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Abstract

We introduce a new algorithm, SMOOTH PREDICTION, and a new analysis technique that
is applicable to a variety of online optimization scenarios, including regret minimization for
Lipschitz regret functions studied by Hannan, universal portfolios by Cover, Kalai and Vempala,
and others. Our algorithm is more efficient and applies to a more general setting (e.g. when the
payoff function is unknown).

The algorithm extends a method proposed by Hannan in the 1950’s, called ‘Follow the
Leader”. It adds a barrier function to the convex optimization routine required to find the
“leader” at every iteration.

One application of our algorithm is the well studied universal portfolio management prob-
lem, for which our algorithm is the first to combine optimal regret with computational efficiency.
For more general settings, our algorithm achieves exponentially lower regret then previous al-
gorithms.

1 Introduction

Consider the following general setting for repeated play. An online player chooses an action from a
set of possible actions, without knowing the future. Nature then reveals a payoff for each possible
action. This scenario is repeated T times. The player’s goal is to minimize his total regret, which
is defined to be the difference between his total payoff and the payoff of the best fixed action in
hindsight.

In the basic model for online game playing, an online player A chooses a probability distribution
p over a set of n possible actions (pure strategies). Nature then reveals a payoff x(i) € R for each
possible action. The expected payoff of the online player is p” z (we will abuse notation and denote
this by pz), where z is the n-dimensional payoff vector. This scenario is repeated for T iterations.
If we denote the player’s distribution at time ¢t € [T] by p;, and the payoff vector for time ¢ by
T, then the total payoff achieved by the online player is Zthl pexe. The payoff is compared to
the maximum payoff attainable by a fixed distribution on pure strategies. This is captured by the
notion of regret — the difference between the player’s total payoff and the best payoff he could have
achieved using a fixed distribution on pure strategies. Formally !:

T T
R(A) £ max Zp*xt - Zptl‘t
t=1 t=1

p*eSn

The performance of an algorithm is measured by two parameters: the total regret and the time
for the algorithm to compute the strategy pr for iteration 7.
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For the above basic setting, the regret is lower bounded by Q(+/T) (for the models considered
in this paper, T is the paramount complexity parameter and other parameters are usually treated
as constants. The O notation hides factors independent of T'). This regret has been achieved
by several algorithms. The earliest were discovered in the game-theory and operations research
community, and more efficient algorithms (Hedge and Adaboost by Freund and Schapire [FS97])
were discovered in machine learning. Since this model is very well understood, it will not be
considered in this paper.

Instead, we consider a more general online optimization framework, related to that introduced by
Zinkevich [Zin03]. In Zinkevich’s framework, the online player chooses a point in some convex set,
rather then just the simplex. The payoff functions allowed are arbitrary concave functions over the
set. This model extends to even more general scenarios, in which every iteration a different concave
function f; is used, and even when these functions are unknown till Nature reveals them together
with the payoff for the play iteration. The online player A wants to minimize the corresponding
notion of regret, namely

T T
R(A) ép@&’gz!ﬁ(l)*) - th(Pt) (1)
t=1 t=1

An interesting problem covered by this framework is the problem of universal portfolio man-
agement, where the objective is to devise a dynamic portfolio the difference of whose returns to the
best fized portfolio in hindsight over T' time periods is minimized.

Zinkevich proceeds to analyze a form of gradient ascent, and shows that the regret for this
setting decreases as

R(gradient ascent) = O(G? - V'T)

where G is an upper bound on the Fuclidian norm of the gradient for the functions revealed
throughout the game. He notes that in fact this general case can be derived by reducing to the
basic setting (with linear payoffs) using first order Taylor approximation. Though obtaining regret
of O(VT is optimal for the linear case, Zinkevich’s work leaves open the possibility that for the
case of non-linear functions, with second derivative bounded away from zero, better convergence
rates can be achieved.

In fact, this is not mere speculation since for the universal portfolio management problem,
where fi(p:) = log(pize) (for more details on how the logarithm function arises in the portfolio
management context see Appendix C), Cover [Cov9l] introduced the UNIVERSAL algorithm with
regret bounded by R(UNIVERSAL) = O(logT).

This regret bound was shown to be asymptotically optimal in [OC98]. However, the running
time of Cover’s algorithm (i.e the time it takes to produce the distribution p; given all prior
payoffs) is exponential in the number of stocks - for n stocks and the T*" day the running time is
Q(T™). Kalai and Vempala [KV03b] proposed a randomized implementation of Cover that runs in
polynomial time, though the polynomial is quite large, namely Q(n7T8). This rather large running
time, and the complexity of the techniques used therein, render the algorithm difficult to implement
and benchmark, and to the best of our knowledge no such implementation exists to date.

