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Abstract

Proof-Carrying Code (PCC) is a static mechanism that mechanically verifies safety

of machine-language programs. But the problem in conventional PCC is, who will

verify the verifier (the type checker) itself? The Foundational Proof-Carrying Code

(FPCC) project at Princeton verifies the soundness of the type checker from the

smallest possible set of axioms — logic plus machine semantics. One challenge in

the verification is that machine code, unlike high-level languages, contains unstruc-

tured control flow (due to arbitrary jumps). A piece of machine code can contain

multiple entry points that jump instructions might jump to, and multiple exit points.

Traditional Hoare logic and its variants either verify programs with only one entry

and one exit, or need the whole program to verify jump instructions, which is not

modular.

The major contribution of this dissertation is a program logic, Lc, which modu-

larly verifies properties of machine-code fragments. Unlike previous program logics,

the basic reasoning units in Lc are multiple-entry and multiple-exit code fragments.

Lc provides composition rules to combine code fragments and to eliminate interme-

diate entries/exits in the combined fragment. Lc is not only useful for reasoning

about properties of machine code with unstructured control flow, but also useful for

deriving rules for common control-flow structures such as while-loops, repeat-until-

loops, among others. We also present a semantics for Lc and prove that Lc is both

sound and complete.

As an application to the FPCC project, I have implemented Lc on top of the

SPARC machine language and used Lc’s rules to verify the soundness of the instruc-

tion rules of a full-fledged low-level typed assembly language. This demonstrates

Lc’s applicability of verifying properties of machine-language programs.
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Chapter 1

Introduction

Software systems are pervasive in all aspects of society. From online shopping to

electronic voting, software has become an intrinsic part of business and our daily life

over the past few decades. However, software systems are not secure and reliable.

The media is full of reports of the catastrophic impact of software failures. These

software failures are very expensive. According to a federal study [52], software

failures are costing the U.S. economy an estimated $59.5 billion each year.

It is very difficult to develop secure and reliable software systems, because of so

called “trinity of trouble” [37]: complexity, connectivity, and extensibility.

Complexity Software is complicated and will become more and more complicated.

The size of software products nowadays is measured in terms of millions lines

of code. For example, Windows XP has 40 million lines of code. Furthermore,

software products consist of many small components. Understanding the in-

terfaces between these components and tracking of their relationship is a very

difficult task.
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Connectivity The Internet connects more and more computers, from home PCs to

control-critical infrastructures. This connectivity makes it possible to attack

computer systems without physical access. It also allows small attacks to

propagate and spread and cause vast damage. In March 1999, more than

100,000 individual hosts were infected by Melissa virus over a weekend [1]. One

site reported receiving 32,000 copies of infected messages within 45 minutes.

Extensibility Many software products can accept extensions and updates to in-

crementally evolve system functionality. For example, an extensible browser

can install new plug-ins to support new media formats. An operating sys-

tem allows new device drivers to be installed and run in the kernel mode.

However, without a proper design, the very nature of extensible systems also

allows malicious extensions to be installed.

In a highly connected and extensible environment, an important research prob-

lem is how to guarantee security and safety of the software that we download from

the Internet, especially when the author of the software is unknown, or untrusted.

This problem has been dubbed the mobile-code security problem.

The first question is what kind of guarantee is desirable for mobile code. To the

very extreme, we would want the code to be correct, that is, it computes what it

supposed to do. However, practice has shown that it is extremely difficult to verify

correctness of large programs. First of all, it is an daunting task to specify the

correctness, and even if this is done, there is no guarantee it is specified correctly.

“The correctness condition for a real program is vastly complicated; you’ll always

be proving the wrong theorem!” [27] After the correctness is specified, verifying that
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the code meets the specification is also daunting and the proof is “unreadable and

— literally — unspeakable” [27].

Fortunately, full correctness is usually not necessary for assuring the security of

mobile code. We may be satisfied with, for example, that the code will not peek

into other applications’ memory. Security policies like these are much easier to

specify and verify. Schneider [58] specifies a security policy as a predicate on sets of

executions. Well-known security policies include access-control policies (about who

can perform what actions on which objects) and information-flow policies (about

what principals can infer about objects by observing system behavior).

Schneider [58] specifies a security property as a predicate on individual execu-

tions, and therefore a security property is also a security policy. Security proper-

ties include safety properties (“bad things” do not happen), and liveness properties

(“good things”do happen). Alpern and Schneider [5] have proved that every security

property can be decomposed into a safety property and a liveness property.

One important safety property that has been intensively studied is type safety.

Cardelli defines type safety as the property that programs do not cause untrapped

errors [15]. Typically, type safety of programming languages implies many other

desirable safety properties. One is memory safety, which means that the code will

access only appropriate memory locations (no errors such as buffer overrun). The

other is control-flow safety, which means that the code will transfer control only

to appropriate locations. Type safety of some languages such as ML also provides

type abstraction, which can guarantee that behavior of clients of abstract types is

independent of the particular implementation of abstract types.
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Having discussed desirable security properties, we review some existing tech-

niques for mobile-code security and investigate what kind of properties they guar-

antee.

Virus, worm, and spyware detection Viruses, worms, and spyware are all ma-

licious software, or malware. Many tools (including Norton, Symantec, and

Ad-Aware) can examine files to scan for bit patterns to detect malware. How-

ever, these tools scan for only known malware, not unknown malware. After

scanning for a malware, say M, the only security guarantee we get is that the

file being scanned is free of malware M; the guarantee does not apply to any

other malware, or even the variants of M.

Code signing This is a method that is used in web browsers to authenticate pub-

lishers of mobile code. Mobile code is attached with a digital signature signed

by the secret key of a software publisher. Before running the code, users verify

the signature using the public key of the publisher. Code signing can authen-

ticate the source of the mobile code. However, the security guarantee of code

signing is predicated on the assumption that the software developer does not

make programming mistakes. This assumption has been proved to be fragile.

For example, in November 2002, Microsoft released an ActiveX control, signed

with Microsoft’s code-signing key, but it may lead to a security vulnerability.

For users who desired a secure system, Microsoft later had to recommend to

them removing Microsoft from Internet Explorer’s Trusted Publisher List [2].

Hardware-based protection One way to prevent mobile code from reading from

or writing to other processes’ memory space is to put it into a separate address

space. Virtual memory, managed by the kernel, maps each process’s address
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space into physical memory. Each process has its own virtual address space

and cannot directly accesses the memory belonging to other processes. Only

through safe system calls can a user process switch to the privileged mode

to access shared resources and communicate with other processes. Hardware-

based protection is a widely used approach. However, when one process needs

to communicate with other processes, this approach requires expensive con-

text switches and therefore incurs a significant performance overhead. Fur-

thermore, it can protect only resources accessed through system calls, and

thus guarantee a limited set of security properties.

1.1 Language-Based Security

During recent years, a new approach to software security — language-based security

— has attracted more and more attention. Schneider, Morrisett, and Harper [59]

defines language-based security as any mechanism that “leverages program analysis

and program rewriting to enforce security policies”. It achieves secure software by

analyzing program behavior using formal language semantics. It utilizes techniques

in compilers, automated program analysis, type checking, and program rewriting to

analyze semantics of programs during both static time and runtime.

Language-based security can be classified according to the level where the ap-

proach is applied: source-language level, intermediate-language level, and low level.

In the following sections, we will discuss approaches at each level. During our dis-

cussion, we will analyze each approach’s Trusted Computing Base (TCB), which is

the set of components that has to be trusted to ensure the security of the system.

In general, systems with smaller TCB are more secure.
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1.1.1 Source-Language Level

Approaches in this category include safe languages, which are type safe by design;

they also include program rewriting, which rewrite a program at the source-language

level to make it safe.

Type-safe languages. Type-safe languages include ML [43], Java [12], and Modula-

3 [50]. Type systems of these languages are designed to explicitly rule out bad be-

haviors. Jave’s type system, in particular, has been proved type safe [28, 51]. There

have also been proposals for type-safe dialects of unsafe languages. Cyclone [38] is

a safe dialect of C. It has been designed to avoid common programming errors in

C, such as buffer overflow, format string attacks, and memory-management errors.

Program rewriting. This approach performs source-to-source program transfor-

mation so that an unsafe program is rewritten to a safe version. CCured [49] is a

source-to-source translator for C. By inserting run-time checks, it transforms a C

program to a version that is memory safe, meaning that it will stop rather than

overrun a buffer or scribble over memory that it should not touch. The Naccio

system [29] allows users to specify a security policy, such as what files or directories

may be read and written, and the system can transform a Java program into a

version that conforms to the specified policy.

Since these approaches are applied at the source-language level, programs have to

be fed into a compiler before they are run on a real machine. However, a compiler

may compile safe source programs into unsafe ones, due to possible bugs in the

compiler. Therefore, unless we can prove the compiler is correct, approaches in this

category need to trust the compiler.
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1.1.2 Intermediate-Language Level

The Java platform (Figure 1.1) may be the most widely used approach in language-

based security. A Java program is compiled by a compiler front end into a program

at the intermediate-language level. In Java’s terminology, the language is called Java

Virtual Machine Language [41], or Java bytecode. The important thing about Java

bytecode is that it is a typed intermediate language so that it can be independently

type checked at the code-consumer side. If type checking of bytecode is successful,

the bytecode is type safe and is then compiled by a Just-In-Time (JIT) compiler into

machine code to run (or the bytecode is interpreted). The .NET framework uses a

similar strategy. In .NET [18], different languages can be compiled into a common

type-safe intermediate language, Microsoft Intermediate Language (MSIL).
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The success of Java is a powerful witness to the applicability of language-based

security. Java is designed to assume the role of mobile code in the internet age.

Portability and security are its two biggest concerns. By pushing types into the

level of bytecode, the Java framework eliminates the Java compiler front end from

the TCB. On the other hand, the Java compiler back end, where the compilation

from bytecode to machine code happens and where most optimizations happen, is

still in the TCB.

1.1.3 Low Level

Because ultimately it is the native machine code that actually runs, approaches

that are applied at either the source level or the intermediate level suffer from the

drawback that a translation module needs to be trusted. In the case of the source

level, the compiler has to function properly to compile a safe source-level program

to safe machine code. In the case of intermediate level, the compiler back end such

as Java’s JIT compiler has to function properly. Both a full compiler and a compiler

back end are complicated, big, and thus error prone. Verifying the correctness of the

compiler can remove it from TCB, but it is generally prohibitive to do verification

on an industrial-strength compiler due to its size and complexity.

From the point view of security, it is better to guarantee security properties at

a level closer to the real machine, that is, at the assembly-code level1 or directly at

the machine-code level. By doing so, the compiler is no longer needs to be trusted.

1 There is a difference between the assembly-code level and the machine-code level. In the
former case, an assembler needs to be trusted to correctly assemble programs. But in this chapter,
we ignore this issue.
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Software-fault isolation. To avoid expensive context switches in hardware-based

protection, Software-Fault Isolation (SFI) [68] loads code and data for an untrusted

module into its own fault domain, a logically separate portion of the application’s

address space. Then, the object code of the untrusted module is modified to prevent

it from writing or jumping to an address outside its fault domain. For example, for

each store instruction, the target address is modified to be constrained in the pro-

tection domain. Through this sandboxing, program modules isolated in separate

software-enforced fault domains cannot modify each other’s data or execute each

other’s code except through an explicit cross-fault-domain RPC interface.

By putting untrusted modules into the same address space, SFI avoids expensive

context switches. Experiments show its cross-fault-domain performance is two or-

ders of magnitude more efficient than context switches. At the same time, only 4%

execution-time overhead to the C SPEC92 benchmarks is incurred, when the secu-

rity guarantee is that the untrusted module cannot destroy other modules’ memory.

In this case, only store and jump instructions need to be sandboxed.

However, in the case of general protection by sandboxing load instructions as

well as store and jump instructions, the execution-time overhead is around 20%,

which is not a small amount. Furthermore, theoretically SFI can protect a single

memory address, but since its technique involves dedicated registers for each pro-

tection domain, it usually protects a large region of memory and thus its protection

granularity is coarse.

Proof-carrying code. Necula and Lee introduced Proof-Carrying Code (PCC)

[46, 47], which is a technique that can be used for safe execution of untrusted

code. In a typical instance, a code consumer establishes a safety policy which can
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guarantee safe behavior of programs, and the code producer produces a formal safety

proof. Then, the receiver is able to use a proof checker to check the validity of the

proof and, if so, can be assured of the safety of the program. PCC separates proof

generation and proof checking. The intuition is that proof checking is much easier

than proof generation. Code consumers are responsible for proof checking, while

code producers are responsible for proof generation, which is the hard part.

Theoretically PCC can be used for any safety policy. But PCC usually concen-

trates on type safety, for which the safety proof can be automatically generated.

Necula and Lee have developed two experimental systems for type safety. The first

system [48] is a certifying compiler that translates programs written in a type-safe

subset of the C programming language into DEC Alpha assembly language. The

second system, called Special J [20], certifies type safety of machine code compiled

from Java programs.

Figure 1.2 depicts Special J’s setup. Starting from type-safe Java programs, the

system has a certifying compiler that emits machine code with annotations, which

are essential to construct the type-safety proof for the machine code. Another com-

ponent, called the certifier, includes a Verification-Condition Generator (VCGen),

a prover, and a proof checker. The VCGen scans the code and the annotation, and

produces a safety theorem such that the code is safe if and only if the safety theorem

is true. The prover proves the safety predicate using a set of standard typing rules,

and produces a proof if succeeds. The proof checker can check the proof against the

safety theorem (generated by the VCGen at the consumer side), using the same set

of typing rules.

PCC is a very appealing framework to guarantee safe execution of untrusted

code. It has no runtime overhead. After checking the proof, the code is safe and
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can be run as many times as we want. It is also tamper-proof. If the code and/or

the safety proof is modified, either the proof will be rejected, or the modified code

is still safe to run.

On the other hand, PCC systems by Necula et al. still have some limitations.

The trusted computing base in PCC includes the VCGen, the proof checker, and the

typing rules (typing rules are provided to the proof generator as a collection of in-

ference rules). VCGen needs to understand machine semantics, calling conventions,

and safety predicates to function correctly. Typing rules are also very complex for

low-level types. Furthermore, their systems do not reason about memory manage-

ment and trust an automatic garbage collector.

As an attempt to remove VCGen from TCB, Bernard and Lee [13] proposed

to use temporal logic to model machine semantics and have code producers show

directly that a particular temporal-logic safety property holds for the untrusted
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program. Since machine semantics, calling conventions, and safety properties are

all modeled in temporal logic, there is no need to have a VCGen in Bernard and

Lee’s system. When using their framework to certify type safety, however, the low-

level type system still needs to be trusted (as a set of inference rules in temporal

logic).

Typed-assembly languages. In Java’s framework, the compiler front end trans-

lates Java source into bytecode. At the consumer side, the bytecode checker type-

checks the bytecode. Then the type information is discarded, and the compiler back

end optimizes the code, translates it into a machine specific intermediate language,

performs register allocation, and finally gets a machine-language program. In this

framework, we need to trust the whole compiler back end, including the optimizer,

the code generator and the register allocator. If any of them has bugs inside, the

resulting machine code may be unsafe.

There has been a great deal of research efforts to push types further down to

lower levels. Typed intermediate languages were pioneered by the TIL [66] research

compiler. FLINT [61] is a research compiler for ML and Java that uses the typed-

intermediate-language technology. At each level, the intermediate language has type

information, and a type checker can run to verify the soundness of the program.

The compiler compiles one typed intermediate-language programs into programs of

another typed intermediate language.

In their work on Typed Assembly Language (TAL) [45], Morrisett et al. pre-

sented a type preserving compilation from System F down to a typed assembly

language on a RISC machine. Their translation to TAL is specified as a series

of type-preserving transformation, including continuation-passing style (CPS) and
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Figure 1.3: TAL framework for certified code

closure conversion; type-safe source programs are mapped to type-safe assembly-

language programs.

The compiler in TAL provides a fully automatic way to certify safety of untrusted

code. As shown in Figure 1.3, producers write their applications in type-safe source

languages. Then the compiler translates type-safe source programs into type-safe

assembly-language programs. TAL Programs are transmitted to the consumer side,

and after being type checked, they are safe to run.

1.2 Foundational Proof-Carrying Code

If a compiler produces TAL, then by checking only the low-level code, we can guar-

antee safety — but only if there is no bug in the typing rule, or in the type checker.

In TAL and PCC systems, typing rules are trusted axioms.

13



Take a typing rule from the TAL paper [45],

Ψ; ∆; Γ ` r : ∀[ ].Γ′ ∆ ` Γ ≤ Γ′

Ψ; ∆; Γ ` jmp r (1.1)

The rule means that a “jump to register r” instruction type checks if the value in

r is a code pointer with precondition Γ′, and the current type environment Γ is a

subtype of Γ′. Based on the semantics of the jump instruction, this rule is “correct”.

(In this dissertation we will not be concerned with the exact meaning of Ψ, ∆, etc.;

we show this rule just to illustrate TAL’s trusted axioms.)

In the TAL system and its variants [44, 24, 69, 25, 72], such typing rules are

accepted as axioms. They are part of the TCB. However, low-level type systems

tend to be complex because of intricate machine semantics. Any misunderstanding

of the semantics could lead to errors in the type system. League et al. [40] found

an unsound proof rule in Special J’s type system. The Low-Level Typed Assembly

Language (LTAL) [17] by Chen et al. has around eleven hundred constructors and

rules. The author of this dissertation has been involved in proving the soundness of

LTAL and routinely found and fixed bugs in its early versions.

In an effort to remove the type system from TCB, Appel and Felty proposed the

idea of Foundational Proof-Carrying Code (FPCC) [8, 7]. In FPCC, a soundness

proof at the level of the concrete machine accompanies the type system. The sound-

ness proof states that if the type system type checks a program, then the program

is safe on the machine. After checking the validity of the proof, the consumer is

assured of the soundness of the type system.

In FPCC, we can imagine a two-stage process of running untrusted code. In

the first stage (Figure 1.4), the code producer sends the consumer a type checker,

14
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together with a soundness proof with respect to the specification of the concrete

machine. The soundness proof is encoded in some suitable logic. After verifying

the validity of the soundness proof, the consumer can install the type checker. For

each type system, this stage happens only once.

The second stage is just like the one in TALs (Figure 1.3). The producer sends

untrusted code with annotations in the type system to the consumer. After checking

the safety of the code using the already installed type checker, the code is safe to

run.

FPCC is more secure and more flexible than conventional PCC and TAL. It

is more secure because its trusted base is smaller: the type system is not trusted;

only the specification of the machine, the logic and the proof checker needs to be

trusted. It is also more flexible because it makes no commitment to any particular

type system, which is usually dependent on both source languages and the compiler.

The code producer can explain a novel type system to the code consumer.
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The semantic approach to FPCC. Appel and Felty’s approach [8] to FPCC is

called the semantic approach. The semantic approach gives denotational semantics

to the syntactic constructs in the type system, including types and typing judgments.

This semantics is encoded in a simple but expressive logic. Appel and Felty used

higher-order logic for its expressiveness and its successful use in the HOL [32] system

and Isabelle [54] system. Based on the denotational semantics for the type system

and an operational semantics for the concrete machine, typing rules like 1.1 on

page 14 are proved as lemmas, instead of being trusted as axioms. Finally, the

safety theorem is also proved as a lemma: If a program type checks, then it is safe.

In the semantic approach, since each syntactic construct has a denotational

semantics, a typing derivation in the type system is converted into a safety proof

with respect to the smallest possible set of axioms — logic plus machine semantics.

This dissertation is part of the FPCC project at Princeton and follows the se-

mantic approach. Before we move on, we discuss an alternative approach to FPCC.

The syntactic approach to FPCC. Hamid et al. [33], Crary and Sarkar [22, 23]

use a syntactic approach to prove soundness of the type system in FPCC. The first

stage of their approach gives an operational semantics to the typed assembly lan-

guage on an abstract machine, then syntactic type-soundness theorems are proved

on this abstract machine, following the scheme proposed by Wright and Felleisen

[70]. The second stage proves a simulation relation between the abstract machine

and the concrete machine. The simulation relation proves that whenever the ab-

stract machine steps forward, the concrete machine steps forward.

The syntactic approach to FPCC does not need the building of denotational

semantics for complicated types such as recursive types and mutable-reference types.

16



It has been very successful in delivering foundational proof-carrying code. On the

other hand, the real system built by Crary and Sarkar uses the metatheory engine of

Twelf [55] and has not so far produced a proof object (an independently checkable

proof expressed in a general logic) that represents the soundness proof. (The system

by Hamid deals with a toy architecture.) Furthermore, there is a possible difficulty

for the syntactic approach when trying to relate results in different type systems.

The syntactic approach treats the syntax of each type system abstractly. Since each

system has its own syntax of terms and types, it is nearly impossible for the syntactic

approach to derive general theorems that relate different type systems. The semantic

approach embeds the meaning of terms and types into a common logic. A common

semantic framework makes it possible to relate theorems in different type systems.

When prototype systems in the semantic and syntactic approaches evolve into

a mature stage, it would be interesting to perform a detailed comparison between

these two approaches. We believe that there are many connections between them.

1.3 Contributions and Dissertation Outline

In the semantic approach to FPCC, typing rules should be proved as lemmas based

on the machine semantics and a denotational semantics for types and typing judg-

ments. For example, the following rule from TAL we have seen should be proved

based on the semantics of the jmp r instruction and a suitable denotational seman-

tics for the judgments such as “Ψ; ∆; Γ ` jmp r”.

Ψ; ∆; Γ ` r : ∀[ ].Γ′ ∆ ` Γ ≤ Γ′

Ψ; ∆; Γ ` jmp r
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To complete such a proof, we first need a systematical way to organize properties

about machine instructions, so that raw semantics of machine instructions can be

raised to the typed level and properties of machine instructions can be composed

together to form a property about the combined instruction sequence.

One possible choice is Hoare Logic [35], which has long been used to verify prop-

erties of programs written in high-level programming languages. In Hoare Logic,

a triple {p}s{q} describes the relationship between exactly two states—the normal

entry and exit states—associated with a program execution. That is, if the state

before execution of s satisfies the assertion p, then the state after execution satisfies

q. Hoare Logic also provides rules for combining program fragments.

However, in FPCC we need to prove properties about machine-language pro-

grams, which contain goto statements with unrestricted destinations. Therefore, a

program fragment or a collection of statements possibly contains multiple exits and

multiple entries to which goto statements might jump. In Hoare Logic, since a triple

{p}s{q} is tailored to describe the relationship between the normal entry and the

normal exit states, it is not surprising that trouble arises in considering program

fragments with more than one entry and/or more than one exit.

In Chapter 2, we will introduce a new program logic, Lc, which is the major

contribution of this dissertation. The strength of Lc is that it can modularly verify

properties of machine-code fragments. Unlike previous program logics, the basic

reasoning units in Lc are multiple-entry and multiple-exit code fragments. Lc pro-

vides composition rules to combine code fragments and to eliminate intermediate

entries/exits in the combined fragment. Lc is not only useful for reasoning about

properties of machine code with unstructured control flow, but also useful for deriv-
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ing rules for common control-flow structures such as while-loops, repeat-until-loops,

among others.

Also in Chapter 2, we will develop for Lc a semantics. We will show that a

naive semantics for Lc’s multiple-entry and multiple-exit instruction judgment will

not work. We need to use a semantics based on approximations of computation

steps. Based on this semantics, soundness and completeness of Lc are proved (with

reasonable assumptions). This semantics is another contribution of this dissertation

because it turns a derivation in Lc into a foundational safety proof.

The major goal of the FPCC project is to prove the soundness of a type-assembly

language, called LTAL [17]. Our logic Lc plays an important role in this proving

process. We have first proved the soundness of Lc. Then, LTAL has been proved

sound on top of Lc. In Chapter 3, the step from Lc to LTAL will be demonstrated

by constructing the soundness proof for a simple typed assembly language, called

TAL0. After that, we will add more and more complex features to TAL0 to have a

series of typed assembly languages, and show how Lc can justify their soundness.

In Chapter 4, we will discuss the implementation of Lc in the FPCC project. We

have implemented Lc on top of the SPARC machine language, proved the soundness

of LTAL’s instruction rules from Lc’s rules, and proved many typing lemmas about

SPARC machine instructions. All the proofs have been encoded and machine-

checked in Twelf [55], a theorem-developing system. In total, Lc’s implementation

has around 30,000 lines of Twelf code.

In Chapter 5, we will give some concluding remarks.

As a final note, the basic idea of Section 3.2 has been published in the Fifth

International Conference on Verification, Model Checking and Abstract Interpreta-

19



tion (VMCAI ’04), under the title of “Construction of a semantic model for a typed

assembly language” [65].
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Chapter 2

A Compositional Logic for Control

Flow

Hoare Logic [35] has long been used to verify properties of programs written in high-

level programming languages. But it is unsuitable to verify unstructured machine-

language programs, because a Hoare triple {p}s{q} is tailored to describe the rela-

tionship between exactly one entry state and exactly one exit state.

To address the problem of reasoning about control flow in machine-language

programs, this chapter proposes a program logic, Lc, which modularly reasons about

machine-language program fragments.

2.1 Overview of Lc and its Related Work

Lc’s modularity is because of two things: its judgment (form of specification) and its

composition rules. The judgment in Lc is directly on multiple-entry and multiple-

exit program fragments. For example, Lc treats a conditional-branch statement
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“if b goto l”as a one-entry and two-exit fragment. Lc then provides for “if b goto l”

an axiom, which associates the entries and exits with appropriate invariants, de-

picted as follows:
p

gotob l

∧p b∧p b¬
l

if

The above graph associates the invariant p with the entry, and associates p ∧ ¬b

and p ∧ b with two exits, respectively. As a note to our convention in such kind of

graphs, we put invariants on the right of edges and put labels, when they exist, on

the left.

Lc also provides a set of inference rules to compose judgments on program frag-

ments. These inference rules reason about control flow in smaller steps than previous

program logics. One example is the case of sequential composition. In Hoare Logic,

sequential composition happens in one single step:

{p1}s1{p2} {p2}s2{p3}
{p1}s1; s2{p3}

In contrast, Lc treats both s1 and s2 as single-entry and single-exit program

fragments (Figure 2.1), and achieves sequential composition in a series of small

steps: first combine the two fragments by collecting entries and exits; after this

step, the intermediate label l2 is both an entry and an exit; then eliminate l2 as an

exit; at last, eliminate l2 as an entry. After these steps, the combined fragment has

only one entry and one exit.
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Figure 2.1: Sequential composition.

l : if ¬b goto l′;
l1 : s;
l2 : goto l
l′ :

s
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Figure 2.2: A while loop: while b do s.

The set of inference rules in Lc is compositional in the sense that it can derive

not only the rule for sequential composition, but also rules for sequences of state-

ments that implement while loops, repeat-until loops, and many other control-flow

structures. Figure 2.2 presents one implementation of a while loop. Each state-

ment in the sequence is a multiple-entry and multiple-exit fragment. After putting

fragments together, intermediate entries/exits are eliminated. In the end, the only

entry for the whole sequence is the label l and the only exit is l′.
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Lc also supports reasoning about unstructured control flow in machine-language

programs, since users of Lc can choose not to eliminate an intermediate entry, even

if it points to the middle of a loop. For example, in Figure 2.2, the label l1 can

remain as an entry of the whole loop in the case that other fragments need to jump

to it.

Related work on program logic for goto statements. Many researchers have

also realized the difficulty of verifying properties of programs with goto statements

in Hoare Logic [19, 39, 11, 26, 53]. Some of them have proposed improvements over

Hoare Logic. Almost all of these works are at the level of high-level languages. For

example, they treat a while loop as a separate syntactic construct and have a rule

for it. In comparison, Lc derives rules for control-flow structures implemented by

sequences of statements.

These previous works also differ from Lc in terms of the form of specification.

