex-

ity) for the client application. This extra work will include the following:

• The application must be able to figure out how to do segmentation itself. In the

worst case, one single version presented to the user in a conflict section may contain

pieces of multiple Replace operations.

specific newestID are probably outweighed by the inefficiency (and additional software complexity) of
determining it.

APPENDIX A. DATABASE DESIGN 118

• Conversely, the application must convert a user choice in a conflict section into a

set of Replace and ReplaceChoice records, favoring ReplaceChoice records where

possible.

• The application must keep track of highlighting for newness independently of seg-

mentation, because a single new Replace record may cause parts of many segments

to be highlighted as new.

A.3.2 Database Merge

The future work section on store-and-forward databases, on page 94, states that the

CASTER database has no dependency loops in its causality determination: the required

time ordering of database elements, encoded in the ids of the database elements, can be

expressed as a directed acyclic graph (DAG). It can be proved that two such databases

representing the same document can be merged simply by iteratively increasing ids of

database elements to preserve causality, and that this iterative process terminates. This

section provides that proof by outlining such an algorithm.

The input to this merge algorithm is two versions of a database, with a stem of

common records (possibly null) after which each database version has different branch

containing different records. The output of the merge algorithm is a database containing

all records in the stem and both branches in such a way that all causality constraints are

obeyed: i.e., there are no forward references.

The first step in the algorithm is to pick one of the database versions and copy it

to the output. For efficiency, the larger of the two should be picked. We will call this

database DB1. The second database, which we will call DB2, will then be copied after

DB1, according to the following algorithm:

APPENDIX A. DATABASE DESIGN 119

TL = translation list = empty
FOR each record (R2) in DB2 that is not in DB1

write R2 to the end of the merged database
give R2 a new offset greater than any others.
write R2 and its old and new offsets to TL

ENDFOR R2
FOR each record (RT) in TL

FOR each record (RR) between RT’s old and new offsets
FOR each cross reference (X) in RR

IF X points to RT, update its reference
[if this is a forward reference, then RT is already on TL]

ENDIF
ENDFOR X2

ENDFOR R2

The only inconsistencies in the database that this procedure can produce arise from

the following conditions:

1. IF a record (R1) exists in the branch of DB1 containing a newestID

2. AND R1 refers to a Slot (S0) in the common stem

3. AND a record (R2) exists in the branch of DB2 containing a newestID

4. AND R2 also refers to Slot S0

5. AND the newestID field (N2) in R2 is also in the branch of DB2

6. THEN R2 will hide R1 (which it should not do)

This problem can be fixed by modifying the newestID field in each such record R2 to

point to the last record in the main stem referring to that slot, and then adding AtomChoice

or SiteChoice records owned within R2’s Transaction that individually reject each of the

intervening records containing a newestID that refer to the slot. This approach will not

APPENDIX A. DATABASE DESIGN 120

hide entries in the other branch because the newestID record is not used in an AtomChoice

or SiteChoice record when the choiceFlag for that record is Reject.

Appendix B

Test materials

During the controlled tests, the test administrator provided each of the participants with

seven printed documents. These documents were a consent form, a test overview, de-

scriptions of the two systems, two writing problem statements, and a questionnaire.

During the shakeout test, the test administrator provided each of the participants with

two documents. These documents were a consent form and a questionnaire.

These materials are included as follows:

• Figure B.1 describes the procedure for the controlled test, and explains the use of

all of the other documents provided to the participants in this test.

• Figure B.2 shows the consent form signed by each participant in the controlled

tests. The forms given to the participants were printed on the official letterhead of

the department of Computer Science at Wichita State University.

• Figure B.3 shows the consent form signed by each participant in the shakeout test.

The forms given to the participants were printed on the official letterhead of the

department of Computer Science at Wichita State University.

121

APPENDIX B. TEST MATERIALS 122

• Figure B.4 is the description of the control system given to test participants. This

system was presented to participants as “system J”.

• Figure B.5 is the description of the CASTER system given to test participants. This

system was presented to participants as “system Q”.

• Figure 3.1 on page 54 shows one of the writing assignments given to each test

participant. Half of the participants received this assignment for the first writing

task and half for the second.

• Figure 3.2 on page 54 shows the other writing assignment given to each test partic-

ipant. Half of the participants received this assignment for the first writing task and

half for the second.

• Section B.1 contains the text of the questionnaire that accompanied the controlled

tests.

• Section B.2 tabulates the survey data generated from the controlled tests.

• Section B.3 contains the text of the questionnaire that accompanied the shakeout

test.

• Section B.4 tabulates the survey data generated from the shakeout test.

APPENDIX B. TEST MATERIALS 123

CASTER user interface testing

Thank you for choosing to participate in this test.

PURPOSE

The purpose of this study is to compare two user interfaces for a
collaborative writing program.

PROCEDURE

You and one one collaborator will together complete two writing
tasks, one on each interface. You will also be asked to fill out
a questionnaire in four parts: one about your background, one
about each interface (2 copies), and one about your experiences
during the test.

More specifically, the steps will be as follows, with estimated times:
- (10 min) Initial briefing (this document)
- (2 min) Read and sign the consent form
- (3 min) Background questionnaire
- (5 min) Tutorial on first interface
- (3 min) Review of first problem
- (30 min) Collaborative writing for first problem
- (3 min) Questionnaire about first assignment and interface
- (5 min) Tutorial on second interface
- (3 min) Review of second problem
- (30 min) Collaborative writing for second problem
- (3 min) Questionnaire about second assignment and interface
- (5 min) Final questionnaire
Total time approximately 2 hours

”SCORING”

This is a test of interfaces, not a test of your abilities. There
are no wrong answers. We will compare the two documents that you
write to each other, but not to those written by others. Please
do your best on each writing assignment and don’t worry about the
results.

