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Abstract

A key challenge in reconstructing high-quality 3D scans
and image mosaics is registration of data from different
viewpoints. Existing global alignment algorithms are re-
stricted to rigid-body transformations, and cannot ade-
quately handle non-rigid warps in the data. Algorithms
that can compensate for such warps between pairs of scans
do not easily generalize to the multiview case. We present
an algorithm for obtaining a globally-optimal alignment
of multiple overlapping datasets in the presence of low-
frequency non-rigid deformations, such as those caused
by device nonlinearities or calibration error. The process
first obtains sparse correspondences between views using
a locally-weighted stability-guaranteeing variant of itera-
tive closest points (ICP). Global positions for feature points
are found using a relaxation method, and the scans are
warped to their final positions using thin-plate splines. The
technique is efficient, with only minimal overhead beyond
comparable rigid-body global alignment techniques. We
demonstrate that, relative to rigid-body registration, it im-
proves the quality of alignment and better preserves detail
in large 3D-scanned meshes, range images obtained using
photometric stereo, and image sequences obtained with an
uncalibrated camcorder.

1. Introduction

Range scanning is a common method for acquiring
three-dimensional models of real objects. Because a range
scanner can see only a single viewpoint at a time, several
scans must be merged to obtain a complete model. In the
case of small objects either the scanner or the object can
be moved using only calibrated motions—by placing the
object on a motorized turntable for example—and the rel-
ative alignments of each range scan are known. However,
this is not possible for large objects such as Michelangelo’s
statues, nor when the top and bottom of an object need to
be scanned as well. In these cases, the range scans must
be aligned after acquisition. Because they must be merged
and retriangulated to obtain a final mesh, even small mis-
alignment leads to smoothing of high-frequency details in

Figure 1. (Left) A penguin model, scanned using
photometric stereo. The 15 individual range scans
are warped due to normal integration error. (Cen-
ter) A closeup of the area behind the wreath, aligned
and merged using rigid-body ICP alignment. (Right)
Aligned and merged using our non-rigid global align-
ment.

the merged mesh. Larger misalignments result in corrupt
reconstructions.

Although existing global registration techniques assume
that the scans can be aligned using only rigid-body transfor-
mations, there are several practical situations in which this
assumption is invalid. For example, in the case of data ac-
quired by the Digital Michelangelo Project [16], the desired
precision of approximately .25 mm combined with view-
ing volumes up to 7.5 m high made perfect scanner calibra-
tion unattainable, leading to warping on the order of sev-
eral millimeters. In the case of range data obtained using
shape-from-shading or photometric stereo techniques [25],
limitations on the modeling of materials and lighting cause
bias in estimating normals, which in turn leads to warping
when the normals are integrated to obtain geometry.

We present two major contributions in our paper. The
first is a novel framework for global alignment which can
align simultaneously align many data sets based on feature
correspondences in the presence of low-frequency warp. In
the resulting alignment, we minimize the amount of warp
applied to each data set, and distribute this warp evenly



across the sets. The second contribution is a feature corre-
spondence algorithms for range scans which robustly han-
dles low frequency warp while retaining most of the speed
of rigid-body alignment techniques.

Algorithm Overview We introduce a framework for
global alignment that compensates for low frequency warp
using thin-plate splines. A set of global feature points are
selected, and their positions are found on each range scan,
using a new weighted ICP algorithm. The final positions of
each feature point are computed using an efficient global
optimization process that operates on the feature points
themselves. These are then used to compute a non-rigid
thin-plate spline warp for each range scan, which preserves
high-frequency detail while deforming the range scan ex-
actly enough to bring it into alignment with the other scans.
Performance is proportional to the product of the number of
range scans with the degree of overlap, and the algorithm
is highly parallelizable. For datasets in which the degree of
overlap is high, we propose an alternative approach that re-
duces running time by selecting feature points only on the
minimum set of scans necessary to cover the object.

