
INTERFACING COMPILERS, PROOF

CHECKERS, AND PROOFS FOR

FOUNDATIONAL PROOF-CARRYING CODE

Dinghao Wu

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

September 2005

c© Copyright by Dinghao Wu, 2005.

All rights reserved.

iii

Abstract

Proof-Carrying Code (PCC) is a general framework for the mechanical verification

of safety properties of machine-language programs. It allows a code producer to

provide an executable program to a code consumer, along with a machine-checkable

proof of safety such that the code consumer can check the proof before running the

program. PCC has the advantage of small Trusted Computing Base (TCB), since

the proof checking can be a simple mechanical procedure. A weakness of previous

PCC systems is that the proof-checking infrastructure is based on some complicated

logic or type system that is not necessarily sound.

Foundational Proof-Carrying Code (FPCC) aims to further reduce the TCB

size by an order of magnitude by building the safety proof based on the simple and

trustworthy foundations of mathematical logic. There are three major components

in an FPCC system: a compiler, a proof checker, and the safety proof of an input

machine-language program. The compiler produces machine code accompanied by

a proof of safety. The proof checker verifies, sometimes also reconstructs, the safety

proof before the program gets executed.

We have built a prototype system. Our prototype is the first end-to-end FPCC

system, including a type-preserving compiler from Core ML to SPARC (based on

SML/NJ), a low-level typed assembly language LTAL, a foundational proof-checker

Flit, and a nearly complete machine-checkable soundness proof. The system com-

piles Core ML programs to SPARC code, accompanied with programs in a low-level

typed assembly language; these typed assembly programs serve as the proof wit-

nesses of the safety of the corresponding SPARC machine code.

In this thesis, I’ll explain the design of interfaces between these components and

show how to build an end-to-end FPCC system. We have concluded that a type

iv

system (a low-level typed assembly language) should be designed to check machine

code, and that the proof-checking should be factored into two stages, namely type-

checking of the input machine code and verification of soundness of the type system.

Since a type checker can be efficiently interpreted as a logic program, Flit builds in

a simple logic programming engine which enables efficient proof-checking.

v

Acknowledgements

First of all I would like to thank my advisor Andrew Appel for his kindness, en-

couragement, and guidance. During the last five years Andrew has been extremely

helpful on my research and life at Princeton. I am always impressed by his smart-

ness, quick thinking and hacking, and clear explanation of things. It is of great

fun working with Andrew! I also thank him for improving my English grammar

and speaking; I am impressed by his fun explanation of the tenses using the time

axis, a programming language researcher’s rigorous way of interpreting the natural

language English.

I would also like to thank other members of my thesis committee. Thank Aaron

Stump and Dave Walker for reading my thesis and giving helpful comments. Thank

Ed Felten and Bob Tarjan for serving on my PhD thesis committee.

I have benefited greatly from working with the fellow students and colleagues.

Especially I would like to thank Amal Ahmed, Juan Chen, Hai Fang, Eun-Young

Lee, Neophytos Michael, Xinming Ou, Chris Richards, Kedar Swadi, Gang Tan,

Roberto Virga, and Dan Wang. I have also had a lot fun with other students

including, not exclusively, Sudhakar Govindavajhala, Aquinas Hobor, Limin Jia,

Junwen Lai, Jay Ligatti, Qin Lv, Yitzhak Mandelbaum, Ruoming Pang, Yaoping

Ruan, Frances Spalding, Ming Zhang, Fengzhou Zheng, and Wen Xu.

Office 215 has always been a friendly and fun place. Thanks to Benedict Brown,

Edith Elkind, Allison Klein, Steven Kleinstein, Gang Tan, Stephen Soltesz, and Zhe

Wang for being my wonderful office mates.

Many thanks to Melissa Lawson for taking care of numerous things and making

my life at Princeton a lot easier. Many people outside of the campus, some of whom

have been my friends for years, have also helped me during my study at Princeton.

vi

I am grateful to John Desai, Dick & Marie Gons, David Kim, Miriam Miller, and

Jeff Olesnevich for their help with my English speaking and for many interesting

discussions and activities.

I would like to give my special thanks to my family. The memory of my peaceful

and happy childhood with Tài Pó (great grandmother) is always a source of peace

and joy when I am anxious and restless. Mom’s story of struggling to get her own

education due to poverty, her long-lasting determination and faith in my education,

her persevering fight for a better life, and her unfailing love are the greatest sources

of strength that drives me forward. I could not express in any language that how

much I owe to my mom; two college graduates and one PhD come out of a family

once even struggled for food and clothes! My heartfelt thanks also go to my dad

and brothers.

Finally, I would like to thank my wife Li Li for her love, care, support, and belief

in me. Time at Princeton with Li Li has been one of the most joyful in my life so

far. I am so lucky to have her accompanied me through high school, college, and

graduate schools... I couldn’t imagine how I could go through all these tough days

without her support and love.

This work is partially funded by DARPA under grant F30602-99-1-0519, NSF

under grant CCR-0208601, and ARDA under grant NBCHC030106.

vii

TO LILI

Contents

Abstract . iii

Acknowledgements . v

List of Figures . xii

List of Tables . xiv

1 Introduction 1

1.1 Software Security: A Growing Problem 1

1.2 Classical Security Principles . 2

1.2.1 Principle of least privilege 3

1.2.2 Principle of minimum trusted computing base 4

1.3 Existing Practices . 4

1.3.1 Authentication . 5

1.3.2 Virtual memory protection 5

1.3.3 Software fault isolation . 6

1.3.4 Java bytecode verification 6

1.3.5 Typed assembly languages 7

1.3.6 Proof-carrying code . 7

1.4 Foundational Proof-Carrying Code 8

viii

CONTENTS ix

1.4.1 Typed assembly language interface 9

1.4.2 Logic programming interface 10

1.4.3 Logical framework . 11

1.5 Thesis Outline . 12

2 Foundational Proof-Carrying Code 13

2.1 FPCC . 14

2.2 The LTAL Interface . 16

2.3 FPCC/ML Compiler . 18

2.4 Checker . 19

2.5 Safety Proof . 20

3 Low-Level Typed Assembly Language 21

3.1 LTAL Features . 22

3.2 Syntax Overview . 25

3.3 Static Semantics Overview . 29

3.3.1 Instruction decoding . 32

3.4 Types . 33

3.5 Values . 37

3.6 Coercions . 38

3.7 User-Defined Datatypes . 45

3.7.1 Datatype representation . 46

3.7.2 Creating sum values . 48

3.7.3 Eliminating sum values . 49

3.8 Heap Allocation . 53

3.9 Instructions . 58

CONTENTS x

3.10 Don’t Trust the Linker! . 64

3.11 Measurements . 66

3.11.1 Size . 66

3.11.2 Performance . 67

3.12 Related Work . 69

4 Machine-Checkable Soundness Proofs for LTAL 71

4.1 Overview . 71

4.2 Logic and Logical Framework . 73

4.3 Machine Instruction Specification 75

4.4 Safety Specification . 78

4.5 Semantic Models of Types . 81

4.6 Safety Proof . 84

4.7 Implementation . 88

4.8 Related Work . 90

5 Foundational Proof Checking with Small Witnesses 92

5.1 Introduction . 92

5.1.1 Small proof witnesses . 93

5.1.2 Trustworthy checkers . 95

5.1.3 Synthesis . 96

5.2 Semantic Proofs of Horn Clauses 97

5.2.1 Example: even-valued expressions 98

5.2.2 Safety specification . 99

5.2.3 Type checker . 100

5.3 Effective Context Management . 103

CONTENTS xi

5.3.1 Dynamic clauses and local assumptions 103

5.3.2 Typing rules . 104

5.3.3 Foundational semantics and proofs 106

5.3.4 Dynamic clauses in the real LTAL 107

5.4 Logic Programming Engine . 109

5.5 Proof Witnesses . 112

5.5.1 Layers of specification and proof 113

5.6 Machine Checkable Proofs . 116

5.7 Scaling Up to Foundational PCC 118

5.8 Experimental Results . 119

5.9 Conclusion . 123

6 Conclusion and Future Work 124

A LTAL Static Semantics 126

A.1 Coercion Rules . 126

A.2 Instruction Typing Rules . 129

Bibliography 134

List of Figures

2.1 Foundational PCC framework. 15

3.1 Comparison of TAL and PCC systems. 22

3.2 LTAL syntax: Overview. 25

3.3 A sophisticated LTAL type checking rule. 31

3.4 LTAL syntax: Types. 34

3.5 LTAL syntax: Values. 37

3.6 Value typing rules. 38

3.7 LTAL syntax: Coercions. 39

3.8 Selected LTAL coercion rules. 44

3.9 Datatype representations in LTAL. 46

3.10 LTAL datatype representation example. 50

3.11 Datatype tag discrimination example. 50

3.12 Rules for datatype tag discrimination. 52

3.13 SML/NJ Heap allocation model. 54

3.14 Heap allocation example. 55

3.15 Rules for allocation instructions. 56

3.16 LTAL syntax: Instructions. 59

xii

LIST OF FIGURES xiii

4.1 The indexed model of types. 82

4.2 The indexed model of environments (vector values). 83

4.3 An example LTAL program. 85

4.4 Outline of safety proof. 86

5.1 Syntax of even-odd system. 98

5.2 Safety specification. 99

5.3 Typing rules with static context. 101

5.4 Definitions of types and judgements. 102

5.5 Typing rules with dynamic context. 105

5.6 LTAL typing rules for efficient environment management. 108

5.7 Machine-checkable proof of BindTy in LF. 117

List of Tables

3.1 LTAL calculus statistics. 66

3.2 FPCC/ML compiler, LTAL, and Flit performance. 68

4.1 Safety specification. 81

4.2 FPCC proof statistics. 90

5.1 Layers of specification and proof. 113

5.2 Proof scheme for even-odd system. 115

5.3 Measurements—system size. 120

5.4 Measurements—safety checking performance. 121

xiv

Chapter 1

Introduction

During 1960s, with the rapid advance in the hardware industry, the so-called “soft-

ware crisis” emerged. The software industry were not able to keep pace with the

rapid advance of hardware. Software projects were notoriously behind schedule and

over budget, and software products were full of defects and unreliable. While there

have been lots of improvement with programming language and software engineer-

ing technology since then, software is still extremely fragile: unreliable, insecure,

and full of bugs. Frederick Brooks explains “why programming is hard to man-

age” in his book The Mythical Man-Month [Brooks, 1975], and many principles and

observations still apply today.

1.1 Software Security: A Growing Problem

On the other hand, the extensive use of computers and the accelerating trends of

interconnectedness, complexity, and extensibility pose an increasing demand on the

security of software. While interconnected computers on the Internet make our life

1

CHAPTER 1. INTRODUCTION 2

easier, malicious code such as viruses and worms can exploit the vulnerability of soft-

ware and spread over the world in a minute. The complexity of software systems is

rising. Large and complex systems tend to have more bugs and are more vulnerable

to malicious code. Many of today’s software systems support extensibility through

a number of ways such as scripting, macros, and applets. The infamous Melissa

and Love Bug viruses took advantage of the Internet and the macro and scripting

extensions of the Microsoft Word document processing program and Outlook e-mail

client [McGraw and Morrisett, 2000; Martin, 2000; Slade, 1999].

As our society becomes increasingly dependent on information technology, we

must be able to produce software systems that are more secure, reliable, and depend-

able. In this thesis, we describe a promising approach to addressing the program

safety problem and show how to build and verify secure software from the minimum

trusted computing base. Part of this thesis work has been published in several con-

ferences. Chapter 3 is the extended version of a PLDI paper [Chen et al., 2003].

Chapter 4 is based on the techniques described in Appel and McAllester [2001], Wu

et al. [2003] and Tan et al. [2004]. Chapter 5 is the extended version of a PPDP

paper [Wu et al., 2003].

1.2 Classical Security Principles

The price of reliability is the pursuit of utmost simplicity.

C.A.R. Hoare

To design secure systems, it is important to follow well-known design principles.

In this section, we review two classical security principles, namely the principle of

CHAPTER 1. INTRODUCTION 3

least privilege and the principle of minimum Trusted Computing Base (TCB). The

principle of minimum TCB is one of the important criteria used to measure the

trustworthiness of our system.

1.2.1 Principle of least privilege

The principle of least privilege is an important concept in computer security. It was

first described by Saltzer and Schroeder [1975]:

Every program and every user of the system should operate using the

least set of privileges necessary to complete the job. Primarily, this

principle limits the damage that can result from an accident or error.

It also reduces the number of potential interactions among privileged

programs to the minimum for correct operation, so that unintentional,

unwanted, or improper uses of privilege are less likely to occur.

The principle of least privilege states that a user, a system, or a program should

be given no more privilege than necessary to perform a task. This can minimize the

damage that can occur should your code be exploited by a malicious user since the

minimum privilege is granted for the code.

The principle should be used in every system that is applicable. A good real-

world example of this principle is the US government “need to know” policy in the

security clearance system. People are only allowed to access documents that are

relevant to their tasks.

Many programs run under UNIX systems (and other operating systems too)

violate the principle of least privilege. The Sendmail program is a classical example.

Sendmail runs with root permissions since it requires root privileges to set up a

CHAPTER 1. INTRODUCTION 4

service on port 25—the SMTP port. After the set up, Sendmail never gives up its

root privileges. Therefore, if a malicious attack can buffer overflow in Sendmail, the

attack can trick Sendmail to run arbitrary code with root permissions.

1.2.2 Principle of minimum trusted computing base

The Trusted Computing Base (TCB) is the set of hardware and software that needs

to be trusted for the security of a task. Since nowadays hardware is quite reliable,

trusted software systems tend to be the most significant component of TCB.

It is important to keep the TCB small and simple because, in general, large and

complex systems tend to have more defects. In an investigation of Java-enabled

browsers conducted by Dean et al. [1997], they found that there is one security-

relevant bug per 3,000 lines of source code in average in the first-generation imple-

mentations. The TCBs of various Java Virtual Machines are at between 50,000 and

200,000 lines of code [Appel and Wang, 2002]. The SpecialJ JVM [Colby et al.,

2000] reduces the TCB to 36,000 lines by using proof-carrying code. In this work,

we will show how to reduce the size of the TCB to under 3,000 lines and make the

proof checker small and simple enough to be manually verifiable.

1.3 Existing Practices

Traditional language-based techniques have been focused on the high-level code

safety. Recent researches on Typed Assembly Languages (TAL) [Morrisett et al.,

1998, 1999a,b], Proof-Carrying Code (PCC) [Necula and Lee, 1996; Necula, 1997],

security types and information flow security [Sabelfeld and Myers, 2003], software

fault isolation [Wahbe et al., 1993], virtual machines [Lindholm and Yellin, 1996;

CHAPTER 1. INTRODUCTION 5

Platt, 2001], typed intermediate languages [Tarditi et al., 1996; Shao, 1997; Shao and

Appel, 1995; Chen et al., 2003], and certifying compilers [Colby et al., 2000; League

et al., 2003; Chen et al., 2003] have generated exciting results on low-level code

safety, demonstrating that language-based security is a promising technique for many

security problems, such as buffer overflow and format string attacks, information

leaks, etc., and for building trustworthy and high-assurance systems.

In the following, we review some of the existing techniques for ensuring the

reliability and safety of running untrusted code. One of the important criteria we

used to compare these different approaches is the size of TCB.

1.3.1 Authentication

Users may install and run untrusted programs based on authentication from some

known and trusted party. A typical example is the dynamic software patch up-

date system for Microsoft Windows, for example. Users download patches and

install them after checking the authentication (electronically signed by Microsoft).

Strictly speaking, authentication does not guarantee any property of the authen-

ticated code. It only guarantees that the code is from some known party based

on cryptography. Authentication does not reduce the TCB size since it does not

guarantee any program property.

1.3.2 Virtual memory protection

Modern computer systems use virtual memory to protect a process from other

processes by checking the memory boundary. Hardware and operating system are

coordinated to make sure that application programs do not bypass the virtual mem-

CHAPTER 1. INTRODUCTION 6

ory API, which is usually implemented as OS system calls. Although the virtual

memory is a very successful technique used in the modern operating systems, it

is clumsy to implement and not flexible enough for situations other than memory

safety.

1.3.3 Software fault isolation

Software Fault Isolation (SFI) [Wahbe et al., 1993] instruments machine code with

additional runtime checking to ensure some safety property. It allows cooperating

software modules to exist in the same address space and make sure that they don’t

trash each other by additional runtime checking on jump and store to ensure safety.

Applications such as extensible kernels and databases can benefit from SFI because

SFI provides an efficient way to run external programs safely via application isola-

tion in the same address space without context switch overhead. One disadvantage

of SFI is that it has some runtime overhead, and is not very flexible for ensuring

properties other than memory safety.

1.3.4 Java bytecode verification

The Java Virtual Machine (JVM) [Lindholm and Yellin, 1996] provides additional

safety check at the bytecode level via a mechanism called Java bytecode verification.

In this framework, the bytecode, compiled from Java source code, is checked for

safety before execution. Then users do not need to trust the Java compiler, which

translates Java source programs into bytecode, since the safety of bytecode is ver-

ified. So the Java compilers are not in the TCB. However, in practice, bytecode

is not interpreted due to inefficiency. Usually bytecode is compiled just in time to

CHAPTER 1. INTRODUCTION 7

machine code before execution. The Java Just-In-Time (JIT) compilers must be

trusted for correctness and safety. Note that production-quality JIT compilers are

usually large and complex.

1.3.5 Typed assembly languages

In the Typed Assembly Language (TAL) [Morrisett et al., 1998, 1999a,b] framework,

a source program is compiled into a typed assembly program, which can be type

checked. Since the assembly code is type checked, users do not need to trust the

whole complicated (and maybe buggy) compiler anymore. Only the TAL type

checker, assembler and linker are in the TCB, which is much smaller than traditional

compilers. A weakness of the most existing TAL systems is that their soundness is

not formally verified. In our foundational proof-carrying code project, we address

this problem by designing a low-level typed assembly language with fully machine-

checkable soundness proof.

1.3.6 Proof-carrying code

Proof-Carrying Code (PCC) [Necula and Lee, 1996; Necula, 1997] is a general frame-

work for the mechanical verification of safety properties of machine-language pro-

grams. It allows a code producer to provide an executable program to a host (code

consumer), along with a machine-checkable proof of safety such that the code con-

sumer can check the proof before running the program. PCC has the advantage

of small TCB, since the proof checking can be a simple mechanical procedure. A

weakness of previous PCC systems is that the proof-checking infrastructure is too

complex to prove sound using conventional techniques.

CHAPTER 1. INTRODUCTION 8

1.4 Foundational Proof-Carrying Code

Foundational Proof-Carrying Code (FPCC) [Appel, 2001] aims to further reduce

the TCB size by an order of magnitude and to build the soundness proof based on

the foundation of mathematical logic. There are three main components in a foun-

dational proof-carrying code system: a compiler, a proof checker, and a safety proof

of the machine-language program compiled from a source program. The compiler

should produce machine code accompanied by a proof (hint) of safety. The proof

checker verifies, sometimes also reconstructs, the safety proof before the program

gets executed.

It is crucial to design appropriate interfaces between these components. This

thesis is on how to design interfaces between type-preserving compilers, foundational

proof checkers, and machine-checkable proofs, and on how to build an end-to-end

FPCC system. We have come to the conclusion that: (1) a typed assembly lan-

guage should serve as an interface between the proof-generating compiler and other

components; (2) logic programming (in some restricted way) is a good mechanism

for efficient proof-checking; and (3) an unified logical framework is convenient for

representing proofs, as well as specifying the safety theorem and machine seman-

tics. By using an unified logical framework, such as LF [Harper et al., 1993] and its

implementation Twelf [Pfenning and Schürmann, 1999, 2002], we can manipulate

proofs and specification in the same language.

Our prototype system is the first end-to-end FPCC system, including a type-

preserving compiler from core ML to SPARC [Chen, 2004] (based on SML/NJ [Ap-

pel and MacQueen, 1987, 1991]), a low-level typed assembly language LTAL [Chen

et al., 2003], a foundational proof-checker Flit [Appel et al., 2002; Wu et al., 2003],

CHAPTER 1. INTRODUCTION 9

and a nearly complete machine-checkable soundness proof [Tan et al., 2004]. In the

following, we briefly explain some of the design choices and implementation of our

system, as well as the connections and interfaces between the compiler, the proof

checker, and the soundness proof.

1.4.1 Typed assembly language interface

Typed assembly languages provide a way to generate machine-checkable safety

proofs for machine-language programs. But most existing typed assembly languages

[Morrisett et al., 1999b,a] either don’t have soundness proofs, or have proofs that

are hand-written and cannot be machine-checked, which is worrisome for such large

calculi. We have designed and implemented a low-level typed assembly language

(LTAL) with a semantic model and established its soundness from the model. LTAL

serves as the interface between the proof-generating (type-preserving) compiler and

the proof-checking components. It is the language for the compiler to express proof

hints of the safety of input user programs. Compared to existing typed assem-

bly languages, LTAL is more scalable and more secure; it has no macro instructions

that hinder low-level optimizations such as instruction scheduling; its type construc-

tors are expressive enough to capture dataflow information, support the compiler’s

choice of data representations and permit typed position-independent code; and

its type-checking algorithm is completely syntax-directed. We encode the LTAL

type checker as a logic program that does not need to backtrack since the type

checking is completely syntax-directed; this has important implication of efficient

proof-checking that we will present later in Chapter 5. The details of LTAL is

presented in Chapter 3.

CHAPTER 1. INTRODUCTION 10

1.4.2 Logic programming interface

The interface and mechanism for proof-checking are as important as proof-generating.

In a naively designed FPCC system, the soundness proof could be 100 times larger

than the machine program proved. Take the LTAL type system for example: It

has about 1000 type checking rules, among which about 50 are type checking rules

for instructions. And in average, each instruction type checking rule has about 10

premises, with about 20 implicit variable bindings. Assume that we need 10 applica-

tion nodes and variable bindings to check each premise. Encoded in the Edinburgh

Logical Framework (LF) [Harper et al., 1993], there are 120 application nodes per

machine instruction. For each instruction, there are also about 20 application nodes

for machine instruction decoding. If we encode each application node of LF with

3 words, it is 420 times of the size of the machine code. This is the size of type

derivation tree, not including the size of the proof for each type checking rule. The

size of the type checking rules is a constant, though it could be large; this size can

be amortized away because the proof is checked once and for all.

In addition to the huge proof witness problem, untrustworthy proof rules are an-

other problem in the previous PCC systems. In both Necula’s PCC and Morrisett’s

TAL systems, type checking rules are trusted as axioms; the type systems used in

their systems do not have a machine-checked soundness proof. Any misunderstand-

ing of the semantics of type checking or proof rules could lead to errors in the type

system. League et al. [2003] found an unsound proof rule in the SpecialJ [Colby

et al., 2000] type system. In the process of refining our own TAL [Chen et al., 2003],

we routinely find and fix bugs that can lead to unsoundness.

No previous design has addressed both of these problems simultaneously. We

CHAPTER 1. INTRODUCTION 11

show the theory, design, and implementation of a proof-checker that permits small

proof witnesses and machine-checkable proofs of the soundness of the system. The

general approach is to write a logic program that has a machine-checked semantic

correctness proof. The logic program encodes the type checking rules of the type

system (typed assembly language) for checking machine code. Fist, the correctness

proof of the logic program is checked by a proof-checker; in our system, it is the

LF proof-checker component of Flit. Then, the logic program is interpreted by a

logic programming engine to check the input machine code. Our checker Flit has a

simple logic programming engine that can efficiently interpret LTAL type checker

as a logic program. This technique can be used in other domains (besides “proof-

carrying”) to write logic programs with machine-checked guarantees of correctness.

The details of the efficient and foundational proof checking techniques is presented

in Chapter 5.

1.4.3 Logical framework

To develop machine-checkable proofs, one must first choose a logic and a logical

framework in which we encode and manipulate objects of the logic chosen. Our proof

and specification of machine semantics and safety properties are based on higher-

order logic. It is convenient to use the same representation for logics, theorems, and

proofs. We choose the LF logical framework [Harper et al., 1993] to encode and

manipulate higher-order logic.

LF is a dependently-typed λ-calculus with type families and βη-equality. It

has three levels of terms: objects, types, and kinds. Types classify objects and

kinds classify type families. LF provides a convenient tool for defining logics, with

the support of higher-order abstract syntax. The framework is general enough to

CHAPTER 1. INTRODUCTION 12

represent logics of interest; we use it to encode higher-order logic. For development,

we use Twelf [Pfenning and Schürmann, 1999, 2002], an implementation of LF.

Twelf has many useful features, such as type reconstructing and mode analysis,

which make it a convenient tool for us to develop machine-checkable proofs in LF.

While Twelf is very useful for developing proofs in LF, it is not minimal in terms

of system size and features. Many advanced features, such as type inference and

Emacs interface, are not needed for the proof checking at the user site, though these

features are very useful for development. Thus if we use Twelf as the ultimate proof

checker, it will violates the “pay as you go” principle and users have to trusted

components that are not actually needed for the proof checking task. For efficient

and trustworthy proof checking in LF, we have developed our own LF proof checker

called Flit, which is presented in Chapter 5.

1.5 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 gives an overview of

our foundational proof-carrying code system. In Chapter 3, we introduce the LTAL

interface, including its syntax, semantics, type checking rules, and measurements.

In Chapter 4, LTAL is given a semantic model, and thus the machine-checkable

soundness proof of the LTAL calculus is presented. In Chapter 5, we present the

proof-checking mechanism; we use a simple system to illustrate the interfaces be-

tween different components including the proof checker. Finally, we summarize and

give an outlook of future work in Chapter 6.