GROUND RULES

- I will set up the program for you, so you need not select a
filename, etc.

- When you are actually writing, you and your collaborator will
work in separate rooms. Please do not communicate with each
other during this time using anything other than the
collaborative writing program. You may use the program itself
to write messages to each other.

- You will have 30 minutes to complete each writing exercise.
However, if both you and your collaborator agree that you are
happy with the document that you have written before the 30
minutes are up then you can declare yourselves done early.

- Please don’t look at the second problem or the second interface
early, even if you figure out where I keep the files. Looking
at these files early will mess up the test.

- Please make sure that you complete every multiple-choice
question on each questionnaire. Skipping even a few questions
will make the data practically worthless.

Thank you again!

Figure B.1: Overall Test Description

APPENDIX B. TEST MATERIALS 124

CONSENT FORM

PURPOSE: You are invited to participate in a study of a prototype computer program for collaborative
writing. I hope to learn which of two user interface approaches works better.

PARTICIPANT SELECTION: You were selected as a possible participant in this study because you
are a college student. The total study will involve between 20 and 40 college students.

EXPLANATION OF PROCEDURES: If you decide to participate, you will receive instruction in how
to use the system, watch a short video, and use the system to write summary of the video in collaboration with
one other test subject. The entire test will take 1 hour per video, and one or two videos will be used for each test
subject.

DISCOMFORT/RISKS: No discomforts or risks are anticipated.

BENEFITS: The subjects will gain some experience in collaborative writing, and the software may
give them new and useful perspectives on this activity.

CONFIDENTIALITY: Any information obtained in this study in which you can be identified will
remain confidential and will be disclosed only with your permission.

COMPENSATION OR TREATMENT: Not applicable.

REFUSAL/WITHDRAWAL: Participation in this study is entirely voluntary. Your decision whether or
not to participate will not affect your future relations with Wichita State University. If you agree to participate in
this study, you are free to withdraw from the study at any time without penalty.

CONTACT: If you have any questions about this research, you can contact me at: John Hainsworth,
Room 237 Jabara Hall, Box 83, Wichita State University, 1845 Fairmount, Wichita KS 67260-0083, telephone
316-978-5325. If you have questions pertaining to your rights as a research subject, or about research-related
injury, you can contact the Office of Research Administration at Wichita State University, Wichita, KS
67260-0007, telephone (316) 978-3285.

You are under no obligation to participate in this study. Your signature indicates that you have read the
information provided above and have voluntarily decided to participate.

You will be given a copy of this consent form to keep.

Signature of Subject Date

Signature of Parent or Legal Guardian Date
(omit for subjects consenting for themselves)

Witness Signature Date

Form A

Figure B.2: Consent Form for Controlled Tests

APPENDIX B. TEST MATERIALS 125

CONSENT FORM

PURPOSE: You are invited to participate in a study of a prototype computer program for collaborative
writing. I hope to learn whether or not the program being tested is and effective aid to collaborative writing.

PARTICIPANT SELECTION: You were selected as a possible participant in this study because you
are a college student. The total study will involve between 20 and 40 college students.

EXPLANATION OF PROCEDURES: If you decide to participate, you will learn about the design
features of the system being evaluated and how to use the system to exploit these features effectively. You will
then be asked to use the system to do collaborative writing projects of your choice. I will observe your work,
ask you questions about it, and invite suggestions about the system. The collaborative writing will be done in
multiple sessions, and I may improve the program between sessions based on test results. You will also be asked
to fill out a questionnaire.

DISCOMFORT/RISKS: No discomforts or risks are anticipated.

BENEFITS: The subjects will gain some experience in collaborative writing, and the software may
give them new and useful perspectives on this activity. The subjects will also gain some insight into how
computer user interfaces are designed and tested.

CONFIDENTIALITY: Any information obtained in this study in which you can be identified will
remain confidential and will be disclosed only with your permission.

COMPENSATION OR TREATMENT: Not applicable.

REFUSAL/WITHDRAWAL: Participation in this study is entirely voluntary. Your decision whether or
not to participate will not affect your future relations with Wichita State University. If you agree to participate in
this study, you are free to withdraw from the study at any time without penalty.

CONTACT: If you have any questions about this research, you can contact me at: John Hainsworth,
Room 237 Jabara Hall, Box 83, Wichita State University, 1845 Fairmount, Wichita KS 67260-0083, telephone
316-978-5325. If you have questions pertaining to your rights as a research subject, or about research-related
injury, you can contact the Office of Research Administration at Wichita State University, Wichita, KS
67260-0007, telephone (316) 978-3285.

You are under no obligation to participate in this study. Your signature indicates that you have read the
information provided above and have voluntarily decided to participate.

You will be given a copy of this consent form to keep.

Signature of Subject Date

Signature of Parent or Legal Guardian Date
(omit for subjects consenting for themselves)

Witness Signature Date

Form A

Figure B.3: Consent Form for Shakeout Test

APPENDIX B. TEST MATERIALS 126

INTERFACE ”J”

OVERVIEW

With this interface, whatever you type on your screen will be
reflected on your collaborator’s screen in approximately 2
seconds.

FEATURES IN COMMON TO BOTH INTERFACES

- Marking text as read: New text written by your collaborator will
appear highlighted in yellow. You can turn this highlighting
off by selecting a region of text and using the ”Mark as read”
command. If you prefer, you can ignore this feature and just
leave highlighting on for all text changed by your collaborator.

- Text marked by author: Text written by you will be black and
text written by your collaborator will be blue.

- Menus::Edit::Select all: This function will select all of the
text, for deletion or marking as read.

- Menus::Edit::Find: This function will allow you to find a text
string in your document.

- File::Quit: This function will terminate the program.

FEATURES SPECIFIC TO INTERFACE ”J”

No further features: text changes are exchanged automatically
between you and your collaborator.