1.1 Our Results

In this paper we consider a restricted version of Zinkevich’s model, in which the point chosen by
the online player is in the simplex, and the payoff functions {f;} have a bounded Hessian. Besides
generalizing the basic online learning model, this formulation also generalizes the main motivation
for this work - the well-studied universal portfolio management problem.



Our main contribution is a deterministic algorithm, called SMOOTH PREDICTION, that achieves
the following regret bounds. If the functions {f;} throughout the repeated play are concave, have
bounded gradient and Hessian, then

R(SMoOTH PREDICTION) = O(logT")

For the universal portfolio management problem, under the standard “no-junk-bonds” assump-
tion (see Appendix C), the regret bounds are R(SMOOTH PREDICTION) < 4n%210gT 2. The
algorithm can be modified using the technique of Helmbold et al, such that even without the
no-junk-bonds assumption, the regret is bounded by O(T%/3).

SMOOTH PREDICTION has running time of O(n3T), a significant improvement over previous
methods. Preliminary experimental results indicate that SMOOTH PREDICTION performs as well
as the MW algorithm by Helmbold et al. [HSSW96] which is based on the Multiplicative Weights
Update Method (and is the current champion [HSSW96], also see subsection 1.3), and surpasses it
in some cases. The final version will report on experimental results.

In order to analyze the performance of SMOOTH PREDICTION, we introduce a new potential
function which takes into account the second derivative of the payoff functions. This is necessary,
since the regret for linear payoff functions is bounded from below by Q(v/T). This potential function
is motivated by interior point algorithms, in particular the Newton method, and its analysis requires
new algebraic techniques beyond the usual Multiplicative Weights Updates Method [AHKO05] (an
algorithmic technique which underlies most of the current algorithms). We believe these techniques
may be useful for other learning and online optimization problems.

1.2 Connection to “Follow The Leader”

A natural algorithmic scheme in repeated play is called “Follow-The-Leader”, first proposed by
Hannan [Han57]. As the name suggests, the basic idea is to play the strategy that would have been
optimal up to date. This does not ensure that the regret converges to zero in many simple scenarios,
most obviously for linear payoff functions, but also for the universal portfolio management problem.
However, as proposed and analyzed by Hannan, and recently analyzed by Kalai and Vempala
[KV03a] (the original proof by Hannan is virtually unreadable), adding a small perturbation to the
optimal strategy so far does ensure the regret converges to zero if the payoff functions are linear.

A natural question posed by Kalai and Vempala [KV03a] is whether a variant of Follow-The-
Leader ensures small regret for the portfolio problem. From a computational viewpoint, this ques-
tion is interesting since computing the best strategy in hindsight (and thus Follow-The-Leader), is
known to be in solvable efficiently in polynomial time using interior point methods, see [NN94].

Merhav and Feder [MF92] show that Follow-The-Leader has optimal regret under some very
strong assumptions. However, these assumptions do not even hold for the universal portfolio
management problem, with or without the no-junk-bonds assumption [Fed].

Before each time period, SMOOTH PREDICTION computes the optimum of some convex program
which is a “smoothened” version of the best mixed strategy in hindsight(i.e the “leader”). The
smoothening is achieved by adding a logarithmic barrier function to the convex program for the
best mixed strategy in hindsight. In particular, the barrier function prevents the optimum from
lying too close to the boundary of the simplex.

Our analysis shows that this modification to Follow-The-Leader ensures low regret, thereby
answering the question of Kalai and Vempala [KV03a].

2Here r is a lower bound on the price relative of any asset during one time period, i.e. xe(3) > 7, Vt, i



1.3 Other related work

The MW algorithm by Helmbold et al. [HSSW96] mentioned earlier is very efficient to implement
- the running time per time period is independent of T'. Its regret is similar to the general bound
of Zinkevich - O(G? - V/T). The gradient of the logarithmic payoff log(psz;) is proportional to ﬁ,
and thus in order to upper bound G, one needs the “no-junk-bonds” assumption on the payoffs x;
(see Appendix C), i.e. @4(i) > r,Vi € [n]. Under this assumption R(MW) = O(5VT).