The work by de Bruin [26] is a typical example. In his system, the judgment for a

statement s is:

〈L1 : p1, . . . , Ln : pn|{p}s{q}〉, (2.1)

where L1, . . . , Ln are labels in a program P ; the assertion pi is the invariant as-

sociated with the label Li; the statement s is a part of the program P . Judg-

ment (2.1) judges a triple {p}s{q}, but under all label invariants in a program.

By explicitly supplying invariants for labels in the judgment, de Bruin’s system

can handle goto statements, and its rule for goto statements is 〈L1 : p1, . . . , Ln :

pn|{pi}goto Li{false}〉.

Judgment (2.1) is sufficient for verifying properties of programs with goto state-

ments. Typed Assembly Languages (TAL) by Morrisett et al. [45] and many of its
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variants [17, 22, 33] use a similar judgment to verify type safety of assembly-language

programs.

However, judgment (2.1) assumes the availability of global information, because

it judges a statement s under all label invariants of a program— L1 : p1, . . . , Ln : pn.

Consequently, it is impossible for de Bruin’s system or TAL to compose fragments

with different sets of global label invariants. We believe that a better form of

specification should judge s under only those label invariants associated with exits

in s, as the form in Lc. This new form of specification makes fewer assumptions

(fewer label invariants) about the rest of the program and is more modular.

Furthermore, judgment (2.1) is a specification for a statement s with multiple

exits, but with only one entry—the left side of s, or the normal entry. It cannot spec-

ify the case of multiple-entry statements. Since arbitrary composition may create

multiple-entry statements, de Bruin’s system supports only sequential composition.

In contrast, Lc supports any composition of program fragments, even when they do

not occupy a sequential region.

Related work on Floyd’s flowchart verification. Floyd’s work [30] on pro-

gram verification associates a predicate for each arc in the flowchart representation

of a program. If each statement in the program has been verified correct with re-

spect to the predicates associates with the entry and exit arcs of the statement, then

the program is correct. In Floyd’s system, however, the composition of statements

are based on flowcharts and are informal, and it has no principles of eliminating

intermediate edges. Our Lc provides formal rules of combining statements; it can

also eliminate intermediate entry and exit edges, so that internal control flow can

be hidden from the outside.
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When verifying properties of goto statements and labels, Floyd’s system also

assumes the availability of the complete program. In this sense, it is an informal

version of later work by de Bruin. Therefore, our comments to de Bruin’s system

apply to Floyd’s system as well.

Foundational semantics. After presenting Lc for a language with goto state-

ments, Section 2.3 will show an operational semantics for the language and then

a denotational semantics for Lc. With respect to the semantics, we will prove

soundness and completeness of Lc. The soundness theorem guarantees there are

no inconsistencies in Lc. The completeness theorem shows that Lc is capable of

deriving any judgment that is semantically true.

The semantics that we will present satisfies the “foundational” requirement in

Foundational Proof-Carrying Code (FPCC) [7]. FPCC verifies safety of machine

code from the smallest possible set of axioms—machine semantics plus logic. The

safety proof must explicitly define, down to the foundations of mathematics, all

required concepts and explicitly prove any needed properties of these concepts1.

The semantics that we will present for Lc satisfies this requirement, because it

explicitly gives a meaning to every concept in Lc, and because every axiom and

inference rule is proved as a lemma, all from machine semantics and higher-order

logic. This semantics gives a way to convert a derivation in Lc to a safety proof at

the machine level.

In fact, design of Lc has been influenced by the foundational requirement, which

further favors a compositional program logic. For example, it would be easy to add

an inference rule for the whole sequence of statements that implements a while loop

1For efficiency reasons, the FPCC project uses the 32-bit integer constraint domain in Twelf.
But integers could be constructed.
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operator symbols OPSym op
relation symbols RSym re
variables Var x, y, z
labels Label l
primitive statements PrimStmt t ::= x := e | goto l | if b goto l
statements Stmt s ::= t | l : s | (s1; s2)
expressions Exp e ::= x | op(e1, . . . , ear(op))
boolean expressions BExp b ::= true | b1 ∨ b2 | ¬b | re(e1, . . . , ear(re))

Figure 2.3: Language syntax, where ar(op) is the arity of the symbol op.

(Figure 2.2). However, since that rule has to be proved based on the semantics of

the sequence of statements, a better strategy is to design a set of rules that compose

proofs about primitive statements together. A small set of such rules saves proof

effort when producing foundational proofs for machine-language programs.

2.2 Program Logic Lc

We present Lc on a simple imperative language. Figure 2.3 presents the syntax of

the language. Most of the syntax is self-explanatory, and we only stress a few points.

First, since the particular set of primitive operators and relations does not affect

the presentation, the language assumes a class of operator symbols, OPSym, and a

class of relation symbols, RSym. For concreteness, OPSym could be {+,×, 0, 1} and

RSym could be {=, <}. Second, boolean expressions include constructors true, ∨

and ¬; other standard constructors such as false, ∧ and⇒ are used as abbreviations

defined by true, ∨ and ¬.

The language in Figure 2.3 is tailored to imitate a machine language. For in-

stance, the destination of a goto statement is unrestricted and may be a label in the

middle of a loop. Furthermore, the language does not have control structures such
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fragments Fragment f ::= l : (t) : l′

fragment sets FragSet F ::= {l1 : (t1) : l′1, . . . , ln : (tn) : l′n}
assertions Assertion p ::= true | p1 ∨ p2 | ¬p

| re(e1, . . . , ear(re)) | ∃x.p
label-continuation sets LContSet Ψ ::= {l1 . p1, . . . , ln . pn}

Figure 2.4: Lc: Syntax

as if b then s, and while b do s. These control structures are implemented by a

sequence of primitive statements.

To simplify the presentation, the language in Figure 2.3 differs from machine

languages in several aspects. It uses abstract labels while machine languages use

concrete addresses. This differences do not affect the major results of Lc. The

language also lacks indirect jumps (jump through a variable) and pc-relative jumps.

Adding these control-transfer features will not affect the soundness result of Lc, as

shown in Section 3.3. However, the completeness result may only be true in the

absence of indirect jumps.

2.2.1 Syntax and Rules of Lc

The syntax of Lc is in Figure 2.4.

Program fragments. A program fragment is a primitive statement t with a start

label l and an end label l′:

l : (t) : l′,

where l identifies the left side of t, the normal entry, and l′ identifies the right side of

t, the normal exit. We also use l1 : (s1; s2) : l3 as an abbreviation for two fragments:
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l1 : (s1) : l2 and l2 : (s2) : l3, where l2 is a new label. We use the symbol F for a set

of fragments, and it belongs to the domain FragSet .

Assertions and label continuations. Assertions are meant to describe predi-

cates on states. Lc can use any assertion language. We use first-order logic in this

presentation (Figure 2.4); it is a superset of boolean expressions and thus it can

accurately express the invariants after the execution of a conditional-branch state-

ment. Conjunction and universal quantifiers can be defined by constructors in the

assertion language: p1 ∧ p2 = ¬(¬p1 ∨ ¬p2), and ∀x.p = ¬∃x.¬p.

Lc is parametrized over a deduction system, D, which derives true formulas in

the assertion language. We leave the rules of D unspecified, and assume that its

judgment is

`D p,

which is read as p is a true formula.

A label identifies a point in a program. To associate assertions with labels, Lc

uses the notation l . p, pronounced “l with p”. In Hoare Logic, when an assertion p

is associated with a label l in a verified program, then whenever the control of the

program reaches l, the assertion p is true. In Lc, we interpret l . p in a different

way: If l . p is true in a program, then whenever p is satisfied, it is safe to continue

from l (or, jump to l). Therefore, we call p a precondition of the label l, and call

l . p a label continuation. We use symbol Ψ for a set of label continuations, and it

belongs to the domain LContSet .
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Form of specification. In Lc, the judgment to specify properties of multiple-

entry and multiple-exit program fragments has the syntax:

F ; Ψ′ ` Ψ,

where F is a set of program fragments; Ψ′ and Ψ are sets of label continuations.

The meaning of the judgment is explained as follows. Suppose

Ψ′ = {l′1 . p′1, . . . , l
′
m . p′m},

Ψ = {l1 . p1, . . . , ln . pn}.

Labels l′1, . . . , l
′
m in Ψ′ are exits of F , and l1, . . . , ln in Ψ are entries of F . The

following graph depicts the relationship between F , Ψ and Ψ′:

l1 ln

F
ψ

1

ψ′
l ml′ ′

With this relationship in mind, a simplified interpretation of the judgment F ; Ψ′ `

Ψ is as follows: for a set of fragments F , if every l′i . p′i in Ψ′ is a true label

continuation, then all lj . pj in Ψ are true label continuations. Note, however,

the semantics we will develop for F ; Ψ′ ` Ψ in Section 2.3 has an additional

requirement: It takes at least one computation step from an entry to reach an exit.

We ignore this issue in this section.
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Using this judgment, Lc provides rules for primitive statements. In particular,

the rule for the assignment statement is (also in Figure 2.5)

{l : (x := e) : l′} ; {l′ . p} ` {l . p[e/x]} assignment

The fragment, l : (x := e) : l′, has one entry, namely l, and one exit, namely l′.

The assignment rule states that l . p[e/x] is a true label continuation, if l′ . p is a

true label continuation. The truth of l . p[e/x] can be informally argued like this:

If a state, which has {l : (x := e) : l′} loaded and p[e/x] satisfied, starts from the

label l, then the next statement to execute is x := e; after its execution, the new

state will reach the label l′, and the new state satisfies the assertion p because of

the semantics of the assignment; because that l′ . p is a true label continuation, the

new state is safe to continue; hence, the initial state can safely continue from l.

In Hoare Logic, the assignment rule is

{p[e/x]} x := e {p}.

This is essentially the same as the assignment rule in Lc. In general, for any state-

ment s that has only the normal entry and the normal exit, a Hoare triple {p}s{q}

has in Lc a corresponding judgment: {l : (s) : l′} ; {l′ . q} ` {l . p}.

But unlike Hoare triples, F ; Ψ′ ` Ψ is a more general judgment, which is

on multiple-entry and multiple-exit fragments. This capability is used in the rule

for conditional-branch statements, if b goto l1, in Figure 2.5. A fragment, l :

(if b goto l1) : l′, has two exit labels: l′ and l1. Therefore, the if rule assumes two

exit label continuations.
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F ; Ψ1 ` Ψ2

{l : (x := e) : l′} ; {l′ . p} ` {l . p[e/x]} assignment

{l : (goto l1) : l′} ; {l1 . p} ` {l . p}
goto

{l : (if b goto l1) : l′} ; {l1 . p ∧ b, l′ . p ∧ ¬b} ` {l . p} if

F1 ; Ψ′
1 ` Ψ1 F2 ; Ψ′

2 ` Ψ2

F1 ∪ F2 ; Ψ′
1 ∪Ψ′

2 ` Ψ1 ∪Ψ2
combine

F ; Ψ′ ∪ {l . p} ` Ψ ∪ {l . p}
F ; Ψ′ ` Ψ ∪ {l . p} discharge

` Ψ′
1 ⇒ Ψ′

2 F ; Ψ′
2 ` Ψ2 ` Ψ2 ⇒ Ψ1

F ; Ψ′
1 ` Ψ1

weaken

` Ψ1 ⇒ Ψ2

m ≥ n

` {l1 . p1, . . . , lm . pm} ⇒ {l1 . p1, . . . , ln . pn}
s-width

`D p′ ⇒ p

` Ψ ∪ {l . p} ⇒ Ψ ∪ {l . p′} s-depth

Figure 2.5: Lc: Rules

Composition rules. The strength of Lc is its composition rules. These rules

can compose judgments on individual statements to form properties of the com-

bined statement. By internalizing control flow of the combined statement, these

composition rules allows modular reasoning.

Figure 2.5 presents Lc’s composition rules. We use an example in Figure 2.6 to

illustrate these composition rules. Assume we already have two individual state-

ments, depicted in Figure 2.6. The first one is an increment-by-one statement. If
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x ≥ 10

l1

l2

lgoto

x>0

l x>0

x<10if l2

goto l10x<if

x 10≥

x:=x+1

l x>0
x := x + 1

l

l1 x>0

x>0

...

Assumptions Goal

Figure 2.6: An example to illustrate Lc’s composition rules

x > 0 when entering this statement, then x > 0 is still true after the completion of

the statement. The second statement is if x < 10 goto l. It has one entry, but two

exits. The entries and exits are also associated with assertions, which are shown in

the figure. The goal is to combine these two statements together to form a property

of the two-statement block. Notice that the two-statement block is effectively a

repeat-until loop: it keeps incrementing x until x reaches 10. For this repeat-until

loop, our goal is to prove that if x > 0 before entering the block, then x ≥ 10 after

the completion of the block.

The steps to derive the goal from the assumptions are presented in Figure 2.7.

In step 1, we use a rule called combine in Figure 2.5. When combining two

fragment sets, F1 and F2, the combine rule makes the union of the entries of F1

and F2 the entries of the combined fragment; the same goes for the exits. For the

example in Figure 2.7, since both statements have only one entry, we have two

entries after the combine rule. Since the first statement has one exit, and the second

statement has two exits, we have three exits after the combine rule.
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After combining fragments, there may be some label that is both an entry and

an exit. For example, the label l after the step 1 in Figure 2.7 is both an entry and

an exit. Furthermore, the entry and the exit for l carry the same assertion: x > 0.

In such a case, the discharge rule in Figure 2.5 can eliminate the label l as an exit.

Formally, the discharge rule2 states that if some l . p appears on both the left and

the right of the `, then it can be removed from the left; Remember exits are on the

left, so this rule removes an exit.

The label l1 is also both an entry and an exit, and the entry and the exit carry

the same assertion. The discharge rule can remove l1 as an exit as well. Therefore,

the step 2 in Figure 2.7 is to apply the discharge rule twice to remove both l and l1

as exits. After this step, only one exit is left.

In the last step, we remove l1 as an entry using the weaken rule. The weaken

rule uses a relation between two sets of label continuations:

` Ψ1 ⇒ Ψ2,

which is read as Ψ1 is a stronger set of label continuations than Ψ2.

The rule s-width in Figure 2.5 states that a set of label continuations is stronger

than its subset. Therefore, ` {l1 . (x > 0), l . (x > 0)} ⇒ {l . (x > 0)} is derivable.

Using this result and the weaken rule, the step 3 in Figure 2.7 removes the label l1

as an entry.

After these steps, we have one entry and one exit left for the repeat-until loop,

and we have proved the desired property for the loop.

2Careful readers may notice that the discharge rule, when read intuitively, seems wrong. In
Section 2.3, we will develop for F ; Ψ′ ` Ψ a semantics, which treats Ψ′ and Ψ differently, so that
the discharge rule can be justified.
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Step 3:

x := x + 1

l

l1 x>0

x>0

x ≥ 10

l1

l2

lgoto

x>0

l x>0

x<10if
l2l1

l1

x 10≥

x:=x+1

l

l

goto l10x<if

x>0x>0

x>0
x>0

l2

l1

x 10≥

x:=x+1

l

goto l10x<if

x>0
x>0

weaken

l1 and lRemove exits

discharge

Step 2:

l2

goto l10x<if

x 10≥

x:=x+1

l x>0

combine

Step 1

l1Remove entry

Figure 2.7: The steps to derive the example in Figure 2.6

The example in Figure 2.7 has used almost all composition rules, except for

the s-depth rule. The s-depth rule states that a label continuation with a weaker

precondition is stronger than the continuation with a stronger precondition. The

rule is contravariant over the preconditions. An example of using this rule and the

weaken rule is to derive F ; Ψ′ ` {l . p ∧ q} from F ; Ψ′ ` {l . p}.

One issue to clarify is that, in step 2 of Figure 2.7, the discharge rule eliminates

the label l1 as an exit, and then in step 3, the label is eliminated as an entry. It

may seem unnecessary to have separate steps for eliminating a label as an exit, and

for eliminating the same label as an entry. However, the other label l in Figure 2.7

shows that when a label appears both as an entry and an exit, it may suggest
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(1)
∗

{l1 : (s) : l2} ; {l2 . p} ` {l1 . p ∧ b} (2)
goto

{l : (while b do s) : l′} ; {l . p, l1 . p ∧ b, l2 . p, l′ . p ∧ ¬b}
` {l . p, l1 . p ∧ b, l2 . p}

combine

{l : (while b do s) : l′} ; {l′ . p ∧ ¬b} ` {l . p, l1 . p ∧ b, l2 . p}
discharge

{l : (while b do s) : l′} ; {l′ . p ∧ ¬b} ` {l . p} weaken

(1)= {l : (if ¬b goto l′) : l1} ; {l′ . p ∧ ¬b, l1 . p ∧ b} ` {l . p}
(2)= {l2 : (goto l) : l′} ; {l . p} ` {l2 . p}

∗The judgment is derived from the if rule and the weaken rule, assuming that `D p ∧ ¬¬b ⇒ p ∧ b.

Figure 2.8: Derivation of a rule for “while b do s”, whose definition is in Figure 2.2

a loop in the control flow; in this case, we need to preserve the label as the loop

entry. Furthermore, we sometimes even want to keep l1 as an entry. In unstructured

control flow, it is possible to jump into the middle of a loop and exposing l1 as an

entry is necessary for other fragments to jump to it.

Rules for common control-flow structures. Figure 2.5 does not include a rule

for sequential composition, since it is derivable by the composition rules in Lc:

{l1 : (s1) : l2} ; {l2 . p2} ` {l1 . p1}

{l2 : (s2) : l3} ; {l3 . p3} ` {l2 . p2}

{l1 : (s1; s2) : l3} ; {l2 . p2, l3 . p3} ` {l1 . p1, l2 . p2}
combine

{l1 : (s1; s2) : l3} ; {l3 . p3} ` {l1 . p1, l2 . p2}
discharge

{l1 : (s1; s2) : l3} ; {l3 . p3} ` {l1 . p1}
weaken

In the same spirit, Lc can derive rules for many other control-flow structures such

as if b then s1 else s2, while b do s and repeat s until b. Figure 2.8 presents the

derivation of a rule for while b do s.
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Name
Domain

Construction

values, v Val is a nonempty domain
addresses, n Addr = N
instr. memories, π IM = Addr → PrimStmt ∪ {illegal}
data memories, m DM = Var → Val
states, σ Σ = Addr × IM × DM
label maps, θ LMap = Label → Addr

where N is the domain of natural numbers.

Figure 2.9: Semantic domains

2.3 Foundational Semantics

In this section, we first present an operational semantics for the language in Fig-

ure 2.3. Then, we develop a continuation-style semantics for Lc.

2.3.1 Operational Semantics for the Language

The operational semantics assumes an interpretation
∮

of the primitive symbols in

OPSym and RSym in the following way: Val is a nonempty domain; for each op in

OPSym, its semantics, op, is a function in (Valar(op) → Val); for each re in RSym,

re is a relation ⊂ Valar(re), where ar(op) is the arity of the operator op.

A machine state is a triple, (pc, π, m): a program counter pc, which is an address;

an instruction memory π, which maps addresses to primitive statements or to an

illegal statement; a data memory3 m, which maps variables to values. Figure 2.9

lists the relevant semantic domains.

Before presenting the operational semantics, we introduce some notation. For a

state σ, the notation control(σ), i of(σ), and m of(σ) projects σ into its program

3We separate instruction memory and data memory for a simple presentation. Our implemen-
tation on SPARC stores instructions and data into the same memory, and maintains an invariant
that instructions never get modified.
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(pc, π, m) 7→θ σ where
if π(pc) = then σ =

x := e (pc + 1, π, m[x 7→ V [[e]] m])
goto l (θ(l), π, m)

if b goto l

{
(θ(l), π, m) if B [[b]] m = tt
(pc + 1, π, m) otherwise

where
V : Exp → DM → Val

B : BExp → DM → {tt, ff}
and their definitions are

V [[x]] m , m [[x]]

V [[op(e1, . . . , ear(op))]] m , op(V [[e1]] m, . . . , V [[ear(op)]] m).

B [[true]] m , tt

B [[b1 ∨ b2]] m ,

{
tt if B [[b1]] m = tt or B [[b2]] m = tt
ff otherwise

B [[¬b]] m ,

{
tt if B [[b]] m = ff
ff otherwise

B [[re(e1, . . . , ear(re))]] m ,{
tt if 〈V [[e1]] m, . . . , V [[ear(re)]] m〉 ∈ re
ff otherwise

Figure 2.10: Operational semantics

counter, instruction memory, and data memory, respectively. For a mapping m, the

notation m[x 7→ v] denotes a new mapping that maps x to v and leaves other slots

unchanged.

The operational semantics for the language is presented in Figure 2.10 as a step

relation σ 7→θ σ′ that executes the statement pointed by the program counter. The

operational semantics is conventional, except that it is parametrized over a label

map θ ∈ LMap, which maps abstract labels to concrete addresses. When the next

statement to execute is goto l, the label map θ is used to change the control to θ(l).
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In the operational semantics, if the current statement in a state σ is an illegal

statement, then σ has no next state to step to; such a state is called a stuck state.

If a state σ will not reach a stuck state within k steps, it is safe for k steps :

safe state(σ, k) ,

∀σ′ ∈ Σ.∀j < k. σ 7→j
θ σ′ ⇒ ∃σ′′. σ′ 7→θ σ′′,

where 7→j
θ denotes j steps being taken.

2.3.2 Semantics of Lc

The semantics of Lc is centered on an interpretation of the judgment F ; Ψ′ ` Ψ.

Before giving a rigorous definition, we first present an informal overview.

We have discussed a simplified interpretation of F ; Ψ′ ` Ψ: for the set of

fragments F , if Ψ′ is true (according to some appropriate definition), then Ψ is true.

However, this interpretation is not sufficient to justify the soundness of Lc, because

of the discharge rule. When both Ψ′ and Ψ in the discharge rule are empty sets, it

becomes
F ; {l . p} ` {l . p}

F ; ∅ ` {l . p}

According to the simplified interpretation, the above rule is like stating “from A ⇒

A, derive A”, which is clearly unsound.

The problem is not that Lc is intrinsically unsound, but that the simplified

interpretation is too weak to utilize invariants implicitly in Lc. The interpretation

that we use is a much stronger one. The basic idea is based on a notion of label

continuations being approximately true. The judgment F ; Ψ′ ` Ψ is interpreted

as, by assuming the truth of Ψ′ at a lower approximation, Ψ is true at a higher
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approximation. In this inductive interpretation, Ψ′ and Ψ are treated differently,

and it allows the discharge rule to be justified by induction.

Label continuations being approximately true. We first introduce a seman-

tic function, A, which gives a meaning to assertions:

A : Assertion → DM → {tt, ff}

A [[∃x.p]] m ,

 tt if ∃d ∈ Val . A [[p[d/x]]] m = tt

ff otherwise.

when p = p1∨p2, or ¬p1, or re(e1, . . . , ear(re)), the definition of “A [[p]] m” is the same

as the definition of B (in Figure 2.10), except every occurrence of B is replaced by

A.

Next, we present a notion, σ; θ |=k l . p, to mean that label continuation l . p is

k-approximately true in state σ relative to label map θ:

σ; θ |=k l . p ,

∀σ′ ∈ Σ.

σ 7→∗
θ σ′ ∧ control(σ′) = θ(l) ∧ A [[p]] (m of(σ′)) = tt

⇒ safe state(σ′, k)

(2.2)

where 7→∗
θ denotes multiple steps being taken.

There are several points that need to be clarified about the definition of σ; θ |=k l.

p. First, by this definition, l . p being a true label continuation in σ to approximation

k means that the state is safe to execute for k steps. In other words, the state will

not get stuck within k steps.
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Second, the definition is relative to a label map θ, which is used to translate the

abstract label l to its concrete address.

Last, the definition quantifies over all future states σ′ that σ can step to (in-

cluding σ itself). The reason is that if σ; θ |=k l . p, provided that p is satisfied, it

should be safe to jump to location l, not just now, but also in the future. In other

words, if l . p is true in the current state, it should also be true in all future states.

Therefore, the definition of σ; θ |=k l . p has to satisfy the following lemma:

Lemma 2.1 If σ 7→∗
θ σ′, and σ; θ |=k l . p, then σ′; θ |=k l . p.

By quantifying over all future states, the definition of σ; θ |=k l . p satisfies the

above lemma. On this aspect, the semantics of σ; θ |=k l . p is similar to the Kripke

model [62, Ch 2.5] of intuitionistic logic: knowledge is preserved from current states

to future states.

The semantics of a single label continuation is extended to a set of label contin-

uations:

σ; θ |=k Ψ , ∀(l . p) ∈ Ψ. σ; θ |=k l . p

Loading statements. The predicate loaded(F, π, θ) describes the loading of a

fragment set F into an instruction memory π with respect to a label mapping θ:

loaded(F, π, θ) ,

∀(l : (t) : l′) ∈ F.

π(θ(l)) = t ∧ θ(l′) = θ(l) + 1 ∧
(
∀l ∈ exits(F ). θ(l) /∈ addr(F, θ)

)
.
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Note that some θ are not valid with respect to F . For example, if F = {l : (x := 1) :

l′}, and θ maps l to address 100, then θ has to map l′ to the address 101 to be

consistent. This is the reason why the definition requires that θ(l′) = θ(l) + 1.

In the definition of loaded(F, π, θ), the notation addr(F, θ) denotes the address

space of F relative to θ:

Definition 2.2 (Address space of F relative to θ.) The address space of a fragment

set F relative to a label mapping θ is:

addr(F, θ) , {x ∈ N | ∃(l : (t) : l′) ∈ F. x = θ(l) }

Therefore, the last conjunct in the definition of loaded(F, π, θ) requires4 that θ

maps exit labels to addresses that are not occupied by F . For example, suppose

F = { l : (goto l1) : l′ }, and θ(l) = 100. Since l1 ∈ exits(F ), then θ cannot map l1

to 100—the address has been occupied by F .

We define a relation, F ; Ψ′ |= Ψ, to model the semantic meaning of F ; Ψ′ ` Ψ.

Semantics of the judgment F ; Ψ′ ` Ψ. We define a relation, F ; Ψ′ |= Ψ,

which is the semantic modeling of F ; Ψ′ ` Ψ.

F ; Ψ′ |= Ψ ,

∀σ ∈ Σ, θ ∈ LMap. loaded(F, i of(σ), θ) ⇒

∀k ∈ N.
(
σ; θ |=k Ψ′ ⇒ σ; θ |=k+1 Ψ

)
.

4This requirement is not needed for the proof of the soundness theorem.
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The definition quantifies over all label maps θ and all states σ such that F is loaded

in the state with respect to θ. It derives the truth of Ψ to approximation k+1, from

the truth of Ψ′ to approximation k. This inductive definition allows the discharge

rule to be proved by induction over k.

We have given F ; Ψ′ |= Ψ a strong definition. But the question is what about

rules other than the discharge rule. Do they support such a strong semantics? The

answer is yes for Lc, because of one implicit invariant—for any judgment F ; Ψ′ ` Ψ

that is derivable, it takes at least one computation step from labels in Ψ to reach

labels in Ψ′. In other words, it takes at least one step from entries of F to reach an

exit of F . Because of this invariant, although Ψ′ is assumed to be only true at a

lower approximation, k, we can still show the truth of Ψ at a higher approximation,

k + 1. The following figure depicts the relationship between this invariant and

F ; Ψ′ |= Ψ.

l1 ln

1l ′ ml ′
ψ′

1≥

ψk+1

F

k

steps

Finally, since Lc also contains rules for deriving ` Ψ ⇒ Ψ′ and `D p, we de-

fine relations, |= Ψ ⇒ Ψ′ and |= p, to model their meanings, respectively. Their
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definitions are straightforward:

|= Ψ ⇒ Ψ′ ,

∀σ ∈ Σ, θ ∈ LMap, k ∈ N. (σ; θ |=k Ψ) ⇒ (σ; θ |=k Ψ′)

|= p , ∀m ∈ DM . A [[p]] m = tt

2.4 Properties of Lc

Theorems about the soundness and completeness of Lc are presented in this section.