Figure B.4: Description of Control System

APPENDIX B. TEST MATERIALS 127

INTERFACE ”Q”

OVERVIEW

With this interface, whatever you type on your screen will not be
sent to your collaborator until you send them, and changes from your
collaborator will not be incorporated into your document until you
request them. Each section about which you disagree will be shown as
a ”conflict section”, which will display two versions side by side.

FEATURES IN COMMON TO BOTH INTERFACES

- Marking text as read: New text written by your collaborator will
appear highlighted in yellow. You can turn this highlighting
off by selecting a region of text and using the ”Mark as read”
command. If you prefer, you can ignore this feature and just
leave highlighting on for all text changed by your collaborator.

- Text marked by author: Text written by you will be black and
text written by your collaborator will be blue.

- Menus::Edit::Select all: This function will select all of the
text, for deletion or marking as read.

- Menus::Edit::Find: This function will allow you to find a text
string in your document.

- File::Quit: This function will terminate the program.

FEATURES SPECIFIC TO INTERFACE ”Q”

- Menus::File::Share (also a toolbar button): Make your latest
editing changes available to your collaborator.

- Menus::File::Read (also a toolbar button): Incorporate the latest
editing changes available from your collaborator.

- Menus::File::Discard: Discard any editing changes that you have
not yet shared.

- Menus::Edit::Undo: Undo the last editing change that you have
not yet shared.

- Menus::Edit::Redo: Undo the last Undo :-)

- Notes about Conflict sections: Each conflict section will
contain one version of yours and one version of your
collaborator’s.

- If you type into a conflict section, then whatever you
modified becomes your version. If you had a previous version,
it will disappear.

- If you double-click within a conflict section, a dialog box
will pop up allowing you to select someone else’s version
(In these tests, there will be only one choice). Selecting
someone else’s version repudiates your version, causing it to
be removed from all views. The same effect can be achieved by
typing and deleting one character in the middle of your
collaborator’s version.

- The ”Apply and Advance” button in the dialog box will accept
your collaborator’s version and advance to the next conflict
section. This feature allows you to quickly accept many
changes from your collaborator.

Figure B.5: Description of CASTER System

APPENDIX B. TEST MATERIALS 128

B.1 Questionnaire for Controlled Test

Notes for the experimenter:

Date

1. Document name d

2. Author name a1 a2

3. First Problem: A B

4. First Interface Tested: J Q

APPENDIX B. TEST MATERIALS 129

This first group of questions asks about your background, your past experiences in writing, and how
you find it easiest to express your ideas.
For each question, please circle the answer that best describes your experience.

5. Do you feel better able to express yourself in e-mail, or in conversation with another person?

Much better
in e-mail

Somewhat better
in e-mail

About
the same

Somewhat better
in conversation

Much better
in conversation

6. Do you feel more able to express yourself in e-mail, or in writing a letter?

Much better
in e-mail

Somewhat better
In e-mail

About
the same

Somewhat better
in letter writing

Much better
in letter writing

7. Do you feel more able to express yourself in e-mail, or in writing a paper or report?

Much better
in e-mail

Somewhat better
In e-mail

About
the same

Somewhat better
in a paper

Much better
in a paper

8. When you write a paper or report, do you write and edit a number of versions, or just write
it once?

I always write and edit
more than 1 version

I usually write
more than 1 version

I sometimes write
more than version

I always just
write it once and

submit it

9. When you write a paper or report, do you write an outline first, or just begin writing?

I always write an
outline first

I usually write an
outline first

I sometimes write an
outline first

I always just begin
writing

10. When you write a paper or report, do you feel free to write what you really think, or do you
write what you think the instructor or reader wants to hear?

I always write
what I think

I usually write
what I think I balance the two

I usually write
what I think they

want

I always write
what I think they

want

11. When you write a paper or report, do you feel comfortable letting others (besides the grader
or instructor) read what you’ve written?

Very
uncomfortable

Somewhat
uncomfortable Neutral Somewhat

comfortable
Very

comfortable

12. What is your gender? Male Female

Thank you for answering these questions. Now it is time to begin trying out the system you will
be testing.

APPENDIX B. TEST MATERIALS 130

These questions ask you to describe your experience with the writing system you’ve just used.

13. Did you and your collaborator agree on the task you were trying to do with your writing?

We fully agreed Our views
seemed similar

We had some
disagreement

We strongly
disagreed

14. Do you feel confident that your own contributions and opinions are visible and accurately
reflected in the final document?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

15. Did the act of collaboration make you feel you were under time pressure?

Under a great
deal of time

pressure

Under some
time pressure Neutral

I did not feel any
time pressure

16. Did you feel free to write without worrying about what your collaborator was writing?

Felt very free to
write without

worrying

Felt somewhat
free to write

without
worrying

Felt somewhat
worried as I

wrote

Felt very
worried as I

wrote

17. Did you edit yourself or leave things out because you knew your collaborator would see them?

I left out a great
deal

I left out some
things

I mostly wrote
what I wanted

I didn’t edit
myself at all

18. How easy was it for you to understand the changes your collaborator made to the shared
document?

Very easy Easy Somewhat
difficult

Very difficult

19. Were you confident that your collaborator understood the changes you made?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

APPENDIX B. TEST MATERIALS 131

20. Did you feel that you and your collaborator had an equal role in deciding on the final product?

Very sure I had a
larger role

Somewhat sure I
had a larger role

Our roles were
equal

Somewhat sure
my collaborator
had a larger role

Very sure my
collaborator had

a larger role

21. Were there areas where you “agreed to disagree” and decided not to insist on changes you
wanted?

Many areas Some areas One or two areas

No, all the
changes I

wanted were
included

22. Were there places where your collaborator wrote something that surprised you?

Many places Some places One or two
places None

23. Were there places where your collaborator included details or ideas you hadn’t thought of?

Many places Some places One or two
places None

24. Do you feel that the document that you just finished writing is complete?

Seriously
incomplete

Slightly
incomplete

Pretty much
complete Done

25. Overall, how pleasant did you find this computer interface to use?

Irritating Unpleasant OK Pleasant Fun

26. Are there any other comments or ideas you would like to share about the system you have just
used?

Thank you for answering these questions. Now we will continue with the testing process.