Chapter 2

Foundational Proof-Carrying Code

Everything should be made as simple as possible, but no simpler.

Albert Einstein

Necula’s PCC system [Necula, 1997] constructs for untrusted code a verification

condition (VC), which has the property that if VC holds with regard to the logic

axioms and the typing rules, the program is safe. A VC generator (VCGen) is used

by both the code producer and the code consumer to construct VCs. VCGen exam-

ines a machine-code program instruction by instruction and calculates the weakest

preconditions for each instruction in Hoare-logic style. This VC-based verification

builds the type system and machine instruction semantics into the algorithm for

formulating the safety predicate. VCGen must be trusted to generate the right

formula, but it is a large program (23,000 lines of C code [Appel and Wang, 2002]),

thus difficult to guarantee bug-free.

13

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 14

2.1 FPCC

The motivation of Foundational PCC is to make the TCB as small as possible,

without committing to any specific type system. We believe that the smaller the

TCB, the more confidence PCC users can have. Our TCB consists of the specifi-

cation of the safety policy, machine instruction semantics, and the proof checker.

In the current implementation, it is about 3,000 lines of code [Appel et al., 2002;

Wu et al., 2003], of which about half is the specification of the SPARC instruction

set architecture. To make the TCB minimal, we choose Church’s higher-order logic

with a few axioms of arithmetic, give types a semantic model to move the type

system out of the TCB, and model machine instructions by a step relation between

machine states; we avoid VCGen entirely [Appel and Felty, 2000].

In order to support contravariant recursive datatypes and mutable fields, we

model types as predicates on states, approximation indices [Appel and McAllester,

2001], and type levels [Ahmed et al., 2002]. We have an abstraction layer, Typed

Machine Language (TML) [Swadi and Appel, 2001; Swadi, 2003], to hide the com-

plex semantic models for types. TML provides a rich set of constructors for types,

type maps, and instructions, and an orthogonal set of primitive type construc-

tors such as union, intersection, existential and universal quantification, and so on.

TML is so expressive that its type-checking is undecidable; it is more a logic than

a type system. However, it is very useful for building semantic models of higher-

level, application-specific type systems such as LTAL: We give LTAL constructors

a semantic model in terms of TML.

The FPCC framework is shown in Figure 2.1. A source program is compiled into

a machine-code program and an LTAL program. The code consumer receives the

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 15

Program
LTAL

Code
Machine

ML program

OK!

end

FLINT

Axioms & Architecture SpecTCB

conventions
register
Model of

proofs of TML rules
Machine−checked

Checker

TML rules

LTAL rules

types fields
mutablerecursive

model of

ST
A

T
IC

 P
R

O
O

FS

StratifiedIndexed

Typed back
MLRISC

conversion
Typed closure

C
O

M
PI

L
A

T
IO

N

model of

proofs of LTAL rules
Machine−checked

Figure 2.1: Foundational PCC framework. Trusted components are shaded.

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 16

LTAL rules, along with their soundness proof; checks the soundness proof [Appel

et al., 2002; Wu et al., 2003]; and then runs the LTAL checker, which is a simple

computation (like Prolog but without backtracking).

2.2 The LTAL Interface

The idea of Proof-Carrying Code [Necula, 1997] is that the compiler should produce

machine code accompanied by a proof of safety. A weakness of previous PCC

systems is that the proof-checking infrastructure is too complex to prove sound by

conventional techniques. We have built the first compiler that produces machine

code accompanied by safety proofs that are machine-checkable in a simple logic from

minimal axioms.

Most PCC compilers, including ours, are based on typed intermediate languages

or typed assembly language [Morrisett et al., 1998, 1999b], which provide a way to

generate safety proofs automatically. TAL has a soundness guarantee: If a TAL

program type-checks and there is no bug in the assembler, the machine code is safe

to execute. Soundness is proved as a metatheorem outside of the proving system;

the proof is hand-written and not machine-checkable. The typing rules and the type

checker are in the trusted computing base, that is, bugs in these components can let

unsafe code slip past the checker. There have been many variants of TAL [Morrisett

et al., 1999a; Xi and Harper, 2001; Morrisett et al., 2002], which rely on similar

soundness metatheorems. A recent variant TALT [Crary, 2003] has a machine-

checkable metatheorem, which moves the typing rules and the type checker out of

TCB. The metatheorem proof checker, such as Twelf [Pfenning and Schürmann,

1999, 2002] used by TALT, is usually a quite big program and has to be trusted.

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 17

It is hard to manage the soundness proofs and avoid errors when scaling up

to realistic type systems for real compilers. The goal of our Foundational Proof-

Carrying Code (FPCC) [Appel, 2001] project is to build machine-checkable safety

proofs for machine-code programs from the minimal set of axioms. We have de-

signed a low-level typed assembly language (LTAL) to be the interface between the

compiler and the checker: The compiler compiles a source program to machine code

annotated by an LTAL program. LTAL annotations are not in the machine code,

so they don’t increase machine code size or execution time.

The soundness of LTAL typing rules is proved not by a metatheorem as in TAL,

but by their semantic model [Tan et al., 2004], bottom up: First we use higher-

order logic with axioms for arithmetic to prove lemmas about machine instructions

and types, then we prove the TML typing rules based on these lemmas, then we

prove the soundness of LTAL typing rules in the TML model. Each typing rule is

represented as a derived lemma in our logic.

LTAL benefits from its semantic model in many aspects: First, it is more scal-

able. Adding new rules that can be described in our semantic model generally does

not affect the soundness of existing rules, which we found very useful in evolving

the design. Second, it is more secure because the typing rules are moved out of

the TCB. Third, TML connects LTAL to real machine instruction semantics, thus

bridges the gap between typed assembly language and machine language.

LTAL is not intended as a universal TAL. Instead, it is extensible. Our semantic

modeling technique is very modular. New operators can be added to LTAL (and

proved sound) without disturbing the soundness proofs for existing operators, as

long as the new operators conform to the assumptions in the semantic model. We

started with a very simple model [Appel and Felty, 2000], and when we added

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 18

contravariant recursive types [Appel and McAllester, 2001] and mutable record fields

[Ahmed et al., 2002] these changes did violate previous assumptions and require

nonmodular rewrites. But now our model is very powerful and general: None of

the existing LTAL soundness proofs will need to be touched when we add operators

to handle extensible sums, various kinds of exception handling mechanisms, various

kinds of multidimensional arrays (with or without pointer indirections), or arbitrary

predicates on scalar values.

2.3 FPCC/ML Compiler

The FPCC/ML compiler, built by Chen and Fang [Chen et al., 2003], transforms

core ML (ML without the module system) into SPARC code with LTAL annotations.

At present our prototype omits exceptions and strings. The compiler is based on

the Standard ML of New Jersey (SML/NJ) system [Appel and MacQueen, 1987,

1991].

There are several stages: the front end of SML/NJ translates source ML pro-

grams to FLINT (a typed intermediate language based on Fω) [Shao, 1997]; we

have reused the FLINT front end. The newly built typed CPS-conversion and clo-

sure conversion phases, built by Hai Fang, generate NFLINT (a typed intermediate

language like Morrisett’s λC [Morrisett et al., 1998, 1999b]). The next few phases,

built by Juan Chen, break down complex instructions, build basic blocks, and insert

coercions to get machine-independent LTAL programs. The back end, also by Juan

Chen, takes machine-independent LTAL, and produces machine code with machine-

specific LTAL annotations and some auxiliary information, such as mapping from

labels to their addresses.

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 19

SML/NJ’s back end uses the untyped MLRISC retargetable instruction selec-

tion, register allocation, and low-level optimization software [George, 1997]. The

difficulty is to make MLRISC preserve and manipulate type information, without

rewriting the MLRISC or making it dependent on our particular type system. For-

tunately, MLRISC already had some support for an annotation mechanism [Leung

and George] that permits “comments” on the instructions; we have generalized this

mechanism and used it to propagate types.

2.4 Checker

Our checker has two main components. First, it uses a simple LF type-checker

to check a proof, in higher-order logic, of the soundness of the LTAL typing rules

[Appel et al., 2002; Wu et al., 2003]. We can view these LTAL rules as a set of

lemmas.

On the other hand, the LTAL rules can be regarded as a set of Prolog-like clauses.

Then, because these rules are syntax-directed, the checker can run a very simple

subset Prolog interpreter (without backtracking) on these rules to type-check the

machine-language program [Wu et al., 2003].

The LTAL program is only an untrusted hint so that the checker can take ad-

vantage of type and dataflow information from the compiler in proving the safety of

the machine code. The process of running the checker on a machine code and the

corresponding LTAL program is like type-checking the machine code according to

the structural information from the LTAL program. The overall goal of the checker

is judge prog(H, P) where P is the binary code (a sequence of instruction words)

and H is the corresponding LTAL program. The predicate judge prog characterizes

CHAPTER 2. FOUNDATIONAL PROOF-CARRYING CODE 20

well-typedness. The checker solves this goal according to the structure of H. In the

underlying semantic model, we can prove that well-typedness implies safety:

judge prog(H, P)→ safe(P).

The predicate safe is the machine-level safety policy. When the checker succeeds

on the goal judge prog(H, P), we apply this lemma to get a proof of safe(P).

2.5 Safety Proof

The safety proof for input machine code consists of two parts: the static proof of

the LTAL type checking rules and the syntactic type derivation. We have built an

semantic model for the LTAL type system based on mathematical logic and the

machine semantics, and proved each LTAL type checking rule as a lemma in our

system. This static proof of the soundness of LTAL is checked once and for all. The

syntactic LTAL type checking rules are interpreted by the checker to verify that a

type derivation exists, that is, the input program is typeable in LTAL. The checker

does not actually build the huge proof, i.e. the type derivation; it just makes sure

that there exists one.

We encode the LTAL type checking rules in LF, and prove them as lemmas.

After checking the validity of the proofs of lemmas, we strip off the proofs and

interpret the set of rules as a logic program in the Flit checker. If the logic program

terminates with a positive result, a type derivation exists. That is, there exists a

machine-checkable safety proof of the input program, although we actually didn’t

fully build it.

Chapter 3

Low-Level Typed Assembly

Language

We have designed our own typed assembly language LTAL because we want to

generate safety proofs of machine code, with as much flexibility as possible for an

optimizing compiler. Thus, even part-way through a sequence of instructions that

allocates on the heap or that does datatype-tag discrimination, the LTAL type sys-

tem must be able to describe the machine state. That is, LTAL has no “macro”

instructions: Each LTAL instruction corresponds to one SPARC instruction or is

a coercion with no runtime effect. Because no sequence of instructions is unbreak-

able, low-level optimizations such as instruction scheduling are permissible (how-

ever, at present our LTAL does not accommodate the filling of branch-delay slots on

SPARC). Macro instructions in other TALs (such as malloc and test-and-branch)

that expand to a fixed sequence of machine instructions, interfere with low-level

optimization.

21

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 22

TAL Systems 1 2 3 4 5 6 7 8 9 10 11 12

SpecialJ [Colby et al., 2000] #

TALx86 [Morrisett et al., 1999b] � # # # #

DTAL [Xi and Harper, 2001]

FTAL [Hamid et al., 2002] �

TALT [Crary, 2003] � #

Open Verifier [Chang et al., 2005] � # #

Our LTAL [Chen et al., 2003] � � � �

TAL Features: Keys:
1 Compiles “real” source language # partially
2 Compiles to real target machine � nearly
3 Foundational specification completely
4 Machine-checked soundness proof
5 Minimal checker
6 Atomicity
7 Compiler can choose data representations
8 Dataflow analysis
9 Position-independent code
10 Basic blocks
11 Syntax-directed checking
12 Flexibility

Figure 3.1: Comparison of TAL and PCC systems. (The table is based on Chen
et al. [2003]. The status of TALT, the last column, and the entry for the Open
Verifier are new.)

3.1 LTAL Features

Our design and implementation has the following desirable properties, some of which

are shared by some other TAL and PCC systems (see Figure 3.1):

• Compiles a “real” source language. We have built a compiler for almost

all of core ML—a full-scale source language with polymorphic higher-order

functions, disjoint-sum recursive datatypes, and so on.

• Compiles to a real target machine. We generate high-quality SPARC

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 23

code. Our type-preserving compiler is based on the SML/NJ system [Appel

and MacQueen, 1987, 1991].

• Foundational specification. We have a concise logical specification, inde-

pendent of any type system, of the safety property guaranteed by our system:

In our prototype we guarantee memory safety and that only a certain subset

of SPARC instructions will be executed [Appel, 2001]. Furthermore, our spec-

ification relates to the actual machine language to be executed—not assembly

language—we model and check instruction encodings explicitly.

• Machine-checked proof. We have a machine-checked proof (mostly fin-

ished) of the soundness of our system—that is, if the LTAL type-checks, the

machine code is safe. Unlike any other TAL or PCC system, our proof is

with respect to a minimal set of axioms, the largest part of which is a logical

specification of the instruction set architecture of the SPARC processor.

• Minimal checker. Just in case you are worried about bugs (or Trojan horses)

in proof checkers, our soundness proof is checkable in a very minimal logic:

The trusted base of our system (including axioms, machine specification, and

a C program implementing the LF checking and a simple logic programming

engine) is about 3034 lines of code [Appel et al., 2002; Wu et al., 2003], an

order of magnitude smaller than other systems.

• Atomicity. Some other TALs have “macro” instruction sequences (or even

worse, calls to the runtime system) for compare-and-branch, or datatype tag-

checking, or memory allocation. This inhibits optimizations such as hoisting

and scheduling.1 Each of our LTAL instructions corresponds to at most one

1These optimizations can be done in the assembler, but need to be trusted bug-free, whereas

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 24

machine instruction. Some LTAL instructions are only for type coercion, and

do not correspond to any real machine instructions. Because no sequence of in-

structions is unbreakable, low-level optimizations such as instruction schedul-

ing are permissible.

• Compiler can choose data representations. For data structures such as

tagged disjoint sums, a compiler may want to exercise discretion in choos-

ing data layouts, unhampered by assumptions built into a typed assembly

language. LTAL permits this flexibility; some other TALs do not.

• Dataflow & induction analysis. LTAL includes existential and singleton

types that are powerful enough to permit dataflow-based safety proofs of op-

timized machine code (though our prototype compiler does not exploit all of

this power yet).

• Position-independent code. To avoid the need to trust a linker, we show

how to check typed position-independent code—even in the presence of long

jumps and of operations that move code addresses into pointer variables and

closures.

• Basic blocks. LTAL groups instructions into basic blocks, making it easy

for an optimizing compiler to reorder blocks to optimize cache placement or

shorten span-dependent instructions.

• Syntax-directed. Typechecking LTAL is completely syntax-directed. As we

will describe later, the LTAL type checker can be encoded as a simple logic

our system does not need to trust them.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 25

κ ::= Numeric | Scalar | Ω Kinds
τ ::= (See Figure 3.4) Types
cc ::= cc cmp(τ1, τ2) | cc testbox(τ) Condition Codes

| cc testmem(m) | cc none

v ::= x | i | l | c(v) | vdiff (l1, l2) Values
c ::= (See Figure 3.7) Coercions
op ::= + | − | ∗ | / Arithmetic Operators
π ::= = | 6= | > | ≥ | < | ≤ Arithmetic Compares
ι ::= (See Figure 3.16) Instructions
B ::= l[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk Basic blocks
LRT ::= (L, R, T) Environments
L ::= {l1 7→ a1, . . . , ln 7→ an} label map
R ::= {x1 7→ r1, . . . , xn 7→ rn} register map
T ::= {D1 7→ τ1, . . . , Dn 7→ τn} type abbreviation map

P ::= (LRT, ~B) Program

Figure 3.2: LTAL syntax: Overview.

program that does not need to backtrack, which has important implication

for efficient proof checking.

• Flexibility. Our framework is very flexible. Many of the LTAL features are

orthogonal, which makes LTAL easily extensible. We believe LTAL can be

extended to compile other source languages on different architectures without

much difficulty.

3.2 Syntax Overview

LTAL is a calculus with conventional features such as variable names and scoping

rules. This is unlike other TALs, which use registers and memory locations directly

instead of variables. The LTAL syntax is shown in Figure 3.2, 3.4, 3.7, and 3.16.

LTAL supports first-order kinds; it has only limited support for higher-order

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 26

kinds, since TML does not model higher-order kinds in full generality. For core

ML, this is enough. The kind Numeric classifies singleton numeric types. The kind

Scalar classifies types that are scalar under the TML semantic model. Most types

presented in Section 3.4 are of kind Scalar. However, in our semantic model, it is

convenient to describe the register bank or typing environment φ as a type. The

register bank type and environment types are not scalar; the scalar types only care

about the first element of the vector in the semantic model. The kind Numeric is a

sub-kind of Scalar. All other types are of kind Ω.

LTAL has a set of standard types: type variables,2 top and bottom types, in-

teger types, existential types, and recursive types (See Figure 3.4 for the detailed

description of the LTAL types). There are low-level constructors to model high-level

abstractions, such as singleton integer type n and refined integer type intπ(n) for

integers (i has type intπ(n) means i π n is true, where π is a predicate on integers

such as = or ≤), field types, intersection types and union types for records and

user-defined datatypes.

To model basic blocks (with their live variables) and functions (with their formal

parameters) we have polymorphic “code pointer” types codeptr[~α : ~κ](m, cc, v1 :

τ1, . . . , vn : τn), where ~α : ~κ is a list of type variables with kinds, m is the available

memory size known at this point, cc is the condition code requirement, and vi : τi

are the input arguments and types.

For label arithmetic and position-independent code type checking, we have type

constructors addr and diff, which will be further explained in Section 3.9 and 3.10.

Type def refers to a type expression by a name D ; in our implementation, names

2In our implementation we use de Bruijn indices, but for presentation purpose, we sometimes
show named variables.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 27

are just integers. Each program can have a sequence of type abbreviations that give

names to type expressions. This mechanism makes LTAL programs concise, and

saves the checker some work. The checker expands a name to the type expression

it stands for only when such expansion is needed. Otherwise, the checker simply

passes the name around, which is more efficient than passing the type expression.

The body of a type definition could be an open type expression with free variables.

Type variables cannot be used for this purpose since they usually stand for closed

type expressions.

We have a special category cc to capture the condition code status (on machines

with condition codes), which includes cc cmp for comparison, cc testbox for testing

whether or not a type is boxed, cc testmem for memory availability testing, and

cc none for arbitrary status.

A value can be a variable x, an immediate integer i, a label l, a coerced value

c(v) (where c is a coercion), or a vdiff value. Values and their typing are further

explained in Section 3.5.

Coercions are used to change the type of values; all coercions are free of runtime

effect, as they follow subtyping relations in the underlying model. Many of these

coercions are conventional, such as identity, composition, pack, fold/unfold, inject,

and project. Coercion rules are further discussed in Section 3.6.

LTAL has a machine-independent core, which includes: move and ALU instruc-

tions, sethi for loading large integers, store and load instructions, addradd for ad-

dress arithmetic, select for loading a record field, gettag for loading the tag field of

a sum type value, init, record, and inc allocptr for heap allocation, call for jumping

to some label, and calln for “call by fall-through,” (which generates no code). Each

target machine requires the addition of machine-specific operators and rules. The

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 28

instructions in LTALSPARC that are specific to machines with condition codes are:

cmpcc compares two integers and sets condition codes; cmpcci compares a value

with a compile-time-known integer, sets condition codes and refines the type of the

value; testbox tests if a value is boxed; testmem tests for out-of-heap; if is normal

conditional branch without type refinement; ifr is conditional branch with type re-

finement in both branches, ifboxed refines types for boxedness of the value (of a

sum type), and iffull and iftag specialize type refinement for memory allocation and

datatype tag discrimination, respectively. The LTAL instructions and their typing

rules will be further discussed in Section 3.9.

Function declaration l[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) = ι1; . . . ; ιk defines a

function (basic block) with label l, type parameters ~α : ~κ, formal parameters v1 :

τ1, . . . , vn : τn, and function body ι1 . . . ιk which is a sequence of LTAL instructions.

The number m specifies how much memory is guaranteed to be available when the

function is called. It is a compile-time known constant. If a function specifies 16

words and allocates no more than 16 words, for example, there is no need to test

the memory availability. Otherwise, it has to check explicitly if there is enough

memory. The condition-code requirement cc specifies the status of condition codes

when the function is called. The function label l is assigned a code pointer type

codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn). Each function is closed in the sense that

there are no free type variables or value variables.

The triple LRT represents three environments that keep auxiliary information

for type checking. The label environment L is a map from program labels to their

addresses (offset from the beginning of the program). The register-allocation envi-

ronment R maps variables to temporaries (registers or spill locations).3 The type

3To model the fact that a value in a register can belong to two different types at once (if their

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 29

abbreviation environment T maps type abbreviations to their expansions. Type

abbreviations are used to gain concise type expressions and the type checker opens

a type abbreviation only when needed.

An LTAL program consists of the above environments and a list of basic blocks,

which can be viewed as a set of function declarations.

3.3 Static Semantics Overview

The low-level type and term constructors in LTAL make the typing system expres-

sive. Yet we need a decidable and simple type-checking algorithm so that proof

generation can be done without a complicated decision procedure or constraint

solver. To this end, we have made LTAL completely syntax-directed. There are no

subtyping rules; instead, we use coercions to avoid nondeterministic choices during

type checking. We explain various typing judgements, and then show some typing

rules in this section.

The typing judgement for values LRT ; ρ; φ ` v : τ means value v has type τ

under environment LRT ; ρ; φ. The triple LRT is part of the program. The kind

environment ρ is a list of kinds for type variables bound so far. In our implemen-

tation we use de Bruijn numbers to represent type variables; the ith (starting from

0) element of the kind list ρ is the kind for the type variable of de Bruijn index i.

The value environment φ maps variables to their types.

The judgement LRT ` (ρ; H ; φ; cc) {ι} (ρ′; H ′; φ′; cc′) means after instruction

ι is executed, environment (ρ; H ; φ; cc) becomes (ρ′; H ′; φ′; cc′). The construction

intersection is nonempty), we choose not to use intersection types. Instead, we say that each
variable can have only one type (globally), and in the register-allocation environment more than
one variable at a time can mapped to the same register.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 30

φ, v : τ augments φ. The construction (φ\v), v : τ kills dead bindings before adding

the new binding v : τ ; it keeps the alive bindings unchanged. To be more specific,

for a binding u : τu in φ, if variables u and v are assigned to the same register and u

is not alive after the execution of instruction ι, the binding u : τu is killed; otherwise,

it remains the same. When there is no ambiguity, we use φ, v : τ for both purposes.

The heap-allocation environment H is explained in Section 3.8. The environment

cc specifies the current status of condition codes.

As an example we will show a simplified rule for an LTAL add instruction. In

Section 3.10 we will show a different typed version of add. These two different typed

versions of add expand to the same SPARC machine instruction. The first rule we

show here is useful for compiling a source-language add for which no dataflow track-

ing is needed to prove safety; the second is useful for compiling address arithmetic.

Having multiple LTAL instructions for the same machine instruction simplifies type-

checking.

LRT ; ρ; φ ` x : int LRT ; ρ; φ ` y : int

LRT ` (ρ; H ; φ; cc) {z = x + y} (ρ; H ; (φ\z), z : int; cc)

In fact, this rule is dramatically simplified for clarity. The full version, which is

shown in Figure 3.3, has ten premises and one complicated conclusion.

The first and second premises state that both x and y have type int32, the

32-bit integer type. The environment LRT is label, register allocation, and type

abbreviation maps. Address ` is the location of current instruction z = x + y; `′ is

the location of the next instruction. Premise (3) specifies that the length of the add

instruction is 4 bytes.

Premises (4) and (5) relate variables z and x to their temporary numbers, and

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 31

LRT ; ρ; φ ` x : int32 (1)
LRT ; ρ; φ ` y : int32 (2)
`′ = ` + 4 (3)
rmap(LRT)(z) = tz (4)
rmap(LRT)(x) = tx (5)
realreg(tz) = rz (6)
realreg(tx) = rx (7)
ym = match reg or imm(y) (8)
φ′ = {z : int32} ∩ (φ\z) (9)
decode list ` `′P P ′ i ADD(rx, ym, rz) (10)

LRT ; Γ ` (`; ρ; H ; φ; cc; P){z = x + y}(`′; ρ; H ; φ′; cc; P ′)

Figure 3.3: A sophisticated LTAL type checking rule.

premises (6) and (7) map temporaries to registers; this rule would not be applicable

to operands represented in spill locations (but of course that’s true of the actual

SPARC add instruction too). There are about 1000 temporaries (after register

allocation); the first 64 are registers (including 32 floating-point registers), and

the remainder are in the spill area. The per-program rmap—the R component

of LRT—maps variables to temporaries; the program-independent relations realreg

and memtemp relate temporaries to their machine representation.

Since value y can be either a register or an immediate, we use match reg or imm

in premise (8) to match either a register or an immediate. So ym can be either

(rmode ry) for some register ry or (imode i) for some immediate i. Premise (8)

matches a particular SPARC addressing mode.

Premise (9) states the relation between the value typing context before and after

execution of the current instruction. Before we add the type of variable z into the

context, all aliases of z should be killed since they are not live anymore, which is

what φ\z does. We use intersection type to extend the old typing environment φ

with the new binding z : int32. The φ context is small (it just maps currently live

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 32

local variables) and is represented as a list, not with dynamic atomic clauses as will

be described in Section 5.3.1.

