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Abstract

An important problem in network security management is to uncover potential mul-

tistage, multihost attack paths due to software vulnerabilities and misconfigurations.

This thesis proposes a logic-programming approach to conduct this analysis automat-

ically. We use Datalog to specify network elements and their security interactions.

The multihost, multistage vulnerability analysis can be conducted by an off-the-shelf

logic-programming engine that can evaluate Datalog efficiently.

Compared with previous approaches, Datalog is purely declarative, providing a

clear specification of reasoning logic. This makes it easy to leverage multiple third-

party tools and data in the analysis. We built an end-to-end system, MulVAL, that

is based on the methodology discussed in this thesis. In MulVAL, a succinct set of

Datalog rules captures generic attack scenarios, including exploiting various kinds of

software vulnerabilities, operating-system sematics that enables or prohibits attack

steps, and other common attack techniques. The reasoning engine takes inputs from

various off-the-shelf tools and formal security advisories, performs analysis on the

network level to determine if vulnerabilities found on individual hosts can result in a

condition violating a given high-level security policy.

Datalog is a language that has efficient evaluation, and in practice it runs fast in

off-the-shelf logic programming engines. The flexibility of general logic programming

also allows for more advanced analysis, in particular hypothetical analysis, which

searches for attack paths due to unknown vulnerabilities. Hypothetical analysis is

useful for checking the security robustness of the configuration of a network and its

ability to guard against future threats. Once a potential attack path is discovered,

MulVAL generates a visualized attack tree that helps the system administrator un-

derstand how the attack could happen and take countermeasures accordingly.
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Chapter 1

Introduction

1.1 Software vulnerabilities and network security

management

Dealing with software vulnerabilities on network hosts poses a challenge to network

administration. The past 15 years have seen an ever-growing number of security vul-

nerabilities discovered in software (and information systems in general). According

to the statistics published by CERT/CC, a central organization for reporting security

incidents, the number of reported vulnerabilities have grown considerably in the last

five years (Figure 1.1). It is expected that the rate at which new software vulner-

abilities emerge will continue to increase in the foreseeable future. With thousands

of new vulnerabilities discovered each year, maintaining a 100% patch level is unten-

able and sometimes undesirable for most organizations. While in many cases patches

come right after vulnerability reports, people do not always apply patches right away

for various reasons [3]. Hastily written patches are unstable and may even introduce

more bugs. Patching an operating system kernel often requires a reboot, affecting

1
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Figure 1.1: Number of vulnerabilities reported by CERT
(http://www.cert.org/stats/cert stats.html)

availability in a way that may be cost-prohibitive for some organizations. Thus it

is not uncommon for a network administrator to keep running buggy software for a

period of time after the bug has been reported. As part of a disciplined enterprise

risk-management program, security managers must make decisions on which infor-

mation systems are most critical and prioritize security countermeasures for such

systems. They must make sure any potential exploit of the unpatched bugs will not

happen, or even if it did happen it would not cause damage. One of the daily chores

of administrators is to read vulnerability reports from various sources and understand

which reported vulnerabilities can actually compromise the security of their managed

network. Some bugs may not be exploitable under the settings of the local network.

Even when they can be exploited, the access gained by the attacker may be no more

than what he is already permitted.

For example, in the network of Figure 1.2, there may exist vulnerabilities on

machine webServer. But if a bug on webServer is only locally exploitable1 and

all users with accounts on webServer are trusted, there is no immediate danger of

1A bug is locally exploitable if the attacker has to first gain some local access on a machine, e.g.

a login shell of a user.
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exploit. If the bug is remotely exploitable2 but the firewall fw1 blocks the traffic

to the vulnerable port, the machine is still safe. If the firewall allows access to the

vulnerable port (perhaps for normal access to webServer), but the consequence of a

potential exploit is only that an attacker can read webPages, it is also safe because

the data is supposed to be publicly available anyway.

In the wake of new vulnerabilities, assessment of their security impact on the net-

work infrastructure is important in choosing the right countermeasures: patch and

reboot, reconfigure a firewall, unmount a file-server partition, and so on. Unfortu-

nately, the way a network can be broken into is not always obvious. For the example

network in Figure 1.2, if one day a new vulerability is reported about the web service

program on webServer, it would not seem to be an imminent threat to the confidential

data projectPlan stored on workStation. However, depending on the configuration

2A bug is remotely exploitable if an attacker can launch an attack across a network.
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Figure 1.3: Vulnerability-to-exploit window (in days)
(From Sharp Ideas: http://www.sharp-ideas.net/)

of the two firewalls (fw1 and fw2), the configuration of the file server, and the config-

uration of the workstation, this may not be the case. For example, many corporations

use NFS file sharing to mount file system partitions on file servers. NFS is an insecure

protocol and adopts a host-based trust relationship. If a client machine is compro-

mised, all the files that are exported to the client can potentially be accessed by the

intruder. Thus, if an attacker from the Internet can first compromise webServer by

exploiting the vulnerability, he can potentially modify files stored on fileServer. If

the shared executable binaries are stored in a partition exported to the web server,

the integrity of the executables will be compromised — the attacker can install a

Trojan-horse program. If the same partition is also mounted by a workstation, a user

on that machine may execute the Trojan-horse program, thus giving the attacker ac-

cess to workStation. As a result the confidential data projectPlan can potentially

be leaked to the outside attacker.

In order to discover these potential attack paths in a network, one must not only

examine configuration parameters on every network element — machines, firewalls,
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routers, etc. — but also consider all possible interactions among them. Conducting

this multihost, multistage vulnerability analysis by human beings is error-prone and

labor-intensive. Automating this assessment process is important given the fact that

the window between the time a vulnerability is reported to the time it is exploited

on a large scale has diminished substantially [3] (also see Figure 1.3). Defenders of

networks and systems can now plan on having only days to deploy countermeasures

in protection of the vulnerable systems and services that are connected to public net-

works. To exacerbate the situation, networks being used in organizations are getting

bigger and more complex. Unfortunately, current technology has until now failed to

provide adequate methodologies to achieve automatic management of network secu-

rity. As a result, network configuration management in today’s world still depends

largely on human experience. According to a survey conducted by the Computing

Technology Industry Association, among all security breaches reported by the 900

organizations surveyed in 2004, 84% of them were caused by human errors. The ex-

ponential increase in security incidents reported to CERT (Figure 1.4) shows that

there is a compelling need for effective methodology to automate network security

management.

1.2 Previous works on vulnerability analysis

Automatic vulnerability analysis can be dated back to Kuang [4] and COPS [17].

Kuang formalizes security semantics of UNIX as a set of rules, and conducts search

for ways a system can be broken into based on those rules. COPS is a UNIX secu-

rity checker that incorporates the Kuang rule set. NetKuang [54] extended the rule

set in Kuang to capture configuration information that has security impact across a

network, such as the .rhosts file, and thus is capable of reasoning about misconfigu-
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Figure 1.4: Security incidents reported to CERT
(http://www.cert.org/stats/cert stats.html)

rations within a network of UNIX machines. At the time when Kuang and NetKuang

were developed, software vulnerabilities have not become a major problem for net-

work security, and the scale of network attacks was much less than it is today. The

rules of Kuang and NetKuang are limited to the few attack scenarios and hardcoded

into the implementation. There is no incorporation of third-party security knowledge

such as vulnerability advisories. This piece-meal approach can no longer meet the

security need for the threats facing computer networks today. For a security analysis

tool to be viable with the changing threats, the reasoning logic must be formally spec-

ified and separated from implementation. The formal specification should be able to

incorporate information from third-party agencies that provide software vulnerability

definitions. The reasoning must be sound in theory and efficient in practice.

Levitt and Templeton proposed a requires and provides model for computer at-

tacks [48], which essentially specifies the pre- and postcondition of each attack step.
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This allows for multiple attack steps being combined such that previous steps provide

necessary conditions for later ones to succeed, leading to discovery of attack paths

not obvious by looking at each component in isolation. Levitt’s model has a clear

semantics for attacks and is much more flexible than signature-based models. This

idea has been matrerialzed in various works of vulnerability analysis. In terms of spe-

cific modeling and analysis mechanisms, two approaches have been proposed: model

checking and exploit-dependency graph search.

Using model checking in network vulnerability analysis was first proposed by

Ritchey and Ammann [43]. In the model-checking approach, a network is modeled as

a state-transition system. The configuration information is encoded as state variables.

An attack step is modeled as a transition relation between two states. A transition

relation is specified in the form of (S1,S2), where S1 is the values of boolean variables

characterizing the preconditions of the attack, and S2 represents the postcondition

of the attack. An attack path manifests itself as a sequence of valid state transitions

from the initial state leading to a state where the security property of the network is

broken. A model checker can check the model against a temporal formula, which can

express properties such as “all states reachable from S0 will satisfy the given security

property”, where S0 is the known initial state of the network. If the formula satisfies

the model, no attack paths can lead to a bad situation. If the formula does not satisfy

the model, the model checker can output a sequence of state transitions that ends up

at a state in which the security property does not hold. This counterexample trace

shows an attack path that leads to the violation of the security property.

The advantage of the model-checking approach is that one can leverage the rea-

soning power of off-the-shelf model checkers rather than writing a customized analysis

engine. However, one has to be careful to avoid the combinatorial explosion that often

occurs in model checking. In software engineering, people have proposed various ap-
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proaches to make model checking fast in verifying safety properties of large software

systems [21, 1, 53]. However, there has been no work showing techniques that can

speed up model checking in software verification can also speed up network security

analysis. The only experimental data we can find that shows the performance and

scalability of using model checking to analyze network vulnerability is in Sheyner, et

al.’s work [46]. The paper describes an experimental setting that consists of three

machines, a router, and a firewall. The number of atomic attacks in the model is

four. The run time of the tool on this example is about 5 seconds. When the example

is enlarged with two additional hosts, four additional atomic attacks, several new

vulnerabilities, and flexible firewall configurations, it took the tool 2 hours to find

all attack paths, of which 5 min is spent in model checking and the rest of the time

is spent in attack graph generation. This result did not give a convincing evidence

that model checking scales well for network security analysis. At this point it is still

questionable whether such approach will work for large networks with thousands of

hosts.

Model checking is intended to examine rich temporal properties of a state-transition

system. While such expressive power is crucial in verifying properties of software and

concurrent systems, it is not clear whether the full reasoning power is useful for net-

work security analysis. One problem of using a standard model checker as the analysis

engine is that most state transition sequences in the model do not actually need to

be examined for the purposes of network security analysis. For network attacks one

can assume the monotonicity property, under which assumption the checking can be

dramatically sped up.

Monotonicity The monotonicity property states that gaining more privileges can

only help the attacker in further compromising the system. For example, if there
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are two web servers that can be compromised by an attacker, attacking one of them

typically does not affect his ability to attack the other 3. Thus, once the analysis

derives that the attacker can gain certain privilege, this fact can remain true for the

remainder of the anaylsis process. There is no need for backtracking. However, in a

standard model checker, all possible paths — ones with the fact being true and ones

without — have to be examined. When dealing with large networks, there will be a

large number of choices for state transition at each step and this backtracking will

waste a significant amount of computing power. In the worst case, this could lead to

an exponential blowup. Partial order reduction [35, 19] can eleviate this problem in

model-checking software systems. However, it has not been shown how to apply the

technique in model-checking network security.

Based on the monotonicity property, Ammann, et al. proposed an approach where

dependencies among exploits are modeled in a graph structure and attack analysis

becomes a graph search problem [2]. Figure 1.5 shows a portion of an exploit depen-

dency graph. A node in the graph is either a condition or an exploit. A condition is

3This assumption does not necessarily hold for nonmonotonic attacks. For example, compro-
mising one web server may trigger the intrusion detection system so that further attack paths are
blocked. For more discussions on nonmonotonic attacks, see section 2.6.2.
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a boolean variable representing certain state of the system, such as whether a par-

ticular version of software is installed on a machine. An exploit can happen if all

its preconditions are true. If a condition Ci is a precondition of an exploit e, there

will be an edge from the node representing Ci to the node of e. After an exploit

is carried out, the state of the network system will change. In a monotone system,

the state change only causes more conditions to be true. Those conditions are the

postconditions of the exploit and there will be an edge from the exploit to each of

its postconditions. Because the number of conditions and exploits is in proportion to

the size of the network, the size of the graph is also in proportion to the size of the

network. The search algorithm can be viewed as a graph marking process, where a

marked condition node is true and an unmarked one is false. An exploit node can

be marked if all its predecessors (preconditions) are marked. Then all its successors

(postconditions) will also be marked if they have not been. Once a node is marked, it

will stay marked forever. The algorithm terminates if no more nodes can be marked.

Since every node and edge will be visited only once, the execution time is polynomial

in the size of the graph.

This graph-based algorithm based on monotonicity assumption avoids the poten-

tial exponential explosion in model checking. However, the algorithm is hardcoded

as program code and there is no clear specification of properties being checked and

interactions within a network. The work described in this dissertation assumes the

same monotonicity property, but adopts a logic-based approach, which formally spec-

ifies every relevant element in the reasoning and their interactions. As a result it can

put various information and tools together, yielding an end-to-end automatic system.

Attack graphs One purpose of network security analysis is to generate an attack-

graph. Roughly speaking, an attack graph is a DAG that represents the dependency



CHAPTER 1. INTRODUCTION 11

of actions that lead to the violation of the security property of a network. Like the

analysis mechanisms, there are also two approaches to representing attack graphs.

In one of them, each vertex in the graph represents the state of the whole network

system and the edges represent attack steps that cause the network to change from one

state to another. We call this a network-state attack graph and it corresponds to the

model-checking based analysis. The other approach corresponds to the graph-search

algorithm based on the monotonicity property, where an attack graph is essentially a

portion of the exploit-dependency graph that contributes to the attack.

Sheyner et al. extensively studied automatic generation and analysis of network-

state attack graphs based on symbolic model checking [46]. Phillips and Swiler also

studied network vulnerability analysis based on network-state attack graphs [38], al-

though they did not use model-checking techniques but rather developed a customized

attack-graph generation tool [47]. Network-state attack graphs suffer from exponen-

tial explosion. In Sheyner’s work, the authors report that the running time of their

tool grows from 5 seconds to 2 hours when the size of the network grows from 3 hosts

to 6 hosts (with other parameters also growing proportionally) 4. The potential state

space grows from 291 to 2229, and the reachable state space grows from 101 to 6190.

In Swiler, et al.’s work [47], the authors also discussed the issue of graph explosion

and proposed several alleviating methods, but no experimental results were given. On

the other hand, attack graphs based on exploit-dependency are polynomial because

individual conditions, not the whole network states, are represented as nodes. While

there is only a polynomial number of conditions, the number of all possible states are

exponential.

The problem with network-state attack graphs is that they do not utilize the

4The authors did report that the model checking part of the larger example took only 5 minutes
and the 2-hour running time was largely due to the graph generation process.
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monotonicity property. Since launching one attack does not decrease the attacker’s

ability to launch another, the order in which independent attack steps are carried

out is not important. But this order is explicit in network-state attack graphs, which

results in exponential number of redundent attack paths that differ only in the order of

attack steps. The method proposed by Swiler, et al. [47] to eliminate those redundant

attack paths is actually an implicit use of an exploit-dependency graph by enforcing

a total order on network conditions.

1.3 Specification language

An important step in network security analysis is to specify, in a machine readable for-

mat, the network elements and how they interact. Then an automatic analysis engine

can compute possible attack paths based on the specification. A clear specification

is crucial in building a viable analysis tool. Security is a problem that involves every

aspect of a system. Both intended and unintended behaviors of system components

may be utilized in an attack. Any system that hardcodes the security knowledge in

the implementation is doomed to fail in the face of ever-growing threats. Given the

rate at which new vulnerabilities are reported, an automatic tool must be able to take

as input formal specification of security bugs. A clear specification of the analysis

logic makes it easier to integrate such expert knowledge from independent sources,

such as CERT, CVE, and other bug-reporting agencies. Attack methodologies evolve

as new technologies are invented which bring more complex interactions among el-

ements in a network system. Any security analysis tool is incapable of capturing

all those interactions. Specifying those interactions in a formal, declarative language

makes it easy to understand what can and cannot be handled by the tool, and to

enhance the tool when necessary. The analysis process also needs to know numerous
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configuration parameters of every machine in the network, as well as those of the

routers, firewalls, and switches. Various scanning tools have been developed recently

that can provide this configuration information [52, 6, 7]. A clear specification of the

analysis logic makes it possible to factor out various configuration information and

leverage the corresponding tools to collect them, instead of reinventing the wheel.

The clarity of specification has not been given enough emphasis previously. In

the model-checking approach, the network state is modeled as a collection of boolean

variables, each representing some condition on the network. The security interactions

are specified as state transition relations. While it is possible to make this encoding

modular and extensible, its artificiality makes it hard to understand for human beings.

In the exploit-dependency graph, the network conditions are encoded as labels in the

graph. The security interactions are encoded as graph edges. This encoding also

lacks the level of clarity provided by a formal specification language. Tidwell, et al.

proposed a language for modeling Internet attacks [49]. However, the language is too

complicated and it is not clear how easy it is to use third-party security knowledge

or scanner output in the language.

The work described in this dissertation addresses the problem by adopting a logic-

based approach. The interactions among network elements are specified formally in

the logic-programming language Datalog [11]. Datalog is a syntactic subset of Prolog,

so the specification is also a program that can be loaded into a standard Prolog

environment and executed. Datalog has a clear declarative semantics and it is a

monotone logic, making it especially suitable for network attack analysis. Datalog is

popular in deductive databases, and several decades of work in developing reasoning

engines for databases has yielded tools that can evaluate Datalog efficiently [41, 51].