APPENDIX B. TEST MATERIALS 132

These questions ask you to describe your experience with the writing system you’ve just used.

27. Did you and your collaborator agree on the task you were trying to do with your writing?

We fully agreed Our views
seemed similar

We had some
disagreement

We strongly
disagreed

28. Do you feel confident that your own contributions and opinions are visible and accurately
reflected in the final document?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

29. Did the act of collaboration make you feel you were under time pressure?

Under a great
deal of time

pressure

Under some
time pressure Neutral

I did not feel any
time pressure

30. Did you feel free to write without worrying about what your collaborator was writing?

Felt very free to
write without

worrying

Felt somewhat
free to write

without
worrying

Felt somewhat
worried as I

wrote

Felt very
worried as I

wrote

31. Did you edit yourself or leave things out because you knew your collaborator would see them?

I left out a great
deal

I left out some
things

I mostly wrote
what I wanted

I didn’t edit
myself at all

32. How easy was it for you to understand the changes your collaborator made to the shared
document?

Very easy Easy Somewhat
difficult

Very difficult

33. Were you confident that your collaborator understood the changes you made?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

APPENDIX B. TEST MATERIALS 133

34. Did you feel that you and your collaborator had an equal role in deciding on the final product?

Very sure I had a
larger role

Somewhat sure I
had a larger role

Our roles were
equal

Somewhat sure
my collaborator
had a larger role

Very sure my
collaborator had

a larger role

35. Were there areas where you “agreed to disagree” and decided not to insist on changes you
wanted?

Many areas Some areas One or two areas

No, all the
changes I

wanted were
included

36. Were there places where your collaborator wrote something that surprised you?

Many places Some places One or two
places None

37. Were there places where your collaborator included details or ideas you hadn’t thought of?

Many places Some places One or two
places None

38. Do you feel that the document that you just finished writing is complete?

Seriously
incomplete

Slightly
incomplete

Pretty much
complete Done

39. Overall, how pleasant did you find this computer interface to use?

Irritating Unpleasant OK Pleasant Fun

40. Are there any other comments or ideas you would like to share about the system you have just
used?

Thank you for answering these questions. Now we will continue with the testing process.

APPENDIX B. TEST MATERIALS 134

Thank you for taking the time to try out these computer programs and to share your experience in
collaboration.

This last set of questions asks about your past experiences in working with others on projects.

41. Do you tend to prefer working independently, or working with others, on projects that matter to
you?

Much prefer
working on my

own

Slightly prefer
working on my

own
Neutral

Slightly prefer
working with

others

Much prefer
working with

others

42. Do you tend to like or dislike collaborative or group projects when they are assigned in classes?

I love them I like them Neutral Somewhat
dislike them I hate them

43. If you expressed a preference either way, why do you like or dislike these projects? Please
use the space below to respond.

44. About how many group projects – a project involving you and at least one other person, lasting
more than one day – do you think you have worked on in your lifetime? (These could be in school, or
at work, or as part of a student activity, for example.)

none one 2-4 5-10 more than 10

45. Approximately how many of these lasted a week or more?

none one 2-4 5-10 more than 10

46. How many papers or documents have you written in your lifetime that were at least 5 pages
in length?

none one 2-4 5-10 more than 10

APPENDIX B. TEST MATERIALS 135

47. What is your collaborator’s relationship to you?

we just met acquaintance friend
have done

projects together
family, spouse,

or 10+ year
friend

48. What is your current student status?

freshman sophomore junior senior master’s
student

doctoral
student

49. Are there any other comments or ideas you would like to share about the experiment in which
you have just participated?

Thank you for your help in testing these computer programs!

APPENDIX B. TEST MATERIALS 136

B.2 Questionnaire Results for Controlled Test

Table B.1 shows the numerical questionnaire data from the controlled tests. The data

was tabulated by assigning a value of 1 to the leftmost response for each question and

assigning successive integer values to the other responses.

APPENDIX B. TEST MATERIALS 137

Test number
Quest 1 2 3 4 5 6 7 8 mean st.dev

1 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1.5
3 1 1 1 1 2 2 1 1 1 1 2 2 2 2 2 2 1.5
4 1 1 2 2 2 2 1 1 2 2 2 2 1 1 1 1 1.5
5 5 5 4 4 2 3 5 3 4 2 5 3 4 5 3 5 3.9 1.10
6 3 3 3 1 2 1 3 2 2 3 1 1 3 4 2 4 2.4 1.00
7 2 4 2 2 2 1 3 2 2 4 2 2 4 1 4 1 2.4 1.10
8 3 4 2 3 4 2 1 3 2 1 3 4 1 3 2 2 2.5 1.00
9 2 3 4 4 2 1 1 3 1 4 1 4 2 4 2 2 2.5 1.20