Further Applications The global alignment framework
is general, and applies to any problem where multiple data
sets must be simultaneously aligned, such as panoramic im-
age construction and alignment of repeated scientific mea-
surements. Our weighted ICP is also a flexible feature cor-
respondence algorithm, and works well for images as well
as range scans. As an example, we show our algorithm
applied to a video sequence to produce a panoramic im-
age. With the same framework as we use for range scans,
we obtain panoramic mosaics from inexpensive, uncali-
brated cameras, in the presence of unknown lens distortion,
auto-focus, auto-exposure, and variation in perspective and
depth of field.

2. Previous Work

2.1. Iterative Closest Points

The most common form of range-scan alignment is It-
erative Closest Points (ICP), originally introduced by Besl
and McKay [4] and Chen and Medioni [8]. ICP begins
with an initial estimate of the alignment, obtained by a
method such as tracking scanner position, matching local
surface descriptors [15, 11], exhaustive search for corre-
sponding points [7], or user input. The alignment is re-
fined by repeatedly selecting points on one or both models,
finding closest points in the other mesh, and computing the
rigid body transform that minimizes the least squares error
between the two point sets. Gelfandet al. [12] and Ike-

motoet al. [14] extend this to select feature points that will
constrain all degrees of freedom in the rigid-body trans-
form, improving alignment performance and quality. Be-
cause rigid-body transforms have only six parameters, they
are efficient to compute and apply, and do not overfit the
(possibly) poor correspondences in early iterations. On the
other hand, the algorithm relies on these properties, and is
not easily extended to more complex transforms.

Global Rigid Body Alignment Several extensions to
rigid-body ICP for global alignment have been proposed.
Chen and Medioni [8] perform global alignment by incre-
mentally aligning new range scans to all previous ones.
Since error accumulates with successive scans, this gen-
erally proves unsatisfactory, and more recent algorithms
focus on distributing the error more evenly across scans.
Bergevinet al. [2] iteratively perform incremental align-
ment, until the individual alignment errors stabilize and are
well-distributed. Pulli [20] selects a stable set of global fea-
ture correspondences, then repeatedly aligns single scans to
all others using these features until the system converges.
Neugebauer [19], Lu and Milios [17] and Williams and
Bennamoun [24] all solve for the alignment of all scans
simultaneously.

2.2. Non-Rigid Alignment Techniques

Ikemotoet al. [14] address the rigid-body constraint of
ICP by dicing each range scan into overlapping pieces,
and performing global rigid-body alignment on the pieces.
This can address low-frequency warps, but causes smooth-
ing and has running time quadratic in the amount of dicing
performed. The Florentine Pietà Project [3] uses ICP align-
ment but also incorporates image-based alignment and con-
formance smoothing of overlapping scans along scanner
lines-of-sight to improve the registration further. Hänelet
al. [13] present an extension to ICP that allows deformable
objects to be aligned by computing rigid-body warps on
different parts of a jointed skeleton. Allenet al. [1] use
an affine transformation at each vertex of the source mesh
to allow non-rigid registrations of full-body scans to a
high-resolution template. In contrast, we assume a low-
frequency deformation which allows us to more efficiently
compute a warp using many fewer parameters.

Thin-Plate Splines The thin-plate spline that we use to
represent our warp has been used extensively in medi-
cal imaging applications, where its use was first proposed
in Bookstein [5]. Chui and Rangarajan [9] use a softas-
sign/deterministic annealing framework to iteratively com-
pute point correspondences and align both medical and
non-medical data in 2-D and 3-D using thin-plate splines.
Rather than assigning features based on closest points as



in ICP, each pair of points is assigned a probability of cor-
responding based on a Gaussian function of their distance
from each other (softassign). This framework works well
in many situations, but we have found it to be less suc-
cessful for range scan alignment. Our range scans typically
contains hundreds of thousands of points, so—just as in
ICP—a small subset of points from the source scan must
be used. As a result, the set of potential correspondences
(which iseverypoint in the target scan) consists almost en-
tirely of outliers, and the process is too unconstrained to
converge on correct correspondences (ICP avoids this prob-
lem precisely by using a heavily constrained transforma-
tion). Also, because the thin-plate spline must be recom-
puted and applied at every iteration, a pairwise alignment
requires minutes at best. This is fine in the pairwise case,
but is impractically slow to incorporate in a global align-
ment framework.