We will also briefly discuss the relationship between the continuation-style semantics

for Lc and another semantics.

As a start, since Lc is parametrized by a deduction system D, which derives

formulas in the assertion language, it is necessary to assume properties of D before

proving properties of Lc.

Definition 2.3

• If `D p ⇒ |= p, then D is sound.

• If |= p ⇒ `D p, then D is complete.

2.4.1 Soundness

The soundness theorem for Lc is

Theorem 2.4 (Soundness.) Assume D is sound. If F ; Ψ ` Ψ′, then F ; Ψ |= Ψ′.
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The proof is by induction over the derivation of F ; Ψ ` Ψ′. The most difficult case

is the discharge rule, which is proved as follows. Proofs of other rules are included

in Appendix A.1.

We first present an auxiliary lemma.

Lemma 2.5 For any σ ∈ Σ, θ ∈ LMap, k ∈ N and Ψ ∈ FragSet,

(i) σ; θ |=0 Ψ.

(ii) if σ; θ |=k Ψ, then σ; θ |=j Ψ for all j ≤ k.

Proof. Straightforward from the definition of σ; θ |=k Ψ.

Lemma 2.6

If F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, then F ; Ψ′ |= Ψ ∪ {l . p}.

Proof. To prove F ; Ψ′ |= Ψ ∪ {l . p}, pick σ ∈ Σ and θ ∈ LMap. Assume

loaded(F, i of(σ), θ). (2.6.1)

The goal is ∀k ∈ N.
(
σ; θ |=k Ψ′ ⇒ σ; θ |=k+1 Ψ ∪ {l . p}

)
. We prove it by induction

over the natural number k.

For the base case, assume

σ; θ |=0 Ψ′, (2.6.2)

and prove that σ; θ |=1 Ψ ∪ {l . p}.

Lemma 2.5 (i) gives

σ; θ |=0 {l . p}. (2.6.3)
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Together with 2.6.2, we have

σ; θ |=0 Ψ′ ∪ {l . p}. (2.6.4)

Now from the assumption, F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, the result 2.6.1, and the

result 2.6.4, we get σ; θ |=1 Ψ ∪ {l . p}, which is the goal for the base case.

For the inductive case, assume the induction hypothesis is true for k:

σ; θ |=k Ψ′ ⇒ σ; θ |=k+1 Ψ ∪ {l . p}. (2.6.5)

The goal is to prove that the induction hypothesis is true for k + 1:

σ; θ |=k+1 Ψ′ ⇒ σ; θ |=k+2 Ψ ∪ {l . p}.

Thus, assume

σ; θ |=k+1 Ψ′. (2.6.6)

Lemma 2.5 (ii) gives

σ; θ |=k Ψ′. (2.6.7)

From the induction hypothesis 2.6.5 and the result 2.6.7, we have

σ; θ |=k+1 Ψ ∪ {l . p}, (2.6.8)

from which the following is derivable:

σ; θ |=k+1 {l . p}. (2.6.9)
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Together with 2.6.6, we have

σ; θ |=k+1 Ψ′ ∪ {l . p}. (2.6.10)

Now, use the assumption F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, together with 2.6.1

and 2.6.10, to derive

σ; θ |=k+2 Ψ ∪ {l . p},

which is the goal for the inductive case. �

2.4.2 Connection with Conventional Hoare Logic Semantics

Before discussing the completeness of Lc, we first present a connection between our

semantic for Lc and the conventional Hoare Logic Semantics.

Our semantics of F ; Ψ′ ` Ψ is in continuation style. For example, the meaning

of F ; {l′ . q} |= {l . p} assumes l′ . q is a true label continuation (to a lower

approximation), and infer that l . p is a true label continuation.

The conventional interpretation of a Hoare triple {p}s{q} is that if the state

before execution of s satisfies the assertion p, then the state after execution (if there

is one) satisfies q. We call this style the direct style. The direct-style semantics

positively asserts that the exit state satisfies the postcondition q.

Although these two styles are different, one has the feeling that there is some

connection. The connection can be intuitively seen as follows. If {p}s{q} is deriv-

able in Hoare logic, then s may be thought of as a procedure for transforming the

assertion p to q. On the other hand, if F ; {l′ . q} |= {l . p} is derivable in Lc,

then s may be thought of as a procedure for transforming the assertion ¬q to ¬p

(because of the connection between continuations and negation). In classical logic,
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p ⇒ q is equivalent to ¬q ⇒ ¬p. Therefore, there must be a connection between

the continuation-style semantics and the direct-style semantics.

Next, we define a relation |= {Ψ}F{Ψ′}, which extends the direct-style seman-

tics to the case of multiple-entry and multiple-exit fragments. After that, we prove a

theorem that relates the direct-style semantics to the continuation-style semantics.

Definition of |= {Ψ}F{Ψ′}. The partial-correctness interpretation of a Hoare

triple {p}s{q} is that if the state before execution of s satisfies the assertion p, then

the state after execution (if there is one) satisfies q. We extend this direct-style

semantics to the case of multiple-entry and multiple-exit fragments F :

Ψ Ψ′

{l1 : p1 {l′1 : p′1
... F

...

ln : pn} l′m : p′m}

We define a relation |= {Ψ}F{Ψ′} to model the direct-style semantics. It means

that if the state enters F through some label in Ψ with the corresponding precondi-

tion satisfied, and if F terminates, then the control of the ending state will be at one

of the labels in Ψ′, and the ending state will satisfy the corresponding postcondition.

To formalize this semantics, there is one technical difficulty: It needs to reason

about the ending state of F . However, it is not straightforward to extract the ending

state on von Neumann-style operational semantics. In some denotational semantics

for Hoare Logic [57], F is modeled as a state-transformation function in the domain

of Σ → Σ. In this kind of semantics, given a state σ, the ending state is just F (σ).
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It is not straightforward to get the ending state for F on the operational seman-

tics in Section 2.3.1. To see the difficulty, suppose F is loaded into the instruction

memory of some state σ, whose control points to some entry in F . If we know that

F takes j steps to finish, we could define the ending state to be any state σ′ such

that σ 7→j σ′. However, it is in general not possible to know j since F may contain

loops.

Our idea is to define an ending state for F to be any state that first goes out

of the address space occupied by the statement F . In other words, the first state

whose control points to locations outside of F is an ending state for F .

To formalize the above idea, we introduce some definitions first.

Definition 2.7 (Computation within the address space of F .) For a computation

sequence σ0 7→θ σ1 7→θ · · · 7→θ σj, it is a computation within the address space of F

if ∀0 ≤ i < j. control(σi) ∈ addr(F, θ). We use the notation σ0
F,θ
 σj to describe

this.

Note that the definition of σ0
F,θ
 σj does not require that control(σj) ∈ addr(F, θ).

If control(σj) /∈ addr(F, θ), then σj is an ending state for F since it is the first one

that goes out of the address space of F .

Now we define the relation |= {Ψ}F{Ψ′}:

Definition 2.8

|= {Ψ}F{Ψ′} ,

∀l . p ∈ Ψ, σ ∈ Σ, θ ∈ LMap.

loaded(F, i of(σ), θ) ∧ control(σ) = θ(l) ∧ A [[p]] m of(σ) = tt

⇒ ∀σ′ ∈ Σ. σ
F,θ
 σ′
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⇒ (control(σ′) ∈ addr(F, θ) ⇒ ∃σ′′ ∈ Σ. σ′ 7→∗
θ σ′′) ∧

(control(σ′) /∈ addr(F, θ)

⇒ ∃l′ . p′ ∈ Ψ′. control(σ′) = θ(l′) ∧ A [[p′]] m of(σ′) = tt)

This says that for any state σ, with F loaded, whose control is at some entry l and

which satisfies the condition p, any computation sequence can either progress, when

the last state is not an ending state, or the last state is an ending state, with control

at some exit label and the corresponding condition satisfied.

Next, we present a theorem that relates the direct-style semantics, |= {Ψ}F{Ψ′},

to the continuation-style semantics, F ; Ψ′ |= Ψ. The theorem states that these

two semantics are equivalent, but under certain assumptions. To present these

assumptions, we first define some concepts.

Some concepts. The notation, labels(Ψ), denotes all labels mentioned in Ψ. The

notation, entries(F ), denotes all labels that are defined as entries in F . The notation,

exits(F ), denotes all labels that are possible exits of F , excluding those labels that

are already in entries(F ); exits are identified syntactically. Their rigorous definitions

are as follows:

labels(Ψ) , { l | ∃p. l . p ∈ Ψ }

entries(F ) , { l | ∃t, l′. l : (t) : l′ ∈ F }

exits(F ) , { l′ | ∃l, t. l : (t) : l′ ∈ F }

∪ { l1 | ∃l, l′. l : (goto l1) : l′ ∈ F }

∪ { l1 | ∃l, l′. l : (if b goto l1) : l′ ∈ F }

− entries(F )
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Some fragment sets are abnormal. For example, if a fragment set has a label

that is defined twice, such as the following fragment set,

F = {l : (x := 1) : l′1, l : (x := 2) : l′2}.

Then no π ∈ IM and θ ∈ LMap exists such that F can be loaded into π. The

following concept restricts our attention to a normal subset of (F, Ψ′, Ψ).

Definition 2.9

• F is a normal fragment set if every label in entries(F ) is defined exactly once

in F .

• Ψ′ is a normal exit label-continuation set relative to F if labels(Ψ′) = exits(F ),

and for each l ∈ labels(Ψ′), only one l . p in Ψ′ exists.

• Ψ is a normal entry label-continuation set relative to F if labels(Ψ) ⊆ entries(F ),

and for each l ∈ labels(Ψ), only one l . p in Ψ exists.

• (F, Ψ′, Ψ) is a normal triple if F is a normal fragment set, Ψ′ is a normal exit

label-continuation set and Ψ is a normal entry label-continuation set relative

to F .

Finally, the proof of the equivalence between |= {Ψ}F{Ψ′} and F ; Ψ′ |= Ψ

depends on a notion expressing that the assertion language is negatively testable

with respect to the statement language.

Definition 2.10
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• An assertion p is negatively testable by a sequence of statements s, if

1. s terminates, when p is false before executing s,

2. s diverges (in an infinite loop), when p is true before executing s.

• The assertion language, Assertion, is negatively testable by the statement lan-

guage, Stmt, if every p ∈ Assertion is negatively testable by a sequence of

statements s ∈ Stmt.

• If the assertion language is negatively testable by the statement language, let

test(p) be a sequence of statements that can negatively test the assertion p.

If the assertion language is the same as the language of boolean expressions,

then it is negatively testable by the statement language: for every assertion p, the

following statement satisfies the requirement in the definition.

l : if p goto l

Another example of a negatively-testable assertion language is ∀-rudimentary

formulas for arithmetic. A ∀-rudimentary formula has only one unbounded universal

quantification at the front, and hence has the following form:

∀x.∃y < n1.∀z < n2. · · · p

where “· · · ” represents a sequence of bounded quantifiers (either universal or exis-

tential), and p is a quantifier-free formula.
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For such a ∀-rudimentary formula, a sequence of statement that satisfies the

requirement in Definition 2.10 can be a loop that enumerates x and exits if one

instance of x makes the rest of the formula false.

We now present the theorem that relates the direct-style semantics to the continuation-

style semantics.

Theorem 2.11 Assume (F, Ψ′, Ψ) is normal. Assume the assertion language is

negatively testable by the statement language. Then, |= {Ψ}F{Ψ′} is equivalent to

F ; Ψ′ |= Ψ.

The proof is in the Appendix A.2. We only point out that the proof is not

constructive. First, it is a proof by contradiction. Second, for an assertion p, the

proof chooses a sequence of statements, namely test(p), which can negatively test

p; this needs the axiom of choice.

Although two styles of semantics are closely related, we prefer the continuation

style for two reasons. First, the definition of |= {Ψ}F{Ψ′} is technically clumsy

since it needs to formally capture the state that is the first one whose control is out

of the address space of F .

Second and more importantly, it is a challenge to adapt direct-style semantics

to a language with first-class function pointers, which continuation-style semantics

can easily accommodate. For example, to reason about the following program, the

value of variable x can be modeled as a continuation—the same continuation as

the one associated with l. With this modeling, the rule for jmp x requires x be a
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continuation—the same as the rule for goto l.

x := l;

. . .

jmp x

We will discuss the model for indirect jumps in detail in Section 3.3.

2.4.3 Completeness

Lc may be incomplete due to some incompleteness of system D. But there are other

sources of incompleteness.

First of all, some fragment sets are abnormal. For example, if a fragment set

has a label that is defined twice, such as the following fragment set,

F = {l : (x := 1) : l′1, l : (x := 2) : l′2},

then no π ∈ IM and θ ∈ LMap exists such that loaded(F, π, θ) is true, since it is

impossible to load two different statements into the same location θ(l). For such

kind of fragment sets, because the definition of F ; Ψ′ |= Ψ quantifies over all π and

θ such that loaded(F, π, θ), the judgment F ; Ψ′ |= Ψ is trivially true. Lc cannot

prove F ; Ψ′ ` Ψ for such kind of F .

Second, if a statement s is always in an infinite loop, then the following is always

true:

{l : (s) : l′} ; ∅ |= {l . p}
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However, Lc in general cannot derive {l : (s) : l′} ; ∅ ` {l . p} for infinitely loop-

ing s, since Lc treats l : (s) : l′ as a one-entry and one-exit fragment, and judgments

derivable in Lc for {l : (s) : l′} in general assume a label continuation about l′ on

the left of `. Since Lc is not intended to determine termination of fragments, a rea-

sonable assumption when discussing completeness is to focus on those F ; Ψ′ |= Ψ

such that labels(Ψ′) = exits(F ).

Therefore, when discussing the completeness, we restrict our attention to the

normal set of (F, Ψ′, Ψ), as defined in Definition 2.9.

Last, as pointed out by Cook [21], there is another way that a program logic

can fail to be complete, and it is if the assertion language is not powerful enough to

express invariants for the loops. Therefore, we must assume the assertion language is

expressive. To formally define expressiveness, we first define a concept that expresses

a weakest precondition of a label.

Definition 2.12 Let F ∈ FragSet, l ∈ entries(F ), and Ψ′ ∈ LContSet such that

labels(Ψ′) = exits(F ). We say that p expresses the weakest precondition of the label

l in the fragment set F with respect to Ψ′ iff

∀m ∈ DM. A [[p]] m = tt ⇔


∀θ ∈ LMap, π ∈ IM, k ∈ N

loaded(F, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ′)

⇒ safe state((θ(l), π, m), k + 1)


We write p ' wp(l, F, Ψ′) to express this.

The following lemma justifies our definition of the weakest precondition. Its

proof is in Appendix A.3.
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Lemma 2.13 Let p ∈ Assertion, F ∈ FragSet, l ∈ entries(F ), and Ψ′ ∈ LContSet.

If p ' wp(l, F, Ψ′), then

(i) F ; Ψ′ |= {l . p} (i.e., p is a precondition)

(ii) ∀p′ ∈ Assertion.
(
F ; Ψ′ |= {l . p′} ⇒ |= p′ ⇒ p

)
(p is the weakest)

With the concept of the weakest precondition, the expressiveness condition is

defined as follows.

Definition 2.14 (Expressiveness.) Let
∮

be an interpretation of the primitive re-

lation and function symbols. We say that Assertion is expressive enough relative

to FragSet and
∮

if for all fragments F , for all labels l ∈ entries(F ), and all la-

bel invariants Ψ′ such that labels(Ψ′) = exits(F ), there is an assertion p such that

p ' wp(l, F, Ψ′).

If the primitive symbols are such that the assertion language is the language of

arithmetic, and if
∮

is the standard interpretation of the language of arithmetic,

then, according to recursion theory, the computation from entries to exits in F are

partial recursive functions in the free variables of F . A result in recursion theory is

that every partial recursive function can be described by a formula in the language of

arithmetic. From this we can infer that the assertion language is expressive relative

to
∮

.

Theorem 2.15 (Completeness.)

Assume D is complete and Assertion is expressive relative to
∮
. Assume Assertion

is negatively testable by the statement language. Assume (F, Ψ′, Ψ) is normal. If

F ; Ψ′ |= Ψ, then F ; Ψ′ ` Ψ.

See Appendix A.3 for the proof of the completeness theorem.
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Chapter 3

From Lc to Typed Assembly

Languages

We have introduced Lc, which is a program logic for modularly verifying properties

of machine-language programs. In this chapter, we discuss the role that Lc plays in

the FPCC project at Princeton.

Overview of the FPCC system. Figure 3.1 shows the system setup of our

FPCC system. The system translates ML programs into SPARC machine code,

together with automatically generated foundational safety proof for the code.

The FPCC system follows the TAL’s approach for automatic proof generation,

except that we also provide a machine-checkable soundness proof for the type sys-

tem. The system has three major components: a compiler that translates well-typed

ML programs into a typed-assembly language, LTAL; the soundness proof of LTAL’s

type system; a checker that checks the soundness proof and run the type system
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Figure 3.1: The FPCC system (figure from Chen et al. [17])
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as a logic program to check the welltypedness of LTAL programs. Next, we discuss

these three components in detail.

Compiler. The compiler is based on the Standard ML of New Jersey system. We

call this compiler the FPCC-ML compiler. The FPCC-ML compiler trans-

forms core ML (ML without the module system) into SPARC machine code

with LTAL annotations. Interested readers should refer to Chen’s thesis [16,

ch7] for a detailed description of the FPCC-ML compiler.

Checker. The checker has two components. First, it includes a general purpose

proof checker [10]. The proof checker can check the validity of any proof

encoded in Logical Framework (LF) [34]. In our system, this proof checker

is used to check the soundness proof of LTAL. After the soundness proof has

been checked, the LTAL typing rules can be regarded as a set of Prolog-like

clauses. Therefore, the second component of the checker is a simple Prolog

interpreter [71], which runs LTAL’s type system as a logic program to type

check LTAL programs.

Soundness proof. The major research problem in the FPCC project is to prove the

soundness of LTAL from higher-order logic and SPARC machine semantics,

so that a typing derivation at the LTAL level can be mapped into a proof from

the foundations of mathematics. This soundness proof is complicated and we

organize it into layers for better understanding and maintenance. We next

discuss the most important layer in the soundness proof.

An intermediate calculus in the soundness proof. To remove LTAL from

TCB, we need to prove it is sound. On the other hand, the main design goals of
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LTAL were to accommodate low-level optimizations, to have syntax-directed type

checking, to deal with particulars in ML and SPARC—having a simple semantic

soundness proof was not its original goal.

When proving the soundness of LTAL, we found it is easier to have an inter-

mediate calculus. We first prove the intermediate calculus is sound from logic plus

machine semantics. Then we prove LTAL is sound based on the lemmas provided

by the intermediate calculus.

The intermediate calculus does not need to be decidable, since it is not used

for automatic checking. It is also meant to be language-independent and machine-

independent.

The intermediate calculus is required to be expressive so that features in LTAL,

or other type systems, can be explained by it. It should provide orthogonal and

primitive features, so that complicated features can be explained as combinations

of primitive features.

The intermediate calculus in our system includes two parts. The first part is

called Typed Machine Language (TML) [64], which is an expressive type theory

with machine-checked soundness proofs. It has intersection types, union types,

recursive types, mutable references, polymorphism, existentials, etc. Users of TML

can utilize its rich set of type constructors and manipulate types using lemmas

provided by TML.

The second part is Lc. We have introduced it in Chapter 2 as a logic for modu-

larly verifying properties of unstructured programs. In our system, we use the TML

type theory as the assertion language for Lc.
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A roadmap of this chapter. The purpose of this chapter to illustrate the step

between Lc and LTAL: We give LTAL’s syntactic constructs semantics based on Lc,

and then prove LTAL is sound from the rules provided by Lc.

For this purpose, in Section 3.2, we define a simple typed-assembly language,

TAL0, which is similar to LTAL in terms of the control-flow aspect. It has un-

conditional jumps, conditional jumps, and instruction blocks. We then construct a

semantic model for TAL0 from Lc and prove that TAL0 is sound.

In the following sections, we will introduce a series of typed assembly languages

on top of TAL0. These typed assembly languages are used to illustrate some of

the complexities in our real system. In particular, TAL1 (Section 3.3) adds pc-

relative jumps and indirect jumps. The language TAL2 (Section 3.4) has parametric

polymorphism and recursive types. The semantic modeling of TAL2 requires us

to deal with virtual instructions. The language TAL3 (Section 3.5) can perform

simple memory allocation and initialization. Its purpose is to illustrate an important

technique in our proof—imaginary parts of states.

In the following sections, however, we will make simplifications of our real system

for a clearer presentation. When it is important, we will point out the differences

between our presentation and our real system.

3.1 Specifying Machine Semantics and Safety

Before we introduce a series of typed-assembly languages, we first discuss the spec-

ification of the SPARC machine and the safety policy. With this specification as

the foundation, we will prove the typed-assembly languages we introduce are sound.

The specification architecture in this section follows from Appel [7].
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In Section 2.3.1, we have specified a machine model and proved that Lc is sound

based on that machine model. Although that model is very low-level, in some

ways it is still high-level compared to a real architecture: it has separate instruction

memory and data memory, while a real architecture puts both instructions and data

into the same memory; some of its instructions such as “x := e” are compiled into a

sequence of more primitive machine instructions.

In this section, we introduce a von Neumann machine model, which is our mod-

eling of concrete architectures. In the FPCC project, we model the SPARC archi-

tecture [42] and carry out all our proofs based on that model.

The machine model formally specifies the decoding and operational semantics

for an architecture. Since the specifics of instruction encodings are not relevant

to this presentation, we assume an abstract decode relation, decode(w, i), which

decodes the word w to the machine instruction i.

A machine state σ consists of a register bank r and a memory m, both of which

are modeled as functions from addresses (numbers) to contents (also numbers).

Every register in the machine is assigned an index in the register bank. We assume

registers 0–31 are general purpose registers. Special registers such as the program

counter are assigned indexes that are greater than 31; we use pc for the index of

the program counter. The notation r of(σ) and m of(σ) project σ into its register

bank and memory, respectively.
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A machine instruction is modeled by a relation between machine states (r, m)

and (r′, m′). For example, a load instruction (ld) is specified by

ld s, d ,

λ(r, m), (r′, m′).(
r′(pc) = r(pc) + 4

)
∧

(
r′(d) = m(r(s))

)
∧

(
∀x /∈ {pc, d}. r′(x) = r(x)

)
∧ readable(r(s))

∧
(
m′ = m

)
,

where m′ = m is an abbreviation for ∀x. m′(x) = m(x). The semantics of “ld s, d”

increments the program counter by four (on SPARC, the size of an instruction

is four), loads the value at the memory address r(s) into the register d, and the

memory remains unchanged.

One important property of our machine semantics is that it is deliberately par-

tial: unsafe operations are omitted from the semantics. Since the current version of

the FPCC project uses memory safety as the safety policy, unsafe operations there-

fore are those reading from unreadable addresses, and those writing to unwritable

addresses.

To model memory safety, we first introduce two predicates:

readable : N → Bool

writable : N → Bool

The readable predicate tells which region of memory addresses is readable; the

writable predicate tells which region is writable. In the FPCC project, we axioma-
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tize1 the set of readable and writable addresses, and the goal of FPCC is to prove

that each memory-load instruction is reading from the readable addresses and each

memory-write instruction is writing to the writable addresses.

The reader may have noticed that the definition of“ld s, d”uses the readable(r(s))

predicate to ensure that the address is readable. Because of this requirement, sup-

pose in some state (r, m) the program counter points to a ld instruction that would,

if executed, load from an address that is unreadable. Then, since our ld instruction

requires that the address must be readable, there will not exist (r′, m′) such that

(ld s, d)(r, m)(r′, m′).

The machine operational semantics is modeled by a step relation, 7→, that steps

from one state (r, m) to the next state (r′, m′), which is the result of decoding the

current machine instruction, and then executing the machine instruction:

(r, m) 7→ (r′, m′) , ∃i. decode(m(r(pc)), i) ∧ i(r, m)(r′, m′)

The step relation is partial; some states have no successor states and and we call

them stuck states. A state is a stuck state if its program counter points to an integer

that cannot be decoded into an instruction. Our modeling of machine instructions

makes the step relation even more partial. For example, if the current instruction

in a state is a load instruction that would load from an unreadable address, then

the state is also a stuck state.

1In particular, the convention of the SML/NJ compiler specifies a heap area and a register-
spilling area, using values of special registers, including an allocation pointer, a limit pointer and a
stack pointer. Then, we axiomatize that both the heap area and the register-spilling area is both
readable and writable.
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Using this partial step relation, we can define safety; a state is safe for k steps

if it will not reach a stuck state within k steps:

safe state(σ, k) ,

∀σ′ ∈ Σ.∀j < k. σ 7→j σ′ ⇒ ∃σ′′. σ′ 7→ σ′′,

Safe programs. An assembly-language program P is a sequence of assembly in-

structions. We use the predicate loaded(P, σ) to specify that the program P is

loaded into the state σ; machine integers are decoded into corresponding assembly

instructions:

loaded(P, σ) , ∀i ∈ dom(P ). decode(m of(σ)(4i), P (i))

Next, we define the safety of a program P :

safe prog(P ) , ∀σ. loaded(P, σ) ∧ r of(σ)(pc) = 0 ∧ init cond(σ)

⇒ ∀k. safe state(σ, k).
(3.1)

A program P is safe if any state σ satisfying the following is a safe state: P is loaded

inside σ; the program counter initially points to address zero; when the program

begins executing, some initial condition holds on the state.

There are several points worth further explanation. First, our real system proves

a program is safe no matter where it is loaded (that is, the program is position-

independent). For simplification, this presentation assumes that the program is

always loaded to address zero.

Second, the init cond(σ) predicate axiomatizes the initial state. Among other

things, it axiomatizes a return address. A program P can always jump to that
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address to reach a safe state.

return addr(x) , ∀r, m. r(pc) = x ⇒ ∀k. safe state((r, m), k).

In our implementation, we designate register 15 to store the return address and thus

return addr(r of(σ)(15)) is part of init cond(σ). By modeling a return address, our

safe prog(P ) definition also allows a terminating program to be safe, as long as it

jumps to the return address in the end.

There are other components in the init cond(σ); one is to specify all register and

memory values in the initial state are 32-bit integers. We do not go into details.

We have specified the semantics of only the load instruction so far. In the following

sections, we will introduce a series of typed assembly languages so that we can

add more and more complex features. Each typed assembly language has its own

instruction set. Therefore, we defer the introduction of particular instruction sets

and their semantics to later sections. Finally, in this chapter, we will make some

simplifications and changes to the SPARC instructions. For example, instead of

two arguments, the real load instruction on SPARC has three. When we discuss

the implementation in the next chapter, we will present lemmas for real SPARC

instructions.

3.2 TAL0

In this section, we introduce a simple typed assembly language — TAL0. The

following few sections will cover its syntax and a type system.
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The purpose of introducing TAL0 is two-fold. First, we will use TAL0 to illustrate

the step of bridging the gap between a real typed assembly language and our logic

for control flow — Lc. The language TAL0 has algorithmic type checking; its type

checking is completely syntax-directed. On the other hand, the logic Lc cannot

decide which labels should be kept as entries for instruction blocks. Therefore,

Lc has declarative rules in this aspect. In Section 3.2.4, we will develop models

for judgments in TAL0 based on Lc’s instruction judgment and then prove TAL0’s

algorithmic typing rules can be justified by Lc’s rules. Then, in Section 3.2.6, we

show that our models for TAL0 is strong enough to prove the safety theorem: If a

program P has a typing derivation in TAL0’s type system, then it is safe according

to the definition of safe prog(P ).

Like all other typed assembly languages, TAL0 uses types as the assertion lan-

guage. The second purpose of TAL0 is to explain some issues when types are

adopted. In particular, we will briefly cover the indexed model of types in Sec-

tion 3.2.5.