10 2 2 3 3 3 3 2 3 3 3 3 2 3 3 3 3 2.8 0.45
11 3 2 2 2 4 3 2 4 4 2 5 5 5 4 2 4 3.3 1.20
12 2 1 2 1 2 2 2 2 1 1 2 1 2 2 2 2 1.7 0.48
13 1 1 2 1 3 3 1 1 2 3 1 2 1 1 2 1 1.6 0.81
14 1 2 1 4 2 1 1 2 2 1 1 1 1 1 1 1 1.4 0.81
15 2 2 4 3 3 4 4 2 2 2 4 4 1 4 4 4 3.1 1.10
16 3 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2 1.6 0.62
17 4 3 4 2 3 3 3 3 3 2 3 3 3 4 4 3 3.1 0.62
18 3 3 2 3 2 1 1 3 2 2 2 2 3 1 2 2 2.1 0.72
19 2 2 2 4 2 2 1 1 2 1 4 2 2 1 1 2 1.9 0.93
20 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 4 3.0 0.37
21 4 4 4 2 2 2 4 4 4 3 4 4 4 4 4 4 3.6 0.81
22 3 3 2 4 2 4 4 2 2 4 3 4 3 4 4 4 3.2 0.86
23 2 2 3 2 2 3 3 2 2 2 2 3 3 4 4 2 2.6 0.73
24 4 2 4 3 2 2 3 2 2 3 4 3 2 4 1 1 2.6 1.00
25 5 2 4 3 4 5 5 2 3 4 5 4 3 5 2 3 3.7 1.10
27 2 1 1 2 2 2 1 1 3 2 1 2 1 1 1 2 1.6 0.63
28 1 2 1 3 2 3 1 2 1 1 1 1 4 1 1 2 1.7 0.95
29 3 2 4 2 4 4 4 3 3 3 4 4 2 2 2 4 3.1 0.89
30 1 1 1 2 2 1 1 2 1 2 1 3 1 1 1 1 1.4 0.62
31 4 4 4 4 3 2 3 2 3 2 3 3 4 4 4 3 3.2 0.77
32 2 3 1 3 3 3 2 2 1 2 1 1 2 3 2 2 2.1 0.77
33 4 2 1 4 4 4 2 2 1 1 1 1 4 1 2 4 2.4 1.40
34 3 4 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3.1 0.34
35 3 4 4 4 2 2 4 4 4 3 3 4 4 4 4 3 3.5 0.73
36 4 4 4 4 3 4 4 3 2 2 4 4 3 4 4 4 3.6 0.73
37 2 2 3 2 3 3 3 4 2 2 3 2 3 2 2 2 2.5 0.63
38 2 1 3 2 2 2 4 3 4 4 4 3 2 1 1 3 2.6 1.10
39 3 2 5 3 3 4 4 3 4 4 5 5 3 5 4 3 3.8 0.93
41 4 2 5 3 5 5 5 4 1 4 5 5 1 3 3 4 3.7 1.40
42 2 4 1 2 2 2 1 2 1 2 1 2 4 2 4 2 2.1 1.00
44 5 4 4 3 4 3 5 5 5 5 4 3 5 3 5 5 4.2 0.86
45 4 3 3 2 4 3 5 4 5 4 5 3 5 1 2 4 3.6 1.20
46 5 3 3 5 5 5 5 3 5 4 4 3 5 2 5 5 4.2 1.00
47 3 3 3 3 3 3 4 4 4 4 3 4 1 1 3 3 3.1 0.93
48 1 1 4 4 5 5 5 5 5 5 5 5 6 1 5 4 4.1 1.60

Table B.1: Questionnaire Data for Controlled Test

APPENDIX B. TEST MATERIALS 138

B.3 Questionnaire for Shakeout Test

This first group of questions asks about your background, your past experiences in writing, and how
you find it easiest to express your ideas.
For each question, please circle the answer that best describes your experience.

1. Do you feel better able to express yourself in e-mail, or in conversation with another person?

Much better
in e-mail

Somewhat better
in e-mail

About
the same

Somewhat better
in conversation

Much better
in conversation

2. Do you feel more able to express yourself in e-mail, or in writing a letter?

Much better
in e-mail

Somewhat better
In e-mail

About
the same

Somewhat better
in letter writing

Much better
in letter writing

3. Do you feel more able to express yourself in e-mail, or in writing a paper or report?

Much better
in e-mail

Somewhat better
In e-mail

About
the same

Somewhat better
in a paper

Much better
in a paper

4. When you write a paper or report, do you write and edit a number of versions, or just write
it once?

I always write and edit
more than 1 version

I usually write
more than 1 version

I sometimes write
more than version

I always just
write it once and

submit it

5. When you write a paper or report, do you write an outline first, or just begin writing?

I always write an
outline first

I usually write an
outline first

I sometimes write an
outline first

I always just begin
writing

6. When you write a paper or report, do you feel free to write what you really think, or do you
write what you think the instructor or reader wants to hear?

I always write
what I think

I usually write
what I think I balance the two

I usually write
what I think they

want

I always write
what I think they

want

7. When you write a paper or report, do you feel comfortable letting others (besides the grader
or instructor) read what you’ve written?

Very
uncomfortable

Somewhat
uncomfortable Neutral Somewhat

comfortable
Very

comfortable

Thank you for answering these questions. Now it is time to begin trying out the system you will be
testing.

APPENDIX B. TEST MATERIALS 139

These questions ask you to describe your experience with the writing system you’ve just used.