Leveraging those evaluation engines allows for analyzing large enterprise networks

with thousands of machines. A deeper reason for adopting a logic-based approach is
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that it captures human reasoning, which is exactly what a system administrator has

to do today in managing the security of networks. The reasoning system described

in this dissertation can be viewed as an expert system that alleviates the burden of

reasoning about large and complex systems from human beings, whose brain power

cannot keep up with the scale of the task.

1.4 The modeling problem

While choosing the right specification language is important, a harder problem is

deciding what to specify. For any analysis model, there will always be attack scenarios

that are not captured. However, the vast majority of security incidents do not involve

clever inventions of new attack methodologies, but rather consist of attack steps using

stale techniques known for years or even decades. The reason they are hard to prevent

is not because the system administrators are not aware of those techniques, but rather

because the size of the system makes it impossible for a human being to capture

every possible way the components may interact. The major challenge in designing

a vulnerability analysis system is identifying the correct granularity under which the

components of a network are modeled, such that the interactions among components

that vary from one network to another can be examined automatically, whereas the

details of individual attack steps that are common to all networks are abstracted out.

Modeling a computer system to detect security vulnerabilities caused by inter-

actions among system compoents dates back to Baldwin’s Kuang system [4], which

is incorporated into the COPS Unix security checker [17]. Recent work includes

Ramakrishnan and Sekar [40], and Fithen, et al. [18]. These works deal with vul-

nerabilities on a single host and the system is modeled at a fine grain such that

unknown techniques of compromising a single system can be discovered. However,
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for network-level analysis, using such fine-grained model is not desirable, because the

focus is more on interactions among different hosts, not within a single host. Mod-

eling too much details on a single host will likely lead to duplication of reasoning

across multiple machines. The purpose of network vulnerability analysis is not to

identify unknown ways to compromise a single system, but rather to uncover multi-

host, multistage attack paths where each individual attack step utilizes some attack

methodology well known to the literature. For this reason, the model for network

security analysis should be coarser-grained than that for a single host. The result of

a single-host vulnerability analysis can be abstracted as one interaction rule for the

network-level analysis.

In deciding upon the granularity of the model, this thesis adopts a “model as

needed” approach. Specifically, aspects of a system are modeled only if they are

relevant to determining the preconditions and consequences of some known attack

methodologies. For example, a common attack methodology is buffer overrun, in

which an attacker sends a specially crafted input to a vulnerable program that causes

the program’s memory boundary to be exceeded. If the program does not perform

rigorous check on input, a malicious input can contaminate the execution stack and

override the return address to make the program jump to injected malicious code. If

a service program has a buffer overrun bug, a remote attacker can potentially execute

arbitrary code as the user under which the service is running. To model a buffer

overrun attack against a service program, one needs to model the protocol and port

under which the program is listening, because it is relevant in determining whether

an attacker is able to send a malicious packet to the program; one also needs to model

the user privilege of the service process, because it is relevant to the consequence of

the attack. We do not need to model, for example, the stack layout of the program.

Although it is relevant to whether the attack can be successful, this is not the task
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of the network security analysis. A software security analyst, on the other hand, can

study the stack layout of a buggy program and determine if a bug will enable an

attacker to take full control of the program’s process, or just to crash it. Once a

conclusion is reached, the result should be formally specified and directly used in the

network-level analysis.

1.4.1 Formal model of vulnerability

A vulnerability is an unintended behavior of a component that can be exploited by an

attacker. Most network intrusions involve some vulnerability on software installed on

networked hosts. There are several well known sources for reporting security-relevant

software bugs — CERT, CVE, BugTraq, and so on. However, the bug reports are

usually written as informal natural language descriptions and cannot be directly used

in automatic analysis. Figure 1.6 shows an example bug description from CERT.

Two kinds of information in the report are useful in vulnerability analysis. One

is how to check if the vulnerability exists on a system, such as the version number

of the buggy software and the configuration options under which it manifests. We

call this the recognition specification. The other is the precondition under which the

bug can be exploited and the consequence of the exploit. We call this the semantics

specification. To automate the vulnerability assessment process, both information

need to be formalized.

Currently, the Open Vulnerability Assessment Language (OVAL) [52] is being de-

veloped which formalizes machine configuration tests. Recognition specification of

reported software vulnerabilities in the form of OVAL definitions are now being re-

leased by the bug-reporting community. Other formal recognition specifications of

vulnerabilities include the Nessus Attack Scripting Language (NASL) used by the
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CERT Advisory CA-2002-17 Apache Web Server Chunk Handling Vulnerability

Original release date: June 17, 2002

Last revised: March 27, 2003

Source: CERT/CC

Systems Affected

* Web servers based on Apache code versions 1.2.2 and above

* Web servers based on Apache code versions 1.3 through 1.3.24

* Web servers based on Apache code versions 2.0 through 2.0.36

Overview

There is a remotely exploitable vulnerability in the way that Apache web

servers (or other web servers based on their source code) handle data encoded

in chunks. This vulnerability is present by default in configurations of Apache

web server versions 1.2.2 and above, 1.3 through 1.3.24, and versions 2.0

through 2.0.36. The impact of this vulnerability is dependent upon the software

version and the hardware platform the server is running on.

I. Description

Apache is a popular web server that includes support for chunk-encoded data

according to the HTTP 1.1 standard as described in RFC2616. There is a

vulnerability in the handling of certain chunk-encoded HTTP requests that may

allow remote attackers to execute arbitrary code.

The Apache Software Foundation has published an advisory describing the details

of this vulnerability. This advisory is available on their web site at

http://httpd.apache.org/info/security_bulletin_20020617.txt

Vulnerability Note VU#944335 includes a list of vendors that have been contacted

about this vulnerability.

II. Impact

For Apache versions 1.2.2 through 1.3.24 inclusive, this vulnerability may

allow the execution of arbitrary code by remote attackers. Exploits are publicly

available that claim to allow the execution of arbitrary code.

For Apache versions 2.0 through 2.0.36 inclusive, the condition causing the

vulnerability is correctly detected and causes the child process to exit.

Depending on a variety of factors, including the threading model supported by

the vulnerable system, this may lead to a denial-of-service attack against the

Apache web server.

Figure 1.6: A CERT advisory
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Nessus security scanner [6]. However, there has been much less vigorous effort in

formalizing the semantic specification of software security bugs. What exists is clas-

sifications according to exploitable range and consequences, found in some vulnera-

bility databases such as NVD (National Vulnerability Database), and OSVDB (Open

Source Vulnerability Database). These classifications do not give precise specification

of a vulnerability’s semantics. But since many exploits happen in similar ways, they

can still provide useful input to a reasoning system.

1.4.2 Configuration scanners

Once the formal model of reasoning is decided upon, configuration scanners are needed

to collect system information that is used by the model. For example, if the formal

model needs to know the port number and protocol under which a service program

is listening, the scanners on every host should collect this information and report it

in the data format of the reasoning model. Although conceptually simple, the time

and energy involved in implementing and testing such scanners is significant. The

formal model in the analysis should provide a simple data format so that the labor

involved in implementing a scanning tool can be minimized. The model should also

be modular so that when new information is needed from the scanner, its scanning

ability can be added incrementally without disrupting the existing implementation.

There are off-the-shelf scanners that can take as input formal vulnerability recog-

nition specifications and check if the vulnerability exists on a computer system. Two

such scanners are the OVAL “interpreter”, which can handle formal vulnerability def-

inition in OVAL, and the Nessus scanner, which can handle vulnerability definitions

in NASL. Such scanners provide limited capability of outputing configuration infor-

mation other than those relevant in testing the existence of certain vulnerabiliities.
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For a comprehensive network security analysis, these scanners should be augmented

to suit the need of the formal model of reasoning. For the work described in this

dissertation, we use the OVAL scanner to report existence of software security bugs

on a system, and a separate scanner to collect other configuration parameter. The

combination of these two scanners are called a MulVAL scanner.

1.5 Policy-based analysis

Recent years have seen progress in policy-based network management. A policy is a

set of directives that control access to resources. For example one may have a policy

that says only corporate employees can read internal files stored on the file server. A

policy is implemented by low-level mechanisms, such as file attributes in a file system.

While the separation of policy from mechanism is an important step towards

eliminating human errors, an equally important question is how to make the policy

itself less error-prone. A good policy language design should require little technical

knowledge to write a “correct” policy. However, this is often hard to achieve, largely

because many security problems are caused by complex interactions among network

components. The correct behavior of a device is not only dependent on its own

configuration, but also on the configuration of others in the network. Extensive

research has been conducted to design proper abstractions to specify management

policies [30, 7, 10, 13, 42, 29, 25, 33]. The goal is to push the policy to a higher

level so that people can write down the ultimate goal of security management in a

language that closely matches human intention. A mapping will translate high-level

policy specifications to low-level mechanisms. Sometimes the mapping can be done at

compile time (when configuring a network), sometimes the mapping has to be done

at run time (when a request comes in). The person who writes down the policy does
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not need to have deep knowledge in security interactions, whereas the people who

define the mapping must be experts in this field.

One major problem in policy-based management is to make sure the mapping from

policy to mechanism is done consistently so that nothing is lost in the translation.

For example, if the policy says only corporate employees can access internal data,

then after this high-level policy is mapped to the low-level mechanisms, such as file

attributes, it must be the case that there is absolutely no way that people other than

employees can read the data. For example, even though the local-file system access

control on the file server where the data is stored is set up properly, the mapping also

needs to make sure configurations in other places where people can indirectly access

the data, such as from a web browser, are also set up in a way consistent with the

high-level policy. Ioannidis’s work [24] extensively studies the problem of consistent

policy enforcement in a heterogeneous environment. The approach is a combination

of compile-time and run-time checking. Two applications were described based on the

approach — Virtual Private Services [25] and Cannon. These works aim at an over-

haul of the security management today, which is often done in an ad hoc way across

different layers in a system. We call this approach the architectural approach, because

its application requires changing the architecture of network security management.

The work described in this thesis tries to improve security management from

another angle. Instead of creating a new structure to replace what is commonly used

today, we take the existing systems, model them formally, and analyze the security

interactions in logic. The policy serves a different purpose here: instead of deriving

low-level configurations from the policy, we validate the configuration against the

policy. We call this approach validation approach. It does not require changes to

the current security management framework, but adds an extra validation system to

make sure high-level security goal will not be violated. Compared to the architectural
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approach, the validation approach is easier to deploy in practice because people do

not have to change the way they manage the network. However, in the long term,

both approaches are essential to build a secure network. The validation approach

will provide useful inputs for designing a better security architecture and gradually

change the way people manage networks. Even after an architectural overhaul, it is

still important to validate the new architecture formally to make sure it really meets

the security needs.

It is important to note that the purpose of MulVAL policy is also different

from some of the well-known security policy languages, such as PolicyMaker [9],

KeyNote [8], SD3 [28], and Binder [15]. These policy languages are intended to

be used to specify access control in distributed environment, or trust management

(TM) [9]. In general, the safety property of a TM policy is hard to verify [32]. The

security analysis discussed in this disseration does not address the analysis of TM,

and policy used does not have features such as delegation in TM. Incorporating TM

in the analysis is left for future work.

1.6 Contributions

In this thesis, I proposed a logical approach to network security analysis. We use

Datalog — a logic programming language — as a uniform language to represent all

relevant information needed in the reasoning. These include:

• Reasoning logic that captures generic security interactions, such as common

attack scenarios, operating system semantics, and network traffic flow.

• Formal software vulnerability advisories that specifies the pre- and postcondi-

tions of exploits.
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Figure 1.7: MulVAL Framework

• Output of host scanners that specify security-relevant configuration information.

• Output of network management tools that specify high-level network model.

• Security policies defined by system administrators that specifiy high-level goals

of administration in the local site.

These information, formally specified in Datalog, can be put together in a standard

logic-programming engine that can evaluate Datalog efficiently. The logic engine can

then conduct exhaustive search to find out all possible multistage, multihost attack

paths due to all possible interactions in the network. The framework is shown in

Figure 1.7. The contribution is summarized as follows.

1. I have proposed a logic-programming approach for specifying and analyzing

complex interactions among network elements, which has the advantages of

clear specification, efficient execution, and expressive programming;

2. I have designed a formal model for reasoning about security interactions in net-

works of Unix-family machines; the formal model integrates information found
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in existing vulnerability databases to provide exploit semantics, eliminating the

need to manually provide them whenever a vulnerability is reported;

3. I have designed an end-to-end system, MulVAL (Multihost, multistage Vul-

nerability AnaLysis) [34], that incorporates OVAL vulnerability scanners and

conduct security analysis on the network level;

4. I have designed and implemented algorithms for conducting various kinds of

analysis in the MulVAL framework: checking network configurations against a

high-level policy specification that captures data confidentiality and integrity,

hypothetical analysis that assumes various vulnerability situations, and the gen-

eration of attack trees.

The major advantage of the logic-programming approach is its clear specification

of reasoning logic and the separation of reasoning logic and the implementation of the

reasoning engine, where the latter can be just a standard Prolog system. Clear speci-

fication makes it easier to incorporate third-party security knowledge, such as exploit

semantics in vulnerability advisories. Such information has to be input manually in

some existing vulnerability analysis tools, such as TVA (Topological Vulnerability

Analysis) [27]. Since any security analyzer inevitably has false positives and false

negatives, the clear sepecification of reasoning model in a formal logic makes it eas-

ier for the security community to audit, discuss, and augment the reasoning model

and improve its accuracy and effectiveness over time, making it a viable approach to

thwart the ever growing security threats that accompanies the ever growing use of

computer networks.



Chapter 2

Formal model of reasoning

MulVAL adopts Datalog [11] as the language to model network elements and their

interactions. We first review some terminologies.

2.1 Datalog review

Syntactically, Datalog is a subset of Prolog [12] with limited forms of clauses. A

literal, p(t1, . . . , tk) is a predicate applied to its arguments, each of which is either

a constant or a variable. In the formalism of Prolog, a variable is an identifier that

starts with an upper-case letter. A constant is one that starts with a lower-case letter.

Let L0, L1, ...Ln be literals, a Horn clause in Datalog has the form:

L0 :- L1, . . . , Ln

Semantically, it means if L1, . . . , Ln are true then L0 is also true. The left-hand

side is called the head and the right-hand side is called the body. A clause with an

empty body is called a fact. A clause with a nonempty body is called a rule. A

significant difference between Datalog and Prolog is that Datalog has a pure declar-

24
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ative semantics. The order of clauses in a Datalog program is irrelevant to its logical

meaning and evaluation result. Whereas in Prolog such order is important and af-

fects the result of evaluation [12], due to the depth-first search strategy and side-effect

operators like “cut”.

Datalog is often used in deductive databases. In such settings, data tuples in the

database are represented as Datalog facts, and the deductive engine is implemented

as a Datalog program that runs on the inputs from the database. The Datalog facts

representing the original database are called the extensional database (EDB), and the

Datalog facts computed by the deductive engine are called the intensional database

(IDB). The complexity of computing whether a literal is implied by a Datalog program

from EDB input (i.e. whether the literal is in IDB) is polynomial in the size of the

EDB [14]. In this dissertation, we call an EDB predicate a primitive predicate and an

IDB predicate a derived predicate.

Datalog has also been used as a security language for expressing access control

policies [15, 31]. The declarative semantics of Datalog makes specifying concepts such

as delegation straightforward. The efficiency of Datalog and existing off-the-shelf

Datalog evaluation engines [41, 51] make such languages readily usable in practice.

There are many advantages of using Datalog as the formal model of reasoning

in the security analysis discussed in this dissertation. Compared with the exploit-

dependency graph, Datalog is a formal declarative logic language, which provides a

clear specification. Like in the model-checking approach, one can leverage an off-the-

shelf logic engine to conduct the analysis. But unlike model-checking, the execution

time of a Datalog program is polynomial in the size of data inputs. Logic engines

have been optimized over decades to handle large datasets efficiently, which makes

Datalog particularly suitable for analyzing security of large and complex networks.
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2.2 Analysis framework

The MulVAL core analysis framework is shown in Figure 2.1. An analysis database is

a collection of Datalog facts that represent the status of the network and the advisory

information about software vulnerabilities. Chapter 3 will discuss in detail how to

populate this database. The interaction rules are Datalog clauses that specify how

different pieces of a network can interact and affect security. These are reasoning rules

that can simulate what an attacker can do in the network, given the configuration

information in the analysis database. The security policy specifies the ultimate prop-

erty a system administrator wants to keep for the network. In MulVAL, the policy is

simple Datalog tuples that list legal data accesses by principals.

2.3 Interaction rules

MulVAL interaction rules specify the semantics of: different kinds of vulnerabili-

ties and their exploits, normal software behaviors that affect security, and multihop

network access. Many of those rules are operating-system specific. The rules dis-

cussed in this dissertation apply to the Unix-family operating systems. Currently
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there are about 20 rules in MulVAL. The MulVAL rules are carefully designed so

that information about specific vulnerabilities is factored out. The interaction rules

characterize general attack methodologies (such as “remote exploit of a buffer overrun

bug,” or “Trojan Horse client program”), not specific vulnerabilities. Thus the rules

do not need to be changed frequently, even though new vulnerabilities are reported

frequently. The rules are also independent of specific configurations of a particular

network setting and thus can be applied across different sites.

2.3.1 Types of constants

In Datalog, a term is either a constant or a variable. Datalog is an untyped language,

so a predicate can be applied to arbitrary terms. However, to make a Datalog sentence

meaningful, the arguments to a predicate should take value from certain domains.

