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Abstract

This dissertation deals with several topics related to the problem of finding dominators

in flowgraphs. The concept of dominators has applications in various fields, including

program optimization, circuit testing and theoretical biology. We are interested both in

asymptotically fast algorithms and in algorithms that are practical.

We begin with an experimental study of various algorithms that compute domina-

tors efficiently in practice. We describe two practical algorithms that have been proposed

in the related literature: an iterative algorithm initially presented by Allen and Cocke

and later refined by Cooper, Harvey and Kennedy, and the well-known algorithm of

Lengauer and Tarjan. We discuss how to achieve efficient implementations, and further-

more, introduce a new practical algorithm. We present a thorough empirical analysis

using real as well as artificial data.

Then we present a linear-time algorithm for dominators implementable on the pointer

machine model of computation. Previously, Alstrup, Harel, Lauridsen and Thorup gave

a complicated linear-time algorithm for the random-access model. Buchsbaum, Kaplan,

Rogers and Westbrook presented a simpler dominators algorithm, implementable on a

pointer machine and claimed linear running time. However, as we show, one of their

techniques cannot be applied to the dominators problem and, consequently, their algo-

rithm does not run in linear time. Nonetheless, based on this algorithm, we show how to

achieve linear running time on a pointer machine.

Next we address the question of how to verify dominators. We derive a linear-time

verification algorithm, which is much simpler than the known algorithms that compute
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dominators in linear time. Still, this algorithm is non-trivial and we believe it provides

some new intuition and ideas towards a simpler dominators algorithm.

Finally we study the relation of dominators to spanning trees. Our central result is a

linear-time algorithm that constructs two spanning trees of any input flowgraph G, such

that corresponding paths in the two trees satisfy a vertex-disjointness property we call

ancestor-dominance. This result is related to the concepts of independent spanning trees and

directed st-numberings, previously studied by various authors, and implies linear-time

algorithms for these constructions.
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→ ŝ(v)
+
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Chapter 1

Introduction

All the problems that we consider in this dissertation are centered around the concept of

dominators in flowgraphs. In this short chapter we define the dominators problem, provide

motivation for its study, and give an overview of the dominators algorithms that have

been proposed in the related literature. Finally, we outline the organization of the results

presented in the following chapters.

1.1 Dominators in flowgraphs

A flowgraph G = (V,A, r) is a directed graph where every vertex in V is reachable from a

distinguished root vertex r ∈ V . A vertex w dominates a vertex v if every path from r to v

includes w. Let dom(v) be the set of the vertices that dominate v. Obviously, r and v, the

trivial dominators of v, are in dom(v). For v 6= r, the immediate dominator of v, denoted by

d(v), is the unique vertex w 6= v that dominates v and is dominated by all the vertices in

dom(v)− v. The (immediate) dominator tree is a directed tree I rooted at r that is formed by

the arcs {(d(v), v) | v ∈ V − r}. A vertex w dominates v if and only if w is an ancestor of v

in I [ASU86]. Thus I is a compact representation of the dominance relation in G. Certain

applications require computing the postdominators of G, defined as the dominators in the

graph obtained from G by reversing all arc orientations. In this setting, it is assumed that

1



2

G contains a sink vertex that is reachable from all the vertices of G.

Throughout this dissertation, m is the number of arcs and n is the number of vertices

in G.

1.2 Applications

The dominators problem occurs in several application areas, such as program optimiza-

tion, code generation, circuit testing and theoretical biology.

Compilers make extensive use of dominance information during program analysis

and optimization. Perhaps the best-known application of dominators is natural loop de-

tection, which in turn enables a host of natural loop optimizations [Muc97]. Structural

analysis [Sha80] also depends on dominance information. Postdominance information is

used in calculating control dependences in program dependence graphs [FOW87]. Dom-

inator trees are used in the computation of dominance frontiers [CFR+91], which are

needed for efficiently computing program dependence graphs and static single-assignment

forms. A dominator-based scheduling algorithm has also been proposed [SB92].

Apart from its applications in compilation, dominators are also used in VLSI testing

for identifying pairs of equivalent line faults in logic circuits [AFPB01].

Theoretical biology is another field where dominator analysis has been applied. Specif-

ically, in [AB04, ABB] dominators are used for the analysis of the extinction of species in

trophic models (also called foodwebs).

1.3 Algorithms for finding dominators

The problem of finding dominators has been extensively studied. In 1972 Allen and

Cocke showed that the dominance relation can be computed iteratively from a set of

data-flow equations, where the main operation is computing the intersection of sets of

vertices [AC72]. A direct implementation of this method has O(mn2) worst-case time

bound, which is very pessimistic in practical settings. A slightly faster algorithm is ob-



3

tained by representing each set as an array of bits; then the intersection of two sets is

formed by a bitwise AND operation [ASU86]. Assuming that b consecutive bits can be

manipulated in constant time, the worst-case bound becomes O(mn2/b). Purdom and

Moore [PM72] gave a straightforward dominators algorithm with complexity O(mn). It

consists of performing a search in G − v for each v ∈ V ; clearly v dominates all the ver-

tices that become unreachable from r. Improving on previous work by Tarjan [Tar74],

Lengauer and Tarjan [LT79] proposed an O(m log n)-time algorithm and a more compli-

cated O(mα(m,n))-time version, where α(m,n) is a functional inverse of the Ackermann

function and it is extremely slow-growing. The Ackermann function has several defini-

tions which are essentially equivalent (up to some constant factors). In [Tar83], Tarjan

defines this function by the following recursive relations:

A(1, j) = 2j for j ≥ 1,

A(i, 1) = A(i− 1, 2) for j ≥ 1,

A(i, j) = A(i− 1, A(i, j − 1)) for i, j ≥ 2.

The inverse α(m,n) is defined as

α(m,n) = min{i ≥ 1 | A(i, bm/nc) > log n}.

For all practical purposes this function is a constant not greater than four. Note that for

fixed n, α(m,n) is a decreasing function of m/n. In particular, as shown in [Tar75, Tar83],

we have

α(m,n) ≤ 2 for bm/nc ≥ log∗ n, (1.1)

where log∗ n = min{i | log(i) n ≤ 1} and log(i) n is defined by log(0) n = n and log(i) n =

log(i−1) log n, i ≥ 1.

Even though the Lengauer-Tarjan (LT) algorithm is fairly complicated, it runs fast

in practice. There are even more complicated truly linear-time algorithms. Alstrup et

al. [AHLT99] gave a linear-time algorithm for the random-access model of computation.
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A simpler algorithm, also implementable on a pointer machine, was proposed by Buchs-

baum et al. [BKRW98b]. This algorithm was later shown to have the same time complex-

ity as LT [GT04], and the corrected truly linear-time version is more complicated and re-

quires a RAM (see the Corrigendum of [BKRW98b]). Finally, in joint work with R. E. Tar-

jan we gave a linear-time algorithm for the pointer-machine computation model [GT04],

which is described in Section 3.3.

1.4 Outline

The topics treated in Chapters 3 to 5 are related but fairly independent. Still they have

some dependencies that are indicated here. Chapter 2 involves an experimental study

of various algorithms that compute dominators efficiently in practice. We discuss how

to achieve efficient implementations of some standard algorithms, and furthermore, in-

troduce a new practical algorithm. We present a thorough empirical analysis of these

algorithms using real data from four application areas, as well as some artificial data.

Part of this work was completed jointly with R. Werneck, R. E. Tarjan, S. Triantafyllis

and D. August, and appeared in [GWT+04]. A revised and extended version appears in

[GTW].

In Chapter 3 we present a linear-time algorithm for dominators, implementable on the

pointer machine model of computation. We start by exhibiting a problem in the analysis

of the dominators algorithm proposed by Buchsbaum et al. [BKRW98a, BKRW98b], and

provide a modified algorithm that overcomes this problem and achieves linear running

time on a pointer machine. Our algorithm (as well as the Buchsbaum et al. algorithm) is

based on the algorithm proposed by Lengauer and Tarjan in [LT79], which is reviewed

in Section 2.2. Moreover, we present several variants of our basic algorithm, which pro-

vide further intuition on the dominators problem. An extended abstract with an earlier

version of the material covered in Sections 3.2.3, 3.3 and 3.6 appeared in [GT04] in joint

work with R. E. Tarjan. The linear-time algorithms presented in Sections 3.3 and 3.4 will
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appear in a joint paper with A. L. Buchsbaum, H. Kaplan, A. Rogers, R. E. Tarjan and J.

Westbrook [BGK+].

Next, in Chapter 4, we consider the problem of verifying the dominators of a flow-

graph. We derive a linear-time algorithm for this verification problem, which is much

simpler than the known linear-time algorithms that compute dominators. Still, this algo-

rithm is non-trivial and provides new intuition and ideas which may lead to a simpler

algorithm for computing dominators. This work was done jointly with R. E. Tarjan and

is covered in [GT05].

In Chapter 5 we study the relation of dominators to spanning trees. Our central result

is a linear-time algorithm that, given any flowgraph G, constructs two spanning trees of

G, such that corresponding paths in the two trees satisfy a certain vertex-disjointness

property. This result is related to the concepts of independent spanning trees and directed

st-numberings (previously studied by various authors) which apply to a restricted class

of flowgraphs. We show that an extension of our spanning trees algorithm constructs

a directed st-numbering in linear time. Finally, we generalize the related concepts for

any flowgraph and provide corresponding linear-time constructions. This is joint work

with R. E. Tarjan. The algorithm of Section 5.4 appeared in [GT05]. A journal publication

containing all the results of this chapter is in preparation.

Finally, in Chapter 6, we list a few related open problems. The Appendix contains a

brief description of concepts from graph theory and algorithms that we use throughout

the text and defines the relevant notation.



Chapter 2

Practical Algorithms for Dominators

Experimental results for the dominators problem appear in [LT79, BKRW98b, CHK].

In [LT79] Lengauer and Tarjan found the almost-linear-time version of their algorithm

(LT) to be faster than the simple O(m log n) version even for small graphs. They also

showed that the Purdom-Moore [PM72] algorithm is only competitive for graphs with

fewer than 20 vertices, and that a bit-vector implementation of the iterative algorithm,

by Aho and Ullman [AU77], is 2.5 times slower than LT for graphs with more than 100

vertices. Buchsbaum et al. [BKRW98b] showed that their original (non-linear-time algo-

rithm) has low constant factors, being only about 10% to 20% slower than LT for graphs

with more than 300 vertices. Cooper et al. [CHK] presented clever tree-based space- and

time-efficient implementation of the iterative algorithm, which they claimed to be 2.5

times faster than the simple version of LT. However, a more careful implementation of

LT later led to different results (personal communication). Still, in most practical settings

the Cooper et al. algorithm is competitive with more sophisticated algorithms and has

the advantage of being very simple to implement.

In this chapter, we present a thorough experimental analysis of algorithms that com-

pute dominators efficiently in practice. Specifically, we explore the effects of different

initializations and processing orderings on the tree-based iterative algorithm. We also

discuss implementation issues that make both versions of LT faster in practice and com-

6
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petitive with simpler algorithms even for small graphs. Furthermore, we introduce a new

practical algorithm that combines LT with the iterative algorithm. For our empirical anal-

ysis we use real as well as artificial data. We have not included linear-time algorithms in

this study; they are significantly more complex and thus unlikely to be faster than LT in

practice. These algorithms have theoretical value and are discussed in Chapter 3.

2.1 The iterative algorithm

Without loss of generality we can assume that r has no entering arcs, since they have

no effect on dominators. Then the sets dom(v) are the unique maximal solution to the

following data-flow equations:

dom’(v) =
( ⋂

u∈pred(v)

dom’(u)
)
∪ {v}, ∀ v ∈ V. (2.1)

As Allen and Cocke [AC72] showed, one can solve these equations iteratively by

initializing

dom’(v)←





{r} , v = r

V, otherwise
,

and repeatedly applying the following step until it no longer applies:

Find a vertex v such that (2.1) is false and replace dom’(v) by the expression
on the right side of (2.1).

A simple way to perform this iteration is to cycle repeatedly through all the vertices

of V until no dom’(v) changes. It is unnecessary to initialize all the sets dom’(v) if unini-

tialized sets are excluded from the intersection in (2.1) and we assign dom′(r) ← {r}. In

this case, an iterative step is applied to a vertex v only if a value has been computed for

at least one u ∈ pred(v). It is also possible to initialize more accurately the sets dom’(v).

Specifically, if S is any subgraph of G and also a tree (spanning or not) rooted at r, we
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can initialize dom’(v) for v ∈ S to be the set of ancestors of v in S, and leave dom’(v) for

v 6∈ S uninitialized.

Cooper et al. [CHK] improved the efficiency of this algorithm by observing that we

can represent all the sets dom’(v) by a single tree and perform an iterative step as an

update of the tree. Specifically, we begin with any tree T rooted at r and repeat the

following step until it no longer applies:

Find a vertex v such that

pred(v) ∩ T 6= ∅ and pT (v) 6= NCA(T, pred(v));

replace pT (v) by NCA(T, pred(v)).

(If v is not currently in T then pT (v) is defined as null.) The correspondence between

this algorithm and the original algorithm is that for each vertex in T , dom’(v) is the set

of ancestors of v in T . The intersection of dom’(u) and dom’(v) is the set of ancestors of

NCA(T, {u, v}) in T . Once the iteration stops, the current tree T is the dominator tree

I . One can also perform the iteration arc-by-arc rather than vertex-by-vertex, replacing

pT (v) by NCA(T, {pT (v), u}) for an arc (u, v) such that u ∈ T (Figure 2.1). The most

straightforward implementation is to cycle repeatedly through the vertices (or arcs) until

T does not change.

The number of iterations through the vertices (or arcs) depends on the order in which

the vertices (or arcs) are processed. Kam and Ullman [KU76] show that certain data-flow

equations, including (2.1), can be solved in at most l(G,D)+3 iterations when the vertices

are processed in reverse postorder with respect to a DFS tree D. Here l(G,D) is the loop

connectedness of G with respect to D, the largest number of back arcs found in any cycle-free

path of G.

The running time per iteration is dominated by the time spent on NCA computations.

If these are performed naı̈vely (ascending the tree paths until they meet), then a single

iteration takes O(mn) time. Because there may be up to O(n) iterations, the running

time is O(mn2). The iterative algorithm runs much faster in practice, however. Typically
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v

u

u

pT (v)

w v

w = pT (v)

process (u, v)

NCA(T, {pT (v), u})

Figure 2.1: The basic step of the iterative algorithm: Processing an arc (u, v). The dashed
arcs correspond to tree paths. The dotted arcs are not in T .

l(G,D) ≤ 3 [Knu71], and it is reasonable to expect that few NCA calculations will require

O(n) time. If T is represented as a dynamic tree [ST83], the worst-case bound per iteration

is reduced to O(m log n), but the implementation becomes much more complicated and

unlikely to be practical.

2.1.1 Initializations and vertex orderings.

Our base implementation of the iterative algorithm starts with T ← {r} and processes

the vertices in reverse postorder with respect to a DFS tree, as done in [CHK]. We refer

to this implementation as IDFS (see Figure 2.3). This requires a preprocessing phase that

performs a DFS on the graph and assigns a postorder number to each vertex. We do not

initialize T as a DFS tree because this is bad both in theory and in practice: it causes the

back arcs to be processed in the first iteration, even though they contribute nothing to the

NCAs.

Intuitively, a much better initial approximation of the dominator tree is a BFS tree.
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We implemented a variant of the iterative algorithm (which we call IBFS) that starts with

such a tree and processes the vertices in BFS order. As Section 2.5 shows, this method is

often (but not always) faster than IDFS.

We note that there is an ordering σ of the arcs that is optimal with respect to the

number of iterations that are needed for convergence. This is stated in the following

lemma.

Lemma 2.1 There exists an ordering σ of the arcs of G such that if the iterative algorithm pro-

cesses the arcs according to σ, then it will construct the dominator tree of G in a single iteration.

Proof: We will use the ancestor-dominance spanning trees of Theorem 5.1 (see Chapter

5). This theorem states that G has two spanning trees T1 and T2 such that for any v,

T1[r, v]∩T2[r, v] = dom(v). We construct σ by catenating a list σ1 of the arcs of T1 with a list

σ2 of the arcs of T2 that are not contained in T1. The arcs in σi are sorted lexicographically

in ascending order with respect to a preorder numbering of Ti. The iterative algorithm

starts with T ← {r} and after processing the arcs of σ1 we will have T = T1. We show by

induction that after (pT2
(v), v) is processed we will have pT (v) = d(v). This is immediate

for any child of r in T2. Suppose now that u = pT2
(v) 6= r. Since (pT2

(u), u) has been

processed before (u, v), we have by the induction hypothesis that x = NCA(T, {u, v}) is

a dominator of u. Thus, by Theorem 5.1, x is an ancestor of u in both T1 and T2. Since

u ∈ T2[r, v], x is also an ancestor of v in T2. Note that when a vertex w moves to a new

parent in T , it ascends the path T [r, w]. So, the set of ancestors of w in T is always a subset

of the set of its ancestors in T1. This implies that x is also an ancestor of v in T1, and by

Theorem 5.1, x dominates v. Now notice that d(v) dominates u. If not, there would be a

path P from r to u that avoids d(v), and then P followed by (u, v) would be a path from r

to v that avoids d(v), a contradiction. Therefore, d(v) ∈ T [r, v] ∩ T [r, u] and together with

the fact x ∈ dom(v) we conclude that x = d(v). 2

When G is acyclic the dominator tree is built in one iteration. This is because reverse

postorder is a topological sort of the vertices, so for any vertex v all vertices in pred(v) are
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processed before v. The iterative algorithm will converge in a single iteration also if G is

reducible [HU74], i.e., when the repeated application on G of the following operations

(i) delete a loop (v, v);

(ii) if (v,w) is the only arc entering w 6= r delete w and replace each arc (w, x) with

(v, x),

yields a single node. Equivalently, G is reducible if every loop has a single entry vertex

from r. In a reducible flowgraph, v dominates u whenever (u, v) is a back arc [Tar73].

Therefore, deletion of back arcs, which produces an acyclic graph, does not affect domi-

nators. Alstrup and Lauridsen [AL96] combine this observation together with Gabow’s

linear-time NCAs algorithm [Gab90] (which allows the input tree to grow by adding

leaves), to get a linear-time algorithm for finding dominators in reducible graphs.

Using the algorithm of Section 5.4 we can construct the ancestor-dominance spanning

trees, and therefore σ, in almost-linear time, or linear time using the more complicated

methods (see Section 3.4). An open question, of both theoretical and practical interest, is

whether there is a simple linear-time construction of such an ordering.

One may ask whether any graph has a fixed ordering of its vertices that guarantees

convergence of the iterative algorithm in a constant number of iterations. The answer

to this question is negative; Figure 2.2 shows linearvit(k), a graph family that requires

Θ(k) = Θ(n) iterations. Note that, if we allow the vertex ordering to be different in

each iteration, then Lemma 2.1 trivially implies that two iterations suffice to build the

dominators tree.

2.1.2 Marking.

It is reasonable to expect that not all the dom’(v) sets will be updated in each iteration.

We could obtain significant savings if we could locate and mark the vertices that need to

be processed in the next iteration. However, we cannot locate these vertices efficiently,

since assigning a new parent in T to a vertex v may require marking all the successors in
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x3 x4 x5 x7

w

r

y

x1 x2 x6

Figure 2.2: Graph family linearvit(k). In this instance k = 7. The iterative algorithm needs
Θ(k) iterations to converge when we initialize T ← {r}, and the vertices are processed
with in any fixed order in each iteration.

G of each vertex in Tv. Indeed, as it turned out in our experiments, this marking scheme

added a significant overhead to the iterative algorithm, which became much slower on

most graphs (the exceptions were a few artificial graphs). Hence, we did not include

these results in Section 2.5.

2.2 The Lengauer-Tarjan algorithm

The Lengauer-Tarjan algorithm initially performs a depth-first search on G starting from

r and assigns a preorder number to each vertex it visits. We will refer to the vertices

by their preorder number. Let D be the resulting DFS-tree, which we represent by an

array parent. The algorithm is based on the definition of semidominators, which give an

initial approximation to the immediate dominators. Lengauer and Tarjan define a path

P = (u = v0, v1, . . . , vk−1, vk = v) in G to be a semidominator path (abbreviated as sdom

path) if vi > v for 1 ≤ i ≤ k − 1. The semidominator of vertex v is defined as

s(v) = min{u | there is an sdom path from u to v}. (2.2)

The next lemma relates the dominators of a vertex with the dominators of its descen-

dants in D.
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Algorithm IDFS(G = (V, A, r))

D ← DFS(r), T ← {r}, changed← true

while changed do

changed← false

for v ∈ V − r in reverse postorder of D do

x← 0

for u ∈ pred(v) such that parent[u] 6= 0 do

if parent[v] 6= 0 then

if x 6= 0 then x← intersect(x, v) else x← u endif

endif

done

if x 6= parent[v] then parent[v]← x, changed← true endif

done

done

int intersect(x, y)

while x 6= y do

while x < y do x← parent[x] done

while y < x do y ← parent[y] done

done

return x

Figure 2.3: Algorithm IDFS. The DFS assigns postorder numbers to the vertices. These
numbers are used by intersect to find NCA(T, {x, y}). Tree T is represented by an array
parent. Initially parent[v] = 0, for all v. During the course of the algorithm we have
v ∈ T ⇔ parent[v] 6= 0.
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4

5

1=s(3)

2=s(4)

3

7

8

6

Figure 2.4: Semidominator paths and semidominators. The vertices are numbered in
preorder with respect to the DFS tree shown with solid arcs. Non-tree arcs are dotted.
The path (2, 6, 7, 8, 5, 4) is an sdom path for 4, hence s(4) = 2. The forward arc (1, 3)
constitutes an sdom path for 3, so s(3) = 1.

Lemma 2.2 [LT79] Let v and w be any vertices that satisfy v
∗
→ w. Then v

∗
→ d(w) or d(w)

∗
→

d(v).

A relation among d(w), s(w) and w is given in the following result:

Lemma 2.3 [LT79] For any vertex w 6= r, d(w)
∗
→ s(w)

+

→ w.

We will use two more lemmas from [LT79]. The first provides an efficient way to

compute semidominators and the second suggests how to use semidominators in order

to compute immediate dominators.

Lemma 2.4 [LT79] For any vertex w 6= r,

s(w) = min
(
{v | (v,w) ∈ A and v < w} ∪ {s(u) | u > w and ∃ (v,w) such that u

∗
→ v}

)
.

Lemma 2.5 [LT79] Let w 6= r and let u be a vertex for which s(u) is minimum among vertices

u satisfying s(w)
+

→ u
∗
→ w. Then s(u) ≤ s(w) and d(u) = d(w). Moreover, if s(u) = s(w)

then d(w) = s(w).

The two lemmas imply that we can compute semidominators and immediate dom-

inators by finding minimum semidominator values on paths of D. Moreover, by the
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properties of DFS it follows that if we process the vertices in reverse preorder then all

the necessary values will be available when needed. In order to keep track of the paths

on which it evaluates the minima, the algorithm maintains a forest F such that when it

needs the minimum s(u) for all u on a path P = D(w, v], then w is the root of the tree in F

that contains all the vertices in P . Initially each node in V is a singleton tree in F . For any

vertex v ∈ V we denote by rF (v) the root of the tree the contains v in F . The operations

that are preformed on F are:

link(v): Add arc (p(v), v) to F . This links the tree rooted at v in F to the tree rooted at

pT (v) in F .

eval(v): If v = rF (v) return v. Otherwise, return a vertex of minimum semidominator

among the vertices u that satisfy rF (v)
+

→ u
∗
→ v.

Procedure LT of Figure 2.5 gives the outline of the Lengauer-Tarjan algorithm. We use

an array semi to store the semidominators of the vertices. After vertex w is processed we

have semi[w] = s(w). Then w is inserted in a bucket associated with vertex s(w) and is

processed again after s(v) has been computed, where v satisfies s(w) → v
∗
→ w. At this

point we have all the information we need to apply Lemma 2.5 and compute either the

immediate dominator or a relative dominator of w. The latter is an ancestor of w that has

the same immediate dominator as w. The immediate dominators can be derived from the

relative dominators in a simple preorder pass of the vertices (last for loop in Figure 2.5).

2.2.1 The simple implementation of link-eval.

In order to make evals efficient we use path compression in F . Therefore instead of main-

taining the forest F we maintain a virtual forest F with the following properties:

(a) For each T in F there is a corresponding virtual tree T in F with the same vertices

and the same root as T .
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Algorithm LT(G = (V, A, r))

D ← DFS(r)

for w ∈ V − r in reverse preorder of D do

semi[w]← w

for v ∈ pred(w) do

x← eval(v)

semi[w]← min {semi[w], semi[x]}

done /* at this point semi[w] = s(w) */

add w to bucket[semi[w]]

link(w)

z ← parent[w]

for v ∈ bucket[z] do

delete v from bucket[z]

y ← eval(v)

if semi[y] < z then idom[v]← y else idom[v]← z endif

done

done

for w ∈ V − r in preorder of D do

if idom[w] 6= semi[w] then idom[w]← idom[idom[w]] endif

done

Figure 2.5: The Lengauer-Tarjan algorithm.
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compress(v)

u← ancestor[v]

if ancestor[u] 6= 0 then

compress(u)

if semi[label[u]] < semi[label[v]] then

label[v] ← label[u]

endif

ancestor[v]← ancestor[u]

endif

link(w)

ancestor[w]← parent[w]

int eval(v)

if ancestor[v] 6= 0 then

compress(v)

return label[v]

else

return v

endif

Figure 2.6: Simple implementation of link-eval.

(b) For any vertex v we maintain a value label[v] such that

semi[eval(v)] = min{semi[label[u]] | rF (v)
+

→F u
∗
→F v}. (2.3)

We represent F with an array ancestor, so that ancestor[v] = pF (v). Path compression is

implemented by procedure compress of Figure 2.6, which makes every vertex u such that

rF (v)
+

→F u
∗
→ v a child of rF (v) = rF (v), i.e. we set ancestor[u] ← rF (v). Initially for all

v ∈ V we have ancestor[v] = 0. We also use an array label to maintain vertices with mini-

mum semi values in the compressed paths, so that Property (b) is satisfied. Note that for

any vertex v such that ancestor[v] = pF (v) we will have label[v] = v. This implementation

achieves O(m log(2+m/n) n) running time for n− 1 links and m evals [TvL84].

As mentioned in [LT79], we do not in fact need to keep a separate ancestor array.

Instead we can keep track of the last vertex that was linked, denoted by lastlinked. Then

we can use the array parent to represent both the part of the DFS tree that corresponds

to the (unprocessed) vertices v < lastlinked and the part of the virtual forrest for the

(processed) vertices v ≥ lastlinked, since these two parts are disjoint. Therefore we can

replace the test ancestor[u] 6= 0 by u ≥ lastlinked. This modification does not affect later
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stages of the algorithm since we only need to know which vertex is p(v) when we execute

link(v). This also implies that in the simple version version of the LT algorithm we don’t

need to perform link(v) explicitly since the linking is implied when we update the value

of lastlinked. We incorporated these observations in our implementation of the simple

version of LT. Henceforth we refer to this implementation as SLT.

2.2.2 The almost-linear-time implementation of link-eval.

A more sophisticated linking process, that keeps F balanced, achieves an O(mα(m,n))

running time [Tar79a]. To that end we need to keep for each vertex w a value size[w]

which is the size of the subtree rooted at w in F . We also require that F satisfies an

additional property:

(c) Each tree T in F consists of subtrees STi with roots ri, 0 ≤ i ≤ k, such that

semi[label[rj ]] ≥ semi[label[rj+1]], 0 < j < k.