More recently, the thin-plate spline has been used for
pairwiseregistration of large range scans [6]. Feature cor-
respondences are obtained by dicing one range scan hier-
archically, and aligning each piece separately to the other
range scan using ICP. The method provides improved pair-
wise alignments, but includes no mechanism for computing
any globally consistent warping among many range scans.
Also, the discontinuities between piecewise alignments in
the feature correspondence computation are apparent in the
structure of the spline warp.

3. Global Alignment Framework

The goal of global alignment is to find alignments of
each range scan, such that overall alignment error is both
minmized and evenly distributed among scans. This mis-
alignment error generally results in smoothing and/or arti-
facts in the final mesh. Since low frequency error in the
individual range scans yields substantial rigid-body mis-
alignment, it effectively causes error atall frequencies in
the merged result. In the non-rigid case, the undesirable
high frequency misalignment can be traded for a low fre-
quency warp in the range data, restricting the final error to
the frequencies where error already existed. On the other
hand, it is possible to produce a badly warped global align-
ment which nevertheless has low alignment error, so the
amount of warp must be minimized and evenly distributed
as well.

We solve the problem of minimizing and distributing
warp by first selecting a set of representative feature points
on each range scan. Correspondences are found to all over-
lapping range scans using the weighted ICP method de-
scribed in section 4, then the positions of these feature
points are global optimized so that total warp will be mini-
mized and properly distributed. (Just as in ICP, an approxi-
mate initial alignment of the scans is assumed to exist; any

Figure 2. The head of Michelangelo’s David, aligned
using our non-rigid, global alignment method. The
green points are the global feature points used.

method used for initial ICP alignment is sufficient.) Fi-
nally, using these features as control points, a thin-plate
spline warp is computed for each range scan which brings it
into alignment with the global feature point positions, and
hence with all other range scans.

3.1. Feature Point Selection

Feature points must be selected in a manner which both
cover the final mesh, and yields stable correspondence
computations between range scans. Half the features are
selected uniformly on each range scan, while the other half
are selected using the stable sampling technique described
in section 4. Since features are selected at a constant sam-
pling rate, this results in denser sampling in areas of greater
overlap, which has not proved to be a problem in practice.

The performance of this matching is largely determined
by the number of pairs of range scans which must be con-
sidered, which in the above feature selection algorithm is
O(nd) wheren is the total number of range scans andd
is the average degree of overlap between scans. It is also
parallelizable—our implementation splits the computation
into d independent processes which can all run on separate
computers. With small modifications, every pair of range
scans could be considered in parallel.

In situations such as image sequences, where the degree
of overlap is very high,d approachesn, yielding anO(n2)
algorithm. In such cases features can be selected only on
scans in a covering set of the final model. (On image se-
quences, a covering set is trivially computed by incremen-
tal alignments.) Since a covering set will be small when the
degree of overlap is high, this scheme requires onlyO(n)



scan pairs to be considered.

3.2. Global Point Positioning

In order to minimize warp, feature points should be po-
sitioned such that rigid body alignment alignment of scans
to the global feature positions will result in minimal, well-
distributed error. In that case, the warp after non-rigid
alignment will also be minimal and well distributed.

We achieve this by setting soft constraints on the dis-
tances between pairs of feature points which we derive
from the range scans themselves and from the computed
correspondences. Because we assume that warps are low
frequency the distance between two feature pointspA and
qA which were both generated on scanA should not change
much. We therefore constrain the distance between them
to remain|pA−qA|. Note that because rigid-body transfor-
mations preserve distance, any rigid-body transformation
applied toA will maintain all such internal constraints ex-
actly. Now letc(pA) be the corresponding point topA on
scanB, and let pB be a feature point onB. If A and B
are well aligned with respect to each other,pA andc(pA)
will coincide, so the desired distance betweenpA and pB

is |c(pA)− pB|. This set of constraints enforces the align-
ment between range scans determined by the feature corre-
spondences. Again, if there exists a rigid-body transforma-
tion that correctly alignsA andB, this transformation will
simultaneously satisfy all constraints betweenA andB as
well as the internal constraints onA.