This section lists the types used in the Datalog interaction rules.

1. Host.

In this disseration, a host is represented as a symbolic name, such as webServer

and fileServer. In the real implementation, it is represented as an IP-address

range.

2. Protocol.

A transport or application layer protocol, such as tcp, udp, and rpc.

3. Port.

A number differentiating different services within the same protocol.

4. Principal.

A symbolic name representing a certain group of people, such as employee and

attacker.
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5. Data.

A symbolic name representing an abstract notion of a data item, such as

webPages and projectPlan.

6. String.

Single-quoted strings are used to represent file-system paths, vulnerability iden-

tification numbers, etc.

7. Exploit range.

Either localExploit or remoteExploit.

8. Exploit consequence.

One of four possibilities: confidentiality, integrity, privilegeEscalation,

and dos.

9. Program

The name of a program on a system, such as httpd.

10. User/Group

The name of a user or group on a system.

11. Access

read, write, or exec.

The next several sections describe interaction rules that capture various aspects

of attack scenarios and operating-system semantics that affect security.
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2.3.2 Vulnerability rules

A vulnerability is an unintended behavior in a software system that can be utilized

by an attacker to compromise the security of a host. Following are the predicates

involved in rules about vulnerabilities. The arguments of the predicates are presented

as variables, although in a specific rule they can either be a variable or a constant.

vulExists(Host, Program, ExploitRange, ExploitConsequence) is a derived

predicate specifying that a vulnerability exists in the Program on a Host, and it

has specific ExploitRange and ExploitConsequence. This is a derived predicate.

Program is the full path of the executable that contains the security bug. ExploitRange

is either local or remote, indicating if the bug is locally exploitable or remotely ex-

ploitable. Two common values for ExploitConsequence are privilegeEscalation,

meaning a successful exploit would enable an attacker to execute arbitrary code, and

dos, meaning the attacker can crash the program (denial of service).

vulExists(Host, ID, Program) is a primitive predicate specifying that a vul-

nerability with identification ID exists in the Program on the Host.

vulProperty(ID, ExploitRange, ExploitConsequence) is a primitive predi-

cate that specifies the exploitable range and consequence of the vulnerability with

ID.

bugHyp(Host, Program, Range, Consequence) is a dynamic predicate that in-

troduces a hypothetical bug in a Program on the Host which has ExploitRange

and ExploitConsequence. More details about using dynamic predicates to conduct

hypothetical analysis is discussed in Chapter 5.

dependsOn(Host, Program, Library) is a primitive predicate specifying that

a Program on a Host depends on a Library, where the type of Library is also

“Program”.
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Following are the rules computing vulnerablity information on a host. %% intro-

duces a line of comment.

vulExists(H, Prog, Range, Consequence):- %%Advisory

vulExists(H, ID, Prog),

vulProperty(ID, Range, Consequence).

vulExists(H, Prog, Range, Consequence):- %%Hypothetical Bug

bugHyp(H, Prog, Range, Consequence).

vulExists(H, Prog, Range, Consequence):- %%Library Bug

vulExists(H, Library, Range, Consequence),

dependsOn(H, Prog, Library).

2.3.3 Exploit rules

We first introduce several predicates that are used in the exploit rules.

execCode(P,H,UserPriv) is a derived predicate specifying that principal P can

execute arbitrary code with privilege UserPriv on machine H.

netAccess(P, Src, Dst, Protocol, Port) is a derived predicate specifying that

principal P can send packets from machine Src to Port on machine Dst through

Protocol.

networkService(H, Prog, Protocol, Port, User) is a primitive predicate spec-

ifying that a service program Prog is running on host H as user User. It is listening on

port Port of protocol Protocol. For example, networkService(webServer, httpd,

tcp, 80, apache) means on machine webServer, a network service program httpd

is running as user apache and listening on port 80 of the tcp protocol.

setuidProgram(H, Prog) is a primitive predicate specifying that Prog is a setuid1

1In a Unix system, a setuid program will have the privilege of the owner when executed.
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program on host H. The executable file is owned by User.

clientProgram(H, Prog) is a primitive predicate specifying that Prog is a client

program that when executed, may open a connection to a server over the network.

malicious(P) is a primitive predicate specifying that principal P would attack

the network system to gain illegal privilege.

incompetent(P) is a primitive predicate specifying that principal P is not careful

in using computers and its behavior may be utilized by a malicious attacker.

In theory, the preconditions for exploiting a particular software bug may be arbi-

trary. In practice, the vast majority of exploits happen in very similar manners. Most

security bugs are caused by buffer overflows, where a malicious attacker construct a

specially-crafted input that can overrun the memory boundary the program’s stack

or heap. By doing so the attacker can inject code into the memory and modify the

return pointer in the stack to cause the program to jump to the injected code, which

may be a shell program that will allow the attacker to execute arbitrary code. Even

if the injected code cannot be executed, the attacker can still crash the program and

thus cause a denial of service. If the input of the buggy program comes from the

network, this kind of bug can be exploited remotely (called remote privilege esca-

lation). Otherwise the attacker will need to first have some local privilege on the

machine where the program is running. If the program is a setuid program, executing

the program locally on a malicious input may enable the attacker to gain root(called

local privilege escalation). Following are the two rules for remote and local privilege

escalation.

execCode(Attacker, Host, User) :- %%Rule-remote-privilege-escalation

malicious(Attacker),

vulExists(Host, Program, remoteExploit, privilegeEscalation),

networkService(Host, Program, Protocol, Port, User),
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netAccess(Attacker, _AttackSrc, Host, Protocol, Port).

That is, if Program running on Host contains a remotely exploitable vulnerabil-

ity whose consequence is privilege escalation, the buggy program is running as User

and listening on Protocol and Port, and an attacker can send malicious packets to

the service through the network, then the attacker can execute arbitary code on the

machine as User. This rule can be applied to any vulnerability that matches the

pattern. An underscore-led variable such as AttackSrc is an anonymous variable in

Datalog — one that appears only once in a clause, and thus whose value does not

matter. In this rule, it indicates that the service program accepts packets from any

client machine so one can launch an attack from any host that can send a packet

to the server. This is a conservative approximation because some network services

can restrict network accesses to certain client hosts, for example through TCP wrap-

pers [50]. In such cases a more precise rule would need to specify the valid clients

instead of using a wild cast.

execCode(Attacker, Host, User) :- %%Rule-local-privilege-escalation

malicious(Attacker),

vulExists(Host, Prog, localExploit, privilegeEscalation),

setuidProgram(Host, Prog),

fileOwner(Host, Path, User),

execCode(Attacker, Host, _SomeUser).

That is, if a malicious attacker can first compromise an account ( SomeUser)

on a machine, and there is a locally exploitable privilege-escalation bug in a setuid

program owned by User, then the attacker can gain the privilege of User. Again,

the anonymous variable SomeUser brings a conservative approximation into the rule.

If the local user whose account is compromised by the attacker cannot execute the
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setuid program in the first place, the exploit cannot happen at all. A more precise

rule would include the executable check for the file Prog.

Another kind of exploit happens at the client side of a network application. A

client program is one that establishes communication with a server, such as a web

browser, a mail client, or a messenger program. In order to exploit a bug in those

programs, the victim must first initiate a connection to a server that may provide ma-

licious inputs from the attacker. For example, a compromised web page may contain

Java programs that exploit the Java Virtual Machine in Internet Explorer, a mail

server may deliver mails that contain worms exploiting vulnerabilities in Outlook

Express, a MSN messenger server may pass on malicious requests trying to exploit

vulnerabilities in a MSN client. For those exploits to happen, the victim needs to do

something first: browse a compromised webpage, click a link in a malicious email,

open the messenger client, and so on. A careful user can avoid such exploits by exer-

cising precaution. For example, he never browses a webpage from unknown sources,

he never clicks attachments in an unsolicited email, and he blocks messenger requests

from unknown messenger users. We classify these careful people as “competent”

users. Usually system administrators are considered competent. But an ordinary

employee using a computer is considered “incomptetent.” This classification can be

provided by the system administrator and reflected in the security policy.

Following is the exploit rule for remote exploit of a client program.

execCode(Attacker, Host, User) :- %%Rule-exploit-remote-client

malicious(Attacker),

vulExists(Host, Program, remoteExploit, privilegeEscalation),

clientProgram(Host, Program),

incompetent(P),

hasAccount(P, User).
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The body of the rule specifies that 1) the Program is vulnerable to a remote

exploit; 2) the Program is a network client application; 3) an incompetent principal P

has account User on the machine. The consequence of the exploit is that the attacker

can execute arbitrary code with the privilege of the incompetent user.

After an exploit is successfully applied, an attacker can gain further privilege

by exploiting more vulnerabilities. For example, after he compromises a local user

account through a successful remote exploit, he can further exploit a local bug to

become root. He can also do other things allowed by the operating system. For

example, he can read or modify files on the machine or launch attacks to other

machines from there. The following sections explain interaction rules that capture

these scenarios.

2.3.4 File access

The following predicates are used in computing the file access a principal can have

on a Unix machine.

accessFile(P, H, Access, Path) is a derived predicate specifying that princi-

pal P can Access the files specified by Path on machine H. Access can be either read,

write, or exec.

localFileProtection(H, User, Access, Path) is a derived predicate specify-

ing that the User on machine H can have the specified Access to the file Path.

fileAttr(H, Path, R1,W1,X1,R2,W2,X2,R3,W3,X3) specifies the UNIX file at-

tribute bits. For example, if on machine workStation the file /home/projectPlan.pdf’s

attribute is rw-r-----, the corresponding predicate would be

fileAttr(workStation, ‘/home/projectPlan.pdf’, r,w,0,r,0,0,0,0,0).

Note that r and w are interpreted as 1 for the corresponding access bits.
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The following rule says if an attacker P can execute arbitrary code on machine H

with User’s privilege, he can have whatever access User has to files.

accessFile(P, H, Access, Path) :- execCode(P, H, User),

localFileProtection(H, User, Access, Path).

Following are rules for computing file access rights on a UNIX system.

localFileProtection(H, User, Access, Path) :-

fileOwner(H, Path, User),

ownerAccessible(H, Access, Path).

localFileProtection(H, User, Access, Path) :-

inGroup(User, Group),

fileGroupOwner(H, Path, Group),

groupAccessible(H, Access, Path).

localFileProtection(H, User, Access, Path) :-

worldAccessible(H, Access, Path).

ownerAccessible(H, read, Path) :-

fileAttr(H, Path, r,_,_,_,_,_,_,_,_,_).

groupAccessible(H, read, Path) :-

fileAttr(H, Path, _,_,_,_,r,_,_,_,_,_).

worldAccessible(H, read, Path) :-

fileAttr(H, Path, _,_,_,_,_,_,_,r,_,_).

ownerAccessible(H, write, Path) :-

fileAttr(H, Path, _,w,_,_,_,_,_,_,_,_).
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groupAccessible(H, write, Path) :-

fileAttr(H, Path, _,_,_,_,_,w,_,_,_,_).

worldAccessible(H, write, Path) :-

fileAttr(H, Path, _,_,_,_,_,_,_,_,w,_).

ownerAccessible(H, exec, Path) :-

fileAttr(H, Path, _,_,x,_,_,_,_,_,_,_).

groupAccessible(H, exec, Path) :-

fileAttr(H, Path, _,_,_,_,_,_,x,_,_,_).

worldAccessible(H, exec, Path) :-

fileAttr(H, Path, _,_,_,_,_,_,_,_,_,x).

The meaning of the rules are self-explanatory. The primitive predicate fileOwner,

fileGroupOwner, and fileAttr can easily be gotten from the output of the “ls -l”

command. The primitive predicate inGroup can be computed from the result of the

“groups” command or from a directory database (such as OpenLDAP) if that is used

by the system to maintain user and group information.

2.3.5 Trojan-horse programs

A Trojan-horse is a malicious program that masquerades as a benign application. For

example, a Trojan-horse PDF file reader may communicate the content of the file to

an adversary, and a Trojan-horse SSH client can steal the password or private key of

a user. A Trojan horse can even install a back door on the system that allows the

attacker to enter at a later time.

If the integrity of the file system on a machine is compromised by an attacker,
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he can replace legitimate programs such as Adobe Acrobat Reader or ssh with his

Trojan-horse version. When an innocent user executes such programs the attacker

can gain privilege on the system:

execCode(Attacker, H, User) :- malicious(Attacker),

accessFile(Attacker, H, write, Path),

not setuidProgram(H, Path),

localFileProtection(H, User, exec, Path).

execCode(Attacker, H, Owner) :- malicious(Attacker),

accessFile(Attacker, H, write, Path),

setuidProgram(H, Path),

fileOwner(H, Path, Owner),

localFileProtection(H, User, exec, Path).

This is another example of conservative approximation in the interaction rules.

Normally a user may inadvertantly execute a Trojan-horse program only if it is in-

jected into a directory included in the user’s “PATH” environment variable. But this

rule specifies that if an attacker can modify files under any directory, he can gain the

privileges of any user who can execute the code (even though it is not in the user’s

PATH diretories).

2.3.6 NFS semantics

There are also attacks that exploit normal software behaviors. For example, through

talking to system administrators we have found that the security weaknesses in the

NFS file-sharing system have contributed to many intrusions on our campus. NFS was

not designed with security in mind, though now it is widely used and quite popular.

Scripts to exploit the insecure file-sharing exist on the web and have been in use. NFS
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is intended to be used in a local-area environment where the hosts trust each other,

i.e. any file access request from a legitimate host on the server’s export list is deemed

valid. This host-based trust relationship works fine under normal conditions, but will

cause severe problems when the network is facing malicious attacks. If the attacker

can compromise one account on a client machine, he can send NFS requests to the

server on behalf of any other user. Whether the requests will be honored depends on

the NFS server’s configuration. The semantics of NFS is specified by the following

Datalog rules:

accessFile(P, Server, Access, Path) :-

malicious(P),

netAccess(P, Client, Server, rpc, 100003),

nfsExportInfo(Server, Path, Client, Access, RootSquash, insecure),

nfsUserMap(UserClient, UserServer, RootSquash),

localFileProtection(Server, UserServer, Access, Path).

accessFile(P, Server, Access, Path) :-

malicious(P),

netAccess(P, Client, Server, rpc, 100003),

execCode(P, Client, root),

nfsExportInfo(Server, Path, Client, Access, RootSquash, secure),

nfsUserMap(UserClient, UserServer, RootSquash),

localFileProtection(Server, UserServer, Access, Path).

nfsUserMap(User, User, no_root_squash).

nfsUserMap(root, anonymous, root_squash).

nfsUserMap(User, User, root_sqush) :-

nonvar(User),
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non_root_user(User).

NFS protocol is based on RPC (remote procedure call) and its assigned RPC

number is 100003. The primitive predicate nfsExportInfo specifies the configuration

on an NFS server — which path is exported to which client machine and under what

options. In the first rule, the “secure” option of the exported share is off, which means

a request does not have to come from a privileged port on the client machine 2 to be

accepted by the server. In the second rule the “secure” option is on, so the attacking

principal P must first get root on the client machine. The nfsUserMap maps a user

in an NFS request to a user on the server. When the “root squash” option is on,

the root user will be mapped to the user anonymous. Otherwise the user id is be

unchanged after the mapping.

Predicate non root user invokes a library function that tells if a user id is “root”.

From a formal point of view, a library function can be considered as a primitive pred-

icate with a different physical realization than ordinary EDB predicates: they are

not explicitly stored in the database but are implemented as procedures which are

computed during the evaluation of a Datalog program. Before calling such a library,

however, a ground check should be performed to guarantee the safety property [11],

since calling the library with an uninstantiated variable could return an infinite num-

ber of results (e.g. there are infinite number of non-root user names). Such unsafe

programs will typically throw an exception in the library function when evaluated.

On an NFS client machine, the remote file shares are mounted in the local file

system so that legitimate users can access files on the server as if they are on the client

machine. The security implication of mount is that if an attacker can compromise the

integrity of files on an NFS server, the users on the client machine will be affected.

2A privileged port is one under 1024. Only the root user can bind to privileged ports.
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Following is the rule for the semantics of mount.

accessFile(P, Client, Access, ServerPath) :-

nfsMounted(Client, ClientPath, Server, ServerPath, Access),

accessFile(P, Server, Access, ClientPath).

That is, when a principal accesses files in a portion that is exported to a client

machine, he is also, in some sense, “accessing” files on a client that mounted that

portion. nfsMounted is a primitive predicate provided by the scanner, which specifies

that a portion on Server is mounted on a local path of machine Client.

2.3.7 User credentials

A credential is some qualification that enables a user to access a system. Passwords

and user keys are two examples. Credentials are often stored on a machine with

certain protections. In Unix, user passwords are cryptographically hashed and the

hash value is stored in the “shadow” file readable only to the root user. Private keys

for SSH sessions are stored in the user’s home directory with passphrase protection.

Once an attacker gets local access to a machine, he can steal user credentials and

compromise more machines. There are a variety of ways to steal user credentials on a

machine. If an attacker becomes root on the machine, he can get the shadow file and

conduct a dictionary attack to guess ill-chosen passwords. If an attacker compromises

one user account on a machine, he can get the private key of the user stored in his home

directory. If the key is not passphrase-protected, he can log in to any machine where

the corresponding public key is included in the SSH configuration. The attacker can

even install a keystroke logger or Trojan-horse SSH program to record the password

or passphrase of the user. Even worse, a careless user may use the same password

across different sites. If his account is compromised at one site, his accounts will
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also be compromised at the other sites. An attacker can also extract an incompetent

user’s password by social engineering.