Note that STi is different from the subtree of T rooted at ri, which we denote by Ti,

since it does not include STj , for j > i. Thus, |STi| = size[ri] − size[ri+1]. When we

perform link(w) the semidominator of p(w) is not known, and we do not require that

semi[label[r0]] ≥ semi[label[r1]]. Note that eval(v) for v ∈ STj , j > 0, does not need the semi

values on the path F [r0, rj ], and therefore it suffices to compress the path F [rj , v]. We

achieve this effect by setting ancestor[rj ] ← 0, 0 ≤ j ≤ k. Consequently we only need to

keep the subtrees STi balanced. We keep track of the STis using an array child such that

child[ri] = ri+1, 0 ≤ i < k. Note that we need to maintain these values only for subtree

roots.

Figure 2.7 gives the code for the almost-linear-time versions of link and eval. When

link(w) is called we have semi[w] = s(w) and Property (c) may not hold. The property is

restored by procedure update. Also note that we need to modify the eval function slightly

to account for the fact that after compress(v) we may have ancestor[v] 6= rF (v), which

means that label[ancestor[v]] could be the required value.
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int update(w)

s← w

t← child[s]

while semi[label[w]] < semi[label[t]] do

if size[s] + size[child[t]] ≥ 2size[t] then

ancestor[t]← s

child[s]← child[t]

else

size[t]← size[s]

ancestor[s]← t

s← ancestor[s]

endif

t← child[s]

done

label[s]← label[w]

return s

link(w)

s← update(w)

v ← parent[w]

size[v]← size[v] + size[w]

if size[v] < 2sizew then

t← child[v]

child[v]← s, s← t

endif

while s 6= 0 do

ancestor[s]← v, s← child[s]

done

int eval(v)

z ← ancestor[v]

if z 6= 0 then

compress(v)

if semi[label[z]] ≥ semi[label[v]]

then return label[v]

else return label[z]

endif

else return label[v]

endif

Figure 2.7: The almost-linear-time implementation of link-eval.
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Unlike SLT here we can’t combine the arrays parent and ancestor, since we may have

ancestor[v] = 0 even after v is linked. But since child[v] 6= 0 only if ancestor[v] = 0 we can

combine the arrays child and ancestor in one array anchd. Because we need to distinguish

whether v is a (sub)tree root we represent child with negative integers. That is, v is a

(sub)tree root if and only if anchd[v] ≤ 0. Also anchd[v] > 0 implies ancestor[v] = anchd[v]

and anchd[v] < 0 implies child[v] = −anchd[v]. We refer to this version of the almost-

linear-time LT as LT.

2.2.3 Implementation issues.

Buckets in the Lengauer-Tarjan algorithm have very specific properties:

(1) every vertex is inserted into at most one bucket;

(2) there is exactly one bucket associated with each vertex;

(3) vertex i can only be inserted into some bucket after bucket i itself is processed.

Properties (1) and (2) ensure that buckets can be implemented with two n-sized arrays,

first and next: first[i] represents the first element in bucket i, and next[v] is the element

that succeeds v in the bucket it belongs to. Property (3) ensures that these two arrays can

actually be combined into a single array bucket.

In [LT79], Lengauer and Tarjan process bucket[parent[w]] at the end of the iteration that

deals with w, hence the same bucket may be processed several times. A better alternative

is to process bucket[w] in the beginning of the iteration; each bucket is now processed ex-

actly once, so it need not be emptied explicitly. Another measure that is relevant in prac-

tice is to avoid unnecessary bucket insertions: a vertex w for which parent[w] = semi[w] is

not inserted into any bucket because we already know that d(w) = p(w).
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2.3 The SEMI-NCA algorithm

In this section, we introduce SEMI-NCA, a new hybrid algorithm for computing domi-

nators that works in two phases:

(1) Compute s(v) for all v 6= r, as done by LT.

(2) Build I incrementally as follows: Process the vertices in preorder. For each vertex

w, we ascend the path I[r, p(w)] until we meet the first vertex x such that x ≤ s(w),

and set x to be the parent of w in I . Here p(w) is the parent of w in the DFS tree

used in phase (1).

The correctness of this algorithm is based on the following result:

Lemma 2.6 For any vertex w 6= r, d(w) is the nearest common ancestor in I of s(w) and p(w),

i.e.,

d(w) = NCA(I, {p(w), s(w)}).

Proof: By Lemma 2.3, we have that d(w)
∗
→ s(w)

∗
→ p(w). Obviously, if p(w) = d(w) then

d(w) = s(w) and we are done. Now suppose p(w) 6= d(w). Then also p(w) 6= s(w). First

we observe that any vertex u in D(d(w), w] is dominated by d(w); if not then there would

be a path from r to u that avoids d(w), which catenated with D[u,w] forms a path from r

to w that avoids d(w), a contradiction. Hence, both s(w) and p(w) are dominated by d(w).

If d(w) = s(w) then clearly d(w) is the nearest common dominator of s(w) and p(w).

Now suppose d(w) 6= s(w). Let v be any vertex such that d(w)
+

→ v
∗
→ s(w). Then there

is a path P from d(w) to w that avoids v. Let z be the first vertex on P that satisfies

v
+

→ z
∗
→ p(w). This vertex must exist, since otherwise s(w) < v which contradicts the

choice of v. Therefore v cannot be a dominator of p(w). Since d(w) dominates both p(w)

and s(w), we conclude that d(w) is nearest common ancestor of s(w) and p(w) in I . 2

The above lemma implies that x = d(w). Another way to derive this result follows

by applying the iterative algorithm on the graph G′ = (V,A′, r), where A′ consists of the
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arcs (p(w), w) and (s(w), w), for all w ∈ V − r. Clearly the semidominator of any vertex

is the same in both G and G′. Hence, by Lemma 2.5, the dominators are also the same.

Finally, since G′ is acyclic the iterative algorithm IDFS builds the dominator tree in one

iteration.

If we perform the search for d(w) naively, by visiting all the vertices in the path

I[d(w), p(w)], the second phase runs in O(n2) worst-case time. However, we expect it

to be much faster in practice, since our empirical results indicate that s(v) is usually a

good approximation to d(v). SEMI-NCA is simpler than LT in three ways. First, eval

can return the minimum value itself rather than a vertex that achieves that value. This

eliminates one array and one level of indirect addressing (compare compress of Figure 2.6

to snca compress of Figure 2.8.) Second, buckets are no longer necessary because the ver-

tices are processed in preorder in the second phase. Finally, it performs one fewer pass

over the vertices, since it does not need to compute immediate dominators from relative

dominators.

With the simple implementation of link and eval (which is faster in practice), this

method (which we call SNCA) runs in O(n2) worst-case time. Gabow [Gab90] and later

Cole and Hariharan [CH05] showed how to compute NCAs in total linear time on trees

that can grow through the addition of leaves.1 These results imply that the running

time of the second phase of SEMI-NCA can be reduced to O(n). In fact, together with

Lemma 2.6, these algorithms would yield a linear-time algorithm for computing domi-

nators, if one could compute semidominators in O(m+n) time. However, the algorithms

in [Gab90, CH05] are rather complicated, and therefore unlikely to be practical for the

computation of dominators.

1They also allow the input tree to be modified through other operations.
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Algorithm SNCA(G = (V, A, r))

D ← DFS(r)

for w ∈ V − r in reverse preorder of D do

for v ∈ pred(w) do

snca compress(v)

semi[w] ← min {semi[w], label[v]}

done

label[w] ← semi[w]

done

for v ∈ V − r in preorder of D do

while idom[v] > semi[v] do

idom[v]← idom[idom[v]]

done

done

snca compress(v)

u← ancestor[v]

if ancestor[u] 6= 0 then

compress(u)

if label[u] < label[v] then label[v]← label[u] endif

ancestor[v]← ancestor[u]

endif

Figure 2.8: The SEMI-NCA algorithm.
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2.4 Worst-case behavior

This section describes families of graphs that elicit the worst-case behavior of the algo-

rithms we implemented. In particular, they show that neither IBFS nor IDFS dominate

the other: there are instances on which one algorithm is asymptotically faster than the

other. The worst-case graphs also confirm that the time bounds we have presented for

SNCA, IBFS, and IDFS are tight. Although such graphs are unlikely to appear in prac-

tice, similar patterns may occur within real-world instances. Also, as discussed by Gal et

al. [GPF04, GPF05], in an extreme situation a malicious user could exploit the worst-case

behavior of optimizing compilers to launch a denial-of-service attack.

Figure 2.9 shows graph families that favor particular methods against the others. For

each family, we define a parameter k that controls the size of its members. We denote by

Gk = (Vk, Ak) the member that corresponds to a particular value of k.

Iterative. Family itworst(k) contains worst-case inputs for the iterative methods. The set

of vertices Vk is defined as {r} ∪ {wi, xi, yi, zi | 1 ≤ i ≤ k}. The set of arcs Ak is the union

of

{(r, w1), (r, x1), (r, zk)} , {(wi, wi+1), (xi, xi+1), (yi, yi+1), (zi, zi+1) | 1 ≤ i < k} ,

{(zi, zi−1) | 1 < i ≤ k} , {(xk, y1), (yk, z1)} , and {(yi, wj) | 1 ≤ i, j ≤ k} .

We have |Vk| = 4k + 1 and |Ak| = k2 + 5k. Because of the chain of k back arcs (zi, zi−1),

the iterative methods need Θ(k) iterations to converge. Each iteration requires Θ(k3)

operations to process the k2 arcs (yi, wj), so the total running time is Θ(k4).

Note however that only the dominators of the zi’s change after the first iteration. This

fact can be detected by marking the vertices that need to be processed in each iteration,

thus processing only the zi’s after the second iteration, and finishing in Θ(k3) total time. If

we added the arc (z1, yk), then all the vertices would have to be marked in each iteration

and the total running time would remain Θ(k4). As already mentioned, this marking
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scheme did not work well in our experiments, so we did not include results for it in

Section 2.5.

IDFS. Family idfsquad(k) favors IBFS over IDFS. Vk contains the vertices in {r} and

{yi, xi1, xi2 | 1 ≤ i ≤ k}. Ak is the union of

{(r, x1), (r, z1)} , {(xi, xi+1), (yi, zi+1)} | 1 ≤ i < k} and

{(xi, yi), (yi, zi), (zi, yi) | 1 ≤ i ≤ k} .

We have |Vk| = 3k + 1 and |Ak| = 5k. By processing the vertices in reverse postorder,

IDFS requires k + 1 iterations to propagate the correct dominator values from z1 to yk,

and the total running time is Θ(k2). On the other hand, IBFS processes the vertices in

the correct order and constructs the dominator tree in one iteration, and therefore runs in

linear time (as do the semidominator-based methods).

IBFS. Family ibfsquad(k) favors IDFS over IBFS. Here Vk is the union of {r, w, y, z} and

{xi, | 1 ≤ i ≤ k}. Ak contains the arcs (r, w), (r, y), (y, z), and (z, xk), alongside with the

sets

{(w, xi) | 1 ≤ i ≤ k} and {(xi, xi−1) | 1 < i ≤ k}.

Then |Vk| = k+4 and |Ak| = 2k+3. Processing the vertices in BFS order takes k iterations

to reach the fixed point. On the other hand, one iteration with cost O(k) suffices if we

order the vertices in reverse postorder, since the graph is acyclic. The semidominator-

based methods also run in linear time.

Simple Lengauer-Tarjan. Family sltworst(k) causes worst-case behavior of SLT [Fis72,

TvL84]. For any particular k this is a graph with k vertices (r = x1, . . . , xk) and 2k − 2

arcs that causes path compression without balancing to take Θ(k log k) time. The graph

contains the arcs (xi, xi+1), 1 ≤ i < k, and k−1 arcs (xi, xj) where j < i, with the property

that, after xj is linked, xi is a vertex with maximum depth in the tree rooted at xj of the
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virtual forest F . Note that d(xi) = xi−1 for every i > 1. For this reason, the iterative

methods need only one iteration to build the dominator tree. However, they still run

in quadratic time because they process the same paths repeatedly. It is unclear whether

there exists a graph family on which the iterative algorithm runs asymptotically faster

than SLT.

SEMI-NCA. Family sncaworst(k) causes the worst-case behavior of SNCA. The set of

vertices Vk consists of r, xi and yi for 1 ≤ i ≤ k. The set of arcs Ak is the union of

{(r, x1)} , {(xi, xi+1) | 1 ≤ i < k} and {(r, yi), (xk, yi) | 1 ≤ i ≤ k}.

We have |Vk| = 2k + 1 and |Ak| = 3k. Note that sdom(yi) = r and xk is the parent of

every yi, which forces SNCA to ascend the path from xk to r for every yi. As a result, the

algorithm runs in Θ(k2) total time. The same bound holds for the iterative methods as

well (despite the fact that the graph is reducible), as they also have to traverse the same

long path repeatedly. On the other hand, the Lengauer-Tarjan algorithm can handle this

situation efficiently because of path compression.

Notice that if we added any arc (yi, xk) then sdom(xk) = r, and SNCA would run

in linear time. Also BFS would set yi to be the parent of xk and r to be the parent of yi,

which implies that IBFS would also run in Θ(k) time. However, IDFS would still need

quadratic time.

2.5 Empirical analysis

Based on worst-case bounds only, the sophisticated version of the Lengauer-Tarjan al-

gorithm is the method of choice among those studied here. In practice, however, “so-

phisticated” algorithms tend to be harder to code and to have higher constants, so other

alternatives might be preferable. The experiments reported in this section shed some

light on this issue.
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Implementation and experimental setup. We implemented all algorithms in C++. They

take as input the graph and its root, and return an n-element array representing immedi-

ate dominators. Vertices are assumed to be integers from 1 to n. Within reason, we made

all implementations as efficient and uniform as we could. The source code is available

upon request.

The code was compiled using g++ v. 3.3.1 with full optimization (flag -O4). All tests

were conducted on a Pentium IV with 256 MB of RAM and 256 kB of cache running

Mandrake Linux 9.2 at 1.7 GHz. We report CPU times measured with the getrusage

function. Since its precision is only 1/60 second, we ran each algorithm repeatedly for

at least one second; individual times were obtained by dividing the total time by the

number of runs. Note that this strategy artificially reduces the number of cache misses

for all algorithms, since the graphs are usually small. To minimize fluctuations due to

external factors, we used the machine exclusively for tests, took each measurement three

times, and picked the best. Running times do not include creating the graph or creating

predecessor lists from successor lists (both required by all algorithms). However, times

do include allocating and deallocating the arrays used by each method.

Instances. We used control-flow graphs produced by the SUIF compiler [HY97] from

benchmarks in the SPEC’95 suite [SPE]. These graphs were previously tested by Buchs-

baum et al. [BKRW98b] in the context of dominator analysis. We also used control-flow

graphs created by the IMPACT compiler [IMP] from six programs in the SPEC 2000 suite.

The instances were divided into series, each corresponding to a single benchmark. Se-

ries were further grouped into three classes, SUIF-FP, SUIF-INT, and IMPACT. We also

considered two variants of IMPACT: class IMPACTP contains the reverse graphs and is

meant to test how effectively the algorithms compute postdominators; IMPACTS con-

tains the same instances as IMPACT, with parallel arcs removed. (These arcs appear in

optimizing compilers due to superblock formation, and are produced much more often

by IMPACT than by SUIF.) We also ran the algorithms on graphs representing circuits
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from VLSI-testing applications [AFPB01] obtained from the ISCAS’89 suite [CAD] (all 50

graphs were considered a single class), and on graphs representing foodwebs used in

[AB04, ABB] (all 21 graphs were considered a single class).

Finally, we tested eight instances that do not occur in any particular application re-

lated to dominators. Five are instances from the worst-case families described in Sec-

tion 2.4, and the other three are large graphs representing speech recognition finite state

automata (originally used to test dominator algorithms by Buchsbaum et al. [BKRW98b]).

Test results. We start with the following experiment: read an entire series into memory

and compute dominators for each graph in sequence, measuring the total running time.

This simulates the behavior of a compiler, which must process several graphs (which

typically represent functions) to produce a single executable.

For each series, Table 2.1 shows the total number of graphs (g) and the average num-

ber of vertices and arcs (n and m). As a reference, we report the average time (in mi-

croseconds) of a simple breadth-first search (BFS) on each graph. Since all the algorithms

considered here start by performing a graph search, BFS acts as a lower bound on the ac-

tual running time and therefore acts as a baseline for comparison. Times for computing

dominators are given as multiples of BFS. Using a baseline method is a standard tech-

nique for evaluating algorithms that run in close to linear time in practice [MS94, Gol01a,

Gol01b, PW02].

In absolute terms, all algorithms are reasonably fast: none is slower than BFS by a

factor of more than six on compiler-generated graphs. The worst relative time observed

was slightly more than eight, for FOODWEB. Furthermore, despite their different worst-

case complexities, all methods have remarkably similar behavior in practice. In no series

was an algorithm twice as fast (or slow) as any other. Differences do exist, of course. LT

is consistently slower than SLT, which can be explained by the complex nature of LT and

the relatively small size of the instances tested. The iterative methods are usually faster

than LT, but often slower than SLT. Both variants (IDFS and IBFS) usually have very
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Table 2.1: Complete series: number of graphs (g), average number of vertices (n) and
arcs (m), and average time per graph (in microseconds for BFS, and relative to BFS for all
dominator algorithms). The best result in each row is marked in bold.

INSTANCE DIMENSIONS BFS RELATIVE TOTAL TIMES

CLASS SERIES g n m TIME IDFS IBFS LT SLT SNCA
CIRCUITS circuits 50 3228.8 5027.2 228.88 5.41 6.35 4.98 3.80 3.48

FOODWEB foodweb 21 78.8 741.0 5.99 6.90 6.95 5.97 4.09 3.89

IMPACT 181.mcf 26 26.5 90.3 1.41 4.75 4.36 5.20 3.33 3.25
197.parser 324 16.8 55.7 1.22 4.22 3.66 4.39 3.09 2.99
254.gap 854 25.3 56.2 1.88 3.12 2.88 3.87 2.71 2.61
255.vortex 923 15.1 35.8 1.27 4.04 3.84 4.30 3.24 3.13
256.bzip2 74 22.8 70.3 1.26 4.81 3.97 4.88 3.36 3.20
300.twolf 191 39.5 115.6 2.52 4.58 4.13 5.01 3.51 3.36

IMPACTP 181.mcf 26 26.5 90.3 1.41 4.65 4.34 5.09 3.41 3.21
197.parser 324 16.8 55.7 1.23 4.13 3.40 4.21 3.01 2.94
254.gap 854 25.3 56.2 1.82 3.32 3.44 3.79 2.69 2.68
255.vortex 923 15.1 35.8 1.26 4.24 4.03 4.19 3.32 3.32
256.bzip2 74 22.8 70.3 1.28 5.03 3.73 4.78 3.23 3.07
300.twolf 191 39.5 115.6 2.52 4.86 4.52 4.88 3.38 3.33

IMPACTS 181.mcf 26 26.5 72.4 1.30 4.36 4.04 5.22 3.30 3.24
197.parser 324 16.8 42.1 1.10 4.10 3.56 4.67 3.42 3.32
254.gap 854 25.3 48.8 1.75 3.02 2.82 4.00 2.80 2.66
255.vortex 923 15.1 27.1 1.16 2.59 2.41 3.50 2.45 2.34
256.bzip2 74 22.8 53.9 1.17 4.25 3.53 4.91 3.33 3.24
300.twolf 191 39.5 96.5 2.23 4.50 4.09 5.12 3.50 3.41

SUIF-FP 101.tomcatv 1 143.0 192.0 4.23 3.42 3.90 5.78 3.67 3.66
102.swim 7 26.6 34.4 1.04 2.77 3.00 4.48 2.97 2.82
103.su2cor 37 32.3 42.7 1.29 2.82 2.99 4.68 3.01 3.03
104.hydro2d 43 35.3 47.0 1.39 2.79 3.05 4.64 2.94 2.86
107.mgrid 13 27.2 35.4 1.12 2.58 3.01 4.25 2.82 2.77
110.applu 17 62.2 82.8 2.03 3.28 3.58 5.36 3.45 3.41
125.turb3d 24 54.0 73.5 1.51 3.57 3.59 6.31 3.66 3.44
145.fpppp 37 20.3 26.4 0.82 3.00 3.43 4.83 3.19 3.19
146.wave5 110 37.4 50.7 1.43 3.09 3.11 5.00 3.22 3.15

SUIF-INT 009.go 372 36.6 52.5 1.72 3.12 3.01 4.71 3.00 3.07
124.m88ksim 256 27.0 38.7 1.17 3.35 3.10 4.98 3.16 3.18
126.gcc 2013 48.3 69.8 2.35 3.00 3.01 4.60 2.91 2.99
129.compress 24 12.6 16.7 0.66 2.79 2.46 3.76 2.60 2.55
130.li 357 9.8 12.8 0.54 2.59 2.44 3.92 2.67 2.68
132.ijpeg 524 14.8 20.1 0.78 2.84 2.60 4.35 2.84 2.82
134.perl 215 66.3 98.2 2.74 3.77 3.76 5.43 3.44 3.50
147.vortex 923 23.7 34.9 1.35 2.69 2.67 3.92 2.59 2.52
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Table 2.2: Times relative to BFS: geometric mean and geometric standard deviation. The
lowest mean in each row is marked in bold.

IDFS IBFS LT SLT SNCA
CLASS MEAN DEV MEAN DEV MEAN DEV MEAN DEV MEAN DEV

CIRCUITS 5.90 1.18 6.14 1.42 6.74 1.18 4.63 1.15 4.41 1.14
FOODWEB 6.67 1.31 6.95 1.28 6.64 1.11 4.16 1.17 4.04 1.15
SUIF-FP 2.49 1.44 2.34 1.58 3.75 1.42 2.54 1.36 2.96 1.38
SUIF-INT 2.45 1.50 2.25 1.62 3.69 1.40 2.48 1.33 2.73 1.45
IMPACT 2.60 1.65 2.24 1.76 4.02 1.40 2.74 1.33 2.56 1.31
IMPACTP 2.58 1.63 2.25 1.82 3.84 1.44 2.61 1.30 2.52 1.29
IMPACTS 2.42 1.55 2.05 1.68 3.62 1.33 2.50 1.28 2.61 1.45

similar behavior, although occasionally one method is much faster than the other (series

145.fppp and 256.bzip2 are good examples). Almost always within a factor of four of BFS

(with FOODWEB as the only exception), SNCA and SLT are the most consistently fast

methods in the set.

By measuring the total (or average) time per series, the results are naturally biased

towards large graphs. For a more complete view, we also computed running times for

individual instances, and normalized them with respect to BFS. In other words, for each

individual instance we calculated the ratio between the running times of the dominator

algorithm and of BFS (the result is the relative time of the algorithm). For each class, Ta-

ble 2.2 shows the geometric mean and the geometric standard deviation of the relative

times. Now that each graph is given equal weight, the aggregate measures for itera-

tive methods (IBFS and IDFS) are somewhat better than before, particularly for IMPACT

instances. This, together with the fact that their deviations are higher, suggests that it-

erative methods are faster than semidominator-based methods for small instances, but

slower when size increases.

The plot in Figure 2.10 confirms this for the IMPACT class. Each point represents the

mean relative running times for all graphs with the same value of dlog2(n+m)e. Iterative

methods clearly have a much stronger dependence on size than other algorithms. Almost

as fast as a single BFS for very small instances, they become the slowest alternatives as
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size increases. The relative performance of the other methods is the same regardless of

size: SNCA is slightly faster than SLT, and both are significantly faster than LT. A similar

behavior was observed for IMPACTS and IMPACTP.

For SUIF, which contains graphs that are somewhat simpler, iterative methods re-

mained competitive even for larger sizes. This is shown in Figure 2.11 for SUIF-INT (the

results for SUIF-FP are similar). Note that SLT and SNCA still have better performance as

the graph size increases, but now they are closely followed by the iterative method. All

algorithms tend to “level-off” with respect to BFS as the size increases, which suggests

an almost-linear behavior for this particular class.

Figure 2.12 presents the corresponding results for class CIRCUIT. For the range of

sizes shown (note that the graphs are bigger than in the other classes), the average perfor-

mance of each algorithm (relative to BFS) does not have a strong correlation with graph

size.

Finally, Figure 2.13 contains results for the FOODWEB class. On these graphs, which

are significantly denser than the others, LT starts to outperform the iterative methods

much sooner.

The results for IMPACT and IMPACTS shown in Tables 2.1 and 2.2 indicate that the

iterative methods benefit the most by the absence of parallel arcs. Because of path com-

pression, Lengauer-Tarjan and SEMI-NCA can handle repeated arcs in constant time.

So far, we have only compared the algorithms in terms of running times. These can

vary significantly depending on the architecture or even the compiler that is used. For

a more complete understanding of the relative performance of the algorithms, Table 2.3

shows three architecture-independent pieces of information. The first is SDP, the percent-

age of vertices (excluding the root) whose semidominators are their parents in the DFS

tree. These vertices are not inserted into buckets, so large percentages are better for LT

and SLT. On average, far more than half of the vertices have this property. In practice,

avoiding unnecessary bucket insertions resulted in a 5% to 10% speedup.

The next two columns show the average number of iterations performed by IDFS
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Table 2.3: Percentage of vertices that have their parents as semidominators (SDP), average
number of iterations, and number of vertex comparisons per arc.

SDP ITERATIONS COMPARISONS PER ARC

CLASS (%) IBFS IDFS IBFS IDFS LT SLT SNCA
CIRCUITS 76.7 3.2000 2.8000 25.3 20.9 7.5 6.2 5.7
FOODWEB 30.9 2.1429 2.1905 12.1 13.0 4.9 4.3 4.3
IMPACT 73.4 1.4385 2.0686 11.1 12.2 6.2 5.1 4.4
IMPACTP 88.6 1.5376 2.0819 12.8 12.0 6.0 4.7 4.3
IMPACTS 73.4 1.4385 2.0686 11.4 12.1 6.8 5.4 4.6
SUIF-FP 67.7 1.6817 2.0000 11.9 9.2 7.5 5.9 5.1
SUIF-INT 63.9 1.6659 2.0009 11.9 10.3 7.6 5.8 5.0

and IBFS. It is very close to 2 for IDFS: almost always the second iteration just confirms

that the candidate dominators found in the first are indeed correct. This is expected for

control-flow graphs, which are usually reducible in practice. On most classes the average

is smaller than 2 for IBFS, indicating that the BFS and dominator trees often coincide.

Note that the number of iterations for IMPACTP is slightly higher than for IMPACT,

since the reverse of a reducible graph may be irreducible. The small average number of

iterations helps explain why iterative algorithms are competitive. In each iteration, they

perform one pass over the arcs. In contrast, the other three algorithms perform a single

pass over the arcs (to compute semidominators) and one (for SNCA) or two (for SLT and

LT) over the vertices.

The last five columns of Table 2.3 show how many comparisons between vertices are

performed (normalized by the total number of arcs); the results do not include the initial

DFS or BFS. The number of comparisons is always proportional to the total running time;

what varies is the constant of proportionality, much smaller for simpler methods than for

elaborate ones. Iterative methods need many more comparisons; they are competitive

mainly because of smaller constants. In particular, they need to maintain only three ar-

rays, as opposed to six or more for the other methods. (Two of these arrays translate

vertex numbers into DFS or BFS labels and vice-versa.)

We end our experimental analysis with results on artificial graphs. For each graph,
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Table 2.4: Individual graphs (times for BFS in microseconds, all others relative to BFS).
The best result in each row is marked in bold.