We model all these constraints as a set of springs be-
tween pairs of points whose rest length is the desired
distance between them, with the spring energy being the
square of the deviation from its rest length. We use a sim-
ple iterated gradient descent method to minimize the sys-
tem energy, finding optimal target positions for each feature
point. Since poor alignments correspond to high energy on
springs between scans, and large warps to any given scan
correspond to high energy on the springs within a scan, we
obtain our goal of accurate alignment with minimal warp.

Figure 3. Global feature points are attached to each
other by springs whose desired length is based on
distances along range scans. Point positions are ad-
justed to minimize the spring energy.

For a pointp which is attached to pointsq1, . . . ,qn by

springss1, . . . ,sn, the error function is

n

∑
i=1

tensioni (|qi − p|−desiredlength(si))
2 .

We minimize this function one point at a time, using a gra-
dient descent method. We have found this to be efficient
and robust in practice, despite its simplicity.

The minimization procedure has the virtues of simplic-
ity and efficiency, but is not guaranteed to converge to a
global minimum. In fact, we strongly suspect that some
feature points converge to incorrect local minima. Further-
more, some correspondences may be incorrect, especially
in flat areas, leading to incorrect springs, and poor feature
positioning. We resolve both these issues by performing
outlier rejection and thinning prior to warping. A point
is considered an outlier if optimization causes it to move
too much from its initial position relative to its neighbors.
Thinning is used to enforce a minimum distance between
points—since the warp is assumed to be low frequency,
there is no need for two points on top of each other.

3.3. The Thin-Plate Spline

Once the global features are positioned, all range scans
must be warped to align to them. The nature of the warp
can be very complex, difficult to model, and vary between
data sets. For instance, calibration error, lens distortion,
combining input from different sensors, parallax, and data
movement all cause different kinds of warp. All of these are
difficult to model on their own, and we would like to handle
all of them seamlessly. We therefore turn to the thin-plate
spline.

The thin-plate spline, introduced by Duchon [10] is a
non-rigid spline function with several desirable properties
for our application. It is globally smooth, easily com-
putable, separable into affine and non-affine components,
and contains the least possible non-affine warping com-
ponent to achieve the mapping. By the last statement,
we mean that the sum of squares of all second order par-
tial derivatives is minimized. So, iff : Rn → R is ann-
dimensional thin-plate spline, thebending energy,

J =
∫ (

∑
i, j

f 2
xix j

)
dx1 . . . dxn (1)

is minimal. Note that since affine transformations are lin-
ear, they contribute no error under this metric.

Duchon [10] proves that, for two corresponding point
sets X = {x1, . . . ,xm} and Y = {y1, . . . ,ym}, there is a
unique function f such that f (xi) = yi and whose bend-
ing energy is minimal. Furthermore, this function takes the
form xd+Kw, wherex is a point written in homogeneous



coordinates,d is an affine transformation,w is a fixedm-
dimensional column vector of non-affine warping parame-
ters constrained toXtw= 0, andK is anm-dimensional row
vector whereKi is the Green’s functionU(|x−xi |). In our
case (minimizing second order partials inR3), U is simply
|x−xi |; the constant factor is implicitly folded intow.

Thin-plate splines need not be interpolating. Instead,
they can minimize the energy functional [10, 23]

Eλ =
1
m∑ |yi − f (xi)|+λJ (2)

The spline will not be interpolating in this case, but for any
fixed λ , there will still be a unique minimum, of the form
described above.

For the interpolating case, the thin-plate spline speci-
fication provides a linear system of equations, which [5]
solves directly:(

w
d

)
=

(
K X
Xt 0

)−1(
Y
0

)
(3)

whereKi j = U(|xi − x j |). For the approximating case [23,
eqs. 2.4.23 and 2.4.24] derives a similar system of equa-
tions by rewriting equation 2 in matrix form, performing a
QR decomposition onX, and simplifying:

Xd+(K +mλ I)w = Y
Xtw = 0

(4)

An analogous derivation yields similar equations when
confidence values or covariance matrices are used [22, 21].