The decode list relation in premise (10) maps an instruction encoding (i.e., an

integer) to its semantics. Specifically, it says that the instruction word at the begin-

ning of machine code P with length `′ − ` is an add instruction i ADD(rx, ym, rv).

Machine code P is a sequence of integers (instruction words); the pair (P, P ′) is

a conventional Prolog difference list [Sethi, 1989, §8.4]. Premise (10) will also be

explained in the next subsection.

The conclusion is a Hoare-logic style judgement. Under environment LRT , the

instruction z = x + y is at location `; the length of the instruction is `′ − `; this

instruction does not affect type contexts ρ or heap allocation environment H ; value

context φ becomes φ′ after execution; the machine code at location `′ is P ′.

For a real-life program, the generated maps L, R, and T can be very large: The

sizes of L and R are approximately linear in the size of the program, and we intend

to be able to type-check programs with millions of instructions. In this typing

rule, premises (4) and (5) look up the temporaries of variables v and x in map R;

premise (8) looks up the temporary of y if it is not an immediate. Therefore, an

efficient environment management scheme is necessary; in our implementation, we

use dynamic clauses to efficiently maintain various environments. We will further

discuss this issue in Section 5.3.

3.3.1 Instruction decoding

The decode list relation in the premise (10) of the sophisticated rule shown in Fig-

ure 3.3 maps an instruction word to a higher-level instruction with semantic mean-

ing. Specifically, it says that the instruction word at the beginning of the machine

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 33

code P with length `′ − ` is an add instruction i ADD(rx, ym, rz). We check for

proper instruction encoding with rules such as the following:

1 0 Z 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 Y

32 30 25 19 14 13 5 0

32 · 2 + Z = X9 64 ·X9 + 0 = X7

32 ·X7 + X = X6 2 ·X6 + 0 = X4

256 ·X4 + 0 = X1 32 ·X1 + Y = W

decode(i ADD(X, rmode(Y), Z), W)

This rule is not an axiom of our system, it is a lemma derived from a more

concise and readable definition of instruction encodings [Michael and Appel, 2000].

The predicate A · B + C = D shown here is a simplification of an actual predicate

that also checks that C < A and that A, B, C, D are natural numbers.

3.4 Types

The LTAL type system is very expressive, with support for many advanced features

such as position-independent code, type definitions, singleton types, and polymor-

phic function types. The LTAL types are shown in Figure 3.4, and we give a brief

introduction below:

Type variables: We use named variables for presentation purposes; however, in

our actual implementation, we use de Bruijn indices such as 0. The de Bruijn

indices enable convenient manipulation of (open) type terms.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 34

Types
τ ::= α type variables
| > top type
| ⊥ bottom type
| int integer type
| n singleton integer type
| intπ(τ) refined integer type
| range(τ1, τ2) range type
| def(D) type definition
| τ1 ∩ τ2 intersection type
| τ1 ∪ τ2 union type
| array(τ1, τ2) array type
| codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) polymorphic code pointer type
| offset(τ1, τ2) offset type
| field(i, τ) field type
| sum(τ1, τ2) sum type
| hastag(τ1, τ2) hastag type
| ∃α.τ existential type
| µα.τ recursive type
| box immutable reference type
| ref mutable reference type
| addr(l) label type
| diff(l1, l2) label-difference type

Figure 3.4: LTAL syntax: Types.

Top type: Any term can have the top type >.

Bottom type: No term can have the bottom type ⊥. It is useful, however, in some

situations. For example, we can use sum(τ,⊥) to represent a data type with

no boxed cases.

Integer types: The integer types are bounded. A term of int32 type has a 32-bit

integer value.

Singleton integer types: The singleton integer type is written as n. A term of

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 35

type n has an integer value n. Singleton integer types are used in many places

such as dataflow analysis in our system.

Refined integer types: LTAL has a set of refined integer types intπ(τ) to express

relational constraints, where π is a binary operator. For example, int>(9) is a

refined type and it classifies integers that are greater than 9.

Range types: Range type is a syntactic sugar. Range type range(τ1, τ2) is an

abbreviation for int≥(τ1) ∩ int<(τ1).

Type definitions: Type definition def is used for concise type representation and

efficient type checking. The type checker opens a type definition only when it

is necessary to do so.

Intersection types: A term v has an intersection type τ1 ∩ τ2 means v has both

type τ1 and type τ2.

Union types: A term v has a union type τ1 ∪ τ2 means that v has either type τ1

or type τ2.

Array types: Type array(τ1, τ2) describes an array whose size is of type τ1 and

whose elements are of type τ2. Type τ1 is expected to be a singleton integer

type such as 100.

Polymorphic code pointer types: The type codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn :

τn) is for polymorphic code pointers. It takes a list of type variables ~α : ~κ

(with their kinds), a type m describing the available memory slots without

further availability testing, the required condition code type, and a list of

arguments and their types.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 36

Offset types: A term v has type offset(i, τ) means that value v + i has type τ .

Offset types are used in address arithmetic.

Field types: Field types are used for constructing types of records. A record type

is the intersection of field types describing the record fields.

Sum types: Sum types are used to describe (user-defined) data types. Sum types

have the form sum(τr, τu), where τr is a range type and τu is a union type

of record types. That is, the τr cases of the data type described by the sum

type are not boxed, and the τu cases are boxed. See Section 3.8 for detailed

descriptions of the use of sum types.

Hastag types: The type hastag(τ1, τ2) refines a sum type by requiring that the

value has a tag at the first field of the record.

Existential types: The existential type ∃α.τ is useful for data abstraction and

information hiding. In LTAL, we use it for typing closures, tagged sum values,

position-independent code, etc.

Recursive types: Recursive types µα.τ model inductively defined recursive types.

Pointer types: Type boxed is for pointer values.

Immutable reference types: The immutable reference type box(τ) describes a

pointer that points to some memory slot whose content is of type τ . The

memory slot to which the pointer points is not allowed to be written after

initialization.

Mutable reference types: The ref type is the mutable version of the above ref-

erence type box.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 37

Values
v ::= x variables
| i known integer value
| l label value
| c(v) coercion value
| vdiff (l1, l2) label-difference value

Figure 3.5: LTAL syntax: Values.

Label types: Label type addr(l) describes a label. The value of a label is an

address at which some code pointer resides.

Label-difference types: The type diff(l1, l2) describes a (compile-time known)

value l1 − l2. This type is used to check address arithmetic and position-

independent code which we will discuss in Section 3.9 and 3.10.

3.5 Values

Values are shown in Figure 3.5. A value can be a variable x, an immediate integer

i, a label l, a coerced value c(v) (where c is a coercion), or a vdiff value. We use

variables to track aliases of registers. Different variables with different types can

be assigned the same register, indicating different views of the same register to the

type-checker. The value constructor vdiff and type constructors addr and diff are

used for address arithmetic and typed position-independent code. Their meanings

are explained in Section 3.9 and 3.10.

Unlike λ-calculus, function values are not classified as values in LTAL. LTAL is

a typed calculus for low-level code, which has labels and code blocks. A label value

in LTAL stands for the address at which a code block resides.

The typing rules for values are quite straightforward, as shown in Figure 3.6.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 38

φ(x) = τ

LRT ; ρ; φ ` x : τ
ValVar

LRT ; ρ; φ ` i : int=(i)
ValConstant

l[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn) = . . . is a code block

LRT ; ρ; φ ` l : codeptr[~α : ~κ](m, cc, v1 : τ1, . . . , vn : τn)
ValLab

LRT ; ρ; φ ` vdiff (l1, l2) : diff(l1, l2)
ValDiff

LRT ; ρ; φ ` v : τv ρ; LRT `c τv

c
↪→ τ

LRT ; ρ; φ ` c(v) : τ
ValCoerce

Figure 3.6: Value typing rules.

What is worth mentioning is ValLab, the value typing rule of a label value. We put

in the premise informally that label l is declared as the label of some code block. In

our actual implementation, we use local assumptions (or dynamic clauses in Prolog)

to check that label l is declared. The use of dynamic clauses enables efficient and

concise proof checking; we will explain this in detail in Section 5.3.

3.6 Coercions

A coercion only changes the static type of a value; it has no runtime effect. A

coercion c defines a type transformation function fc. If c is applied to value v

of type τ , we get another value c(v) of type fc(τ). Type τ and fc(τ) should be

compatible; more accurately, it should be provable that τ is a subtype of fc(τ).

Coercions simplify type-checking by telling the checker, in effect, where to apply

subtyping. However, this can significantly increase the size of the LTAL code.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 39

Coercions
c ::= cid identity coercion
| c1 ◦ c2 composition coercion
| cfold[τ] fold
| cunfold unfold
| cpack(τ1, τ2) pack
| cinjt[sum(τr, τu)] Injection
| csum2range sum to range

| csum2boxedone sum to boxedone

| csum2hastag sum to hastag

| cunhastag hastag elimination
| c2int32 int to int32
| ci2nz singleton refinement
| crange[n1, n2] singleton to range
| cinj1 (τ) left injection
| cinj2 (τ) right injection
| cproj1 left projection
| cproj2 right projection
| cdef D definition introduction
| cname definition expansion
| cinters(c1, c2) intersection
| cunion(c1, c2) union
| c2inters simultaneous coercion
| cfield c field
| caddr2code label to code pointer
| coffset0 offset 0 introduction
| coffset0elim offset 0 elimination
| cptapp[τ] partial instantiation of polymorphic functions

Figure 3.7: LTAL syntax: Coercions.

LTAL are shown in Figure 3.7. We briefly explain them below:

Identity: The identity coercion cid coerces a type to itself.

Composition: The composition coercions c1 ◦ c2 applies c2 first, and then applies

c1 to that result.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 40

Fold: The coercion cfold[τ] transforms a type τ0 into a recursive type τ . The

recursive type τ is of the form µα.τ1, and τ0 = τ1[τ/α].

Unfold: The unfold coercion is the opposite to the fold coercion; it unfolds a re-

cursive type τ0 = µα.τ1 into type τ = τ1[τ/α].

Pack: The coercion cpack(τ1, τ2) coerces a type τ into an existential type τ2. Here

τ2 is of the form ∃α.τ3, and τ = τ3[τ1/α].4 The opposite of pack coercion

is the instruction open (See Section 3.9), which has no runtime effect, but

opens an existential type at type-checking time. Because open must bind a

fresh type variable, it is not convenient to design it as a coercion. In our

implementation, A = open(B) is a virtual instruction with no runtime effect.

At the type-checking time, B must be of some existential type ∃.τ . Assume

the current typing environment is φ. We must shift φ before adding the new

binding A : τ into the typing environment. The result typing environment is

φ[↑], A : τ , where [↑] is the shift operator in the explicit substitution calculus

[Abadi et al., 1990].

Injection: The injection coercion cinjt[sum(τr, τu)] coerces a type τu into a sum

type sum(τr, τu).

From sum to range: The coercion csum2range coerces a sum type sum(τr,⊥) to a

range type τr. Note that the second argument of the sum type must be the

bottom type ⊥.

From sum to boxedone: The coercion csum2boxedone coerces a sum type sum(⊥, τ)

to type τ and makes sure that τ is not a union type; that is, there is only

4In our actual implementation, because we use de Bruijn index representation of variable bind-
ings, τ2 here is an open type and the result type of the pack coercion is ∃.τ2.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 41

one case in the boxed part of the sum type. The compiler uses this one-boxed

fact to optimize away the extra boxing. Note that the first argument of the

sum type must be the bottom type ⊥, stating that it is boxed and there is no

unboxed case.

From sum to hastag: The coercion csum2hastag coerces a sum type sum(⊥, τ) to

type ∃α.hastag(α, τ), or ∃.hastag(0, τ [↑]) in the de Bruijn index representation.

Note that the first argument of the sum type must be the bottom type ⊥. The

type τ [↑] is resulted from shifting type τ one step in the explicit substitution

calculus [Abadi et al., 1990].

hastag elimination: The coercion cunhastag coerces a hastag type hastag(τtag , τ)

into τ if τ is not a union type and τ 6= ⊥.

From int to int32: The coercion cint2int32 coerces some refined integer type (such

as int=(1)) or range type (such as range(0, 2)) into an int32 type.

From singleton type to nonzero integer type: The coercion ci2nz coerces a

singleton integer type to a refined integer type int 6=(0) if values of the original

type are not equal to zero.

From a singleton type to a range type: The coercion crange[n1, n2] coerces a

singleton type i to a range type range(n1, n2). The coerce rule checks that

n1 ≤ i < n2 holds.

Injection left: The injection coercion cinj1 (τ1, τ2) injects a type τ1 into a union

type τ1 ∪ τ2.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 42

Injection right: The injection coercion cinj2 (τ1, τ2) injects a type τ2 into a union

type τ1 ∪ τ2.

Projection left: The projection coercion cproj1 transforms an intersection type

τ1 ∩ τ2 into its first component, that is, the type τ1.

Projection right: The projection coercion cproj2 transforms an intersection type

τ1 ∩ τ2 into its second component, that is, the type τ2.

Definition introduction: The cdef D coerces a type τ into a type definition

def(D) if D is defined as τ .

Definition expansion: The coercion cname expands a def type def(D) into its

definition if type definition D is defined. The LTAL type checker only expands

a type definition when necessary.

Intersection coercion: The coercion cinters(c1, c2) coerces a type of the form τ1∩

τ2 into τ ′1 ∩ τ ′2 if c1 coerces τ1 into τ ′1 and c2 coerces τ2 into τ ′2.

Union coercion: The coercion cunion(c1, c2) is similar to cinters(c1, c2) except

that it coerces a union type instead of an intersection type.

From the same type to intersection type: The coercion c2inters coerces a type

τ into τ1 ∩ τ2 if c1 coerces τ into τ1 and c2 coerces τ into τ2.

Field coercion: The coercion cfield c coerces a field type field(τi, τ) into another

field type field(τi, τ
′) if c coerces τ into τ ′.

From a label type addr to a codeptr type: The coercion caddr2code coerces a

label type addr(l) into the label’s code pointer type if the label is declared in

the actual code.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 43

Introduction of offset type with offset zero: The coercion coffset0 adds prefix

offset 0 to a type.

Elimination of offset type with offset zero: This coercion removes the prefix

offset 0 from a type. It is opposite to the previous one.

Partial instantiation of polymorphic functions: The coercion cptapp[τ] par-

tially instantiates a polymorphic function, with the first type variable substi-

tuted with type τ .

Some of the coercion rules are shown in Figure 3.8. See Appendix A.1 for the

complete set of coercion rules. The coercion typing judgement ρ; LRT `c τ
c

↪→ τ ′

means that under the kind environment ρ and maps LRT , coercion c changes type

τ to τ ′ and τ ′ must be a subtype of τ .

If value v of type τ1 is used in a place requiring type τ2, the compiler has to insert

a coercion cτ1,τ2 that transforms τ1 to τ2 explicitly. Thus the choice of subtyping

rules is made explicit and LTAL needs no subtyping rules. Also, coercions make

type equivalence rules unnecessary because two equivalent types can also be coerced

to each other. Two types in LTAL are equivalent if and only if they are exactly the

same.

Sometimes after applying a coercion we need to use the value both at its old

type and its new type. This has been a difficulty in some previous TALs, which

assign types to registers: They have to emit a mov instruction to handle this case.

We solve this problem by assigning types to variables, not to registers: A variable

has only one type, but different variables can be assigned the same register. A

move-with-coercion creates a new variable (in the same register) without executing

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 44

ρ; LRT `c τ1

cinj1 [τ1∪τ2]
↪→ τ1 ∪ τ2

CoerceInjectionLeft

ρ; LRT `c τ2

cinj2 [τ1∪τ2]
↪→ τ1 ∪ τ2

CoerceInjectionRight

τ ′ = τ [µα.τ/α]

ρ; LRT `c τ ′
cfold[µα.τ]

↪→ µα.τ
CoerceFold

ρ; LRT `c µα : κ.τ
cunfold
↪→ τ [µα : κ.τ/α]

CoerceUnfold

τ1 : κ

ρ; LRT `c τ2[τ1/α]
cpack[τ1,∃α:κ.τ2]

↪→ ∃α : κ.τ2

CoercePack

ρ; LRT `c τu

cinjection(sum(τr ,τu))
↪→ sum(τr, τu)

CoerceSumInjection

ρ; LRT `c τ
c2
↪→ τ ′ ρ; LRT `c τ ′

c1
↪→ τ ′′

ρ; LRT `c τ
c1◦c2
↪→ τ ′′

CoerceComposition

ρ; LRT `c τ1
c1
↪→ τ ′1 ρ; LRT `c τ2

c2
↪→ τ ′2

ρ; LRT `c τ1 ∪ τ2

cunion(c1,c2)
↪→ τ ′1 ∪ τ ′2

CoerceUnion

Figure 3.8: Selected LTAL coercion rules.

an instruction. In effect, the variable name in an LTAL instruction tells the checker

which type to use.

This means that when we “kill” a variable (by assigning a new value to its

underlying register), we must also kill all the other variables bound to that register.

When adding a new type binding v : τ , we examine each binding v ′ : τ ′ in φ and

remove it from φ if v′ is assigned the same register as v, which means v′ should be

no longer live. We use (φ\v), v : τ to represent this operation; it can be seen in

the premise (9) of the big rule in Section 3.3. When there is no ambiguity, it is

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 45

abbreviated to φ, v : τ . On the other hand, a move-with-coercions such as v = c(v ′)

does not require the application of the \v operator; other aliases of v continue to

be active.

3.7 User-Defined Datatypes

LTAL’s low-level type constructors provide support for various data representa-

tions, and extracting and checking tags. The type-checker can check the connection

between a sum value and its tag, and refine the type of sum values after tag-

checking. We provide flexibility for the compiler writer to choose her preferred style

of datatype representation; the representations we describe in this section are not

new, but the point is that we can type each aspect of their construction and decon-

struction. Chen [2004, Chapter 5] presents a more detailed discussion of data type

representations and their type checking in LTAL and some other TAL variants.

For simplicity, we use the notation [τ0, τ1, . . . , τn−1] for tuple types and use the

following two type macros:

• Type range(n1, n2) for type (int≥(n1)) ∩ (int<(n2)). A sum type is often rep-

resented as range(0, n) ∪ t. The number n indicates the number of constant

constructors, which are represented as integer 0, 1, . . . , n − 1. Type t is the

union of types for the boxed constructors.

• Type hastag(τtag , τ) for (field(0, τtag))∩τ . It means that the tag of a sum value

has type τtag , and the sum value is of type τ .

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 46

Cons

Nil

1

0

intlist1

int

0

intlist2

int intlist3

int

0

0

intlist3

0

intlist4

int

intlist4intlist1

0

intlist2

Figure 3.9: Datatype representations in LTAL. The boxed values are represented
as · .

3.7.1 Datatype representation

The compiler can choose from different data representations for user-defined datatypes

such as intlist:

datatype intlist = Nil | Cons of int ∗ intlist

Figure 3.9 shows four kinds of data representations of the above intlist datatype:

1. The most straightforward representation is to tag each constructor with a

small integer: Nil is tagged 0, and Cons tagged 1. In LTAL, this representa-

tion is expressed as the following type:

intlist1 = µα.([int=(0)] ∪ [int=(1), [int, α]])

This is a recursive type, whose body is a sum type. A sum type is represented

as union of a range type and a tuple type. The range type represents the

unboxed cases and the tuple type represents the boxed cases.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 47

2. We assume that small integers can be distinguished from pointers, thus con-

stant data constructors can be represented as small integers: Nil is represented

as integer 0; Cons is a boxed record with tag 0. In LTAL, this representation

is expressed as the following type:

intlist2 = µα.(range(0, 1) ∪ [int=(0), [int, α]])

3. In the data representation of the Cons case in intlist1 and intlist2, there are two

layers of boxing, one for tags and one for actual user data. We can optimize the

representation so that only one boxing is need. In LTAL, this representation

is expressed as the following type:

intlist3 = µα.(range(0, 1) ∪ [int=(0), int, α])

4. A datatype with only one value-carrying constructor can be optimized further.

It need not be tagged since there is only one boxed case. In LTAL, this

representation is expressed as the following type:

intlist4 = µα.(range(0, 1) ∪ [int, α])

The intlist4 representation is specially optimized for the data types with only

one boxed case. If there are multiple boxed cases, the tag field cannot be omitted

and the intlist3 representation could be used, as the representation of the datatype

example in Section 3.7.3 shows.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 48

3.7.2 Creating sum values

We create an empty list of intlist1 by building a 1-element record v0 = [0], then

coercing it to type intlist1:

LTAL SPARC

(assume v0 : [int=(0)])

v1 = cinj1 ([int=(0)] ∪ [int=(1), [int, intlist1]])(v0)

v2 = cfold[intlist1](v1)

The only difference between v0, v1, and v2 is types. They have different types cre-

ated by coercions, but they are assigned the same register, so no SPARC instruction

is emitted for the above LTAL instructions.

By inserting coercions, the type-checker can easily tell that value v0 can be

coerced to be of type intlist1. In the first step, it simply checks if the type of v0 is

the first part of union type [int=(0)] ∪ [int=(1), [int, intlist1]] (by the rule of coercion

cinj1). After this step, the type of v1 is [int=(0)] ∪ [int=(1), [int, intlist1]]. In the

second step, if the type of v1 is exactly the same as intlist1 with type variable α

replaced with intlist1 (coercion cfold), the type of v1 is coerced into intlist1 (the

result type of v2).

The following two LTAL instructions create an empty list of intlist4 by coercing

integer 0 to be of type intlist4.

v1 = crange[0, 1](0) mov 0, d1

v2 = cinj1 (range(0, 1) ∪ [int, intlist4])(v1)

v3 = cfold[intlist4](v2)

Coercion crange[n1, n2] changes a value of type int=(n) to type range(n1, n2)

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 49

if n1 ≤ n < n2. In the first instruction the type-checker only needs to check if

0 ≤ 0 < 1 holds.

3.7.3 Eliminating sum values

Consider what happens when doing case discrimination on a boxed-tag style of

sum type representation, such as is used when there are multiple value-carrying

constructors. Given a value x of sum type, one fetches its tag into a variable y,

then does a conditional branch on y; at this point, the difficulty is in relating the

outcome of the conditional branch to the refined type of x. One solution is to

use a “macro” TAL instruction to code for the load-compare-branch instruction

sequence. We wanted to avoid all such macro instructions since they hinder some

compiler optimizations such as instruction scheduling. We use type quantification

and singleton types to keep track of the implicit dataflow.

Consider the following user-defined datatype

datatype T = A | B | C of int | D of int ∗ T

which can be represented in LTAL as:

T = µα.(range(0, 2) ∪ [int=(0), int] ∪ [int=(1), int, α]).

This representation is shown pictorially in Figure 3.10. Since the datatype T has

two value-carrying constructors (C and D), the tag field cannot be saved. This

representation is similar to the intlist3 representation showed before.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 50

0

int

0 1

A B C D

int

T

1

Figure 3.10: LTAL datatype representation example. The boxed values are repre-
sented as · .

LTAL SPARC
v0 = cunfold(v)
(β, v′0) = testbox(v0) subcc d, 256
ifboxed (v′0) then (v1, lCD) else (v2, lAB) bge lCD

lAB : . . . lAB : . . .

lCD : (α1, v3) = open(v1) lCD :
t = gettag(v3, 0) ld [d], dt

cmpcc(t, 0) subcc dt, 0, %g0
iftag (=) {v3} then (v′3, lC) else (v′′3 , lD) be lC

lD : . . . lD : . . .
lC : . . . lC : . . .

Figure 3.11: Datatype tag discrimination example. (Variables v0, v, v′0, v1, v2, v3,
v′3, and v′′3 are all assigned register d, and variable t is assigned register dt.)

“Switching” on sum values in source program

case(v : T) of A⇒ eA

| B ⇒ eB

| C (x)⇒ eC

| D(x, y)⇒ eD

is translated to the LTAL and SPARC instruction sequence in Figure 3.11.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 51

We need to generate code that tests v to decide which branch to take. Each test

and each branch should be an explicit LTAL instruction. We first test whether v is

boxed or not. From our assumption that no pointers point to the first 256 words in

the memory, if v is a small integer (less than 256), then it is unboxed. That is, it is

either A or B . Otherwise it is C or D .

The type checking rules used for datatype tag discrimination are shown in Fig-

ure 3.12. Instruction testbox performs this test and sets condition codes. Instruc-

tion ifboxed examines the condition codes and rebinds two fresh variables v1 and

v2 with refined types for boxed and unboxed cases, respectively. Variable v1 has

type ∃α.hastag(α, [int=(0), int] ∪ [int=(1), int, τ]), which means it is tagged (we do

not know the tag yet). Variable v2 has type range(0, 2), which means it is either 0

or 1. Both v1 and v2 are forced to be assigned the same register as v0, so no machine

instruction is needed to move v0 to v1 or v2.

In the unboxed case, we further test if v2 is 0 or 1, which is easy. In the boxed

case, we need to test the tag of v1. Variable v1 hides the type of its tag by existential

types. We first open v1 to v3 and bind a brand new type variable α1. Again, no

SPARC instruction is needed because v1 and v3 are assigned the same register.

Variable v3 has type hastag(α1, [int=(0), int] ∪ [int=(1), int, τ]).