Helmbold et al. [HSSW96] also present a modification to their algorithm which ensures that
the regret is bounded by O(T3/ 4) even without the “no-junk-bonds” assumption. The convergence

analysis of their algorithm is tight as shown by [SLO5].

2 Notation and Theorem Statements

The input is denoted by T vectors (z1,...,x7),x; € R™ where x;(i) is the payoff of the ith pure
strategy during the j** time period. We assume that xj(i) < 1,Vi,j. The z¢’s have different
interpretation depending on the specific application, but in general we refer to them as payoff
vectors.

A (mixed) strategy is simply a fractional distribution over the pure strategies. We represent
this distribution by p € R™ where ), p; = 1,p; > 0. So p is an element of the (n — 1)-dimensional
simplex. We assume that the payoff functions mapping distributions to real numbers, denoted by
fi(pzy), are concave functions of the inner product, hence f/'(px;) < 0. Throughout the paper we
assume the following about these functions:

1. Vt, the payoffs are bounded by 0 < f;(px;) < w (positivity is w.l.o.g, as the shifting the payoff
functions doesn’t change the regret nor the following assumptions).

2. The {f;}’s have bounded derivative Vt,p , |f/(pz)| < G.

3. The functions {f;} are concave with second derivative bounded from above by f/'(pz:) <
—H < 0,Vt.

For a given set of T payoff vectors, (x1,...,27),2; € R, we denote by p*(x1,...,x7) = p* the
best distribution in hindsight, i.e.

T
p* = argmax, {3 fi(p1)}

t=1

The Universal Portfolio Management problem can be phrased in the online game playing frame-
work as described in Appendix C. The payoff at iteration ¢ is log(psz:), where z; is the vector of
price relatives.

Note that since log(c-pizt) = log(c)+log(pzt), scaling the payoffs will only change the objective
function by an additive constant making the objective invariant to scaling. Thus we can assume
w.lo.g that Vt . maxjep, (i) = 1 and fi(piv;) < 1. The “no-junk-bond” assumption implies
Vt,i x4(i) > r, and thus f/(pai) = - € [1, 1], and similarly f/(pay) = — 25 € [— 5, —1].

Pt ‘o (prxe)?

2.1 SMOOTH PREDICTION

A formal definition of SMOOTH PREDICTION is as follows, where e; € R™ is the ¢’th standard basis
vector (i.e. the vector that has zero in all coordinates but for the ¢’th, in which it is one)



SMOOTH PREDICTION

1. Let {f1,..., ft—1} be the concave payoff functions up to day ¢

Solve the following convex program using interior point methods
t—1
max (Z filpmi) + 10g(p6i)> (2)
PER =1 ien
n
> pi=1
i=1

Vien|.pi>0

2. Play according to the computed distribution

We note the strategy of SMOOTH PREDICTION at time ¢ by p;—1. The performance guarantee
for this algorithm is

Theorem 1 (main) For any set of payoff vectors (x1,...,x7)

G2
R(SMOOTH PREDICTION) < 4nﬁ log(wnT)

Corollary 2 For the universal portfolio management problem, assuming the price relatives are
lower bounded by r, for any set of price relative vectors (x1,...,xT)

1
R(SMOOTH PREDICTION) < 4n— log(nT)
r

2.2 Running Time

Interior point methods [NN94] allow maximization of a n-dimensional concave function over a
convex domain in time O(n3'5). The most time consuming operations carried out by basic versions
of these algorithms require computing the gradient and inverse Hessian of the function at various
points of the domain. These operations require O(n?) time.

To generate the pr at time 7', SMOOTH PREDICTION maximizes a sum of O(T") concave func-
tions. Computing the gradient and inverse Hessian of such sum of functions can naturally be
carried out in time O(T - n3). All other operations are elementary and can be carried out in time
independent of 7. Hence, SMOOTH PREDICTION can be implemented to run in time O(T'n3").

We note that in practice, many times approximations to pr are sufficient. For benchmarking,
we implement an efficient polynomial time approximation scheme using the ideas of Halperin and
Hazan [HHO5].

In section 4 we show that even without assuming the “no-junk-bonds” assumption, a modified
version of SMOOTH PREDICTION has regret converging to zero. This modification predicts distri-
butions which are a convex combination of SMOOTH PREDICTION’s distribution and the uniform
distribution (see section 4 for more detail).