Because we would like very precise alignments (and the
data multiple measurements of rigid objects should align
precisely), the spline must be heavily weighted toward in-
terpolation, and any effects of covariance matrices or more
exotic restrictions are minimal. For this reason, we use
no covariance constraints, and rely on accurate correspon-
dences to produce a good alignment. We nevertheless set
λ to a very small value to account for measurement noise,
and because Equation 4 becomes unstable whenλ = 0 and
many point pairs are used.

4. Weighted ICP for Correspondences

Our algorithm exploits the ability of ICP to provide
good local alignment, but focuses on aligning individual
“feature points” rather than dicing the mesh into small
patches as in Ikemotoet al. [14]. To do this, we propose
a weighted “local ICP” algorithm that selects a set of fea-
ture pointsP on each range scan, then registers the part
of the mesh around each point to overlapping scans. This
is done by modifying the point selection stage of ICP: in-
stead of selecting points randomly, we instead select them
according to a probability distribution that makes it more

likely that points nearP are used. The major component of
the probability function is a decreasing function of distance
from the feature pointP under consideration:

pfeature(x) =
1

ε +‖x−P‖2 .

If, however, the weight were based entirely on this, there
would be a danger of selecting only points that lie on a re-
gion of the mesh without sufficient geometric variation to
constrain all six degrees of freedom of a rigid-body trans-
formation. Therefore, we augment the probability function
with a term that assigns high probability to locations on the
mesh that do a good job of constraining the alignment:

pstability(x) =
(
x×nx nx

)
C−1

(
x×nx

nx

)
whereC is the 6×6 point-to-plane ICP covariance matrix
computed over the entire region of overlap of the scans (see
Gelfandet al. [12] for a derivation of the expression for
ICP stability). Intuitively, the covariance matrix has small
eigenvalues corresponding to transformations that are not
well-constrained, hence using its inverse will assign higher
probability to points that are important for these under-
constrained degrees of freedom.

Our final probability function therefore consists of the
product of pfeature and pstability. This is normalized, inte-
grated into a CDF, then numerically inverted to transform
a uniform random variable into samples to be selected. A
separate weighted ICP is run for each feature pointP, then
the nearest point on the target range scan is selected as the
correspondence toP. Since thin-plate splines are then used
to warp the data so that all corresponding feature points are
aligned to each other, accurate global alignment is obtained
with no additional smoothing.

Our feature correspondence algorithm adds little to the
total computation time. Because an initial overall align-
ment of each pair of range scans is performed first, it takes
only a small number of iterations of ICP to perform each
weighted alignment. The most expensive parts of the ICP,
computing kd-trees of points and the overlap between each
pair of meshes, are computed only once per pair. Another
long process, smoothing the normals, is precomputed and
cached beforehand, and is therefore performed only once
per range scan.

5. Image Alignment

Although we have presented, and indeed developed,
our alignment algorithm primarily with range scanning in
mind, the framework is quite general, and applies to any
area where multiple data measurements must be aligned
in the presence of low frequency warp. One obvious, and



Figure 4. Two range scans from David’s head (left). Two weighted ICP alignments centered on the chin (middle)
and above the ear (right), color-coded by alignment quality. The yellow point on each scan indicates the center of
interest; the red points show the samples select for weighted ICP.

somewhat related example, is that of image alignment, for
which we present a proof of concept based on our range
scan alignment pipeline.

A standard method of performing image alignment is
with optical flow [18], in which approximate image align-
ment is refined by following image gradients. If a grayscale
image is treated as a height field, surface normals corre-
spond to image gradients, and ICP can be directly used
for alignment and feature correspondence computation.
Changes in image brightness are accommodated as the
third dimension. Image-based feature correspondence al-
gorithms will likely result in more robust correspondences.
Also, although we do not handle color in our current imple-
mentation because this would require 5 dimensions, global
point positioning and thin-plate splines both extend ele-
gantly to arbitrary dimensions and could easily handle this.

