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Abstract

A major objective in molecular biology is to understand how a genome encodes the

information that specifies when and where a gene will be transcribed into its protein

product. Mediating proteins, known as transcription factors, facilitate this process

by interacting with the cell’s DNA and the transcription machinery. It is of central

importance to identify all sequence-specific DNA binding sites of transcription factors.

In this thesis, we consider two relevant computational problems.

The first problem is to develop a representation for a group of known binding

sites of a particular transcription factor, in order to facilitate recognition of other

binding sites of the same protein. We evaluate the effectiveness of several approaches

commonly used for this problem, and show that there are statistically significant

differences in their performance. We also consider variants of the basic methods that

incorporate pairwise nucleotide dependencies and per-position information content.

We find that the use of per-position information content improves all basic methods,

and that including local pairwise nucleotide dependencies within binding site models

results in better performance for some approaches.

The second problem is that of motif discovery. In this context, given a set of

sequences known to contain binding sites of a particular transcription factor, the

objective is to identify their locations. We propose a novel combinatorial optimization

framework for motif finding, which utilizes both graph pruning techniques and an

integer linear programming formulation. Additionally, we introduce a procedure to

identify statistically significant motifs. We apply our algorithm to numerous biological

datasets as well as to synthetic data, and it performs exceptionally well. Furthermore,

we show our framework to be versatile and easily applicable to other variants of the

DNA binding site identification problem such as phylogenetic footprinting, the ‘subtle’

motif formulation and the multiple motifs problem.

Studying the optimization framework in greater depth, we introduce a novel, more
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compact integer linear program that utilizes the discrete nature of the distance metric

imposed on pairs of subsequences. We compare the properties of the two alternate

formulations from a theoretical perspective and demonstrate that the compact for-

mulation also leads to a method that is highly effective in practice.
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Chapter 1

Introduction

1.1 Biological Background

Molecular biology has entered the so-called post genomic era, when scores of genomes

have been sequenced, and biological data abounds; yet, many fundamental biological

processes are not well understood. For example, how does as simple an organism as

the single-celled prokaryote Escherichia coli know how to interact with its environ-

ment, as each environmental cue generates a specific response, with specific proteins

and reactions. Another related question, pertinent for multicellular organisms is this:

what is it that can make two cells of the same life form, which possess the same

genetic material, so vastly different?

One of the processes, responsible for transforming the static DNA blueprint into a

dynamic response and adapting an organism to life’s demands, is that of gene expres-

sion, which selectively switches genes on and off. Only a subset of genes in any cell

is active at any given time in the developmental stage of the organism, the metabolic

or physiologic state of the cell and under any given set of environmental conditions.

Gene expression or the ability of a gene to produce an active protein product is highly

regulated. Whereas controls that act in eucaryotic gene expression are very complex
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and can occur in every stage in the process of transforming a gene into its final prod-

uct, prokaryotic gene regulation happens mostly during transcription, the stage of

messenger RNA (mRNA) synthesis [Alberts et al. 2002]. Transcription is typically

facilitated by special purpose proteins, called transcription factors, which carry out

their function by binding DNA fragments in the immediate vicinity of the gene being

regulated [Alberts et al. 2002]. Identifying such DNA binding sites is a very important

problem in its own right, as it serves as a first and necessary step in understanding

gene regulation. In this thesis we focus on computational techniques for transcription

factor binding site discovery. While the methods we develop are broadly applicable,

we have experimented primarily on the prokaryotic Escherichia coli genome.

In more detail, transcriptional regulation in prokaryotes occurs mainly during

transcription initiation, when the transcription enabling complex, RNA polymerase,

binds the double-stranded DNA at its promoter region. The rate of transcription

initiation is modulated by the interaction of transcription factors with the RNA

polymerase. Transcription factors can provide positive regulation (activation or en-

hancement) by improving the ability of the RNA polymerase to bind and initiate

transcription, or negative regulation (repression) by interfering with the function of

the RNA polymerase [Alberts et al. 2002]. For instance, a repressor protein may

bind DNA and block access of the RNA polymerase to its promoter. Transcription

factors bind DNA sequence elements called operators or regulatory binding sites when

forming protein-DNA complexes. The majority of binding sites are located in close

proximity to the transcription start site, upstream of it relative to the direction of

transcription. The region of DNA containing these sites is called the regulatory re-

gion, and it is typically no longer than 1000 nucleotides for prokaryotes, and is often

much shorter [Alberts et al. 2002].

Regulatory binding sites are usually very specific to a particular protein, and

are similar to one another at the sequence level. When binding sites for a single
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transcription factor protein are aligned together, patterns are readily evident, with

conserved and less conserved regions (see Figure 1.1); we call these patterns motifs.

Since transcription factors typically regulate a number of different genes, collectively

referred to as the transcription factor’s regulon, a binding signature or motif can

be discerned among them. Motif instances, the actual binding sites we would like

to identify in the context of regulation, correspond to conserved sequence elements,

matching to the motif pattern, in the regulatory regions of the protein’s regulon. The

sites are usually short (up to 30 nucleotides with some exceptions) and often gapless,

and instances of a motif are of the same length. Although similar to each other at

the sequence level, motif instances do differ in composition to achieve varying degrees

of affinity in protein-DNA interactions. Such differences account for better control of

gene expression.

As biological approaches to identifying transcription factor binding sites are time-

consuming and costly, computational methods are needed to address this very im-

portant problem. In finding transcription factor binding sites we can identify two

subproblems, those of binding site representation and discovery [Stormo 2000], both

of which we address in this thesis. The first problem is to develop a representation

for a group of known binding sites of a particular transcription factor; this involves

extracting essential features in order to facilitate recognition of additional binding

sites of the same protein. The second problem, motif discovery, is to find hitherto

unidentified locations of binding sites (or motif instances) in a given set of sequences

known by some (often experimental) means to contain sites for a common factor.

1.2 Representation and Search Problem

In Chapter 2, we address the motif representation problem. The challenge lies in

finding a suitable way to represent a set of known binding sites with the goal of
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Figure 1.1: Sequence Logo [Schneider and Stephens 1990] of 19 transcription factor LexA binding
sites in E. coli, created using weblogo.berkeley.edu. The motif is 20 bases long. Overall height of
stack shows level of conservation at position (e.g., positions 2–4 and 15–17 are very well conserved).
Height of each residue indicates relative frequency and, by assumption, the probability of observing
it in the motif.

searching genomic data and discovering novel binding sites of the same transcription

factor. Several approaches are commonly used for representing a transcription fac-

tor’s binding sites, including consensus sequences (e.g., [Day and McMorris 1992]) and

probabilistic approaches [Staden 1984,Berg and von Hippel 1987], such as position-

specific scoring matrices (PSSM). A consensus sequence of a group of aligned binding

sites is one that contains the most frequently occurring residue in each column, and

consensus-based methods compute the degree of similarity between the site in ques-

tion and the consensus sequence. Probabilistic approaches (e.g., PSSM), which assess

the likelihood of observing a given base in a given position of the binding site, lead

to most common representations. For instance, the widely-used sequence logo repre-

sentation [Schneider and Stephens 1990], indicates both the sequence conservation in

a position of a group of aligned sequences and the relative frequency of each amino

or nucleic acid at that position (see Figure 1.1).
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1.2.1 Our contributions: a comparative analysis of represen-

tation and search methods

In Chapter 2, we evaluate the effectiveness of several methods for motif representa-

tion and search. In addition to consensus sequences and PSSM, we consider methods

that compute the average number of nucleotide matches between a putative site and

all known sites. Moreover, whereas all above-mentioned methods assume indepen-

dence between column positions, we extend these basic approaches by incorporating

pairwise nucleotide dependencies [Bulyk et al. 2002] in our models. Additionally, we

explore the effectiveness of integrating per-position information content [Schneider

and Stephens 1990] directly in our scoring schemes.

In cross-validation testing on a data set of E. coli transcription factors and their

binding sites, we show that there are statistically significant differences in how well

various methods identify transcription factor binding sites. The use of per-position

information content improves the performance of all basic approaches. Further-

more, including local pairwise nucleotide dependencies within binding site mod-

els results in improved performance for approaches based on nucleotide matches.

Based on our analysis, the best results when searching for DNA binding sites of a

particular transcription factor are obtained by methods that incorporate both in-

formation content and local pairwise correlations. Software enabling such analy-

sis for specific transcription factors or other genomes is available for download at

http://compbio.cs.princeton.edu/bindsites.

1.3 Motif Discovery Problem

In Chapters 3 and 4, we address the motif discovery problem: that is, the problem

of finding mutually similar patterns in unaligned sequence data. The objective is to

identify possible motif instances and their locations in the sequences from a given data
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set. Motif finding is an important and long-studied problem in computational molec-

ular biology, with applications to both DNA and protein sequences, as short common

subsequences in the data may correspond to functionally important elements. In the

context of transcriptional networks, motif finding applications arise when identifying

shared regulatory signals such as transcription factor binding sites. For protein se-

quences, motif finding can serve as a tool to identify shared functional and structural

elements.

For DNA data, motif finding algorithms have typically been applied to sets of

sequences from a single genome that have been identified as possessing a common

motif. One source of such data is made available through DNA microarray studies. In

this setting the normalized gene expression levels of many genes are determined under

a number of experimental conditions in different phases of the cell cycle. These data

are then clustered to reveal similar patterns in expression. Under the assumption

that co-expressed genes are likely co-regulated, the upstream regions of such co-

expressed genes can be subjected to motif finding [Tavazoie et al. 1999, Spellman

et al. 1998]. Another source of data are chromatin immunoprecipitation (ChIP-chip)

experiments [Lee et al. 2002] and protein binding microarrays [Mukherjee et al. 2004].

In these latter approaches the binding of a regulatory protein to DNA is recognized

directly via molecular methods. The group of DNA sequences, to which the protein

was bound, can be input to a motif finding algorithm to identify the binding sites

precisely.

An orthogonal approach, which attempts to identify regulatory sites among a

set of orthologous genes across genomes of varying phylogenetic distance, is adopted

by [McGuire et al. 2000,McCue et al. 2001,Blanchette and Tompa 2002,Kellis et al. 2003,

Cliften et al. 2003]. Here it is assumed that the functionally important DNA binding

sites are conserved throughout evolution.

There are several variants [Keich and Pevzner 2002] of the motif finding problem,
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and we address most of them in Chapter 3: (i) the simple sample, where each sequence

in the dataset contains exactly one motif instance; (ii) the invaded sample, where more

than one instance may exist in some sequences; (iii) the corrupted sample, where a

motif instance may not appear in every sequence; (iv) the multiple patterns, where

the sequences may contain more than a single common motif.

1.3.1 Previous approaches to motif finding

Numerous approaches to motif finding have been suggested (e.g., [Lawrence and

Reilly 1990,Lawrence et al. 1993,Bailey and Elkan 1995,Brazma et al. 1998,Rigoutsos

and Floratos 1998,Hertz and Stormo 1999,Tompa 1999,Hughes et al. 2000,Marsan

and Sagot 2000, van Helden et al. 2000, Workman and Stormo 2000, Pevzner and

Sze 2000,Liu et al. 2001,Eskin and Pevzner 2002,Buhler and Tompa 2002,Sinha and

Tompa 2003,Pavesi et al. 2004,Frith et al. 2004]). The biological problems addressed

by motif finding are complex and varied, and no single currently existing method can

solve them completely (e.g., [Tompa et al. 2005]).

Motif finding algorithms are based on the representation method chosen for a

group of binding sites. Approaches based on the probabilistic representations of

binding sites make the assumption that the column distributions of the motif are most

different from the distribution of background sequence in which the motif instances

are embedded. Accordingly, they attempt to maximize the likelihood ratio of the

motif model to the background model.

Consensus representation based methods take an alternate view of motif finding,

in which a motif corresponds to a pattern or a regular expression. While exhaustive

enumeration of patterns is only feasible for small motif lengths [Tompa 1999, van

Helden et al. 2000, Sinha and Tompa 2003, Pavesi et al. 2004], data sample-driven

approximate approaches [Rigoutsos and Floratos 1998,Pevzner and Sze 2000,Buhler

and Tompa 2002,Sze et al. 2004] have been developed for general lengths.
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Comparative tests [Tompa et al. 2005] have shown that the two approaches based

on different representation of binding sites seem to be complementary, with no definite

advantage of either one. Some problem instances are solved correctly by representing

motifs with their consensus, while others by using position specific scoring matrices.

1.3.2 Our contributions: a combinatorial optimization ap-

proach

Considering a pattern-based approach, in Chapter 3 we introduce a versatile combi-

natorial optimization framework for the motif finding problem, where the goal is to

find a minimum (or maximum) weighted clique in an N -partite graph. Our approach

couples graph pruning techniques with a novel integer linear programming formula-

tion. Our method is flexible and robust enough to accommodate several variants of

the motif finding problem, including finding both protein motifs and DNA motifs,

either in co-regulated upstream region data or in evolutionarily related sequences of

varying phylogenetic distance. We further extend our method to discover multiple

motifs. In contrast to commonly-used stochastic search methods for the problem, our

combinatorial approach yields optimal solutions in most cases. We apply our method

to numerous biological sequence datasets, as well as to synthetic data, and in all cases

it performs very well, identifying either known motifs or motifs of high conservation.

We assess statistical significance of the discovered motifs, and find that in the vast

majority of cases such a motif is unlikely to have arisen by chance alone.

In Chapter 4, we consider the integer linear programming formulation for the mo-

tif finding problem from a more theoretical perspective. While our previous approach

focused on graph pruning and decomposition techniques to reduce the size of the

combinatorial problem, here we describe an alternate novel integer linear program-

ming formulation for motif finding. Its effectiveness is based on a key observation

that the edge weights in the graph formulation belong to a small set of possibilities
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due to the discrete nature of the distance metric imposed on pairs of subsequences.

We explore the relative advantages and disadvantages of the two integer linear pro-

gramming formulations and show that our novel formulation leads to an algorithm

that is highly effective in practice when applied to problem instances arising from

biological sequence data. We are able to solve moderate-sized problems to optimality

often many times faster than our earlier mathematical programming approach.

Thesis organization. The remainder of the thesis is organized as follows. In Chap-

ter 2, we discuss the motif representation problem, and present a comparative study

of various methods and their extensions. In Chapters 3 and 4, we focus on the mo-

tif discovery problem. We first introduce our combinatorial optimization approach

in Chapter 3, and describe the basic mathematical programming formulation and

graph pruning techniques. In Chapter 4, we introduce an alternative mathemati-

cal programming formulation and evaluate its effectiveness. In Chapter 5, we draw

conclusions pertaining to this work and present directions for future research.
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Chapter 2

Representing and searching for

transcription factor binding sites

2.1 Introduction

In this chapter we address the question of how best to represent a group of binding

sites for a particular transcription factor with the goal of searching for additional

occurrences of such sites in genomic data. At its essence, this task involves extracting

essential features from a set of binding sites sequences, and then using these features to

search for additional sites. However, since a single transcription factor can bind sites

of considerable variability, it is difficult to find a precise set of rules for identification

of novel binding sites; as a result, a number of different methods have been proposed

for this problem (e.g., [Staden 1984,Schneider et al. 1986,Berg and von Hippel 1987,

Day and McMorris 1992, Gelfand 1995, Stormo 2000]). Traditionally, a particular

transcription factor’s preference for binding site composition has been represented by

a consensus sequence (e.g., [Day and McMorris 1992]), and more recently as a sequence

logo [Schneider and Stephens 1990]. Novel sites for a transcription factor are typically

found by either matching to a consensus sequence [Day and McMorris 1992], or using
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position-specific scoring matrices (PSSMs) [Staden 1984].

While many methods for identification of regulatory binding sites have been pro-

posed, the availability of online data sets of transcription factors and their aligned

binding domains (e.g., [Robison et al. 1998, Salgado et al. 2004]) allows us to quan-

tify the effectiveness of different approaches. In particular, cross-validation testing

can be used to quantify how well each method performs in distinguishing between

the DNA binding sites for a particular transcription factor and those of other pro-

teins. While there may be some overlap between the binding domains for different

transcription factors, the known DNA binding sites for the transcription factor under

consideration should be among the top-ranked sites. Such an empirical evaluation is

important and timely, as whole-genome scans in search of the binding sites of a partic-

ular protein are increasingly used to make functional annotations of uncharacterized

proteins, and to infer properties of transcriptional regulatory networks (e.g., [Thieffry

et al. 1998]). Additionally, the aforementioned methods are the basis for other more

sophisticated approaches for predicting transcription factor binding sites, including

motif discovery and cross-genomic approaches (e.g., [Hertz and Stormo 1999,Hughes

et al. 2000, Sinha and Tompa 2000,Gelfand et al. 2000,McGuire et al. 2000,McCue

et al. 2001,Tan et al. 2001,Blanchette and Tompa 2002]).

In this chapter, we evaluate four basic methods for representing and searching for

transcription factor binding sites: consensus sequences [Day and McMorris 1992], two

variants of position specific scoring matrices (log-odds matrices, and the statistical

mechanics based Berg & von Hippel method [Berg and von Hippel 1987]), as well as

a novel method based on nucleotide matches, which we call Centroid, that computes

the average number of nucleotide matches between a putative site and all known

binding sites. In addition, we consider whether these basic methods can be improved

using two natural extensions: incorporation of pairwise nucleotide dependencies and

per-position information content. Whereas the basic methods assume that each base
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contributes independently to binding, it has been demonstrated that there are inter-

dependent effects between bases [Man and Stormo 2001,Bulyk et al. 2002]. Though

the independence assumption has clearly been useful in practice and seems to provide

a good approximation to the energetics of DNA-protein binding [Benos et al. 2002],

here we assess whether improvement is possible by incorporating pairwise correla-

tions. Similarly, the use of per-position information content has already proven to be

useful in representing binding sites [Schneider and Stephens 1990] and in motif dis-

covery [Hertz and Stormo 1999]; here, we apply it directly to the problem of searching

for a transcription factor’s binding sites. In particular, we consider the heuristic of

using the information content of a position to weight its contribution towards the

overall score.