Theorem 3 For the universal portfolio management problem, for any set of price relative vectors
(z1, ., z7)

R(MODIFIED SMOOTH PREDICTION) < 4n3T?%/3



We remark that similar results can be obtained for general concave regret functions in addition
to the logarithmic function of the universal portfolio management problem. A general result of this
nature for all concave functions satisfying certain conditions will be added in the full version of the
paper.

3 Proof of Main Theorem

In this section we prove Theorem 1. The proof contains two parts: first, we compare SMOOTH
PREDICTION to the algorithm OFFLINE PREDICTION. The OFFLINE PREDICTION algorithm is
the same as SMOOTH PREDICTION except that it knows the payoff vector for the coming day
in advance, i.e. on day ¢ it plays according to p; - the solution to convex program (2) with the
payoff vectors (z1,...,x¢). This part of the proof stated as Lemma 7 is similar in concept to the
Kalai-Vempala result proved in subsection 3.1 henceforth.
The second part of the proof, constituting the main technical contribution of this paper, shows

that SMOOTH PREDICTION is not much worse than OFFLINE PREDICTION.
Lemma 4

T a2

Z [fe(peze) — fe(pe—124)] < 471? -log(nT)

t=1

PROOF: Since p; and p;_1 are the optimum distributions for period ¢ and t — 1, respectively, by
Taylor expansion we have

fepewe) = fe(peoawe) = fi(pe—12e) (pee — prawe) + %f"(()(ptxt — pro1m)?
< flp—rzy) e — pro1ze) = Fl(pe—12)x] (0e — pr—1) (3)

for some ¢ between p,_1x; and pix;. The inequality follows from the fact that f; is concave
and thus f/(¢) < 0. We proceed to bound the last expression by deriving an expression for
Ny £ p— pioa.

We claim that for any ¢ > 1, p; lies strictly inside the simplex. Otherwise, if for some i € [n] we
have p;(i) = 0, then pie; = 0 and therefore the log-barrier term fo(p:) = >, log(pse;) approaches
—o00, whereas the return of the uniform distribution is positive which is a contradiction. We conclude
that Vi € [n] . pi(i) > 0 and therefore, p; is strictly contained in the simplex. Hence according to
convex program (2)

T
Viog(pP) |p=ps +Z Vfe(pxt) p=pr= 0
t=1

Applying the same considerations for p,_; we obtain V1og(pP) [p=py_, + > 11" VI(0T)lpmpp_, =
0. For notational convenience, denote log(pP) = Y27, log(pe;) £ Zng(nq) fi(px). Also note
that V fi(pz:) = f/(px)z. From both observations we have

T

> Horz)z — fllpraz)z] = = fr(pro1zr)or (4)

t=—n+1

By Taylor series, we have (for some Q} between p;_12¢ and pyry)

T T T
1
> fllorz) = Y fllpraw)+ D 3 {(Cr) (prae — pr—124)
t=—n+1 t=—n+1 t=—n+1



Plugging it back into equation (4) we get

T
Z C(Cmed Ne = > [fl(prae) = f(proazo)le = = fr(proazr)er (5)
t——n—i-l t=—n+1

This gives us a system of equations with the vector Np as variables from which

1
Nr =2 (— > H(ma, ) ~ar fr(pr-127) (6)

t=—n+1
Lt Ay = =Xy S
© t i=—n+1Ji \&¢ )Tty -

Now the regret can be bounded by (using equation (3)):

T

T
Z [ft(ptwt) - ft(pt—lxt)] < Z f;(Pt—lxt)thNt
t=1 t=1

by previous bound on N;

T -1
= 2 Z(ft/(pt—lxt))2 "Ly ( Z f Ct Tty > Tt
t=1

i=—n+1

IN

T
2G> Z:U:Aglxt

The following lemma is proved in Appendix B.

Lemma 5 For any set of rank 1 PSD matrices Y1, ...,Y; and constants 31, ..., By > 1 we have:

t t

o syt <O vy

i=1 i=1

Let the matrix CT = Zt——n—i—l zyx, . Applying Lemma 5 with 8; = —f//(¢}) - 4 qandY; =Cy-H
implies that V¢ . A <z C_ .
Now back to bounding the regret, we have:

3 22 o 2GS, T
Z fr(prae) — fr(pe—1me)] < — th C, vy = — ZC{ LI o
t=1 = _

To continue, we use the following lemma:

Lemma 6 For any set of rank 1 PSD matrices Y1, ...,Yp € R™™"™ such that Zi-:ll Y; is invertible,
we have