Since there are so many situations for a user’s credential to be compromised by

an attacker, it may not be a good idea to precisely model the differences between all

these scenarios. Rather, an approximate model can serve our purpose reasonably well.

Predicate principalCompromised(P1, P2) is introduced to express that principal

P1’s credential is compromised by principal P2 (the attacker). The following two

rules specify under what condition a principal’s credential is compromised.

principalCompromised(Victim, Attacker) :- hasAccount(Victim, H, User),

execCode(Attacker, H, root),

malicious(Attacker).

principalCompromised(Victim, Attacker) :- incompetent(Victim),

malicious(Attacker).

In the first rule, principal Victim has an account on host H. Malicious Attacker

takes full control of the host as root. In this case Victim’s credential will be com-

promised by Attacker. Once an attacker completely compromises a machine, he can

get the shadow file of the system, get the private key file of every user, or install

key-stroke loggers or Trojan-horse SSH client. With all likelihood the credentials of

the machine’s user will be stolen.

The second rule encompasses the situations where an attacker does not need to

get root to steal a credential. In this case the victim is “incompetent” from a security

perspective. He may succumb to social engineering, use a easy-to-guess password,

or not passphrase-protect his private-key file. For such a user, his account could be

compromised at any time. So there is no other precondition for the rule.

The above two rules are conservative in the sense that what is inferred is the worst-
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case scenario. Even if the root of a machine is compromised, a user’s credential is not

necessarily compromised if he excercises extreme vigilance and is lucky. Similarly,

just because a person is classified as “incompetent” by the system administrator does

not necessarily mean his credential must be compromised by a malicious attacker.

Conservative approximation in the interaction rules leads to false positives in the

analysis result. However, it simplifies the reasoning process and the resulting attack

tree, leaving it to the system administrator to decide whether the attack tree is

realistic.

Once the credential of a principal is compromised, an attacker can compromise

accounts of the principal on any machine the attacker has access to.

execCode(Attacker, Host, User) :- principalCompromised(Victim, Attacker),

hasAccount(Victim, Host, User),

canAccessHost(Attacker, Host).

canAccessHost(P, H) :- execCode(P, H, _SomeUser).

canAccessHost(P, H) :- logInService(H, Protocol, Port),

netAccess(P, _AttackSrc, H, Protocol, Port).

logInService(H, Protocol, Port) :- networkService(H, sshd, Protocol, Port, _User).

To use the stolen credential to compromise another host, an attacker needs some

access to the machine. Either he can get into the machine as another user and then

execute the “su” command, or he is able to access the login service (such as sshd) on

the host. The two rules for canAccessHost(P, H) specify these two cases.
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2.4 Network topology

The packet flow in the network affects an attacker’s ability to launch attacks. Packet

flow is controlled by firewalls, routers, switches, and other aspects of network topology.

MulVAL uses an abstract model, host access control list (HACL), to describe the

topology of a network.

2.4.1 Host Access Control List

A host access control list specifies all accesses between hosts that are allowed by the

network. It consists of a collection of Datalog tuples of the following form:

hacl(Source, Destination, Protocol, DestPort).

It means machine Source can reach DestPort on machine Destination through

Protocol. HACL is an abstraction of the ultimate effects of the physical topology,

firewall rules, the configuration settings of routers and switches, and so on. It is com-

patible with the high-level specification used in many automatic network management

tools [22, 23, 5, 10]. Those tools can be leveraged to provide this information.

Configuration aspects not captured by HACL

In a large enterprise network, many features of network configurations affect security.

Following are some aspects not captured by HACL. We leave the modeling of these

features as future work.

Spoofing is a common attack methodology. For exmaple by spoofing the source

address of an NFS request packet an attacker can trick an NFS server into believing

the request comes from a legitimate export client. Some network configuration mech-

anisms, such as access-control lists on switches, can prevent address spoofing to an
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extend. In order to capture this configuration information in HACL, each hacl entry

needs to be augmented with another field indicating the “true” source of packets.

Another aspect not captured by HACL is which zone a particular packet may

pass through. This is relevant in eavesdropping attacks. If a company allows insecure

communication inside the corporate network, it would be important to figure out

whether an attacker can sniff sensitive information once he gets hold of one machine

inside the enterprise network. However, HACL only specifies the end points of com-

munication; the intermediate steps are not captured. One possible way to model this

is by attaching to each hacl entry a list of zones the packet is allowed to traverse.

2.4.2 Multihop host access

Predicate netAccess(P, Src, Dst, Protocol, Port) specifies that principal P can

send network packets from machine Src to Port on host Dst through Protocol.

Following are the rules deriving the predicate.

netAccess(P, H1, H2, Protocol, Port) :- execCode(P, H1, _User),

hacl(H1, H2, Protocol, Port).

If a principal P has local access on machine H1 as some User and the network

allows H1 to access H2 through Protocol and Port, then the principal can access host

H2 through the protocol and port. This rule allows for reasoning about multihost

attacks, where an attacker first gains access on one machine inside a network and

launches further attacks from there.

2.5 Policy specification

The security policy is the only piece of information that a local administrator needs

to provide. In MulVAL, a security policy specifies which principal can access what
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data. Each principal and piece of data is given a symbolic name, which is mapped

to a concrete entity by the binding information. Each policy statement is of the form

allow(Principal, Access, Data). The arguments can be either constants or variables.

Following is an example policy:

allow(_Everyone, read, webPages).

allow(employee, _Access, projectPlan).

allow(sysAdmin, _Access, Data).

Everyone and Access are anonymous variables. The policy says anybody can

read webPages; employee can have arbitrary access to projectPlan; and sysAdmin

can have arbitrary access to arbitrary data. Anything not explicitly allowed is pro-

hibited.

The policy language presented in this section is simple and easy to be specified

correctly. However, the MulVAL reasoning system can handle more complex policies

as well. For example, in MulVAL one can use general Prolog as the policy language.

More discussions on policies and policy check can be found in Chapter 4.

2.5.1 Binding information

The principal and data items mentioned in the MulVAL policy are just symbolic

names. They are mapped to concrete entities by principal binding and data binding.

Principal binding maps a principal symbol to its user accounts on network hosts,

or a network zone from which the principal operates. The format of the binding

information is

hasAccount(Principal, Host, Account), or

located(Principal, Zone),
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where Principal is the symbolic name for a principal, Account is the name of a

user account on Host that the principal can access, and Zone is the network zone a

principal may operate from. Examples:

hasAccount(employee, workStation, ralph).

hasAccount(employee, workStation, james).

hasAccount(sysAdmin, webServer, root).

located(attacker, internet).

The account associated with a user does not necessarily correspond to a concrete

account on the machine. It may stand for a group of accounts that have the same

level of privilege. For example,

hasAccount(employee, workStation, employeeAccount).

hasAccount(sysAdmin, webServer, root).

located(attacker, internet).

Here employeeAccount represents any ordinaray user accounts on the system.

The principal binding may also contain information describing user behaviors.

These are the malicious and incompetent predicates mentioned before. Example:

incompetent(employee).

malicious(attacker).

Data binding maps a data symbol to its physical location in the network, typically

a file path on a machine. The format of the binding is

dataBind(Data, Host, Path).

Path could be a directory, in which case the dataBindDir tuple will mean “all files

under the directory are bound to data symbol Data”:

dataBindDir(Data, Host, DirPath).

Example data bindings:
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dataBind(projectPlan,workstation,‘/home/projectPlan.txt’).

dataBindDir(webPages, webServer, ‘/www’).

2.6 Discussion

2.6.1 Using negations in the model

Pure Datalog is monotonic, i.e. adding more clauses will only increase the number

of facts that can be derived. This corresponds to the monotonicity of attacks, which

means gaining more privileges only increases an attacker’s ability to launch more

attacks. However, if negation is allowed in literals, Datalog is no longer a monotone

logic. The introduction of negation will also affect the complexity of executing Datalog

programs [14]. However, having negations is sometimes useful. For example, suppose

there is an action that an attacker can take only if a certain configuration option of

a program is absent. This could be modeled by the following Datalog rule:

action(Host, attacker) :- option_absent(Host, program, op).

This will require the scanner to report the absence of a configuration option, which

means the scanner must have knowledge of the universe of all possible option values

for every program. If negation is allowed, the rule can be rewritten as:

action(Host, attacker) :- not option(Host, program, op).

By allowing negations on the primitive predicate, the scanner will only need to

report the options of a program that are set, yielding a much simpler design. This kind

of negations are stratified. In a Datalog program with stratified negations, there exists

a partial order on predicates, such that one predicate may depend on the negation

of another predicate only if the former is strictly less than the latter. Such form of

negation does not affect the polynomial complexity of Datalog [14].
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2.6.2 Nonmonotonic attacks

Even with negation, Datalog still cannot model general nonmonotonic attacks. An

attack is nonmonotonic if postconditions produced by an attack step may inhibit

an attacker from launching more attacks. One example is attacks that compromise

availability. An attacker can bring down a file server, but then he will not be able

to install a Trojan horse on the fileserver and lure somebody to execute it. Such

scenarios cannot be correctly modeled by Datalog, even with negation. Suppose the

predicate dos(H) (denial of service) means the availability of host H is compromised.

One naive attempt is to model the above scenario as the following rule.

execTrojanHorse(victim, H) :- trojanHorseInstalled(attacker, H),

not dos(H).

A victim may execute a Trojan-horse program on host H, if a Trojan-horse program

is installed by attacker on H, and host H is still alive (i.e., is not under denial of

service attack). However, this is not a correct characterization of the precondition.

not dos(H) means “the attacker cannot possibly cause a denial-of-service condition

on H”, whereas what we really want to say is “the attacker does not have to cause a

denial-of-service condition on H to install the Trojan horse”. Clearly the two are not

equivalent.

Another example of nonmonotonic attack is when an attack step requires the

absence of certain configuration options. If the option is set initially in the system,

but the attacker can remove it, the attack can still succeed. However, in Datalog

if something is known to be true it is impossible to introduce its negation without

making the reasoning logic inconsistent. So one cannot model such scenarios directly

in Datalog with negations.

The problem here is that under nonmonotonic attacks, the individual attack paths
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become important. Conditions may change either way on a path: from false to

true or from true to false. Model checking can conduct reasoning at the per-path

level, although this introduces too much overhead for the more common monotonic

attacks. For the simple nonmonotonic scenarios like the ones mentioned above, simple

modification in the attack rules and some conservative approximation will suffice.

For the example of Trojan-horse installation, a conservative approximation of the

rule looks as follows.

execTrojanHorse(victim, H) :- trojanHorseInstalled(attacker, H).

That is, we assume host H will be available after the attacker installed a Trojan-

horse program on it. The attacker just chose not to compromise the availability of H,

unless his ability to install the Trojan horse depends on his bringing down machine

H in the first place. In that case, the rule will derive more than the attacker can

actually achieve, which is a conservative approximation.

For the example of attacker changing configuration options, we use the example

introduced in the last section and modify it as follows.

action(H, attacker) :- not_option(H, program, op).

not_option(H, Prog, Op) :- not option(H, Prog, Op).

not_option(H, Prog, Op) :- option_removed(H, Prog, Op).

That is, we introduce a new predicate, not option, to represent the attacker’s

ability to make an option nonexistent. The two possibilities are: 1) the option is not

set initially; 2) the option is removed by the attacker.

In summary, nonmonotonic attacks require more fine-grained analysis on indi-

vidual attack paths and the temporal relations among attack steps. However, by

conservative approximation many cases can still be modeled in Datalog.



Chapter 3

Analysis database

Chapter 2 described the Datalog rules for computing IDB (derived) predicates from

the facts in the analysis database. These facts are represented by EDB (primitive)

predicates in the following categories.

• Facts about software vulnerabilities (such as vulExists and vulProperty);

• Facts about machine configuration (such as exports, fileAttr, and networkService);

• Facts about network topology (host access control list);

• Facts about principal and data (the binding information).

This chapter discusses in detail where and how to obtain these Datalog tuples.

3.1 Vulnerability specification

Due to the large volume of security-relevant software bugs these days, many vulnerability-

reporting agencies are starting to provide formal specification for reported vulnera-

bilities. Formal, machine-readable specification, along with tools that process them

50
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automatically, makes it easier to exchange vulnerabilty reports and deal with them in

a timely manner. The specification of a vulnerability consists of two parts: recognition

specification and semantics specification.

3.1.1 Recognition specification

The recognition specification describes a set of machine configuration tests that, if

true, show the existence of the vulnerability on the tested system. Multiple languages

exist for this purpose, such as the Nessus Attack Scripting Language [6] (NASL),

and the Open Vulnerability Assessment Language [52] (OVAL). MulVAL uses OVAL

for recognition specification. An OVAL interpreter can take OVAL definitions and

scan a machine for vulnerabilities. Figure 3.1 is an example OVAL definition for a

vulnerability in the program “Ethereal,” a network protocol analyzer.

Three tests must be performed and all must be true to conclude that the vul-

nerability exists on the machine. The three tests are enumerated in the <criteria>

element and specified in the <tests> element. Each test consists of an object field,

which identifies the piece of configuration information to be checked, and a data field,

which specifies the value of the configuration parameter that will make the test true.

An OVAL scanner will perform these tests according to the specification and output

the result. In the example, if all three tests are true, the vulnerability, identified by

CVE number CVE-2003-00811, exists on the machine being tested. Like the input,

the output is also in a formally defined XML schema (OVAL Result Schema). It is

easy to extract the test result from the output and transform it into Datalog tuples

of the following form:

vulExists(Host, CVE_Id, Program).

1Common Vulnerabilities and Exposures (CVE) is a list of standardized names for vulnerabilities
and other information security exposures: http://cve.mitre.org
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<?xml version="1.0" encoding="UTF-8"?>

<oval xmlns="http://oval.mitre.org/XMLSchema/oval" ...>

...

<definitions>

<definition id="OVAL54" class="vulnerability">

<affected family="redhat">

<redhat:platform>Red Hat Linux 9</redhat:platform>

<product>Ethereal</product>

</affected>

...

<description>Format string vulnerability in packet-socks.c of

the SOCKS dissector for Ethereal 0.8.7 through

0.9.9 allows remote attackers to execute

arbitrary code via SOCKS packets containing

format string specifiers.

</description>

<reference source="CVE">CVE-2003-0081</reference>

...

<criteria>

<software operation="AND">

<criterion test_ref="rrt-201"

comment="Red Hat 9 is installed" />

<criterion test_ref="rut-201"

comment="ix86 architecture" />

<criterion test_ref="rvt-206"

comment="ethereal version is less

than 0.9.11-0.90.1" />

</software>

</criteria>

</definition>

</definitions>

<tests>

<rpminfo_test id="rrt-201" check="at least one"

comment="Red Hat 9 is installed"

xmlns="http://oval.mitre.org/XMLSchema/oval#redhat">

<object>

<name operator="equals">redhat-release</name>

</object>

<data operation="AND">

<version datatype="int" operator="equals">9</version>

</data>

</rpminfo_test>

...

</tests>

</oval>

Figure 3.1: An OVAL definition
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3.1.2 Semantics specification

The semantics specification describes the precondition to exploit the vulnerability and

the consequence of the exploit. Unlike the recognition specification, the semantics

specification of software vulnerabilities is far less developed and there is currently

no common standard for the data format. The reason behind this is that there has

not been much effort in the automatic reasoning of the effects of reported software

vulnerabilities, even though there has been much work in the automatic recognition

of them. Previous work in network vulnerability analysis relies on manually built

exploit models, but it is infeasible to require the users of the tool to write down the

pre and postconditions for the exploit of every reported bug. One major problem this

thesis tries to solve is how to automatically incorporate the vulnerability semantics

information from existing sources, eliminating the need for local administrators to

provide the exploit semantics. If this attempt proves to be successful, more rigorous

and formal semantics specification may emerge in the future that better suits the

need of automatic vulnerability analysis.

Currently, some vulnerability databases contain information about the semantics

of reported software security bugs. NVD (National Vulnerability Database), devel-

oped by the National Institute of Standards and Technology, is such a vulnerability

database. Among the information provided by NVD, two attributes are related to

the semantics specification: exploitable range and loss type.

Exploitable range

A vulnerability can enable either a “local” and/or “remote” attack. The definitions

of local and remote attacks follow.

• Local:
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Attacks that utilize the vulnerability can be launched directly on the system

that is being attacked. The attacker must have some previous access to the

system in order to launch an attack locally. An attack is still defined local if an

attacker has a remote login shell to a host and initiates an attack on that host,

as long as it is targeted to a component only visible to logged in users.

• Remote:

Attacks that utilize the vulnerability can be launched across a network against

a system without the user having previous access to the system.

Exploitable range is related to the precondition of exploits. As discussed in Sec-

tion 2.3.3, these preconditions are categorized according to the bug’s exploitable range

and the nature of the buggy program (client or server).

Loss Type

The loss types take the form of the traditional three security properties (“availability”,

“confidentiality”, and “integrity”), plus a new category called “security protection”.

• Confidentiality

A vulnerability is given the “confidentiality” label if it enables an attack that

can result in the leaking of sensitive information on a system.

• Integrity

A vulnerability is given the “integrity” label if it enables an attack that can

result in the modification of sensitive information on a system.

• Availability
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A vulnerability is given the “availability” label if it enables an attack that

directly inhibits a user (human or machine) from accessing a particular system

resource. This is also called denial of service.