Instruction gettag extracts the tag t and gives it type int=(α1). Then cmpcc

checks if tag t is 0 and set condition-code environment to be cc cmp(α1, 0). Instruc-

tion iftag checks condition codes set by cmpcc, rebinds two new variables v ′3 and

v′′3 as aliases of v3 and does conditional branch. Specifically, the type checking rule

of the iftag instruction checks that: cc is cc cmp(τ0, 0), v3 is of type hastag(τ ′0, τ),

and τ0 = τ ′0; in this example, both τ0 and τ ′0 are α1. Then it refines the types of v′3

and v′′3 to [int=(0), int] and [int=(1), int, τ], respectively. This refinement rules out

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 52

LRT ; ρ; φ ` v : τ φ′ = (φ\v), v′ : int=(α) ∩ τ cc′ = cc testbox(α)

LRT ` (ρ; H ; φ; cc) {(α, v′) = testbox(v)} (ρ; H ; φ′; cc′)
InstrTestbox

LRT ; ρ; φ ` v : int=(τα) ∩ (int=(0) ∪ . . . ∪ int=(n− 1) ∪ τ ′)
τ ′ = τ1 ∪ τ2 ∪ . . . ∪ τm

cc = cc testbox(τα) n < 256
τi = (field(0, int=(tag i))) ∩ τ ′i (for all 1 ≤ i ≤ m)

LRT ; ρ; H ; φ, v1 : τ ′; cc `` l1
LRT ; ρ; H ; φ, v2 : range(0, n); cc `` l2

LRT ` (ρ; H ; φ; cc) {ifboxed (v) then (v1, l1) else (v2, l2)} (; ; ;)
InstrIfboxed

LRT ; ρ; φ ` v : ∃α : κ.τ

LRT ` (ρ; H ; φ; cc) {(α, v0) = open(v)} (ρ, α : κ; H ; φ, v0 : τ ; cc)
InstrOpen

LRT ; ρ; φ ` v′ : hastag(τtag , τu) φ′ = (φ\v), v : int=(τtag)

LRT ` (ρ; H ; φ; cc) {v = gettag(v′)} (ρ; H ; φ′; cc)
InstrGettag

LRT ; ρ; φ ` v1 : int=(τ1) LRT ; ρ; φ ` v2 : int=(τ2)

LRT ` (ρ; H ; φ; cc) {cmpcc(v1, v2)} (ρ; H ; φ; cc cmp(τ1, τ2))
InstrCmpcc

LRT ; ρ; φ ` v : hastag(τα, τu)
cc = cc cmp(τα, i)

τ = τ1 ∪ τ2 ∪ . . . ∪ τn

τi = field(0, int=(tag i)) ∩ τ ′i (for all 1 ≤ i ≤ n)
τt =

⋃
1≤j≤n τj where i π tagj holds

τf =
⋃

1≤k≤n τk where i π tagk does not hold

LRT ; ρ; H ; φ, v1 : (field(0, int=(τα))) ∩ τt; cc `` l1
LRT ; ρ; H ; φ, v2 : (field(0, int=(τα))) ∩ τf ; cc `` l2

LRT ` (ρ; H ; φ; cc) {iftag (π) {v} then (v1, l1) else (v2, l2)} (; ; ;)
InstrIftag

Figure 3.12: Rules for datatype tag discrimination.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 53

disjuncts by the result of comparing tags with integers. A constraint solver as in

DTAL [Xi and Harper, 2001] is overkill for our purpose.

The connection between a tagged value and its tag is established by existential

types, since every time we open a variable of type ∃α.hastag(α, τ) and assign it to

some variable v, we get a fresh type variable α′ (α1 in the above example), and only

v’s type contains the new type variable α′ in the first conjunct (field(0, α′)), and

only by instruction gettag(v, 0) can we get a variable of type α′.

For simplicity we use linear search here. LTAL also permits binary search; to

do an indexed jump we would need to extend LTAL, but our underlying semantic

model will permit this in a modular way.

3.8 Heap Allocation

In this section we briefly present the heap allocation model used in LTAL and the

FPCC/ML compiler. Chen [2004, Chapter 4] gives a more detailed discussion of the

model, including record allocation, known- and unknown-length array allocation,

and their type checking.

Like SML/NJ, our compiler allocates closures and records in registers or on the

heap; we don’t push and pop the stack. At present, our type system (like most

TALs) also does not accommodate reasoning about garbage collection either. We

intend to handle stacks and GC in the future, after we develop a unified theory of

stack and heap deallocation (probably based on a region calculus).

As in SML/NJ, with so much heap allocation we need extremely efficient, in-line

allocation of records. We model the allocable heap memory as a large contiguous

region bounded by two pointers, allocptr and limitptr . Heap allocation is broken

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 54

CHUNK 3

CHUNK 24096

limitptr

allocptr

CHUNK 1

Figure 3.13: SML/NJ Heap allocation model.

into two steps: first, test whether there is enough memory for allocation; second,

initialize memory.

The heap allocation model is shown in Figure 3.13. Before the runtime system

starts executing a program, it reserves a chunk of memory, and sets the allocptr

to the lowest address of the memory chunk, and the limitptr the highest address

(minus a constant C = 4096). When the program needs n memory words, where

4n ≤ C, it tests whether allocptr ≤ limitptr ; if so, then at least n words must

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 55

LTAL SPARC
l0 : testmem(3) l0 : subcc allocptr , limitptr , %g0

iffull then l1 else l2 bg l1

l2 : init(0, v0) l2 : st d0, [allocptr + 0]
init(1, v1) st d1, [allocptr + 4]
init(2, v2) st d2, [allocptr + 8]
v = record mov allocptr , d
inc allocptr(3) add allocptr , 12, allocptr

.
l1 : . . . l1 : . . .

Figure 3.14: Heap allocation example.

be available. Then it fills in n words consecutively to addresses from allocptr to

allocptr + 4n− 4, then increases allocptr by 4n.

The LTAL instruction sequence in Figure 3.14 creates a 3-field record [v0, v1, v2]

and assigns it to v. The corresponding SPARC instructions are on the right side of

the table (d, d0, d1, d2 are registers assigned to LTAL variables v, v0, v1, v2).

Block l0 tests if there are at least 3 words in the memory for allocation; after the

testmem comparison the condition-code environment is cc testmem(3). Then the

branch instruction iffull “consumes” this condition code, and statically guarantees

3 words in the fall-through case (memory is not full).

Block l2 initializes the three newly allocated words. Instruction init(i, vi) ini-

tializes the word whose address is allocptr + 4i with vi. Instruction v = record

copies allocptr to v and v gets the record type. Instruction inc allocptr(n) increases

allocptr by 4n.

The instruction sequence for allocation is not fixed. The instruction scheduler

can shuffle these instructions with others, as long as certain constraints hold.

An allocation environment H is used to check heap allocation. It consists of

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 56

0 ≤ n ≤ 1024

LRT ` (ρ; H ; φ; cc) {testmem(n)} (ρ; H ; φ; cc testmem(n))
InstrTestmem

cc = cc testmem(n) LRT ; ρ; H ; φ; cc `` l1
LRT ; ρ; (n,−1,>); φ; cc `` l2

LRT ` (ρ; H ; φ; cc) {iffull then l1 else l2} (; ; ;)
InstrIffull

LRT ; ρ; φ ` vi : int=(i) 0 ≤ i < n m′ = max(m, i)
LRT ; ρ; φ ` v : ti t′ = t ∩ (field(4i, ti))

LRT ` (ρ; (n, m, t); φ; cc) {init(vi, v)} (ρ; (n, m′, t′); φ; cc)
InstrInit

LRT ` (ρ; (n, m, t); φ; cc) {v = record} (ρ; H ; φ, v : t; cc)
InstrRecord

LRT ; ρ; φ ` v : int=(n′) m < n′ ≤ n

LRT ` (ρ; (n, m, t); φ; cc testmem(k))
{inc allocptr(v)}

(ρ; (n− n′,−1,>); φ; cc none)

InstrIncAllocptr1

LRT ; ρ; φ ` v : int=(n′) m < n′ ≤ n cc 6= cc testmem(k)

LRT ` (ρ; (n, m, t); φ; cc)
{inc allocptr(v)}

(ρ; (n− n′,−1,>); φ; cc)

InstrIncAllocptr2

Figure 3.15: Rules for allocation instructions.

three parts: the number of words that are guaranteed to be available in the memory,

the largest index of initialized fields, and the type of the partial record initialized so

far. We don’t need the initialization flags used in TALx86 [Morrisett et al., 1999a].

The typing rules for the allocation instructions are shown in Figure 3.15. The

judgement LRT ; ρ; H ; φ; cc `` l states that the signature of block l matches the

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 57

current environment; for heap allocation, the environment H must hold. If this

judgement holds, it is safe to jump to block l, and safe to allocate certain size of

memory (without out-of-heap testing) specified by the environment H . Instructions

testmem and iffull establish the allocation environment in which the init instructions

type-check. The compiler can (and does) optimize by making one iffull cover the

sequential allocation of several different records in a control-flow path that covers

several basic blocks. The parameter m of codeptr conveys the necessary information

about how much memory is guaranteed to remain.

A tuple type [τ0, τ1, . . . , τn−1] is represented in LTAL as

(field(0, τ0)) ∩ (field(1, τ1)) ∩ . . . ∩ (field((n− 1), τn−1)).

If v has this type, then the word located at memory address v has type τ0, at address

v +4 type τ1, etc. (assuming the word size is 4). When a field is initialized by a init

instruction, one more conjunct (a field type) is added into the type of the partial

record in the allocation environment.

After initialization, the allocptr is copied to a variable (with record type) by

instruction v = record, and then the allocptr is adjusted to point to the next

available memory word by instruction inc allocptr. After instruction inc allocptr,

the condition codes set by testmem are invalid because allocptr has been changed.

So we reset the condition-code environment if it is testmem.

In the above example, H is (3,−1,>) when checking function l2. The number 3

means l2 needs 3 words in the heap; the second number −1 means no fields has been

initialized; the type > means none of the 3 words is initialized. The environment H

becomes (3, 0, field(0, t0)) after instruction init(0, v0), (3, 1, (field(0, t0))∩(field(4, t1)))

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 58

after instruction init(4, v1), and (3, 2, (field(0, t0))∩ (field(4, t1))∩ (field(8, t2))) after

instruction init(8, v2), where t0, t1, and t2 are the types of v0, v1, and v2, respectively.

Variable v gets type (field(0, t0))∩ (field(4, t1))∩ (field(8, t2)), which is the third part

of H at this point, after instruction v = record. Instruction inc allocptr(3) clears

H to be (0,−1,>).

3.9 Instructions

LTAL has a number of instructions to allow efficient type checking of heap allocation

processes, position-independent code, user-defined data type tag discrimination,

condition codes, and polymorphic code blocks. The LTAL instructions are listed in

Figure 3.16.

We briefly explain their informal meanings and type checking below:

open: The open instruction has no runtime effect. The compiler assigns the old

and new variables to the same register, and only the type is changed. It is

opposite to the cpack coercion.

move: The statement v = v′ is a move instruction if the registers assigned to

variables v and v′ are different. If v and v′ are assigned to the same register,

it has no runtime effect, but copies the type of v′ to v.

ALU instructions: LTAL has a set of standard ALU instructions such as addition,

subtraction, and multiplication.

sethi: If an integer is too big to fit in an instruction as the immediate operand field,

the sethi is used to set the high bits first. The semantics of instruction sethi

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 59

Instructions
ι ::= (α, v′) = open(v) no instruction
| v′ = v move, or nop
| v = v1 op v2 ALU instructions
| v = sethi(n) sethi
| v = load(v1) load
| v = store(v1) store
| v = addradd(v1, v2) add
| v = select(v1, v2) load
| v = gettag(v) load
| init(vi, v) store
| v = record move
| inc allocptr(v) add
| call(v, [τ1, . . . , τn]) jump
| calln(l, [τ1, . . . , τn]) fall through

? | cmpcc(v1, v2) subcc
? | (α, v′1) = cmpcci(v1, v2) subcc
? | (α, v′) = testbox(v) subcc
? | testmem(n) subcc
? | if (π) then l1 else l2 branch
? | iffull then l1 else l2 branch
? | ifboxed (v) then (v1, l1) else (v2, l2) branch
? | ifboxedone (v) then (v1, l1) else (v2, l2) branch
? | iftag (π) {v} then (v1, l1) else (v2, l2) branch

Figure 3.16: LTAL syntax: Instructions. Marked ? operators are specific to ma-
chines with condition codes.

is the same as SPARC sethi instruction. The instruction v = sethi(n) zeroes

the least significant 10 bits of variable v’s register, and puts the immediate n

in the high 22 bits.

load: The LTAL instruction v = load(v1) maps to a SPARC load instruction. It

loads v1 (in memory) into v (in register). In the new typing environment,

variable v gets v1’s type and bindings whose variables are assigned in the

same register as v are killed.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 60

store: The LTAL instruction v = store(v1) maps to a SPARC store instruction.

It stores v (in register) into v1 (in memory). The type checking rule is very

similar to that of load instruction.

addradd: The addradd is for address arithmetic. It is used for type checking

position-independent code. The instruction v = addradd(v1, v2) assigns v1+v2

to v, where v1 is a label value and v2 is a vdiff value. Operand v1 is of label

type addr(l) for some label l. Operand v2 is a known integer, which is the

difference between two labels. The type of v2 is diff(l1, l2) for some labels l1

and l2, and the value of v2 is l1 − l2 which is a compile-time known integer.

For type checking position-independent code, v1 is usually the base label, and

v2 is the offset of a label from the base. See Section 3.10 for the details of

position-independent code type checking.

select: The select statement corresponds to a memory load machine instruction.

It loads a record field.

gettag: The gettag statement also corresponds to a memory load machine instruc-

tion, but it loads a tag for some sum data type. For example, the instruc-

tion A ← gettag(B) loads the tag of B into A, where B should have type

hastag(τtag , τu), for some tag type τtag and union type τu. The result type of

A is int=(τtag).

init: The init is used to initialize a record field, and it maps to a memory store

instruction.

record: The instruction v ← record moves allocptr , which resides in a dedicated

register, to variable v, whose type will be a record type. The record instruction

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 61

maps to a memory store instruction if variable v is a memory location, and

to a bitwise OR instruction if variable v resides in a register.

inc allocptr: The instruction inc allocptr(i) increment the alloc pointer by i, and

invalidates the condition code environment cc testmem.

call: The instruction call[σ](v) maps to a SPARC ba (branch aways) instruction

or jmpl (jump and link) instruction depending on whether v is a variable

residing in some register or a label value. The substitution σ is applied to the

environments for type checking.

calln: The instruction calln is fall-through. It maps to no SPARC instructions.

The target label must be at the same address as the calln instruction.

cmpcc: The cmpcc maps to a SPARC subcc instruction, and updates the condition

code environment to cc cmp.

testbox: The testbox instruction corresponds to a SPARC subcc instruction. It

compares a variable residing in some register to integer 256 to decide whether

the variable is a pointer or not. The implicit assumption here is that all

pointers have address values greater than 256. This instruction updates the

condition code environment to cc testbox.

testmem: The testmem instruction also corresponds to a SPARC subcc instruc-

tion. It compares the alloc pointer to limitptr (the limit pointer as shown

in Figure 3.13) to decide whether there are free memory cells or not. This

instruction updates the condition code environment to cc testmem.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 62

Branch instruction if: The if statement corresponds to a SPARC branch instruc-

tion. Its type checking rules check the argument types of both branches, but

does not refine any types or environments in either branch as the iffull, ifboxed,

ifboxedone, and iftag instructions do.

Branch instruction iffull: The iffull statement corresponds to the SPARC branch

instruction bcc. Its type checking rule checks the argument types of both

branches, and checks that the condition code environment is cc testmem and

has enough free memory slots. The type checker then remembers this fact in

the heap allocation environment.

Branch instruction ifboxed: The ifboxed statement corresponds to the SPARC

branch instruction bcc. Its type checking rule checks the argument types of

both branches, and checks that the condition code environment is cc testbox

and with valid type. The type checker then refines the types of the variable

being tested for both branches depending on whether it is boxed or not.

For example, the instruction A = testbox(B) sets the type of variable A

to (0 ∩ τ
[↑]
b), where 0 is the de Bruijn index implementation of a fresh type

variable, τb is the type of value B, and ↑ is the shift operator in the explicit

substitution calculus [Abadi et al., 1990]. The testbox instruction binds a

fresh type variable. After this instruction, the new environments, including

typing environment φ, heap allocation environment H , and condition code

environment cc, have one new type variable and its kind. The condition code

environment is set to cc testbox(0).

In the type checking rule of instruction ifboxed (v) then (v1, l1) else (v2, l2), we

check that the condition code environment is cc testbox(τ), and the type of v

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 63

is τ ∩ sum(τr, τs) whose first component τ matches the type in the condition

code environment. Then we refine the type of v to either ∃.hastag(0∩ τ
[↑]
s) or

τr and bind them to v1 or v2, respectively, depending on whether v is boxed

or not. We also check that the argument types match for branches to labels

l1 and l2. We use type variables (de Bruijn indices in our implementation)

and intersection types to check integrity of type safety when the testing of

boxedness and branching on boxedness are separated instructions. We use a

similar trick to type check pairs of testmem and iffull instructions and pairs of

cmpcc and iftag instructions. Chen and Tarditi [2005] have subsequently used

this to type check method lookup and call in virtual table in object-oriented

languages [Chen and Tarditi, 2005].

Branch instruction ifboxedone: The ifboxedone instruction is a special case of

ifboxed. Its type checking rule does an additional check that the type τs above

is not a union type; that is, there is only one boxed case in the sum type. In

this case, the compiler optimizes the data representation of the sum data type

to save the tag field and remove one layer of boxing as shown in Figure 3.9.

Branch instruction iftag: The iftag (π) {v} then (v1, l1) else (v2, l2) statement

corresponds to a SPARC branch instruction. The cmpcc instruction compares

a variable to the tag of a sum data type (tagged union) and sets the condi-

tion code (environment) to cc cmp. The type checking rule of iftag checks the

argument types of both branches, and checks that the condition code environ-

ment is cc cmp(τtag , i) and matches v’s type hastag(τtag , τu). Then the type of

v is refined depending on whether or not the tag matches, and the new type

is bound to v1 or v2, respectively.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 64

The sophisticated rule shown in Section 3.3 is a typical instruction type checking

rule in our actual implementation. For the sake of clarity, we present a simple version

of the actual rules implemented. The complete instruction typing rules are listed in

Appendix A.2.

3.10 Don’t Trust the Linker!

To avoid the need to reason about possible bugs in the link-loader, we arrange that

each compilation unit needs no link-editing, and links to others using closures, in

the style of SML/NJ [Blume and Appel, 1997, §3]. We must avoid the need for

a linker to do relocation. Our safety policy says, “a program is safe if, no matter

where we load it in memory, it will never access an illegal address or execute an

illegal instruction” [Appel, 2001].

PCC systems are most useful in applications where untrusted code shares the

same address space with trusted code; in such situations, position-independent code

is desirable because it makes the linker flexible.

Position-independent code must use relative addresses instead of absolute ones.

The problem arises when we move a label into a register or store it in memory, to

make a function-pointer or a closure. The value of the label depends on where the

code is loaded.

We adopt the solution that SML/NJ uses, but we show how to type-check it.

Each function takes a base parameter, which is the start address of its own machine

code in the memory. We keep the base address of the current function in a register,

and calculate the addresses of labels as offsets from base. When a function f is

called, the address f is passed as its own base argument.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 65

In the body of a function f , moving a label g to variable v is implemented as

v = addradd(base, g − f), where g − f is a constant computed by the compiler.

Instruction addradd is translated to the SPARC add instruction, and used only for

address arithmetic.

LRT ; ρ; φ ` v1 : addr(f)

LRT ; ρ; φ ` v2 : diff(g, f)

φ′ = (φ\v), v : addr(g)

LRT ` (ρ; H ; φ; cc) {v = addradd(v1, v2)} (ρ; H ; φ′; cc)
InstrAddrAdd

To type-check position-independent code, we introduce type constructors addr and

diff. The former gives a type to a label and the latter types the difference between

two labels. For example, in the above example v = addradd(base, g − f), variable

base has type addr(f); the compile-time known constant g−f , which is represented

as a value vdiff (g, f), has type diff(g, f); and the typing rule for addradd will give

type addr(g) to v.

When a function f is called in a compilation unit other than where it is defined,

its label is (statically) unknown at the call site. Then the type of its base cannot

be addr. We use existential types to hide the base type; the type of f becomes

∃β.codeptr[~α : ~κ](m, [base : β, . . .]). To make sure that f itself is passed to its base

when f is called, we make f have type ∃β.(β ∩ codeptr[~α : ~κ](m, [base : β, . . .])).

As an important optimization, when a function is called only by direct jumps

from known locations, it does not need its own base argument—it can use the base

of one of its known callers. This avoids addradd instructions in local loops and

branches.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 66

Category Constructors & operators
SPARC instruction constructors 196
SPARC instruction decoding rules 263
Coercion operators 32
Coercion rules 46
Explicit substitution calculus 59
Environment constructors 63
LTAL type operators 21
LTAL instruction operators 43
Type refinement rules 82
Kind operators 17
Kind checking rules 36
Type wellformedness rules 41
Local environment management 86
Static arithmetic calculations 55
Rules for parsing LRT maps 16
Structural type matching heuristics 38
Branch checking rules 17
LTAL instruction constructors 52
Instruction typing rules 53

Total 1,216

Table 3.1: LTAL calculus statistics.

3.11 Measurements

3.11.1 Size

The LTAL calculus is a large engineering artifact, just like the compiler that pro-

duces it and the SPARC machine that consumes it. It comprises (at the current

state of implementation) approximately 1200 operators and rules. The statistic

data are summarized in Table 3.1. The first column gives brief description of var-

ious constructors and rules. The second column shows the number of constructors

and rules.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 67

A typical large rule, such as the one shown in Section 3.3, is quantified over a

dozen variables and has a dozen premises. In all, the current LTAL type checker

is 4,163 lines of (non-blank, non-comment) Prolog-like source code. The machine-

checked proof of the soundness of all the LTAL rules (which is nearing completion)

is over 143,400 lines of higher-order logic as represented in the Twelf system. The

axioms comprise 1,957 lines, almost all of which is the specification of the SPARC

instruction set architecture.

The compiler from core ML to LTAL and SPARC machine code is written in ML;

its size (including blank lines and comments) is 50k lines of the SML/NJ (version

110.35) front end (unmodified); 1.8k lines of code copied and modified from the

implementation of the SML/NJ interactive top-level loop; 2.7k lines to translate

FLINT to NFLINT; 7.8k lines to translate NFLINT to LTAL; 1.2k lines to interface

of MLRISC; and approximately 50k lines of the MLRISC system5 itself, of which

400 lines are new or modified to support our more-general annotation interface.

3.11.2 Performance

We compared our performance6 to that of SML/NJ (version 110.35) on two small

benchmarks: Life (adapted from the Standard ML benchmark suite) and RedBlack,

which uses balanced trees to do queries on integer sets. The results are shown in

Table 3.2.

Our compile time is not competitive (2.998 seconds to compile Life compared

to 0.49 seconds for the production release of SML/NJ); we have not engineered our

5The MLRISC software has several other analyses, optimizations, and target machine specifi-
cations that we did not use and that we don’t count here.

6The compile and run time is measured on Sun UltraSPARC E250, 400 MHz. The safety
checking time is measured on 2.2 GHz Pentium 4.

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 68

Benchmark redblack life
SML/NJ Compile time 0.300 0.490 sec.
SML/NJ Run time 0.013 0.262
FPCC Compile time 0.955 2.998
FPCC Run time 0.014 0.407
FPCC/SMLNJ slowdown 1.036 1.555
Safety check time in

SICStus 0.183 0.432
Flit 1.32 2.19
Twelf 1018 >3600

Sparc instrs. 870 1816
LTAL tokens 34278 57670
Coercion tokens 17% 23%

Table 3.2: FPCC/ML compiler, LTAL, and Flit performance.

compiler algorithms as necessary for a production compiler. Run time is almost as

good as SML/NJ. Currently we do not garbage collect; SML/NJ spends 0.02% of

its time garbage-collecting on these benchmarks. SML/NJ’s better performance is

probably because it has more sophisticated liveness-based closure conversion and fills

branch-delay slots. Other than that, the optimizations performed by the FPCC/ML

compiler are just about as sophisticated and comprehensive as those of SML/NJ.

To measure safety check time, we translate our lemmas into Prolog rules and

time the execution in SICStus Prolog. As an alternative, we have built a minimal-

size interpreter, Flit, for syntax-directed lemmas; it is much simpler than Prolog

because it doesn’t require backtracking [Appel et al., 2002; Wu et al., 2003]. Twelf

also builds in a logic programming engine. We measured the safety checking time in

all three systems. Twelf is not designed for performance, but its advanced features

make it a convenient tool for us to develop machine-checkable proofs in LF. Flit is

about five times slower than the optimizing SICStus Prolog, and is fast enough for

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 69

the intended application. The performance of proof-checking in Flit will be further

discussed in Chapter 5.

Simple encodings should be able to represent LTAL in a few bits per token, so

the LTAL expression should not be significantly bigger than the machine-language

program. At present, however, we represent LTAL expressions as LF terms, and

encode them in the form of directed acyclic graphs (DAGs) [Appel et al., 2002,

2003]. Eliminating the LTAL coercions—thus requiring some backtracking in the

type checker—could save about 20% in LTAL size. The builders of SpecialJ [Colby

et al., 2000] and TALx86 [Morrisett et al., 1999a] have devoted substantial effort

to reducing proof size—not just removing coercions but getting the checker to re-

construct other data as well. Clearly, there is some engineering to be done in this

respect, although we would not want to complicate any part of the checker that is

in the trusted base.