INSTANCE BFS RELATIVE RUNNING TIMES

NAME VERTICES ARCS TIME IDFS IBFS LT SLT SNCA
itworst 401 10501 34 6410.5 6236.8 9.2 4.7 4.7
idfsquad 1501 2500 28 2735.3 21.0 8.6 4.2 10.5
ibfsquad 5004 10003 88 4.9 9519.4 8.8 4.5 4.3
sltworst 32768 65534 2841 283.4 288.6 7.9 11.0 10.5
sncaworst 10000 14999 179 523.2 243.8 12.1 8.3 360.7
atis 4950 515080 2607 8.3 12.8 6.5 3.5 3.3
nab 406555 939984 49048 17.6 15.6 12.8 11.6 10.2
pw 330762 823330 42917 18.3 15.1 13.3 12.1 10.4

Table 2.4 shows the number of vertices and arcs, the time for BFS (in microseconds), and

the times for computing dominators (as multiples of BFS). The first five entries represent

the worst-case families described in Section 2.4. In all cases, the algorithms behave as

predicted. The speech-recognition graphs (atis, nab and pw) have no special adversarial

structure, but are significantly larger than other graphs. As previously observed, the

performance of iterative methods tends to degrade more noticeably with size. SNCA

and SLT remain the fastest methods, but the asymptotically better behavior of LT starts

to show.

2.6 Final remarks

We compared five algorithms for computing dominators. Results on three classes of

application graphs (program flow, VLSI circuits, and speech recognition) indicate that

they all have similar overall performance in practice. The tree-based iterative algorithms

proposed by Cooper et al. are by far the easiest to code and use less memory than the

other methods, which makes them perform particularly well on small, simple graphs. For

the compiler-generated graphs we tested, the iterative algorithms remained competitive

even as the size increased. Given their simplicity, they are a good choice for non-critical

applications.
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Even on small instances, however, we did not observe the clear superiority of the orig-

inal tree-based algorithm reported by Cooper et al. (which we call IDFS). Both versions of

LT and the hybrid algorithm (SEMI-NCA) are more robust on application graphs, and the

advantage increases with graph size or graph complexity. Among these three, the sophis-

ticated version of LT was the slowest, in contrast with the results reported by Lengauer

and Tarjan [LT79]. The simple version of LT and hybrid were the most consistently fast al-

gorithms in practice; since the former is less sensitive to pathological instances, we think

it should be preferred where performance guarantees are important.
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Chapter 3

Finding Dominators in Linear Time

In this chapter we describe a linear-time algorithm for finding dominators, implementable

both on a random-access machine and on a pointer machine. Previously, Harel [Har85]

claimed a linear-time algorithm, but it was shown that this algorithm contains several

flaws [ALT96]. Based on Harel’s approach, Alstrup et al. [ALT96, AHLT99] gave a correct

linear-time algorithm on a random-access machine, but in order to achieve this running

time their algorithm uses a very complicated data structure, Fredman and Willard’s Q-

heaps [FW94]. Later, Buchsbaum et al. [BKRW98a, BKRW98b] claimed a “new, simpler”

linear-time algorithm with implementations both on a random access machine and on a

pointer machine. However, as we show in Section 3.2.3, a key lemma in their analysis

does not in fact apply to their dominators algorithm, and the algorithm does not run in

linear time. Buchsbaum et al. later gave a fix for their algorithm, which uses a technique

implementable on random-access machines but not pointer machines (see Corrigendum

in [BKRW98b]). Still, based on the work of Buchsbaum et al., we provide a complete,

correct, linear-time dominators algorithm, implementable on either a random-access ma-

chine or a pointer machine. One key result is a linear-time reduction of the dominators

problem to an off-line nearest common ancestors problem.

Our algorithm is an extension of the Buchsbaum et al. (BKRW) algorithm, which we

review in Section 3.2. The BKRW algorithm is based on partitioning a DFS tree D of

40
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the input flowgraph G into bottom-level microtrees which participate in a preprocessing

phase, and a core tree C on which a modified version of the Lengauer-Tarjan algorithm

is applied. The goal of the preprocessing phase is to determine for each vertex v whether

d(v) is within the microtree containing v. If this is true then d(v) has been computed

during the preprocessing, otherwise it is found during the Lengauer-Tarjan phase. In or-

der to achieve linear running time we extend the BRKW partitioning by dividing C into

unary paths. We give the details of this partitioning in Section 3.1. The algorithm pro-

ceeds by applying Lengauer-Tarjan computations on a condensed tree that results from C

by contracting each unary path to a single vertex. The vertices inside each unary path are

processed using stack-based contractions of strongly connected components. We present

our algorithm comprehensively in Section 3.3. Sections 3.4, 3.5 and 3.6 present some al-

ternative implementations which rely on various technical observations regarding the

operations that are performed by our basic algorithm.

3.1 Partitioning the DFS tree

Let D be any fixed DFS tree of G, and let g be a parameter that we will fix appropriately.

We partition D into microtrees of size at most g as follows. If |Dv| ≤ g and |Dp(v)| > g,

then Dv is a non-trivial microtree with root v. If |Dv| > g, then {v} itself forms a singleton,

trivial microtree. Otherwise, v is a non-root vertex in a non-trivial microtree. We denote

by micro(v) the (trivial or non-trivial) microtree that contains vertex v; we will denote the

root of this microtree by root(micro(v)). The vertices of the trivial microtrees constitute

the core C of D. For any v ∈ D, let η(v) be the nearest ancestor of v in C , that is,

η(v) =





v, v ∈ C

p(root(micro(v))), v ∈ D − C
.

We group the vertices of the core into a set of maximal unary paths. For any such

path ` = (v1, . . . , vk) we have that the out-degree of vi is one for 1 ≤ i ≤ k − 1 and the

out-degree of vk is zero or greater than one. We call such a path a line and denote by
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`3 = (15, 17)

14

18

12

3

4

1

2

5

6

9

23

11 13

20

Figure 3.1: Example of the partitioning of a DFS tree D for g = 3. Filled nodes are in
the core; open nodes are in non-trivial microtrees; (i) D is partitioned to 8 nontrivial
microtrees (shown encircled), and 3 lines `1 = (1, 2, 3), `2 = (4, 7, 8) and `3 = (15, 17). (ii)
The compressed core tree C ′.

line(v) the line that contains v. Also for any line ` we denote by top(`) the vertex in ` with

the lowest DFS number and by bottom(`) the vertex in ` with the highest DFS number. We

call top(`) and bottom(`) the endpoints of `. Note that C has fewer than n/g leaves, since a

vertex is a leaf of C if and only if all of its children in D are roots of non-trivial microtrees.

Thus, C has L < 2n/g lines. Let C ′ be the tree that results from contracting each line in

C into a single vertex. Then C ′ has L vertices. For any two vertices `, q ∈ C ′, ` and q

correspond to lines in C , and ` = pC′(q) if and only if bottom(`) = pC(top(q)). Figure 3.1

gives an example of the partitioning.

Now consider a line ` = (v1, . . . , vk). The subtree Dvi
of D rooted at any vi is a

union of non-trivial microtrees and a part of the core. For each vertex vi, 1 ≤ i ≤ k − 1,

we define TR(vi) to be the set of microtrees to the right of vi and TL(vi) to be the set

of microtrees to the left of vi. More precisely TR(vi) contains all proper descendants w

of vi such that w > vi+1 and w is not a descendant of vi+1; TL(vi) contains all proper

descendants w of vi such that w < vi+1. TR(vi), TL(vi), and Dvi+1
partition the proper
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descendants of vi. All the children of vi except for vi+1 are roots of non-trivial microtrees.

We also define TR(`) =
⋃k−1

i=1 TR(vi), which we call the set of microtrees to the right of `,

and TL(`) =
⋃k−1

i=1 TL(vi), which we call the set of microtrees to the left of `. The proper

descendents of vk are said to be below `.

Procedure partition implements the partitioning of the DFS tree D (see Figure 3.2). It

begins by calling a procedure that carries out the DFS and builds D. In order to perform

the partitioning of G we associate two numbers with each vertex v; size[v], which is the

size of the subtree rooted at v, and a special vertex defined by

special(v) =





root(micro(v)), v /∈ C

top(line(v)), v ∈ C
.

To distinguish between v being in the core or not we use a bit core[v] which is set to

true if and only if v ∈ C . Procedure partition uses an array special to store the spe-

cial vertices associated with each vertex; special[v] is set only when either v ∈ C and

v = top(line(v)), or when v /∈ C and v = root(micro(v)). For any other vertex initially

we set special[v] ← ∞, and special(v) can be computed on demand by walking back-

wards on the path D[special(v), v] until we find a vertex u with special[u] < ∞. Then we

can set special[w] ← special[u] for all the vertices w that we have visited. This is imple-

mented in procedure find special. (A similar procedure is used in [BKRW98b] to locate

root(micro(v)).) Throughout the course of our algorithm find special will visit a vertex at

most twice, therefore spending amortized O(1) time per vertex. We will ignore these

details henceforth.

3.2 The BKRW algorithm

3.2.1 External dominators

In this section we review some of the definitions and results given in [BKRW98a, BKRW98b].

A path P = (u = v0, v1, . . . , vk−1, vk = v) is a external dominator path (abbreviated

xdom path) if P is an sdom path and vi /∈ micro(v) for 0 ≤ i ≤ k − 1. The external
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partition(G = (V, A, r))

D ←DFS(r)

for v in reverse preorder do

for u ∈ chdD(v) do

size[v]← size[v] + size[u]

done

if size[v] > g then

core[v]← true

for u ∈ chdD(v) do

if size[u] ≤ g then

special[u]← u

else

chdC(v)← chdC(v) ∪ {u}

endif

done

if |chdC(v)| > 1 then

for u ∈ chdC(v) do

special[u]← u

done

endif

endif

done

int find special(v)

u← v

P ← ∅

while special[u] =∞ do

P ← P ∪ {u}

u← parent[u]

done

for w ∈ P do

special[w]← special[u]

done

return special[v]

Figure 3.2: Procedures that partition D into nontrivial microtrees and lines, and that
locate the special vertices.
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v

y1

z1

x1

z0 = xdom(v)

x0 = pxdom(v)

x2

y2

y0 = s(v)

Figure 3.3: Semidominator, external dominator, and pushed external dominator of vertex
v, where micro(v) is nontrivial. The straight arcs are DFS-tree arcs; non-tree arcs are dot-
ted. Filled nodes are in the core; open nodes are in non-trivial microtrees; gray nodes can
be in either state. (x0, x1, x2, v) is a pxdom path; (y0, y1, y2, v) is an sdom path; (z0, z1, v)
is an xdom path.

dominator of vertex v is defined as

xdom(v) = min{v} ∪ {u | there is an xdom path from u to v}.

A path P = (u = v0, v1, . . . , vk−1, vk = v) is a pushed external dominator path (pxdom path)

if vi ≥ root(micro(v)) for 1 ≤ i ≤ k− 1. The pushed external dominator of vertex v is defined

as

pxdom(v) = min{u | there is a pxdom path from u to v}.

From [BKRW98b] we have that d(v) /∈ micro(v) implies d(v)
∗
→ pxdom(v).

An xdom path is also an sdom path and an sdom path is also a pxdom path. This

implies the following relation:

pxdom(v)
∗
→ s(v)

∗
→ xdom(v)

(see Figure 3.3). If micro(u) = {u}, which is true if u is in C , then pxdom(u) = xdom(u) =

s(u). In order to locate the external dominators we only need to do computations in C .
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Then the pushed external dominators account for parts of sdom paths inside a microtree.

The next result suggests a way to computate immediate dominators from pushed exter-

nal dominators.

Lemma 3.1 [BKRW98b] For any v, there exists a w ∈ micro(v) such that

(1) w
∗
→ v;

(2) pxdom(v) = pxdom(w);

(3) pxdom(w) = s(w);

(4) d(w) /∈ micro(v).

Moreover, if d(v) /∈ micro(v) then d(v) = d(w).

3.2.2 Overview of the algorithm

The BKRW algorithm consists of a preprocessing phase and two main phases of compu-

tation: the pxdom phase and the idom phase. The two main phases can be combined

into a single phase, similarly to the LT algorithm. The preprocessing phase determines

for each vertex v /∈ C whether d(v) ∈ micro(v), and, if so, computes d(v). The pxdom

phase computes pxdom(v) for each vertex v in D. Finally, the idom phase applies Lemma

3.1 to find d(v) for each v such that d(v) /∈ micro(v).

The pxdoms are computed by processing the microtrees in reverse preorder. Each

vertex v ∈ D is associated with a value value(v), initially equal to v. After a microtree T is

processed we have value(v) = pxdom(v) for all v ∈ T . This is accomplished by executing

procedure pxdom phase of Figure 3.4.

When b > a then all the vertices z that satisfy NCA(D,a, b)
+

→ z
∗
→ b have been

processed before T and the corresponding pxdoms are known. Procedure push values(T )

completes the computation of pxdom(u) for all u ∈ micro(v) after all their xdoms are

known. This is accomplished as follows. Let G(T ) be the graph induced by the vertices
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pxdom phase(G = (V, A, r), D)

for v in reverse preorder of D do

T ← micro(v)

a← p(root(T ))

for u /∈ T such that (u, v) ∈ A do

b← η(u)

if (b > a) then

x← min
{

value(z) | NCA(D, a, b)
+

→ z
∗

→ b
}

else x←∞ endif

value(v)← min {value(u), value(v), x}

done /* at this point value(v) = xdom(v) */

if v = root(T ) then

push values(T )

endif /* at this point value(v) = pxdom(v) */

done

idom phase(D)

for v in reverse preorder of D do

a← p(root(v))

if (iidom(v) /∈ micro(v)) then

y ← argminz(
{

value(z) | pxdom(v)
+

→ z
∗

→ a
}

)

if value(y) = value(v) then

idom[v]← value(v) /* immediate dominator found */

else

idom[v]← y /* relative dominator found */

endif

endif

done

Figure 3.4: Procedures that implement the two phases of the BKRW algorithm.
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of microtree T and

YT (u) = {w ∈ T | there is a path from w to u in G(T )},

for any vertex u in T . Then we have

pxdom(u) = min{xdom(w) | w ∈ YT (u)}.

So it suffices to find the strongly connected components of G(T ) and process them in

topological order. Hence, push values runs in linear time.

In order to compute the immediate dominators from the pxdom function we need

to know whether d(v) ∈ micro(v) for each v. We start by constructing from G(T ) an

augmented graph aug(T ) as follows. We add a vertex t and for each arc (u, v) where

v ∈ T and u /∈ T we add the arc (t, v). Let iidom(v) be the internal immediate dominator of

a vertex v ∈ T , defined as the immediate dominator of v in aug(T ). We have

Lemma 3.2 [BKRW98b] Let v be any vertex of a microtree T . Then d(v) is in T if and only if

iidom(v) 6= t.

The iidoms can be computed by any simple (superlinear) dominators algorithm. Since

there may be too many microtrees in D, BKRW cannot afford to run the simple algo-

rithm for each microtree individually, but by using memoization it avoids repeating the

same computations for identical graphs. In the worst case the algorithm will compute

the iidoms for every possible aug(T ) of size O(g2) and use table lookups to retrieve the

iidom values in constant time. If g = O(log1/3 n) this computation can be done in linear

time. Although this process requires a RAM to implement memoization, Buchsbaum et

al. showed how to achieve the same effect on a pointer machine, by introducing a data

structure tool they call pointer-based radix sort [BKRW98a]; the idea is to sort the graph

encodings of each aug(T ) using a variation of radix sort, implementable on a pointer ma-

chine. After the iidoms and pxdoms are available, the idom phase can compute the imme-

diate dominators of every vertex v that satisfies iidom(v) /∈ micro(v). To that end, Lemma

3.1, implies that it suffices to find a vertex y ∈ C[pxdom(v), a] with minimum pxdom(y).
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(This follows from statement (3) of Lemma 3.1 and Lemma 2.5.) If pxdom(y) = pxdom(v)

then d(v) = pxdom(v). Otherwise y is a relative dominator of v, i.e., d(v) = d(y). For

vertices with relative dominators the calculation of their immediate dominators is com-

pleted in a preorder pass, as in done LT. Procedure idom phase of Figure 3.4 summarizes

the computations performed during the idom phase of the BKRW algorithm.

The computations of each x in pxdom phase and of each y in the idom phase involve

evaluations of minima on paths of C . In order to carry out these computations the BKRW

algorithm maintains (similarly to the Lengauer-Tarjan algorithm) a link-eval forrest on

C [Tar79a] (see also Section 2.2).

The required operations on C are supported by a slightly modified version of Tarjan’s

link-eval data structure, which takes advantage of the following two facts: (a) the special

order in which the link operations on C appear and (b) the sublinear number of leaves of

C . However, in the following section we show that these facts do not suffice to get the

desired linear time bound.

3.2.3 The problem in the analysis

In [BKRW98a, BKRW98b] it is observed that the link operations on C appear bottom-

up, which means that v is linked to p(v) only after all the vertices in the subtree rooted

at v have been linked. Let T1 and T2 be the trees in F that contain p(v) and v respec-

tively. It is straightforward to verify that T2 always contains at least one leaf in C and

T1 is either a singleton or also contains at least one leaf in C . The idea proposed in

[BKRW98a, BKRW98b] is to make all the non-singleton trees in the virtual link-eval for-

est F (see Section 2.2) have roots which are leaves in C . By maintaining this invariant,

link can be performed simply by linking two leaves or a single vertex to a leaf; simi-

larly eval can be performed by evaluating minima on paths that are composed only of

leaves of C . This property clearly implies O(mα(m,L) + n) running time. Now since

L < 2n/ log1/3 n, we have m/n = Ω(log1/3 n) and equation (1.1) together with the fact
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that for fixed n, α(m,n) decreases as m/n increases, imply that

O(mα(m,L) + n) = O(m + n).

In fact, by (1.1), much smaller values of m/n would also suffice.

The problem with this analysis is that Tarjan’s link-eval data structure [Tar79a] is not

sufficiently flexible, in the sense that we are not free to choose the roots of the trees in

F suitably so that the necessary invariant would hold. For example consider the case

where D is just a path (v1 = r, v2, . . . , vn). Then C = (v1, v2, . . . , vk), where k = n − g =

O(n). Each successive link connects vi+1 to vi, and vi becomes the root of the tree that

contains vj , i ≤ j ≤ k. Suppose we have pxdom(vk) = v1. Then a careful look at the

implementation of the link-eval structure in [Tar79a] reveals that vk will only participate

in the first link and all the other links will involve internal vertices of C , while the analysis

in [BKRW98b] assumes that every vertex will eventually be linked to vk. In order to do

so we need to update suitably the labels maintained by the link-eval structure after each

link so that eval will return the correct result. However there is no way to carry out these

updates efficiently; see Figure 3.5. Therefore, in this situation, we essentially apply the

Lengauer-Tarjan algorithm on a graph with O(n) vertices and O(m) arcs, so the running

time is not linear. We note that the special-case analysis in [BKRW98a, BKRW98b] for

disjoint set union does apply to their off-line nearest common ancestors algorithm (since

for this problem the link-eval structure does not need to maintain labels). In fact, we will

use this result in our algorithm.

3.2.4 A fix for the random-access model

Buchsbaum et al. gave the following fix for their algorithm (Corrigendum of [BKRW98b]).

The idea is to translate the link-eval operations on C to equivalent link-eval operations on

C ′ and path link-eval operations inside each unary path. Since C ′ has O(n/g) vertices, the

corresponding link-eval operations take O(n) time and in conjunction with the linear-time

RAM solution of the path link-eval problem given in [AHLT99] they achieve an overall



51

(i)

(ii)

v2

vk [label (vk)]

vk−1

[label (v2)]

v1

. . .

[label(v1)] [label(vk−1)]

v1 [pxdom(v1)]

v2 [pxdom(v2)]

vk−1 [pxdom(vk−1)]

vk [pxdom(vk)]

Figure 3.5: Maintaining the link-eval labels on a unary path. (i) C is a line (v1, . . . , vk). The
value of pxdom(vi) is known only after all descendants of vi have been linked. (ii) The
virtual forrest F that is maintained by the BKRW algorithm has only one non-singleton
tree, which is rooted at vk. After each vi is linked to its parent, label(vj) must be equal to
a vertex with minimum pxdom on the path C[vi, vj ].

linear-time algorithm. Still this algorithm is much simpler than the Alstrup, Harel, Lau-

ridsen and Thorup (AHLT) algorithm, since it avoids the need for complicated heap data

structures.

The Alstrup et al. algorithm for path link-eval is based on a reduction of this problem

to a special case of disjoint set union. This is accomplished as follows. Let (v1, . . . , vn)

be the input path. Initially, before any link, each vertex comprises a distinct singleton

set {vi}. When vi is linked to vi−1, all the vertices v in C[vi, vk] with value(v) > value(vi)

are inserted into vi’s set. These vertices are found efficiently by maintaining a stack S

containing the top vertex of each set that has been processed so far. The stack is ini-

tially empty, and vi is pushed onto S after link(vi) is executed. To perform link(vi) we

remove from the stack all the vertices v with value greater than value(vi) and we execute

union(vi, v); also notice that eval(vj) is simply a find(vj) operation. Since the structure of

the unions is known a priori, the linear-time DSU algorithm of Gabow and Tarjan [GT85]

can be used to give a linear-time solution to the path link-eval problem. The Gabow and

Tarjan DSU algorithm uses preprocessing of all possible small instances of the problem
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combined with table lookups, and therefore requires a RAM. Whether there is a linear-

time pointer-machine solution for path link-eval is unresolved.

3.3 A linear-time pointer-machine algorithm

Our goal is to order the pxdom calculations of the BKRW algorithm appropriately, so

that we can map the evals on C to a combination of equivalent operations on C ′ and

off-line NCA queries on fixed trees. Therefore, this modified algorithm essentially runs

the Lengauer-Tarjan algorithm on C ′ and in conjunction with the linear-time pointer-

machine preprocessing of small graphs of [BKRW98a] (via pointer-based radix sort) it

achieves linear running time.

Algorithm PTRDOM of Figure 3.6 outlines our dominators algorithm. For clarity

we present the algorithm as consisting of two main phases which (similarly to the LT

and BKRW algorithms) can be combined into one phase. Also, PTRDOM runs the same

preprocessing phase as BKRW. Again the first phase computes the pxdoms of each vertex

in D. Essentially, we are processing the nodes of C ′ in reverse DFS order. For each node

in C ′ we compute the pxdoms of the vertices that belong to the corresponding line ` and

to the non-trivial microtrees adjacent to `. The computations proceed in the following

order:

(1) Compute pxdom(v) for all v that belong to non-trivial microtrees to the right of and

below `.

(2) Compute pxdom(v) for all v on `. Then, carry out a preprocessing step that uses the

pxdoms of the line to calculate some values that will be used off-line in step (3).

(3) Compute pxdom(v) for all v that belong to non-trivial microtrees to the left of `.

Notice that for each vertex we compute the same information as in the BKRW algorithm

(i.e., its pxdom), but the order of the computations is different. Specifically, when the

BKRW algorithm processes a vertex v of the core, it has already computed the pxdoms of
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all vertices u > v. In our new algorithm, however, pxdom(u) is known only if u is not in

TL(line(v)).

We process each non-trivial microtree T as done in the BKRW algorithm; procedure

process microtree, shown in Figure 3.7, implements the necessary computations. Proce-

dure process line computes the semi-dominators of a line ` before processing TL(`). This

enables us to pre-compute minima on paths that lie entirely inside ` (this constitutes the

second part of step(2)) and retrieve these results in constant time when we process the

microtrees in TL(`) (step (3)). The second phase uses the pxdoms to compute the immedi-

ate dominators. For each v ∈ D, PTRDOM either computes d(v) or determines a proper

ancestor u of v such that d(v) = d(u). Again we evaluate minima on paths of C using the

same methods we applied in phase one.

It is crucial to note that we use the pxdom phase procedure of the BKRW algorithm only

to compute pxdoms of vertices in non-trivial microtrees. The remainder of this section

details the computation of pxdoms (and hence semidominators) on vertices in C .

3.3.1 Evaluating minima on paths of the core

We describe two link-eval data structures: one that operates on C and one that operates

on C ′. To distinguish the two, we use vlink and veval (for virtual link and eval) to operate

on C and link and eval to operate on C ′. Algorithm IDOM and its various subroutines

work on C and hence call vlink and veval, which in turn work on C ′ and hence call link

and eval. The semantics of the respective operations are described in Section 2.2; we will

define the values of nodes in the forests shortly. That is, the abstract data structures are

identical, except for their respective applications to C and C ′. We use different concrete

implementations, however, to achieve linear running time.

We use Tarjan’s [Tar79a] link-eval data structure to implement link and eval opera-

tions on C ′. We associate with each vertex v ∈ D a value value(v). Initially we assign

value(v) ← v, and after processing v (during the first phase) we will have value(v) =

pxdom(v). Remember that the vertices of C ′ correspond to lines in C . We define the value
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Algorithm PTRDOM(G = (V, A, r))

/* Preprocessing */

partition(G)

for all v, compute iidom(v)

/* Phase 1 */

for v ∈ V − r in reverse preorder of D do

if micro(v) is non-trivial then

if v is the largest vertex in micro(v) then

process microtree(v)

endif

else

if v = bottom(line(v)) then

process line(v)

prepare off-line values for veval in line(v)

endif

vlink(v)

endif

process vertex(v)

done

/* Phase 2 */

re-initialize the vlink forest

for u ∈ C in reverse preorder do

if u = bottom(line(u)) then

prepare off-line values for veval in line(u)

endif

process bucket(bucket[u])

vlink(u)

done

Figure 3.6: Algorithm PTRDOM.
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process microtree(v)

for w ∈ micro(v) do

for u /∈ micro(v) such that (u, w) ∈ A

if η(u) ≤ η(v) then

If u ∈ C then x← u else x← value(u) endif

else

x← min{value(u), value(veval(η(u)))}

endif

value(w)← min{value(w), x}

done

done

push values(micro(v))

process vertex(v)

if iidom(v) ∈ micro(v) then

idom[v]← iidom(v)

else

add v to bucket[pxdom(v)]

endif

process bucket(bucket[u])

for v ∈ bucket[u] do

if u = pD(root(micro(v))) then

z ← v

else

z ← veval(pD(root(micro(v))))

endif

if pxdom(z) = u then idom[v]← u else idom[v] = idom[z] endif

done

Figure 3.7: Subroutines for processing non-trivial microtrees, vertices and buckets.
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of each vertex ` ∈ C ′ for the link-eval forest as follows. Consider a line `, and let v be the

last vertex in ` that was linked. Then all the descendants of v in ` are also linked. We

define the (current) label of a line `, denoted by linelabel(`)1 , to be a vertex in the tree

path from v to bottom(`) with minimum pxdom; that is,

linelabel(`) = argmin
u∈`, u≥v

pxdom(u).

If no vertex in ` has been linked then we assign linelabel(`) ← ∞ and assume that

value(∞) = ∞. Then the value that is used for each ` ∈ C ′ by the link-eval structure

is value(linelabel(`)). After computing the pxdoms for all the vertices in ` we need to store

for each v ∈ ` a value up(v), which is a vertex in the tree path from top(`) to v with

minimum pxdom, i.e.,

up(v) = argmin
u∈line(v), u≤v

pxdom(u).

Initially we assign up(v)←∞ for all v ∈ `.

The implementation of vlink and veval is shown in Figure 3.8. Let F be the forest that

is built by vlink on the vertices of C . We use value(v) as the value of each vertex v in F .

For any vertex v in F , rF (v) denotes the root of the tree in F that contains v.

Note that vlink and veval effect the abstract link-eval operations on C . Our algorithm

does not need to maintain explicitly the vlink forest F , because the vertices in C are linked

in reverse DFS order and it suffices to keep track only of the last vertex in C for which

vlink was performed. To that end the vlink-veval data structure maintains an internal

variable lastlinked, i.e., this variable is accessed only by vlink and veval. Initially, before

any vlink, we assign lastlinked ←∞.