T T
S V) ey < log 2=
=k =1 |2t Yl



Since C; = Zf—£n+1 Tik l , by the Lemma above

T 2

G T:,n .I't.%'T
Z [fe(peze) — fir(pe—1ze)] < Qﬁ log PIr—— tT‘
t=n+1 ‘ Zt:*’ﬂr‘rl T, ‘

Recall that by the definition of SMOOTH PREDICTION and {f:|t € [-n + 1,0]}, we have that
Z?_fn 11 zyx] = I,,, where I,, is the n-dimensional identity matrix. In addition, since every entry

x4(1) is bounded in absolute value by 1, we have that |(Zt——n+1 xyx) )(i,5)| < T+1, and therefore
| Zt,_n 1 TeTy Tl < n!(T +1)". Plugging that into the previous expression we obtain

2 2

T

G G
Z fr(pexy) — fr(pr—1xe)] < 4ﬁlog(n!T") < 4F(nlogT+nlogn)
t=1

This completes the proof of Lemma 4. O
Theorem 1 now follows from Lemma 7 and Lemma 4.

3.1 Proof of Lemma 7

Lemma 7

T
Z fi(p*ze) — fe(pexs)] < 2nlog(nTw)
t=1

In what follows we denote fi(p) = fi(px¢), and let fo(p) = > i, log(pe;) denote the log-barrier
function. Lemma 7 follows from the following two claims.

Claim 1

M'ﬂ
==
=

T
> filpe) >

t=0 t=0

ProOOF: By induction on t. For ¢ = 1 this is obvious, we have equality. The induction step is as
follows:

T T—1
S filp) = D filpe) + frlpr)
t=0 t=0

by the induction hypothesis
T—1

> flpr—1) + frpr)

t=0

by definition of pp

T—1

Z fi(pr) + fr(pr)
t=1

T
()
t=0

Y

v



Claim 2
T

> 1fi0*) = filpr)] < 2nlog(Tw) + fo(p*)

t=1

PROOF: By the definition of pr, we have:

T T
Vh. > filpr) = D fi()
t=0 t=0

In particular, take p = (1 — a)p* + %f and we have
T

T T T
* * Q-
th(PT)—th(p ) th((l—a)PT+ﬁl)—th(P
t=0 t=0 t=0 t=0

since f; are concave and fo is monotone

T T
> (1-a)> filp") + th + fo )= fulp?)
t=1 t=0

the functions f; are p081tlve

(6%
> —aTw+nlog— = fo(p*) > —2nlog(Tw) — fo(p")

v

nlog(Tw)

To - Y

Where the last inequality follows by taking o =
Lemma 7 now follows as a corollary:

PROOF:[Lemma 7] Combining the previous two claims:

T
> 1) = filp)] =

t=1

[ft(p") = fe(pe)] — fo(p™) + fo(po)

1 11

<

[fe(p*) = fe(pr)] = fo(p™) + fo(po)

< 2nlogT + fo(po)

-
Il
o

To complete the proof, note that py = %T, and hence fy(po) = nlog%

4 Application to Universal Portfolio Management

In many cases, if an algorithm is universal (has regret converging to zero) under the no-junk-bonds
assumption, then it is universal without this assumption . The reduction, due to Helmbold et al
[HSSW96], consists of adding a small multiple of the uniform portfolio to the portfolios generated
by the algorithm at hand. This has the effect that the return of the portfolio chosen is bounded
from below, which suffices for proving universality for many algorithms.

In this section we prove that the same modification to SMOOTH PREDICTION is universal in the
general case, using similar techniques as [HSSW96].

PROOF:[Theorem 3]

For some a > 0 to be fixed later, define the portfolio p; = (1— a)pita- 17 i.e the portfolio which
is a convex combination of SMOOTH PREDICTION’s strategy at time ¢ and the uniform portfolio.
Similarly, let Z; = (1 — &)z + %T be a ”smoothened” price relative vector.