3.12 Related Work

TAL [Morrisett et al., 1998, 1999b] demonstrated the idea of typed assembly lan-

guage, but was too limited for practical programming languages. Extensions of

this work supported stack allocation [Morrisett et al., 2002] and implemented a

more realistic calculus (TALx86) [Morrisett et al., 1999a] for compiling a safe C-like

language to Intel IA32 assembly language. DTAL [Xi and Harper, 2001] added a re-

stricted form of dependent types to TAL to support array bound check elimination

and datatype tag discrimination. These implementations have soundness proved by

hand about abstractions of subsets of the systems that are actually implemented;

the proofs cannot be machine-checked. These TALs each have a macroinstruction

CHAPTER 3. LOW-LEVEL TYPED ASSEMBLY LANGUAGE 70

“malloc” for heap allocation, and TALx86 has another macro “btagi” which tests

tags and branches.

Hamid et al. [2002] proposed a syntactic approach to build machine-checkable

foundational proofs. They designed Featherweight Typed Assembly Language (FTAL),

mapped each valid machine state to a well-typed FTAL program, and related tran-

sition of machine states to evaluation of FTAL programs by a machine-checked

syntactic metatheorem. Crary [2003] has built a more substantial TALT, with a

machine-checked syntactic metatheorem proving progress and preservation; he uses

simulation to relate his typed calculus to the “bare machine” untyped step relation.

Chapter 4

Machine-Checkable Soundness

Proofs for LTAL

In this section, we give an overview of the semantic techniques we used to build a

machine-checkable soundness proof for LTAL. We give semantic models to types,

instructions, and typing judgements, and prove type checking rules as lemmas with

respect to machine specification and logic axioms. The semantic models allow a

type checking derivation to be interpreted as a machine-checkable safety proof at

the machine level.

4.1 Overview

In both Necula’s PCC [Necula and Lee, 1996; Necula, 1997] and Morrisett’s TAL

[Morrisett et al., 1998, 1999b] systems, type checking rules are trusted as axioms.

In other words, the type systems used in their systems do not have a (machine-

checkable) soundness proof. For example, in the TAL system, there are 13 kinds

71

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 72

of typing judgements and many typing rules are with similar complexity as the

following one:

Ψ; ∆; Γ `TAL v : ∀[].Γ′ ∆ `TAL Γ ≤ Γ′

Ψ; ∆; Γ `TAL jmp v
(s-jmp)

This rule is intuitively “correct” based on the semantics of the jump instruc-

tion, and there is a paper-and-pencil proof of soundness [Morrisett et al., 1999b].

However, the TAL described in their published paper is not the TALx86 [Morrisett

et al., 1999a] that they actually implemented. Any misunderstanding of the seman-

tics could lead to errors in the type system. League et al. [2003] found an unsound

proof rule in the SpecialJ [Colby et al., 2000] type system. In the process of refining

our own TAL [Chen et al., 2003], we routinely find and fix bugs that can lead to

unsoundness.

Since errors in the Trusted Computing Base (TCB) can be exploited by malicious

code, it is useful to minimize the TCB. A foundational approach is to move the

entire type system out of TCB by proving its soundness and by verifying that type-

checking implies the safety theorem. We give models to types and judgements so

that both typing rules and the type-safety theorem can be proved and mechanically

verified in a theorem-proving system [Appel, 2001; Wu et al., 2003; Tan et al., 2004].

The rest of this chapter is organized as follows. We first introduce the logic

and logical framework we used to build machine checkable proofs in Section 4.2.

We then describe the machine architecture specification in Section 4.3. The safety

specification is presented in Section 4.4. After that, we build semantic models for

types in Section 4.5, and prove the soundness of LTAL in Section 4.6. Finally, we

present our implementation in Section 4.7 and discuss related work in Section 4.8.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 73

4.2 Logic and Logical Framework

In order to build machine checkable proofs, one must choose a formal logic and an

implementation of the logic to manipulate proofs written in the logic. We choose

higher-order logic as the object logic since it is expressive and permits concise proofs.

The LF logical framework [Harper et al., 1993] is chosen as the meta-logic to encode

higher-order logic.

LF is a dependent type theory based on λ-calculus with type families and βη-

equality. It has three levels of terms: objects, types, and kinds. Types classify

objects and kinds classify type families. LF is a framework for defining logics [Harper

et al., 1993]. The framework is general enough to represent logics of interest; we

use it to encode higher-order logic [Appel, 2001].

tp : type.

tm : tp -> type.

form : tp.

num : tp.

arrow: tp -> tp -> tp. %infix right 14 arrow.

pair : tp -> tp -> tp.

pf : tm form -> type.

In LF, “type” is a keyword for declaring an LF type (meta-logical type), and

“->” is the meta-logical function type. In the above LF code, tp is declared as a

type in the meta logic LF, and it classifies object logic types. Our object logic has

primitive types form and num for formulas and numbers, respectively. The construc-

tor tm converts a term of object logic type T (T is of meta-logical type tp) into a

term of meta-logical type tm T . For any formula A of meta-logical type tm form,

proofs of A are encoded as terms of meta-logical type pf(A). The constructors

arrow and pair are used to build function types and tuples, respectively, in the

object logic. The constructor arrow is declared infix to make it more readable.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 74

Then we introduce constructors and definitions in our object logic, and prove

lemmas based on them.

lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).

@ : tm (T1 arrow T2) -> tm T1 -> tm T2.

%infix left 20 @.

imp : tm form -> tm form -> tm form.

%infix right 10 imp.

forall : (tm T -> tm form) -> tm form.

imp_i: (pf A -> pf B) -> pf (A imp B).

imp_e: pf (A imp B) -> pf A -> pf B.

forall_i: ({x:tm T} pf (A x)) -> pf (forall A).

forall_e: pf (forall A) -> {x:tm T} pf (A x).

and : tm form -> tm form -> tm form =

[a][b] forall [c] (a imp b imp c) imp c.

%infix right 12 and.

and_i: pf A -> pf B -> pf (A and B) =

[p1: pf A]

[p2: pf B]

forall_i [c: tm form]

imp_i [p3] imp_e (imp_e p3 p1) p2.

and_e1: pf (A and B) -> pf A =

[p1: pf (A and B)]

imp_e (forall_e p1 A)

(imp_i [p2: pf A] imp_i [p3: pf B] p2).

imp_trans : pf (A imp B) -> pf (B imp C) -> pf (A imp C) =

[p1][p2] imp_i [p3] imp_e p2 (imp_e p1 p3).

imp_refl : pf (A imp A) = imp_i [p1] p1.

imp_true : pf B -> pf (A imp B) = [p1] imp_i [p2] p1.

The lam, @, imp, and forall are constructors for λ-abstraction, function appli-

cation, logical implication, and universal quantification in our object logic. Next,

we define the introduction and elimination rules (e.g. imp_i and imp_e) for these

constructors. Finally, we can introduce definitions and lemmas based on construc-

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 75

tors previously defined. The definition and and its introduction and elimination

rules (and_i and and_e1) are type checked for validity. The lemmas imp_trans,

imp_refl, and imp_true are proved and checked.

The proof checking in LF is based on the formulae-as-types principle (as know

as Curry-Howard correspondence) [Howard, 1980]. A formula or theorem is encoded

as a type in the LF type theory, and a proof of the theorem is an LF term of the

LF types that encodes the theorem. Thus, the proof checking in the object logic is

reduced to the LF type checking.

Twelf [Pfenning and Schürmann, 1999, 2002] is an implementation of LF. We

use Twelf for our development of machine checkable proofs. Twelf has many useful

features, such as type inference and mode analysis, which make it a convenient tool

for us to develop and manipulate machine-checkable proofs in higher-order logic

(encoded in the meta-logic LF).

With many advanced features, Twelf is a very good choice for our development.

Twelf is not, however, trustworthy or minimal in terms of system size and features.

Because we want to build high-assurance system and don’t want to include a large

proof checker in the TCB, we implement a simple yet efficient LF proof checker in

Flit, which is presented in Chapter 5. Flit also implements a simple logic program-

ming engine for efficient proof checking [Wu et al., 2003].

4.3 Machine Instruction Specification

Our machine model consists of a set of formulas in higher-order logic that specify

the decoding and operational semantics of instructions. Our safety policy specifies

which addresses may be loaded and stored by the program (memory safety) and

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 76

defines what the code safety means. Our machine model and safety policy are

trusted and are small enough to be “verifiable by inspection.”

In our model, a machine state (r, m) consists of a register bank r and a memory

m, which are modeled as functions from numbers (register numbers and addresses)

to numbers (contents). A machine instruction is modeled by a relation between

two machine states (r, m) and (r′, m′) before and after execution of the instruction

[Michael and Appel, 2000]. For example, the add instruction ri ← rj +rk is modeled

as the following relation:1

add(i, j, k)
def

=

λr, m, r′, m′. r′(i) = r(j) + r(k) ∧ (∀x 6= i. r′(x) = r(x)) ∧ m′ = m

Since we want to prove safety of machine code, which is just a sequence of

integers (representing machine instructions), we must model the decode relation to

connect instruction words to their actual meanings. The decode rule in Section 3.3.1

illustrates the idea, but we need to model the decode relation for every instruction

of the machine. The decode relation is specified as follows: Some number w decodes

to an instruction instr if [Michael and Appel, 2000; Appel, 2001]

1Our step relation first increments the program counter pc, then executes an instruction. Thus,
the semantics of add instruction does not include the semantics of incrementing the pc.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 77

decode(w, instr)
def

=

(∃i, j, k.

0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ k < 25 ∧

w = 3 · 226 + i · 221 + j · 216 + k · 20 ∧

instr = add(i, j, k))

∨ (∃i, j, c.

0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ c < 216 ∧

w = 12 · 226 + i · 221 + j · 216 + c · 20 ∧

instr = load(i, j, c))

∨ . . .

where the ellipsis denotes many other instructions of the machine.

The machine operational semantics is modeled by a step relation 7→ that steps

from one state (r, m) to another state (r′, m′) [Michael and Appel, 2000], where

the state (r′, m′) is the result of first decoding the current machine instruction,

incrementing the program counter and then executing the machine instruction.

(r, m) 7→ (r′, m′)
def

= ∃instr . decode(r(pc), instr)

∧ upd(r, pc, r(pc) + 4, r′′)

∧ instr(r′′, m, r′, m′)

where upd predicate increments the program counter pc (assuming the instruction

size is 4), and the result register bank state is r′′.

An important property of our step relation is that it is deliberately partial: It

omits any step that would be illegal under the safety policy. For example, the load

instruction is specified by

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 78

load(i, j, c)
def

= λr, m, r′, m′. r′(i) = m(r(j) + c) ∧ (∀x 6= d. r′(x) = r(x))

∧ m′ = m ∧ readable(r(j) + c).

Suppose in some state (r, m) the program counter points to a load instruction

that would, if executed, load from an address that is unreadable according to the

safety policy. Then, since our load instruction requires that the address must be

readable, there will not exist (r′, m′) such that (r, m) 7→ (r′, m′).

4.4 Safety Specification

As stated in the previous section, our step relation is deliberately partial; some

states, in which the program counter r(pc) points to an illegal instruction or r(pc)

points to a legal machine instruction that violates our safety policy, have no suc-

cessor states. This mixing of machine semantics and safety policy is to follow the

standard practice in type theory [Wright and Felleisen, 1994] so that we can get a

clean and uniform definition of safety property.

Using the partial step relation, we can define a safe machine state as a state that

cannot lead to a stuck state.

safe-state(r, m)
def

=

∀r′, m′. (r, m) 7→∗ (r′, m′) ⇒ ∃r′′, m′′. (r′, m′) 7→ (r′′, m′′)

where 7→∗ denotes zero or more steps.

To show safe-state(r, m), it suffices to prove that the state is “safe for n steps,”

for any natural number n.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 79

safe-n-state(n, r, m)
def

=

∀r′, m′. ∀j < n. (r, m) 7→j (r′, m′) ⇒ ∃r′′, m′′. (r′, m′) 7→ (r′′, m′′)

where 7→j denotes j steps being taken.

A machine-language program is just a sequence of integers (each representing a

machine instruction); we state that a program p is loaded at a location l in memory

m if

loaded(p, m, l)
def

= ∀i ∈ dom(p). m(i + l) = p(i)

Finally we define program safety as follows. Assume that programs are written

in position-independent code. A program is safe if, no matter where we load it in

memory and the machine state meets the initial precondition φ0, we get a safe state

[Appel, 2001]:

safe(p)
def

=

∀r, m, start . loaded(p, m, start) ∧ r(pc) = start ∧ (m, r) : φ0

⇒ safe-state(r, m)

The initial precondition φ0 specifies, among other things, the initial state of the

register bank and memory. It also states that the return address is a label to which

it is safe to jump. Our current initial precondition is simple enough such that it

can be described in our logic without type constructors since LTAL or other types

are not in the TCB. We are currently investigating how to augment the TCB with

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 80

some type constructors so that more sophisticated initial precondition and runtime

interface can be specified.

The safety theorem is parametrized by the application program. We only need

two operators to specify a machine-language program, that is, cons and nil for se-

quences of integers representing machine instructions. Let ; be the “cons” operator.

For some machine-language program2

2551193600 ;

2181292040 ;

2214748172 ;

2416058369 ;

2450522113 ;

2176860160 ;

16777216 ;

nil

the safety theorem is

safe (2551193600 ; ... ; 16777216 ; nil)

Suppose PROOF is a proof of the above theorem. To check the validity of the

proof, we type check the following LF term:

safe_thm: pf (safe (2551193600 ; ... ; 16777216 ; nil)) = PROOF.

Appel et al. [2003] measured the size of safety specification in our system. The

result is shown in Table 4.1. In our safety specification, there are 1,206 definitions

encoded in 1,865 lines of code in Twelf. The definitions used directly or indirectly

to specify the safety theorem need to be trusted, and thus are part of the safety

specification. Therefore, all definitions and constructors up to the definition of safe

are part of trusted code base. On the other hand, definitions specified after the

2This is the SPARC program compiled from the ML function fun f(x)=x+1 by our FPCC/ML
compiler.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 81

Safety Specification Lines Definitions
Logic 135 61
Arithmetic 160 94
Machine Syntax 460 334
Machine Semantics 1,005 692
Safety Predicate 105 25

Total 1,865 1,206

Table 4.1: Safety specification.

definition of safe and used in the proof of the safety theorem do not need to be

trusted since they are defined and checked for validity before they are used in other

definitions and proofs.

4.5 Semantic Models of Types

In this section, we give a brief description of the semantic models of types [Appel

and Felty, 2000; Appel and McAllester, 2001].

Appel and Felty [2000] build set-theoretic models for types. A state is a pair

(a, m), where m is a memory (including the register bank) and a is the set of

allocated addresses of dynamic memory allocation. A value is a pair (s, x) of a state

s and an integer x (typically representing an address or root pointer). This model

can handle records, addresses arithmetic, function pointers, intersection and union

types, covariant recursive types, etc., but cannot handle contravariant recursive

types.

Appel and McAllester [2001] invented the indexed model of types that can de-

scribe contravariant recursive types. In the indexed model, a type is not a set of

values; instead, it is a set of pairs (k, v), where k is the approximation index (non-

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 82

int
def

= {〈k, m, x〉 | true}

int=(n)
def

= {〈k, m, x〉 | x = n}

box (τ)
def

= {〈k, m, x〉 | x ∈ dom(m) ∧ readable(x)
∧ 〈k − 1, m, m(x)〉 ∈ τ}

field(i, τ)
def

= {〈k, m, x〉 | (x + i) ∈ dom(m) ∧ readable(x + i)
∧ 〈k − 1, m, m(x + i)〉 ∈ τ}

codeptr(φ)
def

= {〈k, m, x〉 | ∀j, r. j < k ∧ r(pc) = x ∧ (m, r) :j φ
⇒ safe-n-state(j, r, m)}

Figure 4.1: The indexed model of types.

negative integer) and v is a value. Intuitively, a pair (k, v) ∈ τ means the value

v has type τ within k steps of computation; that is, it k-approximately belongs to

type τ .

Types are defined such that they are closed under approximation; that is, if

(k, v) ∈ τ , then (j, v) ∈ τ for any j < k. We use v :k τ as a syntactic sugar for

(k, v) ∈ τ . We write v : τ to mean v :k τ is true for any k. A value v is a tuple

(a, m, x) of the set of allocated addresses, memory (including the register bank), and

an integer (typically denoting the root address). For the sake of simplicity, some-

times we omit the allocated-address set, and use dom(m) instead when necessary.

The indexed model of some types is shown in Figure 4.1.

Any value is of type int since any memory content can be viewed as an integer

or binary number. The type int=(n) specifies that the integer is exactly n. The

type box (τ) states that the root pointer is a readable address whose content is of

type τ under approximation k − 1. This is because it takes one computation step

(a memory load instruction) to dereference a boxed value. The meaning of field

type is similar except that there is an offset. The codeptr type states that the root

address is a label to which it is safe to jump. Specifically, it says that if the current

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 83

>φ
def

= {〈k, m, ~x〉 | true}

⊥φ
def

= {〈k, m, ~x〉 | false}

{n : τ}
def

= {〈k, m, ~x〉 | 〈k, m, xn〉 ∈ τ}

φ1 ∩ φ2
def

= {〈k, m, ~x〉 | 〈k, m, ~x〉 ∈ φ1 ∧ 〈k, m, ~x〉 ∈ φ2}

φ[n 7→ τ]
def

= {〈k, m, ~x〉 | ∃y. 〈k, m, ~x[n 7→ y]〉 ∈ φ ∧ 〈k, m, xn〉 ∈ τ}

Figure 4.2: The indexed model of environments (vector values).

machine state satisfies precondition φ with any index j < k, it is safe to run j steps

starting from the root address x.

Moreover, we often need to judge not only scalar values such as a singleton

integer but also vector values such as the register bank type, typing environments,

and code pointer preconditions (a list of arguments and their types). Vector values

are modeled in a similar way except that the root pointer is a vector, a function from

numbers to values. For example, (m, r) : φ means that the register bank satisfies

φ. Another use of vector types is the label environment Γ, which summarizes the

preconditions of all labels. In this case, ~x is the identity vector id which maps

label l to itself. Thus, (m, id) : {l : codeptr(φ)} means that label l itself has type

codeptr(φ).

The indexed model of vector values is shown in Figure 4.2. Any value belongs

to >φ, and no value belongs to ⊥φ. The singleton environment only cares about

the nth slot of the vector and states that its content has type τ . The intersection

of two environments φ1 ∩ φ2 states that the value satisfies both environments. The

extension of environment with a new binding is represented as φ[n 7→ τ].

With the semantic model of types and environments, the typing rules can be

proved as lemmas [Appel and Felty, 2000; Appel and McAllester, 2001]. For exam-

ple, the following codeptr elimination rule is proved as a lemma.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 84

(m, x) :k+1 codeptr(φ) r(pc) = x (m, r) :k φ

safe-n-state(k, r, m)
CodePtr -E

The rule means that if (1) value (m, x) is of type codeptr(φ) to approximation

k+1, (2) the current program counter is x, and (3) the current memory and register

bank (m, r) meets φ to approximation k, then it is safe to execute k steps under

the current machine state (m, r).

4.6 Safety Proof

Figure 4.3 shows a program, in the LTAL and SPARC assembly language, compiled

by the FPCC/ML compiler. The LTAL program has two basic blocks, each of which

is annotated by a precondition. To make it simple and readable, we have omitted

some type annotations, such as coercions, inside the basic blocks. We have also

omitted the map from variables to registers.

Type annotations are generated by a type-preserving compiler from source lan-

guage types. They serve as a specification (types as specifications). On the other

hand, these type annotations are not verified yet; they are the invariants that the

compiler believes. They need to be verified through a sound type system.

In the LTAL type system, we have typing judgements for programs, basic blocks,

individual instructions, and so on. In order to prove type checking rules as lemmas,

we must define the meaning of typing judgements. Informally, we define the follow-

ing models. The model of the program typing judgement is that all labels are safe

to execute with respect to their preconditions (although it suffices to ensure that

the start label is safe). The model of the basic block typing judgement is that the

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 85

LTAL SPARC
l0 : φ0 l0:

v10 = 0 mov 0,%o4

v11 = addradd(v4, 8) add %o7,8,%g1

v19 = lbladd(v2, l1 − l0) add %o1,l1-l0,%g2

v12 = v19

v8 = v10

v7 = v11

v6 = v10

v5 = v3

calln(l1)
l1 : φ1 l1:

v9 = v5 + 1 add %o0,1,%o0

v13 = open(v7)
v14 = v13 mov %g1,%o1

v15 = v13

v16 = v14

v17 = v6

v18 = v9

call(v15) jmp [%g1+%g0]

nop

Figure 4.3: An example LTAL program. (This program is compiled by the
FPCC/ML compiler from ML function “fun f(x)=x+1”.)

basic block in consideration is safe for at least k + 1 steps assuming all the other

basic blocks are safe for k steps. Let’s define

instr (i)
def

= {〈k, m, x〉 | decode(m(x), i)}

∆
def

= {0 : instr (i0)} ∩ {4 : instr (i1)} ∩ . . .

Γ
def

= {l0 : φ0} ∩ {l1 : φ1} ∩ . . .

∆ ⊂ Γ
def

= ∀k, m. (m, id) :k ∆ ⇒ (m, id) :k Γ

The instr (i) is an indexed type that relates a memory content and the instruc-

tion it represents. The ∆ is the indexed type representation of machine-language

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 86

loaded(p, m, 0)

(m, id) : ∆
(7)

...
∆ ⊂ Γ

(8)
Γ ⊂ {0 : codeptr(φ0)}

(m, id) : {0 : codeptr(φ0)}
(6)

(m, 0) : codeptr(φ0)
(5)

∀k. (m, 0) :k codeptr(φ0)
(4)

(m, 0) :k+1 codeptr(φ0)
(3a)

(m, r) : φ0

∀k. (m, r) :k φ0
(3b)

r(pc) = 0

∀k. safe-n-state(k, r, m)
(2)

safe-state(r, m)
(1)

Figure 4.4: Outline of safety proof.

program (a sequence of integers encoding machine instructions). The Γ is the label

environment (precondition) for each label (basic block) in the code. The subtyping

relation ∆ ⊂ Γ states that code ∆ respects invariant Γ under any approximation k,

which is exactly the meaning of the program typing judgement. Note that id is the

identity vector which maps root addresses (labels in this case) to themselves.

The proof outline is shown in Figure 4.4. This is a proof of safe(p) according

to its definition. The assumptions are loaded(p, m, 0), r(pc) = 0, and (m, r) : φ0.

For the sake of simplicity, we assume the start address is 0 here. For Step (1),

to prove (r, m) is safe, it suffices to prove that (r, m) is safe for an arbitrary k

steps. Step (2) is justified by rule CodePtr -E in Section 4.5. Step (3a) is by

universal instantiation. Step (3b) is by definition. Step (4) is the unfolding of the

syntactic sugar of (m, 0) : codeptr(φ0). Step (5) is by the definition of the singleton

environment. Step (6) is by the transitivity of subtyping. Step (7) can be easily

proved by unfolding definitions. Step (8) is by type checking the corresponding

LTAL and SPARC program. The model of program typing judgement should be

strong enough to prove (8). Please see Chapter 3 and Section 5.3.4 for the LTAL

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 87

type checking rules that establish this subtyping relation. Tan [2005] and Tan et al.

[2004] explain in more detail the semantic models that construct the proof of this

subtyping relation.

We briefly explain the semantic techniques we used to establish the subtyping

relation in Step (8) above. The subtyping relation ∆ ⊂ Γ can be proved by induction

over the number of execution steps that are safe starting from labels in Γ. The base

case is trivial because it is safety to run zero step from any label. In the inductive

case, for the current label l we prove that it is safe to execute at least k + 1 steps

assuming that it is safety to execute at least k steps starting from any label. This is

established by checking individual instructions in the current block. Suppose there

is at least one real (not virtual) instruction in the current block. Then we can prove

that it is safe to run at least one step starting from the current label by checking

individual instructions in the current block. Furthermore, the last instruction in

the current block must be a branch, jump, or return instruction that transfers the

control to some label l′. By induction, we know that it is safe to execute at least

k steps starting from label l′. Therefore, we conclude that it is safe to execute at

least k + 1 steps starting from the current label l. We check this for each label, and

thus establish the subtyping relation as required.

Take the LTAL program in Figure 4.3 for example, there are two labels, l0 and

l1, and two basic blocks. The block labeled l0 has three real instructions and six

virtual instructions (coercions). The block l1 has four real instructions, including

the nop instruction at the end, and five virtual instructions. For the base case k = 0,

it is trivially true because any program is safe to run 0 step. For the inductive case,

we assume that the labels l0 and l1 are both safe for executing k steps starting from

them, respectively. By checking the real instructions in the body of basic block l0,

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 88

we conclude that it is safe to execute at least 3 steps starting from l0. Since the

last instruction is fall-through to block l1, which is safe for k steps, we conclude

that it is safe to execute at least k + 1 steps starting from l0. Similarly, we can

conclude that it is safe to execute at least k + 1 steps starting from label l1. What

is worth mentioning is that the last instruction of the basic block labeled l1 is a

jmp instruction. The target label is in a register since variable v15 is in a register.

This target label is actually the return address to which it is safe to jump as we

specify in the initial precondition φ0. Thus we conclude that label l1 is also safe.

By induction on the number k, we conclude that the program is safe for executing

any number of steps.