• Security Protection

A vulnerability is given the “security protection” label if it enables an attack

that gives the attacker privileges in a system that the he is not supposed to

have. This is also called privilege escalation. The “security protection” label

may appear by itself or in three other variations: “security protection (gain

superuser access)” when the attack allows a hacker complete control of a system,

“security protection (gain user access)” when the attack allows a hacker partial

control over a system, “security protection (other)” when the attack gives the

hacker some other privilege on the system .

The availability, confidentiality, and integrity attributes are included in a vulner-

ability description only if exercising the vulnerability directly violates one of these

properties. For example, if a vulnerability can give an attacker increased privilege

thereby allowing the attacker to violate availability, only the “security protection”

attribute would be true. However, if a single vulnerability enables two different at-

tacks (as is typical with buffer overflow vulnerabilities), one of which violates security

protection and the other availability directly, then both attributes would be true.

The loss type of a vulnerability indicates the consequence of an exploit. The

meaning of the first two loss types are quite vague. It is not clear what information

on the system may be leaked or changed. Fortunately, the two most common loss

types: privilege escalation and denial of service2, have relatively clear meanings and

2About 70% of vulnerabilities in NVD are labeled with only “security protection” or “availabil-
ity”.
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they are modeled in MulVAL reasoning rules. MulVAL does not distinguish the

three variants of security-protection vulnerabilities — gain superuser, user, or other

access. Whether an exploit will enable an attacker to gain superuser access or just

normal-user access normally depends on the configuration of the buggy program.

If the program is running as root, then a successful exploit can potentially lead to

root compromise. Otherwise the attacker can only gain normal-user access. The

gain-other-privilege label itself does not provide enough semantic information. As a

conservative approximation MulVAL treats it uniformly with the other two.

For the two loss types that do not have clear semantic meaning, a simple change in

the NVD database would make them more useful. For many vulnerabilities labeled

with “confidentiality” or “integrity,” a successful exploit would enable an attacker

to read or write all files on the system that the vulnerable program has access to.

The NVD database could provide two subcategories for those two loss types: “all”

and “other”, where “all” means the loss of confidentiality (integrity) of all informa-

tion the vulnerable program can access, and “other” means some other unspecified

information. Then we can design MulVAL reasoning rules to handle the “all” case.

Modeling privilege separation

Privilege separation is a technique used to contain and restrict the effects of pro-

gramming errors [39]. A network service program that runs as root can dispatch

an unprivileged child process to handle network inputs. A bug in the unprivileged

process does not result in the compromise of the privileged process. Most remote

exploits depend on sending a maliciously crafted packet to the service program to

induce a buffer overflow. The return address of the program is overwritten by the

buffer overflow, causing the program to jump to the code injected by the malicious

packet, typically a shell program. Privilege separation makes such compromises very
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difficult if not impossible, because buffer overrun will happen in the unprivileged

process, whose compromise will give an attacker very limited access to the system3.

The rule Rule-remote-privilege-escalation in Section 2.3.3 does not take

into consideration if a program adopts privilege-separation technology. The following

modified rule does so:

execCode(Attacker, Host, User) :- %%Rule-remote-privilege-escalation

malicious(Attacker),

vulExists(Host, VulID, Program),

vulProperty(VulID, remoteExploit, privEscalation),

networkService(Host, Program, Protocol, Port, User),

not privilegeSeparated(Host, Program),

netAccess(Attacker, Host, Protocol, Port).

This modification to take into account privilege separation highlights extensibil-

ity feature of MulVAL interaction rules. Security is characterised by the interactions

between attacks and defence. The emergence of new attack methodologies and de-

ployment of new defense techniques are eternal ongoing processes. This requires that

the interaction rules be capable of adapting to changes in the most recent security

arena, as illustrated by the example of privilege separation. Before this method was

adopted, a successful exploit would enable an attacker to gain the privileges of the

buggy program’s process, which is captured by the old rule. With the new technology,

this is not necessarily the case. But the modification of the rule is simple: adding

a new predicate to tell if a program is running in privilege-separation mode. The

scanner needs to get relevant configuration information to compute this predicate.

Other than that, no other rules need to be changed.

3Typically the child process’s file system access is restricted via chroot() to an unused portion,
making it very difficult to invoke an executable on the system.
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Exploit consequences other than privilege escalation

Another common exploit conseqence is denial of service, or loss of availability. This

often happens as a buffer-overflow attack compromises the integrity of the program

stack or heap and causes the program to crash. Compared with privilege escalation,

this is a less severe consequence. But if availability is important for an application

this may still be a concern to the system administrator.

Confidentiality and integrity loss are two less common exploit consequences. There

is a great variety of information which can be leaked or modified, but there is no formal

specification for it. So the exploit of vulnerabilities with only these two consequences

are not modeled by the current MulVAL interaction rules. If MulVAL’s interaction

rules were to model those consequences using the information in the current databases,

it would have to make a very conservative approximation. For example, a confiden-

tiality loss would infer that all information stored on a machine that is accessible by

the buggy program can be leaked to the attacker.

If practice shows that these unmodeled consequences do play important roles

in a nonnegligible portion of attack cases, we will need to introduce new MulVAL

predicates and rules to model and reason about them. Like in the case of introducing

privilege escalation, this will only be a local change to the reasoning system and thus

not error-prone. However, some additional information about vulnerabilties may be

required that does not exist in the current bug databases. We view this as a proposal

process to the bug-reporting community as to what information should be reported

in a formal, machine-readable format.

Getting the semantics information from a vulnerability database is as easy as

writing a database query to extract the corresponding attributes. The result can

then be transformed to Datalog facts such as:



CHAPTER 3. ANALYSIS DATABASE 59

vulProperty(‘CVE-2002-0392’, remoteExploit, privilegeEscalation).

3.2 Host configuration

Various configuration information on a machine is needed for MulVAL to conduct its

analysis. Most can easily be gotten by executing certain OS commands or looking at

certain configuration files. Following is a list of predicates for the host configuration

information and the corresponding ways to get them. The first parameter of all the

predicates is the name of the host whose configuration is described.

1. networkService(Host, Program, Protocol, Port, User)

Specifies the protocol and port number under which a network service program

is listening, as well as the user that owns the process. This Datalog tuple is

converted from the output of the “netstat” command. Figure 3.2 is an example

output of executing “netstat -l -p” on a Linux machine:

Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name

tcp 0 0 *:32768 *:* LISTEN 1596/rpc.statd

tcp 0 0 localhost.localdo:32769 *:* LISTEN 1715/xinetd

tcp 0 0 *:42117 *:* LISTEN 9703/rpc.mountd

tcp 0 0 *:sunrpc *:* LISTEN 1577/portmap

tcp 0 0 *:x11 *:* LISTEN 1943/X

tcp 0 0 *:ssh *:* LISTEN 29414/sshd

tcp 0 0 localhost.localdoma:ipp *:* LISTEN 1786/cupsd

tcp 0 0 localhost.localdom:smtp *:* LISTEN 1735/sendmail: acce

tcp 0 0 *:959 *:* LISTEN 9683/rpc.rquotad

udp 0 0 *:32768 *:* 1596/rpc.statd

udp 0 0 *:nfs *:* -

udp 0 0 *:32770 *:* -

udp 0 0 *:32771 *:* 9703/rpc.mountd

udp 0 0 *:924 *:* 1596/rpc.statd

udp 0 0 *:956 *:* 9683/rpc.rquotad

udp 0 0 *:sunrpc *:* 1577/portmap

udp 0 0 *:631 *:* 1786/cupsd

Figure 3.2: Sample output of “netstat” command
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Each row in the output can be converted to a Datalog tuple of the form

netstat-l-p(H,Prot,Recv-Q,Send-Q,Local,Foreign,State,PID,ProgName).

However, there is no information about the user who owns the process. This re-

quires executing a “ps -Af” command, whose outputs can be similarly converted

to the Datalog tuples of the following format:

ps-Af(H,UID,PID,PPID,C,STIME,TTY,TIME,CMD).

Then the predicate networkService can be computed by the following simple

Datalog program:

networkService(H, Program, Protocol, Port, User) :-

netstat-l-p(H, Prot, _, _, Local, _, _, PID, Program),

ps-A(H, User, PID, _, _, _, _, _, _).

2. setuidProgram(Host, Program)

This information can be gotten by executing the following command under the

root directory of the file system.

“find . -perm +4000 -exec ls -l \;”

3. clientProgram(Host, Program)

This predicate specifies that Program is a client program on Host. A client

program is a network application that establishes connection with a server. Web

browsers, email clients, and instant messengers are all example client programs.

Since Program is the full path of the executable, this predicate can be computed

by matching the last component of the path to a pre-defined list of known client-

program names, such as “firefox, pine, gaim....” Specifically, for each element

in the list4, the following command will find the executable path of the program

on the host (NAME is the executable names in the list).

4A more efficient way is to use a single find command to handle all the elements in the list.
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find . -type f -perm +111 -name $NAME -print

4. fileAttr(Host, Path, RO,WO,XO,RG,WG,XG,RW,WW,XW)

fileOwner(Host, Path, Owner)

fileGroupOwner(Host, Path, GroupOwner)

These are the result of conducting an “ls -l” command on the file specified by

Path. The 9 attributes correspond to the file permission bits in Unix. For exam-

ple, if exectuing command “ls -l /home/projectPlan.txt” on host workStation

gets the following result:

-rw-r--r-- 1 xou grad 0 Mar 19 14:46 projectPlan.txt

Then the corresponding Datalog tuples are:

fileAttr(workStation, ’/home/projectPlan.txt’, r,w,-,r,w,-,-,-,-)

fileOwner(workStation, ’home/projectPlan.txt’, xou).

fileGroupOwner(workStation, ’home/projectPlan.txt’, grad).

It is not necessary to store the “ls -l” information of every file on a machine.

Only “important” files need to be scanned. These are the files that have a data

binding on them (i.e. they are mapped by a data binding tuple to a data sym-

bol), files that are executable binaries (normally found in directories containing

a component “bin” in a Linux systems), and other files whose attribute is se-

curity relevant. The scanner can be given a list of such directories and perform

the following command on a Linux system:

“find DIR -exec ls -l \;”,

where DIR is the diretory being scanned.
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5. nfsExportInfo(Server, PATH, Client, Access, RootSquash, Secure)

This tuple represents the NFS configuration on a server. The configuration file

of kernel-based NFS in Linux is “/etc/exports”. Each line in the file represents

an export relation that can be specified in Datalog. For example, a line in

“/etc/exports” may look like

/public webServer(rw,async)

It means the /public directory on the NFS server is exported to host webServer

with read and write access. The “root squash” and the “secure” options are on

by default, otherwise they have to be explicitly specified as “no root squash”

and “insecure”. After a change in the exports file, an “exportfs” command must

be executed to push the changes to the share table, which is typically located

at “/var/lib/nfs/etab”. Each row in this table contains all the options of an

exported share in a fixed order and with explicit values. This table can be

consulted to compute the nfsExportInfo predicate.

6. nfsMounted(Client, ClientPath, Server, ServerPath, Access)

Specifies that ServerPath on Server is mounted on a ClientPath of machine

Client as an NFS partition. This Datalog tuple can be gotten by executing

the following command on the client machine:

“df -t nfs -P”

This predicate can also be computed from the raw content of “/etc/mtab”.

What and when to scan Scanning machines is an important process in network

security analysis. Since security is a complex problem, any piece of information about

a machine can potentially be useful in determining an adversary’s ability to carry out
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attacks. However, it is infeasible to carry a complete image of a host for analysis, for

reason of both scalability and privacy issues. A more practical approach is only to scan

information required by the current interaction rules, and change the scanner when

new attack methodologies emerge which need extra information for their analysis.

Ideally, scanning is performed asynchronously on each individual host whenever its

configuration changes in a significant way. When a new vulnerability report arrives,

the analysis should be done on the data already gathered. However, under the current

architecture, the recognition for vulnerability is done as part of the scanning process,

not as part of the analysis on the database generated by the scanning. While this

provides a better modularity (we leverage an off-the-shelf OVAL scanner to recognize

vulnerabilities instead of writing our own OVAL-compatible vulerability recognizer),

it also has several drawbacks. First, scanning of every host will be necessary whenever

a new vulnerability report arrives. While the analysis in Datalog is fast, the scanning

process takes much longer and does not scale in a large, wide-area network (see

Chapter 6). Second, only the existence of a particular vulnerability on a machine will

be visible from the attack tree generated by the MulVAL analysis engine. However,

some recognition information of a bug, such as the version number of software installed

on a host, configuration settings of a service proram, etc., would be useful for system

administrators to quickly understand what went wrong in the configuration. And

third, the scanner needs to take inputs from third parties, increasing the chance of

malicious inputs compromising machines. Thus, it will be advantageous to decouple

the recognition process from the OVAL scanner and put it into the MulVAL analysis

engine.
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3.3 Network configuration

MulVAL models network configurations as abstract host access-control lists (HACL),

which is a list of tuples of the following format:

hacl(Source, Dest, Protocol, Port).

It means machine in Source can reach Dest through a network service specified

by Protocol and Port.

Study has been done in the past ten years in automatic network configuration

mangagement [22, 23, 5, 10]. Some of this work has yielded tools that can manage

routers, switches, and firewalls according to global policies similar to HACL [22, 5, 10,

26, 25]. MulVAL intends to integrate these tools as part of the information gathering

process, providing the abstract HACL list automatically.

3.4 Binding information

In MulVAL the meanings of principal and data items in terms of concrete user ac-

counts, file names, etc. are given by the principal binding and data binding informa-

tion. Currently the binding information is part of the policy and must be provided

manually by the system administrator. It is possible to put the principal binding

information in an LDAP database and query it at the time of checking.

3.5 Putting everything together

Figure 3.3 illustrates the architecture of MulVAL with the data sources of the analysis

database shown. MulVAL scanners, running on each individual host, provide machine

configuration information. Smart Firewall [10] provides network configuration in

terms of HACL tuples. LDAP provides principal binding information. The security
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Figure 3.3: Complete MulVAL framework

policy is defined by the system administrator, who also needs to define data binding

as part of the policy. Data sources on the left come from third-party bug-reporting

agencies. They provide the formal specification of software bugs, in OVAL definitions

and from the NVD database.



Chapter 4

Basic analysis

The reasoning model and the formal description of the configuration discussed in the

previous two chapters provide a foundation for conducting various kinds of security

analysis. One can view the interaction rules in the reasoning model as formalized

expert knowledge on security interaction. The process of MulVAL analysis is in es-

sense applying the security knowledge to configuration data and derive the properties

of a network. This is a logical deduction process, and for the particular logical lan-

guage used in MulVAL, the problem is reduced to Datalog evaluation. This chapter

briefly reviews the evaluation strategies for Datalog and discusses two basic analysis

— attack simulation and policy check.

4.1 Datalog evaluation and XSB

Datalog has two basic evaluation strategies: bottom-up evaluation and top-down

evaluation [11]. In the bottom-up evaluation, the rules in the Datalog program are

applied to the input facts in EDB to derive new facts in IDB, until no new facts can

be derived. In the top-down evaluation, given a goal, the rules are applied backward

66
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to find subgoals that must be true to satisfy the original goal, until all subgoals hit

the input facts. Bottom-up evaluation has the advantage of computing each fact only

once. For a Datalog program, there is at most a polynomial number of facts that

can be derived. If each fact is computed only once, the evaluation is guaranteed to

be polynomial. The top-down evaluation has the advantage that only facts related

to the query goal are computed. However, a naieve implementation of the top-down

evaluation may compute a fact mutiple times, leading to inefficiencies.

A standard Prolog system operates in a top-down manner: each rule is tried in

order and so is each subgoal of a rule. It does not remember what facts have already

been computed, so a fact may be computed multiple times if it is needed at different

places in the depth-first search process. This may be a problem for performance. A

more severe problem in those Prolog engines are that cycles in Datalog rules may

lead to nonterminating execution, and the order of the clauses, as well as that of the

subgoals within a clause, affects the result of execution. For example, following is a

Datalog specification for computing transitive closure.

reachable(v1, v3) :- reachable(v1, v2), reachable(v2, v3).

reachable(v1, v2) :- edge(v1, v2).

Suppose the facts about edge are:

edge(node1, node2).

edge(node1, node3).

edge(node2, node3).

Executing the following query in a standard Prolog system will cause an infinite

loop without outputing a single result.

| ?- reachable(node1,V).
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If we switch the order of the two rules for reachable, the query will output three

results (correctly) before going into an infinite loop.

| ?- reachable(node1,V).

V = node2 ? ;

V = node3 ? ;

V = node3 ? ;

Cycles are common when it comes to modeling computer attacks. For example,

an attacker can modify a user’s files if he can execute arbitrary code as the user. But

it is possible that the reason he can execute arbitrary code as the user is because he

modified some executables and installed a Trojan-horse program. In particular, the

following two interaction rules may cause cycles in derivation.

accessFile(P, H, Access, Path) :- execCode(P, H, User),

localFileProtection(H, User, Access, Path).

execCode(Attacker, H, User) :- malicious(Attacker),

accessFile(Attacker, H, write, Path),

not setuidProgram(H, Path),

localFileProtection(H, User, exec, Path).

The presence of cycles in interaction rules is completely legitimate in terms of

the semantics of security interaction. Requiring interaction rules to be cycle-free is

not only too restrictive, but also extremely hard, if not impossible. Unfortunately,

these cycles will introduce infinite loops in a standard Prolog system, which views a

Datalog program operationally rather than declaratively.