We compare how well these methods and their extensions perform in identifying

the binding sites for a particular transcription factor without erroneously identifying

binding sites of other proteins. We assess improvement in performance using the

Wilcoxon matched-pairs signed-ranks test, which evaluates whether the frequency

with which one method outperforms another is statistically significant, as well as

receiver operating characteristic (ROC) curves, which compare the performance of

two or more methods over a range of possible false positive rates. Testing on a data

set of E. coli transcription factor binding sites [Robison et al. 1998], our analysis

shows that there are statistically significant differences between these methods. In

particular, our main findings are:

1. The extension of using per-position information content to weight positional

scores improves the performance of all methods, sometimes dramatically. For

example, consensus sequences have by far the poorest performance of all basic

methods in discriminating between binding sites for the transcription factor of

interest and binding sites of other transcription factors; however, weighting each

match to a consensus base by the appropriate per-position information content
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makes consensus sequences much more competitive with other methods.

2. Methods based on nucleotide matches, such as consensus sequences and Cen-

troid, show statistically significant improvements when incorporating pairwise

nucleotide dependencies. Furthermore, in these cases, the choice of which pairs

to include in the model is important; in particular, considering all possible

pairs of nucleotides in a binding site is not as effective as using just neighbor-

ing pairs. On the other hand, probabilistic methods, such as log-odds PSSMs,

do not show statistically significant improvements when incorporating pairwise

dependencies.

3. The difference in performance between methods decreases substantially once

information content and pairwise correlations have been incorporated.

In general, when searching for DNA binding sites of a particular transcription

factor, we find that methods incorporating information content and pairwise correla-

tions are most effective. Of course, for a specific transcription factor and its binding

sites, an alternate method may perform better in practice. For organisms like E. coli

with many well-characterized transcription factors and binding sites, analysis simi-

lar to the one performed here should aid in choosing a specific method and suitable

threshold for a particular transcription factor. Our software enabling such analysis is

available for download at http://compbio.cs.princeton.edu/bindsites.

2.2 Methods

2.2.1 Data set

The data of [Robison et al. 1998,McGuire et al. 2000] contains 68 regulatory proteins

and their aligned DNA binding sites; we constructed our data set from it as follows.

First, only proteins with at least four binding sites were considered. Second, in the
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original database, occasionally the binding sites for a single regulatory protein were

split into multiple groups based on the number of tandem duplications; we chose to

include the individual sites for ArgR, MetJ, and PhoB rather than their tandem-

repeated counterparts. Third, binding sites from sigma factors were removed, as were

binding sites from NarP, since all the latter are also binding sites for NarL. Fourth,

duplicate binding sites were removed in order to preserve the integrity of the leave-

one-out cross-validation process. Finally, each binding site was located within the

E. coli K-12 genome (version M54 of strain MG1655 [Blattner et al. 1997]), and was

extracted along with flanking regions on each side. Binding sites that could not be

located unambiguously within the genome were excluded from our study. This process

left 35 transcription factors and 410 binding sites, with an average of 11.7± 8.5 sites

per transcription factor.

2.2.2 Approaches for representing and searching for tran-

scription factor binding sites

Four basic approaches for representing and searching for transcription factor binding

sites were evaluated. We found that specific implementation details affect perfor-

mance, and so each of the methods is described briefly below.

First, a word about notation. Let S be the set of N DNA binding sites for a

particular transcription factor. We assume that each binding site has length l and

that these binding sites are aligned. Define nj(b) to be the number of times base b

appears in the j-th position of any sequence in S, and fj(b) to be the corresponding

frequency. Similarly, define n(b) to be the number of times base b appears overall in

the N binding sites, and f(b) to be the overall frequency for base b. We then consider

how each method scores a new DNA subsequence t (also of length l) in an attempt

to predict whether t is a binding site of the given protein. Let tj denote the j-th base

of the sequence t to be scored.
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Extending the above notation to pairs of positions, let nij(b, d) be the number

of times the ordered pair of bases (b, d) occurs in positions i and j of any sequence

belonging to S, and fij(b, d) be the corresponding frequency. Ideally, a method for

incorporating pairwise correlations should only take into account those pairs that

are known, perhaps through structural studies, to act together in determining DNA-

protein binding specificity. Since such precise information is not always readily avail-

able, as a first approximation we focus on considering pairwise correlations between

bases that are nearby in sequence, and introduce the notion of scope to delimit which

pairs are considered correlated. For instance, a scope of one restricts correlated po-

sitions to adjacent pairs while a scope of two considers both adjacent pairs and pairs

separated by an intermediate base.

Next we define the information content (IC) of a position in a set of sequences.

Information content is an important concept based on the information theoretic notion

of entropy introduced in a seminal paper by Claude Shannon [Shannon 1948]. In the

current application, the entropy of a position expresses the number of bits necessary

to describe the position in a binding site, and the information content of a position is

calculated by subtracting its entropy from the value of the maximum possible entropy.

That is, the higher the information content, the more conserved (and presumably more

important) the position. More specifically, the information content ICj of position j

in S is defined as 2+
∑

b∈DNA fj(b) log fj(b), and the information content ICij of a pair

of positions is 4 +
∑

b,d∈DNA fij(b, d) log fij(b, d) [Schneider et al. 1986]. Information

content is used in Sequence Logos by [Schneider and Stephens 1990] mainly as a

visualization tool to identify important positions in a binding site. We propose a

different, more direct usage in a scoring scheme, namely by incorporating the IC of a

position as a multiplicative factor in scoring a target binding site sequence.

We consider the following methods and their variations (summarized precisely in

Table 2.1).
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Consensus. These methods vary considerably [Day and McMorris 1992]; we imple-

mented the version of consensus sequences described by [Yamauchi 1991]. For each

position j, let b be the most frequent base and d be the second most frequent base.

If fj(b) > 0.5, then b is our consensus base for position j (denoted by consensusj);

otherwise if fj(b)+ fj(d) > 0.75 then both b and d are the consensus bases. If neither

is true, there is no consensus base for this position. The score of a new sequence t is

obtained by counting the number of times tj agrees with the consensus base for the

j-th position.

PSSM. Typically, this method assumes independence between positions, and com-

putes a log-odds score for a potential binding site. We employ a commonly used

Bayesian estimate to handle the zero frequency case and replace fj(b) by f̂j(b) =

nj(b)+f̂(b)

N+1
[Lawrence et al. 1993], where f̂(b) is the estimate of overall background

frequency of base b, computed as n(b)+.25
N×l+1

.

Berg & von Hippel. We conducted the full analysis with a statistical mechanics-

based method that makes the connection between base-pair statistics of a set of sites

and its binding free energy. Denoting the number of occurrences of the most common

base in position j of the set of binding sites by nj(0), the method scores a new

sequence t by computing a per-positional corrected log-odds score of observing a base

of t versus the most frequent base in the corresponding position of the sequences [Berg

and von Hippel 1987,Berg and von Hippel 1988].

Centroid method. We introduce a method that scores a sequence t by computing

the average shared identity between t and every sequence in S.

Next we consider extensions of the above methods that incorporate pairwise depen-

dencies.

Consensus-P. For a sequence t, this method counts both the number of nucleotides

matching the consensus sequence and the number of nucleotide pairs within a partic-
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Method Score Pair Score (j = i + s)

Consensus
∑l

j=1[tj ∈ consensusj]
∑scope

s=1

∑l−s

i=1 [ti∈consensusi,tj∈consensusj ]

PSSM
∑l

j=1 log
f̂j(tj)

f̂(tj)

∑scope
s=1

∑l−s

i=1 log
f̂ij(ti,tj)

f̂(ti)f̂(tj)

Berg & von Hippel
∑l

j=1 log
nj(tj)+0.5

nj(0)+0.5

∑scope
s=1

∑l−s

i=1 log
nij(ti,tj)+0.5

nij(0,0)+0.5

Centroid
∑l

j=1 fj(tj)
∑scope

s=1

∑l−s

i=1 fij(ti, tj)

Table 2.1: Scores computed by various representation methods. The final score for a pair method is
the sum of the basic score and the pair score.

ular scope matching the corresponding bases in the consensus sequence.

Centroid-P. This method considers the number of shared bases as well as the number

of shared pairs of bases within a particular scope between the sequence t and each

sequence in S.

PSSM-P. This method is an extension of the PSSM log-odds method that also ac-

counts for pairwise correlations. [Zhang and Marr 1993] note that although rigorously

generalizing PSSM-P beyond adjacent pairs is not difficult in principle, in practice

the small number of known sites per transcription factor limits the rigorous prob-

abilistic derivation of the method to only consider adjacent pairs. For example, a

derivation of scope two requires calculating triplet frequencies. Instead, in our anal-

ysis we evaluate an intuitive definition of the method that considers only pairwise

dependencies regardless of scope1. We handle the zero frequency case by replacing

fij(b, d) by f̂ij(b, d) =
nij(b,d)+f̂(b)f̂(d)

N+1
. We tried several different ways of computing

the reference “background” pair frequencies; modeling this as the product of single

column frequencies had the best overall performance.

We extend the Berg & von Hippel method to incorporate pairs of bases in a

similar manner, with nij(0, 0) giving the most frequent pair of bases in positions i

and j.

Finally, for every method considered, we also examine its variation in which per-

1For scope value of one, the rigorous derivation that assumes that position j depends on position
j + 1 subtracts single columns log-odds scores; the method described above performs better in our
tests without subtracting these singlet scores.
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position information content is used to weight the contribution of each position (or

pair of positions) towards the overall score2. For instance, the score computed by

Centroid IC is
∑l

j=1 ICj ×fj(tj), and the score computed by its pair counterpart

Centroid-P IC with scope parameter scope is the sum of the Centroid IC score and
∑scope

s=1

∑l−s

i=1 ICij ×fij(ti, tj), where j = i + s.

2.2.3 Cross-validation testing and analysis

The most common usage of any of the methods described above would be to scan non-

coding regions in a genome in order to find binding sites for a particular transcription

factor. This would entail scoring consecutive windows of appropriate length and

considering windows that score above a carefully chosen threshold to be predicted

binding sites. However, such a framework is not easily applicable when we wish to

evaluate and compare different methods; in particular, the E. coli genome contains

many yet uncharacterized binding sites, and predicted windows may correspond to

true binding sites even if they are not annotated as such in our data set. Instead,

we consider a testing framework with carefully pruned sets of positive and negative

examples. In particular, we conduct leave-one-out cross-validation studies to evaluate

a particular method, and consider each binding site s in turn as follows. Suppose s

belongs to a set S of known binding sites, each of length l, for a particular transcription

factor TF . The method under consideration then uses all the sites except s, i.e.

S − {s} to build the binding site representation for TF , and scores s as well as a

set of negative examples. The negative examples consist of all binding sites in our

data set except those known to be bound by TF . To score a negative binding site t,

we examine all possible alignment positions of this binding site against the binding

site representation of TF such that either the representation of TF is completely

2In [Schneider et al. 1986] it is suggested to use a sampling error correction based on the expected
information content of n random samples. This correction did not improve performance in our tests
and so we only report on uncorrected information content.
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contained within t, or t is completely contained within the representation of TF . In

the latter case, genomic flanking regions around t are used for scoring. Six pairs

of binding sites were found to reside completely inside one another in the genome.

In these cases, when scoring the negative binding site, a true binding site for the

transcription factor of interest is present; thus these corresponding binding sites were

removed from the pool of negative examples during cross-validation testing. The

final score for a target sequence is taken to be the higher score when considering both

the original sequence and its reverse complement. Of course, it still is possible that

transcription factor TF can bind some of the negative examples, but nevertheless s

should be among the top scoring sites in the overall pool.

The discriminatory power of each method, exhibited in the relative score of the

actual binding site among all scored sites, is analyzed using two data-mining tests:

averaged ranks and receiver operating characteristic (ROC) curves (e.g., see [Witten

and Frank 2000]). In particular, for each site s of a transcription factor under consid-

eration we compute its rank in cross-validation testing by counting how many negative

examples score as well or better than s, with lower rank indicating better performance.

Then, to compare how well two methods perform, we use a Wilcoxon matched-pairs

signed-ranks test. Briefly, the number of times one method outperforms the other

is compared with how many times such an event would happen merely by chance

under the assumption that both methods perform equally well. P-values of less than

.05 are considered significant. For ROC analysis, we first create a ROC curve for

each individual leave-one-out test (i.e., we keep track of whether the binding site was

found as a function of the number of false positives allowed) and then average over

all sites for that transcription factor. Individual ROC curves for each transcription

factor are then further averaged across the various transcription factors to arrive at

a final curve for the method.
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2.3 Experimental Results

2.3.1 Comparison of basic methods

We first establish the baseline performance of each of the four basic methods described

above. Figure 2.1 compares the performance of the Consensus, PSSM, Berg & von

Hippel and Centroid methods using ROC analysis. Each curve plots the fraction

of correctly classified positive examples (TP rate) as a function of the incorrectly

classified negative examples (FP rate).

As expected, Consensus performs markedly the poorest, consistently lying to the

lower-right of the other curves. On the other hand, the rest of the methods are

comparable, as their curves lie very close to one another and cross at various FP

rates.

As evidenced above, and in all of the following testing scenarios, PSSM and its

variants perform virtually identically to Berg & von Hippel’s method and its variants.

Therefore, we describe our results omitting the latter method so as not to overcrowd

the graphs.

2.3.2 Influence of pairwise correlations

We next address the question of whether inclusion of pairwise correlation information

improves the ability of the basic approaches to identify transcription factor binding

sites. Ideally, a method for incorporating pairwise correlations should only take into

account those pairs of binding site positions that are known, perhaps through struc-

tural studies, to act together in determining DNA-protein binding specificity. Such

precise biological information is not readily available, and so, as a first approxima-

tion, we focus on considering pairwise correlations between bases that are nearby in

sequence. In particular, we compare the results of incorporating pairwise correlations

as the positional distance allowed between pairs of bases (i.e., the scope) is varied.
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Figure 2.1: ROC curves comparing performance of the four basic methods: Centroid, PSSM, Berg
& von Hippel, and Consensus. The top and left scales give the false positive rate and true positive
rate, respectively, whereas the bottom and right scales give the corresponding number of binding
sites. The 50% precision line indicates the boundary at which the methods would predict as binding
sites as many incorrect sites as correct ones. Consensus is clearly outperformed by the other three
methods.

Figure 2.2 summarizes the effect of considering various pairwise correlations for cen-

troid and PSSM. We consider scope parameters between zero (where no pairwise

dependencies are assumed) and four, as well as full scope. For Centroid-P, neither

zero scope nor full scope performs best, whereas curves with scopes in the range of

two to four consistently achieve higher TP rates across the relevant range of FP rates

(data only shown for scope of two). The improvement for scope two is modest (3%

improvement when allowing no false positives, and approximately 5% when allowing

one false positive) yet significant with a p-value of less than 10−4, as judged by the

Wilcoxon matched-pairs signed-ranks test (see Statistical significance of methods

comparison). Thus, incorporating pairwise correlations improves the discriminatory

ability of the centroid method; however, it is important to consider pairs of positions

only within a limited scope. In the remainder of the chapter, Centroid-P is used with
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(a) Centroid
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(b) PSSM

Figure 2.2: ROC curves comparing performance when pairs are considered for Centroid (a) and
PSSM (b). For each, the basic method (scope zero) is shown, along with the method using all
possible pairs (full scope) and the method using the best performing scope (scope two for Centroid-
P and scope three for PSSM-P).
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scope two as it is less computationally intensive than those with scopes three and four

and yet performance is comparable. A similar trend is observed for Consensus (data

not shown), where a dramatic improvement in performance occurs with the addition

of pairwise correlations. At scope two, used for all subsequent analysis, performance

increases over scope zero by 25% when allowing no false positives, and 26% when

allowing one false positive. In contrast, for PSSM-P, incorporating pairs at small

scopes results in performance decline (see Discussion). At larger scopes PSSM-P

performs very similarly to PSSM. For the remaining analysis, we consider PSSM-P

at scope three; performance increases over scope zero by 8% with no false positives

and by 3% with one false positive. However, this improvement is not judged to be

statistically significant (see below). To summarize, for the methods based on tallying

up nucleotide matches, such as Centroid and Consensus, considering pairwise corre-

lations clearly helps; however, we cannot make the same claim for the probabilistic

methods such as PSSM.

We further quantify the effect of nearby pairwise correlations by considering the

performance of the Centroid-P method in the same cross-validation scenario but on

a perturbed data set, produced by randomly shuffling the columns of the binding

sites used as positive examples. While shuffling the columns of a set of binding

sites preserves per-column nucleotide composition, it also, on average, destroys any

local pairwise correlations found in the original alignment. The results are shown

in Figure 2.3 where a ROC curve for Centroid-P tested on the original data set is

plotted against the same method tested on the shuffled data set. Shuffling and cross-

validation are averaged over 1,024 trials producing the solid shuffling curve, whereas

the dashed curves show performance out to one standard deviation due to effects of

randomness. The benefit of incorporating nearby inter-column correlations is clearly

observed, as performance on shuffled sites is consistently worse than performance on

the original sites.
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Figure 2.3: ROC curves comparing Centroid-P with scope two using regular sites and sites with
columns shuffled. The solid curve is an average over 1,024 different shuffles, while dashed curves
show performance out to one standard deviation with random shuffling.