Building a semantic model for a large calculus such as LTAL and proving its

soundness are rather intricate. Interested readers should refer to several papers

and PhD theses [Appel and Felty, 2000; Appel and McAllester, 2001; Ahmed et al.,

2002; Ahmed, 2004; Swadi, 2003; Tan et al., 2004]. Appel and Felty [2000] and

Appel and McAllester [2001] present an (indexed) semantic model of types; Ahmed

et al. [2002] and [Ahmed, 2004] extend the model for general reference types; Swadi

[2003] introduces Typed Machine Language (TML) and builds an abstraction layer

on which the semantic model of LTAL is based; Tan et al. [2004] and Tan [2005]

give a more detailed description of the semantic models of machine instructions and

basic blocks in LTAL.

4.7 Implementation

Proofs are written and machine-checked in the theorem-proving system—Twelf

[Pfenning and Schürmann, 1999, 2002] and Flit [Appel et al., 2002; Wu et al., 2003].

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 89

Currently, we have 1865 lines of axioms of the logic, arithmetic, the specification

of the SPARC machine, and the safety specification; and about 165k lines of proof

in total including lemmas of logic, arithmetic, sets, lists, conventions of machine

states, semantic model of types, machines instructions, and the LTAL calculus.

We have built many layers of abstraction to make the large proof implementation

as modular as possible. Abstract modules such as mathematic sets, lists, and theory

of arithmetic are developed. These modules are all based on higher-order logic

implemented in LF. We have also implemented conventions of machine states and

semantic model of types and machine instructions. Among these abstractions, two

significant ones are TML and LTAL. TML is an expressive typed calculus for

proving properties of low-level programs such as machine code, but it does not

have an efficient type checking algorithm since the type system is too expressive

to have decidable type checking algorithm. LTAL, however, has a syntax-directed

type checking algorithm as we presented in Chapter 3. LTAL is also designed for

checking low-level programs, but admits efficient type checking. TML is useful for

building semantic models of low-level calculus such as LTAL and for proving its

soundness, while LTAL is efficient enough to be used as the interface between the

compiler and the proof checker.

Table 4.2 presents the breakdown of the proofs in our system according to ab-

stractions and modules. The first column is modules. The number in the second

column is the lines of code including comments and blank lines. The number of lines

of code in the third column does not include comments and blank lines. In total, we

have approximately 143.4k lines of code, not including comments and blank lines.

In particular, the syntactic implementation of LTAL in LF is about 4,160 lines of

code. These are constructors declarations and Prolog-like clauses that encode the

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 90

Modules Lines Useful Lines
Safety specification 2,939 1,9573

Logic, arithmetic, & algebra 7,744 5,241
Sets, relations, & partial functions 9,229 8,086
Lists, vectors, trees 12,338 11,024
Miscellaneous 6,239 5,522
Machine conventions 25,890 22,321
Machine states 4,014 3,500
Abstract machine instructions 9,358 8,294
TML 54,800 48,124
LTAL 34,378 29,345
LTAL (syntax only) 6,641 4,163

Total 166,929 143,414

Table 4.2: FPCC proof statistics.

LTAL type checking rules. The breakdown of these constructors and rules is shown

in Table 3.1.

4.8 Related Work

The semantic approach to proving the soundness of logical and type systems has

been around for decades. Schmidt [1986], Gordon [1988], and Wahab [1998] prove

the soundness of Hoare logic based on the denotational semantics. Such verification

has been mechanized in HOL [Gordon, 1988]. Loop invariants are specified in first-

order or higher-order logic and cannot be derived automatically, so the approach

does not scale to large programs.

Appel and Felty [2000] apply the semantic approach to PCC and construct a

semantic model to types and machine instructions in higher-order logic, and proved

3This number includes the axioms for floating point number arithmetic, while the number
presented in Table 4.1 and reported by Appel et al. [2003] does not.

CHAPTER 4. MACHINE-CHECKABLE SOUNDNESS PROOFS 91

soundness by proving the typing rules as lemmas. This semantic model has been ex-

tended to include general recursive types [Appel and McAllester, 2001] and mutable

references [Ahmed et al., 2002].

Hamid et al. [2002] and Crary [2003] follow the syntactic approach to prove type

soundness. The syntactic approach has two stages. First, a typed assembly language

is designed and its operational semantics is specified on top of an abstract machine.

Then the syntactic type-soundness theorems are proved on this abstract machine

following the scheme presented by Wright and Felleisen [1994]. At the second stage,

they use a relation to simulate the operations between the typed abstract machine

and the untyped concrete architecture.

Chapter 5

Foundational Proof Checking with

Small Witnesses

Proof checkers for proof-carrying code (and similar systems) can suffer from two

problems: huge proof witnesses and untrustworthy proof rules. No previous design

has addressed both of these problems simultaneously. In this chapter, we show

the theory, design, and implementation of a proof-checker that permits small proof

witnesses and machine-checkable proofs of the soundness of the system.

5.1 Introduction

In a proof-carrying code system [Necula, 1997], or in other proof-carrying applica-

tions [Appel and Felten, 1999], an untrusted prover must convince a trusted checker

of the validity of a theorem by sending a proof. Two of the potential problems with

this approach are that the proofs might be too large, and that the checker might not

be trustworthy. Each of these problems has been solved separately; in this chapter

92

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 93

we show how to solve them simultaneously. The general approach is to write a logic

program that has a machine-checked semantic correctness proof. The logic program

encodes the proof inference system. This technique can be used in other domains

(besides “proof-carrying”) to write logic programs with machine-checked guarantees

of correctness.

5.1.1 Small proof witnesses

Necula has a series of results on reducing proof size [Necula and Lee, 1998; Necula

and Rahul, 2001]. He represents logics, theorems, and proofs in the LF logical

framework [Harper et al., 1993]. But the natural representation of an LF proof

contains redundancy (common subexpressions) that can cause exponential blowup

if the proofs are written in the usual textual representation. Necula’s LFi data

structure [Necula and Lee, 1998] eliminated most of this redundancy, leading to

reasonable-sized proof terms.

In the PCC framework, given a machine-language program, the proof is of a

theorem that the program obeys some safety property. It’s natural to compare the

size of the representation of the proof witness to the size of the binary machine-

language program. Necula’s LFi proof witnesses were about 4 times as big as the

programs whose properties they proved.

Pfenning’s Elf and Twelf systems [Pfenning, 1994; Pfenning and Schürmann,

1999] are implementations of the LF logical framework. In these systems, proof-

search engines can be represented as logic programs, much like (dependently typed,

higher-order) Prolog. Elf and Twelf can build proof witnesses automatically if the

rule set is encoded as a logic program. If each logic-program clause is viewed as an

inference rule, then the proof witness is a trace of the successful goals and subgoals

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 94

executed by the logic program. That is, the proof witness is a tree whose nodes

are the names of clauses and whose subtrees correspond to the subgoals of these

clauses.

Necula’s theorem provers were written in this style, originally in Elf and later in a

logic-programming engine that he built himself. In later work, he moved the prover

clauses into the trusted checker. In principle, proof witnesses for such a system can

be just a single bit, meaning, “A proof exists: search and ye shall find it.” However,

to guarantee that proof-search time (in the trusted checker) would be small, Necula

invented oracle-based checking [Necula and Rahul, 2001]: The untrusted prover

would record a sequence of bits that recorded which subgoals failed (and therefore,

where backtracking was required). This bitstream serves as an “oracle” that the

trusted checker can use to avoid backtracking. The oracle bitstream need not be

trusted; if it is wrong, then the trusted checker will choose the wrong clauses to

satisfy subgoals, and will fail to find a proof.

Using oracle-based checking, the proof witness (the oracle bitstream) is about

1/8 the size of the machine code.1 The key idea is to run a simple Prolog engine

in the trusted proof checker; the oracle is just an optimization to ensure that the

checker doesn’t run for too long.

1Unfortunately, this statistic is somewhat misleading. A “pure” PCC system would transmit
two components from an untrusted code producer to a code consumer: a machine-language pro-
gram and a proof witness. The SpecialJ proof-carrying Java system on which Necula measured
oracle-based checking transmits three components: the machine code, the proof, and a Java “class
file”. The Java class file, as is usual in any Java system, contains descriptions of the types of all
procedures (methods) in the program, including formal parameter and result types. These method
types help guide the proof search. However, the “1/8 size” figure does not include the Java class
files. In our FPCC/ML system system, all auxiliary type information needed by the checker is
contained within the LTAL expressions whose size we report.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 95

5.1.2 Trustworthy checkers

Necula’s oracle-based checker for PCC comprises approximately 26,000 lines of code:

23,000 Verification-condition generator, written in C

1,400 LF proof checker, written in C

800 Oracle-based Prolog interpreter, in C

700 Axioms for type system, written in LF

26,000 Total trusted lines of code

The largest component is the verification condition generator (VC-Gen), which

traverses the machine-language program and extracts a formula in logic, the verifi-

cation condition, which is true only if the program obeys a given safety policy.

This 26,000 lines forms the trusted code base (TCB) of the system: Any bug

in the TCB may cause an unsafe program to be accepted. The large VC-Gen

component is a concern, but so are the axioms of the type system: If the type

system is not sound, then unsafe programs will be accepted. League et al. [2003]

have shown that one of the SpecialJ typing rules is unsound.

The goal of our research [Appel, 2001] is to check proofs of program safety using

a much smaller TCB. We do this by eliminating the VC-Gen component—we reason

directly about machine code in higher-order logic, instead of the two-step process of

extracting the verification condition and then proving it; and we write the rules of

our type system as machine-checkable lemmas, instead of axioms. We have shown

that the TCB for a proof-carrying code system can be reduced below 2700 lines, as

follows [Appel et al., 2002]:

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 96

803 LF proof checker, written in C

135 Axioms & definitions of higher-order logic, in LF

160 Axioms & definitions for arithmetic, in LF

460 Specification of SPARC instruction encodings, in LF

1,005 Specification of SPARC instruction semantics, in LF

105 Specification of safety predicate, in LF

2,668 Total trusted lines of code

Unfortunately, in this prototype system the proof witnesses are huge: The DAG

representation of a safety proof of a program might be 1000 times as large as the

program. Proof size is approximately linear in the size of the program,2 so this

factor of 1000 will not grow substantially worse for larger programs. However,

while this early prototype is useful in showing how small the TCB can be made, it

is impractical for real applications because the proof witnesses are too big.

5.1.3 Synthesis

We will show that Necula’s insight (run a resource-limited Prolog engine in the

trusted checker) can be combined with our paranoia (don’t trust the logic pro-

gramming rules used by such a Prolog engine) to make a PCC checker with small

witnesses and a small trusted base.

Our approach is as follows. We write a type-checking algorithm in a subset of

Prolog with no backtracking and with efficiently indexed dynamic atomic clauses.

2Technically, proof size is roughly proportional to the size of the program multiplied by the
average number of live variables on entry to a basic block; this is superlinear but much less than
quadratic, for typical programs.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 97

We show that the operators of such a Prolog program can be given a semantics

in higher-order logic, such that the soundness of each clause can be proved as a

machine-checkable lemma. We show that this Prolog subset is adequate for writing

efficient type-checkers for PCC and for other “proof-carrying” applications.

Our trusted checker is sent the Prolog clauses, with machine-checkable soundness

proofs; it checks these proofs before installing the clauses. Then it is sent a theorem

to check (i.e., in a PCC application, the safety of a particular machine-language

program) and a small proof witness. The Prolog program traverses the theorem

and proof witness; this traversal succeeds only if the theorem is valid.

The TCB size of our new checker is 3034 lines of code, only 366 lines larger

than our previous prototype. It mainly includes all the components of our previous

system (2668 lines) plus a concise implementation of an interpreter (282 lines of C

code) for our Prolog subset.

5.2 Semantic Proofs of Horn Clauses

We will illustrate our approach using an example—a type checker for a very simple

programming language. In this example we illustrate the following points, which

are common to many proof-carrying applications:

• The specification of the theorem to be proved is quite simple (in this case,

that the program evaluates to an even number).

• The proof technique involves the definition of a carefully designed set of pred-

icates that allow a simple, syntax-directed decision procedure (in this case,

we define a syntax-directed type system for evenness and oddness).

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 98

type τ ::= even | odd

decl d ::= · | let x = e; d
expr e ::= x | n | e1 + e2

prog p ::= (d; e)

Figure 5.1: Syntax of even-odd system.

• The syntax-directed rules are provable, from the definitions of the operators,

as machine-checkable lemmas in the underlying higher-order logic (this is what

foundational means: The rules are provable from the foundations of logic).

• The syntax-directed rules require management of a symbol table, or context,

that would lead to a quadratic algorithm if implemented naively; we want a

linear-time prover, and we’ll show how to make one.

• The language being type checked in a proof-carrying code system (or in proof-

carrying authentication) is the output of another program—the compiler (or

a prover). Such languages don’t need all of the syntactic sugar that human-

readable languages have, and processing them is therefore easier.

5.2.1 Example: even-valued expressions

Consider a simple calculus for expressions with constants, variables, addition, and

let-binding, as shown in Figure 5.1.

A program consists of a list of declarations and an expression. An expression

is either a variable, a natural number, or the sum of two expressions. Here is an

example:

let x = 4 ; let y = x + 8 ; x + y

There are two declarations followed by an expression; the program evaluates to 16.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 99

Var
def

= Num

State
def

= Var → Num → Form

Decl
def

= State → Form

Exp
def

= State → Num → Form

Program
def

= 〈Decl ,Exp〉

(d; e)
def

= 〈d, e〉

·
def

= λs. true

let x = e; d
def

= λs. d s ∧ (∀a.e s a⇒ s x a)

x
def

= λs.λa. s x a

n
def

= λs.λa. a = n

e1 + e2
def

= λs.λa. ∃a1.∃a2. e1 s a1 ∧ e2 s a2 ∧ a = a1 plus a2

safe
def

= λp. ∀s. fst(p) s ⇒ ∃a. snd(p) s a ∧ isEven(a)

Figure 5.2: Safety specification.

5.2.2 Safety specification

In this simple example, we define that a “safe” program is one that evaluates to

an even number. In order to define the safety theorem, we need to know what a

program means and how to evaluate a program. The safety predicate, along with

a conventional denotational semantics of the language in consideration, is shown in

Figure 5.2.

All of these definitions are treated as axiomatic by our checker; that is, they

are trusted. We have predefined types Num for numbers and Form for formulas (or

propositions). Variables are represented as numbers. An abstract machine State

maps a variable to its content, i.e. a number. A program is a pair of a declara-

tion and an expression; its semantics is the pair of semantics of the corresponding

declaration and expression.3 Declaration Decl is a predicate on states. Expression

3An alternative denotation for a program is a number, resulting from applying the state after
the declaration to the expression.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 100

Exp is a predicate on a state and a number; that is, given a state the expression

evaluates to a number. The semantics of concrete expressions is straightforward

from definitions.

Finally, the safety theorem is based on the semantics of language constructs.4

Given a program p, it is “safe” if: For any states s, if the declaration of the program,

i.e. fst(p), holds on s, then there exists a number a such that the expression of the

program, i.e. snd(p), evaluates to a and a is even.

5.2.3 Type checker

The typing rules appear in Figure 5.3. There are three kinds of typing judgements.

The judgement for a program `p checks that the program evaluates to a number

whose type is τ . The declaration judgement `d states that, assuming the environ-

ment built so far, and assuming the remaining declarations hold, the expression has

a certain type. The expression judgement `e asserts that an expression has certain

type under typing context Γ.

These typing rules can be read as a Prolog-like logic program. Each rule is a

clause of the logic program. The conclusion of a rule is the head of the clause, and

each premise of the rule is a subgoal. The typing rules are designed such that the

conclusions of these typing rules are disjoint. Therefore, when running the type

checker (as a logic program) there is no need to backtrack; we say that such a type

system is syntax-directed.

Furthermore, if we give denotational semantics expressed in higher-order logic to

typing judgements such as `p, `d, and `e, each typing rule can be proved as a lemma

4For our PCC application, there are only two language constructs for the machine code to be
proved safe. The machine code is a sequence of integers encoding machine instructions; so we only
need cons and nil.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 101

`p p : even

safe(p)
SafeTy

· `d (d; e) : τ

`p (d; e) : τ
ProgTy

Γ `e e1 : τ1 Γ[x : τ1] `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ
DeclConsTy

Γ `e e : τ

Γ `d (·; e) : τ
DeclNilTy

Γ(x) = τ

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1 � τ2 = τ
Γ `e e1 + e2 : τ

PlusTy

even � even = even
�ee

odd � odd = even
�oo

even � odd = odd
�eo

odd � even = odd
�oe

Figure 5.3: Typing rules with static context.

in the system, thus its soundness is guaranteed with respect to the foundations of

logic. The denotational semantics of typing judgements is given in Figure 5.4.

Proofs of the typing rules are quite straightforward and thus omitted here. The

denotational semantics of the type operators are part of the safety proof, not part

of the safety specification. That is, they are not trusted. It is straightforward to

prove the safety theorem from the conclusion of type checking rule ProgTy if we

pass τ even when invoking the type checker, as shown in the SafeTy rule.

Our checker will determine the validity of the safety predicate by determining

whether a proof exists. It will not construct such a proof as a data structure; instead,

it will traverse a trace of such a proof, composing lemmas in a syntax-directed way.

We call our set of lemmas a type system: Our machine-checked safety proof of a

program P consists of (1) a proof of soundness for the type system, and (2) the

successful syntax-directed execution of the typing clauses as applied to P .

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 102

Ty
def

= Num → Form

Env
def

= State → Form

even
def

= λx.∃n. isInt(n) ∧ x = 2n

odd
def

= λx.∃n. isInt(n) ∧ x = 2n + 1

`p p : τ
def

= ∀s. fst(p) s⇒ ∃a. snd(p) s a ∧ τ a

Γ `d (d; e) : τ
def

= ∀s. (d s ∧ Γ s)⇒ ∃a. (e s a ∧ τ a)

Γ `e e : τ
def

= ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)

τ1 � τ2 = τ
def

= ∀n1.∀n2. τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

Γ[x : τ]
def

= λs. Γ s ∧ ∃a. s x a ∧ τ a

Γ(x) = τ
def

= ∀s. Γ s⇒ ∃a. s x a ∧ τ a

Figure 5.4: Definitions of types and judgements.

Efficiency and proof size problem. When type checking a program, we build

a type environment, or context, from the declarations for variables that appear

in the expression. The rules for traversing a list of declarations and building the

corresponding type contexts are DeclConsTy and DeclNilTy. When a variable is

encountered, we look up its type in the context. However, the typing rule VarTy

does not specify a context lookup algorithm. Consider the following variable type-

lookup rules.

Γ[x : τ] ` x : τ
VarTyHit

Γ ` x : τ x 6= y

Γ[y : τ ′] ` x : τ
VarTyMiss

Suppose the context is simply organized as a list in these two rules; each element

of the list is a pair: a variable and its type. Then each context lookup takes linear

time, and type-checking a whole program will take quadratic time. Correspondingly,

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 103

the size of the generated proof for a lookup operation is linear with respect to the

size of the context, and thus the safety proof (and also the proof checking time)

for a program has a quadratic blowup. Our experiment with the even-odd example

shows that naive implementation cannot check even medium-size program, while

the efficient algorithm, which will be described in the next section, scales very well.

This algorithm still has a provably sound semantic model, but generates concise

proofs and admits efficient proof checking.

5.3 Effective Context Management

As we have explained, we avoid sending large proofs to the trusted checker by

sending a proof scheme with a soundness proof for the proof scheme. We want the

proof scheme to “execute” efficiently, that is, in linear time with respect to the size

of the program-safety-theorem being proved. And we want the proof schemes to

be written in the “smallest possible” Prolog-like language: What set of language

features are useful?

Here we will show an efficient proof scheme for contexts; because this scheme

requires dynamic clauses in the Prolog subset, we have included a limited form of

dynamic clauses in our language design.

5.3.1 Dynamic clauses and local assumptions

Many logic programming systems provide a facility for managing dynamic clauses

at run time. In Prolog, users can assert a fact or clause into database or retract

a clause dynamically. The assert/retract mechanism can be expensive if the dy-

namic clause in consideration is not atomic (i.e., has subgoals) because the dynamic

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 104

clause has to be compiled and integrated into the program’s decision trees. If the

dynamic clause is atomic, with input-mode arguments that are integers or hashable,

the assert/retract operation can be cheap: Prolog systems usually provide efficient

support for asserting and retracting an atomic clause by using hash tables. That is,

asserting, retracting, and querying indexable atomic clauses can be done in constant

time per operation.

In the LF logical framework [Harper et al., 1993], or its implementation Twelf

[Pfenning, 1991; Pfenning and Schürmann, 1999], one can use local assumptions

[Pfenning and Schürmann, 2002] to check dynamic clauses into database. Since these

assumptions are local, their dynamic scopes control their lifetimes; there is no need

to provide an explicit retract mechanism. A clause of the form {x : τ} A x→ B x

introduces a local assumption A x into the context and then solves the goal B x

under this assumption.5 When proof search on goal B has finished, assumption A

is automatically retracted. That is, Twelf uses a dynamically well-scoped version of

assert/retract. One can use Prolog assert/retract mechanism to simulate Twelf’s lo-

cal assumptions, however. We can give semantics to local assumptions and generate

concise proofs so that clauses are guaranteed to be correct.

Local assumptions are particularly effective—efficient, secure (with a provably

sound model), and concise—when we need to deal with big environments and gen-

erate proofs of lookups in these environments.

5.3.2 Typing rules

In this subsection, we present an efficient type checking algorithm for environment

management using dynamic clauses. The semantics is presented in the next sub-

5It is a dependent type on local parameter x.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 105

`p p : even

safe(p)
SafeTy

d `d (d; e) : τ

`p (d; e) : τ
ProgTy

Γ `e e1 : τ1 bind(x, τ1, Γ) → Γ `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ
BindTy

Γ `e e : τ

Γ `d (·; e) : τ
BindNil

bind(x, τ1, Γ)

Γ `e x : τ
VarTy

Γ `e e1 : τ1 Γ `e e2 : τ2 τ1 � τ2 = τ
Γ `e e1 + e2 : τ

PlusTy

even � even = even
�ee

odd � odd = even
�oo

even � odd = odd
�eo

odd � even = odd
�oe

Figure 5.5: Typing rules with dynamic context.

section. Figure 5.5 shows the type checking rules with a dynamic environment

management scheme.

The rule ProgTy calls a declaration checking rule and passes declaration d to

it. The declaration d appears twice in the premise. The declaration checking rules

traverse one d, and the other d is used to pass the original declaration all the way

to the expression checking rules.

The rule BindTy requires some explanation. It first checks that the expression

e1 has type τ1, then asserts this fact as a dynamic clause (or local assumption)

bind(x, τ1, Γ) and continues type checking.

When type checking a variable expression, we try rule VarTy to match the

previous checked-in local assumptions. The lookup operation takes constant time

and the proof generated for it is concise. The � rules remain the same as before.

In a conventional Prolog implementation that supports efficient assert/retract

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 106

operations for atomic dynamic clauses like bind(x, τ1, Γ), the type checking algo-

rithm above is linear. Moreover, it is provably sound as we will show next.

5.3.3 Foundational semantics and proofs

The safety specification remains the same as presented in Figure 5.2. The defini-

tions of types and typing judgements remain untouched except for `d and the new

constructor bind .

Γ `d (d; e) : τ
def

= ∀s. (Γ v d ∧ Γ s)⇒ ∃a. (e s a ∧ τ a)

bind(x, τ, Γ)
def

= ∀s. Γ s⇒ ∃a. (s x a ∧ τ a)

d1 v d2
def

= ∀s. d1 s⇒ d2 s

The semantics of dynamic clause bind(x, τ, Γ) is very similar to that of the static

binding operator Γ[x : τ] and lookup operator Γ(x) = τ . It serves both purposes.

From these definitions it is straightforward to prove the typing rules as lemmas and

the safety theorem can be proved from the successful type checking of a program

from the goal `p (d; e) : even. Here we give the proof for rule BindTy.

Lemma 5.3.3.1 (BindTy)

Γ `e e1 : τ1 bind(x, τ1, Γ) → Γ `d (d; e) : τ

Γ `d (let x = e1; d; e) : τ
BindTy

Proof: By definition of `d, for all state s, we assume Γ v (let x = e1; d) and Γ s,

then we prove ∃a. (e s a ∧ τ a). This can be obtained from Γ `d (d; e) : τ . In order

to use this fact, we need to prove the local assumption bind(x, τ1, Γ), which can be

proved from the premise Γ `e e1 : τ1 and the assumption Γ v (let x = e1; d). 2

The machine-checkable proof in LF for this rule can be found in Section 5.6.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 107

5.3.4 Dynamic clauses in the real LTAL

In LTAL, we use dynamic clauses to efficiently maintain various environments such

as label, register, and type maps. These maps are shown in Figure 3.2 as LRT . An

LTAL program is a tuple 〈L, R, T, B〉, where L is a label map, R is a register map,

T is a type definition map, and B is a list of basic blocks.

The type checker for LTAL programs starts by parsing the LRT maps so that

later they can be looked up efficiently. These maps could be quite large for real-life

programs, and often the type checker needs to look up the value of a label, the

register that a variable is assigned to, or the content of a type definition. Naive

implementation, such as sequential search, of parsing and lookup rules for various

environments is straightforward, but not efficient. In our actual implementation, we

use dynamic clauses to efficiently maintain various environments. The type checking

rules for parsing these maps are shown in Figure 5.6.