For a clear presentation, many simplifications are made in TAL0. For example,

a real TAL uses modular arithmetic and each register’s value is bounded. TAL0

assumes register values are unbounded and uses ordinary arithmetic.

3.2.1 Machine Instructions in TAL0

The language TAL0 has only a few machine instructions: The instruction“add s1, s2, d”

adds values in registers s1 and s2, and stores the result into register d; the instruc-

tion “ld s, d” loads the contents of the memory address pointed by register s into

register d; the branch-always instruction “ba ld” unconditionally jumps to the ab-

solute address ld; the branch-if-zero instruction “bz s, ld” jumps to ld if the value of
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add s1, s2, d ,
λ(r, m), (r′, m′).(

r′(pc) = r(pc) + 4
)
∧

(
r′(d) = r(s1) + r(s2)

)
∧

(
∀x /∈ {pc, d}. r′(x) = r(x)

)
∧

(
m′ = m

)
.

ld s, d ,
λ(r, m), (r′, m′).(

r′(pc) = r(pc) + 4
)
∧

(
r′(d) = m(r(s))

)
∧

(
∀x /∈ {pc, d}. r′(x) = r(x)

)
∧ readable(r(s))
∧

(
m′ = m

)
.

ba ld ,
λ(r, m), (r′, m′).(

r′(pc) = ld
)
∧

(
∀x 6= pc. r′(x) = r(x)

)
∧

(
m′ = m

)
.

bz s, ld ,
λ(r, m), (r′, m′).(

r(s) = 0 ∧ r′(pc) = ld ∨ r(s) 6= 0 ∧ r′(pc) = r(pc) + 4
)

∧
(
∀x 6= pc. r′(x) = r(x)

)
∧

(
m′ = m

)
.

Figure 3.2: TAL0: Semantics of machine instructions
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(natural numbers) n ::= 0 | 1 | 2 | . . .
(addresses) l ::= 0 | 4 | 8 | . . .

(register indexes) d, s ::= 0 | 1 | 2 | . . . | 31

(programs) P ::= B; P | B
(instruction blocks) B ::= i; B | ba ld | bz s, ld

(instructions) i ::= add s1, s2, d | ld s, d

(address invariants) Ψ ::= { l1 7→ codeptr (φ1), . . . , ln 7→ codeptr (φn) }
(register -file types) φ ::= { d1 7→ τ1, . . . , dn 7→ τn }

(types) τ ::= int | int=(n) | int6=(n) | box (τ)

Figure 3.3: TAL0: Syntax

register s is zero, and falls through to the next instruction otherwise. Figure 3.2

presents the semantics of these machine instructions.

3.2.2 Syntax

Figure 3.3 presents the syntax of TAL0. It has 32 registers, and addresses are

multiples of four. A TAL0 program consists of an assembly program P and a type

annotation Ψ. An assembly program P consists of a sequence of instruction blocks,

each of which is a sequence of instructions ending in a control-transfer instruction

(“ba ld” or “bz s, ld”). A type annotation Ψ is a mapping from addresses to code-

pointer types, which take register-file types as preconditions. The domain of a

wellformed Ψ contains exactly those addresses that correspond to the beginning

of instruction blocks. Therefore, it effectively associates a precondition with the

beginning of every instruction block.
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Types in TAL0 include integer type int, immutable reference type box (τ), single-

ton type int=(n) (only the integer n has this type), and int6=(n) (integers not equal

to n have this type).

A Register-file type, φ, specifies the type of a register bank. It is a mapping

from register indexes to types.

We introduce some notation. Notation |B| denotes the size of an instruction

block B; we assume each instruction has size four. Notation φ[s 7→ τ ] updates the

type of the register s to τ in the register bank φ.

3.2.3 Type System

In Figure 3.4, we present a type system for TAL0. One important property of the

type system is that it is completely syntax-directed. That is, when given a program

P and a wellformed type annotation Ψ as inputs, the type system can always pick

a unique rule to proceed to have a typing derivation for P and Ψ.

Typing judgments for TAL0 are listed as below:

• Judgment `p P : Ψ means that the program P is wellformed with respect to

the address invariants Ψ.

• Judgment Ψ; l `f P means that the program fragment P , starting at address l,

is wellformed, assuming the global address invariant Ψ. The address invariant

Ψ provides preconditions of addresses to which P might jump.

• Judgment Ψ; l; φ `b B means that the instruction block B, starting at address

l, is wellformed, assuming the precondition of B is φ and the global address

invariant Ψ. The address invariant Ψ provides preconditions of addresses to

which B might jump.
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`p P : Ψ

Ψ; 0 `f P

`p P : Ψ
prog

Ψ; l `f P

Ψ(l) = codeptr (φ) ∀l < x < l + |B|. x /∈ dom(Ψ)
Ψ; l; φ `b B Ψ; l + |B| `f P

Ψ; l `f (B; P )
frag1

Ψ(l) = codeptr (φ) ∀x > l. x /∈ dom(Ψ) Ψ; l; φ `b B

Ψ; l `f B
frag2

Ψ; l; φ `b B

`i {φ1}i{φ2} Ψ; l + 4; φ2 `b B

Ψ; l; φ1 `b (i; B)
seq

Ψ(ld) = codeptr (φd) φ <: φd

Ψ; l; φ `b (ba ld)
ba

Ψ(ld) = codeptr (φd) Ψ(l + 4) = φ′

φ[s 7→ int=(0)] <: φd φ[s 7→ int6=(0)] <: φ′

Ψ; l; φ `b (bz s, ld)
bz

`i {φ1}i{φ2}

φ <: { s1 7→ int, s2 7→ int }
`i {φ}(add s1, s2, d){φ[d 7→ int]} add

φ <: { s 7→ box (τ) }
`i {φ}(ld s, d){φ[d 7→ τ ]} ld

τ1 <: τ2, φ1 <: φ2

τ <: τ s-refl int=(n) <: int
s-int= int6=(n) <: int

s-int6=

dom(φ1) ⊇ dom(φ2) ∀d ∈ dom(φ1) ∩ dom(φ2). φ1(d) <: φ2(d)

φ1 <: φ2
s-rfile

Figure 3.4: TAL0: Typing rules
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• Judgment `i {φ1}i{φ2}means that the instruction i is wellformed with respect

to the precondition φ1 and the postcondition φ2.

• Judgment φ1 <: φ2 means that φ1 is a a stronger register-file type than φ2.

Judgment τ1 <: τ2 means that τ1 is a subtype of τ2.

To check that a program P is wellformed with respect to an address invariant

Ψ, the prog rule invokes Ψ; 0 `f P . Then, the type system uses the frag1 and frag2

rules to check that each instruction block in P is wellformed. The rules frag1 and

frag2 look up the precondition of each block inside the global address invariant Ψ.

These two rules also make sure that Ψ is wellformed by checking that Ψ associate

invariants with only those addresses that correspond to the beginning of instruction

blocks. (Invariants for other addresses are computed by the type system.)

When checking a single instruction block B, the type system will use the rule

seq to walk through the block to check that every instruction is wellformed. The ba

(branch always) and bz (branch if zero) rules check the last instruction in a block.

The ba rule checks that the current precondition, φ, is a subtype of the precondition

of the destination address (which must be in the domain of Ψ). The conditional

branch instruction “bz s, ld” has two cases. When the branch is taken, the register

s has value zero; therefore the rule bz updates2 the current precondition with s

mapped to the type int=(0), and checks that the new precondition is a subtype of

the precondition of the destination address. Similarly, when the branch is not taken,

the register s should have type int6=(0).

The rules for `i {φ1}i{φ2} take a precondition φ1 and an instruction i as inputs

and calculate a postcondition φ2 as an output. For example, in the add rule, the

2This is over-simplified. LTAL also remembers the old type of the comparison register.
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postcondition is the precondition with the destination register updated with integer

type.

Finally there are the rules for subtyping; these rules are unsurprising.

3.2.4 Models of Typing Judgments in TAL0

In this section, we show how to justify the soundness of TAL0’s type system from

Lc. We proceed in two steps. First, we develop models for judgments in TAL0 based

on Lc’s instruction judgment. We use C; Ψ′ |=Lc Ψ for Lc’s instruction judgment

to avoid confusion. In the second step, we show how typing rules in TAL0 can be

proved from the rules in Lc.

First we introduce some notation. In TAL0, a program P or an instruction

block B denotes a list of consecutive instructions. Therefore, we will write P@l

to denote that the program P starts at the address l. We will also overload the

@ symbol and use it in B@l (respectively, i@l), which means that the instruction

block B (respectively, the single instruction i) starts at the address l. The logic Lc

uses the notation { l . φ } to denote that l is a code pointer with precondition φ.

In this chapter, we use { l 7→ codeptr (φ) } instead; { l . φ } can be thought as an

abbreviation for { l 7→ codeptr (φ) }.

Figure 3.5 presents models for judgments in TAL0’s type system based on C; Ψ′ |=Lc Ψ.

The first judgment is `p P : Ψ, which we model as P@0; {} |=Lc Ψ. The program

P has multiple entries: the beginnings of instruction blocks in P are possible en-

tries; these beginnings correspond to the domain of Ψ. Furthermore, since P is the

complete program, it does not depend on other exits and thus has no exits (except

for some possible indirect exits in registers; we will discuss this in the next sec-

tion). Therefore, the meaning of `p P : Ψ in Figure 3.5 says that every address in
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|=p P : Ψ , P@0; {} |=Lc Ψ

Ψ; l |=f P , P@l; Ψ |=Lc |Ψ|≥l

Ψ; l; φ |=b B , B@l; Ψ |=Lc {l 7→ codeptr (φ)}
|=i {φ1}i{φ2} , ∀l. i@l; {l + |i| 7→ codeptr (φ2)} |=Lc {l 7→ codeptr (φ1)}

Figure 3.5: TAL0: Models of typing judgments

the domain of Ψ is a code pointer with respect to the corresponding precondition

prescribed in Ψ.

In the judgment Ψ; l `f P , the P part is not a complete program, but only a

partial program starting at the address l, and thus its entries include the beginnings

of only those instruction blocks in P ; these beginnings correspond to those addresses

that are not less than l in the domain of Ψ. We use the notation |Ψ|≥l to denote the

restriction of Ψ to those addresses greater than or equal to l. Meanwhile, P may

jump outside of P to any instruction block in the complete program. Therefore, the

model of Ψ; l `f P in Figure 3.5 says that every address in the domain of |Ψ|≥l is a

code pointer, assuming the global address invariant Ψ.

In the judgment Ψ; l; φ `b B, the block B has only one entry, namely l. But

the last instruction in B may jump to any other block in the complete program.

Therefore, the model of Ψ; l `f P in Figure 3.5 says that the address l is a code

pointer with the precondition φ, assuming the global address invariant Ψ.

In the judgment `i {φ1}i{φ2}, the instruction i is not a control-transfer instruc-

tion and therefore has one entry and one exit. Its model in Figure 3.5 states that

the address l is a code pointer with φ1, assuming the address l+ |i| is a code pointer

with φ2. (l + |i| is always l + 4 in TAL0).
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Soundness of TAL0’s typing rules. Having formulated the semantics for TAL0’s

typing judgments, we next show how TAL0’s typing rules can be proved sound based

on the semantics. TAL0’s typing rules can be classified into two categories: rules

for individual instructions, and composition rules.

Proofs of soundness of rules for individual instructions such as the add rule

requires a model of TAL0’s assertion language — types; we leave the model of types

to the next section. But other than that aspect, the proofs are very similar to the

ones in the last chapter (such as the proof of the assignment rule).

We next take the add rule as an example. Based on the model, the rule states

that in a state σ if “add s1, s2, d” is at the address l, then l is a code pointer with

the condition φ to the index k + 1, provided that the address l + 4 is a code pointer

with the condition φ[d 7→ int] to the index k:

[dφ int ]l+4

k+1

k

1

l φ

To prove that the address l is a code pointer with the condition φ to approxi-

mation k + 1 in the state σ, the major steps are as follows:

(i) Based on the definition of the code pointer (Eq. 2.2 on page 40), we start from

a state σ′ such that σ 7→∗ σ′, the control of σ′ is at l, and φ is true on σ′. The

goal is to prove that σ′ can step for k + 1 steps.
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(ii) Based on the fact that the “add s1, s2, d” instruction is at the address l3 and

the control of σ′ is at l, construct a new state σ′′ such that σ′ 7→ σ′′. The

construction of σ′′ follows the semantics of the add instruction in Figure 3.2.

In summary, this step shows that the state σ′ can progress for one step.

(iii) Prove that the new state σ′′ satisfies the condition φ[d 7→ int]. Since σ′′ was

constructed following the semantics of the add instruction, proof of this step

is also based on the semantics of the add instruction.

(iv) Prove that the new state σ′′ is safe for k steps. This step uses the fact that

the control of σ′′ is at the address l + 4, the previous step that σ′′ satisfies

φ[d 7→ int], the assumption that the address l + 4 is a code pointer with the

condition φ[d 7→ int] to approximation k in the state σ, and σ 7→∗ σ′′.

(v) We have proved that the state σ′ can progress for one step to reach a state

σ′′, and σ′′ is safe for k steps. On a deterministic machine4, this is enough to

show that σ′ is safe for k + 1 steps.5

The above is a sketch of the major steps. In the next chapter, we will discuss

the real proof in greater detail.

Next, we show how the soundness of TAL0’s composition rules (prog, frag1, frag2

and seq) follows from Lc’s rules. The two interesting cases are the prog and the seq

rule, whose proofs are presented below.

3Actually, we only know that the add instruction is at the address l in the state σ, but we need
the fact that the instruction is also there in the state σ′. In our real system, we also maintain the
invariant that the code is in an immutable region of a state so that the add instruction is still at
the address l in the state σ′.

4In our real system, we prove that our modeling of SPARC is deterministic.
5On nondeterministic machines, we need to show that for all σ′′ such that σ′ 7→ σ′′, σ′′ is safe

for k steps.

76



Lemma 3.16 (The prog rule in TAL0.) If Ψ; 0 |=f P , then |=p P : Ψ.

Proof. From the definitions in Figure 3.5, we need to prove P@0; { } |=Lc Ψ,

by assuming P@0; Ψ |=Lc |Ψ|≥0. Since the domain of Ψ is a subset of the natural

numbers, we have |Ψ|≥0 = Ψ, and thus

P@0; Ψ |=Lc Ψ (3.16.1)

Note that every { l 7→ codeptr (φ) } in Ψ appears on both the left and the right

in the above judgment. Because dom(Ψ) is finite, we use the discharge rule multiple

times to remove all continuations from the left of the judgment, and then get

P@0; { } |=Lc Ψ

�

Lemma 3.17 (The seq rule.) If |=i {φ1}i{φ2}, and Ψ; l + 4; φ2 |=b B, then

Ψ; l; φ1 |=b i; B.

Proof. From the definitions in Figure 3.5, we need to prove

(i; B)@l; Ψ |=Lc { l 7→ codeptr (φ1) },

by assuming

∀l. i@l; { l + |i| 7→ codeptr (φ2) } |=Lc { l 7→ codeptr (φ1) } (3.17.1)

B@(l + 4); Ψ |=Lc { l + 4 7→ codeptr (φ2) } (3.17.2)
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Carrying a universal elimination on 3.17.1 using the address l, and considering that

|i| = 4, we have

i@l; { l + 4 7→ codeptr (φ2) } |=Lc { l 7→ codeptr (φ1) } (3.17.3)

Use the combine rule in Lc on 3.17.3 and 3.17.2, and also take into account that

i@l together with B@(l + 4) is the same as (i; B)@l, and we get

(i; B)@l; Ψ ∪ { l + 4 7→ codeptr (φ2) } |=Lc { l 7→ codeptr (φ1), l + 4 7→ codeptr (φ2) }.

(3.17.4)

Since { l + 4 7→ codeptr (φ2) } appears both on the left and on the right of the

above judgment, we use the discharge rule to remove it from the left:

(i; B)@l; Ψ |=Lc { l 7→ codeptr (φ1), l + 4 7→ codeptr (φ2) }. (3.17.5)

Finally, we use the weaken rule to remove { l + 4 7→ codeptr (φ2) } from the right

of the judgment to prove our goal:

(i; B)@l; Ψ |=Lc { l 7→ codeptr (φ1) } (3.17.6)

�

3.2.5 Indexed Model of Types

In this section, we present a brief description of the model of types in the FPCC

project. We use the indexed model of types as a general mechanism for modeling

types. The indexed model was introduced by Appel and McAllester [9] to model
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recursive types and was later adopted by Ahmed et al. to model impredicative quan-

tified types and mutable references [4].

We model types as a series of approximations and each approximation is a set

of values. On a von Neumann machine, we represent a value as a pair (σ, x), where

σ is a state and x is an integer (typically representing an address). Furthermore,

in the indexed model, we use a notion that states that a value (σ, x) belongs to the

type τ to some approximation (index) k; we write (σ, x) :k τ to express this notion.

Next, we explain the purpose of the index k in the model. If (σ, x) :k τ , value

(σ, x) may be a real member of type τ , or it may be a “fake” member that only k-

approximately belongs to τ . In general, any program taking such a “fake” member

as an input cannot tell the difference within k computation steps. In some sense,

the number k indicates the number of computation steps in the future.

Take the type box (box (int)) as an example. Suppose (σ, x) : box (box (int)), then

x is a two-fold pointer and m of(σ)(m of(σ)(x)) is of type int. Imagine that x is

only a one-fold pointer in a state s; that is, (σ, x) : box (τ), where perhaps τ is

disjoint from box (int). Then for one step (one dereference), (σ, x) safely simulates

membership in box (box (int)). In this case, we have (σ, x) :1 box (box (int)), but not

(σ, x) :2 box (box (int)).

Having given an intuition of the indexed model, we present the indexed model

of the types in TAL0 in the first part of Figure 3.6.

Any (m, x) such that x = n belongs to the type int=(n), to any index. The

model for box (τ) is more interesting. It requires the content in the memory, or

m of(σ)(x), has the type τ , but only at a lower index, k − 1. This is because that

dereferences take one computation step; after this step, m of(σ)(x) is required to

have the type τ only at the index k − 1.
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(σ, x) :k int , true

(σ, x) :k int=(n) , x = n

(σ, x) :k box (τ) , readable(x) ∧ (σ, m of(σ)(x)) :k−1 τ

σ :k φ , ∀d ∈ [0, 31]. (σ, r of(σ)(d)) :k φ(d)

τ1 <: τ2 , ∀σ, x, k. (σ, x) :k τ1 ⇒ (σ, x) :k τ1

φ1 <: φ2 , ∀σ, k. σ :k τ1 ⇒ σ :k τ1

Figure 3.6: TAL0: Models of types, register-file types and subtyping

We write (σ, x) : τ to mean (σ, x) :k τ is true for any k; in this case, (σ, x) is a

real member of the type τ .

Figure 3.6 also presents the model of register-file types and subtyping. A state

σ belongs to a register-file type φ to an index k, if every register value in the state

belongs to the type associated with the register in φ to the index k. The model of

the subtyping relation, τ1 <: τ2 and φ1 <: φ2, is straightforward.

Valid types. Next, we introduce one important property of types: a valid type is

closed under decreasing indexes.

Definition 3.18 A type τ is valid if (m, x) :k τ and j < k implies (m, x) :j τ .

We can easily check that the type int and int=(n) are valid types (their definitions

do not mention the index). Furthermore, the type constructor box maps valid types

to valid types.

Adjusting the model of C; Ψ′ |=Lc Ψ. We have introduced the model of C; Ψ′ |=Lc

Ψ in the last chapter. However, that definition is based on a general assertion lan-

guage. Therefore, we first make some small adjustments on the model of C; Ψ′ |=Lc
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Ψ to use types as our assertion language. After these adjustments, all the rules in

Lc are still provable.

First, we introduce the semantics of address invariants Ψ, which is a mapping

from addresses to code pointer types. We will interpret each { l 7→ codeptr (φ) }

as a continuation; that is, it is safe to jump to the address l provided that the

precondition φ is met. To model this notion, we define a code-pointer type:

(σ, x) :k codeptr (φ) , ∀σ′, j < k. σ 7→∗ σ′ ∧
(
r of(σ′)(pc) = x

)
∧ σ′ :j φ

⇒ safe state(σ, j)

(3.2)

The above definition is very similar to the notion σ; θ |=k l . p (Eq. 2.2 on page 40)

in the last chapter: Both are modeling continuations; they both quantify over all

future states σ′ that σ steps to.

What is different is that the definition of (σ, x) :k codeptr (φ) further quantifies

all j that is less than k. The reason is that the version without quantification over

j (as follows) does not satisfy the valid-type property (Definition 3.18) because of

the contravariant appearance of the premise “σ′ :k φ”. The definition σ; θ |=k l . p,

however, has p as the assertion, whose truth is not indexed by k, and thus does not

have this problem.

Based on continuation types, we give a model to an address invariant Ψ:

σ |=k Ψ , ∀l ∈ dom(Ψ). (σ, l) :k codeptr (Ψ(l)) (3.3)

The new definition of C; Ψ′ |=Lc Ψ is given as follows:
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C; Ψ′ |=Lc Ψ =

∀σ ∈ Σ. loaded(C, σ) ⇒ ∀k ∈ N.
(
σ |=k Ψ′ ⇒ σ |=k+1 Ψ

)
.

(3.4)

3.2.6 Safety Theorem

We have given models to the typing judgments in TAL0 in Section 3.2.4 and proved

the composition rules in TAL0 are sound with respect to those models. However,

there remains the possibility that our models may not be strong enough to imply

programs’ safety. Therefore, in this section, we justify our models by proving the

following safety theorem: If |=p P : Ψ, then safe prog(P ).

There is one technical difficulty in proving the safety theorem. To prove safe prog(P ),

we have to show that it is safe to jump to address zero, with the assumption that

init cond(σ) is true on the initial state σ (see the definition on page 65). Mean-

while, if Ψ(0) = codeptr (φ0), then the definition of |=p P : Ψ gives that it is safe

to jump to address zero provided that precondition φ0 is true on the initial state.

Both safe prog(P ) and |=p P : Ψ mention that address zero is a code pointer, but

there is a mismatch between preconditions: One is init cond(σ), which is untyped,

the other is the type φ0.

Avoiding types in the definition of safe prog(P ) is actually our intention: We

want our semantic model of types to be entirely in the proof of the safety theorem,

not in the statement of the theorem; this way, the choice of type system is up to

the compiler and prover, and is not constrained by the checker. But this makes the

definition of init cond(σ) tricky: we must not use types. In our actual implementa-

tion, φ0 has two parts: simple integer types, and a return type for register 15 (that

is, register 15 has a code-pointer type). These two parts can be specified easily in
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init cond(σ) without using our semantic model of types; remember that one part of

init cond(σ) is return addr(r of(σ)(15)), which essentially states that register 15 is

of a code-pointer type.

Therefore, we have proved in higher-order logic that init cond(σ) implies the

truth of φ0 on σ. With that proof, we have the safety theorem for TAL0:

Theorem 3.19 (Safety Theorem)

`p P : Ψ Ψ(0) = codeptr (φ0)

safe prog(P )

Proof. According to the definition of safe prog(P ), for a state σ and a natural

number k, we need to show that safe state(σ, k), assuming

i) loaded(P, σ) ii) r of(σ)(pc) = 0 iii) init cond(σ)

On the other hand, the model of `p P : Ψ is P@0; {} |=Lc Ψ. The deduction steps

from P@0; { } |=Lc Ψ to the goal safe state(σ, k) are presented by the following

proof tree. (The tree has been broken into two parts for easy type-setting.)

P@0; { } |=Lc Ψ loaded(P, σ) σ |=k { }
σ |=k+1 Ψ

(3)
Ψ(0) = codeptr (φ0)

(σ, 0) :k+1 codeptr (φ0)
(2a)

...
(σ, 0) :k+1 codeptr (φ0)

(2a)
σ 7→∗ σ r of(σ)pc = 0

init cond(σ)

σ :k φ0
(2b)

safe state(σ, k)
(1)

Step (3) follows from the definition of C; Ψ′ |=Lc Ψ. Step (2a) is by definition of

σ |=k+1 Ψ on page 81. Step (2b) means that the definition of init cond(σ) is strong
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enough to imply that the state satisfies φ0. Step (1) follows from the definition of

the code-pointer type. �

3.3 TAL1

We have presented TAL0, whose main purpose is to illustrate the step between a

typed assembly language and our logic Lc. Nevertheless, TAL0 lacks several control-

flow features that real architectures such as SPARC have, including pc-relative

jumps and indirect jumps. We will add these features to TAL0. Interestingly,

accommodating these new control-flow features requires no change to our model of

typing judgments.

Machine instructions. We add an indirect-jumping instruction, jmp d. It jumps

to the value of the register d. Moreover, we change the semantics of the ba and bz

instructions from absolute jumps to pc-relative jumps: Instead of taking absolute

addresses, the instructions ba and bz in TAL1 take offsets, which can be either

positive or negative. Figure 3.7 presents the formal semantics of these new machine

instructions in TAL1.

Syntax. Figure 3.8 presents the differences, in framed boxes, between TAL1’s

syntax and TAL0’s: The control-transfer instruction at the end of an instruction

block can be a “ba o”, a “bz s, d”, or a “jmp d”; we also add a code-pointer type,

codeptr (φ), which models the type of the register in an indirect-jumping instruction.

Typing rules. Figure 3.9 presents the differences between TAL1’s typing rules

and TAL0’s. The rules for ba o and bz s, o are almost the same as the versions in
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ba o ,
λ(r, m), (r′, m′).(

r′(pc) = r(pc) + o
)
∧

(
∀x 6= pc. r′(x) = r(x)

)
∧

(
m′ = m

)
.

bz s, o ,
λ(r, m), (r′, m′).(

r(s) = 0 ∧ r′(pc) = r(pc) + o ∨ r(s) 6= 0 ∧ r′(pc) = r(pc) + 4
)

∧
(
∀x 6= pc. r′(x) = r(x)

)
∧

(
m′ = m

)
.

jmp d ,
λ(r, m), (r′, m′).(

r′(pc) = r(d)
)
∧

(
∀x 6= pc. r′(x) = r(x)

)
∧

(
m′ = m

)
.

Figure 3.7: TAL1: Semantics of machine instructions

. . .

(instruction blocks) B ::= i; B | ba o | bz s, o | jmp d

(offsets) o ::= . . . | −2 | −1 | 0 | 1 | 2 | . . .
. . .

(types) τ ::= int | box (τ) | int=(n) | int6=(n) | codeptr (φ)

. . .

Figure 3.8: TAL1: Syntax (Only the differences, in framed boxes, from TAL0 are
shown.)

85



Ψ; l; φ `b B

φ <: Ψ(l + o)

Ψ; l; φ `b (ba o)
ba

φ1[r 7→ int=(0)] <: Ψ(l + o) φ1[r 7→ int6=(0)] <: Ψ(l + 4)

Ψ; l; φ1 `b (bz r, o)
bz

φ <: { d 7→ codeptr (φ) }
Ψ; l; φ `b (jmp d)

jmp

τ1 <: τ2

φ2 <: φ1

codeptr (φ1) <: codeptr (φ2)
s-codeptr

Figure 3.9: TAL1: Typing rules (Only the differences from TAL0’s typing rules are
shown).

TAL0, except that the destination address is l + o — the current address plus the

offset.

The rule for jmp d is new in TAL1. When jumping to the register d, the rule

requires the register d be of the code-pointer type that takes the current register-file

type φ as the precondition. As an example, suppose the instruction is “jmp 1”, and

φ = { 1 7→ codeptr ({ 2 7→ int }), 2 7→ int }.

From φ, register one is a code pointer with the condition on register two being an

integer. In this case, we can derive φ <: {1 7→ codeptr (φ)} as follows, and thus
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jmp 1 is safe.