2.3.3 Importance of per-position information content

Next, we evaluate the performance of the basic methods described above and consider

the effect of adding per-position information content to each method. We compare

via a ranks chart the performance of the Consensus, PSSM and Centroid methods,

along with their pair counterparts with and without information content.

Figure 2.4 shows average ranks (as computed over the binding sites for each tran-

scription factor) for both versions of each method and its pair extension side by side.

Comparing median performance, it is clear that adding per-position information con-

tent results in improved performance in both the original and pairwise versions of

the basic methods. Noticeably, the addition of information content to the Consensus

method dramatically improves its performance, and in fact makes it much more com-

petitive with the other methods. When considering performance differences upon

incorporating both pairwise dependencies and per-position information content at
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Figure 2.4: Performance of all the methods measured by averaged ranks per transcription factor.
For each transcription factor, an average rank is computed from the rank of each of its binding
sites in cross-validation testing. The horizontal line in each box is the median transcription factor’s
average rank while each box shows the 25th–75th percentiles for average ranks.

particular values of false positives, basic Consensus shows a 36% improvement when

allowing no false positives and a 37% improvement when allowing one false positive.

These values for Centroid are 2% and 9%, and for PSSM are 10.5% and 8%.

2.3.4 Statistical significance of method comparisons

To compare methods and assess whether the differences in performance (partially

described above) of various methods are statistically significant, we apply a Wilcoxon

matched-pairs signed-ranks test. For every comparison and each cross-validation test,

we calculate the change in the rank of the left-out-example. These rank differences

are converted into p-values under the assumption that both methods perform equally
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Figure 2.5: Partial ordering (at the 95% significance level) of methods based on a signed ranks test.
Arrows point towards worse performing methods, with labels indicating the difference in average
rank between the methods, both as an absolute number and as percentage improvement. Pairwise
comparisons were performed between all four variations of each method, as well as between the three
P IC methods, for a total of 21 tested hypotheses. P-values were adjusted for multiple hypothesis
testing using a sequentially rejective Bonferroni test [Holm 1979]. Dotted edges show differences
that were not found to be significant with the Bonferroni correction, but have individual p-values
< .05.

well, and a sequentially rejective Bonferroni test is used to select the most significantly

different pairs of methods so that the overall p-value is less than 5% [Holm 1979].

We chose to test a subset of all possible pairs of methods with the goal of iden-

tifying the best performing methods and quantifying improvement (if any) resulting

from incorporation of information content and pairwise dependencies. In particular,

for each basic method, all its variations are compared to each other; additionally, the

versions of every method that incorporate both pairs and information content are

compared to each other. The results are shown in Figure 2.5, producing a graph in

which a directed edge connects a pair of methods, one with a significant performance

improvement over the other (arrow pointing toward worse performing methods). The

overall conclusion is that the pair and information content incorporating version of

each basic method outperforms the other methods in its group (with the exception

of Consensus-P IC which did not perform significantly better than Consensus-IC).
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As for the overall best method, Centroid-P IC has the best average rank; and both

Centroid-P IC and PSSM-P IC statistically outperform the highest number of other

methods. All information content weighted methods perform significantly better than

their non-weighted counterparts, with a qualification that although Centroid-P IC

and Centroid IC perform better than Centroid-P and Centroid at individual p-values

of .02, these differences are not statistically significant with the Bonferroni correction.

The improvement resulting from adding pairwise dependencies is more modest, as we

observe only some of the possible arrows relating a method and its pair-incorporating

counterpart.

2.4 Discussion

Based on our findings, we conclude that both pairwise correlations and especially in-

formation content can be used to improve the discriminatory power of computational

methods for binding site recognition and prediction.

The importance of pairwise correlations for binding site identification has been a

topic of debate within the computational biology research community, and numerous

papers have been published supporting both viewpoints (e.g., [Bulyk et al. 2002,

Benos et al. 2002,Barash et al. 2003]). Our findings show that considering pairwise

correlations improves performance for all three methods, though the improvements

are very modest and not significant for the statistical methods (e.g., see PSSM-P in

Figure 5). Moreover, while the resulting improvement is dramatic for Consensus-

P, it is more modest for Centroid-P. Nevertheless, our testing suggests that inter-

positional information can provide additional binding domain specificity, particularly

when the appropriate pairs are considered. This is demonstrated by the fact that

considering some pairs of positions (i.e., those within close sequential proximity)

results in improved performance for the nucleotide match methods such as Centroid-P;
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it may be possible that more careful selection of pairwise dependencies, perhaps from

crystal structures when available, would result in further improvements. We suspect

that performance of the statistical methods, such as PSSM-P, do not show statistically

significant improvements when pairwise correlations are considered because of the

non-occurrence of many base-pair combinations in the small data set; such a case

is more severely penalized in PSSM-P scoring than in Centroid-P or Consensus-P

scoring.

It is not clear a priori that the addition of information content should improve per-

formance of methods that already incorporate frequency information. Nevertheless,

we found that the inclusion of information content benefits all methods tested, and

a clear trend is observed when considering the methods and their IC counterparts

(Figure 2.4). Additionally, the performance of most methods is comparable once

per-position IC weights have been included. This perhaps suggests that information

content is the measure that allows us to rigorously identify the highly conserved po-

sitions in the binding site; these are presumably the functionally important positions

in the interaction between a transcription factor and its DNA binding domain. Given

those key positions, the precise way of making use of that information appears less

critical; even Consensus, a clearly inferior method utilizing the simplest matching

criterion, receives noteworthy improvement from including information content.

Finally, we note that we observe some variation in method performance per tran-

scription factor. This suggests that no single method is optimal for all situations. This

is not surprising given the high degree of variation observed in protein-DNA interac-

tions. Whereas in general methods incorporating information content and pairwise

nucleotide information are expected to be most effective when searching for DNA

binding sites of a particular transcription factor, for a specific transcription factor

and its binding sites, an alternate method may perform better. Additionally, in some

scenarios it is desirable to allow a higher number of predicted binding sites that can
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be later eliminated using other approaches (e.g., using cross-genomic information).

Analysis similar to the one performed here is likely to prove useful in choosing, for

different contexts, a specific method and suitable threshold for finding binding sites

of a particular transcription factor.
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Chapter 3

Combinatorial Optimization

Approach to Motif Finding

3.1 Introduction

In this chapter we consider the problem of motif discovery, or that of finding ap-

proximately repeated patterns in unaligned sequence data. It has applications in

uncovering transcriptional networks, as short common subsequences in the data may

correspond to a regulatory protein’s binding sites, and in protein function identifica-

tion, where short blocks of conserved protein sequence code for important structural

or functional elements.

3.1.1 Previous approaches

Motif finding methods are based on the chosen representation method for a group

of binding sites. Position specific scoring matrices (PSSMs), which estimate the

probability of observing each residue in every position of the motif, are used most

commonly to represent binding sites, and they are the basis for many motif finding

algorithms. Numerous methods use parameter estimation techniques such as Gibbs
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Sampling [Lawrence et al. 1993,Hughes et al. 2000,Liu et al. 2001,Frith et al. 2004] and

Expectation Maximization (EM) [Lawrence and Reilly 1990,Bailey and Elkan 1995]

at their core to arrive at the residue probability settings in the scoring matrices.

These approaches commonly make the assumption that the column distributions of

the PSSM representing the motif are most different from the distribution of the back-

ground sequence. Accordingly, they attempt to maximize the log-likelihood ratio (llr)

of the motif model to the background model, defined for a motif of length ` embedded

in N background sequences as follows:

llr =
∑̀

j=1

∑

b∈Σ

nj(b) lg
fj(b)

f(b)

where nj(b) is the number of occurrences of base b in column j of the motif, fj(b) =

nj(b)/N is the corresponding frequency, and f(b) is the probability of observing base

b in background.

A method, called CONSENSUS [Hertz and Stormo 1999], is an iterative greedy

approach, which attempts to maximize the relative entropy (RE), another popular

measure for PSSM based methods, defined as

RE =
∑̀

j=1

∑

b∈Σ

fj(b) lg
fj(b)

f(b)

which is just the normalized log-likelihood ratio. All the above methods are statistical

greedy iterative improvement procedures, which use multiple re-starts with random

starting points, and often converge to local, rather than global optima.

Consensus representation based methods take an alternate view of motif finding, in

which a motif corresponds to a pattern or a regular expression. Ideally, an exhaustive

pattern-driven search should be performed to examine every potential motif. While

possible for small motif lengths ` [Tompa 1999, van Helden et al. 2000, Sinha and

Tompa 2003,Pavesi et al. 2004], that is not a feasible option as ` grows. An observation
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that most of the potential sequence patterns are dissimilar with the true motif has

led to the development of sample-driven approximate approaches, which only examine

patterns occurring in the data [Rigoutsos and Floratos 1998,Pevzner and Sze 2000,

Buhler and Tompa 2002,Sze et al. 2004] as well close ‘neighbors’ of such patterns.

Comparative tests [Tompa et al. 2005] have shown that approaches based on

different representations of binding sites perform similarly. We take a pattern-based

view, and define motif discovery as the problem of finding a set of motif instances

whose mutual sequence similarity is maximized.

3.1.2 Combinatorial optimization framework

Here, we consider a combinatorial optimization framework for motif finding that is

flexible enough to model several variants of the problem and several types of biologi-

cal data. For DNA sequences, motif finding algorithms have typically been applied to

sets of sequences from a single genome that have been identified as possessing a com-

mon motif, either through DNA microarray studies [Tavazoie et al. 1999], ChIP-chip

experiments [Lee et al. 2002] or protein binding microarray experiments [Mukherjee

et al. 2004]. An orthogonal approach, which attempts to identify regulatory sites

among a set of orthologous genes across genomes of varying phylogenetic distance, is

adopted by [McGuire et al. 2000,McCue et al. 2001,Blanchette and Tompa 2002,Kel-

lis et al. 2003,Cliften et al. 2003]. Yet another formulation of motif finding for DNA

sequences, that of ‘subtle’ motifs, was introduced by [Pevzner and Sze 2000] and

tested in simulated data. For protein sequences, motif finding can reveal structural

and functional constraints, and especially in the case of divergent sequence motifs,

incorporating amino acid substitution matrices [Dayhoff et al. 1978, Henikoff and

Henikoff 1992] is particularly useful.

Underlying our approach, we consider motif finding as the problem of finding the

best gapless local multiple sequence alignment using the sum-of-pairs (SP) scoring
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scheme, which is one of many reasonable schemes for assessing motif conservation [Os-

ada et al. 2004,Schuler et al. 1991,Carillo and Lipman 1988]. Recasting motif finding

as an equivalent graph problem, we then formulate it as an instance of integer linear

programming (ILP), and, since ILP is NP-hard to solve in general, consider its linear

programming (LP) relaxation. Typically, the linear programs are very large, num-

bering in the millions of variables, and prove too difficult even for highly optimized

commercial solvers. To reduce the size of the linear programs, we initially employ a

number of graph pruning techniques, building upon the ideas of [Gusfield 1993,Vin-

gron and Pevzner 1995,Pevzner and Sze 2000, Lukashin and Rosa 1999]. These fall

into the broad category of dead-end elimination (DEE) algorithms (e.g., [Desmet

et al. 1992]), where sequence positions that are incompatible with the optimal align-

ment are discarded.

In most cases, the resulting graphs and their linear programs are small, and are

easily solved by the CPLEX package [CPLEX 7.1] with AMPL [Fourer et al. 2002].

Interestingly, the vast majority of solutions are integral, guaranteeing optimality for

the original integer linear program and motif finding problem, and obviating the

need to employ ILP solvers. Thus, our approach runs in polynomial time for many

practical instances of the problem, which otherwise is known to be NP-hard [Akutsu

et al. 2000,Wang and Jiang 1994]. In the cases where fractional solutions are found

for the linear programs, an ILP solver is applied. In rare more difficult cases, when

the graph pruning techniques do not sufficiently reduce the size of the problem, we

introduce a heuristic iterative scheme for finding motifs (see section 3.3.5). Finally,

given a discovered motif, we test its statistical significance by exactly computing

the scores’ probability distribution and assessing the number of motifs of the same

or better quality that are expected to occur in the data at random. In the cases

where optimal solutions are not guaranteed, a bound on the significance value of the

potential optimal solution is also given. In practice, the ability of our method to find

33



optimal solutions to large problems, that are also shown to be statistically significant,

attests to its overall effectiveness.

We extend our coupled mathematical programming and pruning approach to ac-

count for multiple motifs and phylogenetic information, and then test it in various

settings. First, we consider the problem of finding shared sequence motifs in protein

sequences. Unlike the commonly-used stochastic search methods for motif finding

(e.g., [Lawrence et al. 1993, Bailey and Elkan 1995], our combinatorial formulation

naturally incorporates amino acid substitution matrices, and finds optimal solutions

for all the tested datasets. Second, we consider sets of genes known to be regu-

lated by the same E. coli transcription factor, and apply our approach to find the

corresponding binding sites. Third, we consider the phylogenetic footprinting prob-

lem [Blanchette and Tompa 2002], and find shared motifs upstream of orthologous

genes. The difficulty of this problem lies in that the sequences may not have had

enough evolutionary time to diverge and may share sequence level similarity beyond

the functionally important site; incorporation of additional information, in the form

of the weightings obtained from a phylogenetic tree relating the species, proves use-

ful in this context. Finally, we consider the ‘subtle’ motifs formulation of [Pevzner

and Sze 2000], where a fixed pattern is inserted into the input sequences with some

number of perturbations. In particular, we show that our formulation can be used

to find many optimal solutions, thereby retrieving the correct implanted one, along

with others that may have occurred by chance. In all scenarios, we show that our

method works well in practice, either recovering the known motifs or other motifs of

high conservation that are shown to be statistically significant.
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3.2 Broad Problem Formulation

The motif finding problem is modeled here as that of finding the ungapped local

multiple sequence alignment (MSA) with best sum-of-pairs (SP) score. Informally,

given p sequences {S1, . . . , Sp} and a block length parameter `, the goal is to find

an `–long gapless subsequence from each input sequence so that the total similarity

among selected blocks is maximized. More formally let sk
i refer to the `–long block (`–

mer) in sequence Si beginning in position k and let sim(x, y) denote a similarity score

between the `–long subsequences x, y. The objective is then to find the set of positions

{k1, . . . , kp} in each sequence, such that the sum-of-pairs score
∑

i<j sim(ski

i , s
kj

j ) is

maximized.

It is convenient to consider a graph-theoretic formulation of this problem [Reinert

et al. 1997]. Let G be an undirected p–partite graph with node set V1∪ . . .∪Vp, where

Vi includes a node u for each `–long subsequence sk
i in the i-th sequence. Note that

the subsequences corresponding to two consecutive vertices overlap in `−1 positions,

and that the Vi’s may have varying sizes. Each pair of nodes u ∈ Vi and v ∈ Vj

(i 6= j), corresponding to subsequences sk
i and sk′

j in Si and Sj respectively, is joined

by an edge with weight of wuv = sim(sk
i , s

k′

j ). By this construction G is a complete

p–partite graph (see Figure 3.1). The MSA is achieved by picking the highest weight

p–partite clique (denoted p–clique) in graph G.

The rest of this section describes the combinatorial optimization framework for

the MSA problem. We first explain our approach to the basic formulation of the

problem, and then consider extensions. Our method consists of two components: the

mathematical programming formulation of the maximum-weight clique problem in G,

and graph pruning techniques. Though the problem can theoretically be solved using

mathematical programming tools directly, biologically relevant instances are typically

very large, numbering in the millions of variables, and would take a prohibitively

long time to solve. To reduce the running-times we employ a number of pruning
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Figure 3.1: Graph representation for the multiple sequence alignment problem. A graph part Vi

corresponds to every sequence, and a vertex corresponds to every possible motif position. If the
motif length ` is four, the picture matches up the last few subsequences to their graph vertices.
Every pair of vertices u and v in distinct parts are connected by an edge wuv.

techniques, generally referred to as dead-end elimination (DEE) in the protein design

community, which discard vertices and/or edges that cannot possibly be part of the

optimal solution1.

3.3 Basic Motif Finding Framework

3.3.1 Similarity scores

To fully specify the graph as above, we need to define its edge weights. For the DNA

motif finding problem we can use the simplest 1/0 similarity score for match/mismatch

between pairs of bases, and sum the scores for the `–long blocks in pairs of sequences

to derive the weights. When the background distribution of the input sequences is far

1Our framework can be recast as a minimization problem as well. In that case the graph edge
weights are derived from a distance measure between `–long subsequences. The MSA is then achieved
by picking the lowest-weight clique in the graph, and the described DEE techniques can be easily
adjusted.
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from uniform, it is important for the scoring scheme to reflect the bias in composition.

In order to reward matches of more infrequent bases, instead of using 1 for a match,

we assign a score of log(1/f(b)) for a base b pairing2, where f(b) is the zero-corrected

frequency of base b in the background, and 0 for any mismatch. In practice, we work

with integral scores by scaling the floating point numbers to the desired degree of

accuracy and rounding (here, we use the scale factor of 100).

We also apply the same basic problem formulation to the protein motif finding

problem. Since background correction is less important for protein sequences, our

scoring scheme does not reflect compositional bias in this case. Rather, we compute

the weights based on amino acid substitution matrices, which assign higher scores to

more favorable substitutions and better reflect biochemical properties of such pairings.