The rule SafeTheorem states that the LTAL type checking must establish the

safety theorem. The root rule of the LTAL type checker is the rule ProgTy which

calls the label binding parsing rules. There two rules, BindLabCons and BindLabNil ,

for processing the label environment L. The BindLabCons rule matches if the

current label environment in processing is not empty. Its subgoal has a dynamic

clause bindLab(l1, a1, H). This dynamic clause is asserted at run time whenever the

rule BindLabCons is matched. The dynamic clauses have dynamic scope, and thus

if later the type checker wants to look up the value (which is an address) of a label l,

it can simply invoke a subgoal as bindLab(l, a, H) and a will have the value after the

subgoal completes. This lookup operation takes constant time since dynamic clauses

are compiled into hash tables by the the underlying logic programming system. The

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 108

`p P H

safe(P)
SafeTheorem

`l P 〈L, R, T, B〉 L

`p P 〈L, R, T, B〉
ProgTy

bindLab(l1, a1, H) → `l P H L

`l P H (l1 7→ a1, L)
BindLabCons

`r P 〈L, R, T, B〉 R

`l P 〈L, R, T, B〉 nil
BindLabNil

bindReg(x1, r1, H) → `r P H R

`r P H (x1 7→ r1, R)
BindRegCons

`t P 〈L, R, T, B〉 T

`r P 〈L, R, T, B〉 nil
BindRegNil

bindTy(D1, τ1, H) → `t P H T

`t P H (D1 7→ τ1, T)
BindTyCons

`b P 〈L, R, T, B〉 B

`t P 〈L, R, T, B〉 nil
BindTyNil

LRT ` (ρ; H ; φ; cc) {(ι1; . . . ; ιk)} (ρ′; H ′; φ′; cc′)

`b P 〈L, R, T, B〉 (l[~α : ~κ](m, cc, φ) = ι1; . . . ; ιk)
BlockCons

`t P 〈L, R, T, B〉 nil
BlockNil

Figure 5.6: LTAL typing rules for environment management with dynamic context.

rule BindLabNil matches if the label environment is empty and it calls the register

environment processing rules. The register and type definition environments are

processed in a similar way.

After processing these environments, the type checker invokes the basic block

checking rules which simply call instruction checking rules for checking the body

with preconditions as the current typing environments. Since the dynamic clauses

are dynamically scoped, and the basic block checking rules and instruction checking

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 109

rules are invoked by the rule BindTyNil directly and by other environment pro-

cessing rules indirectly, we can efficiently query dynamic clauses in the basic block

and instruction type checking rules. The individual instruction checking rules are

presented in Section 3.7, 3.8, 3.9, and Appendix A.2.

5.4 Logic Programming Engine

For developing our semantic proofs of soundness we use Twelf, a sophisticated sys-

tem with many useful features: In addition to an LF type checker, it contains a

type reconstruction algorithm that permits users to omit many explicit parameters,

a proof-search algorithm (which is like a higher-order Prolog interpreter), constraint

regimes (e.g., linear programming over the exact rational numbers), mode analysis

of parameters, a meta-theorem prover, a pretty-printer, a module system, a con-

figuration system, an interactive Emacs mode, and more. We have found many of

these features useful in proof development, but Twelf is certainly not a minimal

proof checker; we would like to avoid the need to trust it. However, since Twelf

does construct explicit proof objects internally, we can extract these objects to send

to our minimal checker.

The previous section shows that efficient syntax-directed type-checking uses cer-

tain logic-programming constructs (dynamic clauses) but not others (backtracking),

and that each Horn clause can be proved sound as a lemma in higher-order logic.

This section describes a suitable logic programming interpreter implemented in Flit,

our trusted LF proof checker. The logic programming engine is implemented by

Stump [Wu et al., 2003]. Other aspects of Flit are described in Appel et al. [2002].

A type checking lemma (a rule together with its semantic proof) is represented

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 110

in LF as “name : τ = exp.” The type τ encodes the type checking rule, and exp is

a term of type τ . By the Curry-Howard isomorphism [Howard, 1980], term exp is a

proof of the theorem that τ encodes. The name stands for the whole term exp with

type τ , i.e. the theorem and the proof.

The first step is to check the validity of the proof “exp.” Our checker Flit includes

a simple LF checker which is used to check that exp has LF type τ . Flit LF checker

is simpler than Twelf since Twelf does type inference while Flit does not. We ask

the adversary to send explicitly typed LF terms instead of implicitly typed terms;

explicitly typed LF terms can be constructed by Twelf’s type inference module.

After LF type checking, the proof term “exp” is not useful anymore. Flit runs

a simple logic programming engine to interpret the type checking rules as a logic

program, which type checks input machine programs.

To achieve a concise and efficient implementation, we impose several restrictions

on the form of goals and programs. If these are violated, the interpreter will remain

sound but may fail to be complete. Specifically, Flit’s logic programming language

makes the following assumptions:

Atomic dynamic clauses. Flit does not allow non-atomic dynamic clauses. Dy-

namic clauses are mainly used to efficiently maintain various environments.

For this purpose, atomic dynamic clauses suffice.

Bounded execution. To avoid dynamic memory allocation during the logic pro-

gram execution, Flit uses a fixed-size memory to run logic programs. The

only purpose of this restriction is to simplify the logic programming engine

and thus simplify Flit, the trusted checker.

Determinism. Every subgoal in the input logic program is solved, if solvable,

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 111

by the first matching clause in the set of static clauses and active dynamic

clauses. Note that dynamic clauses follow the dynamic scoping rule. Under

this condition of determinism, Flit does not need backtracking mechanism.

And our practice shows that backtracking can often be avoided during type

checking when the type checker is carefully engineered.

Bounded indices. Let’s define the index of a dynamic clause to be its first argu-

ment. We require indices of dynamic clauses are small natural numbers and

distinct from each other. This allows simple and efficient indexing of dynamic

clauses.

Prolog interpreters typically enter atomic dynamic clauses in hash table for ef-

ficient matching, using one of the predicate’s arguments as the hash key. Our logic

programs can be written with this very restricted form of clause indexing.

Example. The even-odd proof scheme of Figure 5.5 is a logic program that

conforms to these restrictions. The proof scheme (1) executes in linear time and

space, and it is (2) syntax-directed. Its dynamic clauses bind(x, τ, Γ) are all atomic.

In our implementation of this proof scheme, we put the x argument of bind(x, τ, Γ)

in the first position to conform to the bounded indices rule; and all the indices x

are manifest constants that are small integers. Our LTAL proof scheme used in the

real PCC system also obeys these restrictions.

A logic program is presented to Flit’s logic programming engine as a set of LF

terms, represented using an expression data structure [Appel et al., 2002]. Flit first

transforms the logic clauses into a format that is convenient for executing logic

programs, and then runs the logic program [Wu et al., 2003].

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 112

5.5 Proof Witnesses

Our even-odd example is overly simplistic in that there is a syntax-directed decision

procedure for the main safety theorem: For an expression E, if the formula safe(E)

is true, then the proof is easily found. In a real proof-carrying code application,

the program E is in machine language; loops and recursion in the program, and

quantified types in the type system, make type inference impossible.

Thus, in a PCC application, the input to the prover includes the program E and

also an untrusted hint H. The hint provides loop invariants, type annotations, and

other information which can be used by the prover. Because the hint is provided

by the same adversary who provides the program, H cannot be assumed accurate,

but it can still be useful in constructing the proof.

We will illustrate using the even-odd example. Let us provide a hint H which

is a list of type annotations, x1 : τ1, x2 : τ2, . . . , xn : τn. We will write a prover that

uses this hint (even though for this simple language the hint is not necessary). The

root goal is now `p H E instead of safe(E).6

In addition to running the logic program on the root query `p H E, the checker

verifies a (static) proof of the lemma,

`p H E

safe(E)
.

We can’t use this as a logic-programming rule, i.e. we can’t use safe(E) as our

query, because then the logic program would have to “guess” H, which could require

unbounded backtracking. The hint H serves as a proof witness for E, in conjunction

with the Prolog program (i.e. proof scheme) and its semantic soundness proof.

6The text representation of the predicate `p is “judge prog” as we presented in Chapter 2.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 113

Axioms stage 1

Trusted↑ Expression Operators
Untrusted↓ Semantic stage 2

Model
Hint Operators

Proof scheme Clauses
Theorem to be proved Expression stage 3

Proof witness Hint

Table 5.1: Layers of specification and proof.

5.5.1 Layers of specification and proof

To handle proof-checking with hints, the checker software must process separately

several layers of specification, semantics, proof, and logic-programming clauses. The

layers of specification and proof are shown in Table 5.1. It is useful to think in terms

of a proof consumer and an adversary.

Stage 1. The proof consumer specifies the Axioms of a logic, and defines the

kinds of theorems she wants to check—that is, the language of expressions for which

she wants safety theorems—by defining Expression Operators. One of the expres-

sion operators must be a predicate called safe.

Stage 2. Then the adversary sends a proof scheme, that is, a logic program

(the syntactic type checker in the even-odd example). This program manipulates

goals expressed using the Expression Operators and the Hint Operators. All the

hint operators must be defined in terms of the underlying logic—the adversary is

not permitted to add uninterpreted operators to the logic. All the Clauses of the

logic program must be proved as derived lemmas in the logic, from the definitions

of the expression and hint operators, as Lemma 5.3.3.1 does.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 114

The Semantic Model, sent by the adversary, is simply a set of supporting defi-

nitions and lemmas, defined in terms of the underlying logic, that can be useful in

defining the hint operators and the clauses.

The adversary may define as many hint operators and clauses as he likes; how-

ever, there must be one operator called `p, and the semantic model must contain a

lemma of the form,

`p H E

safe(E)
.

The proof consumer uses the logical framework LF to check the wellformedness

of all the definitions and the proofs of all the lemmas. Then she loads the Clauses

into the subset-Prolog interpreter.

Stage 3. Finally, the adversary sends an Expression and a Hint. The consumer

needs to verify that the expression obeys her desired safety property—this was the

point of the whole exercise!—and she will do it using the adversary’s proof scheme.

Since the proof scheme was proved sound (and she has checked the proof), then if

the logic program completes successfully, then safe(E) must be valid.

For the even-odd system, the implementation of these stages is shown in Ta-

ble 5.2; sample source code written in Twelf is in Section 5.6.

What is a proof witness? Stage 1 (loading axioms and safety predicate) needs

to be done only once per safety policy. In a PCC application, stage 2 (loading the

proof scheme) would need to be done when there are substantial modifications to

the the untrusted compiler. Stage 3 is repeated for each compiled program sent

from the compiler to the consumer. Clearly, any work done in stages 1 and 2 can

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 115

Axioms
A⇒ B A

B
imp e

∀x.A(x)

A(B)
∀ e

et cetera

Expression Operators
(Figure 5.2)

Var
def
= Num

State
def
= Var → Num → Form

Decl
def
= State → Form

Exp
def
= State → Num → Form

Prog
def
= 〈Decl ,Exp〉

(d; e)
def
= 〈d, e〉 ·

def
= λs. true

let
def
= λx.λe.λd. λs. d s ∧ (∀a.e s a⇒ s x a)

x
def
= λs.λa. s x a n

def
= λs.λa. a = n

+
def
= λe1.λe2. λs.λa. ∃a1.∃a2.e1 s a1 ∧ e2 s a2 ∧ a = a1 plus a2

safe
def
= λp. ∀s. fst(p) s ⇒ ∃a. snd(p) s a ∧ isEven(a)

Semantic Model
(Figure 5.4 and Section 5.3.3)

Ty
def
= Num → Form Env

def
= State → Form

∃!
def
= λF. ∃x. F x ∧ ∀y. F y ⇒ x = y

upd
def
= λx.λa.λs. λy.λb. if (x = y) (a = b) (s y b)
. . .

even
def
= λx.∃n. isInt(n) ∧ x = 2n

odd
def
= λx.∃n. isInt(n) ∧ x = 2n + 1

`p
def
= λh.λp.λτ. ∀s. fst(p) s⇒ ∃a.snd(p) s a ∧ τ a

`d
def
= λΓ.λh.λd.λe.λτ. ∀s. (Γ v d ∧ Γ s)⇒ ∃a. (e s a ∧ τ a)

`e
def
= λΓ.λe.λτ. ∀s. Γ s⇒ ∃a. (e s a ∧ τ a)

�
def
= λτ1.λτ2.λτ. ∀n1.∀n2.τ1 n1 ⇒ τ2 n2 ⇒ τ (n1 + n2)

bind
def
= λx.λτ.λΓ. ∀s. Γ s⇒ ∃a. (s x a ∧ τ a)

v
def
= λd1.λd2. ∀s. d1 s⇒ d2 s

Hint Operators
Ty Env even odd typeof ·

Clauses(Figure 5.5)safe(p) ← `p p : even.

`p (d; e) : τ ← d `d (d; e) : τ.

Γ `d (typeof x : τ1; h) ‖ (let x = e1; d) ; e : τ ←
Γ `e e1 : τ1 ←
(bind(x, τ1,Γ) → Γ `d (h ‖ d ; e) : τ).

Γ `d (·‖·; e) : τ ← Γ `e e : τ.

Γ `e x : τ ← bind(x, τ1, Γ).
Γ `e e1 + e2 : τ ← Γ `e e1 : τ1 ← Γ `e e2 : τ2 ← τ1 � τ2 = τ.

even � even = even. even � odd = odd.

odd � odd = even. odd � even = odd.

Expression
let x = 4 ; let y = x + 8 ; x + y

Hint
typeof x even (typeof y even ·)

Table 5.2: Proof scheme for even-odd system. Not shown are the proofs (in higher-
order logic) of all the clauses.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 116

be amortized over many executions of stage 3. Although the foundational proof

derives from information transmitted in stages 2 and 3, in measuring the effective

size of proof witnesses we can consider just the Hint sent in stage 3.

5.6 Machine Checkable Proofs

To illustrate the format of machine-checked soundness proofs of the type-checking

clauses, here we will show the proofs related to the rule BindTy (Lemma 5.3.3.1).

Note this is the version with hints we described in Section 5.5; the rule without

hints is quite similar.

Since the proof is written in LF, we begin with a brief introduction to LF. LF is

based on the λ-calculus with dependent types, and it has syntactic entities at three

levels: objects, types, and kinds. Types classify objects and kinds classify families

of types. A deductive system is represented in LF using the judgements-as-types

and derivations-as-terms principle [Harper et al., 1993]: Judgements (theorems) are

represented as types, and derivations (proofs) are represented as terms whose type

is the representation of the judgement (theorem) that they prove. In this way proof

checking of the object logic is reduced to type checking of the LF terms.

In general, a definition in LF has the form: name : τ = exp. including the dot.

The type τ encodes the theorem to be proved, and exp is a term of type τ . By the

judgements-as-types and derivations-as-terms principle, term exp is a proof of the

theorem that τ encodes. And the name stands for the whole term exp with type τ ,

i.e. the theorem and the proof. LF and Twelf also permit introducing constructors

with the form name : τ .

The entire machine-checkable proof in LF is shown in Figure 5.7. The notation

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 117

check_decl_cons:

|-d (typeof V Tv HINT) (let V Ev D) Gamma E T <-

|-e Gamma Ev Tv <-

(bind V Tv Gamma

-> |-d HINT D Gamma E T) =

[p1: bind V Tv Gamma -> |-d HINT D Gamma E T]

[p2: |-e Gamma Ev Tv]

|-d_i [s]

[p3: pf (sub_env @ Gamma @ (let V Ev D))]

[p4: pf (Gamma @ s)]

cut (bind_i [s_v]

[p7: pf (Gamma @ s_v)]

|-e_l p2 p7 [a_v]

[p5: pf (Ev @ s_v @ a_v)]

[p6: pf (Tv @ a_v)]

cut (let_e1 (sub_env_e p3 p7) p5)

[p8: pf (s_v @ c V @ a_v)]

exists_i a_v

(and_i p8 p6))

[p10: bind V Tv Gamma]

cut (sub_env_i [s’]

[p12: pf (Gamma @ s’)]

let_e2 (sub_env_e p3 p12))

[p20: pf (sub_env @ Gamma @ D)]

|-d_e (p1 p10) p20 p4.

Figure 5.7: Machine-checkable proof of BindTy in LF.

“[x:t]A” denotes λx : t. A. In the proof above we first introduce two λ-bindings;

that is, we assume that the two premises of the typing rule hold. Then we use the

|-d introduction rule |-d i to get a proof of

|-d (typeof V Tv HINT) (let V Ev D) Gamma E T,

i.e. the conclusion.

The rule |-d i introduces three λ-bindings: s, p3, and p4. Note that the type of

s is omitted and Twelf will reconstruct it to a State type. Lemma cut is as follows:

cut: pf A -> (pf A -> pf B) -> pf B =

[p1:pf A][p2:pf A -> pf B] imp_e (imp_i p2) p1.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 118

The imp i and imp e (modus ponens) are introduction and elimination lemmas

for implication. In general, the lemma cut means if we have a proof of A, and a

function which maps a proof of A to a proof of B, then we can get a proof of B.

This is similar to imp e or modus ponens, but cut uses LF function type -> instead

of object implication. When using cut, we first prove some formula A, then bind

this proof (give it a name so that we can refer to it later) and continue to prove the

goal (B in this case). The @ is the object logic level term application.

5.7 Scaling Up to Foundational PCC

The even-odd type system is just a toy example to demonstrate some of the princi-

ples. Our real applications are in proof-carrying code and distributed authorization.

Our checking system scales up to these examples quite well, as we will explain.

In our application to foundational PCC, the hint H is an expression in the

LTAL calculus presented in Chapter 3, and the expression E is a machine-language

program, that is, a sequence of 32-bit natural numbers.

Figure 2.1 shows the major components of our foundational proof-carrying code

framework. The LTAL clauses are a set of clauses in our restricted Prolog subset.

Axioms & Architecture Spec are preloaded into our Checker and must be trusted as

axioms and trusted definitions.7 Between these two components are proofs, based

on the axioms, of all the LTAL clauses.

A source program is compiled into a machine-code program and an LTAL ex-

pression. The compiler is not trusted, because it is a large program that may have

bugs. The trusted checker receives the LTAL clauses, along with their soundness

7A trusted definition is one that is used in the statement of the theorem to be proved; an
untrusted definition is used only in the proof.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 119

proofs in higher-order logic; checks the soundness proofs; and then runs the LTAL

checker, which is a syntax-directed computation in our subset Prolog.

LTAL is presented in Chapter 3; the LTAL semantic model is briefly presented

in Chapter 4. In this chapter, we focus on the aspects of the LTAL calculus that

enable it to be type-checked by our tiny trusted checker.

Because a source-language programmer never sees the LTAL program, we can

design the LTAL calculus to be checkable in our very restricted language. To use the

checker’s limited support for dynamic clauses, we have arranged the LTAL so that:

All identifiers in LTAL are small integers. No variables have the same identifier.

Program labels, local variables, and type abbreviations are represented by disjoint

sets of integers. To make the LTAL type system entirely syntax-directed, we use

explicit coercions to guide the typing rules, instead of relying on subtyping which

would require a search.

We use the simple and limited arithmetic provided by the checker: addition,

multiplication, and truncating division on 32-bit natural numbers. Other operators

are synthesized, such as A > B by div B A 0, using truncating division.

The LTAL typing rules, such as the one shown in Section 3.3, though bigger

and more complicated than the rules we presented for the even-odd system, can be

executed by our simple subset Prolog interpreter.

5.8 Experimental Results

We have measured our trusted checker on the even-odd microbenchmark and on

some small but nontrivial LTAL benchmarks. Gross statistics about these proof

schemes are shown in Table 5.3.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 120

EvenOdd LTAL
Core Axioms 341 341 lines of LF

Application-specific 10 1522 lines of LF
Expression Operators 40 2 lines of LF

Semantic Model 218 ∼100,000 lines of LF
Hint Operators 10 500 lines of LF

Clauses 12 3,500 lines of LF
Expression ∼ 7N ∼ 2N tokens

Hint ∼ 4N ∼ 30N tokens

Table 5.3: Measurements—system size.

Lines of LF does not include blank lines and comments. Expression sizes for

EvenOdd are measured with N as the number of declarations, each declaration of

the form let xi = xj + xk; which is 7 tokens per declaration. Expression sizes for

LTAL are measured with N as the number of machine instructions (32-bit integers)

in the program to be proved safe, with two tokens per integer, for example:

2551193600 ; 2181292040 ; 2214748172 ; . . . ; nil

From this it should be clear why LTAL has only two Expression Operators;

everything shown in Figure 3.2 and 3.16 is actually Hint Operators.

The logic program is the set of LTAL typing rules. There are several hundred

LTAL clauses or typing rules, some of which take dozens of lines to write down,

such as the one we showed in Section 3.3 for the SPARC add instruction. The LTAL

semantic model, which provides proofs of all these clauses, is rather intricate and is

the subject of several other papers and PhD theses [Appel and Felty, 2000; Appel

and McAllester, 2001; Ahmed et al., 2002; Ahmed, 2004; Swadi, 2003; Tan et al.,

2004].

Since the clauses are written in a subset of Prolog, we can execute them in

a standard Prolog system. For each benchmark, we compare execution time in

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 121

Input size SICStus Twelf Flit
EvenOdd

N = 100 0.002 0.99 0.01
N = 1000 0.030 > 3600 0.05
N = 10000 1.460 0.26

LTAL
N = 32 0.005 1.21 0.43
N = 870 0.183 1018 1.32
N = 1816 0.432 > 3600 2.19

Table 5.4: Measurements—safety checking performance.

the (highly optimized) SICStus Prolog compiler with execution time in the Flit

interpreter. The results are shown in Table 5.4.

All times are in seconds on a 2.2 GHz Pentium 4. Twelf is not designed for

performance, but its advanced features make it a convenient tool for us to develop

machine-checkable proofs in LF. Flit is faster than SICStus Prolog for large Even-

Odd examples; EvenOdd is unrealistic because the Prolog program has only a few

simple clauses. Parsing the expression and hint contributes a significant portion of

execution time for EvenOdd examples in SICStus Prolog. And also, the dynamic

clause indexing in Flit is tailored to our specific applications; it could be more effi-

cient for our examples than general purpose Prolog systems. Checking LTAL, Flit

is about five times slower than SICStus; this performance may be acceptable in the

intended application.

Of course, execution in SICStus loses the benefits of the tiny trusted base: In

that mode we don’t mechanically connect the soundness proof for the LTAL clauses

to the actual SICStus execution, and the SICStus Prolog compiler and interpreter

also become part of the trusted base.

Table 3.2 in Chapter 3 compares the proof-checking time of the life benchmark

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 122

with the time necessary for the ML compiler to generate the program. For ap-

plications where the output of a compiler is to be checked by a trusted checker,

it’s desirable that checking time be small compared to compile time. SML/NJ can

compile this benchmark in 0.49 seconds; our LTAL-generating FPCC/ML compiler

takes 3.0 seconds (the slowdown is partly because it takes extra time to preserve

types, and mostly because we have not engineered the back end for speed). LTAL

type-checking takes 0.43 seconds in SICStus and 2.2 seconds in Flit.

The Flit software currently comprises about 1169 lines of C code: the 803 lines

described in Section 5.1.2 for parsing axioms, loading proof graphs, and LF checking

the proofs have grown to 852 lines; our new logic-program interpreter is about 282

lines, and there are about 35 lines to manage the stages described in Section 5.5.1.

Necula’s oracle-based Prolog interpreter [Necula and Rahul, 2001] is about 800

lines of C code. It should be straightforward to use our style of LF proof-checking

of Prolog clauses, but use oracle-based execution instead of our interpreter. Then,

instead of an 1169-line C program, we would have a 1700-line program. In such a

system, the proof witnesses would be just as tiny as Necula’s, and the trusted base

would be somewhat larger than that of the system we have described in this paper.

Our initial implementation of Flit has no garbage collector. Checking the N =

1816 LTAL example consumes approximately 4 million heap nodes without garbage

collection. To scale Flit to significantly larger inputs, garbage collection would be

necessary. Our implementation of an allocator with two-space copying collector is

70 lines of C code.

CHAPTER 5. FOUNDATIONAL PROOF CHECKING 123

5.9 Conclusion

To make a trustworthy proof-checker with small witnesses, one should define a

language for proof-schemes, with a way to represent and check soundness theorems

for the proof schemes; then one should implement an interpreter to execute the

proof scheme on the theorem and the witness.

Pollack explained much of this in “How to believe a machine-checked proof”

[Pollack, 1998]:

... I suggest that the “programming language” for the checking pro-

gram be a logical framework [such as] the Edinburgh Logical Frame-

work we [could] program a checker in the internal language of the

framework The question then arises: where will we find a believable

implementation of a logical framework?

We ask you to believe very little. Our implementation is based on LF, higher-order

logic, and a small subset of pure Prolog, all of which are well understood; and our

implementation is about as small as possible—that is, to trust our system there are

less than 1200 lines of code that you have to understand.

Chapter 6

Conclusion and Future Work

In summary, the adoption of a low-level typed assembly language, construction of

its semantic model and machine-checkable soundness proof, and integration of a

simple logic programming engine in the proof checker are our main design choices,

and they serve as the interfaces between the compiler, the proof checker and the

proofs. The main contribution of the thesis is the design of these interfaces.

We have designed a syntactic low-level typed assembly language, called LTAL,

with a semantic model that backs up its soundness with a machine-checkable proof.

The semantic modeling technique makes LTAL easily and safely extensible. It has

a rich set of expressive constructors, yet its type-checking is decidable and syntax-

directed. We have implemented a prototype compiler (by Chen and Fang [Chen

et al., 2003] based on SML/NJ) that transforms core ML programs to SPARC code

annotated with LTAL programs.