The global alignment phase has several nice properties
for image alignment. First, the thin-plate spline subsumes
all linear transformations, and reduces to a linear transfor-
mation where that is sufficient, so it will not warp images
unnecessarily. At the same time, it can absorb lens distor-
tion effects such as uneven lighting and radial distortion,
and small-scale parallax which is not easily filtered out us-
ing dominant motion computations. Finally, global point
positioning provides a global viewpoint of the scene, rather
than favoring any particular frame’s viewpoint. The latter is
still easily accomplished by pairwise warping each frame to
the desired viewpoint before performing global alignment.

6. Results

Figure 5 shows closeups of 1 mm model of the head of
Michelangelo’s David, created with global, rigid-body ICP
alignment, and with our non-rigid alignment. Figure 7(a)

shows a histogram of alignment error under rigid and non-
rigid alignments, while figures 7(b) and 7(c) show a cross
section of the range scan positions for each range scan at
the right edge of the eye, after ICP alignment and after
our non-rigid alignment. This model contains 1392 range
scans at .25 mm precision, comprising approximately 8 GB
of data. Feature correspondences required about 1.5 days
to compute on 6 Pentium 4 processors. Warping required
approximately 3 hours (on a single processor), of which
approximately 2:14 minutes were spent on global feature
positioning.

The most obvious difference between the models is the
elimination of edge smoothing caused by poor alignment
perpendicular to the surface (see figure 5(e)). In addition,
our new head model has substantially increased surface de-
tail compared to the ICP model, which is due to the im-
proved alignment along the surface (figures 5(e) and 5(g)).
Finally, misalignment in highly detailed areas such as the
hair can cause confusion between surfaces. This leads to
surface noise and “bridging” between the two surfaces. Our
improved alignment not only eliminates these artifacts, but
reveals interesting surface detail they obscure (note partic-
ular the chisel marks revealed between locks of hair in fig-
ure 5(g) as compared to 5(f)). Using the non-rigid align-
ments, we have also produced a .25 mm-resolution model
of David’s head, closeups of which are show in figure 5(h).
Sharp edges are resolved more precisely and the rough sur-
face texture is revealed at this resolution. Because the rigid-
body alignment error is too high to give meaningful results,
no quarter-millimeter model of David’s head (or most of
the rest of the Digital Michelangelo data) has been pro-
duced before this.

Figure 1 shows a model acquired in our lab using a
photometric stereo rig. There is a consistent bias in the
normal field, which translates into a low frequency warp



in the range scans. Because of this, rigid-body alignment
fails, especially on the face and feet, and behind the wreath.
Our alignment substantially improves these areas, however.
While photometric range scan data can be substantially
improved by imposing boundary conditions derived from
stereo triangulation, not all scanning systems can provide
this information. When it is not available, non-rigid align-
ment can still preserve the accurate high frequency infor-
mation. The model consists of 15 range scans, and required
2:05 minutes to compute feature correspondences. Warp-
ing took 10 seconds.

Figure 6 shows a panoramic image created from a dig-
ital video sequence of Lake Thingvellir, Iceland shot with
a consumer DV camera. There is significant depth-of field,
and the camera is in autofocus mode. Because the sequence
doubles back on itself, non-adjacent frames in the video
sequence overlap in space. Due to the autofocus, a linear
brightness scaling cannot account for the brightness varia-
tion that occurs between non-temporally-adjacent frames.
64 image frames were used.

7. Discussion and Future Work

We have presented an algorithm for global non-rigid
alignment of three dimensional range scans. Our algorithm
is robust not only to noise, but also to non-linear warp
caused by scanner calibration error. We recover accurate
feature correspondences using a weighted, stable ICP com-
putation, then obtain a consistent set of range scans using
thin-plate spline warps. The algorithm scales well with data
size, requiring running time proportional to the number of
overlapping pairs of scans.