XSB [41] is a system that computes the well-founded semantics of logic pro-

grams [20]. XSB supports tabled execution, which is a kind of memoization tech-

niques. Put in simple words, the computation of a tabled predicate is conducted
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only once and the result is stored in a table for reuse. The effects of tabling are

two-fold. First, it essentially implements a dynamic-programming algorithm so that

facts about a tabled predicate will not be recomputed during the execution of a logic

program. Second, if a tabled predicate is involved in a cycle during evaluation, XSB

will detect it and not enter a loop. As a result, cycles in Datalog programs will not

introduce nonterminating computation, and the order of clauses does not affect the

result of execution. This advantage makes XSB an ideal candidate for the logic engine

in MulVAL.

4.1.1 Properties of Datalog evaluation in XSB

Soundness and completeness Soundness and completeness state that 1) any

result of the analysis should be a logical consequence of the MulVAL interaction rules

and the input facts; 2) the analysis is able to compute all such logical consequences.

There are different notions of semantics for Datalog that formally define what logical

consequences mean [16, 20, 11]. These semantics coincide for Datalog programs with

stratified negation — the only kind of negations used in MulVAL. The XSB system

can efficiently compute the well founded semantics [20], which captures the intuitive

bottom-up derivation semantics of Datalog programs. Since MulVAL uses XSB as its

logic engine, the soundness and completeness of XSB in computing the well founded

semantics ensures that the analysis in MulVAL is both sound and complete.

Complexity The complexity of MulVAL analysis is affected by the data complexity

of the Datalog interaction rules. Data complexity is the evaluation time of a Datalog

program with respect to the data input, with the Datalog program fixed. For a pure

Datalog program, there is only a constant number of predicates, and the maximum

arity of the predicates is also constant. Since an argument of a predicate can only
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come from a input domain whose size is in proportion to the size of the data input,

there is only a polynomial number of facts that can be possibly derived by the Datalog

program. So the data complexity of pure Datalog is at most polynomial. Actually

Datalog is data complete for P [14]. The introduction of stratified negation does not

affect the polynomial complexity of Datalog [14].

In XSB, if every predicate is tabled, then every fact will be computed only once

and the execution time of a Datalog program is guranteed to be polynomial. How-

ever, table manipulation also introduces overhead which may counteract the benefit

brought by the dynamic programming. Currently we table only enough predicates

to avoid infinite loops in programs. The precise complexity of MulVAL reaonsing

process, however, depends on the interaction rules and input data. Section 6.2 shows

some experimental results that illustrate the speed of the reasoning engine on large

synthesized inputs.

4.2 Attack simulation

The goal of attack simulation is to find out what privileges an attacker could get by

launching multistage, multihost attacks in a network. Let G be the attack goal, I be

the MulVAL interaction rules, and D be the input data in the analysis database. The

job of attack simulation is to determine if I ∧D ⇒ G is true. This can be computed

by XSB by first loading I and D and then issuing a query: ? − G. For exmaple, the

following query answers the question of “whether principal attacker can get root

permissions on any of the machines?”

?- execCode(attacker, H, root).

The XSB system will automatically find all possible ways this goal can be satis-

fied by applying the interaction rules on the input data. If the query succeeds, the
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variables appearing in the query will have a solution — instantiations that make the

query true. In this case, the solution for variable H will indicate the set of machines

whose root can be compromised by attacker. XSB will output the solution like the

following (the no in the last line indicates no more instantiations can be computed).

H = workStation;

H = fileServer;

H = webServer;

no

Since the policy model in MulVAL considers data confidentiality and integrity, we

would like to compute an attacker’s access to files that correspond to data symbols

in the policy. The following Datalog program does that.

access(P, Access, Data) :- dataBind(Data, H, Path),

accessFile(P, H, Access, Path).

That is, if Data is stored on machine H under path Path, and principal P can

access files under the path, then P can access Data. To compute all the data access

that could be obtained by launching multistage, multihost attacks, one only needs to

issue the following query:

?- access(P, Access, Data).

4.3 Policy check

Attack simulation can compute all privileges an attacker could gain by launching

multistage, multihost attacks. If we output all these privileges, the amount of in-

formation will be huge for a system administrator to digest. For one thing, not all

privileges an attacker can get is harmful. And many times one privilege subsumes
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many others. For example, if an attacker gets root on a machine, he can access every

individual files on that machine. It is not very useful to output all the file accessses

the attacker can have on the compromised system. In MulVAL, a policy is used to

filter through the raw output from attack simulation and only output the essential

undesirable privileges. These essential output captures the high-level goal of security

administration. For example, if the ultimate goal of the security administration is to

protect the confidentiality and integrity of sensitive information, the system admin-

istrator can define a data access policy in MulVAL and check the system against it.

This can be done by the following simple Datalog program.

policyViolation(P, Access, Data) :- access(P, Access, Data),

not allow(P, Access, Data).

4.3.1 More policies

The data access policy is not the only policy MulVAL supports. One can view the

MulVAL policy check as a two-step process. In the first phase, only attack simulation

is conducted and it computes all privieleges an attacker could gain by lauching multi-

stage, multihost attacks. This step has polynomial running time. In the second phase,

the raw access data is compared with the given high-level policy to filter out essential

undesirable access. This part can be done independently from the attack simulation

and may have higher complexity than polynomial, depending on the expressive power

of the policy language.

The MulVAL reasoning system supports general Prolog as the policy language. For

example, in a law firm a policy may specify that nobody can access legal documents

of two clients that have a conflict of interest. This can be specified by the following

Prolog (actually, Datalog) program.
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allow(Employee, read, Documents) :- belongTo(Documents, Client),

not conflictOfInterest(Employee, Client).

conflictOfInterest(P1, P2) :- sue(P1, P2).

conflictOfInterest(P1, P2) :- represent(P1, P3),

conflictOfInterest(P3, P2).

conflictOfInterest(P1, P2) :- conflictOfInterest(P2, P1).

Intuitively, an employee can read a client’s document if there is no conflict of

interest between the employee and the client. Two principals have conflicts of interest

if one sues the other, or one represents another principal in court who has a conflict

of interest with the other principal. Suppose the following are facts about predicates

belongTo, sue, and represent.

belongTo(docA, company1).

belongTo(docB, company2).

belongTo(docC, consumer1).

sue(consumer1, company1).

sue(company2, company1).

represent(lawyer1, company1).

represent(lawyer2, company2).

represent(lawyer3, consumer1).

lawyer1 can access documents of company1 but not those of company2 or consumer1.

lawyer2 and lawyer3 can access documents of both company2 and consumer1, but

not the documents of company1.

Should one need even richer policy specification, the attack simulation can still

be performed efficiently and the output data access tuples can be sent to a policy
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resolver that can handle the richer policy specification efficiently. However, it is not

clear whether richer policy specification is useful in vulnerability analysis. It seems

in most situations the hypothetical attacker comes from outside of the corporation,

in which case what one cares about is just which accesses should be shielded from

outsiders. Richer policy specification may be useful for analyzing insider threats,

which is beyond the scope of this dissertation.

4.4 Attack-tree generation

The notion of attack tree was first introduced by Bruce Shneier [45]. In MulVAL,

an attack tree is a trace that shows steps of a potential attack path that lead to a

particular goal. Every leaf node of an attack tree is a Datalog tuple representing

configuration information or initial privilege of the attacker. Every internal node is a

Datalog tuple representing privilege the attacker could get by launching multistage,

multihost attacks. Formally, let v be an internal node in the attack tree, and it

has k children v1, ...vk. Then there must exist an interaction rule p:- p1, ...pk and a

substitution θ, such that v = [θ]p, and vi = [θ]pk for i = 1...k. In other words, very

internal node is derived from its children by applying one of the interaction rules in

MulVAL.

Attack trees are important for system administrators to understand how an at-

tacker can achieve his goal, and to decide upon remediation actions. Figure 4.1 shows

an example attack tree.

This attack tree demonstrates the potential attack path in the example network

in Figure 1.2. The name of the rule used in deriving each internal node is labeled in

the graph. One can start from the bottom and follow the steps of an attacker. First

by exploiting a bug in a server program, he gets local access on the server. Then
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|-- policyViolation(attacker,read,projectPlan)

|-- dataBnd(projectPlan,workStation,/home)

|-- accessFile(attacker,workStation,read,’/home’)

Rule: execCode implies file access

|-- execCode(attacker,workStation,root)

Rule: Trojan horse installation

|-- malicious(attacker)

|-- accessFile(attacker,workStation,write,’/usr/local/share’)

Rule: NFS semantics

|-- nfsMounted(fileServer,’/export’,read,

workStation, ’/usr/local/share’)

|-- nfsExportInfo(fileServer,/export,read,workStation)

|-- nfsMountInfo(workStation,/usr/local/share,

fileServer,/export)

|-- accessFile(attacker,fileServer,write,’/export’)

Rule: NFS shell

|-- malicious(attacker)

|-- execCode(attacker,webServer,apache)

Rule: remote exploit of a server program

|-- malicious(attacker)

|-- vulExists(webServer,CAN-2002-0392,httpd,

remoteExploit,privEscalation)

|-- networkServiceInfo(webServer,httpd,tcp,80,apache)

|-- netAccess(attacker,webServer,tcp,80)

Rule: direct network access

|-- located(attacker,internet)

|-- hacl(internet,webServer,tcp,80)

|-- nfsExportInfo(fileServer,/export,write,webServer)

|-- hacl(webServer,fileServer,rpc,100003)

|-- localFileProtection(workStation,root,read,/home)

|-- not allow(attacker,read,projectPlan)

Figure 4.1: A MulVAL attack tree
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he uses a program like NFS shell to access the NFS file server. By the semantics of

NFS file sharing, once the attacker can modify files on the server, the client machine

that mounts that server portion will also be affected. Thus the attacker has the

ability to install a Trojan-horse program on the client machine. The machine will be

compromised by the Trojan horse and confidential data stored on it will be leaked to

the attacker.

In MulVAL, attack analysis is carried out by a Prolog program, thus an attack tree

is a derivation tree, or proof, of a successful Prolog query. There are various ways to

generate proofs from Prolog. MulVAL adopts a meta-programming approach in proof

generation. The meta interpreter in MulVAL handles tabling so that even programs

with side effects can run correctly in the interpreter. Details of the meta-interpreter

can be found in Appendix B.

4.5 Attack-graph generation

While attack trees generated by the meta-interpreter serve the purpose of visualizing

attack paths, the methodology also has several drawbacks. Meta-interpreting a Pro-

log program is one order of magnitude slower than executing it directly in Prolog.

Moreover, even if there is only a polynomial number of facts that can be derived by

a Datalog program, the number of proof trees generated could be exponential in the

worst case.

The XSB system includes a justifier program [44, 36] that can compute evidence

of derived literals while the program is running, thus eliminating the need for meta-

interpreting. The evidence is stored in the Prolog database and can be extracted for

visualization. According to test results [36], online justification only introduces 8%

runtime overhead to the program, much better than meta-interpretation. To avoid
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the exponential blow up of proof trees, an acyclic graph can be output visualizing the

logical relationships among derived literals. The size of such graphs is polynomial to

the size of the program. Currently attack-graph generation has not been implemented

in MulVAL. For the attack graph generated to be more useful, a user-friendly tool

that can explore the information provided by the justifier would be necessary. This

is beyond the scope of this dissertation and is left for future work.



Chapter 5

Hypothetical analysis

The basic analysis described in the last chapter is conducted under the current snap-

shot of the network ocnfiguration. However, when it comes to security analysis, it is

not sufficient to only consider the current situation. An important criterion in the

security robustness of a network configuration is how much unknown threats it can

withstand. An unknown threat may be a software vulnerability that exists in a piece

of software but has not been reported to the public (zero-day vulnerability), or a

compromised password of a user account not to the knowledge of either the user or

the administrator. When configuring a network, a system administrator must take

into account the possibility of these threats. Thus, a security analysis tool should be

able to make statements with regard to unknown threats. For example, even though

there is no known vulnerability on the web server, the system administrator may still

want to know what would happen should a vulnerability be discovered. After all, the

main purporse of having firewalls is to guard against unknown threats.

This chapter attempts to answer the question of how to conduct network security

analysis with the existence of unknown threats. We call it hypothetical analysis.

78
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5.1 Definition

A hypothetical analysis is one conducted under certain assumptions. Typically those

assumptions are about hypothetical unknown threats existing in the network. Fol-

lowing are examples of hypothesis about unknown threats.

• There is an unknown remotely exploitable bug on the web server;

• An attacker has already taken over a particular machine in the network;

• There is a certain number of unknown vulnerabilities in the network, but it is not

clear which software will be affected and what is the nature of the vulnerabilities.

Hypothetical analysis imposes stronger requirements on network security. It in-

jects artificial adverse conditions and checks if the network is still secure under those

faked conditions. Formally, let S be a logical statement about an attacker’s potential

privileges obtainable through launching multistage, multihost attacks in a network,

and H be a set of statements of hypothetical conditions on the network, a hypothet-

ical analysis answers the truthfulness of the formula H ⇒ S, where ⇒ is the logical

implication connective.

Some previous work in vulnerability analysis mentioned the “what if” analysis [27],

which mainly considers what will happen if the system administrator makes some

changes to the configuration. This is a different problem than the one addressed in this

chapter. For this problem the algorithm discussed in the previous chapter will suffice.

One can just construct the Datalog representation of the proposed new configuration

and run the analysis on it. One may tend to think the same technique can be applied

to answer the questions about unknown threats. However, depending on the kind of

hypothesis assumed, the hypothetical analysis described in this chapter may not be

reducable to Datalog evaluation. As we will see, the methodology introduced in this
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chapter manipulate hypothetical assumptions dynamically, and as a result can answer

a much richer set of questions than a Datalog program could. Since some of these

questions are not reducable to Datalog evaluation, richer programming languages are

necessary to conduct the analysis. The language we chose is Prolog, which has a clear

logical meaning and the ability to dynamically operate hypothesis.

5.2 Conducting hypothetical analysis in Prolog

The hypothetical anlysis introduces unknown threats assumptions in a dynamic pred-

icate. A dynamic clause in Prolog is one that can be added or retracted from the

reasoning database at run time. To add a clause, the primitive assert(C) is called

and clause C is then added into the database. To remove a clause, retract(C) is

called and it recursively removes all clauses in the database that matches C.

Let Statement be the property the system administrator wants to verify, and

Hyps is a list of statements on hypothetical conditions in the network. The following

Prolog program computes the hypothetical analysis of Hyps ⇒ Statement.

with_hypothesis(Hyps, Statement) :- cleanState,

assert_list(Hyps),

Statement.

assert list introduces each hypothetical condition dynamically into the Prolog

database. Prolog does not automtically retract dynamic clauses when the execution

backtracks, so these hypothetical conditions will remain in the database and may

interfere with subsequent analysis. To avoid such interference, a program cleanState

(whose implementation is omitted here) retracts all asserted hypothetical conditions

and clean all the table entries that depend on them.
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As an example, the following query will show whether the policy could be violated

under the assumption that the attacker can take over machine webServer as user

apache.

| ?- with_hypothesis([execCode(attacker,webServer,apache)],

policyViolation(Adversary, Access, Resources)).

We introduce a dynamic predicate bugHyp to represent hypothetical software vul-

nerabilities. For example, following is a hypothetical bug in the web service program

httpd on host webServer.

bugHyp(webServer, httpd, remoteExploit, privEscalation).

The following two clauses induct fake bugs into the reasoning process.

vulExists(Host, VulID, Prog) :- bugHyp(Host, Prog, Range, Consequence).

vulProperty(VulID, Range, Consequence) :- bugHyp(Host, Prog, Range, Consequence).

Using the bugHyp predicate, one can write queries to determine if the network

is still secure even if unknown vulnerabilities with certain properties exist in the

network. For example, the following query answers the question of “will the network

still be secure if there is a remotely exploitable bug on the web server?”.

| ?- with_hypothesis([bugHyp(webServer,Prog,remote,Consequence)],

policyViolation(Adversary, Access, Resources)).

Note that Prog is a variable, so the vulnerability can be in arbitrary number of

programs as variable Program gets instantiated with different programs. If we want

to restrict the hypothetical assumption to vulnerabilities in exactly one program, we

can write a query like the following:
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| ?- program(Prog),

with_hypothesis([bugHyp(webServer, Prog, remote, Consequence)],

policyViolation(Adversary, Access, Resources)).

Primitive predicate program returns a concrete program installed in the network.

After it is called, the variable Prog will have already been instantiated with a concrete

term, so the hypothetical analysis will be conducted with the assumption that a

vulnerability exists in this particular program. Prolog backtracking will cycle through

all programs installed in the network, and the cleanState call at the beginning of

with hypothesis will guarantee that each time only vulnerabilities in one program

is asserted in the current database.

Continuing along this idea, we consider the following hypothetical analysis prob-

lem:

“What will happen if there are N (N = 1, 2, ...) unknown software vulnerabilities

in the network?”

Like in the previous example, the assumptions do not specify which pieces of soft-

ware are vulnerable. So we need to consider all possible combinations of N programs.

If there are in total M programs installed in the network, there will be
(

M

N

)

combi-

nations to consider. The code below conducts the analysis for the case of N = 2.

with_two_advisories(Prog1, Range1, Consequence1, Prog2, Range2, Consequence2,

Analysis) :-

program(Prog1),

program(Prog2),

Prog1 @< Prog2,

with_hypothesis([bugHyp(H1, Prog1, Range1, Consequence1),

bugHyp(H2, Prog2, Range2, Consequence2)],

Analysis))).
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The Prolog term-comparison operation Prog1 @< Prog2 makes sure each combi-

nation is considered only once during backtracking. Analysis is the particular anal-

ysis program (e.g. policyViolation(Adversary, Access, Resources)) conducted

under the assumptions and is passed as a parameter to function with two advisories.