{ 1 7→ codeptr ({ 2 7→ int }), 2 7→ int } <: { 2 7→ int } s-rfile

codeptr ({ 2 7→ int }) <: codeptr ({ 1 7→ codeptr ({ 2 7→ int }), 2 7→ int }) s-codeptr

{ 1 7→ codeptr ({ 2 7→ int }), 2 7→ int }
<: { 1 7→ codeptr ({ 1 7→ codeptr ({ 2 7→ int }), 2 7→ int }) }

s-rfile

Adjustments to the models and proofs of the new rules. We have included

pc-relative and indirect jumps in TAL1. Interestingly, accommodating these new

features requires no change to the models of the typing judgments. That is, with

respect to the models in Figure 3.5, the new rules in TAL1 can be proved sound.

The proofs of the ba and bz rules are similar to the ones in TAL0. We start from

the precondition and prove the instruction can step further to reach a safe exit.

The proof of the jmp rule is slightly different. Assuming φ <: { d 7→ codeptr (φ) },

the rule requires us to prove Ψ; l; φ |=b (jmp d), whose model is

(jmp d)@l; Ψ |=Lc { l 7→ codeptr (φ) } (3.5)

Unpack the above definition: For any state σ and any number k, assuming

loaded((jmp d)@l, σ) (3.6)

σ |=k Ψ, (3.7)

the goal is

σ |=k+1 { l 7→ codeptr (φ) }. (3.8)

Unlike the cases in rules such as bz, the assumption σ |=k Ψ does not help us at all,

since the exit of the instruction “jmp d” is not explicit in the domain of the global
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address invariant Ψ, but implicit as the value of the register d. However, even in

this case, we are still able to prove the goal 3.8, because to prove it, we can assume

the precondition φ is true. Together with φ <: { d 7→ codeptr (φ) }, we have that

the register d is a code pointer with the precondition φ. Therefore, although the

exit in “jmp d” is implicit, we can still prove it to be a safe exit and the rest of the

proof is the same as the ones in other rules.

3.4 TAL2

In this section, we present TAL2, which introduces two important features — para-

metric polymorphism and recursive types. To accommodate these features while

still maintaining syntax-directed type checking, TAL2 has virtual instructions that

do not correspond to a machine instruction; these virtual instructions only ma-

nipulate types, and perform no real computation. Their purpose is to guide the

type-checking process.

After presenting TAL2, we will then show that with only minor changes to the

models of the typing judgments, we can accommodate polymorphism, recursive

types, and virtual instructions.

Syntax. Figure 3.10 presents the syntax of TAL2; the differences between TAL2

and TAL0 are in framed boxes. We augment types with recursive types and type

variables. A context ∆ is a vector of type variables. An address invariant, Ψ, maps

addresses to polymorphic code-pointer types. Therefore, each instruction block in

TAL2 is polymorphically typed. Notice that a register cannot have a polymorphic

type in TAL2; this is only for simplicity of presentation and our implementation has

polymorphically typed registers.
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(natural numbers) n ::= 0 | 1 | 2 | . . .
(addresses) l ::= 0 | 4 | 8 | . . .

(register indexes) d, s ::= 0 | 1 | 2 | . . . | 31

(programs) P ::= B; P | B
(instruction blocks) B ::= i; B | ba ld with inst | bz s, ld with (inst1 , inst2 )

(instructions) i ::= add s1, s2, d | ld s, d

| fold d to rec α. τ | unfold d

(address invariants) Ψ ::= { l1 7→ ∀−→α1. codeptr (φ1), . . . , ln 7→ ∀−→αn. codeptr (φn) }
(type contexts) ∆ ::= ~α

(register -file types) φ ::= { d1 7→ τ1, . . . , dn 7→ τn }
(types) τ ::= int | int=(n) | int6=(n) | box (τ)

| rec α. τ | α

(instantiations) inst ::= [α1, . . . , αn]

Figure 3.10: TAL2: Syntax
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In polymorphic lambda-calculus [56] (or System F [31]), an instantiation is pro-

vided when calling a polymorphic function. This is to have decidable type checking

for polymorphic lambda-calculus. Similarly, for maintaining syntax-directed type

checking in TAL2, the “ba ld with inst” instruction provides an instantiation to in-

form the type checker of what types should be instantiated for the polymorphic type

of the destination code block. The instruction “bz s, ld with (inst1 , inst2 )” carries

two instantiations, since it has two possible destinations.

In the same spirit to maintain syntax-directed type checking, TAL2 has spe-

cial instructions to handle folding and unfolding of recursive types: the instruction

“fold d to rec α. τ” folds the type of the register d into the recursive type rec α. τ ;

the instruction “unfold d” unfolds the type the register d.

Instructions such as “unfold d” are virtual instructions and their purpose is

to guide the type-checking process. These virtual instructions do not correspond

to machine instructions. We define |i| as follows to designate the length of the

instruction i on SPARC:

|i| =

 0, when i = “fold d to rec α. τ ′′, or “unfold d′′

4, otherwise

When |i| = 0, it is a virtual instruction.

Type checking. Figure 3.11 presents TAL2’s type system, which maintains syntax-

directed type checking while accommodating polymorphism and recursive types.

The typing judgments of TAL2 are almost the same as those in TAL0, except

some of them have an additional type context, ∆, as an input. The judgment

Ψ; ∆; l; φ `b B means that the instruction block B is wellformed with respect to the
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`p P : Ψ

Ψ; 0 `f P

`p P : Ψ
prog

Ψ; l `f P

Ψ(l) = ∀~α. codeptr (φ) ~α ` φ wf ∀l < x < l + |B|. x /∈ dom(Ψ)
Ψ; ~α; l; φ `b B Ψ; l + |B| `f P

Ψ; l `f (B; P )
frag1

Ψ(l) = ∀~α. codeptr (φ) ~α ` φ wf ∀x > l. x /∈ dom(Ψ)
Ψ; ~α; l; φ `b B

Ψ; l `f B
frag2

Ψ; ∆; l; φ `b B

∆ `i {φ1} i {φ2} Ψ; ∆; l + |i|; φ2 `b B

Ψ; ∆; l; φ1 `b (i; B)
seq

Ψ(ld) = ∀α1, . . . , αn. codeptr (φd) inst = [τ1, . . . , τn]
∆ ` φ <: φd[τ1/α1, . . . , τn/αn]

Ψ; ∆; l; φ `b (ba ld with inst)
ba

Ψ(ld) = ∀α1, . . . , αn. codeptr (φd) inst1 = [τ1, . . . , τn]
Ψ(l + 4) = ∀α′

1, . . . , α
′
m. codeptr (φ′) inst2 = [τ ′1, . . . , τ

′
m]

∆ ` φ[r 7→ int=(0)] <: φd[τ1/α1, . . . , τn/αn]
∆ ` φ[r 7→ int6=(0)] <: φ′[τ ′1/α

′
1, . . . , τ

′
m/α′

m]

Ψ; ∆; l; φ `b (bz s, ld with (inst1 , inst2 ))
bz
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∆ `i {φ1} i {φ2}

∆ ` φ <: { s1 7→ int, s2 7→ int }
∆ `i {φ} (add s1, s2, d) {φ[d 7→ int]} add

∆ ` φ <: { s 7→ box (τ) }
∆ `i {φ} (ld s, d) {φ[d 7→ τ ]} ld

∆ ` φ <: { d 7→ τ [rec α. τ/α] }
∆ `i {φ} (fold d to rec α. τ) {φ[d 7→ rec α. τ ]} fold

∆ ` φ <: { d 7→ rec α. τ }
∆ `i {φ} (unfold d) {φ[d 7→ τ [rec α. τ/α]]} unfold

∆ ` τ1 <: τ2, ∆ ` φ1 <: φ2

∆ ` τ wf
∆ ` τ <: τ

s-refl
∆ ` int=(n) <: int

s-int=
∆ ` int6=(n) <: int

s-int6=

dom(φ1) ⊇ dom(φ2) ∀d ∈ dom(φ1) ∩ dom(φ2). ∆ ` φ1(d) <: φ2(d)

∆ ` φ1 <: φ2
s-rfile

∆ ` τ wf, ∆ ` φ wf

∆ ` int wf
wf-int

∆ ` int=(n) wf
wf-inteq

∆ ` int6=(n) wf
wf-intneq

∆ ` τ wf
∆ ` box (τ) wf

wf-box
∆, α ` τ wf

∆ ` rec α. τ wf
wf-rec

1 ≤ i ≤ n
α1, ..., αn ` αi wf

wf-tyvar

∀1 ≤ i ≤ n. ∆ ` τi wf

∆ ` { d1 7→ τ1, . . . , dn 7→ τn } wf
wf-rfile

Figure 3.11: TAL2: Typing rules
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precondition φ, which is closed under the type context ∆. In the same way, in the

judgment ∆ `i {φ1} i {φ2}, the type context ∆ restricts the type variables in φ1

and φ2. The type contexts in ∆ ` τ1 <: τ2 and ∆ ` φ1 <: φ2 serve the same

purpose. Finally, a new judgment ∆ ` τ wf (respectively, ∆ ` φ wf) means that τ

(respectively, φ) is closed with respect to ∆.

Most of the typing rules in Figure 3.11 are self-explanatory. We explain only

the fold and ba rules in detail. The fold rule folds the type of the register d into a

recursive type; it requires the register d be of the type that is the unfolding of the

recursive type.

The ba rule first looks up the type of the destination address. It then checks

that the size of the instantiation is the same as the number of types variables in the

destination address. The reason for this check is to ensure that the type variables

in φd[τ1/α1, . . . , τn/αn] are with respect to the current type context, ∆, so that the

rule can further check the precondition φ is a subtype of φd[τ1/α1, . . . , τn/αn] with

respect to ∆.

Adjustments to the models. To accommodate polymorphism, recursive types,

and virtual instructions, the models of typing judgments has to change accordingly,

but only with some minor adjustments.

First, the indexed model of types in Section 3.2.5 can model polymorphism,

recursive types, and many other types. Discussing how to model these types in

detail, however, is beyond the scope of this dissertation and interested readers should

refer to papers by Appel and McAllester [9], Swadi [64], and Ahmed [4]. Our

implementation provides the TML type theory to hide the indexed model of types.
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|=p P : Ψ , P@0; {} |=Lc Ψ

Ψ; l |=f P , P@l; Ψ |=Lc |Ψ|≥l

Ψ; ∆; l; φ |=b B , B@l; Ψ |=Lc {l 7→ ∀∆. codeptr (φ)}
∆ |=i {φ1}i{φ2} ,

(
|i| > 0 ∧
∀l. i@l; { l + |i| 7→ ∀∆. codeptr (φ2) } |=Lc { l 7→ ∀∆. codeptr (φ1) }

)
∨

(
|i| = 0 ∧ subtype(φ1, φ2)

)
∆ |= τ1 <: τ2 , closedtype(τ1, ∆) ∧ closedtype(τ2, ∆) ∧ subtype(τ1, τ2)

∆ |= φ1 <: φ2 , closedtype(φ1, ∆) ∧ closedtype(φ2, ∆) ∧ subtype(φ1, φ2)

∆ |= τ wf , closedtype(τ, ∆)

∆ |= φ wf , closedtype(φ, ∆)

Figure 3.12: TAL2: Models of typing judgments

For our presentation purpose, we introduce some predicates in the TML type

theory.

subtype(τ1, τ2)

means that τ1 is a subtype of τ2 in TML; τ1 and τ2 can be open types. The predicate

closedtype(τ, ∆)

means that τ is a closed type with respect to ∆, or all type variables in τ are in ∆.

Also, TML treats types and register-file types uniformly. Therefore, we also use

the notation subtype(φ1, φ2) and closedtype(φ, ∆).

With these predicates from TML, Figure 3.12 presents the models of the typing

judgments in TAL2. Most of the definitions are straightforward and very similar

to the ones in TAL0. We explain only the definition of ∆ |=i {φ1}i{φ2}, since its

definition needs to handle the case of virtual instructions.
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To see why virtual instructions need to be specially handled, we first discuss

why the old model of ∆ |=i {φ1}i{φ2} in TAL0 will not work. The old model in

Figure 3.5 on page 74 is as follows:

|=i {φ1}i{φ2} , ∀l. i@l; {l + |i| 7→ codeptr (φ2)} |=Lc {l 7→ codeptr (φ1)}

Based on the meaning of |=Lc (Eq. 3.4 on page 82), the above definition means that

if address l + |i| is a code pointer with precondition φ2, then address l is a code

pointer with precondition φ1, but to a higher approximation.

If the instruction i is a real instruction, then it takes one step to reach l + |i|

from l, and thus we can prove l is a code pointer to a higher approximation. If i

is a virtual instruction, however, we cannot prove l is a code pointer to a higher

approximation since the virtual instruction performs no real computation.

We explain our solution next. We first look at the case that a virtual instruction

i1 is immediately followed by a real instruction i2:

l : {φ1 }

i1; a virtual instruction

l : {φ2 }

i2; a real instruction

l + 4 : {φ3 }

Notice that since the size of i1 is zero, the address before i1 and after are the same.

Since i2 is a real instruction, we can prove that if l+4 is a code pointer, then l is a

code pointer to a higher approximation. For i1, since it performs type manipulation,

we can safely assume that φ1 is stronger than φ2, or φ1 is a subtype of φ2. (We
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will give an example to this later.) This means that if l is a code pointer with

precondition φ2, then l is also a code pointer with precondition φ1, because of the

contravariance of code-pointer types. Therefore, considering i1 and i2 as a whole,

we can still prove that if l+4 is a code pointer with precondition φ3, then l is a code

pointer with precondition φ1, even to a higher approximation. Although i1 performs

no computation, it can borrow the computation from the next real instruction.

What if the next instruction to i1 is also virtual? Then it can borrow the

computation of the second next instruction, or the third, as long as eventually some

real instruction turns up. In TAL2, this is always the case. Since i1 is in a basic

block and the last instruction in a basic block is a control-transfer instruction—a

real instruction.

Based on this intuition, the definition of ∆ |=i {φ1}i{φ2} in Figure 3.12 has

two cases. When the size of the instruction i is greater than zero, the instruction

is a real machine instruction. In this case, the model is as before except that we

close the code-pointer type with its context: Assuming the exit is a code pointer

with the condition, ∀∆. codeptr (φ2), the entry is a code pointer with the condition,

∀∆. codeptr (φ1). When the size of the instruction i is zero, the model asserts that

φ1 is a subtype of φ2.

We stated that in the case of virtual instructions, we can safely assume the

precondition is a subtype of the postcondition. Let we look at the fold rule as an

example. Based on the subtyping model, the fold rule is

subtype(φ, { d 7→ τ [rec α. τ/α] })
subtype(φ, φ[d 7→ rec α. τ ]) ,
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which essentially requires

subtype(τ [rec α. τ/α], rec α. τ).

The above rule states that the unrolled recursive type is a subtype of the recursive

type. Not by coincidence, TML provides the rule as a lemma for recursive types.

Proof of the typing rules. After the minor adjustments to the models of typing

judgments, both the rules in TAL2 and the safety theorem can be proved sound.

Next, we will discuss only the proof of the seq rule, since this rule involves ∆ `i

{φ1} i {φ2}, whose model we have changed to have two cases.

Lemma 3.20 (The seq rule in TAL2.) If ∆ |=i {φ1}i{φ2}, and Ψ; ∆; l + |i|; φ2 |=b

B, then Ψ; ∆; l; φ1 |=b i; B.

Proof. From the definitions in Figure 3.12, we need to prove

(i; B)@l; Ψ |=Lc { l 7→ ∀∆. codeptr (φ1) },

by assuming

(
|i| > 0

∧ ∀l. i@l; { l + |i| 7→ ∀∆. codeptr (φ2) } |=Lc { l 7→ ∀∆. codeptr (φ1) }
)

∨
(
|i| = 0 ∧ subtype(φ1, φ2)

)
(3.20.1)

and

B@(l + |i|); Ψ |=Lc { l + |i| 7→ ∀∆. codeptr (φ2) }. (3.20.2)
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Do a case analysis on 3.20.1.

Case a): Suppose we have

|i| > 0 (3.20.3)

∀l. i@l; { l + |i| 7→ ∀∆. codeptr (φ2) } |=Lc { l 7→ ∀∆. codeptr (φ1) } (3.20.4)

Perform a universal elimination on 3.20.4 using the address l, to get

i@l; { l + |i| 7→ ∀∆. codeptr (φ2) } |=Lc { l 7→ ∀∆. codeptr (φ1) } (3.20.5)

Similar to the proof of Lemma 3.17, we first use the combine rule on 3.20.5 and

3.20.2, then eliminate { l + |i| 7→ ∀∆. codeptr (φ2) } from both the left and the right.

After these steps, we have the goal

(i; B)@l; Ψ |=Lc { l 7→ ∀∆. codeptr (φ1) }.

Case b): Suppose we have

|i| = 0 (3.20.6)

subtype(φ1, φ2) (3.20.7)

The TML type theory lets us to derive the following from 3.20.7:

subtype(∀∆. codeptr (φ2),∀∆. codeptr (φ1)) (3.20.8)
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Since |i| = 0, the assumption 3.20.2 becomes

B@l; Ψ |=Lc { l 7→ ∀∆. codeptr (φ2) }. (3.20.9)

Based on the definition of C; Ψ′ |=Lc Ψ, from 3.20.9 and 3.20.8, it is easy to

prove that

B@l; Ψ |=Lc { l 7→ ∀∆. codeptr (φ1) }.

When |i| = 0, the instruction i is a virtual instruction and thus (i; B)@l is the same

as B@l. Therefore, we have the goal

(i; B)@l; Ψ |=Lc { l 7→ ∀∆. codeptr (φ1) }.

�

Existential types. Since we already have type variables, and virtual instructions

for manipulating types, adding existential types to TAL2 is a fairly small step.

First, we add existential types, and then add instructions to pack and unpack

exisstentials:

(types) τ ::= . . . | ∃α. τ

(instructions) i ::= . . . | unpack d with α | pack d, τ1 to ∃α. τ

Since the unpack instruction introduces a new type variable, we have to change

the judgment for instructions to ∆1 `i {φ1} i {φ2} ⇒ ∆2, where ∆2 is the new type
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context after the instruction i. With this new judgment, the seq rule becomes

∆1 `i {φ1} i {φ2} ⇒ ∆2 Ψ; ∆2; l + |i|; φ2 `b B

Ψ; ∆1; l; φ1 `b (i; B)
seq

,

where the remaining of the block takes the new type context.

Rules for the pack and unpack instructions are

∆ ` φ <: { d 7→ ∃α. τ } α /∈ ∆

∆ `i {φ} (unpack d with α) {φ[d 7→ τ ]} ⇒ ∆, α
unpack

∆ ` φ <: { d 7→ τ [τ1/α] } α /∈ ∆

∆ `i {φ} (pack d, τ1 to ∃α. τ) {φ[d 7→ ∃α. τ ]} ⇒ ∆
pack

To prove the soundness of the pack and unpack rules, the changes to the models of

typing judgments are fairly small: We only need to give a model to ∆1 `i {φ1} i {φ2} ⇒ ∆2.

∆1 |=i {φ1} i {φ2} ⇒ ∆2 ,(
|i| = 4 ∧

∀l. i@l; { l + 4 7→ ∀∆2. codeptr (φ2) } |=Lc { l 7→ ∀∆1. codeptr (φ1) }
)

∨
(
|i| = 0 ∧ subtype(∀∆2. codeptr (φ2),∀∆1. codeptr (φ1))

)
Comparing to the model of ∆ |=i {φ1}i{φ2} on page 94, the changes are that we

close φ2 with respect to ∆2. Also, we cannot say subtype(φ1, φ2) here, because φ1

and φ2 have different sets of type variables. Instead, we state

subtype(∀∆2. codeptr (φ2),∀∆1. codeptr (φ1)), which is enough for our proofs.
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. . .

(register indexes) d, s ::= 1 | 2 | . . . | 31

. . .

(instructions) B ::= . . . | alloc s, d

. . .

Figure 3.13: TAL3: Syntax (Only the differences, in framed boxes, from TAL0 are
shown.)

3.5 TAL3

Up until now, our typed-assembly languages have not included memory-related fea-

tures such as memory allocation, mutable references, and memory deallocation. Our

FPCC project supports memory allocation, essentially by following the memory-

allocation model by Appel and Felty [8]. We also implement a semantic model for

mutable references, by Ahmed et al. [3] so that programs can safely update data

structures in the memory. However, our implementation does not currently support

either explicit deallocation (free) or garbage collection.

In this section, we will add memory allocation on top of TAL0 to have TAL3

(Figure 3.13). The main purpose of this section is to illustrate an important tech-

nique in our proofs — imaginary parts of states. Before discussing this technique,

we first introduce memory allocation in TAL3.

Memory allocation. TAL3 can allocate immutable reference pointers. It as-

sumes there is a dedicated allocation pointer, say register zero, which points to the

boundary between the allocated region and the unallocated region. For simplicity,

we assume that the heap is unbounded, and thus there is no limit pointer.6

6In our real system, there is a register pointing to the end of the heap.
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TAL3 has an allocation instruction, “alloc s, d”, which performs an initialization

at the address pointed by register zero (the allocation pointer), records the value of

register zero into the register d, and then increments the register zero7:

alloc s, d ,

λ(r, m), (r′, m′).(
r′(pc) = r(pc) + 4

)
∧ r′(d) = r(0) ∧ r′(0) = r(0) + 1

∧
(
∀x /∈ { pc, 0, d }. r′(x) = r(x)

)
∧

(
m′(r(0)) = r(s) ∧ ∀x 6= r(0). m′(x) = m(x)

)
.

States before and after the memory allocation instruction are depicted in the fol-

lowing graph.

0
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The graph shows that if the register s is of type τ , then after “alloc s, d”, the

register d is a pointer to a value of type τ , or it has type box (τ). Therefore, the

7In TAL3, we assume “alloc s, d” be a single instruction. But on SPARC, the alloc s, d
instruction is actually a macro instruction: It is a sequence of a store instruction, a move in-
struction, and an add-by-one instruction. Our implementation can reason about the intermediate
states between these SPARC instructions: We use a virtual allocation pointer to point to the
boundary between the allocated region and unallocated region, and use types to relate the value of
the allocation pointer to real registers. Interested readers should refer to Chen’s thesis [16, ch4.4].

102



typing rule in TAL3 for memory allocation is as follows:

φ <: { s 7→ τ }
`i {φ}(alloc s, d){φ[d 7→ box (τ)]} alloc

Imaginary parts. Next, we use the technique of imaginary parts to model mem-

ory allocation in TAL3. Note, however, the model can handle neither mutable ref-

erences nor memory deallocation. Modeling of mutable references will be sketched

at the end of this section.

We first explain the difficulty of modeling memory allocation and why imaginary

parts can help. In the following example, register one is of a reference type; after

the allocation instruction, register one should still be of the reference type.

{ 1 7→ box (bool), 5 7→ int }

alloc 5, 6

{ 1 7→ box (bool), 5 7→ int, 6 7→ box (int) }

But the difficulty is, how do we know that the memory updating operation performed

by “alloc 5, 6” has not destroyed the memory content pointed by register one? In

other words, we need a discipline to ensure old references are still valid after a

memory allocation.

The solution is to remember an allocation set for each state. Each state will

also maintain the invariant that every reference cell is in the allocation set. New

reference cells are always allocated outside of the current allocation set and therefore

will not destroy the old reference cells. Finally, the allocation set are enlarged after

each memory allocation.
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Allocation sets do not exist on concrete architectures and are purely imaginary.

Their purpose are to aid our modeling, or to enforce our memory-allocation disci-

pline.

To include allocation sets, we change the definition of a state to be a triple:

σ = (r, m, a),

where the register bank r and the memory m are the concrete part, and the alloca-

tion set a is the imaginary part. The notation r of(σ), m of(σ), and a of(σ) project

σ into its register bank, memory, and allocation set, respectively.

We change the model of box (τ) to enforce that every reference cell is in the

allocation set:

(σ, x) :k box (τ) , x ∈ a of(σ) ∧ readable(x) ∧ (σ, m of(σ)(x)) :k−1 τ,

where x ∈ a of(σ) makes sure that the address x is in the allocation set.

Because TAL3 maintains register zero as the boundary between allocated ad-

dresses and unallocated ones, addresses in the allocation set of a state should be

always less than the value of register zero. We define a predicate, valid state(σ), to

capture this invariant:

valid state(σ) , ∀x ∈ a of(σ). r of(σ)(0) > x.

Finally, we need to change the model of code-pointer types. The old model

(Eq. 3.2) of codeptr (φ) quantifies over all future states σ′ such that the current

state σ steps to, or σ 7→∗ σ′. But this is not appropriate in the presence of memory
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allocation: We only care about those future states that are valid states; furthermore,

in TAL3’s memory model, we only care about those future states that extend the

current allocation set and preserve values in the current allocation set. Therefore,

we define an extend-state relation, extend state(σ, σ′), to capture the notion of valid

state extensions:

extend state(σ, σ′) , valid state(σ) ∧ valid state(σ′)

∧ a of(σ) ⊆ a of(σ′)

∧ ∀x ∈ a of(σ). m of(σ)(x) = m of(σ′)(x)

Then, the new model of code-pointer types quantifies only those future states

that extend the current state:

(σ, x) :k codeptr (φ) , ∀σ′, j < k. extend state(σ, σ′) ∧
(
r of(σ′)(pc) = x

)
∧ σ′ :j φ

⇒ safe state((r of(σ), m of(σ)), j)

(3.9)

We have introduced the model of memory allocation in TAL3, and adjusted the

model of reference types and code-pointer types. With these adjustments, we can

prove the soundness of the alloc rule. We do not go into detail of this proof, but

only say that the important step is to find a new allocation set in the new state after

the execution of alloc s, d: The new allocation set is not hard to find, it is just the

old allocation set plus the memory cell pointed by the old allocation pointer.

Mutable references. We have used imaginary parts to model memory alloca-

tion. Ahmed et al. [3] also used imaginary parts to model mutable references. In

their model, an allocation set is not just a set of addresses, but a mapping from

addresses to the syntax of types. That is, the imaginary part remembers the type of
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each reference cell so that we can enforce the discipline of type-preserving memory

updating. This model of mutable references is the model we adopted in our real

system. We refer readers to the paper by Ahmed et al. for details.
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Chapter 4

Implementation in FPCC

The major step of the FPCC project at Princeton is to prove the soundness of our

Typed Assembly Language, LTAL, from higher-order logic and SPARC machine

semantics, so that a typing derivation at the LTAL level can be mapped into a proof

from the foundations of mathematics.

This step is rather difficult, since there are many operators and rules in LTAL

— in fact, over a thousand. Table 4.1 shows a breakdown of these rules.

Fortunately, most of the operators in LTAL have straightforward models. Fur-

thermore, our proofs are highly structured thanks to our two-step process. We

first design an intermediate layer and show its soundness. This layer includes our

logic for control flow, Lc, and our type theory, TML. Then we encode LTAL’s op-

erators from the interface exposed by the intermediate layer, and prove soundness

of LTAL’s rules from lemmas provided by the intermediate layer. Because of this

two-step process, type refinement rules and substitution rules in LTAL are simply

lemmas (or combination of lemmas) provided by TML and therefore requires small

effort to prove.
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Category
Number of oper-
ators/rules

LTAL instruction constructors 51
LTAL instruction rules 54
SPARC instruction constructors 196
SPARC instruction decoding rules 263
Type constructors 27
Wellformedness of types 98
Type refinement rules 69
Structural matching heuristics for type expressions 50
Coercion operators and rules 79
Substitution operators + rules 48
Environment management 73
Arithmetic 44
Register-map, label-map rules 79
TOTAL 1131

Table 4.1: LTAL: Breakdown of operators and rules [16, ch2.5]

Rules that are difficult to prove and particularly relevant to this dissertation are

the instruction rules in LTAL. To understand why they are difficult to prove, we look

at an example. LTAL has its own instruction syntax and these LTAL instructions

are implemented by SPARC instructions. One LTAL instruction is the addition

instruction, z = x + y, implemented by the SPARC add instruction. One rule in

LTAL for the addition instruction requires x and y be of integer types beforehand,
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and z gets an integer type afterward:

(1) LRT ; ρ; Φ ` x : int32 (2) LRT ; ρ; Φ ` y : int32

(3) `′ = ` + 4

(4) rmap(LRT )(z) = tz (5) rmap(LRT )(x) = tx

(6) realreg(tz) = rz (7) realreg(tx) = rx

(8) ym = match reg or imm(y)

(9) Φ′ = {z : int32} ∩ (Φ\z)

(10) decode list ` `′P P ′ i ADD(rx, ym, rz)

LRT ; Γ ` (`; ρ; ~; Φ; cc; P ){z = x + y}(`′; ρ; ~; Φ′; cc; P ′)

(4.1)

The details of the rule are not important here. But as we can see, the rule is quite

complicated. For the simple arithmetic-addition instruction, it involves ten premises

to deal with things like register maps, label maps, immediate operators, and other

issues.