Then we have

log(ﬁtxt) -1 (1—a)pt$t+%l’t‘f

DTt (1= &)pexetSpel
> lo ((11))?# since max; 4(j) = 1
og((1—a)+2)
> _9a for a € (0, %)

Note that for every p and z; we have pz; = (1 — 2)pxs + & > . Hence, by Corollary 2

T

Z p xt 6n  log(nT)
ptxt - (oz/n)2 T

=1

Note that for every p, and in particular for p*, it holds that pz; = (1 — %)pzy + & > pay.
Combining all previous observations

Zlog—<2] g— Zl paft -ptmt)<6n o Hog(nT) + 2T«
=1 DTt =1 bty Dt Pty

Choosing a = T~1/2 yields the result. O

5 Conclusions

In subsequent work with Adam Kalai and Satyen Kale we extend the techniques hereby and ob-
tain variants of follow-the-leader which attain logarithmic regret in the general Zinkevich online
optimization framework. The efficiency of these algorithms can further improved to run in time
O(n?) per iteration. Other extensions include a variant of SMOOTH PREDICTION with logarithmic
internal regret (a stronger notion of regret, see [SL05]).
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A  Proof of Lemma 6

First we require the following claim.

Claim 3 For any PSD matrices A, B we have

- B|
B loAglog‘B_A‘
PrOOF
B leA = Tr(B1A4) '~ Ae B =Tr(AB)
=Tr(B~(B - (B - 4)))
= Tr(B/2(B — (B — A))B~1/2) " Tr(AB) = Tr(A~Y/2BA™Y/?)
=Tr(I — B"Y%(B - A)B~'/?)
S [ MBAB - AB)] () = 3 AA)
=1
<Yitilog [N(BTVA(B - A)BTA)] o1 —a < —log(x)
= —log [T, \i(B~Y2(B — A)B~Y/?)]
= —log|B~Y/2(B - A)B~Y? =log 12y - ];[1 Xi(A) = |A]
g

Lemma 6 now follows as a corollary:
PROOF:[Lemma 6] By the previous claim, we have

A d > and
§ (§ Vi) tey, < §jlog—l=1 !
s > Y- Yy

i=1 t=k
T
[ 201 Vil
k—1
| 221 il

B Proof of Lemma 5

We denote for matrices A > B if and only if A — B > 0. AB denotes the usual matrix product,
and A e B = trace(AB).

Claim 4 For any constant ¢ > 1 and psd matrices A, B > 0, such that B is rank 1, it holds that

(A+eB) ' <(A+B)™!
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PRrROOF: By the Matrix Inversion Lemma [Bro05], we have that

A~1BAT!
—1_ -1 _
(A+B)" =4 1+AleB
1 -1 cA71BA™!
(A+cB) " =A TTcAlen

Hence, it suffices to prove:
cA~1BA™! S A~'BA-!
14cA 'eB " 1+ A 1leB
Which is equivalent to (since A is psd, and all numbers are positive):

(1+A 1 eB)(cA'BA™ ) > (1+cA eB)(A'BA™Y)

And this reduces to:
(c—1)A"'BA™ >0

which is of course true. O
Lemma 5 follows as a corollary of this claim.

C Universal Portfolio Management

A constant rebalanced portfolio (CRP) is an investment strategy which keeps the same distribution
of wealth among a set of stocks from period to period. That is, the proportion of total wealth in
a given stock is the same at the beginning of each period. Recently there has been work on
on-line investment strategies which are competitive with the best CRP determined in hindsight
[0C96, CovIl, CO96, Cov96, KV03b, BK97, HSSWI6], in the sense that the daily performance of
these algorithms approaches that of the best CRP as the number of periods grows without bound.

As an example of a useful CRP, consider the following market with just two stocks. The price
of both stocks alternately halves and doubles, but with inverse correlation - when one stock halves
the other doubles. Investing in a single stock will not increase the wealth by more than a factor of
two. However, a (%, %) CRP will increase its wealth exponentially. At the end of each day it trades
stock so that it has an equal worth in each stock. Each day, the total worth is increased by a factor
of %

Consider a market with n stocks and T" days. The obvious parameter to measure the perfor-
mance of a given investment algorithm is the (normalized) rate at which it accumulates wealth
compared to the best CRP in hindsight, formally

1 < wealth of A >

T lo wealth of best CRP

This performance measure fits naturally to the repeated play model. The wealth of the online
player after T' trading days is the initial wealth multiplied by H,f:l prxy, where p; is the portfolio
at time t and x; is the price relatives vector, i.e. z4(i) is the ratio of the prices of stock i at
trading days ¢ and ¢t — 1 (see [Cov91] for more details on this model). Hence, the logarithm of the
wealth fits to the repeated play model where the concave function applied each iteration is simply
fi(p) = log(pz;). With these payoff functions, the performance measure above is simply the regret
(normalized by the number of iterations).

An investment algorithm A is called universal if %R(A) — 0 as T+ oco. The ”no-junk-
bonds” assumption asserts that the price relatives are bounded away from zero.

13