We experiment with both PAM [Dayhoff et al. 1978] and BLOSUM [Henikoff and

Henikoff 1992] matrix families. To calculate the edge weights, we sum the matrix

entries for amino acid pairs in each position of the `–long block.

3.3.2 Integer linear programming formulation

For graph G = (V,E), where V = V1∪ . . .∪Vp and E = {(u, v) : u ∈ Vi, v ∈ Vj, i 6= j},

we introduce a binary decision variable xu for every vertex u, and a binary decision

variable yuv for every edge (u, v). Setting xu to 1 corresponds to selecting vertex u

for the p–clique and thus choosing the sequence position corresponding to u in the

alignment. Setting variable yuv to 1 corresponds to choosing both the vertices u and

v for the p–clique.

The following integer linear program solves the motif finding problem formulated

above:

2We also experimented with a scheme that assigns a score of 1/f(b) for a base b match, which
performed similarly.
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Maximize
∑

(u,v)∈E wuv · yuv

subject to
∑

u∈Vj
xu = 1 for 1 ≤ j ≤ p (node constraints)

∑
u∈Vj

yuv = xv for 1 ≤ j ≤ p, v ∈ V \ Vj (edge constraints)

xu, yuv ∈ {0, 1} for u ∈ V, (u, v) ∈ E

The first set of constraints ensures that exactly one vertex is picked from every

graph part, corresponding to one position being chosen from every input sequence.

The second set of constraints relates vertex variables to edge variables, allowing the

objective function to be expressed in terms of finding a maximum edge-weight clique.

An edge is chosen only if it connects two chosen vertices. This formulation is similar

to that used by [Kingsford et al. 2005] for fixed-backbone protein design and homology

modeling.

ILP itself is NP-hard, but replacing the integrality constraints on the x and y

variables with 0 ≤ xu, yuv ≤ 1 allows for a polynomial-time heuristic for the problem.

It is important to note that should a linear programming solution happen to be

integral, it is guaranteed to be optimal for the original ILP and motif finding problem.

Non-integral solutions, on the other hand, are not feasible for the ILP and do not

translate to a selection of positions for the MSA problem. Those instances need

to be solved by other means, such as using an ILP solver. Interestingly, we find

integral solutions in an overwhelming majority of instances (especially after applying

our pruning techniques).

3.3.3 Graph pruning techniques

Basic clique-bounds DEE. The idea of our first pruning technique is as follows.

Suppose there exists a clique of weight C∗ in G. Then a vertex u, whose participation

in any possible clique in G reduces the weight of that clique below C∗, is incompatible
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with the optimal alignment and can be safely eliminated (similar to [Lukashin and

Rosa 1999]).

For u ∈ Vi define star(u) to be a selection of vertices from every graph part other

than Vi. Let Fu be the value induced by the edge weights for a star(u) that form best

pairwise alignments with u:

Fu =
∑

j 6=i

max
v∈Vj

wuv (3.1)

If u were to participate in any clique in G, it cannot possibly contribute more than Fu

to the weight of the clique. Similarly, let F ∗
i be the value of the best possible star(u)

among all u ∈ Vi:

F ∗
i = max

u∈Vi

Fu (3.2)

F ∗
i is an upper bound on what any vertex in Vi can contribute to any alignment.

Now, if Fz, the most a vertex z ∈ Vk can contribute to a clique, assuming the

best possible contributions from all other graph parts, is insufficient compared to the

value C∗ of an existing clique, i.e. if

Fz < 2 × C∗ −
∑

i6=k

F ∗
i , (3.3)

z can be discarded. The clique value C∗ is used with a factor of 2 since two edges are

accounted for between every pair of graph parts in the above inequality.

In fact, the values of F ∗
i are further constrained by requiring a connection to z

when z is under consideration. That is, when considering a node z ∈ Vk to eliminate,

and calculating F ∗
i according to Equation 3.2 among all possible u ∈ Vi, the Fu of

Equation 3.1 is instead computed as:

Fu = wzu +
∑

j 6=i,k

max
v∈Vj

wuv (3.4)

The value of C∗ can be computed from any “good” alignment. We use the weight
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of the clique imposed by the best overall star.

Tighter constraints for clique-bounds DEE. For a vertex u ∈ Vi and every other

Vj, an edge has to connect u to some v ∈ Vj in any alignment. When calculating Fu,

we can constrain its value by considering three-way alignments and requiring that

the vertices in the best star(u) chosen as neighbors of u in graph parts other than

Vj are also good matches to v. Performing this computation for every pair of u, Vj

and considering every edge incident on u would be too costly. Therefore, we only

consider such three-way alignments for every vertex u ∈ Vi and the next part Vi+1

of the graph (with the last and first parts paired). Essentially, this procedure shifts

the emphasis onto edges, allowing better alignments and bounds, and yet eliminates

vertices by considering the best edge incident on it.

For a given edge (u, v) with endpoints u ∈ Vi and v ∈ Vi+1 we consider an

adjacent double star with two centers at u and v, and sharing all the endpoints xj

in the other graph parts, denoted as dstar(u, v); the weight of such a dstar(u, v) is

2wuv +
∑

j 6=i
j 6=i+1

(wuxj
+ wvxj

). Now consider a clique {u1 ∈ V1, . . . , up ∈ Vp} of some

value C∗, and the sum of its double stars :

∑

i=1...p

(2wuiui+1
+

∑

j 6=i
j 6=i+1

(wujui
+ wujui+1

)) = 2
∑

i=1...p

∑

j 6=i

wujui
= 4C∗ (3.5)

The sum is equal to 4C, since the weights between adjacent graph parts i and i + 1

are counted twice directly as the first term of the above equation and once each when

considering pairs (i−1, i) and (i+1, i+2). Edge weights between non-adjacent graph

parts i and j are counted once each when considering adjacent parts’ pairs (i − 1, i),

(i, i + 1), (j − 1, j), and (j, j + 1).

Now we proceed to define Fuv with for an edge (u, v) with endpoints u ∈ Vi and
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v ∈ Vi+1 as

Fuv = 2wuv +
∑

j 6=i
j 6=i+1

max
x∈Vj

(wxu + wxv) (3.6)

Fuv can be viewed as the weight of the best double star centered at the pair of vertices

u, v (or edge (u, v)) and it is the best possible contribution to any alignment, if the

edge (u, v) was required to be a part of the alignment.

We define Fu for u ∈ Vi and F ∗
i for part i similarly to the above definitions as

Fu = max
v∈Vi+1

Fuv (3.7)

F ∗
i = max

u∈Vi

Fu (3.8)

Fu is the value of the best double star centered on vertex u ∈ Vi and some vertex

v ∈ Vi+1, and F ∗
i is the value of the best double star centered on any pair of vertices

u ∈ Vi and v ∈ Vi+1.

For any clique {u1 ∈ V1, . . . , up ∈ Vp} of value C∗ in the graph, by Equations

3.5–3.8 we have

4C∗ =
∑

i=1...p

(2wuiui+1
+

∑

j 6=i
j 6=i+1

(wujui
+ wujui+1

)) ≤
∑

i=1...p

Fuiui+1
≤

∑

i=1...p

Fui
≤

∑

i=1...p

F ∗
i

Then Equation 3.3, with 2C∗ replaced by 4C∗, can be used to eliminate vertices

in the same way as before, eliminating a vertex z in a particular graph part if Fz,

the value of its best adjacent double star, is insufficient considering best possible

contributions from all other graph parts. For best pruning results the value of C∗

should be as high as possible; we choose C∗ as the clique weight induced by the best

overall double star.

Graph Decomposition. DEE techniques work well for simpler instances of the

motif finding problem (see Results), but tend to be inadequate, leaving a large final
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graph, for more complex cases. To overcome this difficulty we propose a divide-and-

conquer graph decomposition approach. For every graph part i and vertex u ∈ Vi we

consider induced subgraphs Gu = (V u, Eu) in turn, where V u = u ∪ V \ Vi. Appli-

cation of the clique-bounds DEE technique to graphs Gu is very effective since one

of the graph parts, Gu
i contains only one vertex, u, and all the F and F ∗ values that

need to be recomputed for the new graph Gu are greatly constrained. The process of

updating the F and F ∗ values is efficient as the changes are localized to one part in the

graph. Importantly, the C∗ remains intact, since the clique of that larger value exists

in the original graph and can be used for the decomposed one, helping to eliminate

vertices. For some of the vertices u, iterative application of the DEE criterion and

re-computation of the F and F ∗ values causes Gu to become disconnected, implying

that vertex u cannot be part of the optimal alignment. Such a vertex u is marked for

deletion, and that information is propagated to all subsequently considered induced

subgraphs, further constraining the corresponding F and F ∗ values and helping to

eliminate other vertices in turn.

3.3.4 Statistical significance

While the method described above finds the optimal solution for the underlying graph

problem with the corresponding value of the objective function, it is important to

assess how likely it is for such a motif to have occurred at random. To that end, we

propose a strategy to calculate statistical significance, in our case measured by the

number of motifs of equal or better quality expected to occur in random data with

the same characteristics [Altschul 2005].

Let the score of the motif in question be denoted by S. Recall that f(b) is the zero-

corrected background frequency of nucleotide b in the input sequences, and sim(b1, b2)

is the integral score computed for all residue pairs as above.

We compute Pi(X), the probability of observing a motif of length i and of score
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X in N sequences, in the first two steps of the following, and infer the e-value of score

S in the last two:

1. Calculate the exact probability distribution P1(x) for all possible SP-scores for

a single column of N random residues. We use the multinomial distribution to

compute the probability of observing every combination of residues in the col-

umn according to the background distribution, and calculate the corresponding

SP-score by summing appropriate sim(b1, b2) values. We then add probabili-

ties for the same scores resulting from different residue combinations. To make

the computation feasible for the protein alphabet and for large numbers of se-

quences, we calculate the scores and probabilities in such an order that every

new score and probability is computable from the previous one by a local update

operation.

2. Calculate the exact probability distribution Pl(x) for all possible SP-scores for

` random columns of letters. This can be done by convolution of P1(x) as

in [Tatusov et al. 1994], where we inductively construct a distribution for i

columns based on the distribution for i − 1 columns, Pi−1(x), and the single

column distribution P1(x).

3. For a given score of interest S, we calculate the probability Rl(S) that an `–long

pattern has score greater than or equal to S by chance alone. This is simply

Rl(S) =
∑

x>=S Pl(x).

4. Finally, we compute the total number of possible motifs in the data. If the

sequences have lengths L1, . . . , LN , then the search space size L =
∏

i(Li−l+1),

where ` is the fixed length of the motif. The expected number of alignments

with score at least S by chance along, or the e-value, is then L ∗ Rl(S).
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3.3.5 Algorithm description

We combine the various elements described above and apply them in the order of

increasing complexity (See Figure 3.2). At every juncture a decision is made whether

to send the problem in its current state to the LP solver, and this decision hinges on

the size of the graph. If the graph is “small” enough for some suitable definition of

small (currently set at 800 vertices), we submit the appropriate linear program to the

LP solver and, if necessary, to the ILP solver. To reduce the graph to that necessary

small size, we apply the DEE variants, running each one of them to convergence so

that no further pruning is possible. The process is terminated when the specified

graph size has been reached. First, we attempt to prune the graph using basic clique-

bounds DEE ; then we consider tighter bound computations; lastly we employ graph

decomposition in conjunction with the DEE methods.

In the rare cases when the above procedure is unable to sufficiently prune the

graph, we perform what we call speculative pruning using higher C∗ values, which

do not necessarily correspond to known cliques in graph G. Three outcomes of such

pruning are possible: (i) The graph is eliminated completely. This guarantees that

a clique of value C∗ does not exist in G. (ii) The pruning is once again inadequate

to reduce the size of the graph sufficiently. (iii) The pruning procedure converges to

a small graph that can be piped to the solver. We search the space of possible C∗

values until we find one that produces outcome (iii). To identify such a value we

first translate the possible clique scores into their corresponding e-values, and then

perform binary search on the e-value exponent, transforming the current e-value back

to its score equivalent. This method converges quickly, typically locating an effective

C∗ in fewer than 10 iterations.

If the optimal solution for the final reduced graph is better than the C∗ used in

pruning, then it is also optimal for the original graph. Otherwise, using speculative

pruning no longer guarantees optimality of the final motif, as a vertex that is a member
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Figure 3.2: Algorithm flow chart. Every diamond-shaped node is a decision node, rectangular nodes
are various execution steps, and oval nodes are head and terminal nodes.
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of the optimal solution may have been eliminated in the pruning step. However,

we can place an e-value bound on the actual optimal solution. Since the optimal

solution is no better than the value of C∗ used to obtain the pruned graph, the

e-value corresponding to C∗ provides us with the bound.

3.4 Subtle Motifs Framework

Pevzner and Sze [Pevzner and Sze 2000] introduced the ‘subtle’ motifs version of the

motif finding problem. They formulate it as a signal finding problem in which an

unknown pattern of a given length is inserted with modifications into each of the

input sequences. The positions of insertion are unknown, as are the modifications in

the instances of the pattern. Pevzner and Sze focus on what they call the (l, d)-signal

version, in which the pattern is a string of length ` and each pattern instance differs

from the pattern in exactly d positions. The mutations are allowed to occur anywhere

in the pattern, and thus any two instances of the pattern may differ from each other

in as many as 2d positions. On the other hand, if two subsequences differ in more

than 2d positions, they cannot possibly be instances of the implanted pattern.

We can solve the subtle motifs problem just as above by formulating it as a multiple

sequence alignment with the sum-of-pairs score. The graph version of the problem

remains largely the same except that it is no longer a complete p–partite graph.

By definition, vertices that correspond to subsequences whose Hamming distance is

greater than 2d should not be connected by an edge, as such an edge cannot possibly

be part of the optimal clique. The weights on the edges, as suggested in [Pevzner and

Sze 2000], are computed by considering the number of matches and mismatches.

It is straightforward to adjust our linear program to reflect the fact that graph G

is no longer a complete graph by removing variables corresponding to non-existent

edges.
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Maximize
∑

(u,v)∈E wuv · yuv

subject to
∑

u∈Vj
xu = 1 for 1 ≤ j ≤ N (node constraints)

∑
u∈Vj ,(u,v)∈E yuv = xv for 1 ≤ j ≤ N, v ∈ V \ Vj (edge constraints)

0 ≤ xu, yuv ≤ 1 for u ∈ V, (u, v) ∈ E

The main difference is in the edge constraints, in that the summation is made over

the existing edges only.

3.4.1 Graph pruning and decomposition

We begin by noting that the subtle motifs graphs may be pruned using any of

the methods introduced by previous authors (e.g., in [Pevzner and Sze 2000, Sze

et al. 2004]), and our LP/ILP formulation can be applied whenever the graph size has

decreased sufficiently. Additionally, DEE methods introduced above can be adjusted

for these graphs as well. We chose to experiment with two pruning and decomposition

procedures.

The first technique we apply is a dead-end elimination routine, suggested in [Vin-

gron and Pevzner 1995,Pevzner and Sze 2000]. Here we can use connectivity proper-

ties of G = (V,E), which no longer is a complete p–partite graph, to prune “dead-end”

vertices and edges. Following the notation of [Pevzner and Sze 2000], let vertex u ∈ Vi

be a neighbor of vertex v ∈ Vj if (u, v) is an edge in the graph, and vertex x be a neigh-

bor of an edge (u, v) if {u, v, x} is a connected triangle in the graph. The strategy we

call vertex removal is to delete any vertex u that does not have at least one neighbor

in every part of G other than Vi. Edge removal eliminates any edge (u, v) that does

not have at least one neighbor in every part of G excluding Vi and Vj. These two

strategies, collectively referred to as connectivity DEE, are applied iteratively until

no further vertices or edges are detected for removal.
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We also introduce a second graph decomposition II technique for solving more

difficult instances of the subtle motifs problem. Though any DEE routine can be

employed in conjunction with graph decomposition, we concentrate on the iterative

application of vertex removal and edge removal procedures. The idea of decomposition

becomes more effective if modified slightly from its version above. Here we choose

an arbitrary part Vi of V , and consider all the vertices u ∈ Vi in turn. The intuition

is that some vertex u in Vi has to be in the optimal alignment, and considering

each one exhausts the possibilities. As before, we consider induced subgraphs Gu =

(V u, Eu) and process them with the connectivity DEE routines. For some u, their

corresponding graphs Gu become disconnected, and those vertices can be discarded;

for others, typically, the graph remaining after this processing is small. As a final step

we solve a number of these small linear programs, and select the optimal solution to

the original problem among them. Note that for some difficult and dense instances

of the subtle motifs problem, we can extend this graph decomposition II technique to

multiple graph parts, considering pairs or even triplets of vertices for elimination.

3.5 Other Motif Finding Frameworks

3.5.1 Phylogenetic footprinting

As mentioned earlier, one way of finding regulatory sites is to look for them among

a set of homologous genes across species. In this case additional data, in the form

of the phylogenetic tree relating the species, is available and should be exploited.

It is especially important when closely related species are part of the input, and,

unweighted, they contribute duplicate information and skew the alignment. We use a

phylogenetic tree and branch lengths when calculating the edge weights in the graph,

with highly diverged sequence pairs getting larger weights. The precise weighting

scheme follows the ideas of weighted progressive alignment [Feng and Doolittle 1987],
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in which weights αi are computed for every sequence i. The calculation sums branch

lengths along the path from the tree root to the sequence at the leaf, splitting shared

branches among the descendant leaves, and thereby reducing the weight for related

sequences. In essence, we solve a multiple sequence alignment problem with weighted

SP-score using match/mismatch, where the computed weight for a pair of positions in

sequences i and j is multiplied by αi×αj. The rest of the algorithm operates as in the

basic motif finding case above, employing the same linear programming formulation

and DEE techniques.