We observe that veval can calculate minima on paths in C that extend beyond a single

line by using the line labels and the up values. Consider a call to veval(v). Notice that if

pF (lastlinked) 6= rF (v) then rF (v) must be the bottom vertex of a line; since we operate

on the core tree, only the bottom vertex of each line ` can have children outside `. See

1We use this notation for the label of a line to avoid confusion with the labels used inside the link-eval
structure of Section 2.2.
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vlink(v)

`← line(v)

if value(linelabel(`)) > value(v) then linelabel(`)← v endif

if v = top(`) then link(`) endif

lastlinked← v

veval(v)

if v < lastlinked then return v endif

`← line(v)

q ← line(lastlinked)

if q = ` then

if lastlinked = top(`) then return up(v)

else return RMQ(lastlinked, v) endif

else

x← linelabel(eval(pC′(`)))

if value(x) > value(up(v)) then x← up(v) endif

if (lastlinked
+

→ v) and (value(linelabel(q)) < value(x)) then

x← linelabel(q)

endif

return x

endif

Figure 3.8: Operations on C .
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top(`)

v = η(x)

lastlinked

rF (v)

lastlinked

rF (v) = η(y)

top(`)

v = η(x)

top(`) = top(q)

rF (v) = η(y)

lastlinked

v = η(x)

(a)

x

(b)

y

x

y

η(y)

(c)

x

y

top(q)

Figure 3.9: Examples of how the vlink-veval structure evaluates minima on paths of C .
Dashed arcs represent (possibly nil) tree paths; solid arcs are tree arcs; dotted arcs are
non-tree arcs; filled nodes are in the core; open nodes are in non-trivial microtrees; trian-
gles denote non-trivial microtrees. In all the examples y is the currently processed vertex
and belongs to a non-trivial microtree; ` = line(v) and q = line(lastlinked). The arc (x, y)
causes a call to veval(v), where v = η(x).

Figure 3.9(a) for an example. In this case it suffices to consider the values of up(v) and

eval(pC′(`)). Otherwise, when pF (lastlinked) = rF (v), we may have top(q)
+

→ lastlinked, in

which case q is not linked (e.g., Figure 3.9(b)). Then we also need to consider the values

in lastlinked
∗
→ bottom(q), which is done in the last if statement in the code for veval.

Obviously we cannot apply similar computations to calculate path minima inside a

line. In this case we take advantage of the following observation. Suppose that we need

to compute a vertex with minimum pxdom in a tree path inside ` from vi 6= top(`) to

vj 6= bottom(`). Then, this computation is performed in one of the following cases:

(i) During the pxdom phase, when we compute pxdom(vi−1).

(ii) During the pxdom phase, when we compute pxdom(y) for some vertex y ∈ TL(vi)

(e.g., Figure 3.9(c)).

(iii) During the idom phase, when we compute d(x) where x is such that η(x) = vj and

pxdom(x) = vi−1.

(The fact that during the pxdom phase only cases (i) and (ii) may apply is implied by the
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properties of DFS.) In the next section we show that by processing ` appropriately we

can compute pxdom(v) for all v ∈ ` without knowing pxdom(u) for any u ∈ TL(`), so this

takes care of case (i). Then the task of computing path minima inside ` = (v1, . . . , vk)

for cases (ii) and (iii) is equivalent to the Range Minimum Query problem (RMQ). In an

instance of this problem we are given an array A =
[
a1 a2 . . . an

]
and a set QA

of queries. A query is a pair of array indices (i, j), such that 1 ≤ i ≤ j ≤ n. For

each pair (i, j) ∈ QA we want to find the index of the smallest element in the sub-

array A(i : j) =
[
ai ai+1 . . . aj

]
. We denote by RMQ(A, i, j) the answer to the

query (i, j) ∈ QA. In our case A =
[
pxdom(v1) . . . pxdom(vk)

]
, and we denote a

query for the minimum pxdom in the path C[vi, vj ] by RMQ(vi, vj) ≡ RMQ(A, i, j). Note

that in both (ii) and (iii) we have lastlinked = vi, so RMQ(lastlinked, vj) is the desired

value of the corresponding computation. Since we have line(vj) = line(lastlinked) and

lastlinked 6= top(line(vj)), veval(vj) returns the correct value.

We can solve an instance of the RMQ problem by computing NCAs in the Cartesian

tree T` [Vui80] for the sequence of values pxdom(vi), 1 ≤ i ≤ k. The Cartesian tree

for the array A =
[
a1 . . . ak

]
is a binary tree defined recursively as a tree rooted at

j = RMQ(A, 1, k) with its left subtree being a Cartesian tree for A(1 : j) and right subtree

being a Cartesian tree for A(j+1 : k). In [GBT84] it is shown how to construct a Cartesian

tree incrementally in O(k) time; the Cartesian tree for A(1 : i) is constructed from the tree

for A(1 : i−1) by ascending the rightmost path until a node j such that aj < ai is reached.

If there no such node then i is made root of A(1 : i) with left subtree the Cartesian tree for

A(1 : i− 1). Otherwise we make the right subtree of j the left subtree of i, and i is made

the right child of j. Note that this construction is implementable on a pointer machine.

There are RAM solutions to the off-line NCAs problem on a tree T that answer each

query in constant time using O(|T |) time for preprocessing [HT84, SV88, BFC00]. On a

pointer machine we can use the algorithm of Buchsbaum et al. [BKRW98a], that answers

all the NCA queries of a query set QT in O(|T |+ |QT |) time. We note that this linear-time

pointer-machine algorithm requires QT to be known a priori, while the RAM algorithms
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do not have this restriction. Fortunately, in our case that query sets are indeed known

off-line. Each range minimum query that needs to be answered during the first phase

of Algorithm PTRDOM corresponds to an arc (u, v) ∈ A, where u > v, line(η(u)) =

line(η(v)), and neither η(u) nor η(u) is an endpoint of a line. The values that are computed

by the NCA algorithm are associated with the corresponding arcs and can be retrieved

in constant time when needed. In the second phase we make an NCA query for every

vertex v such that both pxdom(v) and η(v) are in the same line and neither is an endpoint.

So again the query set for each line is given before we begin the NCA calculations. The

values that are computed by the NCA algorithm are associated with the corresponding

vertices that are processed and can be retrieved in constant time.

To clarify: The results of the RMQ operations are computed before the corresponding

vevals are actually executed. To that end, the first phase of Algorithm PTRDOM delays

processing each left microtree TL(`) until line ` is processed, since then all the induced

NCA operations can be performed off-line. Similarly, in phase two, PTRDOM computes

the results of the RMQs corresponding to ` before any bucket associated with a vertex in

` gets processed.

3.3.2 Computing semidominators in a line

Consider a line ` = (s = v1, . . . , vk = t). Here we describe a procedure process line that

computes the semidominators of the vertices in ` without evaluating pxdom(u) for any

u in TL(`). For more clarity, first we give an algorithm that consists of two phases and

prove its correctness. Then we show how to order the calculations in a single phase, thus

lowering the constant factors of our algorithm.

The first phase of process line transforms the input graph G to a graph G` = (V,A`, r)

that has the following two properties:

(i) None of the vertices in ` has a predecessor in TL(`).

(ii) Each v in ` has the same semidominator in G` as in G.
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The second phase runs a modified version of the pxdom phase of BKRW for ` on G`.

Since in the modified graph there is no arc entering ` from TL(`), the algorithm will not

need the pxdom values of these vertices. Also, the fact that the set of vertices in ` are

linearly ordered allows us to apply a simple and efficient alternative to the eval function

for the evaluation of path minima inside `.

First phase

We process the line bottom-up, and for each vertex v in ` we only consider those arcs

(u, v) that enter v from TL(`). In order to keep track of the visited vertices in TL(`) we use

a mark bit; initially all vertices are unmarked.

Suppose that we are currently processing vi and let u ∈ TL(vj) be a predecessor of vi.

Then, i ≤ j < k and η(u) = vj . Let w = root(micro(u)). We simulate a collapse of the

tree path D[w, u] as follows. We start from u and walk backwards until we reach w or a

marked vertex. For each vertex x that we visit in this walk, we mark x and for each arc

(y, x) we insert (y, vi) at the end of the list of incoming arcs of vi. Finally, we add the arc

(vj , vi). The added arcs originating from TL(`) will eventually be examined in this phase

while processing vi. Let A+ be the list of the new arcs, ordered from the first arc that was

added during this phase to the last.

We denote by G(i) the modified graph G after processing vk, vk−1, . . . , vi. We use

similar notation for other quantities. Note that G(k) = G. The graph G` is formed from

G(1) by removing all the arcs entering ` from TL(`). Then, property (i) trivially holds.

Now we need to show that G` also satisfies property (ii).

For any vertex v in `, let scc(v) be the strongly connected component of G that contains

only vertices that are descendants of v in the DFS tree D. Let u be a vertex in TL(`). We

denote by scc−1(u) the maximum vertex in ` such that u ∈ scc(v). If there is no such v for

u we leave scc−1(u) undefined. Note that u is marked if and only if scc−1(u) is defined.

Furthermore, u is marked while vi = scc−1(u) is processed and therefore G(j) contains an

arc (x, vi) for each predecessor x of u, where j is any integer in [1, i].
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The next lemma shows that the semidominators remain the same in each G(i).

Lemma 3.3 For any v in ` and any integer i in [1, k], s(i)(v) = s(v).

Proof: We prove the Lemma by induction on the rank of the added arcs in A+; for each

rank i ∈ [1, |A+|], we want to show that the addition of the first i arcs in A+ does not

change the semidominator of any vertex.

Let G′ be the graph after adding the first i − 1 arcs of A+. Let (u, v) be the i-th arc.

Then G′ must contain the arcs (u, x) and (y, v), where x and y are vertices in TL(`) that

satisfy v
+

→ x
∗
→ y and v = scc−1(x) = scc−1(y). Now consider any sdom path P in

G′ + (u, v) that starts from a vertex w and enters v using the new arc (u, v). Then, the

prefix of P up to u followed by (u, x), D[x, y] and (y, v) is an sdom path from w to v that

also exists in G′. Hence, the semidominator of v does not change after the addition of

(u, v). The previous argument works both for the basis of the induction (where i = 0 and

G′ = G) and for the induction step. 2

We will use the previous fact to show that for any v in ` there is an sdom path from

s(v) to v in G`. To that end we first need two results about the strong components of

the intermediate graphs G(i) and the final graph G`. The first result shows that no scc(v)

obtains any new vertex as the arcs in A+ are added to the graph.

Lemma 3.4 For any v ∈ ` and any integer j in [1, k], scc(j)(v) = scc(v).

Proof: Let cycle(v) be the set of vertices z such that (z, v) is a cycle arc (w.r.t. the DFS tree

D) entering v. Then scc(v) is the set of vertices w that are descendants of v in D and such

that there is a path from w to some z ∈ cycle(v). Hence, we only need to consider the

new cycle arcs that are added during the first phase. Our goal is to show that the vertices

that are marked while processing a cycle arc (u, v) are in scc(v). This statement implies

the Lemma, since then any predecessor of such a marked vertex that is a descendant of v

must also belong to scc(v).

We will use induction on the order the cycle arcs are processed. For each such arc

(u, v) we claim that u already belonged to scc(v) in G. Given this, the fact that the vertices
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vi

z

xu

η(u)

y = scc−1(u)

Figure 3.10: Proof of Lemma 3.5. Dashed arcs represent (possibly nil) tree paths; solid
arcs are tree arcs; dotted arcs are non-tree arcs; filled nodes are in the core; open nodes
are in non-trivial microtrees; gray nodes can be in either state; triangles denote non-trivial
microtrees where they are determined. Starting from a path containing only vertices in
scc(vi) that connects a vertex w ∈ scc(vi) to vi and goes through u ∈ TL(`), we can find
another path inside scc(vi) from w to vi that avoids u.

that are marked while processing (u, v) are in scc(v) follows immediately. Therefore, the

claim implies that all the vertices that are marked while processing v must belong to

scc(v). Note that the claim is obvious for the first cycle arc that was processed, since

this arc must exist in G. Hence, the base case holds. For the induction step it suffices

to consider a cycle arc (u, v) /∈ A, since otherwise the same argument with the base case

applies. The fact that (u, v) was not present in G implies that u is a predecessor of an

already marked vertex w; this vertex must have been marked while v was processed,

hence w ∈ scc(v) by induction hypothesis. Since u is a descendant of v, we conclude that

u ∈ scc(v) as claimed. 2

Lemma 3.5 Let vi and vj be any vertices in ` = (v1, . . . , vk) such that vj ∈ scc(vi). Then, there

is a path in G(i) from vj to vi that avoids TL(`) and contains only vertices in scc(vi).

Proof: We prove by induction on i that for any vj ∈ `∩ scc(vi), there is a path in G(i) from

vj to vi that avoids TL(`) and contains only vertices in scc(vi).

The base case i = k is immediate since vk is the only vertex of ` ∩ scc(vk).
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For the induction step we note that since vj ∈ `∩ scc(vi) there is a path from vj to vi in

G(i+1) (and in all the intermediate graphs G(k), . . . , G(i+2)) that contains only descendants

of vi in D. Let Pµ be such a path with minimum number of vertices in TL(`), where µ is

the number of vertices in Pµ ∩ TL(`).

If µ = 0 then the result is immediate. Otherwise, let u be the last vertex on Pµ that

is in TL(`). Let z be the successor of u on Pµ. Then, by the definition of Pµ and u (and

by the properties of DFS; Lemma A.1) we have that vi
∗
→ z

∗
→ η(u). Also, let x be the

predecessor of u on Pµ and let y = scc−1(u) (see Figure 3.10). Then, vi
∗
→ z

∗
→ y

∗
→ η(u). If

vi 6= y then by construction G(i+1) contains the arcs (x, y) and (η(u), z). Consider the path

Q in G(i+1) formed by the prefix of Pµ up to x, followed by (x, y), y
∗
→ η(u), (η(u), z), and

the suffix of Pµ from z to vi. This path contains only descendants of vi in D and avoids u.

Thus, Q has has at most µ − 1 vertices in TL(`), a contradiction. Therefore, u is marked

while processing vi, which implies vi = z = y and G(i) contains the arc (x, vi). Now

consider the path Pµ′ in G(i) formed by the prefix of Pµ up to x and followed by (x, vi).

This path connects vj to vi visiting only descendants of vi in D, and also avoids u. So, Pµ′

contains at most µ′ ≤ µ− 1 vertices in TL(`). Then, we can apply the same analysis as for

Pµ. By repeating these arguments it is clear that G(i) contains a path P0 that satisfies the

Lemma. 2

The next lemma immediately implies that G` satisfies property (ii).

Lemma 3.6 For any vi in ` and any integer j in [1, i], there is an sdom path in G(j) from s(vi)

to vi that does not pass though TL(`).

Proof: Clearly it suffices to show that such an sdom path for v = vi exists in G(i), since

no path disappears during the processing of the ancestors of vi in `.

Consider an sdom path in G(i) from s(v) to v and let u be the first vertex on P that is

in TL(`). If no such u exists then the Lemma clearly holds. Otherwise, let y = scc−1(u)

and let x be the predecessor of u on P . Since u was marked when y was processed, G(i)

contains the arc (x, y). Moreover, y ∈ scc(v) so by Lemma 3.5 there is a path Q from y to
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v that avoids TL(`) and contains only descendants of v. Hence, the prefix of P until x,

followed by (x, y) and Q is an sdom path from s(v) to v that avoids TL(`). 2

Second phase

Suppose that the second phase of process line runs the pxdom part of the BKRW algo-

rithm for ` on G`. Since pxdom(v) for any v > vk is already computed before the call to

process line, it follows from Lemma 3.6 and the correctness of the BKRW algorithm, that

this algorithm correctly computes the semidominators for the vertices of `. Recall that

the BKRW algorithm uses a version of the eval function that operates on C . So, in order

to achieve linear running time for our overall dominators algorithm, we have to ensure

that the eval function operates only outside `.

To that end, we employ a simple stack-based mechanism, similar to Gabow’s linear-

time algorithm for strong components [Gab00], in order to compute minimum semidom-

inator values for paths that lie on the line. We make the observation that each evalua-

tion of semidominator minima on a path C[vi−1, vj ] of ` is caused by a back arc (x, vi),

where x is vertex whose nearest ancestor in ` is vj . This arc defines a strongly connected

component in which vi is the minimum vertex. We use a stack S to keep track of these

strongly connected components. Initially the stack is empty, and a vertex vi is pushed

onto the stack after we are finished processing it. Each element of the stack corresponds

to a strongly connected component scc of successive vertices vi, . . . , vj in `, and can be

represented by the vertex vi which has the minimum DFS number in the component.

Since vi = min{u | u ∈ scc} we also have s(vi) = min{s(u) | u ∈ scc}. Suppose that

when we reach vertex v ∈ ` the current status of the stack is S = (ud, ud−1, . . . , u1), where

v = pC(ud) and ui < ui−1 for 2 ≤ i ≤ d. Also, let u ∈ ` be a descendant of v. In or-

der to evaluate the minimum semidominator value in the path P = C[v, u] we simulate

the contraction of P by performing a sequence of pop operations on S, until we reach a

proper descendant of u. As we pop each element w ≤ u of S, we also perform the update

value(v) = min{value(v), value(w)}.
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We process the arc (u, vi) as follows. First we compute x ← veval(u). Then we apply

the stack-based contraction of C[vi, vj ]. Finally, we set

value(vi)← min{value(x), value(vi), value(u)}.

Now we prove the correctness of our algorithm.

Lemma 3.7 After process line completes processing the line ` = (s = v1, . . . , vk = t) we have

value(vi) = s(vi), for 1 ≤ i ≤ k, assuming that value(u) = pxdom(u) for u > t.

Proof: We will show that by processing the arcs with the stack-based contractions and

the veval function produces the same result as the eval of BKRW. Then, as we have al-

ready mentioned, the correctness of our algorithm will follow from Lemma 3.6 and the

correctness of the BKRW algorithm [BKRW98b, Theorem 4.4]. Recall that lastlinked is

the last vertex in C on which vlink was applied. In particular this means lastlinked =

top(line(lastlinked)) and lastlinked > t.

Let (u, vi) be the arc that is currently processed by process line. Suppose that η(u) is

either an ancestor of vi or unrelated to vi. Since no vertex is linked during the execution

of process line, each call to veval returns the same value as the equivalent call to eval of

BKRW.

Now suppose η(u) is a descendant of vi. The BKRW algorithm would handle this

case by finding a vertex z ∈ D(vi, η(u)] with minimum semidominator. If t
+

→ η(u) then

veval(η(u)) returns a vertex z with minimum value such that t
+

→ z
∗
→ η(u). Otherwise,

veval(η(u)) returns η(u). It remains to evaluate the path D(vi, vj ]. This computation is

performed by the stack mechanism. Let vj′ be the new top vertex of the stack, after re-

moving the vertices less or equal to vj . Let w be the parent of vj′ in `. We have w ≥ vj ,

so the stack process has actually returned the minimum semidominator in vi
∗
→ w. How-

ever, all vertices in D[vj , w] belong to scc(vi). Hence s(vi) ≤ s(z), for any z ∈ D[vj , w],

and the stack-based computation returns the correct value. 2
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Figure 3.11: Computing the semidominators of the line ` = (s = v1, . . . , vk = t). Dashed
arcs represent (possibly nil) tree paths; solid arcs are tree arcs; dotted arcs are non-tree
arcs; filled nodes are in the core; open nodes are in non-trivial microtrees; gray nodes
can be in either state; triangles denote non-trivial microtrees where they are determined.

In case (1) either u and vi are unrelated, or (u, vi) is a forward arc: (1a) η(u)
+

→ vi ⇒
veval(η(u)) = η(u); (1b) η(u) and vi are unrelated ⇒ veval(η(u)) returns a vertex z ∈
D(ν(vi, u), η(u)] with minimum value (where ν(vi, u) = NCA(D, {vi, u})). In case (2) u ∈

TL(vj) where vi
∗
→ vj

+

→ t. In case (3) vi
+

→ u and u 6∈ TL(`): (3a) u = vj ⇒ veval(η(u)) =

η(u); (3b) t
+

→ u⇒ veval(η(u)) returns a vertex z ∈ D(t, η(u)] with minimum value; (3c)
u ∈ TR(vj)⇒ veval(η(u)) = η(u).
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One-phase implementation of process line

In this section we describe how to order the calculations of process line in a single phase.

Again, let ` = (s = v1, . . . , vk = t) be the line currently processed. We ascend the path

from t to s, and at each vertex vi we examine the arcs entering vi. Let u be the currently

examined predecessor of vi. Depending on the location of u we have the following cases.

(See Figure 3.11.)

(1) u is unrelated to vi, or an ancestor of vi. We compute x ← veval(η(u)). Then we

update

value(vi)← min{value(vi), value(u), value(x)}.

(2) u ∈ TL(vj), where i ≤ j < k. We handle this case by simulating a contraction of

the tree path D[vi, u] = C[vi, vj ] ·D[vj , u] to a single vertex vi. For the C[vi, vj ] part

we set value(vi) to be the minimum value in this path; the effect of the contraction

is achieved by removing from S the proper descendants of vi in ` until vj . For the

D[vj , u] part we start from u and walk backwards until we reach vj or a marked

vertex. For each vertex w 6= vj that we visit in this walk, we mark w and for each

arc (z,w) we insert (z, vi) at the end of the list of incoming arcs of vi.

(3) vi
+

→ u and u /∈ TL(`). We compute x← veval(η(u)). Then we simulate a contraction

of the tree path C[vi,min{t, η(u)}] as in case (2), and set value(vi) to be the minimum

value in this path. Finally we update

value(vi)← min{value(x), value(vi), value(u)}.

Figures 3.12 and 3.13 show an implementation of the single-phase version of Pro-

cessLine. The correctness of this implementation is implied by Lemma 3.7 and the fact

that Lemmas 3.3 and 3.6 hold for the intermediate graphs G(i).
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process line(t)

S ← ∅

s← top(line(t))

v ← t

while v ≥ s do

for u ∈ pred(v) do

if v and η(u) are unrelated then

x← veval(η(u))

value(v)← min{value(v), value(u), value(x)}

elseif η(u) ∈ line(t) and u ∈ TL(η(u)) then

contract(v, η(u))

backwalk(u, v)

else

x← veval(η(u))

contract(v, min{t, η(u)})

value(v)← min{value(v), value(u), value(x)}

endif

done

push(S, v)

v ← pC(v)

done

compute in a top-down pass up(v) for all v ∈ line(t)

Figure 3.12: Procedure process line computes the semidominators of a line ` given the
pxdoms of the vertices v > bottom(`).
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contract(u, v)

w ← top(S)

while w ≤ u do

pop(S)

value(v)← min {value(v), value(w)}

w ← top(S)

done

backwalk(u, v)

while mark(u) = false and u /∈ C do

mark(u)← true

for w ∈ pred(u) do

add w to pred(v)

done

u← pD(u)

done

Figure 3.13: Procedures that simulate the effect of tree path contractions.

3.3.3 Running time

Now we analyze the running time of PTRDOM assuming the one-phase process line. (The

same analysis — after some minor adjustments — is also valid for the two-phase version.)

Theorem 3.8 Algorithm PTRDOM computes the immediate dominators of an input graph in

O(n + m) time on a pointer machine.

Proof: The correctness of PTRDOM follows from Lemma 3.7 and [BKRW98b, Theorem

4.7]. In [BKRW98a] it is shown that iidoms can be computed in linear time on a pointer

machine. The total time spent in process microtree is linear plus the time spent on vlink

and veval. As discussed earlier, after O(|`|) preprocessing time, each call to RMQ(c, v) for

any c, v ∈ ` takes constant amortized time. The total time spent on RMQ is thus

O(
∑

`

|`|+ m) = O(n + m).

Algorithm PTRDOM makes O(n) calls to vlink. Now we count the number of calls to

veval. The second phase of PTRDOM makes at most one call to veval per vertex. The first

phase makes at most one call per arc in G, plus one call per arc in A` \ A for each line `.

Since each arc in A` \ A corresponds to an arc that enters TL(`) in G, the total number of

calls to veval is still O(n + m). Each call takes constant time plus the time spent on link
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and eval for C ′. The total time that will be spent on link and eval is

O(mα(m,L) + L) = O(m),

for g = O(log 1/3n), since C ′ has L = O(n/g) vertices. It remains to show that excluding

the calls to veval, process line takes linear time with respect to the number of vertices in `

and TL(`) and the arcs entering them.

While ProcessLine processes a vertex vj in ` = (v1, . . . , vk) it examines all its predeces-

sors in G plus the vertices added to the predecessors list of vj , and then vj is pushed onto

S. If vj is accessed again while processing vi in ` then all the vertices vj′ , i+1 ≤ j′ ≤ j−1,

have been removed from S and are never accessed again. Thus the number of stack op-

erations is proportional to the number of vertices in ` and their predecessors, and each

stack operation takes constant time. Now consider a vertex u in TL(`); process line may

visit u either because there is an arc (u, vi) or an arc (u′, vi) for some proper descendant u′

of u. The first time process line visits u it spends time proportional to the number of pre-

decessors of u because it copies them to the predecessors list of vertex vi in ` and marks

u. After that, u can be accessed again at most once for each child of u in D and once for

each successor of u in TL(`), and process line spends O(1) time for each such access. The

Theorem follows because the total number of arcs added by process line is less than the

number of predecessors of the vertices in TL(`). 2

3.4 Linear-time version of Lengauer-Tarjan

We present a modified version of algorithm PTRDOM, that computes for all vertices v

the values s(v) and e(v) = argmin{s(u) | s(v)
+

→ u
∗
→ v} in linear time. Hence, we

essentially provide an implementation of the LT algorithm that runs in linear time and is

simpler than the algorithm of Alstrup et al. [AHLT99] but slightly more complicated than

the algorithm of Section 3.3. Algorithm PTRDOM computes precisely the s(v) and e(v)

values for all vertices v ∈ C , but for the vertices u in the non-trivial microtrees it computes

the values pxdom(u) and argmin{pxdom(w) | pxdom(u)
+

→ w
∗
→ u} instead. This suffices
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to compute the immediate dominators for all vertices, but other applications require the

actual s and e functions. For example, in Section 5.4 we use these values to construct two

spanning trees of G with a certain vertex-disjointness property.

In order to compute e(v) for all v in non-trivial microtrees, it suffices to compute

eT (v) = argmin{s(u) | max{s(v), rT }
+

→ u
∗
→ v},

where T is the non-trivial microtree containing v and rT is its root. If s(v) > rT , then

eT (v) = e(v). Otherwise the computation can be completed by finding a vertex with

minimum value on the path C(s(v), p(rT )]; this can be done in Phase 2 of Algorithm

PTRDOM by inserting rT into the bucket associated with vertex s(v).

We show how to compute the desired functions using external dominators (Section

3.2.1). Remember that the xdom values can be computed by running Phase 1 of Algorithm

PTRDOM but with the call to push values omitted in process microtree and ignoring the call

to process vertex. This follows from [BKRW98b, Lemma 4.3], Lemma 3.7, and the fact that

xdom(v) = s(v) for all v ∈ C .

Figure 3.14 shows a slightly modified version of the LT algorithm, which we intend

to use for the computation of s and eT in each non-trivial microtree T . Note that microLT

takes two additional parameters: a vertex rT and a tree D. We assume that rT is the root

of the microtree T that we want to process. Then, eval operates only on paths that do not

leave T . Also, D is the fixed DFS tree of G on which the s and e functions are defined. To

get the original LT algorithm we set rT equal to the root r of the flowgraph G, and D can

be any DFS tree of G. Each vertex v is associated with an integer value(v), which initially

equals v. In order to compute the desired values s(v) and eT (v), we apply the algorithm

to an augmented graph xd(T ), which we define next.