8. Did you and your collaborator agree on the task you were trying to do with your writing?

We fully agreed Our views
seemed similar

We had some
disagreement

We strongly
disagreed

9. Do you feel confident that your own contributions and opinions are visible and accurately reflected
in the final document?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

10. Did the act of collaboration make you feel you were under time pressure?

Under a great
deal of time

pressure

Under some
time pressure Neutral

I did not feel any
time pressure

11. Did you feel free to write without worrying about what your collaborator was writing?

Felt very free to
write without

worrying

Felt somewhat
free to write

without
worrying

Felt somewhat
worried as I

wrote

Felt very
worried as I

wrote

12. Did you edit yourself or leave things out because you knew your collaborator would see them?

I left out a great
deal

I left out some
things

I mostly wrote
what I wanted

I didn’t edit
myself at all

13. How easy was it for you to understand the changes your collaborator made to the shared
document?

Very easy Easy Somewhat
difficult

Very difficult

14. Were you confident that your collaborator understood the changes you made?

Very confident Somewhat
confident Neutral Somewhat

doubtful
Very doubtful

APPENDIX B. TEST MATERIALS 140

15. Did you feel that you and your collaborator had an equal role in deciding on the final product?

Very sure I had a
larger role

Somewhat sure I
had a larger role

Our roles were
equal

Somewhat sure
my collaborator
had a larger role

Very sure my
collaborator had

a larger role

16. Were there areas where you “agreed to disagree” and decided not to insist on changes you
wanted?

Many areas Some areas One or two areas

No, all the
changes I

wanted were
included

17. Were there places where your collaborator wrote something that surprised you?

Many places Some places One or two
places None

18. Were there places where your collaborator included details or ideas you hadn’t thought of?

Many places Some places One or two
places None

19. How would you describe the task you were to do? Please use the space below to describe it.

20. Are there any other comments or ideas you would like to share about the system you have just
used?

Thank you for answering these questions. Now we will continue with the testing process.

APPENDIX B. TEST MATERIALS 141

Thank you for taking the time to try out these computer programs and to share your experience in
collaboration.

This last set of questions asks about your past experiences in working with others on projects.

21. Do you tend to prefer working independently, or working with others, on projects that matter to
you?

Much prefer
working on my

own

Slightly prefer
working on my

own
Neutral

Slightly prefer
working with

others

Much prefer
working with

others

22. Do you tend to like or dislike collaborative or group projects when they are assigned in classes?

I love them I like them Neutral Somewhat
dislike them I hate them

23. If you expressed a preference either way, why do you like or dislike these projects? Please
use the space below to respond.

24. About how many group projects – a project involving you and at least one other person, lasting
more than one day – do you think you have worked on in your lifetime? (These could be in school, or
at work, or as part of a student activity, for example.)

none one 2-4 5-10 more than 10

25. Approximately how many of these lasted a week or more?

none one 2-4 5-10 more than 10

26. How many papers or documents have you written in your lifetime that were at least 5 pages
in length?

none one 2-4 5-10 more than 10

APPENDIX B. TEST MATERIALS 142

27. What is your current student status?

freshman sophomore junior senior master’s
student

doctoral
student

Thank you for your help in testing these computer programs!

APPENDIX B. TEST MATERIALS 143

B.4 Questionnaire Results for Shakeout Test

Table B.2 shows the numerical questionnaire data from the shakeout test. The data

was tabulated by assigning a value of 1 to the leftmost response for each question and

assigning successive integer values to the other responses.

Quest mean std.dev.
1 2 3 5 5 2 4 5 5 1 4 3 1 4 5 5 5 5 2 2 2 3 4 2 3 1 4 5 3 3 3 3 5 3 3.4 1.30
2 1 3 4 3 2 2 3 1 1 3 1 1 1 2 3 1 3 3 2 1 2 2 2 3 3 2 1 1 3 1 3 3 3 2.1 0.93
3 1 4 2 1 2 2 3 5 3 3 1 1 1 3 2 3 5 3 4 2 2 2 3 3 3 1 1 3 1 1 4 1 3 2.4 1.20
4 3 1 2 1 1 3 2 4 4 1 1 4 2 1 1 2 2 4 3 2 2 1 1 3 3 2 1 2 3 3 3 2 2 2.2 1.00
5 4 4 2 1 3 3 3 1 2 1 4 1 3 4 5 3 1 4 4 2 1 1 2 4 2 3 4 1 1 4 2 2 1 2.5 1.30
6 2 3 4 4 2 3 2 3 2 3 4 1 2 3 3 1 2 2 2 3 3 2 4 2 1 1 1 2 1 2 3 3 3 2.4 0.93
7 3 3 4 1 3 4 2 3 5 3 3 3 5 2 4 5 5 2 5 4 4 4 2 4 2 1 1 2 4 5 2 5 5 3.3 1.30
8 2 3 2 2 2 1 2 3 1 1 1 1 2 3 1 2 3 2 3 1 2 3 3 2 2 1 1 3 2 1 2 2 1 1.9 0.77
9 4 2 2 3 1 1 3 4 2 2 1 2 2 3 1 3 2 1 1 2 2 1 4 1 4 2 4 1 2 1 2 2 2 2.1 1.00

10 4 2 4 4 2 4 4 2 3 4 4 2 2 2 3 2 4 3 4 4 3 2 2 4 2 4 4 4 3 2 2 2 3 3.0 0.92
11 1 1 2 1 2 1 1 2 1 1 2 3 3 2 2 1 3 2 1 1 2 1 3 1 3 1 1 3 1 2 2 3 1 1.7 0.80
12 3 3 3 3 2 4 3 2 4 2 2 2 2 3 3 3 3 3 4 2 3 3 3 4 4 4 2 2 4 3 3 1 1 2.8 0.85
13 2 2 2 3 2 1 3 2 3 2 3 2 2 3 1 3 2 2 2 3 2 2 3 3 2 3 2 3 2 2 2 3 3 2.3 0.60
14 4 4 2 2 3 1 4 2 4 1 4 3 3 3 2 3 2 3 3 4 3 1 1 4 1 2 3 3 1 2 3 2 2 2.6 1.00
15 3 3 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3 3 1 3 3 3 3 2.8 0.60
16 4 3 2 2 3 2 4 3 2 4 0 1 3 2 2 4 4 4 3 2 3 3 2 4 4 4 3 3 4 2 4 2 4 2.9 1.00
17 2 3 2 3 3 2 4 2 4 4 4 2 3 2 4 2 3 4 3 2 3 4 2 4 4 4 4 2 1 2 2 2 4 2.9 0.95
18 2 3 2 2 2 2 4 2 3 4 2 1 3 2 3 4 1 4 3 2 3 4 2 3 4 2 2 1 1 2 4 2 4 2.6 1.00
21 3 3 4 4 4 3 4 4 5 2 4 5 1 3 3 2 2 2 1 5 3 1 2 2 1 1 4 2 4 2 5 4 5 3.0 1.30
22 3 2 2 2 2 3 2 4 2 2 2 3 4 4 3 4 2 3 4 2 3 2 4 4 5 5 3 5 2 3 2 2 2 2.9 1.00
24 2 4 3 5 4 4 3 3 4 3 3 4 5 5 5 0 4 3 5 3 4 5 5 4 4 4 5 5 5 4 3 4 3 3.8 1.10
25 4 3 2 5 3 4 3 3 3 3 3 3 5 3 5 0 4 3 5 3 4 4 3 3 4 4 4 3 4 3 3 3 5 3.5 1.00
26 4 3 5 5 3 4 3 4 4 3 5 4 5 5 4 0 4 3 5 5 3 5 5 4 5 5 4 4 5 5 2 3 4 4.0 1.10
27 5 4 5 5 5 4 4 5 5 5 5 4 4 3 5 0 4 4 4 5 5 5 4 4 5 4 5 4 4 4 4 5 5 4.3 0.96