It is important to be clear about the ways in which our re-
sults are “better” than those produced by rigid-body align-
ment. Indeed, we can not claim to produce results whose
overall shape is necessarily closer to the original, since
there is just as much uncertainty in the overall position of
the scans. However, by avoiding the loss of high-frequency
detail caused by low-frequency warps, our final meshes are
moreprecisethan those produced using rigid-body align-
ment. Moreover, because of the deformation-minimizing
properties of thin-plate splines, our results reflect the mini-
mum non-rigid warp necessary to compensate for deforma-
tion in the data. As imagers and 3D scanners become more
ubiquitous and inexpensive, and as they are pushed to their
resolution and working-volume limits, we believe that in
many situations calibration will become the ultimate limit
on achievable quality. Our algorithm produces results that
maximize the high-frequency fidelity of the result while in-
troducing minimum deviation from the original data.

There are some areas of the algorithm which will benefit
from further refinement. In certain areas, such as the top of
David’s head, the acquired range scans are simply of poor

quality. By incorporating existing confidence data into our
framework, and detecting outlier scan regions during the
merging process, we can improve the final mesh quality in
these areas. Doing so would likely reduce high frequency
error further at the expense of simplicity.

In the case of image alignment, a scale independent er-
ror metric will likely improve results for image sequences
containing zoom. We have also not incorporated several
standard image alignment techniques such as dominant
motion analysis; these are independent of our fundamen-
tal algorithms, and incorporating them is not difficult.

We have developed our algorithm with large scale, high-
resolution scanning projects, such as the Digital Michelan-
gelo Project, in mind. However we expect it will work well
in many situations where sufficiently precise scanner cal-
ibration is either impossible or inconvenient, and we plan
to explore uses in these areas. For example, we expect our
methods to be useful in conjunction with low-cost, do-it-
yourself scanning systems used by untrained operators. We
have also shown its direct applicability to image alignment,
where there are many non-linear effects to account for, and
we are exploring its use in other areas such as biomedical
measurements.
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(a) Rigid alignment of David’s head (b) TPS alignment of David’s head (c) TPS alignment with holes filled

(d) Rigid-body alignment of
eye; the pupil is misshapen
and the ridges are smooth
due to misalignments

(e) TPS alignment of eye;
the pupil is now the correct
shape, and the ridges are all
sharp

(f) Rigid-body alignment of
hair above the ear; mis-
alignment causes smooth-
ing and bridging of gaps

(g) TPS alignment of hair;
detail between locks of hair,
including chisel marks, is
revealed

(h) Closeups of the eye and hair merged at .25 mm resolution. At this resolution, finer-scale surface detail is
revealed, and edges are sharpened. Only a tps-aligned model of David’s head exists at .25 mm, because the
rigid-body alignment error is too high to produce meaningful results at this resolution.

Figure 5. Comparison of rigid-body, 1 mm model of David’s head with our new, tps-aligned model. .25 mm models
created with the tps-aligned data show the further fine-scale detail that these alignments can resolve.

Figure 6. Lake Thingvellir, Iceland. This panorama was created from a camcorder source. The camera is
uncalibrated, autofocus, and doubles back on itself (motion from right edge to left edge, and back to center).
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(a) Alignment error histograms for rigid and non-rigid alignments. In each case, the distance from each point
on the aligned range scans was measured to the merged model. The rigid-body alignment histogram reveals a
long tail of misalignments by several millimeters, which results directly in the observed artifacts and loss of
surface detail. The non-rigid alignment, in contrast, has a very small tail, corresponding to sharper features and
a reduction in artifacts.
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(b) A plot of the depth of each range scan used in rigid-body alignment
along a line at the right edge of the eye. Although the alignment here
is substantially better than in the hair, misalignment is still greater than
1mm, leading to smoothing and incorrect local shape.
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(c) In our non-rigid algorithm, the range scans are very well aligned;
there are many fewer outliers, and these are still within 1mm. As a
result, the model is merged with sharp features and surface detail pre-
served..

Figure 7. Graphs of alignment error for the David’s head (histogram) and a cross section of the left eye (depth
plots) under rigid and non-rigid alignment.
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