The query below will check if the network can withstand two new advisories,

i.e. the security policy will still be upheld even if there are two unknown software

vulnerabilities in the network.

| ?- with_two_advisories(Prog1, Range1, Consequence1,

Prog2, Range2, Consequence2,

policyViolation(Adversary, Access Resources)).

If a policy violation is discovered, the information about the hypothetical software

bugs that cause it will be output in the first six arguments of the with two advisories

predicate.



Chapter 6

Practical Experience

We manually built analysis databases that reflect both real and synthesized networks

and tested the interaction rules on those benchmarks. This chapter describes the

preliminary results from those tests.

6.1 Experimental result on small networks

6.1.1 A small real-world example

The Princeton Computer Science Department has a small internal network used by

several hundred users. In this benchmark, we modeled and analyzed a subset of the

network that contains three public servers managed by the system administrators.

The three machines have the same configuration. We ran OVAL scanners on the

machines and got the following output after converting them to Datalog tuples.

vulExists(publicServer , ‘CVE-2004-0427’, kernel).

vulExists(publicServer , ‘CVE-2004-0554’, kernel).

vulExists(publicServer , ‘CVE-2004-0495’, kernel).

vulExists(publicServer, ‘CVE-2002-1363’, libpng).

84
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The NVD database has the following information about the vulnerabilities:

vulProperty(‘CVE-2004-0427’, localExploit, dos).

vulProperty(‘CVE-2004-0554’, localExploit, dos).

vulProperty(‘CVE-2004-0495’, localExploit, privEscalation).

vulProperty(‘CVE-2002-1363’, remoteExploit, privEscalation).

The following configuration information about the host publicServer is true:

clientProgram(publicServer, ‘/usr/local/bin/mozilla’).

dependsOn(publicServer, ‘/usr/local/bin/mozilla’, libpng).

The principal binding information is as follows:

hasAccount(employee, publicServer, employeeAccount).

hasAccount(employee, userMachine, employeeAccount).

inCompetent(employee).

hasAccount(sysAdmin, publicServer, root).

located(attacker, internet).

malicious(attacker).

And the host-access control list (HACL) is

hacl(internet, publicServer, tcp, 22).

hacl(publicServer, AnyDestination, AnyProtocol, AnyPort).

hacl(H, H, AnyProtocol, AnyPort).

The last entry in the HACL list indicates any machine can talk to itself through

any protocol and port.

Because our department does not have much confidential information, we do not

specify the data access policy for this benchmark. Instead, we make the following

query to see if an attacker from internet can get root on the public server.
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|-- execCode(attacker,publicServer,root)

Rule: local exploit

|-- malicious(attacker)

|-- execCode(attacker,publicServer,employeeAccount)

Rule: remote exploit for a client program

|-- malicious(attacker)

|-- vulExists(publicServer,/usr/local/bin/mozilla,

remoteExploit,privEscalation)

Rule: Library bug

|-- vulExists(publicServer,libpng,

remoteExploit,privEscalation)

|-- vulExists(publicServer,CVE-2002-1363,libpng)

|-- vulProperty(CVE-2002-1363,remoteExploit,privEscalation)

|-- dependsOn(publicServer,/usr/local/bin/mozilla,libpng)

|-- clientProgram(publicServer,/usr/local/bin/mozilla)

|-- inCompetent(employee)

|-- hasAccount(employee,publicServer,employeeAccount)

|-- vulExists(publicServer,kernel,localExploit,privEscalation)

|-- vulExists(publicServer,CVE-2004-0495,kernel)

|-- vulProperty(CVE-2004-0495,localExploit,privEscalation)

|-- setuidprogram(publicServer,kernel,root)

Figure 6.1: Attack tree for the benchmark in Section 6.1.1

| ?- execCode(attacker, publicServer, root).

yes

The meta-interpreter outputs an attack tree (shown in Figure 6.1). There is a

remotely exploitable bug in the libpng library. Since a client program mozilla uses

that library, the bug will also appear in mozilla. According to the rule on remote

exploit client-side bugs, an incompetent but innocent user may execute the buggy

program on an untrusted input and thus allows an attacker to execute arbitrary code

on his behalf. Once the attacker gets local access to the system, he can exploit bug

CVE-2004-0495 in the kernel and escalate its privilege to superuser. In our model,

the Linux kernel is treated as both a setuid program owned by root and a network

service running as root.

This reasoning coincides with the response from our department’s system admin-

istrator. When seeing the first three local vulnerabilities, he did not think immediate
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action needed to be taken, because users in the department are trusted to not exploit

those vulnerabilities. The malicious attacker comes from outside (internet) and he

cannot directly exploit the bug without first getting access to a user account in the

system. Since there is no immediate danger that can be caused by the local vulner-

abilities, it is not necessary to patch the kernel right away, which requires rebooting

the system and interrupting many people’s work. However, once the libpng bug is

seen, the system administrator determined that this bug must be patched immedi-

ately, for exactly the same reason as shown by the attack tree output from MulVAL.

Since the bug in libpng is remotely exploitable, an attacker from outside may com-

promise an ordinary user account (we assume the system administrators are cautious

and will not open webpages from suspicious sites, at least when logged in as “root.”)

Combined with the local vulnerabilities, the attacker can potentially get root on the

public server, which will be a severe compromise.

Several features of MulVAL are highlighted in this application of the tool to a

simple but real network. First, MulVAL can be used even without a formally defined

security policy. Because the department is an academic institution and does not

have much sensitive information, the data-access policy model is not suitable for the

purposes of its administration. What the system administrators care about may be

“no attacker should be able to compromise root on any managed servers.” It is easy to

check this statement by executing a simple Prolog query in MulVAL. This flexibility

brought by the separation of attack simulation and policy check makes MulVAL a

valuable tool for system administrators to check what might happen in the network.

Even though there is no formally defined data access policy in this example, the

principal binding information still sheds light on some basic trust principles the system

administrator follows in managing the network, which can be viewed as part of a policy

statement. incompetent(employee) states that the system administrator does not
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expect the users of the network to be security-vigilant. They may do stupid things,

but are not intentionally malicious, for there is no clause of malicious(employee).

The only malicious attacker comes from outside (located(attacker, internet)).

Although there is only one machine under consideration in this example, the attack

tree shows a multistage attack. Our system administrators are highly competent and

only in rare occasions has an outside intruder successfully entered our network. When

the scale of an enterprise network is large, both in size and complexity, we doubt even

highly competent administrators can handle the management well without the aid of

an automatic tool. MulVAL is designed to alleviate the system administrator’s burden

of the daily repetitive work of reading vulnerability reports, checking configurations,

and figuring out all possible attack paths. With the help of MulVAL, the expensive

human labor can be used to define sound and sensible security policies and to improve

the overall design of the network infrastructure.

Once an attack tree shows that certain undesirable situation may happen and

decisions have to be made on how to prevent them, there are always different al-

ternatives to break the attack trace. In this example, one can choose to patch the

local privilege escalation bug in the kernel, or the remote privilege-escalation bug in

“libpng”. The system administrator chooses the former, because 1) it happens earlier

in the attack tree; 2) the patching does not require rebooting the system. It would

be an interesting research topic to study how to provide automatic heuristics as to

what countermeasures to apply. This is beyond the scope of this dissertation and is

left as future work.
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Figure 6.2: A real-world example

6.1.2 An example multihost attack

Figure 6.2 is the example small network mentioned in Chapter 1. In this section we

show how we applied the MulVAL analysis engine to detect potential attack paths

due to vulnerabilities (both real and hypothetical) on the machines. We first describe

the various Datalog-tuple inputs to the analysis engine.

Network topology. There are three zones (internet, dmz and internal) sepa-

rated by two firewalls (fw1 and fw2). The administrators manage the webserver,

the projectPC and the fileServer. The users have access to the public server

workStation which they use for their computing needs. The host access control list

for this network is:

hacl(internet, webServer, tcp, 80).

hacl(webServer, fileServer, rpc, 100003).

hacl(webServer, fileServer, rpc, 100005).

hacl(fileServer, AnyHost, AnyProtocol, AnyPort).

hacl(projectPC, AnyHost, AnyProtocol, AnyPort).
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hacl(H, H, AnyProtocol, AnyPort).

Vulnerability information

vulExists(fileServer, ’CVE-2003-0252’, mountd).

vulExists(webServer, ’CVE-2002-0392’, httpd).

vulProperty(’CVE-2003-0252’, remoteExploit, privEscalation).

vulProperty(’CVE-2002-0392’, remoteExploit, privEscalation).

There are two vulnerabilities reported by the OVAL scanner, on the machine

fileServer and webServer respectively. The corresponding NVD database entries

describing the exploitable range and consequences of these two bugs are also shown

above.

Machine configuration Following are relevant Datalog tuples describing machine

configurations output by the MulVAL scanners.

/* configuration information of fileServer */

networkServiceInfo(fileServer, mountd, rpc, 100005, root).

nfsExportInfo(fileServer, ’/export’, read, workStation).

nfsExportInfo(fileServer, ’/export’, write, workStation).

nfsExportInfo(fileServer, ’/export’, read, webServer).

nfsExportInfo(fileServer, ’/export’, write, webServer).

/* configuration information of webServer */

networkServiceInfo(webServer, httpd, tcp , 80 , apache).

nfsMounted(webServer, ’/share’, fileServer, ’/export’, read).

nfsMounted(webServer, ’/share’, fileServer, ’/export’, write).

/* configuration information of workStation */

nfsMounted(workStation, ’/share’, fileServer, ’/export’, read).

nfsMounted(workStation, ’/share’, fileServer, ’/export’, write).
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The fileServer serves files for the webServer and the workStation through

the NFS protocol. There are actually many machines represented by workStation.

They are managed by the administrators and run the same software configuration.

To avoid the hassle of installing each application on each of the machines separately,

the administrators maintain a collection of application binaries under /export on

fileServer so that any change like recompilation of an application program needs

to be done only once. These binaries are exported through NFS to the workStation.

The directory /export is also exported to webServer since the web pages are also

stored on the file server.

Data binding.

dataBind(webPages, fileServer, ’/export’).

dataBind(projectPlan, workStation, ’/home’).

Two kinds of data are mentioned by the security policy: webPages, which is stored

on the file server, and projectPlan, which is stored on the individual workstations.

Principals. The principal sysAdmin manages the machines with user name root.

Since all other users in the corporation are treated equally for the purpose of this

example, we model them as one principal employee. employee uses the workStation

with user name userAccount. For this organization, the primary worry is a remote

attacker launching an attack from outside the network. The attackers are modeled

by a single principal attacker who is located in internet. The Datalog tuples for

principal bindings are:

hasAccount(employee, workStation, employeeAccount).

hasAccount(sysAdmin, webServer, root).

hasAccount(sysAdmin, fileServer, root).
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hasAccount(sysAdmin, workStation, root).

[ilocated(attacker, internet).

malicious(attacker).

Security policy The administrators need to ensure that the confidentiality and

integrity of users’ files, specifically the data projectPlan, will not be compromised

by an attacker. Thus the policy is

allow(Anyone, read, webPages).

allow(employee, Acc, projectPlan).

allow(sysAdmin, Acc, AnyData).

Results The MulVAL reasoning engine analyzed the input Datalog tuples. The

Prolog session transcript is as follows:

| ?- policyViolation(Adversary, Access, Resource).

Adversary = attacker

Access = read

Resource = projectPlan;

Adversary = attacker

Access = write

Resource = webPages;

Adversary = attacker

Access = write

Resource = projectPlan;

One trace of the first violation is shown in Figure 6.3. Here we explain how the

attack can lead to the policy violation. An attacker can first compromise webServer

by remotely exploiting vulnerability CVE-2002-0392 to get control of webServer.

Since webServer is allowed to access fileServer, and the

export directory on fileServer is exported to webServer, the attacker can use a

program such as “NFS Shell” to send NFS requests to the file server on behalf of any
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|-- policyViolation(attacker,read,projectplan)

|-- dataBind(projectplan,workStation,/home)

|-- accessFile(attacker,workStation,read,’/home’)

Rule: execCode implies file access

|-- execCode(attacker,workStation,root)

Rule: Trojan horse installation

|-- malicious(attacker)

|-- accessFile(attacker,workStation,write,’/share’)

Rule: NFS semantics

|-- nfsMounted(workStation,’/share’,fileServer,’/export’,read)

|-- accessFile(attacker,fileServer,write,’/export’)

Rule: NFS shell

|-- malicious(attacker)

|-- execCode(attacker,webServer,apache)

Rule: remote exploit of a server program

|-- malicious(attacker)

|-- vulExists(webServer,httpd,

remoteExploit,privEscalation)

|-- vulExists(webServer,CVE-2002-0392,httpd)

|-- vulProperty(CVE-2002-0392, remoteExploit,

privEscalation)

|-- networkServiceInfo(webServer,httpd,tcp,80,apache)

|-- netAccess(attacker,webServer,tcp,80)

|-- located(attacker,internet)

|-- hacl(internet,webServer,tcp,80)

|-- nfsExportInfo(fileServer,/export,write,webServer)

|-- hacl(webServer,fileServer,rpc,100003)

|-- canAccessFile(workStation,root,read,/home)

|-- not allow(attacker,read,projectplan)

Figure 6.3: Attack tree for the benchmark in Section 6.1.2
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user. So he can modify arbitrary files on fileServer. Since the executable binaries on

workStation are mounted on fileServer, their integrity will be compromised by the

attacker and a Trojan-horse program can be installed. Eventually an innocent user

will execute the Trojan-horse program; this will give the attacker complete control of

workStation as the user. Thus the files stored on it would also be compromised.

One way to break this attack chain is moving webPages to webServer and blocking

inbound access from dmz zone to internal zone. After incorporating these counter

measures, we ran the MulVAL reasoning engine on the new inputs and verified that

the security policy is satisfied.

6.1.3 Hypothetical analysis

To test the hypothetical analysis algorithm, we removed the Datalog tuples repre-

senting the two vulnerabilities. The policy check will not report a violation. But

introducing one hypothetical bug would break it. We ran the hypothetical algorithm

and it produces the expected result (Figure 6.4). This trace is different from the one in

Section 6.1.2 only in that the software vulnerabilities are introduced by hypothetical

bugs.

6.2 Performance and Scalability

The running time of MulVAL consists of two parts: time for the scanner to collect

configuration information and time for the reasoning engine to analyze the collected

data. We measured the performance of the MulVAL scanner on a Red Hat Linux 9

host (kernel version 2.4.20-8). The CPU is a 730 MHz Pentium III processor with

128MB RAM. The reasoning engine runs on a Windows PC with 2.8GHz Pentium 4

processor with 513MB RAM.
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|-- with_one_advisory(httpd,_h95,_h109,policyViolation(attacker,read,projectplan))

|-- with_hypothesis([bugHyp(_h574,httpd,_h95,_h109)],

policyViolation(attacker,read,projectplan))

|-- policyViolation(attacker,read,projectplan)

|-- dataBind(projectplan,workStation,/home)

|-- accessFile(attacker,workStation,read,’/home’)

Rule: execCode implies file access

|-- execCode(attacker,workStation,root)

Rule: Trojan horse installation

|-- malicious(attacker)

|-- accessFile(attacker,workStation,write,’/sharedBinary’)

Rule: NFS semantics

|-- nfsMounted(workStation,’/sharedBinary’,

fileServer,’/export’,read)

|-- accessFile(attacker,fileServer,write,’/export’)

Rule: NFS shell

|-- malicious(attacker)

|-- execCode(attacker,webServer,apache)

Rule: remote exploit of a server program

|-- malicious(attacker)

|-- vulExists(webServer,httpd,

remoteExploit,privEscalation)

Rule: Introducing hypothetical bug

|-- bugHyp(webServer,httpd,

remoteExploit,privEscalation)

|-- networkServiceInfo(webServer,httpd,tcp,80,apache)

|-- netAccess(attacker,webServer,tcp,80)

|-- located(attacker,internet)

|-- hacl(internet,webServer,tcp,80)

|-- nfsExportInfo(fileServer,/export,write,webServer)

|-- hacl(webServer,fileServer,rpc,100003)

|-- canAccessFile(workStation,root,read,/home)

|-- not allow(attacker,read,projectplan)

Figure 6.4: Attack tree for the hypothetical analysis in Section 6.1.3
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One needs to run the MulVAL scanner on each host in the network and transfer

the results to the host running the analysis engine. The scanners can execute asyn-

chronously in parallel on multiple machines. The analysis engine then operates on the

data collected from all hosts. Since we did not have access to a real network with thou-

sands of machines, we constructed benchmarks of synthesized networks with different

number of hosts. The synthesized networks are similar to the one in Section 6.1.2,

but with different numbers of web servers, file servers, and workstations (approxi-

mately one-third web servers, one-third file servers, and one-third project PCs). The

benchmark is just a collection of Datalog tuples representing the configuration of the

synthesized networks. In generating the Datalog tuples, which includes configuration

of every machine, with host access rules, vulnerability information, etc., we make

sure the number of attack paths grows in proportion to the size of the network. The

running times (in seconds) are shown in Table 6.2.