Recall that G(T ) denotes the subgraph of G induced by the vertices of any microtree

T . The augmented graph xd(T ) contains one additional vertex for each distinct xdom(v)

value x for v ∈ T and x /∈ T . Suppose x1 < · · · < xk are these xdom values, which are all

less than rT . Then xd(T ) is constructed by adding to G(T ) the vertices x1, . . . , xk and the
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microLT(G = (V, A, r), D, rT )

/* Phase 1 */

for all w ≥ rT in reverse preorder do

for v ∈ pred(w) do

u← eval(v)

if value(u) < value(w) then value(w)← value(u) endif.

done

z ← max{rT , value(w)}

insert w in bucket[z]

link(w)

done

/* Phase 2 */

re-initialize the link forest

for all w ≥ rT in reverse preorder do

for all v in bucket[w] do

delete v from bucket[w]

e′

T (v)← eval(v)

done

link(w)

done

Figure 3.14: Procedure microLT processes the graph induced by the vertices in DrT
and

their external dominators; D is a fixed DFS tree of G.
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following arcs:

(i) (xi, xi+1), for 1 ≤ i ≤ k − 1,

(ii) (xk, rT ), and

(iii) (xi, v), for 1 ≤ i ≤ k and each v ∈ T such that xdom(v) = xi.

Finally we set x1 to be the root of this flowgraph. We also need to specify a suitable DFS

tree D(T ) of xd(T ); this is formed from the path (x1, . . . , xk) and T , by making xk the

parent of rT . That is, D(T ) is formed by T and the arcs (i) and (ii). Now we show that

microLT applied to xd(T ) computes the semidominators of vertices in T .

Lemma 3.9 Suppose we run algorithm microLT on xd(T ). Then after Phase 1 we will have

value(v) = s(v) for all v ∈ T .

Proof: The Lemma is obvious if s(v) ∈ T , since for any vertex w ≥ v in an sdom path

from s(v) to v, we must have xdom(u) = u > rT . Suppose s(v)
+

→ rT . Let P = (s(v) =

u1, u2, . . . , uk = v) be an sdom path in G. Let ui be the first vertex on P such that ui ∈ T .

By the definition of ui the path (u1, . . . , ui−1) lies entirely outside T , and the properties

of DFS imply that the path (ui, . . . , uk) is entirely inside T . Because xdom(ui) = s(v), it

follows that value(v) = s(v) after processing v. 2

The previous lemma immediately implies that after Phase 2, e′
T (v) = eT (v) for all

v ∈ T .

Procedure microLT is a computation that depends only on the structure of the input

graph; in particular the initial value of each v is itself, and no references are made outside

individual augmented graphs. The size of each xd(T ) is linear with respect to the size

of G(T ), so microLT can be run on all the augmented graphs in linear time overall on a

pointer machine. The details of these computations are similar to those of the computa-

tion of iidoms in [BKRW98a], but here we need to output two values (s(v) and eT (v)) per

vertex instead of one.
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It remains to show how to build the augmented graphs in linear time. In particular we

have to show how to create efficiently the arcs of types (i) and (ii), since the construction

of the arcs of type (iii) is straightforward during the computation of xdoms.

Arcs of type (i) must be constructed simultaneously for all microtrees, since two or

more vertices in different microtrees may share the same xdom. To that end, as we com-

pute the xdoms we maintain for each vertex v ∈ C a list xdlist of pointers to all vertices w

such that xdom(w) = v. After computing all the xdoms, we perform an extra pass over the

vertices in C , in ascending DFS order. During this pass we maintain for each non-trivial

microtree T a pointer pT to the last xdom corresponding to T that was detected. At vertex

v we traverse the associated xdlist. For each vertex u in that list, let T = micro(u); we

add the arc (pT , v) to xd(T ) and set pT ← v. Because the vertices that belong to the same

microtree appear consecutively in xdlist, it is straightforward to guarantee that the arc

(pT , v) is added only once.

After completing the extra DFS traversal, we add arc (pT , rT ) to xd(T ) for each non-

trivial microtree T . This constructs the arcs of type (ii).

3.5 Without a linear-time NCA algorithm

The algorithm that we presented in Section 3.3 requires a linear-time solution to the off-

line NCA problem in order to run in linear time. In this section we show that in fact we

can use any naive method that computes nearest common ancestors on a fixed tree given

the query set off-line.

For a given parameter γ that we will fix later, suppose we define a line of C to be a

maximal unary path of size at most γ (previously γ = n). Let Λ be the number of lines,

and L be the number of maximal unary paths of C as in Section 3.1 (previously Λ = L).

A maximal unary path of length ui is divided to at most dui/γe lines, therefore we have

Λ ≤
L∑

i=1

⌈ui

γ

⌉
≤

2n/g∑

i=1

(ui

γ
+ 1

)
≤

n

γ
+

2n

g
.
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We observe that our algorithm does not rely on the fact that a line is a maximal unary

path in the core, but only on the fact that there are o(n) lines. Therefore, as long as we can

set γ and g so that n/γ + 2n/g = o(n) the operations performed by the data structure of

Section 3.3.1 will still run in linear time. Our goal is to perform some sort of simultaneous

processing of every line, similar to the processing of the nontrivial microtrees by which

the iidoms are computed. Hence, our first measure is to bound the size of the instances of

the NCA problems that occur in our dominators algorithm, so that all possible distinct

instances can be processed in linear time. We note that the Buchsbaum et al. off-line

NCA algorithm achieves linear running time by partitioning the input tree into bottom-

level microtrees of sufficiently small size. This means that Algorithm PTRDOM uses two

types of microtrees: ones partitioning the DFS tree, and others partitioning the Cartesian

trees. In essence our strategy is to divide the NCA problem into subproblems of small

size explicitly, so that each Cartesian tree itself forms a microtree.

If we try to apply this idea in a straightforward manner, however, we encounter the

following problem: Our algorithm requires answers to NCA queries (during the first

phase) before all the semidominators in C are computed. This fact excludes the possi-

bility of processing of every line simultaneously. For a RAM algorithm we can still use

memoization, but on a pointer machine we have to apply some additional measures. A

key observation is that the NCA queries on the Cartesian tree T` of line ` are performed

only for the computation of the pxdoms in TL(`); these values are not required for the

computation of pxdom(v) when v ∈ ` or v > bottom(`); for v < top(`) it suffices to have

for all u ∈ TL(`) values that satisfy the following equation:

min {pxdom(up(η(u))), value(u)} = min {pxdom(up(η(u))), pxdom(u)}. (3.1)

We can compute such values for all u ∈ TL(`) and for all lines ` without having to perform

RMQs as follows. We rearrange the computations that are performed by our algorithm so

that instead of using the value RMQ(lastlinked, v) in veval we return value(up(v)) (Figure

3.8; see also Figure 3.9(c)). Then, after the corresponding microtree T has been processed,
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we will have

value(u) = min {pxdom(u), pxdom(up(η(u)))} ,

for any u ∈ T , which implies equation (3.1). Of course, in order to compute d(u) we need

to compute pxdom(u) before the start of the idom phase. To that end, during the process-

ing of u in the pxdom phase we can store a temporary value temp(u) for the “incomplete”

pxdom calculations for u, which is the value that is computed by process microtree if the

results of all RMQs are suppressed and push values is not executed. Then, the correct

pxdom(u), for all u ∈ T , can be computed by setting value(u) ← temp(u) and updat-

ing these values by preforming the suppressed RMQs (which can be done in a separate

phase after the answers to all RMQs for all the lines are computed) and finally executing

push values.

After computing pxdom(v) for all v ∈ C we can apply the Buchsbaum et al. algorithm

for processing small graphs (Section 4 of [BKRW98a]) and answer all the pending NCAs

in linear time, by choosing γ = g = O(log1/3 n). Here the small graphs that we process

are the Cartesian trees T` corresponding to each line ` augmented with an edge {u, v} for

each query NCA(T, {u, v}).

3.6 Line dominators tree

In this section we present another alternative version of algorithm PTRDOM of Section

3.3, which is based on Lemma 2.6. This modified algorithm is actually more complex; the

purpose of this section is to present some further results and properties of the structure

of dominators computations.

Recall from Lemma 2.6 that d(w) = NCA(I, {p(w), s(w)}). We used this lemma in the

SEMI-NCA algorithm to construct I incrementally by observing that d(w) is the nearest

ancestor of p(w) in I that is less or equal to s(w). In the simple case where the DFS tree

D is just a path this construction takes O(n) time, because we never traverse an arc in I

more than once.
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line dom(` = (v1, . . . , vk))

root← parentI(`)(v1)← s(v1)

childI(`)(root)← v1

for i← 2, . . . , k do

parentI(`)(vi)← vi−1

if s(vi) < root then

parentI(`)(root)← s(vi)

root← s(vi)

childI(`)(root)← vi

parentI(`)(vi)← root

else

while parentI(`)(vi) > s(vi) do

parentI(`)(vi)← parentI(`)(parentI(`)(vi))

done

endif

done

Figure 3.15: Procedure line dom builds the line dominators tree I(`) of line `.

Now we apply this method to a line ` = (v1, v2, . . . , vk). Suppose we have calculated

the semidominators of the vertices in `, so value(vi) = s(vi), 1 ≤ i ≤ k. Procedure line dom

of Figure 3.15 builds a tree I(`) which we call the line dominators tree of `, using the value

parentI(`)(v) to point to the parent of v in I(`). Figure 3.16 gives an example. The meaning

of I(`) is explained by Lemma 3.10.

Lemma 3.10 Let ` = (v1, . . . , vk). After the execution of line dom(`), let u = parentI(`)vi for

any vi ∈ `. Then we have

(a) u = d(vi) ∈ `, otherwise

(b) d(vi) = d(z) where z ∈ D(u, v1) and has minimum semidominator. Moreover if s(z) = u

then d(vi) = u.

Proof: If v1 = r then by Lemma 2.6, statement (a) is true for all vi in `. Now suppose
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(i)

(ii)

v3 [v2]

v4 [w]

v5 [v4]

v6 [v3]

v7 [v6]

v8 [v2]

v1

v2

v3

v4

v5

v6

v7

v8
u

w

w

u

v1 [u]

v2 [v1]

Figure 3.16: Example of the line dominators tree. (i) ` = (v1, . . . , v8) is a line of the core;
w and u are semidominators of v4 and v1 respectively that lie outside `. The dotted arcs
connect s(vi) 6= p(vi) to vi and the values inside the brackets correspond to semidomina-
tors. (b) The line dominators tree I(`). A solid arc (x, y) indicates that parentI(`)(x) = y.
A dotted arc (y, x) indicates that childI(`)(y) = x, which means that during the process of
constructing I(`), y was once root and x become the first child of y in I(`).
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v1 6= r. We prove the Lemma by induction on i. For i = 1 statement (b) is true by Lemma

2.5. Suppose the Lemma is true for 1 ≤ j ≤ i− 1. If vi′ = d(vi) ∈ `, then 1 ≤ i′ ≤ i− 1 and

by Lemma 2.2 we have that for any j such that i′ + 1 ≤ j ≤ i− 1, vi′
∗
→ d(vj). Therefore

line dom processes vi as the second phase of SEMI-NCA and 2.6 implies that statement

(a) is true.

Now assume d(vi) /∈ `. If s(vi) < root then parentI(`)(vi) < parentI(`)(vj) for 1 ≤ j < i,

so

min{s(z) | s(vi)
+

→ z
∗
→ vi} = min{s(z) | s(vi)

+

→ z
+

→ v1},

and statement (2) is true by Lemma 2.5. If s(vi) > root then after vi is processed we will

have parentI(`)(vi) = root. Suppose that as vi moves towards root it visits the vertices

uλ, uλ−1, . . . , u1, where uj
+

→ uj+1 and uj > s(vi), 1 ≤ j ≤ λ. Also by induction hy-

pothesis we have: uj−1 = d(uj) for 2 ≤ j ≤ λ; u1 is not dominated by any vertex in

`; and d(u1)
∗
→ root. Lemma 2.2 implies d(vi)

∗
→ d(u1). Suppose d(vi)

+

→ d(u1). Then

there is a path P from d(vi) to vi that avoids d(u1). Let z ∈ P be the first vertex such that

d(u1)
+

→ z
∗
→ vi. If z > u1 then root > s(z), a contradiction. On the other hand z cannot

be an ancestor of u1 because this implies that there is a path from d(vi) to u1 that avoids

d(u1). Therefore, d(vi) = d(u1). By the induction hypothesis statement (b) holds for u1 so

it must also hold for vi. 2

Note that all the vertices that point to the same vertex u /∈ ` have the same relative

dominator, which is v = childI(`)(u). Then it suffices to locate the immediate dominator

of v only.

3.6.1 Modified veval

We use a modified version of veval which preforms NCA calculations in I(`) instead of

RMQs in the array [s(v)]v∈`. Remember that we needed the value RMQ(vi+1, vj) when

we process a vertex u ∈ TL(vi) (in the pxdom phase if we examine an arc (w, u) where

η(w) = vj , and in the idom phase if vi = pxdom(u)). Now we will use the value of
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NCA(I(`), {vi, vj}) instead. This is the only change we make to the pxdom phase (the

idom phase requires further adjustments). We will show that the values we compute us-

ing our modified procedure give sufficient information to find the pxdoms of the vertices

outside TL(`), and the immediate dominators of vertices in TL(`). First we will need the

following result.

Lemma 3.11 Let I be the dominator tree of G = (V,A, r). Also let D be a DFS tree of G.

Consider any vertices a and b, such that a
+

→ b, and let z ∈ D(a, b] be a vertex with minimum

semidominator. Then d(z) = NCA(I, {a, b}).

Proof: By the definition of z we have s(u) ≥ s(z) for all u ∈ D(a, b], and s(z) ≤ a. Then,

by Lemma 2.5, d(z) dominates all vertices in D[a, b]. Suppose now we ascend the path

on I from b to r until we reach the first vertex x < z. For any vertex u ∈ D(z, b], Lemma

2.2 implies either z
∗
→ d(u) or d(u) = d(z). Therefore, we have x = d(z). But since

d(z) ∈ dom(a) and a < z, x is the closest common dominator of a and b. 2

Now our goal is to show that for any v ∈ V , the vertex value(v) computed in the

pxdom phase satisfies the following lemma.

Lemma 3.12 Let T be any microtree and let u be any vertex of T . Then, after the execution

of process microtree for T , Equation (3.1) holds. Moreover, if T is not a left microtree then

value(u) = pxdom(u). Otherwise if d(u) /∈ T , value(u) satisfies one of the following:

(a) value(u) = pxdom(u).

(b) value(u) = d(u).

(c) d(u) = d(x), where x ∈ D(value(u), η(u)] is a vertex with minimum semidominator.

Proof: The proof is a tedious induction on the order the microtrees are processed. For the

basis of the induction we consider the first microtree T that was processed. The Lemma

follows immediately for T ; no NCA computations are involved during the execution of

process microtree because T cannot be a non-trivial microtree to the left of a line, and thus
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value(u) = pxdom(u). The same argument, in conjunction with the induction hypothesis,

implies that we will have value(u) = pxdom(u) for all u such that u ∈ C or micro(u) is

not a left microtree. Hence, for the induction step we only need to consider a non-trivial

microtree T to the left of a line `.

First we will show that just before PushValues(T ) we have for any v ∈ T , value(v) ≤

xdom(v); this follows by the induction hypothesis, since value(u) ≤ pxdom(u) for any

u /∈ T such that u > v, and the fact that for any line `′ = (v1, . . . , vi, . . . , vj , . . . , vk),

NCA(I(`′), {vi, vj}) ≤ RMQ(vi+1, vj).

This also implies that after push values(T ) we have value(v) ≤ pxdom(v). We prove the

Lemma in two steps. First we show that the Lemma holds for any vertex u ∈ T such that

value(u) did not change after push values(T ). Then, we show that the Lemma also holds

for any vertex u′ ∈ T such that value(u′) was pushed by some other vertex u ∈ T .

Case 1: value(u) did not decrease after push values(T ). We consider which case of Fig-

ure 3.9 applied when value(u) got its minimal value. Let x be the predecessor of u

that caused the corresponding computation. Consider case (a) when η(x) = rF (η(x)).

Then we have value(u) = pxdom(x) if x /∈ C , and value(u) = x otherwise. This im-

plies value(u) ≥ pxdom(u). But we have already shown that value(u) ≤ pxdom(u), thus

value(u) = pxdom(u) and the Lemma follows. In cases (a) when rF (η(x))
+

→ η(x), and (b),

we have:

value(u) = min
(
{value(x)} ∪

{
pxdom(z) | rF (η(x))

+

→ z
∗
→ η(x)

} )
.

By induction hypothesis (3.1) holds for x which means

min
({

value(x), pxdom(up(η(x)))
})

= min
({

pxdom(x), pxdom(up(η(x)))
})

,

so in both cases value(u) = pxdom(u).

In case (a), value(u) was either the result of the NCA calculation or value(u) = value(x).



83

First consider the case

value(u) = NCA(I(`), {vi, vj}), (3.2)

where vi = η(u) and vj = η(w) for some w ∈ pred(u). Then T belongs to TL(`). Let

ri = root(T ), and let v1 = top(`). If d(u) ∈ T then we must have s(x) ≥ vi for any

x ∈ D(vi, vj ], which implies value(u) = vi. But then pxdom(u) = vi = value(v) and

Equation (3.1) and Statement (a) hold. Hence, value(u) < pxdom(u) implies d(v) /∈ T . Let

z ∈ D(vi, vj ] be a vertex of minimal semidominator. Then we have

s(u) ≤ s(z), (3.3)

s(y) ≥ value(u), ri
∗
→ y

∗
→ u, (3.4)

s(y) ≥ s(z), vi
+

→ y
∗
→ vj , (3.5)

s(y) ≥ value(u), max{value(u), p(v1)}
+

→ y
∗
→ vi. (3.6)

Inequality (3.3) holds because any sdom path to z can be extended to an sdom path to u

using D[z, vj ] · D[vj , w] · (w, u); (3.4) follows from the assumption that value(u) did not

decrease after push values(T ); (3.5) is implied by the definition of z; finally (3.6) follows

from (3.2). By Lemma 2.6, d(z) = NCA(I, {s(z), p(z)}). Clearly

NCA(I, {s(z), p(z)}) ≤ NCA(I(`), {s(z), p(z)})

with the equality holding if NCA(I(`), {s(z), p(z)}) ∈ `. Also Lemma 3.10 and Lemma

3.11 imply

NCA(I(`), {s(z), p(z)}) = NCA(I(`), {vi, vj}),

so

value(u) = NCA(I(`), {s(z), p(z)}), (3.7)

and value(u) ≥ d(z) For each vertex y ∈ D(d(z), z) there is a path P from d(z) to z that

avoids y. Therefore P · D[z, vj ] · D[vj, w] · (w, u) avoids y, and therefore d(u) ≤ d(z).

But inequality (3.4) and the fact d(z) ≤ value(u) exclude the possibility that d(u) < d(z),
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hence d(u) = d(z). Now if value(u) ∈ ` then

min{value(u), pxdom(up(vi))} = pxdom(up(vi)) = min{pxdom(u), pxdom(up(vi))},

and (3.1) holds. By Lemma 2.6 for z we have

value(u) = NCA(I(`), {s(z), p(z)}) = d(z),

which means value(u) = d(u) and statement (b) follows. Finally consider value(u) /∈

`. Notice that if s(z) < v1 and s(y) ≥ s(z) for y ∈ D[v1, vi] then value(u) = s(z), so

value(u) = pxdom(u). Otherwise (when s(z) > v1 or s(y) < s(z) for some y ∈ D[v1, vi])

value(u) ≥ pxdom(up(vi)) and pxdom(u) ≥ pxdom(up(vi)). Then in any case, (3.1) holds.

Also, by equation (3.7) and Lemma 3.10 for z, we have that one of the statements (a), (b)

and (c) must hold for u.

Now assume value(u) = value(x). Notice that if value(x) = pxdom(x) then value(u) =

pxdom(u) and the Lemma holds. Otherwise we have value(x) < pxdom(x), thus x /∈

C . Also by induction hypothesis and (3.1), we have value(x) ≥ pxdom(up(vj)). Since

vi
+

→ vj , pxdom(up(vi)) ≥ pxdom(up(vj)). Clearly if pxdom(up(vi)) = pxdom(up(vj)) then

(3.1) holds for u. Otherwise pxdom(up(vi)) > pxdom(up(vj)) and there is a pxdom path

from pxdom(up(vj)) to u. Hence, pxdom(u) ≤ pxdom(up(vj)) which implies value(u) ≤

pxdom(up(vj)). But value(x) ≥ pxdom(up(vj)) so we must have value(u) = pxdom(u) =

pxdom(up(vj)) and (3.1) follows. We proceed to show that on of the Statements (a), (b) and

(c) holds when d(u) /∈ T . Note that d(u) /∈ T implies d(u)
∗
→ d(x). Suppose d(u)

+

→ d(x),

and let P be a path from d(u) to u that avoids d(x). This path does not contain any

vertex w ∈ D(d(x), x]. Otherwise x would not be dominated by d(x). But then we have

pxdom(u) < d(x), and thus, value(x) = value(u) ≤ pxdom(u) < d(x), which contradicts

the induction hypothesis value(x) ≥ d(x). Thus, d(u) = d(x). Clearly value(x) < vj , so

d(x) /∈ micro(x). Then one of the statements (a)-(c) holds for x, hence the same statement

must also hold for u.
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Case 2: value(u′) decreased after push values(T ). Now we prove the Lemma for any

vertex u′ ∈ T , where u′ is such that value(u′) was pushed from some other vertex u ∈

T . This means value(u′) > value(u) before push values(T ) and value(u) did not decrease

after push values(T ). Then there is a path PT from u to u′ in the graph G(T ) induced by

the vertices of T , and value(x) = value(u) after push values(T ) for all x ∈ PT . Clearly

pxdom(u′) ≤ pxdom(u). Note that if value(u) = pxdom(u) then we must have value(u′) =

pxdom(u′), and the Lemma is true. Now assume value(u) < pxdom(u). If value(u) is in `

then pxdom(u′) is also in ` and we must have pxdom(u′) > pxdom(up(vi)). Otherwise the

assumption value(v) < pxdom(v) and (3.1) imply value(v) = pxdom(up(vi)). So value(u′) =

pxdom(up(vi)) ≤ pxdom(u′), which means

min
({

value(u′), pxdom(up(vi))
})

= pxdom(up(vi)) = min
({

pxdom(u′), pxdom(up(vi))
})

and (3.1) holds for u′. We proceed to statements (a)-(c) assuming d(u′) /∈ T . Note that

d(u) /∈ T and d(u′)
∗
→ d(u). If d(u′)

+

→ d(u) then there is a path P from d(u′) to u′ that

avoids d(u). If P contains a vertex w ∈ D(d(u), u] then we have a path from d(u′) to u

that avoids d(u), a contradiction. Hence, P does not intersect D(d(u), u]. But again this is

impossible since it implies pxdom(u′) < d(u) and we know that value(u) ≥ d(u) because

Case 1 holds for u. Therefore d(u) = d(u′) and the result follows by induction hypothesis.

2

3.6.2 Immediate dominators

The following lemma is analogous to Lemma 2.6.

Lemma 3.13 Consider a line ` = (v1, v2, . . . , vk) and let v 6= vi be any vertex in either TL(vi)

or TR(vi). If d(v) is not in T = micro(v) then d(v) = NCA(I, {vi, pxdom(v)}).

Proof: By Lemma 3.1 there is an ancestor w ∈ T of v such that pxdom(v) = pxdom(w) =

s(w) and d(w) /∈ T . By assumption d(v) /∈ T so the same Lemma implies d(v) = d(w). By
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Lemma 2.6 we have

d(w) = NCA(I, {s(w), p(w)}) = NCA(I, {pxdom(w), p(w)}).

Note that for any vertex u ∈ D(vi, w], s(u) ≥ s(w). Let z ∈ D(s(w), vi] be a vertex with

minimum semidominator. Then by Lemma 3.11 we have d(z) = NCA(I, {s(w), vi}). But

d(z) = d(w), by Lemma 2.5 so the Lemma follows. 2

In the previous proof if we apply Lemma 3.10 instead of Lemma 2.6 we get the fol-

lowing result.

Lemma 3.14 Consider a line ` = (v1, v2, . . . , vk) and let v 6= vi be any vertex in either TL(vi)

or TR(vi). Let

y = NCA(I(`), {vi, pxdom(v)}).

If d(v) is not in T = micro(v) then one of the following statements is true:

(a) y = idom(v) ∈ l, otherwise

(b) d(v) = d(z), where z ∈ D(y, v1) is a vertex with minimum semidominator. Moreover if

s(z) = y then d(v) = y.

In order to complete the description of our modified algorithm we now give the de-

tails of computing the immediate dominators. We use a modified version of process bucket

that works as follows. Consider a vertex v, such that η(v) ∈ `. At the end of the pxdom

phase we insert v into a bucket associated with a vertex u that we define next.

First suppose v ∈ C . Then we set u ← parentI(`)v. If u ∈ ` then d(v) = u and we are

done. Otherwise, we need to find a vertex z ∈ D(u, v1) with minimum value. Note that

u ≤ s(z) for any z ∈ D[v1, v]. Hence, veval(v) gives the desired result; it evaluates the

minimum value on the path D(u, v] which extends beyond `, so it does not perform any

RMQ. By applying Lemma 3.10 this computation returns either the immediate dominator

or a relative dominator of v.

Now suppose v /∈ C . Then we set u ← NCA(I(`), {η(v), value(η(v))}). We consider

the cases listed in Lemma 3.12. If value(v) = pxdom(v) then, by Lemma 3.14, u ≥ v1
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process bucket(bucket[u])

for v ∈ bucket[u] do

if u ≥ top(line(η(v))) then

idom[v]← u

return

endif

z ← veval(η(v))

if s(z) = u then idom[v]← u else idom[v] = idom[z] endif

done

Figure 3.17: The modified processing of a bucket.

implies d(v) = u. Otherwise, we compute veval(η(v)) which returns either the immediate

dominator of v or a relative dominator. Finally suppose value(v) 6= pxdom(v). By Lemma

3.12, u ≥ v1 again implies d(v) = u. If u < v1, veval(η(v)) returns either the immediate

dominator or a relative dominator of v.

Figure 3.17 gives an implementation of the modified routine that processes bucket[u].

3.6.3 Remarks

The computations performed by the algorithm we presented in this section are equiva-

lent to the computations of Section 3.3 but the modified algorithm is conceptually more

complicated. Another drawback of the modified algorithm is that a line dominators tree

I(`) may have 2 |`| vertices, i.e., twice as many as the Cartesian tree T`. On the other hand

I(`) gives a closer approximation to the immediate dominators than T`, which may lead

to fewer computations during the idom phase, as discussed in Section 3.6.2.

Interestingly, the techniques we presented in this section allow us to compute during

the idom phase the immediate dominators of all the vertices in the core without any off-

line (RMQ or NCA) computations. Then the immediate dominators of the vertices in

non-trivial microtrees can be found by off-line NCA calculations on the dominator tree

of the core.



Chapter 4

Dominator Tree Verification

The relationship of verification to computation is highly problem-dependent. Consider,

for example, the situation for shortest path trees and for minimum spanning trees. There

is a very simple linear-time algorithm to verify a shortest path tree, but no linear-time

algorithm to compute shortest path trees is known (for a comparison-based compu-

tation model). On the other hand, minimum spanning trees can be verified in linear

time [DRT92, Kin97, BKRW98a], but the known methods are complicated. By combin-

ing a linear-time verification algorithm with random sampling, one can actually find a

minimum spanning tree in linear time [KKT95].