LTAL’s instruction rules have three categories. Table 4.2 presents a breakdown.

The first category includes LTAL’s composition rules. These rules combine LTAL

instructions into basic blocks and combine basic blocks into a whole program.1 The

second category includes those rules for LTAL instructions that do not correspond to

any SPARC instruction. Similar to the “unfold d” instruction in TAL2 (page 89),

these LTAL instructions perform pure type manipulation and are virtual instruc-

tions. The last category includes those rules for LTAL instructions that correspond

to at least one SPARC instruction; we call these LTAL instructions real instruc-

tions. One example rule in this category is the rule (4.1) we have just seen.

1 In TAL0, a program is (C,Ψ), where the code C and the global address invariant Ψ are
separated. LTAL’s syntax, however, mixes code with the invariant. Therefore, LTAL’s composition
rules are also responsible for scanning the program to construct the address invariant.
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Category Number of rules
Composition rules 17
Rules for virtual instructions 5
Rules for real instructions 32

Table 4.2: LTAL: Breakdown of instructions rules

LTAL instruction rules in different categories are proved by following different

schemes:

Composition rules. LTAL’s composition rules are proved sound directly from Lc’s

composition rules. In Chapter 2, we have shown how to encode and prove

Lc’s composition rules on small-step machine semantics. In Chapter 3, we

have shown how to justify TAL0’s composition rules based on Lc’s rules. We

have also shown how to handle virtual instructions in TAL2. These techniques

apply to LTAL as well. The only new complexity is that a whole instruction

block in LTAL can be virtual and not correspond to any machine instruction.

To address this complexity, the model of block wellformedness in LTAL has

two cases. One case handle blocks that have at least one SPARC instruction;

the other case uses subtyping to handle virtual blocks — essentially the same

trick as the one in the model of ∆ |=i {φ1}i{φ2} (page 94) in TAL2.

Rules for virtual instructions. Since the model for these rules is subtyping, we

use subtyping lemmas from TML to prove these rules.

Rules for real instructions. This category is where the majority of the work is,

and we will focus on it in the following discussion.

LTAL has 32 instruction rules for real instructions, which correspond to SPARC

instructions such as add, ld, etc. Table 4.3 lists the categories of these rules: arith-

metic instructions, branching instructions, instructions for setting condition codes,
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Category Number of rules SPARC instructions used
Arithmetic; address
arithmetic; label arith-
metic

15 add, sub, or, smul

(signed multiplication),
sdiv (signed division),
wry (write Y register),
sethi (set high 22 bits).

Branching instructions 7 ba, jmpl (jump and
link), bgeu, bz, bne, blu,
bl, ble, bg, bge

Setting condition codes 4 subcc (sub with condi-
tion code)

Memory instructions:
load, store, get tags, . . .

6 ld, st.

Table 4.3: LTAL: Breakdown of rules for real instructions

and memory instructions. These rules are proved sound from higher-order logic and

SPARC machine semantics. In Section 4.2, we will focus on one rule and show

main structures of its proof. In Section 4.3, we will list all the typing rules we have

proved for SPARC instructions. Before these, we discuss general principles in our

proofs and statistics of the proof size.

One principle in our implementation is a proof-by-need principle. That is, we

develop proofs only for those SPARC instructions used by our FPCC-ML compiler.

Table 4.3 lists the SPARC instructions that the compiler uses. Since the compiler

only uses a subset of SPARC instruction, we have developed proofs only for the

subset.

Even with the proof-by-need principle , proving the soundness of those 37 rules

from SPARC instruction semantics is still an enormous task. Fortunately, many

parts of the proof can be factored out.

Proof factoring. To prove a LTAL real instruction rule, we find that it is more

convenient to state and prove a version in Lc first, and then go from this version to
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prove the soundness of the LTAL rule. The reason for such a setup is that LTAL

may use a same SPARC instruction in different scenarios. For example, the bgeu

instruction (to branch on greater than or equal, unsigned) is used by LTAL to test

if there is enough memory, to perform data-tag discrimination, and to test if a

datatype constructor is in a boxed representation or not; it is used by four LTAL

rules. But we only need to state one version in Lc for bgeu, and then all four rules

can be proved sound from that version.

The second reason that our proofs about machine instructions are highly fac-

tored is that machine instruction sets are highly factored, both in syntax and se-

mantics. Consider the example about ALU operations from the paper by Michael

and Appel [42]. The ALU takes its input from two registers (or a register and an

immediate) and produces the result in another. The only difference between ALU

instructions is the operation performed. The definition of aluxcc below is reused

to define 23 different ALU instructions. Argument with carry specifies whether the

instruction operates with a“carry”, modifies icc specifies whether it modifies integer

condition codes, and alufun is the predicate describing the operation performed by

the instruction.

aluxcc ,

λwith carry ,modifies icc, alufun.

λs, reg imm, d.

λ(r, m), (r′, m′).

...
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Then, the aluxcc predicate is used to define 23 ALU instructions:

add , aluxcc false false plus mod 32.

and , aluxcc false false and oper.

andcc , aluxcc false true and oper.

. . . . . . . . . – 20 cases omitted.

Since machine-instruction syntax and semantics are highly factored, our proofs

about machine instructions are also factored. For example, instead of proving only

the add instruction takes two source registers of integer types and puts an integer

value into the destination register, we prove that every ALU instruction has such a

typing2 , and the case of the add instruction is just one instantiation.

Proof statistics. Table 4.4 lists the size of our proofs. FPCC, as a whole, has

over 140k useful lines of proofs. Out of these proofs, over 30k lines of proofs are to

prove the soundness of LTAL instruction rules. These proofs have two parts. The

first part is the proofs for Lc and typing lemmas for SPARC instructions; this step

has over 27k lines of proofs. The second part is the proofs from lemmas at the Lc’s

level to LTAL instruction rules. This step has around 3k lines of proofs so far.

4.1 A Summary of Notation

In Chapter 3, we have discussed many issues that our implementation deals with,

including polymorphism, existentials, and imaginary parts for memory management.

2More accurately, only those ALU instructions that do not change integer condition codes have
such a typing. For those that do change the integer condition codes, we also need to consider the
type of the condition-code register.

3Excluding comments and empty lines.
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Number of lines Number of useful lines3

Proofs in FPCC 164220 140938
Proofs of LTAL instruction rules 35403 30740

1) Implementation of Lc

& Lc’s instruction rules
32058 27875

2) From Lc’s instructions
to LTAL’s instruction rules

3445 2865

Table 4.4: Statistics of proof size

Along our discussion, we have also introduced notation and abstractions to handle

these issues. However, they were introduced at different places. Furthermore, there

are issues that our implementation handles but have not been discussed. Therefore,

before we focus on the detailed proof in the next section, in Table 4.5 we summarize

the notation and abstractions used in our implementation.

In Chapter 3, a register-file type, φ, mapped registers to types. But in our

real system, we use temporaries instead. SML/NJ compiler has two phases to

map local variables to registers and memory locations in the spill area. It first

transforms a ML program into one that uses only 1000 local variables. Then it

maps these local variables to temporaries, which are either implemented in registers

or memory locations in the spill area. The first 20 temporaries are implemented

in registers, including both general-purpose registers and special registers such as

the condition-code register, but not including pc; the remainder of the temporaries

are implemented in the spill area. For our proof purpose, we also have virtual

temporaries. Virtual temporaries are not implemented in concrete parts of states,

and are auxiliaries for helping us to organize the proof. In Section 3.5, we used

a dedicated real register for the allocation pointer, but our implementation uses a

more flexible scheme: We treat the allocation pointer (and a limit pointer) as virtual

temporaries, and use types to relate values between the allocation pointer and real
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Notation/Abstraction Explanation
t ∈ [0, tmax ] A temporary is implemented in a register,

or implemented in the spill area, or a vir-
tual temporary.

σ = (r, m, is) ∈ Σ A state consists of a register, a memory
and an imaginary part.

is ∈ IS An imaginary part has two parts. The
first part is an allocation set, which re-
members the type of every reference cell.
The second part has virtual temporaries
for memory allocation.

(σ, x) :k τ The value (σ, x) belongs to the type τ to
the index k.

temp vec(σ) Construct a vector of temporaries from a
state; this vector maps temporary num-
bers into values.

σ :k φ Temporaries in σ have types in φ
to the index k. It is defined as
∀0 ≤ t < tmax. (σ, temp vec(σ)(t)) :k φ(t).

valid state(σ) Valid states: it roughly means that every
reference cell has the type prescribed in
the imaginary part.

extend state(σ, σ′) The extend-state relation: the allocation
set is extended and the type of every ref-
erence cell is preserved.

Table 4.5: A summary of notation and abstractions
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registers; this way, there is no need for our compiler to dedicate a fixed register for

the allocation pointer (and the limit pointer).

A state σ consists of a register, a memory, and an imaginary part. The register

and the memory are the concrete part. The imaginary part in our real system is

not just a set of addresses as in Section 3.5, it has two parts. The first part is an

allocation map, which remembers the type of every reference cell. This is to enforce

type-preserving store update in the presence of mutable references. The second part

in an imaginary part holds virtual temporaries, including the allocation pointer and

the limit pointer.

The notation (σ, x) :k τ means that the value (σ, x) belongs to the type τ to ap-

proximation k. The notation σ :k φ means that the state σ meets the temporary-file

type, φ, to approximation k. The definition of σ :k φ uses the predicate temp vec(σ),

which constructs a vector of temporaries from a state.

Finally, we have the valid state(σ) and extend state(σ, σ′) predicate. In the

presence of mutable references, valid state(σ) roughly means that every reference

cell has the type prescribed in the imaginary part of σ; extend state(σ, σ′) means

that the allocation map is extended and the type of every reference cell is preserved.

4.2 The arithmetic-add Rule.

In this section, we discuss the proof of one particular rule, the arith-add rule. The

rule is stated at the level of Lc and corresponds to the LTAL rule for LTAL’s addition
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instruction (Rule 4.1).

decode(w, (add s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ int32 }) reg imm has ty(reg imm, int32, φ)

φ′ = φ[td 7→ int32]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } arith-add
(4.2)

Essentially, the rule states that if both source operands of an add instruction have

integer type, then the destination gets an integer type after the instruction.

Furthermore, this rule handles some machine-specific issues and we discuss them

one by one.

First, we want to reason about machine code, not assembly code. Therefore,

instead of writing (add s, reg imm, d)@l, we write w@l to denote that a word w is at

the location l; and we use the decode relation to decode w into“(add s, reg imm, d)”.

The decode relation is part of our modeling of SPARC architecture.

Second, the arith-add rule (4.2) uses a predicate, realreg(ts, s), to mean that

the temporary ts is implemented in the register s. (Thus, the rule would not be

applicable to operands represented in spill locations.)

Third, the value in a register on SPARC is not an arbitrary integer, but an

integer in [0, 232 − 1). Therefore, we define an int32 type and the arith-add rule

requires the temporary ts (implemented in the register s) must be of the type int32.

Fourth, the second operand of the add instruction on SPARC can be either

a register or an immediate. The predicate, reg imm has ty(reg imm, τ, φ), makes

sure in both cases reg imm has the type τ in φ: If reg imm is a register, then it
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must correspond to some temporary t and φ must state that t is of the type τ ; if

reg imm is an immediate, then the immediate must be of the type τ .4

Finally, real architectures such as SPARC perform modulo arithmetic. We use

the symbol +32 to denote modulo-232 addition. Then the exit address in the arith-add

rule is l +32 4, instead of l + 4.

4.2.1 Proof of the Rule

We first sketch the major steps of proving the arith-add rule. Based on the model

of C; Ψ′ |=Lc Ψ, the rule states that in a state σ if w is at the address l, then the

entry l is a code pointer with the condition φ to the index k + 1, provided that the

address l +32 4 is a code pointer with the condition φ′ to the index k. To prove that

the address l is a code pointer with the condition φ to approximation k + 1, the

steps are as follows:

(i) Start from a state σ′ such that σ 7→∗ σ′, the control of σ′ is at l, and φ is true

on σ′. The goal is to prove that the concrete part of σ′ can step for k+1 steps.

(ii) Based on the fact that the control of σ′ is at l, the word w is at the address l,

and w decodes to the “add s, reg imm, d” instruction, construct a new state σ′′

such that the concrete part of σ′ steps in one step to the concrete part of σ′′

and the imaginary part remains the same. The construction of the concrete

part of σ′′ follows the semantics of the add instruction. In summary, this step

shows that the state σ′ can progress for one step.5

4In SPARC, when it is an immediate, we need to perform a sign extension on the 13-
bit immediate to get a 32-bit signed integer. The result integer must be of the type τ in
reg imm has ty(reg imm, τ, φ).

5When we say a state σ can step for k steps, we really mean its concrete part can step for k
steps.
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(iii) Prove that the new state σ′′ satisfies the condition φ′ = φ[td 7→ int32]. Based on

the semantics of the add instruction, the value of the destination temporary is

the modulo-232 addition of two 32-bit integers and therefore is a 32-bit integer.

Moreover, the add instruction does not change other temporaries.

(iv) Prove that the new state σ′′ is safe for k steps. This step uses 1) the fact that

the control of σ′′ is at the address l +32 4, and 2) the fact that σ′′ satisfies φ′,

3) the assumption that the address l +32 4 is a code pointer with the condition

φ′ (to approximation k), and 4) σ 7→∗ σ′′.

(v) We have proved that the state σ′ can progress for one step to reach a state σ′′,

and σ′′ is safe for k steps. On a deterministic machine, or even if only the first

step is deterministic, this is enough to show that σ′ is safe for k + 1 steps.

Some steps above depend on the properties of the add instruction and some do

not. Next, we will focus on the properties of the add instruction that are used in

the above proof sketch, and then propose abstractions to capture these properties.

After that, we will introduce a general theorem to combine these properties of the

add instructions together to prove the arith-add rule. The benefit of this general

theorem is that it can be readily used to prove other rules.

In the proof sketch of the arith-add rule, three properties of the add instruction

are used:

Control. If the add instruction is at the address l in a state, then the control of

the state after the execution of add is at l +32 4.

Progress. If a state σ meets the condition φ, and its control points to the add

instruction, then the state can progress for one step.
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Preservation. If a state σ meets the condition φ, then after the execution of the

add instruction, the new state meets the condition φ′.

Before we present abstractions that can capture these properties of the add

instruction, we first introduce a general notion for proving properties of machine

instructions. A machine instruction such as add is modeled as a relation between

two concrete parts of states: (r, m) and (r′, m′). To express only aspects of real

machine-instruction semantics, we define an implementation relation, imple(i1, i2),

read as “i1 implements i2”:

imple(i1, i2) , ∀r, m, r′, m′. i1(r, m)(r′, m′) ⇒ i2(r, m)(r′, m′).

As an example, suppose a predicate, same mem, expresses that two states have

the same memory:

same mem , λ(r, m), (r′, m′). m = m′

Then we can prove imple((add s, reg imm, d), same mem). As this example shows,

we can define an abstract instruction, such as same mem, that expresses only one

aspect of the semantics of a real machine instruction, and show their connection via

the implementation relation.

Abstractions. Next, we present abstractions that can capture the three proper-

ties of the add instruction: control, progress, and preservation.
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To model that the add instruction is a nonbranch instruction, we first define an

abstract instruction:

straight line , λ(r, m), (r′, m′). r′(pc) = r(pc) +32 4

Then we prove a lemma that states the add instruction implements the

straight line instruction:

Lemma 4.21 imple((add s, reg imm, d), straight line).

To model that the add instruction can progress under some condition φ, we

define a predicate, progress(w, φ), to express that when w is the next instruction

word to execute in a state where φ is true, then the state can go forward for one

step. Since this is exactly what codeptr (φ) to approximation 2 means (See Eq.3.9

on page 105), we define progress(w, φ) as follows:

progress(w, φ) ,

∀σ ∈ Σ, l ∈ N. m of(σ)(l) = w ⇒ (σ, l) :2 codeptr (φ).

Since the add instruction is no concern for our safety policy, memory safety,

it can progress under any condition. Therefore, from the semantics of add, the

following lemma is provable:

Lemma 4.22

decode(w, (add s, reg imm, d))

progress(w, { }) .

Note that “{ }” makes no typing requirement on temporaries and thus behaves like

a top type.

Based on the definition of progress(w, φ), we can easily prove a weakening lemma

for it:
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Lemma 4.23

subtype(φ1, φ2) progress(w, φ2)

progress(w, φ1) .

To model that the add instruction preserves types in a certain way, we introduce

a predicate, preservation(φ, φ′), which is an abstract instruction that states if φ is

true in the first state, then φ′ is true in the second state:

preservation(φ, φ′) ,

λ(r, m), (r′, m′).

∀k ∈ N, is ∈ IS.

k ≥ 1 ∧ valid state(r, m, is) ∧ (r, m, is) :k φ ⇒

∃is ′ ∈ IS.

extend state((r, m, is), (r′, m′, is ′)) ∧ (r′, m′, is ′) :k−1 φ′.

The above definition also takes care of imaginary parts and approximation indexes:

for all imaginary part is such that (r, m, is) is valid, a new imaginary part is ′

can always be found such that states are extended and φ′ is true on (r′, m′, is ′);

Furthermore, the definition requires that φ′ is true only to index k − 1, since one

step has been taken from φ to φ′.

For the add instruction, we can prove one preservation lemma that is useful in

the proof of the arith-add rule:

Lemma 4.24

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ int32 }) reg imm has ty(reg imm, int32, φ)

imple((add s, reg imm, d), preservation(φ, φ[td 7→ int32]))

The proof of this lemma is highly structured so that many parts can be reused. But

we omit a discussion of this structure here.
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Finally there is a weakening lemma for the preservation predicate

Lemma 4.25

subtype(φ1, φ
′
1) preservation(φ′1, φ

′
2) subtype(φ′2, φ2)

preservation(φ1, φ2) .

Combining lemmas. We have modeled and stated lemmas about the three prop-

erties of the add instruction: control, progress, and preservation. The following is a

general theorem to combine these lemmas together:

Theorem 4.26

decode(w, i)

imple(i, straight line)

progress(w, φ)

imple(i, preservation(φ, φ′))

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } (4.3)

The theorem states if 1) w decodes to the instruction i, 2) i is a straight line

(nonbranch) instruction, 3) a state can progress for one step when w is loaded in

the state and φ is true, and 4) the instruction i will make φ′ true provided that

φ is true beforehand, then w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } is

true.

Using this theorem, together with Lemma 4.21, 4.22, 4.23, and 4.24, the arith-

add rule is proved. The theorem itself follows directly from the definitions of those

abstractions that we have introduced.

Proof factoring. A first and obvious proof-factoring effort is that we do not prove

the arith-add rule just for the add instruction, we have actually proved that rule for

123



add 4,s, d add 4,s, d

s

d

…
…

…
…

r’ m’

s

d

r m

…
…

…
…

before after

int
bool

int
bool

Figure 4.1: Address arithmetic

all ALU instructions that do not change condition codes (See Section 4.3.1 for the

actual rule).

For a single machine instruction such as add, there are may be several typing

rules in LTAL. For example, we have seen the arith-add rule for the add instruction.

Another rule for add is an address arithmetic rule. We first explain what the rule

is for.

Suppose we have a record in the memory pointed to by register s. Suppose the

record consists of an integer field and a boolean field. This is depicted on the left

in Figure 4.1. Now we performs an address arithmetic: add four to register s and

put the result into register d, that is, execute the instruction “add s, 4, d”. After the

address arithmetic, the register d should point to the second field.

We can describe the scenario in types. To describe the record, we use an offset

type offset(n, τ). A value (σ, x) is of type offset(n, τ) if (σ, x +32 n) is of type τ .

Then, the register s have the following type:

offset(0, box (int)) ∩ offset(4, box (bool)),
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which means that register s is a pointer to an integer, and register s plus four is

a pointer to a boolean. After the execution of “add s, 4, d”, register d should be of

type offset(0, box (bool)), or just box (bool).

Based on the above explanation, the address-add rule is as follows:

decode(w, (add s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ offset(n, τ) })

reg imm has ty(reg imm, int=(n), φ)

φ′ = φ[td 7→ τ ]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } address-add
(4.4)

The rule states if the source temporary ts has a value whose addition to n is of type

τ , and the second operand reg imm has the value n, then after the add instruction,

the destination temporary td should be of type τ .

Thanks to Theorem 4.3, proving the address-add rule requires us to prove only

three lemmas about the add instruction: control, progress, and preservation. Two

of them, Lemma 4.21 and 4.22, are the same as the ones in the proof of the arith-add

rule. The only new lemma we need to develop is the preservation lemma:

Lemma 4.27

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ offset(n, τ) })

reg imm has ty(reg imm, int=(n), φ)

imple((add s, reg imm, d), preservation(φ, φ[td 7→ τ ]))

Even the proof of this lemma has reused many parts in the proof of the preservation

lemma of the arith-add rule (Lemma 4.24). But since we have omitted the discus-
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Number of lines in
specialized lemmas

Number of lines in general
lemmas

arith-add 94
1,357

address-add 156

Table 4.6: Proof size of two typing rules for the add instruction

sion about the structure of the proof of Lemma 4.24, we cannot go into a further

discussion.

To demonstrate the effect of our proof-factoring effort, Table 4.6 shows that the

proof of the arith-add rule and the arith-add rule shares 1,357 lines of common proofs.

4.3 List of Typing Lemmas

In this section, we list and explain the typing lemmas for SPARC machine instruc-

tions that we have proved. These lemmas are stated at the level of Lc and are used

to prove the soundness of LTAL’s instruction rules. We will not discuss the detailed

proof of these lemmas. But since they have been proved, we will call them typing

lemmas, instead of typing rules.

In the statement of these lemmas, we will use some type constructors to express

types of temporaries. These type constructors are listed in Figure 4.2. Meanings

of most type constructors should be clear from their explanation in the figure.

Two constructors, namely op(alufun, n1, n2) and cc cmp(τ1, τ2), may not be easy

to comprehend and we will explain them more in the context of related typing

lemmas. The list in Figure 4.2 is not exhaustive; see Swadi [64, page 30] for an

exhaustive list of the TML type theory. Some of the type constructors in Figure 4.2

are provided by the TML type theory. Others are encoded from more primitive

type constructors. We do not distinguish these two categories.
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τ ::= int32 32-bit integers
| int=(n) integer n
| int>(n) integers greater than n
| int≥(n) integers no less than n
| τ1 ∩ τ2 intersection types
| τ1 ∪ τ2 union types
| box (τ) immutable-reference types
| ref (τ) mutable-reference types
| offset(n, τ) offset types
| op(alufun, n1, n2) ALU-operation types
| aligned aligned; a multiple of four
| cc cmp(τ1, τ2) cond. code types
| cc z Z cond. code is set
| cc nz Z cond. code is not set

φ ::= { t1 7→ τ1, . . . , tn 7→ τn }
| φ1 ∩ φ2 conjunction
| φ\t remove t from φ

Figure 4.2: Type constructors in TML and temporary types

Also in Figure 4.2 are the syntax of temporary-file types. In our implementation,

a temporary-file type is a relation, which relates temporary numbers to types.

The syntax φ1 ∩ φ2 is somewhat ambiguous. In this presentation, a state meets

φ1 ∩ φ2 if and only if the state meets both φ1 and φ2. Therefore, if

φ1 = { t1 7→ int32, t2 7→ box (int32) }

and φ2 = { t1 7→ int≥(10), t3 7→ int=(3) },

then φ1 ∩ φ2 is

{ t1 7→ int32, t1 7→ int≥(10), t2 7→ box (int32), t3 7→ int=(3) },
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which is the same as

{ t1 7→ int32 ∩ int≥(10), t2 7→ box (int32), t3 7→ int=(3) }.

The notation φ\t removes t from the domain of φ. For the φ1 above,

φ1\t1 = { t2 7→ box (int32) }.

As a side note, the notation φ1[t 7→ τ ] can be encoded as (φ1\t) ∩ { t 7→ τ }.

Next, we list typing lemmas for SPARC instructions by categories.

4.3.1 Typing Lemmas for ALU Instructions

We have seen a general ALU predicate, aluxcc, on top of which other arithmetic

instructions are defined. The predicate has three arguments that specific ALU

instructions can use to customize: Argument with carry specifies whether an ALU

instruction operates with a “carry”; modifies icc specifies whether it modifies the

integer condition codes; alufun is the predicate describing the operation performed

by the instruction.

The first typing lemma is a generalized version of the arith-add rule and applies

to all ALU instructions that do not modify the integer condition codes. It states

that if the values in two source operands are 32-bit integers, then after the ALU

instruction, the destination temporary gets a 32-bit integer and all other temporaries
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remain the same.

decode(w, ((aluxcc with carry false alufun) s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ int32 }) reg imm has ty(reg imm, int32, φ)

φ′ = φ[td 7→ int32]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } arith-alu

For ALU instructions, there is a more interesting typing lemma. For example,

in “add s, reg imm, d”, if the operand s has value n1, and the operand reg imm has

value n2, then after the instruction, the destination d will get a value n1 +32 n2.

This rule is used in some compilers to keep track of dataflow of programs.

The dataflow-alu rule captures dataflow of ALU instructions. It applies to all

ALU instructions that do not have carries and do not change the integer condition

codes. The destination temporary gets the type op(alufun, n1, n2). This type essen-

tially applies the alufun function to the two integers, n1 and n2. If alufun is +32,

then the type contains all integers equal to n1 +32 n2.

decode(w, ((aluxcc false false alufun) s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ int=(n1) })

reg imm has ty(reg imm, int=(n2), φ)

φ′ = φ[td 7→ op(alufun, n1, n2)]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } dataflow-alu
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We have seen the address-add rule (Rule 4.4). A similar rule that subtract an

integer from a type (possibly a pointer address) is listed below.

decode(w, (sub s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ τ })

reg imm has ty(reg imm, int=(n), φ)

φ′ = φ[td 7→ offset(n, τ)]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } address-sub

4.3.2 Typing Lemmas for Branch Instructions

Next, we list typing lemmas for branch instructions. The first lemma is about the

branch always instruction, “ba 1, disp”. The operand disp is a displacement that is

converted to a program-counter-relative address. We use a predicate,

comp btarget(l, disp, target), to convert the current program counter l and the dis-

placement disp to the target address target .

The 1 in “ba 1, disp” means that the annul bit is one; that is, the instruction in

the delay slot of ba will be annuled. On SPARC, control-transfer instructions such

as ba are delayed control-transfer instructions and these instructions have delay

slots [63, ch5]. The instruction following a delayed control transfer instruction

is located in the delay slot. This instruction will be executed before the branch

happens. By setting the annul bit in “ba 1, disp”, the branch-always instruction

annuls the instruction in the delay slot and therefore will branch to the destination

immediately.
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The branch-ba rule is only for “ba 1, disp”, since our FPCC-ML compiler always

sets the annual bit in a ba instruction. The rule states if the target address is

a continuation with φ as the precondition, then the current address l is also a

continuation with φ as the precondition. Note that from l to target , the temporary-

file type does not change since the ba instruction changes only the control, which is

not part of the temporaries.

decode(w, (ba 1, disp))

comp btarget(l, disp, target)

w@l; { target 7→ codeptr (φ) } |=Lc { l 7→ codeptr (φ) } branch-ba

In TAL0, there is a branch-if-zero instruction“bz s, ld”, which tests if the register

s is zero, and conditionally branches accordingly. SPARC, however, uses condition

codes. There are instructions, such as subcc, that set the condition codes, including

N (Negative), Z (Zero), V (oVerflow), and C (Carry). There are branch instructions

that jump according to the condition codes. For example, the bz instruction on

SPARC jumps according to the Z condition code.