3.5.2 Multiple motifs

Here we give several extensions to address the issue of multiple motifs existing in

a set of sequences. First, distinct multiple motifs, such as sets of binding sites for

two different transcription factors, can be found iteratively by first locating a single

optimal motif, masking it out from the problem instance, and then looking for the next

one. We mask the previous motif by deleting its solution vertices from the original

graph, and then reapplying the DEE/LP techniques to locate the next optimal motif.

Second, it is possible to solve iteratively several ILPs in order to find multiple

near-optimal solutions, corresponding to the best cliques of successively decreasing

total weights. At iteration t, we add a constraint to the integer linear programming

formulation so as to exclude all previously discovered solutions:

∑

u∈Sk

xu ≤ p − 1 for k = 1, . . . , t − 1, (3.9)

where Sk contains the optimal set of vertices found in iteration k. This requires that

the new solution differs from all previous ones in at least one graph part. We note

that to use this constraint for the basic formulation of the motif finding problem, the

DEE methods given above have to be modified so as not to eliminate nodes taking
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part in near-optimal but not necessarily optimal solutions. For the subtle motifs

problem, the DEE methods only eliminate nodes and edges based on whether they

can take part in any clique in the graph, and thus constraint 3.9 can be immediately

applied to iteratively find all possible cliques.

Finally, finding repeated motifs where a single pattern occurs in m distinct posi-

tions in each sequence, requires a slight modification to the construction of the graph

G = (V,E). The set of vertices remains the same, but the edge set is modified in two

ways. First, we introduce edges between vertices corresponding to positions in the

same sequence, since the instances of the motif are all mutually similar. Secondly, to

address the issue of low complexity regions, such as poly-A repeats, being selected as

a solution, we would like the motif instances to be non-overlapping. Thus, vertices

corresponding to overlapping `–mers in each sequence are not connected by an edge.

The ILP formulation to address this problem is similar to the case of single motif;

additional constraints are needed, though, to ensure a proper vertex selection since

the graph now has edges within each part.

Maximize
∑

(u,v)∈E wuv · yuv

subject to
∑

u∈Vj
xu = m for 1 ≤ j ≤ p

∑
u∈Vj

yuv = m × xv for 1 ≤ j ≤ p, v ∈ V \ Vj

∑
u∈Vj

yuv = (m − 1) × xv for 1 ≤ j ≤ p, v ∈ Vj

xu, yuv ∈ {0, 1} for u ∈ V, (u, v) ∈ E

The difference with the single motif ILP in the node constraints is in that m of

the vertices are chosen in each graph part, corresponding to m positions in each input

sequence. The next two sets of constraints ensure a proper edge selection between

chosen vertices both inside and between partitions, the first taking care of inter-part

edges, and the second intra-part edges.
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3.6 Experimental Analysis

We apply the combinatorial optimization framework to several motif finding prob-

lems. We attempt to discover motifs in instances arising from both DNA and protein

sequence data, and compare them with known motifs. We then consider the phyloge-

netic footprinting problem, and demonstrate multiple motifs’ discovery. Finally, we

discuss subtle motif finding in simulated data.

3.6.1 Protein motifs

We study the performance of our algorithm on a number of protein datasets with dif-

ferent characteristics. The datasets, summarized in Table 3.1, were constructed using

the SwissProt [Boeckmann et al. 2003] database from the descriptions of [Lawrence

et al. 1993,Lukashin and Rosa 1999,Neuwald et al. 1995]. These datasets are highly

variable in the number and length of their input sequences as well as the degree of

motif conservation. The motif length parameters are set based on the lengths de-

scribed by the above authors. The amino acid substitution matrix we used for all the

datasets reported below is BLOSUM62. For more closely related proteins, like the

human tumor necrosis factor (TNF) proteins, we also experimented with the BLO-

SUM80 and PAM100 matrices. However, choice of substitution matrix and slight

variations in sought motif length do not substantially affect the results, as similar

motifs are found. The five datasets are of varying difficulty to solve, with some

employing the basic clique-bounds DEE technique to prune the graphs, while oth-

ers require more elaborate pruning that is constrained by three-way alignments (see

Table 3.1).

In all the test datasets our algorithm recovers the motifs found by [Lawrence

et al. 1993,Lukashin and Rosa 1999,Neuwald et al. 1995] and reported in the litera-

ture. As described by [Lawrence et al. 1993], the HTH dataset is very diverse, and
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Dataset Seq Len |V | DEE |VDEE| E-value

Lipocalin 5 16 844 (1) 5 3.80 × 10−16

Helix-Turn-Helix 30 20 6870 (1,2,3) 260 3.88 × 10−67

Tumor Necrosis Factor 10 17 2329 (1) 10 1.50 × 10−40

Zinc Metallopeptidase 10 12 7761 (1,3) 10 5.82 × 10−23

Immunoglobulin Fold 18 10 7498 (1,2,3) 187 3.04 × 10−24

Table 3.1: Descriptions of the protein datasets. The first two datasets are from [Lawrence et al. 1993],
the next two from [Lukashin and Rosa 1999], and the last one from [Neuwald et al. 1995]. Seq is
the number of input protein sequences; Len is the length of the protein motif searched for; |V | is
the number of vertices in the original graph constructed from the dataset; DEE gives the methods
involved in pruning the graph and are denoted by (1) clique-bounds DEE, (2) graph decomposition,
and (3) tighter constrained bounds. |VDEE| is the number of vertices in the graph after pruning;
E-value lists the e-value of the found motif.

the detection of the motif is a difficult task. Nonetheless, our HTH motif is identical

to that of [Lawrence et al. 1993], and agrees with the known annotations in every

sequence. We likewise find the lipocalin motif; it is a weak motif with few generally

conserved residues that is in perfect correspondence with the known lipocalin signa-

ture. We also precisely recover the immunoglobulin fold, TNF and zinc metallopep-

tidase motifs. In contrast to [Lukashin and Rosa 1999], who limit sequence lengths

to 500, we retain the original protein sequences, making the problem more difficult

computationally as the average sequence length in the zinc metallopeptidase dataset

is approximately 800, and some sequences are as long as 1300 residues3. Nonetheless,

we recover the zinc metallopeptidase motif using our method. It is identical to the

motif reported by [Lukashin and Rosa 1999] in nine of ten sequences (see Table 3.2);

yet, with the difference in the last sequence, the motif discovered by our method is

superior both in terms of sequence conservation and statistical significance at e-value

of 5.7729e−023 vs 1.12155e−021 for [Lukashin and Rosa 1999].

3Our implementation of the method of [Lukashin and Rosa 1999] applied to the zinc metallopep-
tidase dataset with full length sequences failed to converge.
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ID
LP/DEE Motif Lukashin Motif

Position Motif Position Motif

ACET 411 VAHHEMGHIQYF 411 VAHHEMGHIQYF

AMPN 384 VIAHELAHQWFG 384 VIAHELAHQWFG

BMP1 210 IVVHELGHVVGF 210 IVVHELGHVVGF

MM01 215 VAAHELGHSLGL 215 VAAHELGHSLGL

MM02 400 VAAHEFGHAMGL 400 VAAHEFGHAMGL

MM03 215 VAAHEIGHSLGL 215 VAAHEIGHSLGL

LKHA 292 VIAHEISHSWTG 292 VIAHEISHSWTG

MEPA 152 IIEHEILHALGF 152 IIEHEILHALGF

PSA 349 VVGHELAHQWFG 349 VVGHELAHQWFG

ACE 985 VAHHEMGHIQYF 387 TVHHEMGHIQYY

Table 3.2: Human zinc metallopeptidase motif as found by the LP/DEE method and [Lukashin
and Rosa 1999]. All sequences are designated by their SwissProt entries with extension HUMAN

omitted.

3.6.2 DNA motifs

We analyze the performance of our method on a set of sequences consisting of DNA

binding sites embedded in their respective upstream regions (up to 600 bp) for a

number of regulatory proteins of E. coli. Our dataset was constructed from the data

of [Robison et al. 1998, McGuire et al. 2000], as described in [Osada et al. 2004].

In short, we remove sigma factors; binding sites that could not be unambiguously

located in the genome; and transcription factors with fewer than three known sites.

Additionally, we include only one copy of a sequence containing multiple known bind-

ing sites. Motif length parameters are set according to [Robison et al. 1998], based

on the length of the consensus binding site determined in biological studies. The final

dataset consists of 36 transcription factors, with the number of sequences for each

factor ranging between 3 and 34, and the length of the binding site ranging between

11 and 48 (see Table 3.4).

To evaluate performance and determine the extent of agreement between the motif

predictions versus known motifs, we use two statistics: nucleotide level performance

coefficient, abbreviated as nPC [Pevzner and Sze 2000], and site level site sensitivity

53



or sSn [Tompa et al. 2005]. We use the notation of [Tompa et al. 2005] to define

these statistics. Let nTP, nFP, nTN, nFN refer to nucleotide level true positives,

false positives, true negatives and false negatives respectively. For example, nTP

is the number of nucleotides in common between the known and predicted motifs.

The first statistic we employ, the nucleotide level performance coefficient (nPC ),

measures the degree of overlap between known and predicted motifs, and is defined

as nPC = nTP/(nTP + nFN + nFP ). The performance coefficient is a stringent

statistic, penalizing a method for both failing to identify any nucleotide belonging

to the motif as well as falsely predicting any nucleotide not belonging to the motif.

The second statistic we employ is site level sensitivity (sSn). Following [Tompa

et al. 2005] we consider two sites to be overlapping if they overlap by at least one-

quarter the length of the site. Defining site level statistics similarly to the nucleotide

level statistics above (e.g., site level true positives, sTP, is the number of known sites

overlapped by predicted sites), site level sensitivity is sSn = sTP/(sTP + sFN).

Biased-Composition Data

We evaluate the effectiveness of our scoring scheme in finding motifs embedded in

compositionally-biased background sequences. We use a selection of five transcrip-

tion factor datasets of varying levels of conservation, measured by their information

content, and perturb the background sequences to reflect increasingly biased prob-

ability distributions. For each background position, a base is selected at random

according to a probability distribution in which base G is chosen with some proba-

bility pr(G) and the other bases with probability (1 − pr(G))/3 each. Measurement

of performance in terms of the nucleotide performance coefficient is summarized in

Table 3.3 for various values of pr(G). We find motifs of very high nPC values; all the

motifs also exhibit sSn values of identically 1.0 for all datasets and all pr(G) settings

(data not shown), attesting to the fact that our scoring scheme is successfully able to
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Bias
TF IC 0.25 0.5 0.75 0.9 1.0

araC 1.00041 0.8113 0.9592 0.9592 0.9592 0.9592
cpxR 1.17034 1.0000 0.8261 0.9811 0.9811 0.9811
dnaA 1.45351 1.0000 0.7647 0.7647 1.0000 1.0000
galR 1.34756 0.8824 0.8824 1.0000 1.0000 1.0000
narP 1.40273 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3.3: Scoring method evaluation in terms of performance coefficient in biased-composition sim-
ulated data. The first column identifies the transcription factor dataset; the second column measures
degree of conservation (information content) of the known motif. The rest of the columns list nPC,
the nucleotide level performance coefficient of our scoring scheme, in compositionally biased back-
ground sequences with pr(G) indicated in the column heading and the frequencies of all other bases
split equally.

correct for bias in sequence composition. We are able to identify the implanted motifs

with better performance statistics than in other simulated data studies (e.g., [Tompa

et al. 2005]) largely due to the background sequence model we employ. Whereas we

assume independence between positions, others have applied second or third order

Markov chains, which better simulate biological sequences, to generate their data.

Biological Data

We summarize the findings of our algorithm in Table 3.4. Of the 36 transcription

factors we considered, 25 were solved in seconds with the application of clique-bounds

DEE, some using tighter bounds constrained by three-way alignments; seven required

the application of graph decomposition with tighter clique-bounds DEE, and took a

few minutes to three hours to solve. For the remaining four datasets we use spec-

ulative pruning, finding highly significant solutions for two of them, albeit without

the guarantee of optimality, and no significant solution for one; the final dataset, crp,

proved too large to be pruned effectively, and we consider no solution to have been

found for it. In the entire data collection, all but one of the problems resulted in

integral solutions to their linear programs, which immediately translated to a motif

selection. The one instance with the fractional solution was easily solved by the ILP

solver. Setting the e-value threshold at 1.0, we find 32 statistically significant motifs.
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TF Seq Len IC RE E-value nPC sSn

ada 3 31 1.3000 1.0846 9.16 × 10−1 0.1341 0.33
araC 4 48 1.1437 0.9940 1.15 × 10−3 0.3474 0.50
arcA 11 15 1.2505 1.1992 4.31 × 10−6 0.4224 0.73
argR 8 18 1.2990 1.2149 1.30 × 10−7 0.2857 0.50
cpxR 7 15 1.3290 1.2337 1.09 × 10−5 0.5556 0.71
cytR 5 18 1.2317 1.1069 2.48 × 10−1 0.0588 0.20
dnaA 6 15 1.4535 1.3300 6.12 × 10−6 1.0000 1.00
fadR 5 17 1.3466 1.2074 1.33 × 10−2 0.5455 0.80
fis* 8 35 0.8927 0.8376 1.37 × 10−6 0.1966 0.38
flhCD 3 31 1.3942 1.1656 4.79 × 10−3 0.0000 0.00
fnr 10 22 1.1025 1.0476 1.85 × 10−9 0.6176 0.80
fruR 10 16 1.2094 1.1491 5.52 × 10−8 0.8182 0.90
fur 7 18 1.3285 1.2332 1.28 × 10−8 0.4237 0.71
galR 7 16 1.5445 1.4347 1.52 × 10−16 0.5034 0.71
glpR 4 20 1.4227 1.2441 2.63 × 10−2 0.5534 0.75
hns 5 11 1.5175 1.3660 2.25 0.0000 0.00
ihf* 19 48 0.3932 0.3859 2.26 × 10+8 0.0381 0.16
lexA 17 20 1.1481 1.1192 1.01 × 10−40 0.7215 0.88
lrp 4 25 1.2879 1.1237 6.44 × 10−2 0.0989 0.25
malT 6 10 1.5071 1.3815 1.73 × 10−1 0.0000 0.00
metJ 5 16 1.6842 1.5195 3.37 × 10−12 0.6495 1.00
metR 6 15 1.3097 1.1970 6.57 × 10−2 0.0000 0.00
modE 3 24 1.5618 1.3145 3.95 × 10−4 1.0000 1.00
nagC 5 23 1.2795 1.1462 1.03 × 10−3 0.0360 0.20
narL 10 16 1.1391 1.0828 8.06 × 10−4 0.8182 0.90
narP 4 16 1.4534 1.2737 7.48 × 10−4 0.0000 0.00
ntrC 4 17 1.6621 1.4605 1.28 × 10−8 0.6386 1.00
ompR 4 20 1.3566 1.1860 4.27 × 10−6 0.0000 0.00
oxyR 4 39 1.0965 0.9521 2.64 0.0796 0.25
phoB 8 22 1.1567 1.0835 4.14 × 10−9 0.8051 1.00
purR 20 26 0.8305 0.8147 1.53 × 10−37 0.7247 0.95
soxS* 11 35 0.7771 0.7453 1.26 × 10−9 0.0815 0.27
trpR 4 24 1.4069 1.2291 3.74 × 10−6 0.8462 1.00
tus 5 23 1.5839 1.4276 1.05 × 10−17 0.8400 1.00
tyrR 10 22 1.0693 1.0159 3.63 × 10−9 0.5017 0.70

Table 3.4: Listing of complete results for the transcription factors dataset. Seq is the number
of input sequences; Len is the length of the motif searched for. The rest of the listed measures
refer to the motif discovered by the algorithm: IC is the information content; RE is the relative
entropy; E-value is the e-value, computed according to out statistical significance assessment;
nPC is the nucleotide level performance coefficient; and sSn is the site level sensitivity. The three
starred entries indicate potentially non-optimal solutions. For them we provide a bound on the
significance value of a potential optimal solution according to the method detailed in the Algorithm

Description section above. We list the e-value of the obtained motif and its bound in parentheses:
fis 1.37×10−6(2.29×10−7); ihf 2.26×10+8(3.98×10−31); soxS 1.26×10−9(5.25×10−14). The final
dataset, crp, with no identified solution, was the largest at 34 sequences, and the site length of 22.
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Of the three transcription factor datasets with no significant solutions, one, hns, is a

short motif, and the other two, oxyr and ihf, are very poorly conserved motifs with

low information content4. In general, motifs found by our method exhibit both equal

or higher information content (measuring motif conservation) and relative entropy

(measuring the difference with the background distribution) than that of the sets of

known transcription factor binding sites.

Evaluating performance of any motif finding algorithm is not a straightforward

task, as other, better-conserved, biologically-relevant motifs may exist in the data.

To that end, we compute the degree of agreement between the motifs discovered

by our method and the known binding sites, and also compare them with motifs

found by widely used stochastic-search motif finders, Gibbs Motif Sampler [Thomp-

son et al. 2003] and MEME [Bailey and Elkan 1995]. We run these two methods,

requiring one motif instance per sequence, 20 random restarts, and using motif length

parameters of [Robison et al. 1998], while leaving other parameters at their defaults.

Gibbs Motif Sampler comparison. Gibbs Motif Sampler discovers motifs for

31 transcription factors; no statistically significant motif is reported for the other

five. In two of these five datasets, ihf and crp, the LP/DEE method likewise fails

to discover a significant motif; in one other dataset (flhCD), surprisingly, a motif of

high information content and relative entropy does exist (see Table 3.4).