In this chapter we study the problem of verifying a dominator tree: Given a flow-

graph G and a tree T , we want to decide whether T is the dominator tree of G. We

present a linear-time algorithm to verify a dominator tree. This algorithm is simpler

than the known linear-time algorithms to find dominator trees, but also non-trivial. An

O(mα(m,n))-time version of our algorithm is simpler than the O(mα(m,n))-time algo-

rithm for finding dominators; it requires only a standard set union data structure instead

of a link-eval data structure [Tar79a] (see also Section 2.2.2). Our work sheds light on the

relationship between verification and computation of dominators, and we hope it will

lead to a simpler linear-time algorithm to find dominators.

88
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Figure 4.1: Condition (4.1) is not sufficient for graphs with cycles. (i) A flowgraph G with
4 vertices. (ii) The dominator tree I of G; the dotted arcs are in G− I . (iii) A different tree
T that satisfies Condition (4.1); the dotted arcs are in G− T .

4.1 Necessary condition.

It is known that the proposed dominator tree T must satisfy the following condition [RR94]:

pT (w) = NCA(T, pred(w)), ∀ w ∈ V − r. (4.1)

This condition is not sufficient in general but it is sufficient for acyclic graphs. Figure 4.1

shows a counter-example for a graph that contains a cycle. Nonetheless, Condition (4.1)

provides some useful information about the location of the dominators of each vertex, as

we show in the next lemma.

Lemma 4.1 Let T be a tree that satisfies (4.1). Then for any w 6= r, pT (w) dominates w.

Proof: Let u = pT (w). Since T satisfies (4.1), for any z in Tu − u we have pred(z) ⊆ Tu.

Therefore any path from r to w must pass through u. Also since w is reachable from r

there must be at least one such path, so u dominates w. 2

Corollary 4.2 Let T be a tree that satisfies (4.1). Then, for any vertex w 6= r, d(w) is a descen-

dant of pT (w) in T . Moreover, if pT (w) ∈ pred(w) then pT (w) = d(w).

Hence, in a tree that satisfies Condition (4.1), the vertices on a path from the root to

any vertex v are dominators of v, although they may comprise only a subset of dom(v).

Then if G contains only trivial dominators, Condition (4.1) is satisfied by a unique tree;
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every v ∈ V − r is a child of the root. The main idea of our verification algorithm is based

on the previous observation, and is as follows. Given G and T we construct a graph GT

that satisfies the following property:

T is the dominator tree of G⇐⇒ ∀ v GT (v) contains only trivial dominators.

For any vertex v, GT (v) is the subgraph of GT that is induced by v and its children in T .

(If v is a leaf in T then GT (v) consists only of v.) Thus we reduce the verification problem

to the problem of testing if a graph contains only trivial dominators.

Our reduction is based on the idea of the derived graph, which we denote by GT and

which was introduced in [Tar81]. We give the definition of the derived graph together

with a linear-time procedure to construct it in the following section.

4.2 Derived graph.

Let GT = (V,AT , r). The arc set AT is formed by the map γ : A 7→ AT ∪ {null}, defined

as:

γ(w, v) =






(w, v), w = pT (v)

(u, v), u 6= v, pT (u) = pT (v) and u
∗
→T w

null, otherwise

. (4.2)

Note that γ is a many-to-one map, and each arc in AT may correspond to several arcs in

A. Any arc in A mapped to null is discarded. In particular we ignore any arc (w, v) ∈ A

such that v
∗
→T w; this arc does not contribute any dominance information since all

the vertices on T [v,w] should be dominated by v. Our definition also excludes any arc

(w, v) ∈ A such that

NCA(T, {w, v}) 6= pT (v), for v 6
∗
→T w.

Note that if such an arc exists then T does not satisfy the necessary Condition (4.1). In

this case our algorithm reports that the input tree is not the dominator tree of G and

terminates. The remaining arcs of G are mapped to two kinds of arcs in GT :



91

f

(iii)

e

r

g

(i)

r

d

e

f

g

(ii)

d

e

f

r

g

a

b

c

a

c

b

d

d

a

b

c

a

r

g

(iv)

Figure 4.2: Derived graph and subgraphs. (i) The flowgraph G = (V,A, r). (ii) The
proposed dominator tree T . In this example T = I . Non-tree arcs are dotted. (iii) The
derived flowgraph GT = (V,AT , r). The arcs (c, a) and (f, d) of G are eliminated. The
arcs (c, d) and (c, g) of G correspond to (a, d) and (a, g) in GT . The arcs (f, a) and (f, g) of
G correspond to (d, a) and (d, g) in GT . (iv) The derived subgraph GT (r).
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- arcs that lead from a parent to a child in T , and

- arcs that lead from a vertex to one of its siblings in T .

For any vertex w we define the derived subgraph GT (w) to be the subgraph of GT induced

by w and its children in T . Figure 4.2 gives an example of these definitions.

The next lemma shows that it suffices to verify that T is the dominator tree of GT .

Lemma 4.3 Let T be a tree that satisfies (4.1). Then T is the dominator tree of G if and only if T

is the dominator tree of GT .

Proof: Let w be any vertex of G other than r and let u = pT (w). We have assumed that

T satisfies Condition (4.1) for G, which implies that the same condition holds for GT . Let

dG(w) ≡ d(w) and dGT
(w) be respectively the immediate dominators of w in G and in

GT . By Corollary 4.2 we have that both dGT
(w) and dG(w) are in Tu. If u is a predecessor

of w then u is the immediate dominator of w in both G and GT .

Now assume that u = dG(w) but (u,w) /∈ A. Then there exists a simple path P =

(v0 = u, v1, . . . , vk, vk+1 = w) in G. Also, by the definition of dG(w), for each i in [1, k]

there exists a simple path Pvi
in G from u to w that avoids vi. Condition (4.1) implies that

vi ∈ Tu, 0 ≤ i ≤ k + 1. First we show that each path from u to w in G induces a path from

u to w in GT . To that end we assume that chdT (u) = (u1, u2, . . . , ud) and show that P

induces a path P ′ in GT that also connects u to w. Note that w and v1 are both in chdT (u),

so P contains some vertices of chdT (u). Furthermore we can partition P into subpaths

P [us, ut] = (x0 = us, x1, . . . , xl, xl+1 = ut),

such that xi /∈ chdT (u), 1 ≤ i ≤ l. Then since T satisfies Condition (4.1) we have xi ∈ Tus
,

1 ≤ i ≤ l. This means γ(xl, ut) = (us, ut) and AT contains the arc (us, ut) that corresponds

to the arc (xl, ut) ∈ A. Therefore the subpath P [us, ut] in G is translated to the arc (us, ut)

in GT and we conclude that P is translated to a path P ′ = (u, ui1 , . . . , uij , w) in GT , where

uij′
∈ P , 1 ≤ j′ ≤ j. By the same arguments Pui

j′

is translated to a path P ′
ui

j′

in GT that

avoids uij′
. This proves that u = dG(w) implies u = dGT

(w).
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Now we consider the case u 6= dG(w). By Corollary 4.2 we have z = dG(w) ∈ Tu − u.

Let ui be the child of u that is an ancestor of z. Every path P from u to w in G contains z,

therefore the induced path P ′ in GT must contain ui. Moreover, as we argued before, for

any uj 6= ui in P the induced path P ′
uj

in GT avoids uj . We conclude that ui = dGT
(w). 2

Now we describe an algorithm that builds GT and at the same time verifies that T

satisfies Condition (4.1). First we note that an equivalent way to state Condition (4.1) is

that for each x 6= r the following two properties must hold:

(P1) For all z in pred(x), pT (x)
∗
→T z.

(P2) Either pT (x) is in pred(x) or there exist two distinct children of pT (x) in T , y1 and

y2, and predecessors of x, z1 and z2, such that yi 6= x and yi
∗
→T zi, for i = 1, 2.

We start by constructing for each vertex v that is not a leaf in T the list of its children in

T , chdT (v). Then we perform a preorder walk of T . The first time we visit a vertex v we

assign to it a preorder number and the last time (after visiting all the vertices in Tv) we

compute the size of the subtree rooted at v; to do so, we assign

size(v) ←
∑

u∈chdT (v)

size(u) + 1.

For simplicity, we will refer to the vertices of T by their preorder numbers. Then v < u

means that v was visited before u during the preorder walk. Since the vertices of a subtree

are assigned consecutive numbers, v
∗
→T u if and only if v ≤ u ≤ v + size(v) − 1. So,

Property (P1) can be tested in constant time per edge. In order to test Property (P2) we

need some additional information, which can also be collected during the preorder walk

of T . When we visit a vertex v we examine its list of successors. Let u ∈ succ(v) and

let w = pT (u). If v 6= w and u 6
∗
→T v, then we insert v at the end of a list predom(w).

This list stores the predecessors v of the vertices u for which we want to verify that w

is their immediate dominator. Figure 4.3 illustrates these definitions. Notice that since

we visit the vertices in preorder, predom(w) is sorted in ascending order. Moreover the
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list that represents chdT (w) = (w1, w2, . . . , wk) is also sorted with respect to the preorder

numbering if we visit the children of v in the order given by the list. For each vertex

v ∈ predom(w) we want to find the child of w that is an ancestor of v. Let aT (w, v) be

that child of w. Since the lists that represent both chdT (w) and predom(w) are sorted in

ascending order, we can find all aT (w, v) in time

O
(
|predom(w)|+ |chdT (w)|

)
.

Clearly aT (w, v) is the vertex wi in the list chdT (w) that satisfies wi ≤ v and wi+1 > v if

1 ≤ i < k, or wk ≤ v ≤ w + size(w)− 1. (If v does not satisfy any of these inequalities then

Property (P1) does not hold.) Thus, we are essentially merging the two sorted lists that

represent chdT (w) and predom(w). Furthermore, a vertex v can occur in at most |succ(v)|

predom lists. Hence, the total time that will take us to compute aT (w, v) for all w ∈ T and

all v ∈ predom(w) is proportional to

∑

w∈T

(
|predom(w)|+ |chdT (w)|

)
≤ |A|+ |V | = m + n.

After calculating aT (w, v) for each v ∈ pred(u) such that w = pT (u), testing Property (P2)

takes linear time.

As we mentioned earlier, if a test for (P1) or (P2) fails for some vertex, then our al-

gorithm reports that T 6= I and terminates. Otherwise, it uses the aT (w, v) informa-

tion to construct the derived graph. The arcs (pT (v), v) in A are copied to AT . For any

other arc (u, v) in A, we include in AT the corresponding arc γ(u, v) = (z, v) where

z = aT (pT (v), u). Note that if we store the aT (w, v) values as we compute them in a

linked list associated with v (which will be the list of predecessors of v in GT ), then these

values will be sorted in ascending order because the vertices are visited in preorder in T .

This fact enables us to avoid introducing multiple arcs in GT .
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r [1, 10]

a [2, 8]

g [6, 2]

i [10, 1]

h [7, 1]

b [3, 5]

f [5, 1]

c [8, 1]

e [4, 1]

predom(b) = (e, h)

predom(r) = (f, h, d)

d [9, 1]
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predom(a) = (b, e, c)
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Figure 4.3: Construction of the derived graph. (i) The input flowgraph. (ii) The proposed
dominators tree T . In this example T = I . Dotted arcs are not in T . The values inside the
brackets correspond to the preorder number of a vertex and the size of its subtree. Also
the nonempty predom lists are shown.
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4.3 Acyclic graphs.

As we mentioned earlier, Condition (4.1) is necessary and sufficient for acyclic graphs.

Hence, the verification procedure can accept T if it successfully completes the tests for

(P1) and (P2) at each vertex.

4.4 Reducible graphs.

If G is reducible1 then for every back arc (u, v), with respect to a fixed depth-first search

tree D of G, we have that v dominates u. Such arcs do not contribute any dominance

information, and hence can be removed. The resulting graph is acyclic and has the same

dominators as G, so we can apply the same verification procedure as for acyclic graphs.

4.5 General graphs.

In the general case, for each derived sub-flowgraph GT (w) = (VT (w), AT (w), w), we

have to check if all the vertices in GT (w) have only trivial dominators. If this is true then

Corollary 4.2 implies that dGT
(v) = w for all v ∈ VT (w) − w, and by Lemma 4.3 we have

d(v) = w. In the next section we see how to verify in linear time that a graph has only

trivial dominators.

4.5.1 Verifying trivial dominators.

We will describe a subroutine that given a flowgraph G = (V,E, r) checks whether r is

the immediate dominator of every vertex v ∈ V − r. Initially we perform a DFS on G,

which produces a DFS tree D and a preorder numbering for the vertices of G. We refer

to the vertices by their preorder numbers in D, so v < u means that v was visited before

u during the DFS. Also we define ν(u, v) to be an abbreviation for NCA(D, {u, v}). Our

verification procedure is based on the next simple observation.

1See Section 2.1.1 for a definition of reducibility.
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Lemma 4.4 Let v be a vertex such that d(v) 6= r. Then there exists a vertex u such that d(u) =

p(u) 6= r.

Proof: Let u be the vertex that satisfies d(v) → u
∗
→ v. Then we must have d(u) = d(v).

Otherwise there exists a path from r to u that avoids d(v), which catenated with the path

D[u, v] gives a path from r to v that avoids d(v). 2

As the previous lemma implies, in order to verify that G has no nontrivial dominators

it suffices to verify that there does not exist any vertex w /∈ succ(r)∪{r} that is dominated

by p(w). (If w ∈ succ(r) then clearly d(w) = r.) We can do so by computing for each

vertex w the maximal strongly connected component S(G,w) in G that contains only

descendants of w in D. Formally, let C(G,w) be the set of vertices z such that (z,w) is a

cycle arc entering w. By convention w ∈ C(G,w). We define

S(G,w) = { v | w
∗
→ v and ∃ z ∈ C(G,w) such that there is

a path from v to z containing only descendants of w }. (4.3)

Note that if C(G,w) = ∅ then S(G,w) = {w}. In order to compute and represent the

S(G, v) sets efficiently we define the operation collapse(S, v), that collapses a set S ⊆ V

to a vertex v /∈ S, as follows. For each x ∈ S and w /∈ S ∪ {v}, if (x,w) exists we

replace it with (v,w). Similarly, if (w, x) exists we replace it with (w, v). Finally we re-

move S. Let G(n) = G and I(n) = S(G,n) = {n}. For k = n − 1, . . . , 1, we compute

I(k) = S(G(k + 1), k) and G(k) = collapse(I(k) − k, k). Notice that the sets I(k) − k par-

tition the set of vertices {i | 2 ≤ i ≤ n}. The sets I(k) are called the intervals of G and

can be found by computing ν(u, v) for all (u, v) ∈ A and using disjoint set union opera-

tions [Tar76]. A simple implementation of these computations requires only a standard

DSU data structure and runs in O(mα(m,n))-time [Tar79a]. We can actually perform

these computations in linear time using the linear-time DSU algorithm of [GT85], since

this result also implies a linear-time version of the Aho, Hopcroft and Ullman off-line

NCA algorithm [AHU76]. Note however, that the linear-time version of our algorithm is

implementable only on a RAM.
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Algorithm TVerify(G = (V,A, r))

for k = n, n− 1, . . . , 2 do

label(k) ← min{label((j, k)) | j ∈ pred(k)}

label(k) ← min{label(j) | j ∈ I(k)}

if label(k) = p(k) and p(k) 6= 1 then

return false

endif

done

return true

Figure 4.4: Algorithm TVerify returns false if it finds a vertex that is dominated by its
parent. It assumes that each arc a = (u, v) is labeled so that label(a) = v if it is a back arc,
label(a) = p(ν(u, v)) if it is a cross arc, and label(a) = u if it is a tree or a forward arc.

The next lemma suggests how to use the intervals of G for our verification test.

Lemma 4.5 Let k be any vertex such that p(k) 6= 1. Then d(k) 6= p(k) if and only if there exists

j ∈ I(k) that has a predecessor in G(k + 1) not dominated by p(k) in G(k + 1).

Proof: Obviously d(k) 6= p(k) if and only if there exists j ∈ S(G, k) that has a predecessor

not dominated by p(k). Note that if i ∈ S(G, j) then i ∈ S(G, k). Thus, S(G, k) =
⋃

j∈I(k) S(G, j) and the Lemma follows from the definition of collapse(S, v). 2

Figure 4.4 gives the outline of our algorithm. It assumes that we have already com-

puted the intervals of G and that for each arc a = (u, v) we have computed a label such

that

label(a) =






v, a is a back arc

u, a is a forward or a tree arc

p(ν(u, v)), a is a cross arc

.

The algorithm processes the vertices in reverse preorder. For each vertex k it computes

label(k), which is the minimum of the labels of the incoming arcs of k and of the labels
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Figure 4.5: Example of the execution of TVerify. (i) The input graph with the arcs already
labeled. Dotted arcs do not belong to the DFS tree. (ii) The graph after labeling each ver-
tex by the minimum label of its incoming arcs. (We present this step as being performed
separately to make the example clearer.) (iii) The situation when we process vertex 4.
All the vertices with higher preorder numbers have already passed the test. We have
I(4) = {4, 5, 6, 7} (filled nodes), so the new label of 4 is 2 < p(4). (iv) The situation when
we process vertex 3. We have collapsed I(4)−4 to 4 and now I(3) = {3, 4, 8, 9, 10, 11, 12},
so the new label of 3 is 1 < p(3).
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of the vertices in I(k). It is important to note that this is equivalent to labeling vertex k

in G(k) by setting label(k) equal to the minimum label of all the arcs entering k in G(k).

If label(k) equals p(k) the algorithm exits and reports that k is dominated by p(k). It is

clear that TVerify runs in linear time given the intervals of G and the arc labels. Figure 4.5

gives an example of the execution of this algorithm.

Lemma 4.6 Algorithm TVerify is correct.

Proof: We show by induction on k that if the algorithm does not return false after pro-

cessing k then k is not dominated by j = p(k). The basis k = n is straightforward: the

only arcs that may enter n, excluding the tree arc, are forward arcs. Assuming that j 6= 1,

label(n) < j if and only if there exists a forward arc entering n. Suppose that the algo-

rithm has correctly verified the dominators of the vertices n, n− 1, . . . , k + 1. By Lemma

4.5 it suffices to show that for any z ∈ I(k) we have label(z) < j if and only if z is not

dominated by j in G(k + 1). Clearly if no such z exists then I(k) is dominated by j and

the algorithm correctly reports failure. (Remember that for each vertex z ∈ I(k)− k there

can only exist tree, forward or cross arcs entering z in G(k + 1).) Now assume that there

is such a z. If there exists an arc (x, z) such that ν(z, x) < j then by Lemma 4.5, k is not

dominated by j in G and the algorithm sets label(k) < j. Next assume that ν(z, x) = j.

Let l be the sibling of k that is an ancestor of x in D. Since l passed the test we already

know that it is not dominated by j, and therefore z is not dominated by j. The algorithm

will set label(k) < j and k correctly passes the test. 2



Chapter 5

Ancestor-Dominance Spanning Trees

In this chapter we explore the relation between dominators and spanning trees. Our

central result is a linear-time algorithm than constructs two spanning trees of a flowgraph

G that satisfy the the following theorem:

Theorem 5.1 Any flowgraph G = (V,A, r) has two spanning trees, T1 and T2, that satisfy the

following ancestor-dominance property:

T1[r, v] ∩ T2[r, v] = dom(v), for any v ∈ V.

We call two spanning trees that satisfy the ancestor-dominance property ancestor-

dominance spanning trees. In Section 5.4 we present a surprisingly simple algorithm that

constructs such two spanning trees in O(mα(m,n))-time. Furthermore, by applying the

techniques of Chapter 3, we can construct a linear-time version of our algorithm. We

have already seen in Section 2.1.1 that the existence of two ancestor-dominance spanning

trees implies an optimal ordering of the calculations in the iterative algorithm of Allen

and Cocke [AC72], so that it builds the dominator tree in one iteration. The ancestor-

dominance property generalizes the notion of independent spanning trees that has been

studied by various authors. Our work uses entirely different techniques and, in contrast

to the related results on independent spanning trees, is not inductive.

101
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5.1 Independent spanning trees

Let T = {T1, T2, . . . , Tk} be a collection of spanning trees of G. These spanning trees are

called independent if the following property holds:

For any vertex v and any two distinct integers i and j in [1, k], the paths Ti(r, v)
and Tj(r, v) are vertex-disjoint.

Frank conjectured that any strongly k-connected graph contains k independent span-

ning trees, as an analog of a well-known theorem of Edmonds on edge-disjoint branch-

ings [Edm70]. Edmonds’s result states that G has k edge-disjoint branchings rooted at

r if and only if, for any vertex v, there are k edge-disjoint paths from r to v. (See also

[Edm72] for a different characterization of edge-disjoint branchings.) Franks’s conjec-

ture was disproved in 1995 by Huck [Huc95], who showed that for any k ≥ 3 there is

a k-connected graph that does not have k independent spanning trees. This disproof of

Frank’s conjecture does not hold in special cases. For instance, it does not apply to planar

graphs [Huc99b]. The case k = 2 has proved earlier by Whitty [Whi87]. Actually Whitty

proved a more general result, which we can state as follows:

Theorem 5.2 [Whi87] Let G = (V,A, r) be a flowgraph that, for any vertex v, has two vertex-

disjoint paths from r to v. Then, G has two spanning trees, T1 and T2, such that for any pair of

vertices u and v:

T1(r, v) ∩ T2(r, u) 6= ∅ ⇒ T1(r, u) ∩ T2(r, v) = ∅.

We call two spanning trees that satisfy the above theorem, strongly independent. Whitty

gave a rather complicated but constructive proof of his theorem, and he claimed polyno-

mial running time for the algorithm implied by his construction. The exact complexity of

his construction is not specified but seems to require Θ(mn) time. Simpler constructions

were given independently by Plehn [Ple91], and Cheriyan and Reif [CR92]. Both these

constructions are based on an extension of the notion of st-numberings [LEC67, ET76]
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to digraphs, which Cheriyan and Reif call directed st-numberings. Again the exact com-

plexity of these constructions has not been determined. Later, Huck [Huc95] presented

a construction of two independent spanning trees with O(mn) running time. To put

Theorem 5.2 into the context of dominators, we observe that Menger’s theorem [Die00]

implies that G has, for any vertex v, two vertex-disjoint paths from r to v, if and only if

all vertices of G have only trivial dominators.

In acyclic graphs a statement related to Frank’s conjecture is true. Specifically, let G be

an acyclic directed graph, k-connected to a vertex t. That means, for each v 6= t, there are

k vertex-disjoint paths from v to t. Then G has k independent sink trees directed towards

t [Huc99a]. The same result was proved independently in [ABHS00]; there, the authors

present an algorithm that constructs these k trees in O(k2n + km)-time, starting from a

topological order of G. A simple, linear-time construction for the case k = 2 was given

independently by Wirth [Wir04]. His algorithm initially computes a topological order of

the vertices and arranges the successor lists from deepest to shallowest successor, with

respect to the topological order. Then, with a second DFS it builds T1 and constructs the

residual graph H by deleting the edges of T1 that are not adjacent to the root. Finally the

algorithm can pick any spanning tree of H to be T2.

Itai and Rodeh proposed an analogous statement to Frank’s conjecture for undirected

graphs [IR84, IR88]. Specifically they conjectured that for any k-connected (undirected)

graph G = (V,E) and for any vertex v ∈ V , G has k independent spanning trees rooted

at v. Itai and Rodeh proved their conjecture for the case k = 2, and gave a linear-time

construction. The case k = 3 was proved by Cheriyan and Maheshwari [CM88], who also

gave a corresponding O(n2)-time algorithm, and by Itai and Zehavi [IZ89]. Recently, Cur-

ran, Lee and Yu [CLY] provided a O(n3)-time algorithm that constructs four independent

spanning trees of a 4-connected graph, thus proving the k = 4 case.
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5.2 Directed st-numberings

The following result is due to Plehn [Ple91], and Cheriyan and Reif [CR92]:

Theorem 5.3 Let G = (V,A, r) be a flowgraph that, for any v, has two vertex-disjoint paths

from r to v. Also, let X be the set consisting of r and the vertices that have r as their unique

predecessor in G. Then, there exists a numbering

π : V 7→ {1, . . . , n},

such that each vertex v ∈ V \X has predecessors u and w that satisfy

π(u) < π(v) < π(w),

and each vertex v ∈ X − r satisfies

π(r) < π(v).

Given this result, Theorem 5.2 follows easily. We can construct two strongly indepen-

dent spanning trees as follows: For each v /∈ X we pick (u, v) in T1 and (w, v) in T2, where

u and w are the predecessors of v as stated in the theorem. Finally, for each v ∈ X − r we

can include (r, v) in both T1 and T2. Now consider any two vertices x and y, not neces-

sarily distinct, and assume π(x) ≤ π(y). Then, T1(r, x) and T2(r, y) must be disjoint, since

any z ∈ T1(r, x) satisfies π(z) < π(x), and any w ∈ T2(r, y) satisfies π(w) > π(y) ≥ π(x).

Conversely, suppose that we have two strongly independent spanning trees T1 and

T2. We say that a directed st-numbering π is consistent with T1 and T2 if the following

conditions hold:

• (x, y) ∈ T1 implies π(x) < π(y).

• (x, y) ∈ T2 − r implies π(x) > π(y).

Hence, we can think of these trees as imposing a partial order on the nodes of G, and

then π is a linear extension of this partial order. Suppose now that we form a graph Γ =
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Figure 5.1: Independence does not imply strong independence. T1 and T2 are indepen-
dent spanning trees of G, but not strongly independent. Consider, for example, the pair
of vertices g and h; we have T1(r, g) ∩ T2(r, h) = {d} and T1(r, h) ∩ T2(r, g) = {b}.

(V,AΓ, r) starting from T1 and adding the arcs in T2 − r with their orientation reversed.

Then, T1 and T2 have a consistent directed st-numbering if and only if Γ is acyclic. Note

that in this case we can construct a directed st-numbering of G by taking the topological

order of Γ. Unfortunately, as we show in the next section, it is not true that any pair of

strongly independent spanning trees has a consistent directed st-numbering.

5.3 Hierarchy

We give two examples which show that the properties of independence, strong indepen-

dence, and directed st-numberings are distinct in the following sense. Figure 5.1 shows

that two independent spanning trees are not necessarily strongly independent. Similarly,

two strongly independent spanning trees do not necessarily have a consistent directed

st-numbering, as illustrated by Figure 5.2.

However, as we show in the next section, these notions are computationally equiva-

lent: Given any two independent spanning tress we can construct a directed st-numbering

(and therefore two strongly independent spanning trees) in linear time.
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Figure 5.2: Strong independence does not imply a directed st-numbering. T1 and T2 are
strongly independent spanning trees of G, but Γ contains the cycle (a, d, c, f, b, e, a).

5.3.1 Directed st-numberings via independent spanning trees

Here we show how to construct efficiently a directed st-numbering π of a flowgraph G,

using two (precomputed) independent spanning trees, T1 and T2, of G. This algorithm is

essentially the one given by Cheriyan and Reif, but exploits the additional information

given by the independent trees in order to achieve linear running time.

We consider the graph Gn formed by the arcs in T1 ≡ T n
1 and T2 ≡ T n

2 . The process

we use to construct π ≡ πn runs in two phases, each consisting of n − 2 rounds. During

the i-th round of the first phase we may remove or replace some arcs in Gn−i+1, to form

a graph Gn−i with n − i vertices. We also perform the corresponding changes to T n−i+1
1

and T n−i+1
2 , forming T n−i

1 and T n−i
2 . We stop at G2, for which a valid numbering π2 is

obvious; there is only one arc (r, x) so we can assign π2(r) = 1 and π2(x) = 2. Our goal

is to maintain the following invariants:

A1. Gn−i has n− i vertices and at most 2(n − i)− 2 arcs.