Table B.2: Questionnaire Data for Shakeout Test

Bibliography

[1] Slashdot home page. http://www.slashdot.org/.

[2] SubEthaEdit. http://www.codingmonkeys.de/subethaedit/.

[3] Concurrent version system home page. http://www.cvshome.org/, May 2003.

[4] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Main Page, January
2006.

[5] C. Avery and R. Zeckhauser. Recommender systems for evaluating computer
messages. Communications of the ACM, 40(3):88–89, 1997.

[6] U. Bauer, M. Ott, M. Pittenauer, and D. Wagner. Hydra. http://hydra.globalse.org/,
April 2003.

[7] E. A. Bier and S. Freeman. MMM: a user interface architecture for shared editors
on a single screen. In Proceedings of the Fourth Annual ACM Symposium on User
Interface Software and Technology, pages 79–86. ACM Press, 1991.

[8] G. E. Bock and D. A. Marca. Designing Groupware: A Guidebook for Designers,
Implementors, and Users. McGraw-Hill, New York, 1995.

[9] J. Brooke. Chapter 2: User interfaces for CSCW systems. In D. Diaper and
C. Sanger, editors, CSCW in Practice: An Introduction and Case Studies, London,
1993. Springer-Verlag.

[10] F. P. Brooks Jr. The Mythical Man Month: Essays on Software Engineering.
Addison-Wesley, Boston, 1995.

[11] D. Chen and C. Sun. A distributed algorithm for graphic objects replication in
real-time group editors. In GROUP ’99: Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work, pages 121–130, New York,
NY, USA, 1999. ACM Press.

[12] J. Conklin and M. L. Begeman. gIBIS: a hypertext tool for exploratory policy
discussion. ACM Transactions on Information Systems (TOIS), 6(4):303–331, 1988.

144

BIBLIOGRAPHY 145

[13] A. Dattolo and A. Gisolfi. Analytical version control management in a hypertext
system. In CIKM ’94: Proceedings of the Third International Conference on
Information and Knowledge Management, pages 132–139, New York, NY, USA,
1994. ACM Press.

[14] A. Dillon. How collaborative is collaborative writing? an analysis of the production
of two technical reports. In M. Sharples, editor, Computer Supported Collaborative
Writing, London, 1993. Springer-Verlag.

[15] D. Dobkin. Interview, August 2004.

[16] P. Dourish. Using metalevel techniques in a flexible toolkit for CSCW applications.
ACM Transactions on Computer-Human Interaction, 5(2):109–155, 1998.

[17] J. E. James Whitehead. Design spaces for link and structure versioning. In
HYPERTEXT ’01: Proceedings of the Twelfth ACM Conference on Hypertext and
Hypermedia, pages 195–204, New York, NY, USA, 2001. ACM Press.

[18] R. Eckenrod. Reaching consensus on the Tampa Bay Estuary Program Interlocal
Agreement: A perspective. In M. P. Mandell, editor, Getting Results Through
Collaboration, Connecticut, 2001. Quorum Books.

[19] R. S. Fish, R. E. Kraut, and M. D. P. Leland. Quilt: a collaborative tool for
cooperative writing. In Conference Sponsored by ACM SIGOIS and IEEECS TC-OA
on Office Information Systems, pages 30–37. ACM Press, 1988.

[20] J. Grudin. Why CSCW applications fail: Problems in the design and evaluation of
organizational interfaces. In CSCW ’88: Proceedings of the 1988 ACM Conference
on Computer-Supported Cooperative Work, pages 85–93, New York, NY, USA,
1988. ACM Press.

[21] A. Haake and J. M. Haake. Take CoVer: Exploiting version support in cooperative
systems. In Proceedings of the Conference on Human Factors in Computing
Systems, pages 406–413. Addison-Wesley Longman Publishing Co., Inc., 1993.

[22] A. Haake and D. Hicks. VerSE: Towards hypertext versioning styles. In
HYPERTEXT ’96: Proceedings of the Seventh ACM Conference on Hypertext,
pages 224–234, New York, NY, USA, 1996. ACM Press.

[23] J. M. Haake and B. Wilson. Supporting collaborative writing of hyperdocuments
in SEPIA. In CSCW ’92: Proceedings of the 1992 ACM Conference on Computer-
Supported Cooperative Work, pages 138–146, New York, NY, USA, 1992. ACM
Press.

BIBLIOGRAPHY 146

[24] U. Hahn, M. Jarke, S. Eherer, and K. Kreplin. CoAUTHOR: a hypermedia group
authoring environment. In J. M. Bowers and S. D. Benford, editors, Studies in
Computer Supported Cooperative Work: Theory, Practice and Design, Amsterdam,
1991. North-Holland.