We chart the performance of our algorithm versus Gibbs Motif Sampler in Figure

3.3. Each bar in the chart measures the difference in site level sensitivity (Figure

3.3(a)) and nucleotide performance coefficient (Figure 3.3(b)) between the two meth-

ods. While the absolute values for the two statistics differ, the qualitative results are

similar. Very large differences in performance are observed for three transcription

factors, narL, purR, and araC, with our method identifying them almost completely,

and the Gibbs method entirely misidentifying the motif in narL, and reporting no

4The information content for the known and discovered motifs respectively is: oxyr (0.89, 0.95),
ihf (0.36, 0.39).
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(a) Difference in site sensitivity between LP/DEE and Gibbs.
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(b) Difference in nucleotide performance coefficient between LP/DEE and Gibbs.

Figure 3.3: Performance comparison between the LP/DEE method and Gibbs Motif Sam-
pler [Thompson et al. 2003] when identifying known regulatory sites [Robison et al. 1998]. For
every transcription factor dataset the height of the bar indicates the difference in the metric, with
green bars specifying better performance for our method and red bars otherwise. When a method
fails to report a statistically significant motif, the number of correctly identified nucleotides and sites
is set to zero.

58



significant motif for the other two datasets. For the rest of the datasets, the methods

perform similarly, either both identifying extensive overlap with the biological motif

or both reporting near zero values. Overall our method discovers motifs that exhibit

a slightly higher overlap with the known transcription factor binding sites, such that

the average nPC for our method over the entire dataset is 0.395, versus 0.344 for

the Gibbs Motif Sampler. For site level sensitivity, the average sSn for our method

is 0.533 versus 0.472 for the Gibbs Motif Sampler. It is also interesting to note that

the average relative entropy of the discovered motifs, a measure related to one max-

imized by the Gibbs algorithm, is essentially identical for the two algorithms, with

the difference being smaller than 0.001 for the majority of the datasets.

MEME comparison. MEME reports motifs and their corresponding e-values for

all 36 transcription factor datasets. Using an e-value cutoff of 1.0 for both LP/DEE al-

gorithm and MEME, and setting all the overlap numbers for datasets with no reported

significant motifs to zero, we chart the performance of the methods in Figure 3.4.

As before, each bar in the chart measures the difference in site level sensitivity

(Figure 3.4(a)) and nucleotide performance coefficient (Figure 3.4(b)) between the

two methods. With the exception of crp, the LP/DEE method significantly outper-

forms MEME, reporting both higher site level sensitivity and nucleotide performance

coefficient values for approximately half of the datasets. Average overlap statistics

differ significantly as well: average nPC for MEME is 0.290 versus 0.395 for LP/DEE

and average sSn is 0.383 versus 0.533.

Note, however, that the large difference in performance is mainly due to MEME’s

significance assessment of the discovered motifs. It is possible that MEME’s sig-

nificance computation is unnecessarily conservative for our dataset. If we entirely

disregard MEME’s reported e-values, and focus exclusively on the raw coefficients

for overlap with the known motifs, the difference in performance between LP/DEE

and MEME is not as skewed (see Figure 3.5). Very large differences are observed for
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(a) Difference in site sensitivity between LP/DEE and MEME using a significance threshold.
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(b) Difference in nucleotide performance coefficient between LP/DEE and MEME using a significance threshold.

Figure 3.4: Performance comparison between the LP/DEE method and MEME [Bailey and
Elkan 1995] when identifying known regulatory sites [Robison et al. 1998], using a significance
threshold. For every transcription factor dataset the height of the bar indicates the difference in the
metric, with green bars specifying better performance for our method and red bars otherwise. When
a method fails to report a statistically significant motif with an e-value cutoff of 1.0, the number of
correctly identified nucleotides and sites is set to zero.
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(a) Difference in site sensitivity between LP/DEE and MEME ignoring motif significance.
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(b) Difference in nucleotide performance coefficient between LP/DEE and MEME ignoring motif significance.

Figure 3.5: Performance comparison between the LP/DEE method and MEME [Bailey and
Elkan 1995] when identifying known regulatory sites [Robison et al. 1998], ignoring motif signifi-
cance. For every transcription factor dataset the height of the bar indicates the difference in the
metric, with green bars specifying better performance for our method and red bars otherwise.

61



four transcription factors, with our method identifying narL, glpR, and ntrC almost

completely, and MEME entirely misidentifying the motifs, while the opposite holds

true for crp. For the rest of the datasets, the methods perform similarly. Average

performance values for MEME are slightly lower than for LP/DEE, at average nPC

being 0.360 and average sSn being 0.501 for MEME, whereas the corresponding val-

ues5 for LP/DEE are 0.398 and 0.544. Ignoring e-values, of course, is not the correct

approach to evaluating the performance of a method; true performance of MEME,

thus, lies somewhere between the two extremes of disragrding e-values, on the one

hand, and considering a stringent e-value threshold, on the other.

Lastly, we mention that for some datasets (e.g., narP), exhibiting zero or near-zero

overlap with the known motif for all three methods, the Gibbs, MEME and LP/DEE

algorithms identically agree on the choice of the discovered motif, and such a motif

is typically highly conserved. This may be an indication that other, yet unknown,

biologically relevant motifs exist in the data.

3.6.3 Phylogenetic footprinting

We experiment with motif discovery among sets of upstream regions of orthologous

genes in a number of genomes, having incorporated phylogenetic information in con-

structing our graphs. The phylogenetic trees, the sequence datasets, varied in size

and genome selection, and the motif length parameters come from [Blanchette and

Tompa 2002]. All eight datasets contain vertebrate sequences; some (Interleukin-3

and Insulin datasets) consist of only mammalian genomes, while others contain mem-

bers from more diverse animal phyla. The number of sequences in the datasets ranges

between 4 and 16, and most sequences are shorter than 1000 residues in length.

We identify well-conserved interesting motifs in every dataset. We note that the

discovered motifs are deemed to be statistically significant by our evaluation (e-values

5We now include oxyr and ihf, the two datasets with no significant motif that exhibited non-zero
overlap values for LP/DEE, in the averaging computation.
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lie in the range of 10−18 to 10−5). Though the notion of significance according to our

method merely rejects the hypothesis that all the motif instances are unrelated, and

a scheme that takes phylogeny into account such as [Prakash and Tompa 2005] is

better suited for this problem in general, our significance evaluation attests to the

presence of a highly conserved motif instance in every input sequence.

The consensus sequences for the discovered motifs are listed in Table 3.5 along

with the description of their DNA regions and source species6. All the motifs we find

have been documented in the TRANSFAC database [Wingender et al. 1996], and

the majority of them correspond to those that have been reported by [Blanchette and

Tompa 2002]. Two motifs differ from those of [Blanchette and Tompa 2002]: the first,

a c-fos motif, shares its consensus sequence with a known c-fos regulatory element, the

binding site of the serum response factor (SRF) protein (accession number R02246).

The second, a c-myc motif, also corresponds to a known c-myc binding site in the P1

promoter (accession number R04621).

This dataset is also an excellent testing ground for finding distinct multiple motifs

using our method, as such motifs exist and have been reported in previous stud-

ies. We iteratively identify motifs and remove their corresponding vertices from the

constructed graphs. As proof of principle, we find multiple motifs for the insulin

dataset. In this case, we successfully identify all four motifs reported by [Blanchette

and Tompa 2002]. Since our objective function differs from that of [Blanchette and

Tompa 2002] and we require motif occurrences in every input sequence, we recover

the motifs in a different order. Of coarse, we identify numerous shifts of these motifs

in successive iterations. In practice, therefore, it may be more beneficial to remove

a number of vertices corresponding to subsequences overlapping the optimal solution

before attempting to find the next motif.

6Motif reported for the C-fos promoter dataset was discovered second, after having discarded the
poly-A repeat region.
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DNA region Species Motif (id)

Growth-hormone 5’
UTR + promoter
(380 bp)

Salmon, trout, white fish,
seriola, lates, tilapia, fugu,
grass carp, catfish, chicken,
rat, mouse, dog, sheep, goat,
human

TATAAAAA (7)

Histone H1 5’ UTR +
promoter (650 bp)

Chicken, duck, frog, mouse AAACAAAAGT (2)

C-fos 5’ UTR + pro-
moter (800 bp)

Tetraodon, chicken, mouse,
hamster, pig, human

CCATATTAGG

C-fos first intron (376
to 758 bp)

Fugu, tetraodon, chicken,
pig, mouse, hamster, human

AGGGATATTT (3)

Interleukin-3 5’ UTR
+ promoter (490 bp)

Rat, mouse, cow, sheep, hu-
man, macaca

TGGAGGTTCC (3)

C-myc second intron
(971 to 1376 bp)

Chicken, pig, rat, marmoset,
gibbon, human

TTTGCAGCTA (5)

C-myc 5’ promoter
(1000 bp)

Goldfish, frog, chicken, rat,
pig, marmoset, human

GCCCCTCCCG

Insulin family 5’ pro-
moter (500 bp)

Human, chimp, aotus, pig,
rat (I, II), mouse (I, II)

GCCATCTGCC (2)
TAAGACTCTA (1)
CTATAAAGCC (3)
CAGGGAAATG (4)

Table 3.5: Motifs identified with use of phylogenetic information. All datasets tested are
from [Blanchette and Tompa 2002]. DNA region details the DNA regions considered; Species lists
the species and isoforms considered; Motif (id) identifies the consensus sequence of the discovered
motif and its correspondence with the motifs of [Blanchette and Tompa 2002] where applicable. All
listed motifs have been documented as regulatory elements in TRANSFAC [Wingender et al. 1996].
For datasets other than the insulin dataset only the best motif is reported, and for the insulin

dataset multiple motifs are reported in order of discovery.
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3.6.4 Subtle motifs

We test our algorithm’s performance in finding subtle motifs on synthetically gen-

erated data. Following the terminology of [Pevzner and Sze 2000], we produce the

problem instances according to the FM (fixed mutation) model. For the (l, d)-signal

finding problem we first randomly select a pattern M of length `. For each of t back-

ground sequences (t = 20 for all test cases) exactly d random positions are chosen in

M , and the pattern is then implanted with each of these d positions mutated to a

different, randomly chosen base. Both the background sequence and the position of

the implanted pattern instance are selected randomly. All random choices above are

independent and drawn uniformly.

The original challenge problem proposed by [Pevzner and Sze 2000] is the (15, 4)

motif finding problem with background sequence length 600. Various algorithms [Buh-

ler and Tompa 2002,Keich and Pevzner 2002,Eskin and Pevzner 2002,Price et al. 2003]

have extended the length to 1500 and beyond and considered other combinations of

the ` and d parameters. Previous approaches have reported the performance coeffi-

cient nPC defined earlier, averaged over several generated problem instances (denoted

aPC ) for every set of parameters considered. As reported by [Price et al. 2003] the

above algorithms all perform with nearly 100% success rate when recovering the im-

planted pattern, and we include a representative method, Projection by [Buhler and

Tompa 2002] in our comparison charts.

The performance of various methods in terms of their aPC for background se-

quence lengths N ranging from 100 to 1000 in presented in Table 3.6. Most of that

data was collected and summarized by [Pevzner and Sze 2000], with each entry aver-

aged over eight problem instances. Our method compares favorably to all the listed

general purpose motif finders as well as specialized subtle motif finders. Its perfor-

mance is matched only by Winnower (k = 3), which does so at the cost of higher

complexity. We were further able to test our algorithm’s ability to handle increasingly
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Sequence Length 100 200 300 400 500 600 700 800 900 1000

CONSENSUS 0.92 0.94 0.53 0.31 0.29 0.07 0.15 0.09 0.01 0.04
GibbsDNA 0.93 0.96 0.51 0.46 0.29 0.12 0.09 0.34 0.00 0.12
MEME 0.91 0.78 0.59 0.37 0.17 0.10 0.02 0.03 0.00 0.00
WINNOWER(2) 0.98 0.98 0.97 0.95 0.97 0.92 0.58 0.02 0.02 0.02
WINNOWER(3) 0.98 0.98 0.97 0.94 0.97 0.92 0.90 0.93 0.90 0.88
SP-STAR 0.98 0.98 1.00 0.96 0.96 0.84 0.83 0.69 0.64 0.23
LP/DEE 0.99 0.96 0.98 0.96 0.93 0.96 0.88 0.90 0.89 0.91

Table 3.6: Comparison of performance of the various algorithms in terms of the aPC for different
length samples with implanted (15, 4) motif, reprinted from [Pevzner and Sze 2000] for all earlier
methods. WINNOWER is listed along with its k parameter in parentheses. LP/DEE method is
averaged over twenty instances. All other algorithms are averaged over eight instances.

noisier problems by implanting the motif in larger amounts of background sequence.

Of the algorithms listed in Table 3.6, only Winnower (k = 3) was able to find motifs in

sequences up to length 1300, and as stated in [Keich and Pevzner 2002] became “very

time-consuming and unusable” beyond that. We carry out the same aPC analysis for

N ranging from 1000 to 1500, and find that performance degrades very slowly from

aPC of about 0.9 to 0.8, and roughly corresponds to the results reported by [Buhler

and Tompa 2002] for Projection. To recall, dead-end elimination was used to reduce

the sizes of the graphs. We found that connectivity DEE alone was sufficient to solve

problems up to N = 600. Beyond that, we employed connectivity DEE in conjunction

with graph decomposition II, where vertices were tested for potential membership in

the optimal solution one at a time. Of the possibly many resulting subgraphs per

problem instance, typically only one or two were output.

We also considered other combinations of the ` and d parameters in this sig-

nal finding problem for background sequence length N = 600. Table 3.7 lists our

findings together with those of the earlier algorithms (reprinted from [Buhler and

Tompa 2002]). Just as above, our method performs similarly to Projection, and out-

performs the others. It is interesting to note the varying connectivity properties of

the graphs. As the fraction of mutated positions to total motif length increased, the

number of connected subgraphs, resulting from graph decomposition, grew as well.
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l d GibbsDNA WINNOWER SP-STAR PROJECTION LP/DEE

10 2 0.20 0.78 0.56 0.80 ± 0.02 0.85
11 2 0.68 0.90 0.84 0.94 ± 0.01 0.91
12 3 0.03 0.75 0.33 0.77 ± 0.03 0.80
13 3 0.60 0.92 0.92 0.94 ± 0.01 0.91
14 4 0.02 0.02 0.20 0.71 ± 0.05 0.68
15 4 0.19 0.92 0.73 0.93 ± 0.01 0.96
16 5 0.02 0.03 0.04 0.67 ± 0.06 0.66
17 5 0.28 0.03 0.69 0.94 ± 0.01 0.89
19 6 0.05 0.03 0.40 0.94 ± 0.01 0.91

Table 3.7: Comparison of performance of the various algorithms in terms of the aPC on instances
with background length N = 600 and various combinations of ` and d parameters, reprinted
from [Buhler and Tompa 2002] for all earlier methods. WINNOWER is used with k = 2.

Whereas one or two subgraphs remained for most problems, that number became

4–16 for the (19, 6)-signal and hundreds for the (16, 5)-signal, as second and higher

levels of graph decomposition were employed.

We note that failures of any of these algorithms are due to multiple cliques in the

graph. In contrast to local search techniques, our algorithm is not subject to finding

suboptimal local maxima as judged by the sum-of-pairs score. Lack of direct corre-

spondence between implanted motifs and highest weight cliques suggests considering

a number of near-optimal solutions. We use the constraint in Equation 3.9 to find

up to the first 1000 heaviest weight cliques, if that many exist, by enumerating near-

optimal solutions. In each case, one of the cliques output corresponds to the actual

implanted pattern. Since edges between vertices are weighted by the total number of

matches between the corresponding subsequences, the implanted motif typically cor-

responds to one of the higher scoring ones. For the simpler case of the (15, 4) motif,

the implanted pattern is often found among the optimal-weight cliques. However, in

some of the (14, 4) and (12, 3) cases, there appear to be many higher weight cliques

occurring by chance, suggesting that these patterns are too hard to distinguish from

background. Nevertheless, our approach of finding multiple, successive near-optimal

solutions allows us to retrieve all valid possible implanted patterns.
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3.7 Discussion

We have described a versatile mathematical programming framework for the motif

finding problem. In order to solve the linear programs, numbering sometimes in mil-

lions of variables, we employ graph decomposition and pruning techniques to identify

vertices guaranteed to be excluded from the optimal solution. While these algorithms

tremendously reduce the sizes of the problems, some datasets are more challenging

and computationally expensive than others. Clearly, the difficulty is correlated with

the total number of vertices in the graphs (see Table 3.1), and the average sequence

length appears to be the dominant factor, as has also been found by [Hu et al. 2005].

It is also noteworthy that presence of a well conserved motif allows the pruning to be

especially effective. For example, the human zinc metallopeptidase dataset contains

a very highly conserved motif, a well-recognized zinc-binding region signature; albeit

with application of computationally involved decomposition and pruning techniques,

its reduced graph size is ten vertices, a mere one vertex per graph part.