MulVAL scanner 236 s #attack paths
§6.1.1 0.08 1

MulVAL 1 host 0.08 1
reasoning 200 hosts 0.22 135

engine 400 hosts 0.75 269
1000 hosts 3.85 669
2000 hosts 15.8 1335

Table 6.1: Performance data of MulVAL

MulVAL scanner is the time to run the scanner on one (typically configured)

Linux host; in principle, the scanner can run on all hosts in parallel. The benchmark

§6.1.1 is the real-world network described in section 6.1.1. Each benchmark labeled

“n hosts” consists of n similar Linux hosts; the corresponding number of attack paths

is also listed in the table. The running time shows that the reasoning engine scales

well with the size of the network. It can handle the benchmark with thousands of
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Data Source1 hosts=200 =2000
Data Bind sys admin 26 3004
Policy sys admin 3 3
Principal Bind sys admin 10 10
HACL Smart Firewall 342 3342
Scanner Output OVAL/NVD 1222 12022

Table 6.2: Input size to MulVAL reasoning engine

hosts in just seconds. The input size to the MulVAL reasoning engine, in terms of

number of Datalog tuples, is shown in Table 6.2.

The running times as shown in the table actually grow quadratically. Since the

complexity of a particular Datalog program depends both on the rules and inputs, it

would be useful to study if the quadratic growth is due to the way the benchmark

is constructed, or something inherent in the reasoning model. This is left as future

work.

A typical network might have a dozen kinds of hosts: many web servers, many

file servers, many compute servers, and many user machines. Depending on network

topology and installed software (e.g. are all the web servers in the same place with

respect to firewalls, and are they all running the same software?), it may be possible

that each group of hosts can be treated as one host for vulnerability analysis, so that

n = 12 rather than n = 12, 000. It would be useful to formally characterize the

conditions under which such grouping is sound.

To test the speed of the hypothetical analysis, we constructed synthesized networks

with different numbers of hosts and different numbers of programs. Each program

runs on multiple machines. Since the hypothetical analysis goes through all combina-

tion of programs to inject bugs, the running time is dependent on both the number

of programs and the number of hypothetical bugs. Figure 6.5 shows the performance

with regard to different numbers of hosts, programs, and bugs. The running time
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Figure 6.5: Hypothetical analysis.

increases with the number of hypothetical bugs, because the analysis engine must go

through
(

n

k

)

combinations of programs, where n is the number of different kinds of

programs and k is the number of injected bugs. k = 0 is the case where no hypo-

thetical bug is injected. The performance degrades significantly with the increase of

k. But it still takes only 273 seconds for k = 2 on a network with 1000 hosts and

20 different kinds of programs. Since hypothetical analysis can be performed offline

before the existence of a bug is known, it is not as important to have fast real-time

response. The degraded performance is acceptable. Figure 6.5 shows MulVAL can

perform this analysis in a reasonable time frame for a big network. For a network

of 1000 hosts running 20 kinds of installed software, analyzing security assuming the

existence of any 1 unreported vulnerability takes 12 seconds.

Scanning a distributed network We measured the performance of running the

MulVAL scanner in parallel on multiple hosts. We used PlanetLab, a worldwide
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testbed of over 500 Linux hosts connected via the Internet [37]. 47 hosts are selected

in such a way as to get geographical diversity (U.S., Canada, Switzerland, Germany,

Spain, Israel, India, Hong Kong, Korea, Japan). We were able to log into 39 of these

hosts; of these, we successfully installed the scanner on 33 hosts.2 We ran a script

that, in parallel on 33 hosts, opened an SSH session and ran the MulVAL scanner.

We assume that many hosts were carrying a normal workload, as we made no attempt

to reserve them for this use. The first host responded with data in 1.18 minutes; the

first 25 hosts responded within 10 minutes; the first 29 hosts responded within 15

minutes; at this point we terminated the experiment.

For a local area network, we expect fast and uniform response time. But for

distributed networks, we recommend that scanning be done asynchronously. Each

machine, when its configuration is known to have changed, or periodically, should scan

and report configuration information. Then, whenever newly scanned data arrives or

new vulnerability data is obtained from OVAL or NVD, the reasoning engine can be

run within seconds.

2Normally one needs root privileges to install the scanner; PlanetLab gives its users fake “root”
privileges in a chroot environment; for production use of MulVAL, real root privileges are advisable.



Chapter 7

Conclusions

This dissertation describes a preliminary attempt at applying logic-programming

methodologies in network security analysis. Several other approaches have been pro-

posed in the past. The approach proposed in this thesis has the advantage of both

clear declarative specification and efficient execution. Declarative specification brings

good modularity, crucial for integrating security knowledge from third parties. Effi-

ciency is important for practical use. The logic-programming approach also provides

the expressiveness for programming various analysis algorithms, as demonstrated by

the four algorithms already implemented in MulVAL: attack simulation, policy check,

hypothetical analysis, and attack-tree generation.

This dissertation makes available a formal attack model for networks of Unix-

family machines. The interaction rules discussed in Chapter 2 gives detailed Data-

log rules for attack methodologies and security-related operating-system semantics.

These rules have been developed based on the knowledge of security and study of real

network attack events. However, more research is needed to reveal the accuracy and

effectiveness of this reasoning model. A necessary step in making the tool described

in this thesis useful in practice is to refine the formal attack model through empirical
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study on more real data.

This dissertation describes an end-to-end system, MulVAL, that puts various off-

the-shelf tools and data sources — formal software vulnerability advisories, security

scanners, and network configuration tools — together and conducts analysis accord-

ing to the reasoning model. Preliminary experimental study shows that it has the

potential to conduct the analysis in seconds on a network of thousands of machines.

This disseration explains various analysis algorithms that are implementated in

MulVAL. In particular, the hypothetical analysis is important to show the security

robustness of a network by assuming adverse vulnerability conditions. This makes

MulVAL useful even when there is no reported software vulnerabilities in the network.

The disseration also presents various ways of attack-tree generation in MulVAL.

A limitation of the logic-programming approach is that it cannot specify general

nonmonotonic attacks and temporal constraints on attack steps. Model checking is

capable of both tasks, but its scalability has not been attested. More research is

needed to study what is the best approach to reason about these attacks. It would be

useful to conduct research on other logics that can both express such attack scenarios

and be evaluated efficiently.

Network security analysis is only the first step towards complete automation of

network security management. Once a problem is found, the next question to ask

is how to change the configuration such that the problem will be fixed and normal

operations will not be impeded. The efficient reasoning engine in MulVAL provides

a promising outlook for automating this reconfiguration process.



Appendix A

Interaction Rules for Unix-family

Platform

Each interaction rule is introduced by an explain rule clause. The first argument

of explain rule is a plain-text explanation of the interaction rule. The second

argument is the rule itself. There are also fact clauses, and they are introduced by

the load clause statement. The interaction clauses will be loaded dynamically into

the Prolog database so that the meta-interpreter introduced in Appendix B can use

them.

/****** Section execCode *******/

explain_rule(

’account user can execute arbitrary code’,

(execCode(P, H, Perm) :-

hasAccount(P, H, Perm))

).

explain_rule(
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’When a principal is compromised, any machine he has

an account on will also be compromised’,

(execCode(P1, Host, Perm) :-

principalCompromised(P2, P1),

hasAccount(P2, Host, Perm),

canAccessHost(P1, Host))

).

explain_rule(

’local exploit’,

(execCode(P, Host, Perm) :-

malicious(P),

execCode(P, Host, Perm2),

vulExists(Host, Software, localExploit, privEscalation),

setuidProgram(Host, Software, Perm))

).

explain_rule(

’remote exploit of a server program’,

(execCode(Attacker, H, Perm) :-

malicious(Attacker),

vulExists(H, Software, remoteExploit, privEscalation),

networkService(H, Software, Protocol, Port, Perm),

netAccess(Attacker, _, H, Protocol, Port))

).

explain_rule(

’remote exploit for a client program’,

(execCode(Attacker, H, Perm) :-

malicious(Attacker),

vulExists(H, Software, remoteExploit, privEscalation),
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clientProgram(H, Software),

incompetent(P),

hasAccount(P, H, Perm))

).

explain_rule(

’Trojan horse installation’,

(execCode(Attacker, H, root) :-

malicious(Attacker),

accessFile(Attacker, H, write, Path))

).

/******** Section netAccess ********/

explain_rule(

’multi-hop access’,

(netAccess(P, H1, H2, Protocol, Port) :-

execCode(P, H1, Perm), /* Any permission level */

hacl(H1, H2, Protocol, Port))

).

explain_rule(

’direct access’,

(netAccess(P, H, Protocol, Port) :-

located(P, Zone),

hacl(Zone, H, Protocol, Port))

).
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/****** Section canAccessHost ******/

explain_rule(

’direct access to hosts’,

(canAccessHost(P, H) :-

execCode(P, H, Perm))

).

explain_rule(

’access a host through a log in service’,

(canAccessHost(P, H) :-

logInService(H, Protocol, Port),

netAccess(P, _, H, Protocol, Port))

).

/******** Section accessFile ********/

explain_rule(

’execCode implies file access’,

(accessFile(P, H, Access, Path) :-

execCode(P, H, Usr),

localFileProtection(H, Usr, Access, Path))

).

/****** Section principalCompromised ******/

explain_rule(

’password sniffing’,

(principalCompromised(Victim, Attacker) :-

hasAccount(Victim, H, Perm),

execCode(Attacker, H, root),
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malicious(Attacker))

).

explain_rule(

’incompetent user’,

(principalCompromised(P1, P2) :-

incompetent(P1),

malicious(P2))

).

/***************** Section ssh **********************/

explain_rule(

’ssh is a log in service’,

(logInService(H, Protocol, Port) :-

networkService(H, sshd, Protocol, Port, _))

).

/**************** Section nfs *****************/

/* Principal P can access files on a NFS server if the files

on the server are mounted at a client and he can access the

files on the client side */

explain_rule(

’NFS semantics’,

(accessFile(P, Server, Access, ServerPath) :-

nfsMounted(Client, ClientPath, Server, ServerPath, Access),

accessFile(P, Client, Access, ClientPath))

).
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/* Principal P can access files on a NFS client if the files

on the server are mounted at the client and he can access the

files on the server side */

explain_rule(

’NFS semantics’,

(accessFile(P, Client, Access, ClientPath) :-

nfsMounted(Client, ClientPath, Server, ServerPath, read),

accessFile(P, Server, Access, ServerPath))

).

explain_rule(

’NFS shell’,

(accessFile(P, Server, Access, Path) :-

malicious(P),

netAccess(P, Client, Server, rpc, 100003),

nfsExportInfo(Server, Path, Access, Client).

).

/****************** Section misc *******************/

explain_rule(

’root has arbitrary access’,

(localFileProtection(H, root, Access, Path))

).

/* Kernel is both a network service and a setuid program */

load_clause(setuidProgram(Host, kernel, root)).

load_clause(networkService(Host, kernel, _, _, root)).
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explain_rule(’Scanner reports security bug’,

(vulExists(H, ID, Sw, Range, Consequence):-

vulExists(H, ID, Sw),

vulProperty(ID, Range, Consequence))

).

explain_rule(’Introducing hypothetical bug’,

(vulExists(H, ID, Sw, Range, Consequence):-

bugHyp(H, Sw, Range, Consequence))

).

explain_rule(’Library bug’,

(vulExists(H, ID, Sw, Range, Consequence):-

vulExists(H, ID, Library, Range, Consequence),

dependsOn(H, Sw, Library))

).



Appendix B

Meta-programming in XSB

A Prolog meta-interpreter is a Prolog program that can execute other Prolog pro-

grams. While interpreting a Prolog program, a proof tree can be generated to show

the derivation steps that lead to a successful query.

B.1 A meta-interpreter for definite Prolog pro-

grams

Following is a simple meta-interpreter for definite (negation free) Prolog programs:

:- table trace/1.

trace(true) :- !.

trace(A ’,’ B) :- !, trace(A), trace(B).

trace((A ’;’ B)) :- trace(A).

trace((A ’;’ B)) :- trace(B).
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trace((A ’;’ B)) :- !, fail.

trace(A) :- clause(A, B), trace(B).

trace is the meta-interpreter program. The order of clauses is important here

(unlike a Datalog program). The Prolog cut (’ !’) operator is used to make sure once

a clause is matched to the cut point, no alternatives before the cut point will be tried.

The fail literal will always fail.

The interesting case is the last rule of the interpreter. clause(A,B) returns

through backtracking all dynamic clauses in the Prolog run-time environment whose

head matches A and body matches B. The interpreter recursively calls itself on the

body of the clause. For facts the body is true, and the interpreter will return. The

body of a rule may be a single clause or a composite one constructed by the ‘and” (’,’)

and “or”(’;’) operators. These patterns are all handled by the appropriate interperter

rules.

There are two kinds of Prolog clauses in Prolog: dynamic clauses and compiled

clauses. The clause predicate only works for dynamic clauses, which requires us

all interaction rules be loaded dynamically. Preliminary performance tests have not

discovered much difference between the two.

An interesting observation is that trace/1 is tabled, which means all predicates

that are executed by the interpreter are automatically tabled, eliminating infinite

loops in the execution. This simple meta-interpreter just runs a Prolog program,

without outputing a derivation tree.
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B.2 A meta-interpreter for generating proofs

The following program trace/2 is augmented to output proof trees in its second

argument.

:- table trace/2.

trace(true, empty) :- !.

trace((A ’,’ B), and(PfA, PfB)) :- !, trace(A, PfA), trace(B, PfB).

trace((A ’;’ B), PfA) :- trace(A, PfA).

trace((A ’;’ B), PfB) :- trace(B, PfB).

trace((A ’;’ B), _) :- !, fail.

trace(A, because(A, rule((A:-B)), PfB)) :- clause(A, B),

trace(B, PfB),

loop_detection(A, PfB).

loop_detection(A, because(B, _, C)) :- !,

A \== B,

loop_detection(A, C).

loop_detection(A, and(B,C)) :- !,

loop_detection(A,B),

loop_detection(A,C).

loop_detection(A, B) :- A \== B.

The proof term is constructed by the and, because, and empty functions. The
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because function takes three parameters: the conclustion, the rule applied, and the

reason. If there is a clause that matches rule A :- B, and B is shown to be true with

proof PfB, then A can be shown to be true with proof because(A, rule((A:-B)),

PfB). Cycles in the rules of the program being interpreted will lead to cyclic proofs.

Unlike the simple interpreter without proof generation, the tabling mechanism cannot

prevent nontermination caused by cyclic proofs. This is because the proof term is the

second parameter of predicate trace/2, thus cyclic proofs will create infinite number

of table entries.

To avoid cyclic proofs, the program loop detection(A, B) checks that literal A

does not already appear in proof PfB before returning the proof term because(A,

rule((A:-B)), PfB). This guarantees that no cyclic proof will be output as a re-

sult, and thus no nontermination in the meta interpreter will be caused by them 1.

While this loop checking is necessary, it does significantly increase the complexity

of the meta-interpreter. One can avoid the quadratic blow-up by using dynamic

clauses to mark visited proof nodes. However, executing Prolog programs in the

meta-interpreter is already one order of magnitude slower than running them diretly

in XSB. This may affect the usage of the proof generator in practice.

B.3 Dealing with negation and side effects

Both negations and side effects are used in the MulVAL analysis algorithm. For a

negated literal, the proof is the “nonexistence” of derivations. It is not clear what is

a good way to encode this meta-logic argument as a proof witness. MulVAL chose

to output the proof tree of a negated literal as the literal itself, as illustrated by the

following interpreter rule:

1Nontermination will still occur if the original program does not terminate when executed directly
in XSB with tabling enabled.
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trace((not A), (not A)) :- !, not A.

Since we do not explain why not A is true, the subgoal is not executed in the

meta interpreter but rather directly called by the Prolog environment.

Side effects pose a bigger problem for the meta-interpreter. There are two aspects

of interaction between side-effects and tabling that may affect the correctness of the

meta-interpretation. For one thing, tabled results depending on dynamic clauses

must be voided once some or all the dynamic clauses are retracted. In the hypo-

thetical analysis, any IDB predicate may depend on the hypothetical bug. So their

interpreted results must also be removed from the table once the hypothetical bug is

retracted from the database. On the other hand, clauses having side effects, such as

asserting a dynamic clause, should not be tabled at all. There are also some auxiliary

predicates, such as the program predicate in the hypothetical analysis, which are not

necessary to show in the proof tree. Thus, the proof-generating meta-interpreter in

MulVAL distinguishes those predicates and does not interprete them, avoiding the

above mentioned problems:

:- table ttrace/2.

trace(true, empty) :- !.

trace(A, empty) :- dontShowInTrace(A), !, A.

trace((not A), (not A)) :- !, not A.

trace((A ’,’ B), and(PfA, PfB)) :- !,

trace(A, PfA),

trace(B, PfB).
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trace((A ’;’ B), PfA) :- trace(A, PfA).

trace((A ’;’ B), PfB) :- trace(B, PfB).

trace((A ’;’ B), _) :- !, fail.

trace(A, Tr) :- ttrace(A, Tr).

ttrace(A, because(A, rule((A:-B)), PfB)) :- clause(A, B),

trace(B, PfB),

loop_detection(A, PfB).

Predicate dontShowInTrace specifies computations whose proof trees are not in-

teresting and thus not interpreted by trace. These include clauses with side effects

and auxiliary clauses that do not shed light on how attacks happen. The meta-

interpreter trace is not tabled, guaranteeing the side effects in programs will be

executed whenever the clause is called. Another interpreter ttrace, which is mutu-

ally recursive to trace, is tabled. Thus we can have a fine-grained control of what

program to table and what not. However, at least the because case of proof genera-

tion needs to be tabled, otherwise cycles in program rules will lead to nonterminating

computation (even the loop detection function does not help without tabling).
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