Our SPARC model models condition codes as bits in a special condition-code

register. The predicate, nrBranch, is used to define all conditional-branch instruc-

tions. It takes an argument, cnd , as the condition on the condition-code register.

The bz instruction is nrBranch applied to the condition that is true if and only if

the Z bit in the condition-code register is set.

131



We then discuss a typing lemma for conditional branches:

decode(w1, ((nrBranch cnd) 0, disp)) decode(w2, nop)

comp btarget(l, disp, target)

(w1; w2)@l; { l +32 8 7→ codeptr (φ), target 7→ codeptr (φ) }

|=Lc { l 7→ codeptr (φ) }

branch

This lemma has two continuations on the left of |=Lc since a conditional branch has

two possible exits. Note that all continuations have the same precondition φ and

therefore this lemma does not keep track of the value of condition codes in different

branches. In the next section, we will discuss a lemma that does keep track of the

value of condition codes. Furthermore, the above lemma puts a nop in the delay

slot, since our FPCC-ML compiler currently does not fill in delay slots.

The last lemma in this section is about the jump-and-link instruction,“jmpl d, 0”.

It jumps to the value of register d and throws away the current program counter

— on SPARC, when the destination register is zero, the result is thrown away

and values in the register bank do not change. Since our FPCC-ML compiler uses

continuation-passing style [6], the compiler produces only jump-and-link instruc-

tions whose second register is zero.

decode(w1, (jmpl d, 0)) decode(w2, nop)

realreg(td, d)

subtype(φ, { td 7→ aligned ∩ codeptr (φ) })

(w1; w2)@l; { } |=Lc { l 7→ codeptr (φ) } branch-jmpl
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The branch-jmpl rule is similar to the jmp rule in TAL1 on page 86. The only

difference is that we also required that the value in the register d is aligned, or a

multiple of 4. If it is not, SPARC will generate an exception [63].

4.3.3 Typing Lemmas that Involve Condition Codes

We designate a temporary, tcc, to correspond to the condition-code register. Then

the temporary-file type, { tcc 7→ τ }, states that the value in the condition-code

register has type τ .

As we have said, SPARC has separate instructions to set condition codes, and

branch according to the condition codes. A lot of branches in a LTAL program are

user branches, which do not require tracking the condition codes in types. Therefore,

we fist present a typing lemma that does not keep track of how condition codes are

set up. It is for all ALU instructions that set condition codes. These instructions

destroy the old condition codes and therefore the following lemma removes tcc from

the domain of the temporary-file type. The rule is for ALU instructions whose

destination register is zero and therefore (on the SPARC) the result is thrown

away.

decode(w, ((aluxcc with carry true alufun) s, reg imm, 0))

φ′ = φ\tcc

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) }
cc-remove

For tag checking and array-bounds checking, it is necessary to track how condi-

tion codes are set up. The next typing lemma tracks condition codes for the subcc

133



instruction, the only one used by our FPCC-ML compiler to set condition codes.

decode(w, (subcc s, reg imm, 0))

realreg(ts, s)

subtype(φ, { ts 7→ τ1 })

reg imm has ty(reg imm, τ2, φ)

φ′ = φ[tcc 7→ cc cmp(τ1, τ2)]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } subcc-cmp

The subcc-cmp rule states that the condition-code register gets the type cc cmp(τ1, τ2),

where τ1 and τ2 are the types of two source operands. The type cc cmp(τ1, τ2) con-

ditionally sets the condition codes (N, Z, V, and C bits) based on the values in τ1

and τ2. The types τ1 and τ2 are expected to be singleton types.

As an example, suppose before the instruction “subcc s1, s2, d”, the register s1

has the type τ1 = int=(n1), which contains some integer n1. Suppose the register s2

has the type τ2 = int=(10), which has exactly the value 10.

After the instruction “subcc s1, s2, d”, the subcc-cmp rule states the following

type is true:

{ tcc 7→ cc cmp(τ1, τ2) }

This type means that the N bit in the condition-code register is one if and only if

n1 is less than 10; the Z bit is one if and only if n1 is equal to 10. It has similar

components for V and C condition codes.

A subcc instruction is usually (but perhaps not immediately) followed by a

conditional branch instruction. One rule for the bz instruction is as follows; it keeps
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track of the values of condition codes in different branches.

decode(w1, (bz 0, disp)) decode(w2, nop)

comp btarget(l, disp, target)

φ1 = φ ∩ { tcc : cc nz } φ2 = φ ∩ { tcc : cc z }

(w1; w2)@l; { l +32 8 7→ codeptr (φ1), target 7→ codeptr (φ2) }

|=Lc { l 7→ codeptr (φ) }

branch-bz

This rule refines the type of the condition-code register depending on whether the

branch is taken or not. When the branch is taken, the Z bit must be one, and

we refine the type of tcc to have type cc z in addition to its old type. The cc z

type asserts that the Z bit is one. As a side note, remember that a state satisfies

φ∩{ tcc : cc z } if the state meets both φ and { tcc : cc z }. Therefore, the temporary-

file type φ ∩ { tcc : cc z } refines the type of the condition-code register to have the

cc z type. When the branch is not taken (the fall-through case), the cc nz type is

true on the condition-code register.

For the instruction sequence

subcc s1, s2, 0;

bz 0, disp; nop;

next :

...

target :

we want information about the relation between registers s1 and s2 in different

branches. For example, if s1 is greater than or equal to 10 and s2 is equal to 10,
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then at the address target , the register s1 must have the value 10, and at the address

next , the register s1’s value is greater than 10.

However, the branch-bz rule refines only the types of the condition-code register;

it does not refine the types of s1 and s2. The trick to be able to refine the types of

s1 and s2 is to use type variables to relate source registers and the condition-code

register, that is, use a simple form of dependent types. We demonstrate this through

an example.

Suppose before “subcc s1, s2, 0”, register s1 has type int≥(10) and s2 has type

int=(10). For register s1, we coerce its type to int≥(10) ∩ ∃n1. int=(n1), which is a

subtype of int≥(10). Then we open the existential type, so that register s1 gets the

type int≥(10)∩ int=(n1). Similarly, we give the type int=(10)∩ int=(n2) to s2. In the

types, n1 and n2 are type variables of integer kinds. After these steps, the following

sequence shows how we can type the “subcc s1, s2, 0” and “bz 0, disp” instruction

sequence using the subcc-cmp and branch-bz rules:

{ ts1 7→ int≥(10) ∩ int=(n1), ts2 7→ int=(10) ∩ int=(n2) }

subcc s1, s2, 0

{ts1 7→ int≥(10) ∩ int=(n1), ts2 7→ int=(10) ∩ int=(n2),

tcc 7→ cc cmp(int≥(10) ∩ int=(n1), int=(10) ∩ int=(n2))}

bz 0, disp

next : {ts1 7→ int≥(10) ∩ int=(n1), ts2 7→ int=(10) ∩ int=(n2),

tcc 7→ cc cmp(int≥(10) ∩ int=(n1), int=(10) ∩ int=(n2)) ∩ cc nz}
...

target : {ts1 7→ int≥(10) ∩ int=(n1), ts2 7→ int=(10) ∩ int=(n2),

tcc 7→ cc cmp(int≥(10) ∩ int=(n1), int=(10) ∩ int=(n2)) ∩ cc z}
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Notice that the type variables n1 and n2 connect the values of registers s1 and s2

with the value of the condition-code register.

Remember that part of the type cc cmp(int≥(10) ∩ int=(n1), int=(10) ∩ int=(n2))

means that the value in int≥(10) ∩ int=(n1) is equal to 10 if and only if the Z bit is

one. At the address target , we also know that cc z is true, that is, the Z bit is one.

Therefore, the value in int≥(10) ∩ int=(n1) can contain only the value 10; thus, n1

has to be 10. This reasoning is a proof of the following subtyping lemma:

{ts1 7→ int≥(10) ∩ int=(n1), ts2 7→ int=(10) ∩ int=(n2),

tcc 7→ cc cmp(int≥(10) ∩ int=(n1), int=(10) ∩ int=(n2)) ∩ cc z}

⊆ { ts1 7→ int=(10) }

Consequently, at the address target , we have { ts1 7→ int=(10) } being true.

At the address next , a similar reasoning gives us that { ts1 7→ int>(10) } is true.

In our implementation, the branch-bz lemma is just an instantiation of a more

general lemma for all conditional-branch instructions:

decode(w1, ((nrBranch cnd) 0, disp)) decode(w2, nop)

cnd relate to type(cnd , cndTType)

cnd relate to type(¬cnd , cndFType)

comp btarget(l, disp, target)

φ1 = φ ∩ { tcc : cndFType } φ2 = φ ∩ { tcc : cndTType }

(w1; w2)@l; { l +32 8 7→ codeptr (φ1), target 7→ codeptr (φ2) }

|=Lc { l 7→ codeptr (φ) }

branch-cnd
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The predicate cnd relate to type(cnd , cndTType) relates a condition to a type con-

structor. For example, the condition for bz is related to the type cc z, and the

negation of the condition for bz is related to the type cc nz.

4.3.4 Typing Lemmas for Memory Instructions

In this section, we list typing lemmas for memory instructions. First we discuss a

lemma for the instruction “ld s, reg imm, d”. This instruction loads register from

memory. The memory address is the sum of the contents of register s and reg imm.

The destination is register d.

decode(w, (ld s, reg imm, d))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ offset(n, box (τ)) })

reg imm has ty(reg imm, int=(n), φ)

φ′ = φ[td 7→ τ ]

w@l; { l +32 4 7→ codeptr (φ′) } |=Lc { l 7→ codeptr (φ) } ld

Register s has the type offset(n, box (τ)); it means the value of register s plus n is

an immutable pointer to a value of type τ . The other operand reg imm has the

value int=(n). After the ld instruction, the destination register will have the type

τ . The lemma is only for immutable-reference types; we have a similar lemma for

mutable-reference types.

The next typing lemma is for type-preserving updating store. It is about the

store instruction “st s, d, reg imm”, which stores the value of register s into the
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memory address that equals to the sum of the value of register d and reg imm.

decode(w, (st s, d, reg imm))

realreg(ts, s) realreg(td, d)

subtype(φ, { ts 7→ τ })

subtype(φ, { td 7→ offset(n, ref (τ)) })

reg imm has ty(reg imm, int=(n), φ)

w@l; { l +32 4 7→ codeptr (φ) } |=Lc { l 7→ codeptr (φ) } update-st

The lemma requires the type of new values to match the type of the mutable-

reference cell and it is type preserving.

We also have typing lemmas for heap allocations. In her thesis, Chen [16, ch4.4]

explains the heap allocation model in LTAL in great detail. The corresponding

typing lemmas at the Lc level are different only at minor points. Therefore, we do

not list those typing lemmas.
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Chapter 5

Conclusion

The Foundational Proof-Carrying Code project at Princeton seeks to reduce the

problem of mobile-code security to the problem of checking formal proofs in logic.

Security-relevant systems are modeled in logic and security properties are proved

from a small set of axioms. In their pioneering work, Principia Mathematica, White-

head and Russell tried to reduce mathematics to formal logic. They demonstrated

that a large portion of mathematics follows from purely logical premises and uses

only concepts definable in logical terms. By founding mathematics on a small set

of primitive logical notions, they hoped to get rid of paradoxes from mathemat-

ics. We believe that the same axiomatic principle should be applied to security as

well. People generally believe systems with fewer assumptions—axioms—are more

secure than those with more assumptions. Applying the axiomatic principle to the

extreme, the FPCC project proceeds with a minimal set of axioms. Although with

many theoretical and implementation obstacles, the FPCC project has progressed

smoothly and shows the feasibility of reducing security to logic.
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As part of the FPCC project, this dissertation proposes a principled way to verify

properties of machine-language programs in the presence of unstructured control

flow. We have designed and implemented a low-level control-flow logic, Lc, for

systematically combining properties of machine instructions. We have also proved

many typing lemmas about SPARC machine instructions based on the machine

semantics. Our proving effort is one of the few projects that develop machine-

checked proofs about machine-language programs from a specification of machine

semantics. The other project we know is by Boyer and Yu [14]. They formally

specify a subset of the MC68020 microprocessor within the logic of the system

Nqthm, a quantifier-free first-order logic with equality. Based on the specification,

they have manually proved the correctness of MC68020 machine code programs

for binary search, quick sort, etc. Although machine-checked proofs come with a

large implementation effort, their project and ours demonstrate the feasibility of

developing proofs about a real machine.

Finally, we discuss possible future work. First, we would like to add more features

to our FPCC project. Currently, our FPCC-ML compiler handles features in core

ML. We plan to add features such as arrays and the module system. Also, the

compiler handles memory initialization and allocation, but not deallocation. We

believe a region-based calculus should be able to handle memory deallocation at

the LTAL level. However, developing a foundational semantics for such a calculus

would be a technical challenge.

The current FPCC system is for the SPARC architecture. We would like to

see our techniques applied to other architectures. For Intel x86 architectures, we

believe that the major difficulty lies in the specification. On the other hand, our

proof techniques should be readily applicable since they rely mostly on the notion
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of computation steps. RISC architectures for embedded system, such as ARM [60],

are much easier to specify and verify. This should be the first step of transferring

our techniques.

The safety policy we used is memory safety. There are other useful safety polices

such as bounded resource usage [25, 36, 67]. Accommodating new safety policies

would require a significant change to the typed-assembly language. However, we

believe that our proof infrastructure for proving properties of machine-language

programs can be easily factored to accommodate new safety policies.
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Appendix A

Proofs of Lc

This appendix presents detailed proofs for Lc. As part of the FPCC system, we have

developed and machine-checked the soundness proof for a version of Lc (on top of

SPARC). The completeness proof and the proof about the connection between

the direct-style semantics and the continuation-style semantics, however, have been

developed only on paper and not been machine checked; they are unnecessary for

the FPCC system.

A.1 Soundness Proof of Lc

When the label map θ is clear from the context, we sometimes use 7→ as an abbre-

viation for 7→θ.

Lemma A.28 (Determinism of the Step Relation.)

If (pc, π, m) 7→θ σ′,

(i) and π(pc) = (x := e), then σ′ = (pc + 1, π, m[x 7→ V [[e]] m]);

(ii) and π(pc) = (goto l), then σ′ = (θ(l), π, m);
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(iii) and π(pc) = (if b goto l) and B [[b]] m = tt, then σ′ = (θ(l), π, m);

(iv) and π(pc) = (if b goto l) and B [[b]] m = ff, then σ′ = (pc + 1, π, m).

Proof. By case analysis on (pc, π, m) 7→θ σ′. �

Lemma A.29 For any σ, σ′ ∈ Σ such that σ 7→∗ σ′, the instruction memory remains

the same, i.e., i of(σ) = i of(σ′).

Proof. First prove i of(σ) = i of(σ′) when σ 7→ σ′ by case analysis. Then by

induction over the length of 7→∗. �

Lemma A.30 (Substitution.)

(i) V [[e′[e/x]]] m = V [[e′]] m[x 7→ V [[e]] m]

(ii) B [[b[e/x]]] m = B [[b]] m[x 7→ V [[e]] m]

(iii) A [[p[e/x]]] m = A [[p]] m[x 7→ V [[e]] m]

Proof. By induction over the syntax of e′, b, and p, respectively. �

Lemma A.31 For all σ ∈ Σ and j, k ∈ N, if safe state(σ, j), and

∀σ′ ∈ Σ. σ 7→j σ′ ⇒ safe state(σ′, k), then safe state(σ, j + k).

Proof. Straightforward from the definition of safe state(σ, j + k). �

Instantiate j to 1 in Lemma A.31 and using the equivalence between safe state(σ, 1)

and ∃σ′. σ 7→ σ′, and get the following corollary:

Corollary A.32 For all σ ∈ Σ and k ∈ N, if ∃σ′. σ 7→ σ′, and

∀σ′ ∈ Σ. σ 7→ σ′ ⇒ safe state(σ′, k), then safe state(σ, k + 1).

Lemma A.33 Assuming that D is sound, if ` Ψ ⇒ Ψ′, then |= Ψ ⇒ Ψ′.
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Proof. There are two cases to derive ` Ψ ⇒ Ψ′.

Case

m ≥ n

` {l1 . p1, . . . , lm . pm} ⇒ {l1 . p1, . . . , ln . pn}
s-width

The proof of this case is immediate from the definition |= Ψ ⇒ Ψ′.

Case

`D p′ ⇒ p

` Ψ ∪ {l . p} ⇒ Ψ ∪ {l . p′} s-depth

To prove |= Ψ∪{l . p} ⇒ Ψ∪{l . p′}, pick σ ∈ Σ, θ ∈ LMap and k ∈ N, assume

σ; θ |=k Ψ ∪ {l . p}, (A.33.1)

and the goal is σ; θ |=k Ψ ∪ {l . p′}. Result A.33.1 gives

σ; θ |=k Ψ, (A.33.2)

σ; θ |=k l . p. (A.33.3)

σ; θ |=k Ψ ∪ {l . p′} can be proved if σ; θ |=k l . p′, which is proved as follows:

pick σ′ ∈ Σ, assume

σ 7→∗
θ σ′ (A.33.4)

control(σ′) = θ(l) (A.33.5)

A [[p′]] (m of(σ′)) = tt (A.33.6)

and the goal is to show safe state(σ′, k).

Since the deduction system D is sound, we have |= p′ ⇒ p and thus

A [[p′ ⇒ p]] (m of(σ′)) = tt. Together with A.33.6, we have

A [[p]] (m of(σ′)) = tt (A.33.7)
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Unpack the definition of A.33.3, perform a universal elimination using the state

σ′, and use A.33.4, A.33.5 and A.33.7, to get safe state(σ′, k). �

Theorem A.34 (Soundness.) Assume D is sound. If F ; Ψ′ ` Ψ, then F ; Ψ′ |=

Ψ.

Proof. Proof by induction over the derivation of F ; Ψ′ ` Ψ. We will cover

each case by a lemma.

Case {l : (x := e) : l′} ; {l′ . p} ` {l . p[e/x]} assign

This case is covered by the Lemma A.35.

Case {l : (goto l1) : l′} ; {l1 . p} ` {l . p}
goto

This case is covered by the Lemma A.36.

Case {l : (if b goto l1) : l′} ; {l1 . p ∧ b, l′ . p ∧ ¬b} ` {l . p} if

Similar to the goto case.

Case

F1 ; Ψ′
1 ` Ψ1 F2 ; Ψ′

2 ` Ψ2

F1 ∪ F2 ; Ψ′
1 ∪Ψ′

2 ` Ψ1 ∪Ψ2
combine

The induction hypothesis gives F1 ; Ψ′
1 |= Ψ1 and F2 ; Ψ′

2 |= Ψ2, and the rest

is covered by Lemma A.37.

Case

F ; Ψ′ ∪ {l . p} ` Ψ ∪ {l . p}
F ; Ψ′ ` Ψ ∪ {l . p} discharge

The induction hypothesis gives F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, and the rest is

covered by Lemma A.40.

Case

` Ψ′
1 ⇒ Ψ′

2 F ; Ψ′
2 ` Ψ2 ` Ψ2 ⇒ Ψ1

F ; Ψ′
1 ` Ψ1

weaken

The induction hypothesis gives F ; Ψ′
2 |= Ψ2. By Lemma A.33, we have |=

Ψ′
1 ⇒ Ψ′

2 and |= Ψ2 ⇒ Ψ1. The rest is covered by Lemma A.38.

�

Lemma A.35 {l : (x := e) : l′} ; {l′ . p} |= {l . p[e/x]}
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Proof. Let F = {l : (x := e) : l′}, Ψ′ = {l′ . p} and Ψ = {l . p[e/x]}.

To prove F ; Ψ′ |= Ψ, pick σ ∈ Σ, θ ∈ LMap, and k ∈ N, and assume

loaded({l : (x := e) : l′}, i of(σ), θ), (A.35.1)

σ; θ |=k {l′ . p}. (A.35.2)

The goal is to prove σ; θ |=k+1 {l . p[e/x]}. To prove it, pick σ′ = (pc, π, m) ∈ Σ

such that

σ 7→∗
θ σ′ (A.35.3)

control(σ′) = pc = θ(l) (A.35.4)

A [[p[e/x]]] m = tt (A.35.5)

and the goal is safe state(σ′, k + 1). By Corollary A.32, it is sufficient to show the

following two results:

∃σ′′. σ′ 7→ σ′′ (A.35.6)

∀σ′′ ∈ Σ. σ′ 7→ σ′′ ⇒ safe state(σ′′, k) (A.35.7)

We prove A.35.6 first. Since the step relation does not change the instruction

memory (Lemma A.29), we have the following from A.35.3:

i of(σ) = i of(σ′) (A.35.8)
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Together with A.35.1, we get

loaded({l : (x := e) : l′}, i of(σ′), θ) (A.35.9)

whose definition gives us

i of(σ′)(pc) = x := e (A.35.10)

θ(l′) = θ(l) + 1 (A.35.11)

Construct σ′′ = (pc + 1, π, m[x 7→ V [[e]] m]), it is easy to verify that σ′ 7→ σ′′,

which is the goal A.35.6.

Now we prove the goal A.35.7. For all σ′′ ∈ Σ such that

σ′ 7→ σ′′, (A.35.12)

by Lemma A.28 and the result A.35.10, we must have that

σ′′ = (pc + 1, π, m[x 7→ V [[e]] m]) (A.35.13)

Now, use the result A.35.2: σ; θ |=k {l′ . p}, which states that l′ . p is a contin-

uation to approximation k. Unpack the definition σ; θ |=k {l′ . p}, do a universal

elimination, and use the state σ′′ and the following results:

σ 7→∗
θ σ′′, from A.35.3 and A.35.12

control(σ′′) = θ(l′), from A.35.13, A.35.11 and A.35.4

A [[p]]
(
i of(σ′′)

)
= tt, from the Lemma A.30 (iii) and the result A.35.5
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to get safe state(σ′′, k). �

Lemma A.36 {l : (goto l1) : l′} ; {l1 . p} |= {l . p}

Proof. Let F = {l : (goto l1) : l′}, Ψ′ = {l1 . p} and Ψ = {l . p}.

To prove F ; Ψ′ |= Ψ, pick σ ∈ Σ , θ ∈ LMap, and k ∈ N, and assume

loaded({l : (goto l1) : l′}, i of(σ), θ), (A.36.1)

σ; θ |=k {l1 . p}. (A.36.2)

The goal is to prove σ; θ |=k+1 {l . p}. To prove it, pick σ′ = (pc, π, m) ∈ Σ such

that

σ 7→∗
θ σ′ (A.36.3)

control(σ′) = pc = θ(l) (A.36.4)

A [[p]] m = tt (A.36.5)

and the goal is safe state(σ′, k + 1). By Corollary A.32, it is sufficient to prove the

following two results:

∃σ′′. σ′ 7→ σ′′ (A.36.6)

∀σ′′ ∈ Σ. σ′ 7→ σ′′ ⇒ safe state(σ′′, k) (A.36.7)

We prove A.36.6 first. Since the step relation does not change the instruction

memory (Lemma A.29), we have the following from A.36.3:

i of(σ) = i of(σ′) (A.36.8)
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Together with A.36.1, we get

loaded({l : (goto l1) : l′}, i of(σ′), θ) (A.36.9)

whose definition gives

i of(σ′)(pc) = goto l1 (A.36.10)

θ(l′) = θ(l) + 1 (A.36.11)

Construct σ′′ = (θ(l1), π, m), it is easy to verify that σ′ 7→ σ′′, which is the goal

A.36.6.

Now we prove the goal A.36.7. For all σ′′ ∈ Σ such that

σ′ 7→ σ′′, (A.36.12)

by Lemma A.28 and the result A.36.10, we must have that

σ′′ = (θ(l1), π, m) (A.36.13)

Now, use the result A.36.2: σ; θ |=k {l1 . p}. Unpack its definition, perform a

universal elimination, and use the state σ′′ and the following results:

σ 7→∗
θ σ′′, from A.36.3 and A.36.12 (A.36.14)

control(σ′′) = θ(l1), from A.36.13 (A.36.15)

A [[p]]
(
i of(σ′′)

)
= tt, from A.36.5 and i of(σ′′) = m. (A.36.16)
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to get safe state(σ′′, k). �

Lemma A.37 If F1 ; Ψ′
1 |= Ψ1 and F2 ; Ψ′

2 |= Ψ2, then F1 ∪ F2 ; Ψ′
1 ∪Ψ′

2 |=

Ψ1 ∪Ψ2.

Proof. To prove F1 ∪ F2 ; Ψ′
1 ∪Ψ′

2 |= Ψ1 ∪Ψ2, pick σ ∈ Σ, θ ∈ LMap, and

k ∈ N, and assume

loaded(F1 ∪ F2, i of(σ), θ) (A.37.1)

σ; θ |=k Ψ′
1 ∪Ψ′

2 (A.37.2)

We need to prove σ; θ |=k+1 Ψ1 ∪Ψ2.

From A.37.1, it is easy to prove

loaded(F1, i of(σ), θ) (A.37.3)

loaded(F2, i of(σ), θ) (A.37.4)

From A.37.2, we get

σ; θ |=k Ψ′
1 (A.37.5)

σ; θ |=k Ψ′
2 (A.37.6)

From the assumption F1 ; Ψ′
1 |= Ψ1, A.37.3 and A.37.5, derive

σ; θ |=k+1 Ψ1 (A.37.7)
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Similarly, from F2 ; Ψ′
2 |= Ψ2, A.37.4 and A.37.6, derive

σ; θ |=k+1 Ψ2 (A.37.8)

These two results give us σ; θ |=k+1 Ψ1 ∪Ψ2, which is the goal. �

Lemma A.38 If |= Ψ′
1 ⇒ Ψ′

2, F ; Ψ′
2 |= Ψ2 and |= Ψ2 ⇒ Ψ1, then F ; Ψ′

1 |= Ψ1.

Proof. To prove F ; Ψ′
1 |= Ψ1, pick σ ∈ Σ, θ ∈ LMap, and k ∈ N, and assume

loaded(F, i of(σ), θ) (A.38.1)

σ; θ |=k Ψ′
1. (A.38.2)

We need to prove σ; θ |=k+1 Ψ1.

From the assumption |= Ψ′
1 ⇒ Ψ′

2, and A.38.2, we have

σ; θ |=k Ψ′
2 (A.38.3)

From the assumption F ; Ψ′
2 |= Ψ2, the result A.38.1 and A.38.3, we get

σ; θ |=k+1 Ψ2 (A.38.4)

From the assumption |= Ψ2 ⇒ Ψ1, and the result A.38.4, we have σ; θ |=k+1 Ψ1,

which is the goal. �

Lemma A.39 Let σ ∈ Σ, θ ∈ LMap, k ∈ N and Ψ ∈ FragSet.

(i) σ; θ |=0 Ψ. (true at index 0)

(ii) if σ; θ |=k Ψ, then σ; θ |=j Ψ, for all j ≤ k. (downward closed)
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(iii) if σ; θ |=k Ψ and σ 7→∗
θ σ′, then σ′; θ |=k Ψ. (monotonicity with respect to

the 7→∗
θ)

Proof. Straightforward from the definition of σ; θ |=k Ψ. �

Lemma A.40 (Soundness of the discharge rule.) If F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p},

then F ; Ψ′ |= Ψ ∪ {l . p}.