[25] F. G. Halasz. Reflections on notecards: Seven issues for the next generation of
hypermedia systems. Communications of the ACM, 31(7):836–852, 1988.

[26] J. Harris and A. Henderson. A better mythology for system design. In Proceeding
of the CHI 99 Conference on Human Factors in Computing Systems : the CHI is the
Limit, pages 88–95. ACM Press, 1999.

[27] B. Hewitt and G. N. Gilbert. Chapter 3: Groupware interfaces. In D. Diaper and
C. Sanger, editors, CSCW in Practice: An Introduction and Case Studies, London,
1993. Springer-Verlag.

[28] W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Conference Proceedings on Human
Factors in Computing Systems, pages 194–201. ACM Press/Addison-Wesley
Publishing Co., 1995.

[29] W. C. Hines and D. C. Montgomery. Probability and Statistics in Engineering and
Management Science. John Wiley & Sons, New York, second edition, 1980.

[30] J. M. Kleinberg. Hubs, authorities, and communities. ACM Comput. Surv.,
31(4es):5, 1999.

[31] D. E. Knuth. The TEXbook. Addison-Wesley, Reading Massachusetts, 1984.

[32] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R. Gordon, and J. Riedl.
GroupLens: Applying collaborative filtering to Usenet news. Communications of
the ACM, 40(3):77–87, 1997.

[33] S. Kristoffersen and F. Ljungberg. An empirical study of how people establish
interaction: Implications for CSCW session management models. In Proceeding
of the CHI 99 conference on Human factors in computing systems : the CHI is the
limit, pages 1–8. ACM Press, 1999.

[34] A. Lamott. Bird by Bird: Some Instructions on Writing and Life. Anchor Books,
New York, 1995.

[35] J. Lee. SIBYL: a tool for managing group design rationale. In Proceedings of the
Conference on Computer-Supported Cooperative Work, pages 79–92. ACM Press,
1990.

BIBLIOGRAPHY 147

[36] M. D. P. Leland, R. S. Fish, and R. E. Kraut. Collaborative document production
using Quilt. In Proceedings of the Conference on Computer-Supported Cooperative
Work, pages 206–215. ACM Press, 1988.

[37] P. B. Lowry, A. Curtis, and M. R. Lowry. Building a taxonomy and nomenclature
of collaborative writing to improve interdisciplinary research and practice. Journal
of Business Communication, 41(1):66–99, January 2004.

[38] T. Moran, K. McCall, B. van Melle, E. Pederson, and F. Halasz. Design principles
for sharing in Tivoli, a whiteboard meeting-support tool. In S. Greenberg, S. Hayne,
and R. R., editors, Designing Groupware for Real Time Drawing. McGraw-Hill,
1995.

[39] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris. Computer
support for distributed collaborative writing: Defining parameters of interaction.
In Proceedings of the Conference on Computer Supported Cooperative Work, pages
145–152. ACM Press, 1994.

[40] E. R. Pedersen, K. McCall, T. P. Moran, and F. G. Halasz. Tivoli: an electronic
whiteboard for informal workgroup meetings. In Proceedings of the Conference on
Human Factors in Computing Systems, pages 391–398. Addison-Wesley Longman
Publishing Co., Inc., 1993.

[41] R. Pike. The text editor sam. Software - Practice and Experience, 17(11):813–845,
1987.

[42] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. GroupLens: an open
architecture for collaborative filtering of netnews. In Proceedings of the Conference
on Computer Supported Cooperative Work, pages 175–186. ACM Press, 1994.

[43] C. Schuckmann, L. Kirchner, J. Schümmer, and J. M. Haake. Designing object-
oriented synchronous groupware with COAST. In CSCW ’96: Proceedings of the
1996 ACM Conference on Computer Supported Cooperative Work, pages 30–38,
New York, NY, USA, 1996. ACM Press.

[44] B. Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison Wesley Longman, Massachusetts, third edition,
1998.

[45] M. Stefik, D. G. Bobrow, G. Foster, S. Lanning, and D. Tatar. WYSIWIS revised:
Early experiences with multiuser interfaces. ACM Transactions on Information
Systems (TOIS), 5(2):147–167, 1987.

BIBLIOGRAPHY 148

[46] J. Stewart, B. B. Bederson, and A. Druin. Single display groupware: a model for co-
present collaboration. In Proceeding of the CHI 99 Conference on Human Factors
in Computing Systems : the CHI is the Limit, pages 286–293. ACM Press, 1999.

[47] C. Sun. Undo any operation at any time in group editors. In Computer Supported
Cooperative Work, pages 191–200, 2000.

[48] C. Sun and D. Chen. A multi-version approach to conflict resolution in distributed
groupware systems. In International Conference on Distributed Computing
Systems, pages 316–325, 2000.

[49] C. Sun and D. Chen. Consistency maintenance in real-time collaborative graphics
editing systems. ACM Transactions on Computer-Human Interaction (TOCHI),
9(1):1–41, 2002.

[50] S. G. Tammaro, J. N. Mosier, N. C. Goodwin, and G. Spitz. Collaborative writing
is hard to support: A field study of collaborative writing. Computer Supported
Cooperative Work, 6(1):19–51, 1997.

[51] W. F. Tichy. RCS - a system for version control. Software - Practice and Experience,
15(7):637–654, 1985.

[52] E. S. Veinott, J. Olson, G. M. Olson, and X. Fu. Video helps remote work:
Speakers who need to negotiate common ground benefit from seeing each other.
In Proceeding of the CHI 99 Conference on Human Factors in Computing Systems
: the CHI is the Limit, pages 302–309. ACM Press, 1999.