A2. Gn−i has at least one vertex with out-degree at most 1.
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A3. T n−i
1 and T n−i

2 are independent spanning trees of Gn−i.

During the second phase, we perform the reverse sequence of operations constructing

a numbering πi+1 from πi. We will maintain the following invariant:

B1. πi is a directed st-numbering for Gi.

Now we give the details of each phase, assuming that the invariants hold.

First phase. Consider the i-th round of this phase. We have a graph G′ = Gn−i+1 and

two independent spanning trees T n−i+1
1 and T n−i+1

2 . Let y be a vertex with out-degree in

G′, δ+
G′(y) ≤ 1; by A2, Gn−i+1 contains at least one such vertex. Then y must be a leaf in

at least one of the two spanning trees. Assume that y is a leaf in T n−i+1
1 . (If y is a leaf in

T n−i+1
2 we apply the symmetric steps.) First we remove y and its adjacent arcs (entering

or leaving y). If y is also a leaf in T n−i+1
2 then we are done. Otherwise, let z be the child

of y in T n−i+1
2 . Also, let x be the parent of y in T n−i+1

2 . We form Gn−i by inserting the arc

(x, z). We form T n−i
2 by making x the parent of y. This completes the description of the

i-th round.

Second phase. Consider the i-th round. Here, we have a graph Gi, two independent

spanning trees T i
1 and T i

2 of Gi, and a directed st-numbering πi for Gi. Suppose y was a

leaf of T i+1
1 that we removed during the first phase to get T i

1. (We apply the symmetric

steps if y was a leaf in T i+1
2 .) Let w be the parent of y in T i+1

1 and x be the parent of y

in T i+1
2 . Note that since T i

1 and T i
2 are independent, we either have x 6= w, or x = w =

r. Consider the linked list Li of the vertices in Gi that represents the numbering πi in

ascending order (starting from r). In order to get the desired numbering πi+1 we have

to insert y in a suitable place. First suppose that y is a leaf in T i+1
2 . Then we get πi+1 by

inserting y anywhere between x and w in Li if x 6= w, or right after r if x = w. Now

suppose that y has a child z in T i+1
2 . Let t be the parent of z in T i+1

1 . We consider the

following cases:
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(i). w = x = t = r; we insert y immediately after z.

(ii). w = x = r and t 6= r we insert y immediately before z.

(iii). πi(w) > πi(x); we insert y immediately after x.

(iv). πi(w) < πi(x); we insert y immediately before x.

Correctness

The next two lemmas prove the correctness of this algorithm. We start by showing that

during the first phase the invariants A1-A3 are maintained. Then the correctness follows

by showing that during the second phase the invariant B1 holds.

Lemma 5.4 The first phase of the algorithm maintains the invariants A1, A2 and A3.

Proof: We prove the Lemma by induction. For basis consider the graph Gn and its span-

ning trees T n
1 and T n

2 . Since T n
1 and T n

2 are independent spanning trees, A1 and A3

hold. We note that δ+
Gn(r) ≥ 2 (otherwise Gn has non-trivial dominators) and δ−

Gn(r) = 0.

Hence, there are at most 2n − 4 arcs in the subgraph induced by V − r, so not all the

vertices in this subgraph can have out-degree more than 2. This proves A2.

Now suppose that the invariants hold for Gn−i+1, T n−i+1
1 and T n−i+1

2 . Consider the

graph Gn−i and the trees T n−i
1 and T n−i

2 obtained by removing a vertex y of out-degree

less or equal to 1. Clearly, T n−i
1 and T n−i

2 are spanning trees of Gn−i. Hence, the same

reasoning with the base case shows that A1 and A2 hold in Gn−i. Also, since the ancestors

of any vertex in T n−i
j are a subset of its ancestors in T n−i+1

j (j = 1, 2), T n−i
1 and T n−i

2 are

independent. 2

Lemma 5.5 The second phase of the algorithm maintains the invariant B1.

Proof: Again we apply induction on the step number. The base case for G2 trivially

holds. For the induction step we assume that πi is a valid numbering for Gi. For πi+1 we
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only need to consider y and z (if it exists), since these are the only vertices that change

predecessors.

First we consider the case where y is a leaf in both T i+1
1 and T i+1

2 . If w = x then r

is the only predecessor of y in Gi+1, so πi+1 is valid if we insert y anywhere after r. If

w 6= x, then πi+1 is valid after inserting y anywhere between w and x.

Now suppose that z exists and w = x(= r). If t = r, then the algorithm inserts y

immediately after z. In that case

Li+1 = (r, . . . , z, y, . . .),

and πi+1 is valid since r is the only predecessor of y. Otherwise (t 6= r), we must have

πi(z) < πi(t), so after inserting y immediately before z we get

Li+1 = (r, . . . , y, z, . . . , t, . . .)

which again gives a valid numbering.

Next consider that πi(w) > πi(x). Then,

Li = (r, . . . , x, . . . , w, . . . , z, . . .), or

Li = (r, . . . , x, . . . , z, . . . , w, . . .), or

Li = (r, . . . , z, . . . , x, . . . , w, . . .).

In all cases, if we insert y immediately after x we get a valid numbering.

Finally, suppose that πi(w) < πi(x). Now,

Li = (r, . . . , w, . . . , x, . . . , z, . . .), or

Li = (r, . . . , w, . . . , z, . . . , x, . . .), or

Li = (r, . . . , z, . . . , w, . . . , x, . . .).

In all cases, if we insert y immediately before x we get a valid numbering. 2
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Running time

Given two independent trees we can construct Gn, keep in an array the out-degree of each

vertex, and construct a list with the vertices with out-degree either 0 or 1 in O(n) time.

The algorithm maintains explicitly the current spanning trees at each round; for each

vertex v it keeps two parent pointers pT1
(v) and pT2

(v) and two children lists chdT1
(v)

and chdT2
(v). It is straightforward to maintain the array and the linked list in constant

time per round since at most four arcs change.

During the first phase, when vertex y is removed it is inserted at the front of a linked

list Λ that keeps track of the order of the operations. Consider the state of the children

lists of y at that moment; together they contain at most one vertex z which can be found in

constant time. The status of the corresponding pointers remains fixed for the rest of this

phase. Also, the children lists of pT1
(y) and pT2

(y) must be updated. Suppose without

loss of generality that chdT1
(v) is null and chdT2

(v) = (z). Then, we remove y from pT1
(y)

and change the record of y to point z in pT2
(y). Again, all these updates can be done in

constant time, since we have access to pointers for z and y.

Now consider the operations performed in the second phase. At each round we must

remove the current front vertex y of Λ and insert it back to the trees. Clearly, the op-

erations that we mentioned in the first phase can be reversed, each in constant time.

Furthermore, we have to implement the list Li that represents πi. To that end we can use

a data structure for the list order maintenance problem [DS87, BCD+02]; the total time

consumed by such a data structure is O(n). Hence, with this implementation both phases

run in O(n) time.

5.4 A fast algorithm for ancestor-dominance spanning trees

In this section we present a simple, fast algorithm that constructs two ancestor-dominance

spanning trees. Our algorithm uses the concept of semidominators (see Section 2.2).

Therefore, our first step is to perform a DFS on the input flowgraph G. Let D be the
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corresponding DFS tree. For any pair of vertices u and v we let ν(u, v) = NCA(D, {u, v}).

For any v ∈ V − r, we define t(v) to be a predecessor of v that belongs to an sdom

path from s(v) to v. Such vertices can be found easily during the computation of the

semidominators. We will need the following statement about semidominators:

Lemma 5.6 Let w be a vertex such that s(w) is not a predecessor of w. Then there exists a vertex

h(w) such that ν(w, t(w))
+

→ h(w)
∗
→ t(w) and s(h(w)) = s(w).

Proof: Consider the sdom path P from s(w) to w that contains t(w). By the definition

of the sdom path we have x > w for every vertex x ∈ Q = P \ {w, s(w)}. Let x be the

smallest vertex in Q. Clearly s(x) = s(w). If x = t(w) then h(w) = t(w) and we are done.

Otherwise, x < t(w) so by Lemma A.1, Q must contain a vertex y which is a common

ancestor of x and t(w). Then we must have y = x since x is the smallest vertex in Q.

Therefore, x
+

→ t(w). Also since x > w we have ν(w, t(w))
+

→ x and the Lemma holds for

h(w) = x. 2

Consider the flowgraph Gmin = (V,Amin, r), where Amin is the collection of arcs

{(p(v), v) | v ∈ V − r} ∪ {(t(v), v) | v ∈ V − r}.

Notice that Amin contains two copies of (p(v), v) for each v that satisfies t(v) = p(v). Also

every vertex has in-degree 2 except for r, which has in-degree 0. The next lemma shows

that G and Gmin have the same dominators.

Lemma 5.7 The flowgraphs G and Gmin have the same dominators.

Proof: First we prove by induction that for any v ∈ V the semidominator of v in Gmin,

denoted by smin(v), is s(v). Clearly smin(v) ≥ s(v) since we deleted arcs from G. We

consider the vertices in reverse preorder. For the base case we have v = n and t(v) = s(v),

since every predecessors of v is a proper ancestor of v, so smin(v) = s(v). For the induction

step we consider the case s(v) 6= t(v) since the result is obvious for s(v) = t(v). By Lemma

5.6 we have that ν(v, t(v))
+

→ h(v)
∗
→ t(v), smin(h(v)) = smin(v) and s(v) = s(h(v)). By
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Figure 5.3: Functions s, e and t.

induction hypothesis smin(t(v)) = s(t(v)), thus smin(v) = s(v). Then Lemma 2.5 implies

Gmin has the same dominators as G. 2

The previous lemma together with the fact that any spanning tree of Gmin is also a

spanning tree of G, implies that it is sufficient to construct ancestor-dominance spanning

trees for Gmin. Henceforth we will assume Gmin ≡ G.

5.4.1 Algorithm.

For any v 6= r, we define

Σ(v) = {x | s(v)
+

→ x
∗
→ v}

and

E(v) = {x | x ∈ Σ(v) and s(x) ≤ s(y) for all y ∈ Σ(v)}.

Also we define e(v) to be the minimum vertex in E(v).1 Note that by Lemma 2.5 we

have s(e(v)) = s(v) if and only if s(v) = d(v). Figure 5.3 illustrates the definitions used

in our construction.

Figure 5.4 shows the method we use to build the two spanning trees; a blue tree B and

a red tree R. We call a vertex v 6= r blue if (t(v), v) ∈ B and red otherwise. An equivalent

way to state the construction is:

1In Section 3.4 we defined e(v) to be any vertex in E(v). Here we pick the minimum such vertex as it
turns out that this choice simplifies our proofs.
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Algorithm STrees(G = (V,A, r))

for k = 2, 3, . . . , n do

if s(e(k)) = s(k) or (t(e(k)), e(k)) ∈ R then

{ add (t(k), k) to B;

add (p(k), k) to R }

else

{ add (t(k), k) to R;

add (p(k), k) to B }

endif

done

Figure 5.4: Algorithm STrees constructs two ancestor-dominance spanning trees B and
R.

Color v blue if s(e(v)) = s(v) or e(v) is red; color v red otherwise.

Figure 5.5 gives an example of the construction. Even though this construction is

simple (given the functions s, e and t), verifying its correctness is intricate. We prove first

that B and R are acyclic and hence are trees, and second that corresponding paths in B

and R are disjoint. Both of these steps require some preliminary ground work.

5.4.2 Properties of B and R.

We begin the analysis of our algorithm with two lemmas that relate the colors of certain

vertices.

Lemma 5.8 Let v and w be vertices such that v
∗
→ w, s(v) = s(w), and s(x) ≥ s(v) for all x

such that v
+

→ x
+

→ w. Then v and w are the same color.

Proof: The hypotheses of the Lemma and the definition of the function e imply that

e(v) = e(w). This and s(v) = s(w) imply that v and w are the same color. 2
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Figure 5.5: Example of the execution of STrees. (i) The input graph with the vertices
already numbered with respect to a DFS tree D (solid arcs). Dotted arcs are not in D. The
values inside the brackets correspond to s(v) and e(v). (ii) The blue spanning tree B. (iii)
The red spanning tree R.
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Lemma 5.8 implies that B and R remain the same if, for each v 6= r, we let e(v) be any

vertex x ∈ E(v).

Lemma 5.9 Let x, y and z be vertices that satisfy the following conditions:

(i) x
+

→ y
+

→ z or x
+

→ z
+

→ y,

(ii) s(x) < s(y) < s(z) < x,

(iii) s(w) ≥ s(x), for all w such that min{y, z}
∗
→ w

∗
→ max{y, z}, and

(iv) x and z are the same color.

Then y is the same color as x and z.

Proof: Suppose that the Lemma is false. Choose three vertices x, y and z that violate the

Lemma and such that x is minimum. Since x ∈ Σ(z), s(e(z)) ≤ s(x) < s(z). So e(z) and

z have different colors, which implies that e(z) 6= x. If s(e(z)) = s(x) then Lemma 5.8

implies that e(z) and x have the same color, a contradiction. Thus s(e(z)) < s(x) and

(iii) implies that e(z)
+

→ min{y, z}. Since y and z have different colors and e(z) ∈ Σ(y), it

must be the case that e(y)
∗
→ s(z) and s(e(y)) < s(e(z)). But then e(y), e(z) and x violate

the Lemma, contradicting the choice of x. 2

Next we prove that B and R are trees.

Lemma 5.10 Neither B nor R contains a cycle.

Proof: We shall derive a contradiction to the assumption that B contains a cycle; the same

argument applies to R. Given a cycle in B, let v be the minimum vertex on the cycle. Then

v 6= r (since r contains no incoming arcs), and s(v) < v. Also, by the properties of DFS

(Lemma A.1), (t(v), v) is a cycle arc, v is blue and all vertices on the cycle are descendants

of v. Let w be the first vertex after v on the cycle such that w is blue and s(w) < v. (If v

is the only such vertex on the cycle, then w = v.) Then v
+

→ t(w), since v = t(w) would

imply s(w) = t(w) = v, which contradicts s(w) < v. By Lemma 5.6, u = h(w) satisfies
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v
+

→ u
∗
→ t(w) and s(u) = s(w) < v. We claim that u is blue. Indeed, v is a candidate for

both e(u) and e(w), which means that max{s(e(u)), s(e(w))} ≤ s(v). Also, the definition

of s(v) implies that s(x) ≥ s(v) for any vertex x that is a descendant of v and an ancestor

of either u or w. It follows that e(u) = e(w) is an ancestor of v, and hence u is the same

color as w; namely, blue. Let z be the vertex on the cycle such that all vertices on the cycle

from z to t(w) (inclusive) are descendants of u, but the predecessor y of z on the cycle is

not a descendant of u. There must be such a vertex z, since v is on the cycle but not a

descendant of u. Furthermore, starting from v, z precedes w on the cycle. It cannot be

the case that z = u, for then u would be on the cycle after v but before w, contradicting

the choice of w. Thus u
+

→ z, z is blue, and t(z) = y is not a descendant of u. But t(z)

not a descendant of u implies s(z) < u. It cannot be the case that s(z) < v, for this would

contradict the choice of w. Thus v
∗
→ s(z)

+

→ u
+

→ z. Then s(e(z)) ≤ s(u) < v < z and e(z)

is red. Therefore, by Lemma 5.8 and the fact e(z) ∈ S(v), we have s(v) < s(e(z)) < s(u).

By Lemma 5.9, e(z) must be blue, contradicting the fact that e(z) is red. 2

To prove disjointness of paths in B and R, we need one technical lemma in addition

to Lemmas 5.8 and 5.9. This lemma requires some more definitions. For each vertex

v 6= r, define ŝ(v) as follows: if v is blue (red) ŝ(v) is the nearest ancestor x of v in B (R)

such that x < v. By Lemma 5.10, B and R are trees rooted at r, which implies that ŝ(v) is

well-defined. By Lemma A.1 and the definition of function s, s(v)
∗
→ ŝ(v)

+

→ v. Let

Σ̂(v) = {x | ŝ(v)
+

→ x
∗
→ v}

and

Ê(v) = {x | x ∈ Σ̂(v) and s(x) ≤ s(y) for all y ∈ Σ̂(v)}.

Let ê(v) be the minimum vertex in Ê(v). These definitions imply the following relation:

s(v)
∗
→ e(v)

∗
→ ŝ(v)

∗
→ ê(v)

+

→ v.

In fact, all these vertices can be distinct. See Figure 5.6.
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118

Lemma 5.11 For any vertex v 6= r, either ŝ(v) = s(v), or s(ê(v)) < s(v) and ê(v) and v are

different colors.

Proof: The proof is by induction on v in decreasing order. If ŝ(v) = s(v) then the Lemma

holds for v. Thus suppose s(v) < ŝ(v). If (t(v), v) is a forward arc, ŝ(v) = t(v) = s(v), a

contradiction. Thus (t(v), v) is a cycle arc or a cross arc. Let ν = ν(t(v), v) and w = h(v).

By Lemma 5.6, ν
+

→ w
∗
→ t(v) and s(w) = s(v). Lemma A.1 implies that ŝ(v)

∗
→ ν.

If ν
+

→ e(v) and s(e(v)) < s(v), then ê(v) = e(v) and the Lemma holds for v by the

construction of B and R. Thus suppose e(v)
∗
→ ν or s(e(v)) = s(v). We claim that in

either case v and w are the same color. The definition of s(v) implies that s(x) ≥ s(v) for

all x such that ν
+

→ x
∗
→ w. If e(v)

∗
→ ν, then e(v) = e(w) and v and w are the same color.

If s(e(v)) = s(v), then s(x) ≥ s(v) for all x such that s(v)
+

→ x
∗
→ ν, which means that

s(e(w)) = s(v) = s(w), and again v and w are the same color.

Suppose v and w are both blue; the symmetric argument applies if they are both

red. Let z be the nearest ancestor of t(v) in B such that the parent y of z in B is not a

descendant of w. Vertex z is blue, since w is blue and if z 6= w the blue arc (y, z) entering

z cannot be a tree arc. Also z > v (follows from Lemma A.1), so the Lemma holds for z by

the induction hypothesis. The definition of s(v) implies that s(z) ≥ s(v), because z is on

B(ŝ(v), v). If s(z) = s(v) and ŝ(z) = s(z), then ŝ(v) = ŝ(z) = s(v), and the Lemma is true.

Thus suppose s(z) > s(v) or ŝ(z) > s(z). We claim that s(ê(z)) < s(v) and ê(z) is red.

If s(z) = s(v) and ŝ(z) > s(z), the claim follows since the Lemma holds for z. Suppose

s(z) > s(v). Then z 6= w and ŝ(v)
+

→ w
+

→ z by the existence of the arc (y, z). Thus

s(e(z)) ≤ s(ê(z)) ≤ s(w) = s(v) < s(z),

and by the construction of B and R, e(z) is red. If ŝ(z) > s(z), ê(z) is red since the

Lemma holds for z. Also s(ê(z)) < s(v), since s(ê(z)) = s(v) = s(w) implies ê(z) is blue

by Lemma 5.8. Since s(ê(z)) < s(v), ê(z)
∗
→ ν, which implies ŝ(z)

∗
→ ν and ŝ(v) = ŝ(z).

Either ê(v) = ê(z), in which case the Lemma holds for v, or ν
+

→ ê(v) and s(ê(v)) <

s(ê(z)). In this case if s(e(v)) = s(ê(v)) then ê(v) is red by Lemma 5.8 and the Lemma
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holds for v; if s(e(v)) < s(ê(v)) then ê(v) is red by Lemma 5.9 applied to e(v), ê(v), and

ê(z), and the Lemma holds for v. 2

5.4.3 Vertex-disjointness.

Now we are ready to prove that B and R satisfy the ancestor-dominance property. First

we argue that it suffices to prove that for each v the paths B(d(v), v) and R(d(v), v) con-

tain no common vertex.

Lemma 5.12 Let B and R be to spanning trees of G. Then B and R satisfy the ancestor-

dominance property if and only if for any v 6= r, B(d(v), v) and R(d(v), v) are vertex-disjoint.

Proof: The first direction is obvious; if B and R are ancestor-dominance spanning trees,

then B(d(v), v) and R(d(v), v) must be disjoint. For the contraposition, let d = d(v) and

let dom(v) = {d1 = r, d2, . . . , dk−1 = d, dk = v}, where di = d(di+1) for 1 ≤ i ≤ k − 1.

Then, di is an ancestor of di+1 in both B and R, so the dominators of v appear in the same

order in B(r, v) and R(r, v). Suppose now that B(r, v) and R(r, v) intersect at a vertex

x such that dB is the closest dominator of v in B that is an ancestor of x, and similarly

dR is the closest dominator of v in R that is an ancestor of x. Without loss of generality

assume that dB is an ancestor of dR (in both B and R). If dB 6= dR then the path B(r, x)

followed by R(x, v) avoids dR which is a contradiction. Hence dB = dR = di, and the

paths B(di, di+1) and R(di, di+1) intersect at x. 2

Finally the next lemma proves the vertex-disjointness of B(d(v), v) and R(d(v), v).

Lemma 5.13 Let v be any vertex other than r, and let d = d(v). Then the paths B(d, v) and

R(d, v) contain no common vertex.

Proof: Suppose to the contrary that B(d, v) and R(d, v) both contain a vertex w /∈ {d, v}.

Let xB and xR be the minimum vertices on B[w, v] and R[w, v] respectively. Neither

B[w, v] nor R[w, v] contains d, since B[d, v] and R[d, v] are simple paths. In particular

d /∈ {xB , xR}. Assume xB ≤ xR; the symmetric argument applies if xR ≤ xB. We have
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that d
+

→ xB and, by DFS (Lemma A.1), xB
∗
→ xR

∗
→ v. If xB 6= w then xB is blue

since then it is entered by a blue nontree arc. Similarly if xR 6= w then xR is red. We

have xB
+

→ v, since xB = v implies xR = v and v is both blue and red since w 6= v, a

contradiction.

Let u be a vertex of minimum s(u) such that xB
+

→ u
∗
→ v. Since xB does not dominate

v, Lemma 2.5 implies s(u)
+

→ xB. By Lemma 5.11, either ŝ(u) = s(u), in which case

ŝ(u)
+

→ xB, or s(ê(u)) < s(u), which implies by the choice of u that ê(u)
∗
→ xB, and again

ŝ(u)
+

→ xB. We claim that u is red. Suppose to the contrary that u is blue. Then u cannot

be on B[xB, v]; if it were, ŝ(u) would be on B[xB, v], since xB
+

→ u; but every vertex on

B[xB, v] is no less than xB , contradicting ŝ(u)
+

→ xB . Let x be the first vertex on B[xB, v]

such that u
+

→ x
∗
→ v. Then x is blue and xB

∗
→ ŝ(x)

+

→ u
+

→ x
∗
→ v. The definition of u

implies ê(x) = u. If ŝ(x) = s(x), then e(x) = u, and u is red by the construction of B and

R since x is blue. If ŝ(x) > s(x), then u = ê(x) is red by Lemma 5.11 since x is blue.

Since u is red, u
∗
→ xR, because if xR

+

→ u an argument symmetric to that in the

previous paragraph shows that u is blue. Since xB
+

→ u
∗
→ xR, xB 6= w, which implies

that xB is blue.

We claim that s(u) ≤ ŝ(xB). Vertex w is on B[ŝ(xB), xB ]. Consider the path B[ŝ(xB), w]

followed by R[w, v]. This path avoids xB . Let y be the first vertex along this path such

that xB
+

→ y
∗
→ v. The part of the path from ŝ(xB) to y is an sdom path for y. Hence

s(y) ≤ ŝ(xB). By the choice of u, s(u) ≤ s(y) ≤ ŝ(xB).

Next we claim that s(u) < s(xB). If s(u) = s(xB), u and xB are the same color by

Lemma 5.8, a contradiction. If s(u) > s(xB), then since s(u) ≤ ŝ(xB), Lemma 5.11 gives

s(ê(xB)) < s(xB) and ê(xB) is red. But then ê(xB), xB and u violate Lemma 5.9.

Now we claim that w is not a descendant of u. Suppose to the contrary that u
∗
→ w.

Then the path from s(u) to xB consisting of the sdom path from s(u) to u, followed by

the tree path to w, followed by B[w, xB ] is an sdom path for xB, giving s(u) ≥ s(xB), a

contradiction.
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Since w is not a descendant of u, w 6= xR. Hence xR is red. Furthermore it cannot

be the case that u
∗
→ ŝ(xR), since w is on R[ŝ(xR), xR], which implies ŝ(xR)

∗
→ w. Thus

ŝ(xR)
+

→ u, and s(ê(xR)) ≤ s(u). Also the path R[ŝ(xR), w] followed by B[w, xB ] is an

sdom path for xB , which implies s(xB) ≤ ŝ(xR). If s(xR) = ŝ(xR) then s(xB) ≤ s(xR),

and since s(u) < s(xB), we have s(e(xR)) ≤ s(u) < s(xR). So, by the construction of B

and R, e(xR) is blue and Lemma 5.8 gives s(e(xR)) < s(u), which implies e(xR)
+

→ xB.

But then Lemma 5.9 for e(xR), u and xB implies that u is blue, a contradiction. Hence

s(xR) < ŝ(xR). Then ê(xR) is blue by Lemma 5.11, and Lemma 5.8 implies s(ê(xR)) <

s(u). But then Lemma 5.9 for ê(xR), u and xB implies that u is blue, again a contradiction.

2

5.4.4 Running time.

Clearly, given the s, e and t functions, algorithm STrees runs in O(n) time. We can use the

Lengauer-Tarjan algorithm to compute all s(v), e(v) and t(v) in O(mα(m,n))-time. Also,

in Section 3.4 we showed that s and e can be computed in linear time. Computing t is not

immediate because our algorithm modifies the input graph by inserting arcs entering

a line ` (when the semidominators of ` are computed), or by inserting arcs entering a

non-trivial microtree T (during the preprocessing phase that runs microLT). Still it is

not hard to keep for each additional arc a pointer to a corresponding arc of the original

graph. Hence, we can get an overall linear-time algorithm. Finally we note that the

result of Alstrup et al. [AHLT99] also provides a linear-time computation of the required

functions, but with significantly more complicated techniques.

5.5 Generalizations

Here we provide some generalizations of the notions of strongly independent spanning

trees and directed st-numberings to flowgraphs that may have non-trivial dominators.

We shall use the idea of the derived graph (see Section 4.2) to achieve these results.
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Lemma 5.14 Let G = (V,A, r) be a flowgraph, and let X ⊆ V be the set consisting of r and the

vertices that have their immediate dominator as their unique predecessor in G. Then, there exists

a numbering

π : V 7→ {1, . . . , n},

such that each vertex v ∈ V \X has predecessors u and w that satisfy

π(u) < π(v) < π(w),

and each vertex v ∈ X − r satisfies

π(d(v)) < π(v).

Proof: Let I be the dominator tree of G, and let d be its depth. Let GI be the derived graph

corresponding to I . Each subgraph GI(v) satisfies the premise of 5.3, and therefore has

a directed st-numbering πv. Let Lv be the list of nodes in GI(v) that represents πv. We

construct a total list L representing the desired numbering π by following a procedure

that consists of d rounds. The procedure starts from r, where we assign L ← Lr. At

the i-th round we process the vertices of G that appear at the i-th level of I ; for each

such vertex v we substitute the occurrence of v in L by Lv. An equivalent way to get

the same numbering is as follows. For each vertex v we order its list of children in I ,

chdI(v), according to Lv. Then we perform a preorder walk on I and assign π(v) to be the

preorder number of v.