A major advantage of our algorithm over previous approaches for motif finding is

the ability to find optimal local alignments for many practical problems. In the future,

we hope to extend the capabilities of our approach by incorporating features com-

mon to more widely-used motif finding algorithms. A basic improvement would be to

automatically decide on motif length. It can be done using a standard method, such

as choosing the length that corresponds to the highest average information content

(or relative entropy) in the motif. Alternatively, the relative success of the pruning

procedure can be a gauge, as the inability to eliminate many vertices can indicate

potential absence of a motif. For example, when pruning the immunoglobulin fold

dataset (see Table 3.1) with the length parameter equal to 10, the graph is highly

reduced in size (from 7498 to 187 vertices); when attempting to prune it with the

length parameter set to 14, no such substantial reduction occurs and the graph re-

mains large at 2322 vertices. Another useful feature is to allow zero occurrences of
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a motif in some of the input sequences; this may be possible to accomplish within

our framework by including an additive term in the objective function that creates a

tradeoff between the weight of the induced clique-like structure that is being maxi-

mized and the potential motif absence. It is also interesting to investigate other types

of useful constraints that can be included in our linear programs. For example, we

may want to look for two shorter motifs that are within some distance of one another,

modeling cooperative binding of transcription factor proteins; there are natural linear

constraints that can enforce such a condition.

In summary, the described optimization framework provides a flexible approach

to tackle many important issues in motif finding. We have successfully applied it

to a variety of problems, including DNA motifs, protein motifs, and subtle motifs,

and have been able to incorporate phylogenetic information in the context of cross-

species motif discovery, as well as to find multiple near-optimal solutions. We hope

in the future to extend its capabilities to model more complex types of motif finding

problems.
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Chapter 4

Improving a Mathematical

Programming Formulation for

Motif Finding

4.1 Introduction

Chapter 3 introduced an integer linear programming (ILP) formulation for the motif

finding problem. A difficulty, encountered in solving real biological samples, is the

size of the integer linear programs that can have millions of variables. While in the

previous chapter we tackle such potentially large ILPs by preprocessing the graph

with pruning and decomposition techniques, here we take an alternate direction and

propose a novel, more compact integer linear program.

As in Chapter 3, we formulate the motif discovery problem as that of finding the

best gapless local multiple sequence alignment using the sum-of-pairs (SP) scoring

scheme based on a similarity measure. Here, we switch to an equivalent minimiza-

tion formulation for the combinatorial problem of finding an optimum weight clique

of size p in a p-partite graph (e.g., [Reinert et al. 1997, Pevzner and Sze 2000, Sze
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et al. 2004]), as we focus on a distance metric for the edge weights. For general

notions of distance, this graph problem is NP-hard to approximate within any rea-

sonable factor [Chazelle et al. 2004]. In the motif finding setting, where edge weights

obey the triangle inequality, the problem remains NP-hard [Akutsu et al. 2000], yet

amenable to approximation. And, while constant-factor approximation algorithms

do exist [Gusfield 1993,Bafna et al. 1997], the ability to find the optimal solution in

practice is preferable.

Our novel integer programming formulation utilizes the discrete nature of the

distance metric imposed on pairs of subsequences. We present a class of constraints

to make the linear programming relaxation of the new formulation provably as tight as

that given in the previous chapter. Furthermore, rather than introducing all of these

additional constraints to find a solution in practice, we provide a separation algorithm.

We also describe and test a heuristic approach to solve the LP relaxation of our novel

ILP formulation that, in all observed cases, finds a solution of the same objective

value as the LP relaxation of the previous ILP, often an order of magnitude faster.

Moreover, we observe that in fact, the LP relaxations for both of the ILP formulations

often obtain integral optimal solutions, making solving the LP relaxations sufficient

for solving the original ILP. Even if this were not the case, the ability to find faster

solutions to the relaxations may translate into significant speed-ups in branch-and-

bound approaches for ILP solving.

4.2 Formal Problem Specification

We are given p sequences, which are assumed without loss of generality to each have

length N ′, and a motif length `. The goal is to find a substring si of length l in each

sequence i, such that the sum of the pairwise distances between the substrings (i.e.,
∑

i<j distance(si, sj)) is minimized. The distance between substrings may be defined
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in several ways. The simplest measure, and the one we restrict ourselves to in this

chapter is the Hamming distance.

Recall that we recast the motif finding problem into a graph problem. We define a

complete, weighted p-partite graph, with a part Vi for each sequence. In Vi, there is a

node for every possible window of length ` in sequence i. Thus there are N := N ′−`+1

nodes in each Vi, and the vertex set V = V1∪· · ·∪Vp has size Np. For every pair u and

v in different parts there is an edge (u, v) ∈ E . Letting seq(u) denote the subsequence

corresponding to node u, the weight wuv on edge (u, v) equals distance(seq(u), seq(v)).

The goal in motif finding is to choose a node from each part so as to minimize the

weight of the induced subgraph.

4.3 Integer and Linear Programming Formulations

4.3.1 Original integer linear programming formulation

In the previous chapter we introduced an integer linear programming (ILP) formula-

tion for the motif finding problem. In this ILP formulation, there is a binary variable

xu for every node u in the above defined graph. The variable xu is set to 1 if node

u is chosen as part of the optimal solution, and 0 otherwise. Additionally, there is

a variable yuv for each edge in the graph (the edges are undirected and hence yuv is

the same as yvu). These edge variables are set to 1 if both vertices incident on the

edge are chosen. In the integer programming setting all variables are constrained to

take values from {0, 1}. We repeat the ILP formulation from Chapter 3 for ease of
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reference:

Minimize
∑

{u,v}∈E wuv · yuv

subject to
∑

u∈Vi
xu = 1 for 1 ≤ i ≤ p

∑
u∈Vi

yuv = xv for 1 ≤ i ≤ p, v ∈ V \ Vj

xu, yuv ∈ {0, 1} for u ∈ V, (u, v) ∈ E

(IP1)

The first set of constraints ensures that one node is chosen from each part, and the

second set requires that an edge is chosen if its end points are.

4.3.2 New integer linear programming formulation

Since the alphabet and the length of the sequences are finite, there are only a finite

number of possible pairwise distances. For example, in the case of Hamming distances,

edge weights can only take on ` + 1 different values. We take advantage of the small

number of possible weights and the fact that the edge variables of IP1 are only used

to ensure that if two nodes u and v are chosen in the optimal solution then wuv is

added to the cost of the clique. We introduce a second ILP in which we no longer

have edge variables Xuv. Instead, in addition to the node variables Xu, we have a

variable Yujc for each node u, each graph part j such that u is not in Vj, and each

possible edge weight c. These Y variables model groupings of the edges by cost into

cost bins. The intuition is that Yujc is 1 if node u and some node v ∈ Vj are chosen

such that wuv = c.

Formally, let D be the set of possible edge weights and let W = {(u, j, c) : c ∈

D, u ∈ V, j ∈ 1, . . . p and u 6∈ Vj} be the set of triples over which the Yujc variables

are indexed. Then the following ILP models the motif-finding graph problem:
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Figure 4.1: Schematic of IP2. Adjacent to each node u there are at most |D| cost bins, each associated
with a variable Yujc. Associated with each cost c are the nodes v ∈ Vj for which wuv = c (represented
in the figure by stars). Constraints (IP2b) say that we must spread a total of Xu weight apportioned
over the bins, while constraints (IP2c) limit us to choosing cost bin variables where there is some
node v ∈ Vj chosen such that wuv = c.

Minimize
∑

(u,j,c)∈W :part(u)<j c · Yujc

subject to
∑

u∈Vi
Xu = 1 for 1 ≤ i ≤ p (IP2a)

∑
c∈D Yujc = Xu for 1 ≤ j ≤ p, u ∈ V \ Vj (IP2b)

∑
v∈Vj :wuv=c Yvic ≥ Yujc for (u, j, c) ∈ W s.t. part(u) < j (IP2c)

Xu, Yujc ∈ {0, 1}

(IP2)

As in the previous formulation, the first set of constraints forces a single node to

be chosen in each part. The second set of constraints says that if a node u is chosen,

for each j, one of its “adjacent” cost bins must also be chosen (Figure 4.1). The third

set of constraints ensures that Yujc can be chosen only if some node v ∈ Vj is also

chosen such that wuv = c. We discard variables Yujc if there is no v ∈ Vj such that

wuv = c. Figure 4.1 gives a schematic drawing of these constraints.

It is straightforward to see that IP2 correctly models the motif-finding problem
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if the variables are ∈ {0, 1}. For any choice of p-clique {u1, . . . , up} of weight γ =
∑

i<j wuiuj
, a solution of cost γ to IP2 can be found by taking Xui

= 1 for i = 1 . . . , p,

and taking Yuijc = 1 for all 1 ≤ j ≤ p such that wuiuj
= c. This solution is easily

seen to be feasible, and between any pair of graph parts i, j it contributes cost wuiuj
;

therefore, the total cost is γ. On the other hand, consider any solution (X,Y ) to IP2

of objective value γ. Consider the clique formed by the nodes u such that Xu = 1.

Between every two graph parts i < j, the constraints (IP2a) and (IP2b) imply that

exactly one Yujc and one Yvid are set to 1 for some u ∈ Vi and v ∈ Vj and costs c, d.

Constraint (IP2c) corresponding to (u, j, c) with Yujc on its right-hand side can only

be satisfied if the sum on its left-hand side is 1, which implies c = d = wuv. Thus, a

clique of weight γ exists in the motif-finding graph problem.

4.3.3 Advantages of new IP formulation

In practice, IP2 has many fewer variables than IP1. Letting d = |D|, the number of

kinds of weights, IP2 has Np((p − 1)d + 1) variables in the case that a Yujc variable

exists for every allowed choice of (u, j, c), while IP1 has Np(N(p−1)/2+1) variables.

If d < N/2, the second IP will have fewer variables. In practice, d is expected to

be much smaller than N , and while N could reasonably be expected to grow large

as longer and longer sequences become practical to study, d is constrained by the

geometry of transcription factor binding and will remain small. Also, in practice, it

is likely that many Yujc variables are removed because seq(u) does not have matches

of every possible weight in each of the other sequences. IP2, on the other hand, will

have O(d) times more constraints than IP1, with the number of constraints being

p + Np(p − 1)(d/2 + 1) for IP2, and p + Np(p − 1) for IP1.

While the space requirement for the simplex algorithm is related to the number

of constraints and variables, running time is not necessarily directly related. Smaller

integer programs with weaker LP relaxations are often less useful for branch-and-
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bound approaches to IP solving. Thus, we seek the tightest, smallest IP possible. In

the end, experiments must be performed to gauge the efficacy of various formulations

on practical problems. We present experiments below which suggest IP2 can be more

than an order of magnitude faster than IP1.

The recasting of the problem such that the number of edge weights becomes the

determining factor of problem size suggests several avenues for practical performance

enhancements. For example, it is often the case that one is interested in an optimal

solution only if it is of high enough quality, meaning that no motif instance in the

solution is further than α away from any other (the diameter of the solution is ≤ α).

If this is the case, edges of weight > α can be deleted. Such a requirement reduces d

and makes IP2 still smaller. In many applications, even if large diameter solutions are

acceptable, there is an expectation that the diameter is likely small, and a solution

with a small diameter may be preferred to one with a lower sum-of-pairs score but

more outliers. In such a case, the IP2 formulation may allow one to check for low

diameter solutions quickly.

4.3.4 Linear programming relaxation

The typical approach to solving an ILP is to solve the linear program derived from

the ILP by dropping the requirement that the variables be in {0, 1}, and instead

requiring only that the variables lie in the continuous range [0, 1]. This modified

problem is called the linear programming (LP) relaxation. Efficient algorithms are

known for solving linear programs. In the case of minimization, an ILP formulation is

weaker than another if the corresponding LP relaxation of the first admits a solution of

lower objective value than is possible with the second (stronger formulation is defined

accordingly). Weaker relaxations are often less useful in solving the corresponding

ILP.

The LP relaxation of IP1, which we refer to as LP1, is stronger than the LP

76



relaxation of IP2 as stated. In this section, we present a fairly natural (though

exponential) class of constraints that, if added to the LP relaxation of IP2, makes

the two formulations equivalent. We refer to this fully constrained relaxation of IP2

as LP2. In the subsequent sections, we provide a separation algorithm and also show

that in practice we can focus on just two types of constraints in LP2, and we are

able to solve the original ILP iteratively by adding cutting planes corresponding to

violated constraints of these types.

Additional constraints. Focus on a single pair of graph parts i and j. The bipartite

graph that exists between Vi and Vj is explicitly modeled in IP1 by the edge variables.

In IP2, however, the bipartite graph is only implicitly modeled by an understanding

of which Y variables are compatible to be chosen together. We study this implicit

representation by considering the bipartite compatibility graph Cij between two parts

i and j. Intuitively, we have a node in this compatibility graph for each Yujc and Yvic,

and there is an edge between the nodes corresponding to Yujc and Yvic if wuv = c.

These two Y variables are compatible in that they can both be set to 1 in IP2.

More formally, let Cij = (Aij, Aji, F ) be a bipartite graph, where Aij = {(u, j, c) :

u ∈ Vi, c ∈ D} is the set of indices of Y variables adjacent to a node in Vi, going to

part j, and Aji is defined analogously, going in the opposite direction. The edge set

F is defined in terms of the neighbors of a triple (u, j, c). Let N (u, j, c) = {(v, i, c) :

u ∈ Vi, (v, i, c) ∈ Aji and wuv = c} be the neighbors of (u, j, c). They are the indices

of the Yvic variables adjacent to part j going to part i so that the edge {u, v} has

weight c. There is an edge in F going between (u, j, c) and each of its neighbors. We

call c the cost of triple (u, j, c). All this notation is summarized in Figure 4.2.

In any feasible integral solution, if Yujc = 1, then some Yvic for which (v, i, c) ∈

N (u, j, c) must also be 1. Extending this insight to subsets of the Yujc variables yields

a class of constraints which will ensure that the resulting linear programming formula-

tion is as tight as LP1. If Qij is a subset of Aij, then let N (Qij) =
⋃

(u,j,c)∈Qij
N (u, j, c)
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Figure 4.2: Compatibility graph Cij . The neighbor set N (u, j, c) is shown assuming that v and w
are the only nodes in Vj that have cost c with u. Each circle represents a node in part Vi or Vj of
the graph. The solid lines incident on the nodes represent Yujc or Yvic variables associated with the
node. Aij and Aji indicated by dotted lines are the sets of Y variables associated with the pair of
graph parts i and j. Lastly, the function N(u, j, c) maps a variable Yujc to a set of compatible Yvic

variables by squiggly lines.

be the set of indices that are neighbors to any vertex in Qij. If Qij ⊆ Aij then

N (Qij) ⊆ Aji. The following constraint is true in IP2 for any such Qij:

∑

(u,j,c)∈Qij

Yujc ≤
∑

(v,i,c)∈N (Qij)

Yvic . (4.1)

That is, choose any set of Yujc variables adjacent to part i that go to part j. The

sum of the Y variables for their neighbors must be greater than or equal to the sum

of the variables originally chosen. Notice that the third set of constraints in IP2 are

of the form (4.1), taking Qij to be the singleton set {(u, i, c)}.

4.3.5 Equivalence of linear programming relaxations

Theorem 1 If for every pair i < j, constraints of the form (4.1) are added to IP2

for each Q ⊆ Aij such that all triples in Q are of the same cost then the resulting LP

relaxation LP2 is as strong as the relaxation LP1 of IP1.

Proof. It is clear that the linear programming relaxation LP2 described in Theorem 1

78



is no stronger than LP1 as any solution to LP1 can be converted to a solution of LP2

by making the node variable weights the same and putting the weight of edge variables

yuv onto Yujc and Yvic, where wuv = c. This solution to LP2 will satisfy all the

constraints in the theorem, and be of the same objective value.

The rest of the proof will involve showing that for any feasible solution for LP2,

there is a feasible solution for LP1 with the same objective value, thereby demon-

strating that the optimal solution to LP2 is not weaker than the optimal solution to

LP1. In particular, fix a solution (X,Y ) to LP2 with objective value γ. We need to

show that for any feasible distribution of weights on the Y variables a solution to LP1

can be found with objective value γ.

In order to reconstruct a solution x̂ for LP1 of objective value γ, we will set

x̂u = Xu, using the values of the node variables Xu in the optimal solution to LP2.

We must assign values to ŷuv to complete the solution. Recall the compatibility graph

Cij described above. Because all edges in Cij are between nodes of the same cost, Cij

is really |D| disjoint bipartite graphs Cc
ij, one for each cost. Let Ac

ij ∪ Ac
ji be the

node set for the subgraph Cc
ij for cost c. Each edge in a subgraph Cc

ij corresponds to

one edge in the graph G underlying LP1. Conversely, each edge in G corresponds to

exactly one edge in one of the Cc
ij graphs (if edge {u, v} has cost c1, it corresponds to

an edge in Cc1
ij ). We will thus proceed by assigning values to the edges in the various

Cc
ij, and this will yield values for the ŷuv variables.

If we define z(A) :=
∑

(u,j,c)∈A Yujc, by the first two sets of constraints (IP2a and

IP2b), z(Aij) = z(Aji) = 1. Since the constraints (4.1) are included with Q = Ac
ij for

each cost c, by the pigeonhole principle, z(Ac
ij) = z(Ac

ji) for every cost c. Thus, for

each subgraph Cc
ij, the weight placed on the left graph part equals the weight placed

on the right graph part. We will consider each induced subgraph Cc
ij separately.

We modify Cc
ij as follows to make it a directed, capacitated graph. Direct the

edges of Cc
ij so that they go from Ac

ji to Ac
ij, and set the capacities of these edges
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Figure 4.3: Directed, capacitated graph used to show (4.1) are sufficient. Edges incident on the
source r and sink s have capacity equal to the Y variable adjacent to r and s respectively. All other
edges are of infinite capacity. The shading gives an r − s cut.

to be infinite. Add dummy source (r) and sink (s) nodes, and connect them to the

graph by edges directed from r to each node in Ac
ji and edges from each node in Ac

ij

to s. Every edge incident on r and s is also incident on some node representing a Y

variable. Put capacities on these edges equal to the value of the Y variable to which

they are adjacent (see Figure 4.3).