In a Proof-Carrying Code (PCC) system, an untrusted prover (code producer)

must convince a trusted checker (code consumer) of the validity of a theorem by

sending a proof. The proof has to be checked by a trusted checker. The proof

124

CHAPTER 6. CONCLUSION AND FUTURE WORK 125

checking in our system is mainly done in two steps [Wu et al., 2003]. First, the

LF proofs for the LTAL type checking rules are checked; this is standard LF proof

checking. Second, the LTAL type checker (the set of LTAL type checking rules

written in the fashion of logic clauses) is interpreted by a logic programming engine.

To this end, we have built a tiny and trustworthy proof-checker, called Flit

[Appel et al., 2002; Wu et al., 2003], that permits small proof witnesses and machine-

checkable proofs of the soundness of the system. Flit includes an efficient LF proof

checker and a simple yet efficient logic programming engine that implements a

subset Prolog. The LF checker is used to verify the soundness proof of the type

system chosen by the compiler or user, and the logic programming engine is used to

interpret the verified type checker to check machine code together with some proof

hints from the compiler. The LTAL type checker is written in such a way that it

can be interpreted by Flit logic programming engine (without backtracking).

In the future, there are several directions to extend our Foundational Proof-

Carrying Code (FPCC) system. One direction is to build FPCC systems for object-

oriented languages such as Java and C# based on the current system. The core

part of LTAL and the soundness proof should be reusable.

Another direction is to strengthen the current safety policy and to build FPCC

systems that carry proofs for stronger properties. To specify stronger safety proper-

ties at machine level, sometimes we need stronger constructors, such as types, in our

Trusted Computing Base (TCB). We are currently investigating how to extend our

TCB to include some type constructors so that we can specify interfaces between

two low-level code modules.

Appendix A

LTAL Static Semantics

A.1 Coercion Rules

ρ; LRT `c τ
cid
↪→ τ

CoerceId

ρ; LRT `c τ
c2
↪→ τ ′ ρ; LRT `c τ ′

c1
↪→ τ ′′

ρ; LRT `c τ
c1◦c2
↪→ τ ′′

CoerceComposition

ρ; LRT `c τ [µα : κ.τ/α]
cfold[µα:κ.τ]

↪→ µα : κ.τ
CoerceFold

ρ; LRT `c µα : κ.τ
cunfold
↪→ τ [µα : κ.τ/α]

CoerceUnfold

τ1 : κ

ρ; LRT `c τ2[τ1/α]
cpack[τ1,∃α:κ.τ2]

↪→ ∃α : κ.τ2

CoercePack

126

APPENDIX A. LTAL STATIC SEMANTICS 127

ρ; LRT `c τu

cinjection(sum(τr ,τu))
↪→ sum(τr, τu)

CoerceSumInjection

ρ; LRT `c sum(τr,⊥)
csum2range

↪→ τr

CoerceSum2Range

τ is not a union type

ρ; LRT `c sum(⊥, τ)
csum2boxedone

↪→ τ
CoerceSum2Boxedone

τ = τ1 ∪ τ2 ∪ . . . ∪ τn

τi = field(0, int=(ti)) ∩ τ ′i (for all 1 ≤ i ≤ n)

(α is a fresh type variable)

ρ; LRT `c τ
csum2hastag

↪→ ∃α.hastag(α, τ)
CoerceSum2Hastag

τ is neither a union type, nor a bottom type

ρ; LRT `c hastag(τtag , τ)
cunhastag

↪→ τ
CoerceUnhastag

n1 ≤ n < n2

ρ; LRT `c n
crange[n1,n2]

↪→ range(n1, n2)

CoerceSingleton2Range

ρ; LRT `c n
c2int32
↪→ int32

CoerceSingleton2Int32

ρ; LRT `c range(n1, n2)
c2int32
↪→ int32

CoerceRange2Int32

i 6= 0

ρ; LRT `c int=(i)
ci2nz
↪→ int 6=(0)

CoerceSingleton2Nonzero

APPENDIX A. LTAL STATIC SEMANTICS 128

ρ; LRT `c τ1

cinj1 [τ1∪τ2]
↪→ τ1 ∪ τ2

CoerceInjectionLeft

ρ; LRT `c τ2

cinj2 [τ1∪τ2]
↪→ τ1 ∪ τ2

CoerceInjectionRight

ρ; LRT `c τ1 ∩ τ2

cproj1
↪→ τ1

CoerceProjectionLeft

ρ; LRT `c τ1 ∩ τ2

cproj2
↪→ τ2

CoerceProjectionRight

ρ; LRT `c def(D)
cname
↪→ T (D)

CoerceName

ρ; LRT `c T (D)
cdef(D)
↪→ def(D)

CoerceDef

ρ; LRT `c τ1
c1
↪→ τ ′1 ρ; LRT `c τ2

c2
↪→ τ ′2

ρ; LRT `c τ1 ∪ τ2

cunion(c1,c2)
↪→ τ ′1 ∪ τ ′2

CoerceUnion

ρ; LRT `c τ
c1
↪→ τ1 ρ; LRT `c τ

c2
↪→ τ2

ρ; LRT `c τ
cinters(c1,c2)

↪→ τ1 ∩ τ2

CoerceIntersection

ρ; LRT `c τ
c

↪→ τ ′

ρ; LRT `c field(τi, τ)
cfield(c)

↪→ field(τi, τ
′)

CoerceField

APPENDIX A. LTAL STATIC SEMANTICS 129

LRT ` l : codeptr[~α : ~κ](m, cc, ~v : ~τ)

ρ; LRT `c addr(l)
caddr2code

↪→ codeptr[~α : ~κ](m, cc, ~v : ~τ)
CoerceAddr2Code

ρ; LRT `c offset(0, τ)
coffset0
↪→ τ

CoerceOffset0

ρ; LRT `c τ
c2offset0

↪→ offset(0, τ)
Coerce2Offset0

τ ′ ≡ τ [↑n], where n = |α1 : κ1; ~α : ~κ|

m[τ ′] = m′ cc[τ ′] = cc ′ φ[τ ′] = φ′

where [·] denotes type application1

ρ; LRT `c codeptr[α1 : κ1; ~α : ~κ](m, cc, φ)
cptapp(τ)

↪→ codeptr[~α : ~κ](m′, cc′, φ′)

CoercePtapp

A.2 Instruction Typing Rules

LRT ; ρ; φ ` v : ∃α : κ.τ

LRT ` (ρ; H ; φ; cc) {(α, v0) = open(v)} (ρ, α : κ; H ; φ, v0 : τ ; cc)
InstrOpen

LRT ; ρ; φ ` v : τ

φ′ = φ, v : τ, if rmap(v) = rmap(v′)

φ′ = (φ\v), v : τ, if rmap(v) 6= rmap(v′)

LRT ` (ρ; H ; φ; cc) {v = v′} (ρ; H ; φ′; cc)
InstrMove

1We use de Bruijn index representation and explicit substitution calculus [Abadi et al., 1990]
notation in this rule.

APPENDIX A. LTAL STATIC SEMANTICS 130

LRT ; ρ; φ ` v1 : int LRT ; ρ; φ ` v2 : int

LRT ` (ρ; H ; φ; cc) {v = v1 op v2} (ρ; H ; (φ\v), v : int; cc)
InstrALU

LRT ; ρ; φ ` v1 : int=(n1) LRT ; ρ; φ ` v2 : int=(n2) n = n1 + n2

LRT ` (ρ; H ; φ; cc) {v = v1 +i v2} (ρ; H ; (φ\v), v : int=(n); cc)
InstrALUi

LRT ` (ρ; H ; φ; cc) {v = sethi(n)} (ρ; H ; (φ\v), v : int=(n ∗ 4096); cc)
InstrSethi

LRT ; ρ; φ ` v′ : τ

LRT ` (ρ; H ; φ; cc) {v = load(v′)} (ρ; H ; (φ\v), v : τ ; cc)
InstrLoad

LRT ; ρ; φ ` v′ : τ

LRT ` (ρ; H ; φ; cc) {v = store(v′)} (ρ; H ; (φ\v), v : τ ; cc)
InstrStore

LRT ; ρ; φ ` v1 : addr(f) LRT ; ρ; φ ` v2 : diff(g, f)

LRT ` (ρ; H ; φ; cc) {v = addradd(v1, v2)} (ρ; H ; (φ\v), v : addr(g); cc)
InstrAddrAdd

LRT ; ρ; φ ` v1 : field(i, τ) LRT ; ρ; φ ` v2 : int=(i)

LRT ` (ρ; H ; φ; cc) {v = select(v1, v2)} (ρ; H ; (φ\v), v : τ ; cc)
InstrSelect

APPENDIX A. LTAL STATIC SEMANTICS 131

LRT ; ρ; φ ` v′ : hastag(τtag , τu) φ′ = (φ\v), v : int=(τtag)

LRT ` (ρ; H ; φ; cc) {v = gettag(v′)} (ρ; H ; φ′; cc)
InstrGettag

LRT ; ρ; φ ` v : τi LRT ; ρ; φ ` vi : int=(i)

0 ≤ i < n m′ = max(m, i) τ ′ = τ ∩ (field(4i, τi))

LRT ` (ρ; (n, m, τ); φ; cc) {init(vi, v)} (ρ; (n, m′, τ ′); φ; cc)
InstrInit

LRT ` (ρ; (n, m, t); φ; cc) {v = record} (ρ; H ; (φ\v), v : t; cc)
InstrRecord

LRT ; ρ; φ ` v : int=(n′) m < n′ ≤ n

LRT ` (ρ; (n, m, t); φ; cc testmem(k))

{inc allocptr(v)}

(ρ; (n− n′,−1,>); φ; cc none)

InstrIncAllocptr1

LRT ; ρ; φ ` v : int=(n′) m < n′ ≤ n cc 6= cc testmem(k)

LRT ` (ρ; (n, m, t); φ; cc)

{inc allocptr(v)}

(ρ; (n− n′,−1,>); φ; cc)

InstrIncAllocptr2

LRT ; ρ; φ ` v : codeptr([α1 : κ1, . . . , αj : κj](m, cc′, v1 : τ ′1, . . . , vn : τ ′n))

LRT ; ρ; φ ` vi : τ ′i [σ] (for all 1 ≤ i ≤ n)

σ = τ1 · τ2 · . . . τj · id cc = cc′[σ]

H = (n1, n2, τ) n1 ≥ m[σ]

LRT ` (ρ; H ; φ; cc) {call(v, [τ1, . . . , τj])} (; ; ;)
InstrCall

APPENDIX A. LTAL STATIC SEMANTICS 132

LRT ` l : codeptr([α1 : κ1, . . . , αj : κj](m, cc ′, v1 : τ ′1, . . . , vn : τ ′n))

LRT ; ρ; φ ` vi : τ ′i [σ] (for all 1 ≤ i ≤ n)

σ = τ1 · τ2 · . . . τj · id cc = cc′[σ]

H = (n1, n2, τ) n1 ≥ m[σ]

LRT ` (ρ; H ; φ; cc) {calln(l, [τ1, . . . , τj])} (; ; ;)
InstrCalln

LRT ` (ρ; H ; φ; cc) {cmp(v1, v2)} (ρ; H ; φ; cc none)
InstrCmp

LRT ; ρ; φ ` v1 : int=(τ1) LRT ; ρ; φ ` v2 : int=(τ2)

LRT ` (ρ; H ; φ; cc) {cmpcc(v1, v2)} (ρ; H ; φ; cc cmp(τ1, τ2))
InstrCmpcc

LRT ; ρ; φ ` v : τ φ′ = (φ\v), v′ : int=(α) ∩ τ cc′ = cc testbox(α)

LRT ` (ρ; H ; φ; cc) {(α, v′) = testbox(v)} (ρ; H ; φ′; cc′)
InstrTestbox

0 ≤ n ≤ 1024 cc ′ = cc testmem(n)

LRT ` (ρ; H ; φ; cc) {testmem(n)} (ρ; H ; φ; cc′)
InstrTestmem

LRT ; ρ; H ; φ; cc `` l1 LRT ; ρ; H ; φ; cc `` l2
LRT ` (ρ; H ; φ; cc) {if (π) then l1 else l2} (; ; ;)

InstrIf

cc = cc testmem(n) LRT ; ρ; H ; φ; cc `` l1

LRT ; ρ; (n,−1,>); φ; cc `` l2

LRT ` (ρ; H ; φ; cc) {iffull then l1 else l2} (; ; ;)
InstrIffull

APPENDIX A. LTAL STATIC SEMANTICS 133

LRT ; ρ; φ ` v : int=(τα) ∩ (int=(0) ∪ . . . ∪ int=(n− 1) ∪ τ ′)

τ ′ = τ1 ∪ τ2 ∪ . . . ∪ τm cc = cc testbox(τα) n < 256

τi = (field(0, int=(tag i))) ∩ τ ′i (for all 1 ≤ i ≤ m)

LRT ; ρ; H ; φ, v1 : τ ′; cc `` l1

LRT ; ρ; H ; φ, v2 : range(0, n); cc `` l2

LRT ` (ρ; H ; φ; cc) {ifboxed (v) then (v1, l1) else (v2, l2)} (; ; ;)
InstrIfboxed

LRT ; ρ; φ ` v : hastag(τα, τu)

cc = cc cmp(τα, i)

τ = τ1 ∪ τ2 ∪ . . . ∪ τn

τi = field(0, int=(tag i)) ∩ τ ′i (for all 1 ≤ i ≤ n)

τt =
⋃

1≤j≤n τj where i π tagj holds

τf =
⋃

1≤k≤n τk where i π tagk does not hold

LRT ; ρ; H ; φ, v1 : (field(0, int=(τα))) ∩ τt; cc `` l1

LRT ; ρ; H ; φ, v2 : (field(0, int=(τα))) ∩ τf ; cc `` l2

LRT ` (ρ; H ; φ; cc) {iftag (π) {v} then (v1, l1) else (v2, l2)} (; ; ;)
InstrIftag

Bibliography

Mart́ın Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques Lèvy. Explicit

substitutions. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages (POPL ’90), pages 31–46. ACM Press,

1990.

Amal J. Ahmed. Semantics of Types for Mutable State. PhD thesis, Department of

Computer Science, Princeton University, 2004.

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of

general references embeddable in higher-order logic. In Proceedings of the 17th

Annual IEEE Symposium on Logic in Computer Science (LICS ’02), pages 75–86.

IEEE Computer Society, July 2002.

Andrew W. Appel. Foundational proof-carrying code. In Proceedings of the 16th

Annual IEEE Symposium on Logic in Computer Science (LICS ’01), pages 247–

258. IEEE Computer Society, 2001.

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In CCS

’99: Proceedings of the 6th ACM Conference on Computer and Communications

Security, pages 52–62, New York, November 1999. ACM Press.

134

BIBLIOGRAPHY 135

Andrew W. Appel and Amy P. Felty. A semantic model of types and machine

instructions for proof-carrying code. In Proceedings of the 27th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’00),

pages 243–253, New York, January 2000. ACM Press.

Andrew W. Appel and David B. MacQueen. A Standard ML compiler. In Proceed-

ings of the Functional Programming Languages and Computer Architecture, pages

301–324. Springer-Verlag, 1987. ISBN 3-540-18317-5. Lecture Notes In Computer

Science (Vol. 274).

Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In

Proceedings of the 3rd International Symposium on Programming Language Im-

plementation and Logic Programming (PLILP ’91), pages 1–13. Springer-Verlag,

1991. Lecture Notes in Computer Science (Vol. 528).

Andrew W. Appel and David McAllester. An indexed model of recursive types for

foundational proof-carrying code. ACM Transactions on Programming Languages

and Systems, 23(5):657–683, September 2001.

Andrew W. Appel, Neophytos Michael, Aaron Stump, and Roberto Virga. A trust-

worthy proof checker. In Iliano Cervesato, editor, Foundations of Computer Se-

curity Workshop, pages 37–48. DIKU, July 2002.

Andrew W. Appel, Neophytos G. Michael, Aaron Stump, and Roberto Virga. A

trustworthy proof checker. Journal of Automated Reasoning, 31:231–260, 2003.

Andrew W. Appel and Daniel C. Wang. JVM TCB: Measurements of the trusted

computing base of Java virtual machines. Technical Report CS-TR-647-02,

Princeton University, 2002.

BIBLIOGRAPHY 136

Matthias Blume and Andrew W. Appel. Lambda-splitting: A higher-order approach

to cross-module optimizations. In Proc. ACM SIGPLAN International Confer-

ence on Functional Programming (ICFP ’97), pages 112–124, New York, June

1997. ACM Press.

Frederick Brooks. The Mythical Man-Month. Addison-Wesley, Boston, 1975.

Bor-Yuh Evan Chang, Adam Chlipala, George C. Necula, and Robert R. Schneck.

The open verifier framework for foundational verifiers. In TLDI ’05: Proceedings

of the 2005 ACM SIGPLAN international workshop on Types in languages design

and implementation, pages 1–12, New York, NY, USA, 2005. ACM Press. ISBN

1-58113-999-3.

Juan Chen. A Low-Level Typed Assembly Language with a Machine-checkable

Soundness Proof. PhD thesis, Department of Computer Science, Princeton Uni-

versity, 2004.

Juan Chen and David Tarditi. A simple typed intermediate language for object-

oriented languages. In Proceedings of the 32th ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL ’05), pages 38–49, New

York, NY, USA, 2005. ACM Press. ISBN 1-58113-830-X.

Juan Chen, Dinghao Wu, Andrew W. Appel, and Hai Fang. A provably sound

TAL for back-end optimization. In Proceedings of the ACM SIGPLAN 2003

Conference on Programming Language Design and Implementation (PLDI ’03),

pages 208–219, New York, June 2003. ACM Press.

Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Ken Cline, and Mark

Plesko. A certifying compiler for Java. In Proceedings of the ACM SIGPLAN

BIBLIOGRAPHY 137

2000 Conference on Programming Language Design and Implementation (PLDI

’00), pages 95–107, New York, June 2000. ACM Press.

Karl Crary. Toward a foundational typed assembly language. In Proceedings of

the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’03), pages 198–212, New York, January 2003. ACM Press.

Drew Dean, Edward W. Felten, Dan S. Wallach, and Dirk Balfanz. Java security:

Web browers and beyond. In Dorothy E. Denning and Peter J. Denning, editors,

Internet Beseiged: Countering Cyberspace Scofflaws. ACM Press (New York),

October 1997.

Lal George. MLRISC: Customizable and reusable code generators. Technical report,

Bell Laboratories, May 1997.

M.J.C. Gordon. Mechanizing programming logics in higher-order logic. In G.M.

Birtwistle and P.A. Subrahmanyam, editors, Current Trends in Hardware Veri-

fication and Automatic Theorem Proving, pages 387–439, Berlin, 1988. Springer-

Verlag.

Nadeem Hamid, Zhong Shao, Valery Trifonov, Stefan Monnier, and Zhaozhong Ni.

A syntactic approach to foundational proof-carrying code. In Proceedings of the

17th Annual IEEE Symposium on Logic in Computer Science (LICS ’02), pages

89–100. IEEE Computer Society, July 2002.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.

Journal of the ACM, 40(1):143–184, January 1993.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and

BIBLIOGRAPHY 138

J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic, Lambda

Calculus and Formalism, pages 479–490. Academic Press, Inc., New York, NY,

1980.

Christopher League, Zhong Shao, and Valery Trifonov. Precision in practice: A

type-preserving Java compiler. In Proceedings of the 12th International Confer-

ence on Compiler Construction (CC ’03), Lecture Notes in Computer Science

2622. Springer-Verlag, April 2003.

Allen Leung and Lal George. MLRISC Annotations. Bell Laboratories.

Available online at http://cm.bell-labs.com/cm/cs/what/smlnj/compiler-notes/

annotations.ps.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-

Wesley, Boston, 1996.

Brian Martin. Social aspects of the Love Bug virus. Available online at

http://www.attrition.org/∼jericho/works/security/lovebug.html, 2000.

Gary McGraw and Greg Morrisett. Attacking malicious code: A report to the

infosec research council. IEEE Software, 17(5):33–41, September 2000.

Neophytos G. Michael and Andrew W. Appel. Machine instruction syntax and

semantics in higher-order logic. In CADE-17: 17th International Conference on

Automated Deduction, pages 7–24, Berlin, June 2000. Springer-Verlag. Lecture

Notes in Artificial Intelligence (LNAI 1831).

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick

Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A real-

BIBLIOGRAPHY 139

istic typed assembly language. In Second ACM SIGPLAN Workshop on Compiler

Support for System Software, pages 25–35, New York, 1999a. ACM Press. INRIA

Technical Report 0288, March 1999.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed

assembly language. Journal of Functional Programming, 12(1):43–88, January

2002.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to

typed assembly language. In Proceedings of the 25th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’98), pages 85–97,

New York, January 1998. ACM Press.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed

assembly language. ACM Transactions on Programming Languages and Systems,

21(3):527–568, May 1999b.

George Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’97),

pages 106–119, New York, January 1997. ACM Press.

George Necula and Peter Lee. Safe kernel extensions without runtime checking.

In 2nd USENIX symposium on Operating System Design and Implementation,

Seattle, October 1996.

George C. Necula and Peter Lee. Efficient representation and validation of proofs. In

Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science

(LICS ’98), pages 93–104. IEEE Computer Society, 1998.

BIBLIOGRAPHY 140

George C. Necula and S. P. Rahul. Oracle-based checking of untrusted software.

In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL ’01), pages 142–154, New York, January 2001.

ACM Press.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet

and Gordon Plotkin, editors, Logical Frameworks, pages 149–181. Cambridge Uni-

versity Press, 1991.

Frank Pfenning. Elf: A meta-language for deductive systems. In A. Bundy, ed-

itor, Proceedings of the 12th International Conference on Automated Deduction

(CADE-12), pages 811–815, Nancy, France, June 1994. Springer-Verlag. Lecture

Notes in Artificial Intelligence (LNAI 814).

Frank Pfenning and Carsten Schürmann. System description: Twelf—a meta-logical

framework for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th

International Conference on Automated Deduction (CADE-16), pages 202–206,

Trento, Italy, July 1999. Springer-Verlag. Lecture Notes in Artificial Intelligence

(LNAI 1632).

Frank Pfenning and Carsten Schürmann. Twelf User’s Guide (Version 1.4).

Carnegie Mellon University, 2002.

David S. Platt. Introducing Microsoft .NET. Microsoft Press, 2001.

Robert Pollack. How to believe a machine-checked proof. In G. Sambin and J. Smith,

editors, Twenty Five Years of Constructive Type Theory. Oxford University Press,

1998.

BIBLIOGRAPHY 141

Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.

IEEE Journal on Selected Areas in Communications, 21(1):5–19, January 2003.

Jerome H. Saltzer and Michael D. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, September 1975.

David A. Schmidt. Denotational Semantics: A Methodology for Language Develop-

ment. Allyn and Bacon, Boston, 1986.

Ravi Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley,

Reading, Mass., 1989.

Zhong Shao. An overview of the FLINT/ML compiler. In Proceedings of the 1997

ACM SIGPLAN Workshop on Types in Compilation, New York, June 1997. ACM

Press.

Zhong Shao and Andrew W. Appel. A type-based compiler for Standard ML. In

Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language

Design and Implementation (PLDI ’95), pages 116–129, New York, 1995. ACM

Press. ISBN 0-89791-697-2.

Robert M. Slade. The Melissa macro virus. Available online at

http://sun.soci.niu.edu/∼rslade/melissa.txt, 1999.

Kedar N. Swadi. Typed Machine Language. PhD thesis, Department of Computer

Science, Princeton University, 2003.

Kedar N. Swadi and Andrew W. Appel. Typed machine language and its semantics.

Available online at http://www.cs.princeton.edu/∼appel/papers, July 2001.

BIBLIOGRAPHY 142

Gang Tan. A Compositional Logic for Control Flow and Its Application in Foun-

dational Proof-Carrying Code. PhD thesis, Department of Computer Science,

Princeton University, 2005.

Gang Tan, Andrew W. Appel, Kedar Swadi, and Dinghao Wu. Construction of a

semantic model for a typed assembly language. In Proceedings of the 5th Interna-

tional Conference on Verification, Model Checking, and Abstract Interpretation

(VMCAI ’04), pages 30–43. Springer-Verlag, January 2004. Lecture Notes in

Computer Science (LNCS 2937).

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: a type-

directed optimizing compiler for ML. In Proceedings of the ACM SIGPLAN 1996

Conference on Programming Language Design and Implementation (PLDI ’96),

pages 181–192, New York, 1996. ACM Press. ISBN 0-89791-795-2.

M. Wahab. Verification and abstraction of flow-graph programs with pointers and

computed jumps. Research Report CS-RR-354, Department of Computer Science,

University of Warwick, Coventry, UK, 1998.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient

software-based fault isolation. In Proceedings of the 14th ACM Symposium on

Operating Systems Principles (SOSP ’93), pages 203–216, New York, 1993. ACM

Press. ISBN 0-89791-632-8.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.

Information and Computation, 115(1):38–94, 1994.

Dinghao Wu, Andrew W. Appel, and Aaron Stump. Foundational proof checkers

with small witnesses. In Proceedings of the Fifth ACM-SIGPLAN International

BIBLIOGRAPHY 143

Conference on Principles and Practice of Declarative Programming (PPDP ’03),

pages 264–274, New York, August 2003. ACM Press.

Hongwei Xi and Robert Harper. A dependently typed assembly language. In Pro-

ceedings of the 2001 ACM SIGPLAN International Conference on Functional Pro-

gramming (ICFP ’01), pages 169–180, New York, September 2001. ACM Press.