Now we argue that L satisfies the Lemma. Let v be any vertex in V \X. We have to

show that v has a predecessor u to its left in L, and a predecessor w to its right. Consider

Ld(v); since v /∈ succ(d(v)), v has a predecessor u′ in GI(d(v)) that is located to its left in

Ld(v), and a predecessor w′ in GI(d(v)) to its right. Then it follows from the construction

of GI that u′ ∈ I(r, u] and w′ ∈ I(r, w]. Finally, we note that all the descendants of u′ in I

are located to the left of v in L, and similarly all the descendants of w′ in I are located to

the right of v in L. 2

Using the previous fact we can show the following extension of strongly independent

spanning trees.
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Lemma 5.15 Let G = (V,A, r) be a flowgraph. Then, G has two spanning trees, T1 and T2,

such that for any pair of vertices u and v:

Ti[r, v] ∩ Tj [r, u] = dom(v) ∩ dom(u),

for i 6= j in {1, 2}.

Proof: Let X ⊆ V be the set consisting of r and the vertices that have their immediate

dominator as their unique predecessor in G. Let π be a numbering satisfying Lemma 5.14.

We construct T1 and T2 as in Section 5.2: For each v /∈ X we insert (u, v) in T1 and (w, v)

in T2, where u and w are in pred(v) and satisfy π(u) < π(v) < π(w). Finally, for each

v ∈ X − r, we include (d(v), v) to both trees.

Now we show that this construction satisfies the Lemma. First we establish that for

any vertex v,

T1[r, v] ∩ T2[r, v] = dom(v).

By Lemma 5.12 it suffices to show that T1(d(v), v) and T2(d(v), v) are vertex-disjoint,

which follows immediately from the definition of π and the construction of T1 and T2.

Now we consider any pair of vertices x and y such that π(x) ≤ π(y). Let d =

NCA(I, {x, y}), i.e., the nearest common dominator of x and y. It remains to argue that

the paths T1(d, x) and T2(d, y) are vertex-disjoint. This is clear when x = y, since then

d = x. So suppose x 6= y. Let dx be the child of d in I that is an ancestor of x in I . Define

dy analogously. By the definition of d, we have dx 6= dy . Remember from the proof of

Lemma 5.14 that π is obtained from a preoder numbering of I , hence we have:

(a) For any descendant w of dx and any descendant z of dy in I , π(w) < π(z).

We also make the following observations:

(b) T1[d, x] = T1[d, dx] · T1[dx, x] and T2[d, y] = T2[d, dy ] · T2[dy, y].

(c) T1[dx, x] contains only vertices dominated by dx, and T2[dy, y] contains only vertices

dominated by dy.
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(d) For any w ∈ T (d, dx], π(w) ≤ π(dx). Similarly, for any z ∈ T (d, dy ], π(z) ≥ π(dy).

From (a) and (c) it follows that T1[dx, x] and T2[dy, y] are vertex-disjoint. Also, by (a), (c)

and (d) we have T1(d, dx] ∩ T2[dy, y] = ∅ and T1[dx, x] ∩ T2(d, dy ] = ∅. Finally, (d) implies

that T1(d, dx] and T2(d, dy] are vertex-disjoint. Therefore, from (b) we have that T1(d, x)

and T2(d, y) are vertex-disjoint. 2

Using similar arguments we can show that Theorem 5.2 implies 5.15. Again we be-

gin by constructing the derived graph GI . Each subgraph GI(v) satisfies the premise

of Theorem 5.2. Hence, GI(v) has two strongly independent spanning trees T 1
I (v) and

T 2
I (v). Clearly, the collection

⋃
v∈V Ti(v) forms a spanning tree T i

I of I (i ∈ {1, 2}). It is

also easy to verify that T 1
I and T 2

I are strongly independent spanning trees of GI . Now

we form T1 and T2 from T 1
I and T 2

I respectively, by substituting each arc (x, y) in T 1
I or

T 2
I with a corresponding arc (u, v) in G, so that γ(u, v) = (x, y). Arguments analogous

to the ones we used in the proof of Lemma 5.15 show that T1 and T2 satisfy the strong

ancestor-dominance property.

Similarly, if we start from two independent spanning trees of each GI(v) then the

same construction gives two ancestor-dominance spanning trees T1 and T2.



Chapter 6

Concluding Remarks and Open

Problems

In this dissertation we have presented linear-time algorithms for finding dominators,

verifying a dominator tree, and constructing independent spanning trees and related

structures. Still, several relevant problems remain open. Perhaps the most challenging

one is to devise a truly simple linear-time dominators algorithm, at least for the random-

access model of computation. The ideas we used in Chapters 4 and 5 may lead to this

result.

A related open problem is to design a simple linear-time pointer-machine verifica-

tion algorithm. The linear-time version of algorithm TVerify of Section 4.5.1 requires a

linear-time algorithm for a special case of the disjoint set union problem. To that end,

we applied the linear-time DSU algorithm of Gabow and Tarjan [GT85]. This algorithm

is implementable only on a RAM, and it solves a problem that is more general than the

DSU instance that occurs within the verification algorithm. Specifically, in the DSU prob-

lem considered in [GT85] the union operations are restricted to always unite the set of

a node v with the set of pT (v), where T is a fixed tree given offline (this tree represents

the structure of the unions). However, the actual union and find operations are performed

online. La Poutré [Pou96] showed an Ω(n + mα(m,n)) lower bound for DSU on pointer
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machines, which is still valid when the union tree T is known ahead of time. (The same

lower bound was obtained previously in [Tar79b] for m ≥ n and was extended in [TvL84]

for all m and n. Both of these results apply to pointer machines that satisfy a certain tech-

nical condition which is lifted in [Pou96]. For a survey of the results on the disjoint set

union problem and its variants see [GI91].) In the verification algorithm we use DSU

operations in order to compute the intervals of the flowgraph G. The structure of the

unions is defined by a DFS tree D of G, but we also have additional information about

the actual operations that will be performed. Specifically, each series of union operations

is triggered after processing a back or cross arc of D. Furthermore, the arcs are processed

in reverse postorder with respect to their destination vertex. It is not clear whether these

properties can be exploited to get a linear-time verification algorithm implementable on

a pointer machine.

In Chapter 5 we saw how to construct strongly independent spanning trees and di-

rected st-numberings (as well as some generalizations) in linear time, given two ancestor-

dominance trees. We conjecture, however, that the spanning trees B and R produced

by algorithm STrees actually satisfy the strong ancestor-dominance property. Further-

more, if G has trivial dominators only, we conjecture that B and R have a consistent st-

numbering. A related question is whether a simple linear-time construction of a directed

st-numbering exists. This will allow a simple construction of an optimal processing or-

der for the iterative algorithm of Section 2.1, which may have practical value as well. It

may also lead to a simpler linear-time dominators algorithm. Furthermore, it is possible

that properties similar to ancestor-dominance can be applied to speed up more general

data flow problems. Such results would find wide application in the field of optimizing

compilation.

Another research direction involves the analysis of path-constrained graphs. Sev-

eral practical applications can be modeled as directed graphs that exhibit path constraints.

That is, some paths through the graph may be considered invalid, depending on some

path-wide condition. For example, a path in an inter-procedural control-flow graph is
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only valid if the function call and return edges it contains satisfy appropriate nesting con-

ditions [SP81, RHS95]. Augmenting data-flow analysis algorithms with path constraint

awareness is a nontrivial task, which usually results in increased algorithm complexity.

In particular, there is no obvious way to incorporate path constraints into the linear-time

and almost-linear-time dominators algorithms. We note that the graphs involved in inter-

procedural control-flow analysis may be orders of magnitude bigger that the graphs in

standard (intra-procedural) analysis. Therefore, an experimental study of algorithms for

inter-procedural analysis would also be valuable.



Appendix A

Preliminaries

Here we review some basic definitions from graph theory and establish notation. For a

comprehensive treatment of this material we refer to [Die00]. Also, we define the un-

derlying models of computation and the input formats of the data for the problems we

consider, that are used in order to determine the computational complexity of our algo-

rithms.

In the main part of the dissertation we use several basic notions and results in al-

gorithms that are not mentioned here. These topics are covered in standard books on

algorithms and data structures [AHD74, Tar83, CLR91].

A.1 Directed graphs and branchings

Let G = (V,A) be a directed graph (digraph). For any vertex v ∈ V , we define the

predecessors of v as

pred(v) = {u | (u, v) ∈ A}.

Similarly, the successors of v are

succ(v) = {u | (v, u) ∈ A}.
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We will allow G to contain multiple arcs. In that case we will assume that pred(v) and

succ(v) are collections of vertices (rather than sets). The in-degree of v, denoted by δ−
G(v),

is the number of arcs entering v, i.e., δ−
G(v) = |pred(v)|; the out-degree of v, denoted by

δ+
G(v), is the number of arcs leaving v, i.e., δ+

G(v) = |succ(v)|. Let P = (v1, . . . , vk) and

Q = (u1, . . . , ul) be two paths in G, such that vk = u1. Then P · Q denotes the path

formed by catenating P with Q.

A (spanning-out) tree1 rooted at r (also called an arborescence), is a flowgraph T =

(V,A, r) with root r, such that δ−
T (v) = 1 for all v ∈ V − r. For each vertex v ∈ V there is

a unique simple path from r to v. A forest F is a collection of trees. Below we introduce

some notation for concepts defined on trees. We will use similar notation when dealing

with forests.

Let T be a tree rooted at r. The parent of v, denoted by pT (v), is the unique predecessor

of v in T . Sometimes we use the notation “v →T w” to refer to the fact that v = pT (w).

The children of v are the successors of v in T . We will use the notation chdT (v) to refer

to an ordered list of the children of v in T . If the unique path from r to w in T includes

v, then we say that v is an ancestor of w, and that w is a descendant of v. We denote this

relation by “v
∗
→T w”; if v 6= w then v is a proper ancestor of w (and w is a proper descendant

of v) and we use the notation “v
+

→T u”. If v is neither an ancestor nor a descendant of w,

then we call v and w unrelated.

For any vertex v ∈ T , Tv denotes the subtree of T rooted at v.

For any two vertices v and w, such that v is an ancestor of w, we denote by T [v,w] the

path from v to w in T . Also, we use the notation T (v,w] for the subpath of T [v,w] that

excludes v, T [v,w) for the subpath of T [v,w] that excludes w, and T (v,w) for the subpath

of T [v,w] that excludes both v and w. We will apply similar notation to simple paths of a

graph. For instance, if P = (v1, v2, . . . , vk) is a simple path, we denote the subpath of P

from vi to vj by P [vi, vj ].

The nearest common ancestor (NCA) of any two vertices v and w is defined as the vertex

1All the trees that we consider here are rooted and directed.
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in T [r, v] ∩ T [r, w] farthest from the root r. This concept generalizes in a straightforward

way for a set of vertices; for any subset U ⊆ V , we let NCA(T,U) denote the nearest

common ancestor of U in T , i.e., the vertex in
⋃

u∈U T [r, u] farthest from the root r.

A.1.1 Branchings and spanning trees

Let R = {r1, . . . , rk} ⊆ V . An R-branching B of a digraph G = (V,A) is a spanning forest

of G, i.e., a collection of subgraphs Bi = (Vi, Ai, ri) of G, where
⋃

i Vi = V and for each

vertex v ∈ V \ R, δ−
B (v) = 1 (thus each Bi is a tree rooted at ri). When R consists of

a single vertex r we refer to B as an r-branching. Furthermore, if B = {B}, then B is a

spanning tree of G.

A.1.2 Tree traversal

Consider a tree T . A traversal of T visits the vertices of the tree exactly once. We will

consider two systematic orders of traversing a tree: preorder and postorder. In preorder

we visit each vertex before its children, and vice versa in postorder. We will assume that

the children of any vertex v ∈ T are visited according to the order they appear in chdT (v).

A preorder (postorder) numbering for T numbers each vertex according to the order it

was visited by the preorder (postorder) traversal. (See Figure A.1(ii).)

A.1.3 Graph search

Let G = (V,A, r) be a flowgraph. A search of G starting from r follows the arcs in A until

all of them are explored. The search maintains a set of visited vertices S and a set of

unexplored arcs U . Initially, S = {r} and U = A. We say that a vertex v becomes inactive

after all the arcs leaving v are explored. At each step the search explores one arc (v,w) in

U , such that v ∈ S. Then w becomes a visited vertex if it was not in S already. The search

also produces a numbering of the vertices, by letting the i-th visited vertex have number

i, and a spanning tree T of G, by assigning pT (w) ← v if w was unvisited before (v,w)

was explored. Sometimes we refer to the vertices by their search numbers; for instance
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we can compare the numbers assigned to two vertices and write v < w, which means

that the search visited v before w.

We will mostly be using a depth-first search (DFS) of a graph, which at each step

chooses to explore an arc leaving the most recently visited vertex (that still has unex-

plored arcs leaving it). Instead, a breadth-first search (BFS), always chooses an arc leaving

the least recently visited vertex. See Figure A.1 for an example. (We use this graph in

Section 2.4; see Figure 2.9.)

Depth-first search

Sometimes we refer to the DFS numbering produced by a depth-first search as the pre-

order numbering, since it gives the same numbering as a preorder traversal of the cor-

responding DFS tree D. Numbering the vertices by the order they became inactive pro-

duces a postorder numbering (same as the postorder traversal of D).

Consider any fixed DFS tree D of G. The next lemma describes a useful fact about

DFS that we will use often.

Lemma A.1 [Tar72] Let D be a DFS tree of G = (V,A, r). If v and w are vertices in V such that

v ≤ w (w.r.t. the DFS numbering), then any path from v to w must contain a common ancestor

of v and w in D.

When it is clear from the context, we drop the D subscript from the notation v
∗
→D w,

v
+

→D w, v →D w and pD(v). Let v and w be any vertices such that v < w. If (v,w) ∈ A

then by Lemma A.1, v
∗
→ w. Hence, if v = p(w), (v,w) is a parent arc (or tree arc), otherwise

it is a forward arc. If (w, v) ∈ A and v
+

→ w then (w, v) is a back arc (or cycle arc). If (w, v) ∈ A

and v and w are unrelated then we call (w, v) a cross arc.

A.2 Models of computation

We will consider two standard models of computation that are used for the complexity

analysis of algorithms; the random-access machine [AHD74] and the pointer machine [Tar83].
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Figure A.1: Graph search. (i) Input graph. (ii) Depth-first search. The numbers inside
each bracket correspond to the preorder and postorder numbers of a vertex. Non-tree
arcs are dotted. (iii) Breadth-first search. The numbers correspond to the BFS numbering.



133

A.2.1 Random-access machine

A random-access machine (RAM) consists of a finite program, a finite collection of reg-

isters and a memory. The memory consists of an array of cells, each having a unique

integer address. Both a memory cell and a register can store a single integer or real num-

ber of size bounded by the word length w, which is a parameter of the model. A typical

assumption is that w is proportional to the logarithm of the size of the input. A RAM can

perform in a single step one of the following tasks: execute a single arithmetic or logical

operation using the contents of its registers, load the contents of a single memory cell

into a register, or store the contents of a register to a memory cell. The load and store

operations require that the address of the memory cell that will be accessed is stored in a

register.

A.2.2 Pointer machine

A pointer machine differs from a RAM in the organization of the memory. The memory

of a pointer machine consists of an extendable collection of nodes. Each node can store

a fixed number of fields, and a field can store either a number or a pointer to a node.

Creating a memory node takes one time step. The only way to access the contents of a

node is by having in a register a pointer to that node, and accessing a node given that

pointer also takes one time step.

A.2.3 Remarks

Clearly a pointer machine is less powerful than a RAM. One usual way in which al-

gorithms exploit the power of a RAM is by performing address arithmetic; since the

address of a cell is just an integer this address can be computed using arithmetic oper-

ations, which enables the access to that cell. This type of access is necessary in order

to implement data structure tools like hashing. A pointer machine lacks this capability;

there, the only way to access a memory node is by following pointers that connect to it.
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The RAM model is realistic enough (if we overlook the capability of manipulating ar-

bitrary real numbers in constant time) in the sense that the set of operations that it allows

can be implemented by standard programming languages such as C. Still, besides its the-

oretical interest, the study of pointer machine algorithms has also practical value since

pointer machines are capable of simulating functional programming languages such as

LISP [BAG92].

A.3 Input format

The algorithms we consider receive as their input a flowgraph G, and sometimes a tree

T . We assume that G is represented in the adjacency list format; each vertex v of the graph

is associated with a linked list that contains the successors of v in G and a linked list

that contains the predecessors of v in G. Note that predecessors can be computed from

successors in linear time, and vice versa. Hence it suffices to have either a successor-

list or a predecessor-list representation of G. This description of G requires O(m + n)

space, where (throughout this dissertation) m is the number of arcs and n is the number

of vertices of G. A tree T is represented similarly since it is a special kind of flowgraph.



References

[AB04] S. Allesina and A. Bodini. Who dominates whom in the ecosystem? En-

ergy flow bottlenecks and cascading extinctions. Journal of Theoretical Biol-

ogy, 230(3):351–358, 2004.

[ABB] S. Allesina, A. Bodini, and C. Bondavalli. Secondary extinctions in ecological

networks: Bottlenecks unveiled. Ecological Modeling. In press.

[ABHS00] F. S. Annexstein, K. A. Berman, T. Hsu, and R. P. Swaminathan. A multi-tree

routing scheme using acyclic orientations. Theor. Comput. Sci., 240(2):487–

494, 2000.

[AC72] F. E. Allen and J. Cocke. Graph theoretic constructs for program control flow

analysis. Technical Report IBM Res. Rep. RC 3923, IBM T.J. Watson Research

Center, 1972.

[AFPB01] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana. Fault equiva-

lence identification using redundancy information and static and dynamic

extraction. In Proceedings of the 19th IEEE VLSI Test Symposium, March 2001.

[AHD74] A. V. Aho, J. E. Hopcroft, and J. D.Ullman. The Design and Analysis of Com-

puter Algorithms. Addison-Wesley Series in Computer Science and Informa-

tion Processing, MA, 1974.

[AHLT99] S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear

time. SIAM Journal on Computing, 28(6):2117–32, 1999.

135



136

[AHU76] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. On finding lowest common

ancestors in trees. SIAM Journal on Computing, 5(1):115–32, 1976.

[AL96] S. Alstrup and P. W. Lauridsen. A simple and optimal algorithm for finding

immediate dominators in reducible graphs. Technical Report DIKU TOPPS

D-260, Dept. of Computer Science, U. Copenhagen, 1996.

[ALT96] S. Alstrup, P. W. Lauridsen, and M. Thorup. Dominators in linear time. Tech-

nical Report DIKU TOPPS D-320, Dept. of Computer Science, U. Copen-

hagen, 1996.

[ASU86] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, MA, 1986.

[AU77] A. V. Aho and J. D. Ullman. Principles of Compilers Design. Addison-Wesley,

1977.

[BAG92] A. M. Ben-Amram and Z. Galil. On pointers versus addresses. Journal of the

ACM, 39(3):617–648, 1992.

[BCD+02] M. A. Bender, R. Cole, E. D. Demaine, M. Farach-Colton, and J. Zito. Two

simplified algorithms for maintaining order in a list. Lecture Notes in Com-

puter Science, 2461:152–164, January 2002.

[BFC00] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proc.

4th Latin American Symp. on Theoretical Informatics, volume 1776 of Lecture

Notes in Computer Science, pages 88–94. Springer-Verlag, 2000.

[BGK+] A. L. Buchsbaum, L. Georgiadis, H. Kaplan, A. Rogers, R. E. Tarjan, and

J. R. Westbrook. Linear-time pointer-machine algorithms for least common

ancestors, MST verification, and dominators. In preparation.

[BKRW98a] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. Linear-time

pointer-machine algorithms for least common ancestors, MST verification,



137

and dominators. In Proc. 30th ACM Symp. on Theory of Computing, pages

279–88, 1998.

[BKRW98b] A. L. Buchsbaum, H. Kaplan, A. Rogers, and J. R. Westbrook. A new, simpler

linear-time dominators algorithm. ACM Transactions on Programming Lan-

guages and Systems, 20(6):1265–96, 1998. Corrigendum appeared in 27(3):383-

7, 2005.

[CAD] CAD Benchmarking Lab. ISCAS’89 benchmark information.

http://www.cbl.ncsu.edu/www/CBL Docs/iscas89.html.

[CFR+91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Effi-

ciently computing static single assignment form and the control dependence

graph. ACM Transactions on Programming Languages and Systems, 13(4):451–

490, 1991.

[CH05] R. Cole and R. Hariharan. Dynamic LCA queries on trees. SIAM Journal on

Computing, 34(4):894–923, 2005.

[CHK] K. D. Cooper, T. J. Harvey, and K. Kennedy. A sim-

ple, fast dominance algorithm. Available online at

http://www.cs.rice.edu/∼keith/EMBED/dom.pdf.

[CLR91] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The MIT Electrical Engineering and Computer Science Series. MIT Press,

Cambridge, MA, 1991.

[CLY] S. Curran, O. Lee, and X. Yu. Finding four inde-

pendent trees. Submitted paper. Preprint available at

http://www.ic.unicamp.br/ lee/4tree.pdf.



138

[CM88] J. Cheriyan and S. N. Maheshwari. Finding nonseparating induced cycles

and independent spanning trees in 3-connected graphs. Journal of Algo-

rithms, 9:507–537, 1988.

[CR92] J. Cheriyan and J. H. Reif. Directed s-t numberings, rubber bands, and test-

ing digraph k-vertex connectivity. In Proc. 3rd ACM-SIAM Symp. on Discrete

Algorithms, pages 335–344, 1992.

[Die00] R. Diestel. Graph Theory. Springer-Verlag, New York, second edition, 2000.

[DRT92] B. Dixon, M. Rauch, and R. E. Tarjan. Verification and sensitivity analy-

sis of minimum spanning trees in linear time. SIAM Journal on Computing,

21(6):1184–92, 1992.

[DS87] P. Dietz and D. Sleator. Two algorithms for maintaining order in a list. In

Proc. 19th ACM Symp. on Theory of Computing, pages 365–372, 1987.

[Edm70] J. Edmonds. Submodular functions, matroids, and certain polyhedra. Com-

binatorial Structures and their Applications, pages 69–81, 1970.

[Edm72] J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–

96, 1972.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theoretical Computer

Science, 2(3):339–344, 1976.

[Fis72] M. J. Fischer. Efficiency of equivalence algorithms. In R. E. Miller and

J. W. Thatcher, editors, Complexity of Computer Computations, pages 153–168.

Plenum Press, New York, 1972.

[FOW87] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence

graph and its use in optimization. ACM Transactions on Programming Lan-

guages and Systems, 9:319–349, July 1987.



139

[FW94] M. L. Fredman and D. E. Willard. Trans-dichotomous algorithms for min-

imum spanning trees and shortest paths. Journal of Computer and System

Sciences, 48:533–51, 1994.

[Gab90] H. N. Gabow. Data structures for weighted matching and nearest common

ancestors with linking. In Proc. 1st ACM-SIAM Symp. on Discrete Algorithms,

pages 434–43, 1990.

[Gab00] H. N. Gabow. Path-based depth-first search for strong and biconnected com-

ponents. Information Processing Letters, 74:107–114, 2000.

[GBT84] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques

for geometry problems. In Proc. 16th ACM Symp. on Theory of Computing,

pages 135–43, 1984.

[GI91] Z. Galil and G. F. Italiano. Data structures and algorithms for disjoint set

union problems. ACM Computing Surveys, 23(3):319–44, 1991.

[Gol01a] A. V. Goldberg. Shortest path algorithms: Engineering aspects. In Proceed-

ings of the International Symposium on Algorithms and Computation (ISAAC

’01), volume 2223 of Lecture Notes in Computer Science, pages 502–513.

Springer-Verlag, 2001.

[Gol01b] A. V. Goldberg. A simple shortest path algorithm with linear average time.

In Proceedings of the 9th European Symposium on Algorithms (ESA ’01), volume

2161 of Lecture Notes in Computer Science, pages 230–241. Springer-Verlag,

2001.

[GPF04] A. Gal, C. W. Probst, and M. Franz. Complexity-based denial-of-service at-

tacks on mobile code systems. Technical Report 04-09, School of Information

and Computer Science, University of California, Irvine, 2004.



140

[GPF05] A. Gal, C. W. Probst, and M. Franz. Average case vs. worst case: Margins of

safety in system design. In Proceedings of the New Security Paradigms Work-

shop, 2005. To appear.

[GT85] H. N. Gabow and R. E. Tarjan. A linear-time algorithm for a special case

of disjoint set union. Journal of Computer and System Sciences, 30(2):209–21,

1985.

[GT04] L. Georgiadis and R. E. Tarjan. Finding dominators revisited. In Proc. 15th

ACM-SIAM Symp. on Discrete Algorithms, pages 862–871, 2004.

[GT05] L. Georgiadis and R. E. Tarjan. Dominator tree verification and vertex-

disjoint paths. In Proc. 16th ACM-SIAM Symp. on Discrete Algorithms, pages

433–442, 2005.

[GTW] L. Georgiadis, R. E. Tarjan, and R. F. Werneck. Finding dominators in prac-

tice. Journal of Graph Algorithms and Applications (JGAA). Invited paper ac-

cepted for publication.

[GWT+04] L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August.

Finding dominators in practice. In 12th Annual European Symposium on Al-

gorithms, pages 677–688, 2004.

[Har85] D. Harel. A linear algorithm for finding dominators in flow graphs and

related problems. In Proc. 17th ACM Symp. on Theory of Computing, pages

185–194, 1985.

[HT84] D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common an-

cestors. SIAM Journal on Computing, 13(2):338–55, 1984.

[HU74] M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs.

Journal of the ACM, 21(3):367–375, 1974.



141

[Huc95] A. Huck. Disproof of a conjecture about independent branchings in k-

connected directed graphs. Journal of Graph Theory, 20(2):235–239, 1995.

[Huc99a] A. Huck. Independent branchings in acyclic digraphs. Discrete Math,

199:245–249, 1999.

[Huc99b] A. Huck. Independent trees and branchings in planar multigraphs. Graphs

and Combinatorics, 15:211–220, 1999.

[HY97] G. Holloway and C. Young. The flow analysis and transformation libraries

of Machine SUIF. In Proceedings of the 2nd SUIF Compiler Workshop, 1997.

[IMP] The IMPACT compiler. http://www.crhc.uiuc.edu/IMPACT.

[IR84] A. Itai and M. Rodeh. Three tree-paths. In Proc. 25th IEEE Symp. on Founda-

tions of Computer Science, pages 137–147, 1984.

[IR88] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed

networks. Information and Computation, 79(1):43–59, 1988.

[IZ89] A. Itai and A. Zehavi. Three tree-paths. Journal of Graph Theory, 13:175–188,

1989.

[Kin97] V. King. A simpler minimum spanning tree verification algorithm. Algorith-

mica, 18:263–70, 1997.

[KKT95] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time al-

gorithm to find minimum spanning trees. Journal of the ACM, 42(2):321–28,

1995.

[Knu71] D. E. Knuth. An empirical study of fortran programs. Software Practice and

Experience, 1:105–133, 1971.

[KU76] J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algo-

rithms. Journal of the ACM, 23:158–171, 1976.



142

[LEC67] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing

of graphs. In Proceddings International Symposium on Theory of Graphs, pages

215–232. Gordon and Breach, 1967.

[LT79] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators

in a flowgraph. ACM Transactions on Programming Languages and Systems,

1(1):121–41, 1979.

[MS94] B. M. E. Moret and H. D. Shapiro. An empirical assessment of algorithms

for constructing a minimum spanning tree. DIMACS Monographs in Discrete

Mathematics and Theoretical Computer Science, 15:99–117, 1994.

[Muc97] S. S. Muchnick. Advanced Compiler Design and Implementation, chapter 14.

Morgan-Kaufmann Publishers, San Francisco, CA, 1997.
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