The desired solution to LP1 can be found if the weight of the nodes (Y variables)

in each compatibility subgraph can be spread over the edges. In other words, a

solution to LP1 of weight γ can be found if, for each c, there is a flow of weight z(Ac
ij)

from r to s in the augmented flow graph Cc
ij. The assignment to ŷuv will be the flow

crossing the corresponding edge in the Cc
ij of appropriate cost. Below we show that

the set of constraints described in the theorem ensure that the minimum cut in the

constructed graph is greater than or equal to z(Ac
ij), and thus there is a flow of the

required weight. The proof of this fact in the context of flow feasibility problems can

be found in [Cook et al. 1997] on page 54-55, and is reproduced in our notation in

the following lemma.
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Lemma 1 The minimum cut of the augmented flow graph Cc
ij (shown in Figure 4.3)

is z(Ac
ij).

Proof. Recall that the capacities of the edges connecting nodes in Ac
ji with nodes

in Ac
ij are infinite; capacities of the edges leaving r are Yvic and those entering s are

Yujc, and that the total capacity leaving r equals that of entering s, and this total

capacity equals z(Ac
ij). We want to show that the minimum r − s cut in this graph

is greater than or equal to z(Ac
ij).

Consider an r − s cut {r} ∪ A ∪ B where A ⊆ Ac
ji and B ⊆ Ac

ij. (Such a cut is

shaded in Figure 4.3.) Define Ā = Aji \ A and B̄ = Aij \ B. If any edges connect

A to B̄ then the capacity of the cut is infinite, and the lemma is proven. Otherwise

the value of the cut is the sum of the capacities of the edges leaving r and going to

Ā plus the sum of the capacities of the edges entering s from a node in B. We will

now show that

z(Ā) ≥ z(B̄) , (4.2)

which implies that the value of the cut is > z(Ac
ij).

Assume for the moment that all nodes in Ā have a neighbor in B̄. Then N (B̄) = Ā

because there are no edges between A and B̄ by assumption. By (4.1), z(B̄) ≤

z(N (B̄)) = z(Ā). On the other hand, if there is a node in Ā that does not have a

neighbor in B̄ then we can add that node to A to make A′ (without increasing the

cost of the cut), and the above argument shows that z(Aji\A′) ≥ y(B̄), which implies

z(Ā) ≥ z(B̄) since Aji \ A′ ⊆ Ā. This ends the proof of the lemma. Thus, we have

shown LP1 and LP2 to be equivalent. 2

4.3.6 Separation algorithm and heuristic solution

It is possible to solve LP2, a linear program with an exponential number of constraints,

in polynomial time by the ellipsoid algorithm [Grötschelet al. 1993] provided that a
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separation algorithm exists. In this section we describe such a separation algorithm,

which finds a violated constraint, if one exists, in polynomial time or reports that

no constraints are violated. The proof below formalizes the intuition in the proof of

Theorem 1, by which all constraints are satisfied in a compatibility graph only if a

large enough maximum flow exists. Otherwise, the minimum cut identifies a violated

constraint.

Theorem 2 There is a polynomial-time algorithm that can find a violated constraint

in LP2 or report that no such constraint exists.

Proof. Because each constraint in (4.1) involves variables of a single cost, if (4.1)

is violated for some set Q, then Q is a subset of an Ac
ji for some i, j, c, and so we

can consider each subgraph Cc
ij independently. The proof of Theorem 1 shows that

there is a violated constraint of the form (4.1) between graph parts i and j involving

variables of cost c if and only if the maximum flow in the augmented graph C c
ij is

less than z(Ac
ij). Thus, the minimum cut can be found for each triple i, j, c, and, if

a triple i, j, c, with the minimum cut being less than z(Ac
ij), is identified, one knows

that a violated constraint exists between parts i and j with Q ⊂ Ac
ij.

The minimum cut can then be examined to determine the violated constraint

explicitly. Let {r} ∪ A ∪ B be the minimum r – s cut in C c
ij, with A ⊆ Ac

ji and

B ⊆ Ac
ij, and let Ā = Ac

ji \ A and B̄ = Ac
ij \ B (following the notation of Lemma 1).

Such a cut is shaded in Figure 4.3. Let m be the capacity of this cut, and assume,

because we are considering a triple i, j, c that was identified as having a violated

constraint, that z(Ac
ij) > m. Because m < ∞ there are no edges going from A to B̄,

and hence two things hold: (1) m = z(B) + z(Ā) and (2) N (A) ⊆ B, and therefore

y(N (A)) ≤ y(B). Chaining these facts together, we have

z(A) = z(Ac
ij) − z(Ā) > m − z(Ā) = z(B) ≥ z(N(A)) ,
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Figure 4.4: Example graph Cc
ij , for which the added constraints are insufficient to make LP2 as tight

as LP1. All the constraints with |Q| = 1 or |Q| = |Aij | are satisfied, but a flow of value 1 does not
exist in the augmented version of this graph (as in Figure 4.3).

Thus, the set A is a set for which the constraint of the form (4.1) is violated. 2

In practice the ellipsoid algorithm is often slower than the well optimized sim-

plex algorithm. We found that not all of the exponential number of constraints

are necessary to solve real problems with the simplex algorithm. Some particular

choices of Qij yield constraints that are intuitively very useful and are usually enough

in practice. The constraints with the largest Qij, that is Qij = Aij, were used in

the proof of Theorem 1, and we have found them to be effective in practice. In

fact, for this Qij, the inequality (4.1) is an equality. The relaxation of IP2 already

includes all the constraints with Qij = {Yujc} ⊂ Ac
ij. Rather than including con-

straints with 1 < |Qij| < |Ac
ij|, we include the constraints with i and j reversed,

taking Qji = {Yvic} ⊆ Ac
ji for v ∈ Vj, which can be seen to be weaker versions of con-

straints (4.1) with larger Qij sets. More detail about our approach to and experiences

with real problems can be found in Section 4.4.

Examples can be constructed for which the constraints we use are insufficient to

make LP2 as tight as LP1. For instance, Figure 4.4 gives a graph Cc
ij for a single weight

c for which all the constraints (4.1) hold but no solution to IP1 can be constructed.

However, we have not encountered such pathological cases in practice, and so we do

not explore adding constraints with |Q| > 1.

83



4.4 Computational Results

4.4.1 Methodology

We have found the following methodology to work well in practice. We first solve

the LP relaxation of IP2, and stop if the solution is integral. Otherwise, we add any

violated constraint of the form (4.1) with i and j reversed and with |Qji| = 1, and

resolve. We use the optimal basis of the previous iteration as a starting point for the

next, setting the dual variables for the added constraints to be basic. This strategy

eliminates the need to resolve using an arbitrary starting solution and provides a

significant speedup. In the rest of this section we refer to this heuristic strategy of

solving the relaxation of IP2 as LP2.

Because the variant of the simplex algorithm can make a large difference in running

time in practice, LP1 was solved using two different variants. In the first (primal

dualopt), the primal problem was solved using the dual simplex algorithm. In the

second (dual primalopt), the dual problem was solved using the primal simplex

algorithm. While, in theory, these two variants should perform similarly, in practice

running times can differ significantly. Applying the dual simplex method to the dual

problem or the primal simplex to the primal problem are not expected to perform

as well because of the relationship between the number of variables and number of

constraints in the linear programs, and small scale testing confirms this intuition.

LP2 was always solved using the dual simplex method applied to the primal problem

so that resolving with additional constraints was faster.

The linear and integer programs were specified with Ampl and solved using CPLEX

7.1 [CPLEX 7.1]. All experiments were run on a public 1.2 GHz SPARC workstation

shared by many researchers, using a single processor. All the timings reported are

in CPU seconds on this machine. For any run, any problem taking longer than five

hours was aborted.
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4.4.2 Test datasets

We present results on identifying the binding sites of 50 transcription factor families.

We construct our dataset from the data of [Robison et al. 1998,McGuire et al. 2000]

in a fashion similar to the dataset of used in Chapter 3, but with generally shorter

sequences. We remove all sites for sigma-factors, duplicate sites, as well as those that

could not be unambiguously located in the genome. For each transcription factor

under consideration, we extract the genes it is regulating, and gather at least 300

base pairs of genomic sequence upstream of the transcription start sites. In those

cases where the binding site is located further upstream, we extend the sequence to

include the binding site. The motif length for each family was chosen as before based

on the length of the consensus binding site. Unlike in the previous chapter, we do

not exclude datasets with fewer than three sequences. The families, their sizes and

the length of the binding site are summarized in Table 4.1.

4.4.3 Performance of the LP relaxations

We solved LP1 and LP2 relaxations for the 50 transcription factors listed in Table 4.1.

Results, summarizing running times, matrix sizes and speed-up factors are shown in

Figure 4.5. For five problems, each LP failed to find a solution in the allotted five

hours; these are omitted from the figure. Generally, the initial set of constraints was

sufficient to get a tight solution, one that is at least as good as the solution for LP1.

Six problems required additional constraints to LP2 in order to make it as tight

as LP1. The problems flhCD, torR, and hu required two cutting planes iterations,

ompR required three, oxyR required four, and nagC required five. Running times

reported in Figure 4.5(b) are the sum of the initial solve times and of all the cutting

planes iterations.

Of the problems solvable in less than five hours, only three were not integral. This

is somewhat surprising. Of course, there is much structure to real problems, which

85



TF ` p n TF ` p n TF ` p n

ada 31 3 810 fruR 16 11 4082 metR 15 8 3312
araC 48 6 1715 fur 18 9 3182 modE 24 3 934
arcA 15 13 4790 galR 16 7 2188 nagC 23 6 1870
argR 18 17 5960 gcvA 20 4 1234 narL 16 10 3301
carP 25 2 552 glpR 20 11 3829 ntrC 17 5 1516
cpxR 15 9 2614 hipB 30 4 1084 ompR 20 9 3057
cspA 20 4 1410 hns 11 5 1485 oxyR 39 4 1048
cynR 21 2 854 hu 16 2 571 pdhR 17 2 568
cysB 40 3 783 iclR 15 2 588 phoB 22 14 4618
cytR 18 5 1695 ilvY 27 2 1079 purR 26 20 5856
dnaA 15 8 2381 lacI 21 2 560 rhaS 50 2 502
fadR 17 7 2122 lexA 20 19 5554 soxS 35 13 4004
farR 10 3 873 lrp 25 14 4090 torR 10 4 2198
fhlA 27 2 731 malT 10 10 3410 trpR 24 4 1108
fis 35 18 5371 marR 24 2 813 tus 23 5 1390
flhCD 31 3 810 melR 18 2 717 tyrR 22 17 5258
fnr 22 12 3705 metJ 16 15 5754

Table 4.1: Characteristics of the 50 problems considered. For each transcription factor dataset
TF, listed are: motif length (`), number of sequences (p), and the total number of vertices in the
underlying graph (n).

may make them less susceptible to the worst-case analysis. The success of the LP

relaxations in finding integral solutions suggests that handling non-integral cases may

not be as pressing a problem as one would think.

When comparing the running times of LP2 with those of LP1, we take as the

running time of LP1 that of the better performing simplex variant. In order words,

we take the speed-up factor to be:

min(primal dualopt, dual primalopt)

LP2
(4.3)

Taking the minimum running time gives LP1 the benefit of the doubt. In practice,

always achieving the runtime used in the numerator would require computing each

variant in parallel using two processors. The speed-up factors for these problems

are shown in Figure 4.5(a). For 10 problems, neither simplex variant completed in
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Figure 4.5: (a) Speed-up factor of LP2 over LP1 as defined in equation 4.3. Green bars correspond
to problems for which LP1 did not finish in less than five hours. The red bar (far right) marks
the problem for which LP2 did not finish in less than five hours, but LP1 did. (b) Running times
in seconds for LP2. The y-axis is in log scale. (c) Matrix size for LP2 divided by the matrix size
for LP1.

less than five hours when applied to LP1, whereas LP2 did. For these problems, the

numerator of (4.3) was taken to be five hours. Such as setting gives a lower bound on

the speed up. For one problem, cytR, the reverse was true and LP2 could not finish

within five hours, while both simplex variants of LP1 successfully solved the problem.

For this dataset, the denominator was taken to be five hours, and equation (4.3) gives

an upper bound. For the rest of the datasets an order of magnitude increase in speed
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is common when using LP2 compared with LP1.

As expected, the size of the constraint matrix (defined as the number of con-

straints times the number of variables) is often smaller for LP2. Figure 4.5(c) plots

(size for LP2)/(size for LP1). While in five cases the matrix for LP2 is larger, in

many cases it is < 50% the size of the matrix for LP1. A smaller constraint matrix

can often lead to faster simplex iterations.

We also compared the motifs found by our approach to the set of known transcrip-

tion factor binding sites existing in the data. We identify motifs that do not always

correspond to the known binding sites, but in all cases are at least as well conserved

as the actual binding site motifs (measured by average information content). Since

our test data are real genomic sequences, co-regulated genes may in fact have multi-

ple shared binding sites for a number of transcription factors. The better conserved

set of motif instances we identify may be the binding site signature of a different

transcription factor. Alternatively, since the Hamming distance metric is oblivious to

the nucleotide distribution in the background, some of our discovered motifs may be

the very well conserved low-complexity regions.

4.5 Discussion

In this paper, we introduced a novel integer linear programming formulation for the

motif finding problem that works well in practice. In particular, it is significantly

faster in finding optimal solutions to moderate-sized motif finding instances than

the previous ILP formulation introduced in Chapter 3. We note that a variety of

graph pruning and decomposition techniques that have been introduced for motif

finding in Chapter 3 and by other authors (e.g., [Reinert et al. 1997, Pevzner and

Sze 2000, Lukashin and Rosa 1999]), are applicable here as well. It is likely that,

in conjunction with those techniques, our novel formulation will be able to tackle
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problems of significantly larger sizes. Additionally, in contexts where every motif

instance is required to be a good match to the motif consensus, our methodology can

be applied in an iterative fashion, solving successive subproblems with increasingly

higher allowed edge weights until a good solution is found.

There are many interesting avenues for future work. While the underlying graph

problem is essentially identical to that of [Chazelle et al. 2004], where arbitrary

weights are allowed on edges, one central difference is that when minimizing dis-

tance in the motif finding application based on nucleotide matches and mismatches,

the triangle inequality is satisfied. The current ILP formulations do not exploit this,

and as a result, works in its absence. Another feature commonly present in motif

finding that is not used here is that the edge weights in the graph are not indepen-

dent, as each node represents a subsequence from a window sliding along the DNA.

Incorporating either the triangle inequality or the correlation between edge weights

into the ILP or its analysis may lead to further advances in computational methods

for motif finding.
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Chapter 5

Conclusions and Future Work

This thesis provides a contribution towards solving a problem essential to the inner

workings of a cell, as gene expression and regulation enable a cell to function properly,

responding to various life cycle’s demands and environmental circumstances. A vital

first step in understanding the circuitry of the transcription regulatory network of

an organism, with its complex operational patterns, is identification of transcription

factor binding sites.

We addressed two subproblems in DNA binding site prediction: those of represen-

tation and discovery. In Chapter 2, we presented a comprehensive study of various

binding site representation methods, evaluating their ability to identify additional

binding sites of transcription factors when given a group of known sites. We note the

benefit of incorporating information content into all scoring schemes, and pairwise

correlations for some methods. Analysis similar to the one performed in Chapter 2 is

likely to prove useful in choosing, for different contexts, a specific method and suit-

able threshold for finding binding sites of a particular known or unknown transcription

factor.

In Chapters 3 and 4, we tackled the problem of motif discovery. We introduced

two different mathematical programming formulations for the problem, and developed
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a flexible optimization framework, whose major advantage over other methods is in

finding provably optimal solutions for most problems, and being able to incorporate

additional relevant biological information such as protein substitution matrices and

phylogenetic tree data. We also describe a procedure for statistical significance eval-

uation of our results, and find that motifs we discover are unlikely to have occurred

in random data.

We have built a prototype system that implements our algorithm, and have suc-

cessfully discovered known protein and DNA motifs in numerous datasets. We would

like to scale up our system to run on larger numbers of longer sequences, overcoming

computational efficiency difficulties, as well as to extend our method to incorpo-

rate other features common to motif finding algorithms and useful in the context of

transcription factor binding sites’ discovery. A few basic improvements include au-

tomated setting of the motif length parameter and the ability to allow zero or more

occurrences of a motif in each of the input sequences. Another interesting capability

would be to look for two motifs that are within some distance of one another, mod-

eling cooperative binding of transcription factor proteins. These may be possible to

implement in our framework through augmentations of the linear program by altering

the objective function and adding linear constraints. Lastly, any motif finding system

should be subjected to thorough testing on a diverse and large-scale dataset, such as

that of [Tompa et al. 2005], and evaluated against many other motif finders under

standardized conditions.

An alternate avenue for research, and one that would likely create a more com-

putationally efficient motif finding method, able to tackle and solve to optimality

larger sized problems, is to combine the graph pruning methods with the LP/ILP

formulation of Chapter 4. Finally, the following constitutes an exciting open question

for future research: why is it that integral solutions are observed so frequently for

both linear programming formulations? We note that integral solutions often occur
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regardless of problem size. It would be interesting to explore the structure of the

convex polytope enclosing the space of all integral solutions to answer this question.

In conclusion, we have introduced several new methods for transcription factor

binding sites’ representation and discovery, and established their merits with exten-

sive and thorough testing. Our results have been promising, and suggest that our

underlying methodology may be useful as a basis for a comprehensive system for

identifying novel binding sites of transcription factor proteins.
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