Proof. To prove F ; Ψ′ |= Ψ ∪ {l . p}, pick σ ∈ Σ and θ ∈ LMap. Assume

loaded(F, i of(σ), θ). (A.40.1)

The goal is ∀k ∈ N.
(
σ; θ |=k Ψ′ ⇒ σ; θ |=k+1 Ψ ∪ {l . p}

)
. We prove it by induction

over the natural number k.

For the base case, assume

σ; θ |=0 Ψ′, (A.40.2)

and prove that σ; θ |=1 Ψ ∪ {l . p}.

Lemma A.39 (i) gives

σ; θ |=0 {l . p}. (A.40.3)

Together with A.40.2, we have

σ; θ |=0 Ψ′ ∪ {l . p}. (A.40.4)

Now from the assumption, F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, the result A.40.1, and

the result A.40.4, we get σ; θ |=1 Ψ ∪ {l . p}, which is the goal for the base case.
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For the inductive case, assume the induction hypothesis is true for k:

σ; θ |=k Ψ′ ⇒ σ; θ |=k+1 Ψ ∪ {l . p}. (A.40.5)

The goal is to prove that the induction hypothesis is true for k + 1:

σ; θ |=k+1 Ψ′ ⇒ σ; θ |=k+2 Ψ ∪ {l . p}.

Thus, assume

σ; θ |=k+1 Ψ′. (A.40.6)

Lemma A.39 (ii) gives

σ; θ |=k Ψ′. (A.40.7)

From the induction hypothesis A.40.5 and the result A.40.7, we have

σ; θ |=k+1 Ψ ∪ {l . p}, (A.40.8)

from which the following is derivable:

σ; θ |=k+1 {l . p}. (A.40.9)

Together with A.40.6, we have

σ; θ |=k+1 Ψ′ ∪ {l . p}. (A.40.10)
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Now, use the assumption F ; Ψ′ ∪ {l . p} |= Ψ ∪ {l . p}, together with A.40.1

and A.40.10, to derive

σ; θ |=k+2 Ψ ∪ {l . p},

which is the goal for the inductive case. �

A.2 Connection Between the Direct-Style Seman-

tics and the Continuation-Style Semantics

Lemma A.41 If labels(Ψ) ⊆ entries(F ), then |= {Ψ}F{Ψ′} implies F ; Ψ′ |= Ψ.

Proof. To prove F ; Ψ′ |= Ψ, pick θ ∈ LMap, σ ∈ Σ and k ∈ N, and assume

loaded(F, i of(σ), θ), (A.41.1)

σ; θ |=k Ψ′. (A.41.2)

The goal is to prove σ; θ |=k+1 Ψ. To prove it, pick l . p ∈ Ψ, σ′ ∈ Σ, and assume

σ 7→∗
θ σ′ (A.41.3)

control(σ′) = θ(l) (A.41.4)

A [[p]] (m of(σ′)) = tt (A.41.5)

The new goal is to prove safe state(σ′, k + 1). To prove it, choose j < k + 1, and a

sequence of states σ0, σ1, . . . , σj such that

σ′ = σ0 7→ σ1 7→ . . . 7→ σj (A.41.6)
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The new goal is to prove the existence of some σj+1 such that σj 7→ σj+1. The proof

proceeds in two cases.

Case ∀0 ≤ i ≤ j. control(σi) ∈ addr(F, θ). That is, the control never leaves the

address space of F . Then, we have both σ0
F,θ
 σj and control(σj) ∈ addr(F, θ). By

the definition of |= {Ψ}F{Ψ′}, we have ∃σj+1 ∈ Σ.σj 7→θ σj+1.

Case ∃0 ≤ i < j. control(σi) /∈ addr(F, θ). Let i be the least such index, then

σ0
F,θ
 σi.

By the definition of |= {Ψ}F{Ψ′}, there exists some l′ . p′ ∈ Ψ′ such that

control(σi) = θ(l′) (A.41.7)

A [[p′]] σi = tt (A.41.8)

By A.41.2, together with the above two results, get safe state(σi, k).

On the other hand, we have i > 0, because control(σ0) = control(σ′) = θ(l) ∈

addr(F, Ψ). (The last step is because that l ∈ labels(Ψ) ⊆ entries(F ).) Therefore,

the length of the computation sequence from σi to σj is less than k. Hence, by

safe state(σi, k), we have that ∃σj+1 ∈ Σ.σj 7→θ σj+1. �

Lemma A.42 Assume (F, Ψ′, Ψ) is normal. Assume Assertion is negatively testable

by the statement language. If F ; Ψ′ |= Ψ, then |= {Ψ}F{Ψ′}.

To prove the lemma, we need to introduce auxiliary concepts and lemmas.

The set exits(F ) statically characterizes the set of possible exits of F . The

following lemma states that dynamically any “exit” from F is indeed an element in

exits(F ).
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Lemma A.43 If loaded(F, i of(σ), θ), σ 7→θ σ′, and control(σ) ∈ addr(F, θ), but

control(σ′) /∈ addr(F, θ), then exists some l ∈ exits(F ) such that control(σ′) = θ(l).

Proof. The proof is by case analysis on σ 7→θ σ′. Suppose σ = (pc, π, m).

Case π(pc) = (x := e).

Then σ′ = (pc + 1, π, m[x 7→ V [[e]] m]). Therefore,

pc = control(σ) ∈ addr(F, θ) (A.43.1)

pc + 1 = control(σ′) /∈ addr(F, θ) (A.43.2)

By the definition of addr(F, θ), there exists some (l : (x := e) : l′) ∈ F such that

pc = θ(l) (A.43.3)

loaded(F, i of(σ), θ) gives that θ(l′) = θ(l) + 1, hence

control(σ′) = pc + 1 = θ(l) + 1 = θ(l′).

We now prove that l′ ∈ exits(F ): otherwise, there is some fragment l′ : (t) : l′′ in F ;

then control(σ′) = θ(l′) ∈ addr(F, θ), which contradicts with the assumption that

control(σ′) /∈ addr(F, θ).

The proofs of other cases are similar. �

Definition A.44 (Address mapping.) Let π, π′ ∈ IM, F ∈ FragSet and F is normal,

θ, θ′ ∈ LMap. Suppose loaded(F, π, θ) and loaded(F, π′, θ′). An address mapping

ε ∈ N → N maps n to n′ if

(i) there is some (l : (t) : l′) ∈ F , such that n = θ(l) and n′ = θ′(l),
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(ii) or there is some l′ ∈ exits(F ) such that n = θ(l′) and n′ = θ′(l′).

The definition of ε is well-defined since F is normal and the restrictions placed on

θ and θ′ in the definitions of loaded(F, π, θ) and loaded(F, π′, θ′).

Definition A.45 Let F ∈ FragSet, θ, θ′ ∈ LMap. We call two states σ and σ′ are

related if there is an address mapping ε such that

(i) loaded(F, i of(σ), θ),

(ii) loaded(F, i of(σ′), θ′),

(iii) ε(control(σ)) = control(σ′),

(iv) m of(σ) = m of(σ′),

Where ε is as defined in Definition A.44. We describe the above as σ
F,θ,θ′

� σ′.

Lemma A.46 Let σ, σ′ ∈ Σ, F ∈ FragSet, θ, θ′ ∈ LMap. If

(i) σ
F,θ,θ′

� σ′

(ii) control(σ) ∈ addr(F, θ),

(iii) ∃σ1 ∈ Σ. σ 7→θ σ1,

then there exists σ′1 ∈ Σ such that σ′ 7→θ′ σ′1. Furthermore, σ1 and σ′1 are also

related: σ1

F,θ,θ′

� σ′1.

Proof. By case analysis on σ 7→θ σ1. �

Corollary A.47 If σ0
F,θ
 σ1 and σ0

F,θ,θ′

� σ′0, then there is σ′1 ∈ Σ such that σ′0
F,θ′

 σ′1,

and σ1

F,θ,θ′

� σ′1.
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Proof of Lemma A.42. To prove |= {Ψ}F{Ψ′}, choose l . p ∈ Ψ, σ ∈ Σ,

θ ∈ LMap, and σ1 ∈ Σ, and assume

loaded(F, i of(σ), θ) (A.47.1)

control(σ) = θ(l) (A.47.2)

A [[p]] m of(σ) = tt (A.47.3)

σ
F,θ
 σ1 (A.47.4)

The goal is to prove that

(control(σ1) ∈ addr(F, θ) ⇒ ∃σ2 ∈ Σ. σ1 7→∗
θ σ2)

(control(σ1) /∈ addr(F, θ)

⇒ ∃l′ . p′ ∈ Ψ′. control(σ1) = θ(l′) ∧ A [[p′]] m of(σ1) = tt)

(A.47.5)

To prove the goal, we construct a new instruction memory π′ and a new label

mapping θ′, whose layout is

(i) The instruction memory π′ contains F so that loaded(F, π′, θ′) is true.

(ii) For each l′ . p′ ∈ Ψ′, put the statement sequence test(p′) at the address θ′(l′);

test(p′) exists for p′ since Assertion is negatively testable. After test(p′), put

an illegal statement. This arrangement makes sure that (θ′(l), π′, m of(σ)); θ |=k l′ . p′

is true for all k, because if p′ is true before executing test(p′), test(p′) will be

in an infinite loop (see Definition 2.10). Furthermore, the arrangement also

implies that if p′ is false before executing test(p′), then the state will get stuck

eventually, since test(p′) will terminates and the next instruction is the illegal

statement.

159



Let σ′ = (θ′(l), π′, m of(σ)). By the definition of F ; Ψ′ |= Ψ and the special

arrangement of σ′, we get

∀k ∈ N. σ′; θ |=k+1 Ψ (A.47.6)

By the definition of σ′; θ |=k+1 Ψ, together with the fact control(σ′) = θ′(l), the

result A.47.3, and the fact m of(σ) = m of(σ′), the state σ′ can run for any number

of steps:

∀k ∈ N. safe state(σ′, k). (A.47.7)

The state σ′ has been constructed in such a way that it is straightforward to

verify that

σ
F,θ,θ′

� σ′. (A.47.8)

By Corollary A.47 together with the result A.47.4, there is some σ′1 ∈ Σ and

σ′
F,θ′

 σ′1 (A.47.9)

σ1

F,θ,θ′

� σ′1. (A.47.10)

From the result A.47.7 and A.47.9, the following can be derived:

∀k ∈ N. safe state(σ′1, k). (A.47.11)

The goal A.47.5 has two cases.

Case: when control(σ1) ∈ addr(F, θ). Then control(σ′1) ∈ addr(F, θ′). By

Lemma A.46, the result A.47.10, A.47.11, there is a next state for σ1.
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Case: when control(σ1) /∈ addr(F, θ). Applying the Lemma A.43, there exists

some l′ ∈ exits(F ) such that

control(σ1) = θ(l′) (A.47.12)

Then,

control(σ′1) = θ′(l′) (A.47.13)

Since Ψ′ is a normal label-continuation set relative to F , there is some l′.p′ ∈ Ψ′

such that control(σ1) = θ(l′). Furthermore,

A [[p′]] m of(σ1) = A [[p′]] m of(σ′1) = tt (A.47.14)

Otherwise, because of the arrangement to the instruction memory in σ′1, the state

σ′1 will eventually get stuck — contradiction with A.47.11. �

With Lemma A.41 and Lemma A.42, we have that the continuation-style se-

mantics and direct-style semantics are equivalent.

Theorem A.48 Assume (F, Ψ′, Ψ) is normal. Assume the assertion language is

negatively testable by the statement language. Then, |= {Ψ}F{Ψ′} is equivalent to

F ; Ψ′ |= Ψ.

A.3 Completeness Proof of Lc

Lemma A.49 Let p ∈ Assertion, F ∈ FragSet, l ∈ entries(F ), and Ψ′ ∈ LContSet.

If p ' wp(l, F, Ψ′), then

(i) F ; Ψ′ |= {l . p} (i.e., p is a precondition)
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(ii) ∀p′ ∈ Assertion.
(
F ; Ψ′ |= {l . p′} ⇒ |= p′ ⇒ p

)
(p is the weakest)

Proof. (i). Choose θ ∈ LMap, σ ∈ Σ, k ∈ N. Assume

loaded(F, i of(σ), θ), (A.49.1)

σ; θ |=k Ψ′. (A.49.2)

The goal is to prove σ; θ |=k+1 {l . p}. From its definition, choose σ′ ∈ Σ and assume

σ 7→∗
θ σ′, (A.49.3)

control(σ′) = θ(l), (A.49.4)

A [[p]] (m of(σ′)) = tt. (A.49.5)

We need to prove that safe state(σ′, k + 1).

From the Lemma A.29, the result A.49.3 and A.49.1, we have

loaded(F, i of(σ′), θ) (A.49.6)

From the Lemma A.39 (iii), and the result A.49.3 and A.49.2, we have

σ′; θ |=k Ψ′ (A.49.7)

Now use the definition of p ' wp(l, F, Ψ′), together with A.49.5, A.49.6, A.49.7

and A.49.4, to get the conclusion

safe state(σ′, k + 1)
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(ii). To prove |= p′ ⇒ p, assume

A [[p′]] m = tt, (A.49.8)

and the goal is A [[p]] m = tt. By the definition of p ' wp(l, F, Ψ′), it is sufficient to

prove the following:

∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded(F, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ′

)
⇒ safe state((θ(l), π, m), k + 1)

(A.49.9)

To prove it, pick θ ∈ LMap, π ∈ IM , k ∈ N, assume

loaded(F, π, θ), (A.49.10)

(θ(l), π, m); θ |=k Ψ′. (A.49.11)

Now, use the assumption F ; Ψ′ |= {l . p′}. Unpack its definition, use the

result A.49.10, A.49.11, (θ(l), π, m) 7→∗
θ (θ(l), π, m), A.49.8, to get

safe state((θ(l), π, m), k + 1). �

Theorem A.50 Assume D is complete. Assume Assertion is negatively testable by

the statement language. Let F = {l : (t) : l′}. Let Ψ′ ∈ LContSet, and assume Ψ′

is a normal exit label-continuation set relative to F . Then we can find an assertion

p such that p ' wp(l, {l : (t) : l′}, Ψ′) and {l : (t) : l′} ; Ψ′ ` {l . p} is derivable in

Lc.

Proof. Proof by case analysis on t.

Case t = (x := e)
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Since exits(F ) = { l′ } and Ψ′ is normal, assume Ψ′ = {l′ . p′} for some assertion

p′.

Let p = p′[e/x]. Then,

{l : (x := e) : l′} ; {l′ . p′} ` {l . p′[e/x]} (A.50.1)

is derivable by the assign rule.

Then, we prove that p′[e/x] is a weakest precondition, i.e.,

p′[e/x] ' wp(l, {l : (x := e) : l′}, {l′ . p′}) (A.50.2)

By definition 2.12, we need to prove that

∀m ∈ DM . A [[p′[e/x]]] m = tt

⇔


∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded({l : (x := e) : l′}, π, θ) ∧
(
(θ(l), π, m); θ |=k {l′ . p′}

)
⇒ safe state((θ(l), π, m), k + 1)


(A.50.3)

From the soundness theorem (Theorem A.34) , and the result A.50.1, we have

{l : (x := e) : l′} ; {l′ . p′} |= {l . p′[e/x]},

by which we can easily prove the forward direction in the goal A.50.3.
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For the backward direction, assume

∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded({l : (x := e) : l′}, π, θ) ∧
(
(θ(l), π, m); θ |=k {l′ . p′}

)
⇒ safe state((θ(l), π, m), k + 1)

(A.50.4)

We prove A [[p′[e/x]]] m = tt by contradiction.

Suppose A [[p′[e/x]]] m = ff. Construct θ ∈ LMap, π ∈ IM so that π is arranged

like the following:

• At θ(l), put the statement x := e.

• After x := e, put test(p′), and then illegal.

Construct a state (θ(l), π, m). Because of the arrangement of of π and θ, the

following two results can be verified:

loaded({l : (x := e) : l′}, π, θ) (A.50.5)

(θ(l), π, m); θ |=k {l′ . p′} (A.50.6)

Therefore, from A.50.4, we have safe state((θ(l), π, m), k + 1) for any k.

If A [[p′[e/x]]] m = ff, then by the Lemma A.30 (iii), we have that A [[p′]] m[x 7→ V [[e]] m] =

ff. This means that the state (θ(l), π, m) will reach an illegal statement eventually,

which contradicts with the result safe state((θ(l), π, m), k + 1) for any k.

Case t = (goto l1)

Since exits({l : (goto l1) : l′}) = { l1, l
′ }, assume Ψ′ = {l1 . p1, l

′ . p′} for some

assertion p1 and p′.
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Then,

{l : (goto l1) : l′} ; {l1 . p1, l
′ . p′} ` {l . p1} (A.50.7)

is derivable by the goto rule and the weaken rule.

By a proof similar to the case of t = (x := e), we can prove that p1 is a weakest

precondition of l, or

p1 ' wp(l, {l : (goto l1) : l′}, {l1 . p1, l
′ . p′}) (A.50.8)

Case t = (if b goto l1)

Since exits({l : (if b goto l1) : l′}) = { l1, l
′ }, assume Ψ′ = {l1 . p1, l

′ . p′} for

some assertion p1 and p′.

Let p = (b ⇒ p1) ∧ (¬b ⇒ p′). By the if rule, Lc can derive

{l : (if b goto l1) : l′} ; {l1 . p ∧ b, l′ . p ∧ ¬b} ` {l . p} (A.50.9)

Since D is complete, the following two are derivable:

`D p ∧ b ⇒ p1 (A.50.10)

`D p ∧ ¬b ⇒ p′ (A.50.11)

Use the weaken rule twice on A.50.9 to get

{l : (if b goto l1) : l′} ; {l1 . p1, l
′ . p′} ` {l . p} (A.50.12)
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At the same time, by a proof similar to the case of t = (x := e), we can prove

that p is a weakest precondition of l, or

p ' wp(l, {l : (if b goto l1) : l′}, {l1 . p1, l
′ . p′}) (A.50.13)

�

Theorem A.51 Assume D is complete and Assertion is expressive relative to
∮
.

Assume Assertion is negatively testable by the statement language. Let F be a

normal fragment set, and Ψ′ be a normal exit label-continuation set relative to F .

Then for all l ∈ entries(F ), we can find an assertion p such that p ' wp(l, F, Ψ′)

and F ; Ψ′ ` {l . p} is derivable in Lc.

Before proving this theorem, we first prove an auxiliary lemma.

Lemma A.52 Assume Assertion is negatively testable by the statement language.

Let F1, F2 ∈ FragSet and F1 ∪ F2 is a normal fragment set. Let Ψ be a normal

exit label-continuation set relative to F1 ∪ F2. Let L2 = exits(F1) ∩ entries(F2). Let

Ψ2 be a label-continuation set for labels in L2 such that for each l2 ∈ L2, there is

one assertion p2 such that l2 . p2 ∈ Ψ2 and p2 ' wp(l2, F1 ∪ F2, Ψ). Then for any

assertion p, p ' wp(l, F1 ∪ F2, Ψ) ⇔ p ' wp(l, F1, Ψ ∪Ψ2).
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Proof. The conclusion can be proved if the following equivalence is true:

∀m ∈ DM .
∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded(F1 ∪ F2, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ

)
⇒ safe state((θ(l), π, m), k + 1)


⇔

∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded(F1, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ ∪Ψ2

)
⇒ safe state((θ(l), π, m), k + 1)


“⇒”. Assume

∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded(F1 ∪ F2, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ

)
⇒ safe state((θ(l), π, m), k + 1)

(A.52.1)

Pick θ ∈ LMap, π ∈ IM and k ∈ N and assume

loaded(F1, π, θ) (A.52.2)

(θ(l), π, m); θ |=k Ψ ∪Ψ2 (A.52.3)

and safe state((θ(l), π, m), k + 1) needs to be proved. To prove it, choose j < k +1,

and a sequence of states σ0, σ1, . . . , σj such that

(θ(l), π, m) = σ0 7→ σ1 7→ . . . 7→ σj (A.52.4)
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The new goal is to show the existence of σj+1 such that σj 7→ σj+1.

The proof uses a new π′ and θ′, whose arrangement is:

(i) The instruction memory π′ contains both F1 and F2 such that loaded(F1 ∪ F2, π
′, θ′)

is true.

(ii) For each l′.p′ ∈ Ψ, put test(p′) at the address θ′(l′) in π′; hence, (θ′(l), π′, m); θ′ |=k

Ψ is true. Furthermore, after test(p′), put an illegal statement.

Therefore, by A.52.1, we get

∀k ∈ N. safe state((θ′(l), π′, m), k + 1) (A.52.5)

That is, the state (θ′(l), π′, m) can run for any number of steps.

The state (θ(l), π, m) and (θ′(l), π′, m) are related:

(θ(l), π, m)
F1,θ,θ′

� (θ′(l), π′, m) (A.52.6)

The proof proceeds in two cases.

Case ∀0 ≤ i ≤ j. control(σi) ∈ addr(F1, θ). That is, the control never leaves

the address space of F1. Thus, σ0
F1,θ
 σj is true. By Corollary A.47, there is some

σ′j ∈ Σ such that (θ′(l), π′, m)
F1,θ′

 σ′j and σj

F1,θ,θ′

� σ′j. Use Lemma A.46, and the

fact that σ′j has a next state (by A.52.5), to get a σj+1 ∈ Σ such that σj 7→ σj+1.

Case ∃i ≤ j. control(σi) /∈ addr(F1, θ). Let i be the least such number. Since

control(σ0) ∈ addr(F1, θ), we must have that i > 0. Thus, the length of computation

from σi to σj is less than k.

Therefore, if we can show safe state(σi, k), the goal ∃σj+1. σj 7→ σj+1 follows

from the definition of safe state(σi, k).
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To prove safe state(σi, k), the first observation is that the control of σi is at some

label in exits(F1), by Lemma A.43. We then divide the proof of safe state(σi, k)

into two subcases.

Subcase ∃l′. control(σi) = θ(l′) ∧ l′ ∈ exits(F1) ∧ l′ /∈ entries(F2). Therefore,

l′ ∈ exits(F1 ∪ F2). Because Ψ is a normal exit label-continuation set relative to

F1 ∪ F2, there is some assertion p′ such that l′ . p′ ∈ Ψ.

Because i is the least index such that control(σi) /∈ addr(F1, θ), we can prove that

σ0
F1,θ
 σi. By Corollary A.47, there is some σ′i ∈ Σ such that (θ′(l), π′, m)

F1,θ′

 σ′i

and σi

F1,θ,θ′

� σ′i.

Now we prove that A [[p′]] (m of(σi)) = tt. Otherwise, because of σi

F1,θ,θ′

� σ′i,

A [[p′]] (m of(σ′i)) = A [[p′]] (m of(σi)) = ff, and the next sequence of statements to

execute in the state σ′i are test(p′) and then illegal. By the definition of test(p′),

σ′i will reach the illegal statement, and thus will get stuck. This contradicts with

the result A.52.5.

With A [[p′]] (m of(σi)) = tt, we can use A.52.3 to get that safe state(σi, k).

Subcase ∃l2. control(σi) = θ(l2) ∧ l2 ∈ exits(F1) ∩ entries(F2). In this case, the

following statement is true

∀θ′′ ∈ LMap, π′′ ∈ IM , k ∈ N

loaded(F1 ∪ F2, π
′′, θ′′) ∧

(
(θ′′(l2), π

′′, m); θ′′ |=k Ψ
)

⇒ safe state((θ′′(l2), π
′′, m of(σi)), k + 1).

(A.52.7)

The proof is similar to the proof of the first subcase. First, the state σ′i and

(θ′′(l2), π
′′, m of(σi)) are related:

σ′i
F1∪F2,θ′,θ′′

� (θ′′(l2), π
′′, m of(σi)).
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Then by Corollary A.47, and the fact that σ′i never gets stuck to get that

safe state((θ′′(l2), π
′′, m of(σi)), k + 1).

Suppose p2 is the assertion such that l2 . p2 ∈ Ψ2. By the definition

p2 ' wp(l2, F1 ∪ F2, Ψ) and the result A.52.7, we get A [[p2]] m of(σi) = tt. Then by

A.52.3, we get safe state(σi, k).

“⇐”. Assume

∀θ ∈ LMap, π ∈ IM , k ∈ N

loaded(F1, π, θ) ∧
(
(θ(l), π, m); θ |=k Ψ ∪Ψ2

)
⇒ safe state((θ(l), π, m), k + 1)

(A.52.8)

Choose θ ∈ LMap, π ∈ IM and k ∈ N, assume

loaded(F1 ∪ F2, π, θ), (A.52.9)

(θ(l), π, m); θ |=k Ψ, (A.52.10)

and the goal is safe state((θ(l), π, m), k + 1). To prove it, choose j < k + 1, and a

sequence of states σ0, σ1, . . . , σj such that

(θ(l), π, m) = σ0 7→ σ1 7→ . . . 7→ σj, (A.52.11)

and the new goal is to show the existence of some σj+1 such that σj 7→ σj+1.

Construct π′ and θ′ whose arrangement is like the following:

(i) The instruction memory π′ contains F1 such that loaded(F1, π
′, θ′).
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(ii) For each l′ . p′ ∈ Ψ ∪ Ψ2, put test(p′) at the address θ′(l′) in π′; hence,

(θ′(l), π′, m); θ′ |=k Ψ ∪Ψ2 is true. Furthermore, after the statement test(p′),

put an illegal statement.

Therefore, A.52.8 gives

∀k ∈ N. safe state((θ′(l), π′, m), k) (A.52.12)

Also, it is easy to verify

(θ(l), π, m)
F1,θ,θ′

� (θ′(l), π′, m) (A.52.13)

If ∀0 ≤ i ≤ j. control(σi) ∈ addr(F1, θ), or ∃i < j. ∃l′. control(σi) = θ(l′) ∧ l′ ∈

exits(F1 ∪ F2), a proof which is the similar to the one in the forward direction of

this lemma will prove ∃σj+1 ∈ Σ. σj 7→ σj+1.

The interesting case is when there is some σi such that ∃l2. control(σi) =

θ(l2) ∧ l2 ∈ exits(F1) ∩ entries(F2). Assume i is the least index with the property.

Then by Corollary A.47, there is some σ′i ∈ Σ such that

σi

F1,θ,θ′

� σ′i (A.52.14)

(θ′(l), π′, m)
F1,θ′

 σ′i (A.52.15)

Therefore, control(σ′i) = θ′(l2). Now derive A [[p2]] (m of(σi)) = A [[p2]] (m of(σ′i)) =

tt. Otherwise, the state σ′i will get stuck eventually.

Use the definition of p2 ' wp(l2, F1 ∪ F2, Ψ), with A [[p2]] (m of(σi)) = tt, to

derive safe state(σi, k + 1).
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The computation from σi to σj has length less than k + 1. Therefore, by the

definition of safe state(σi, k + 1), there is some σj+1 such that σj 7→θ σj+1. �

Proof of Theorem A.51. By induction over the number of fragments in F .

When the number is exactly one, use Theorem A.50. When the number is greater

than one, divide F into two disjoint sets, F1 and F2, so that each one has at least

one fragment.

Define label sets L1 and L2 to be

L1 = entries(F1) ∩ exits(F2)

L2 = entries(F2) ∩ exits(F1)

That is, L1 is the set of labels that are defined in F1 and are exits of F2. L2 is the

set of labels that are defined in F2 and are exits of F1.

Because that the assertion language is expressive, for each l1 ∈ L1, there is some

p1 ∈ Assertion such that p1 ' wp(l1, F1 ∪ F2, Ψ
′). Construct Ψ1 ∈ LContSet to be

a set of such l1 . p1.

Similarly, for each l2 ∈ L2, there is some p2 ∈ Assertion such that p2 '

wp(l2, F1 ∪ F2, Ψ
′). Construct Ψ2 ∈ LContSet to be a set of such l2 . p2.

For each l1 . p1 ∈ Ψ1, use the induction hypothesis on F1 and l1. Hence, there is

some p′1 such that

p′1 ' wp(l1, F1, Ψ
′ ∪Ψ2) (A.52.1)

F1 ; Ψ′ ∪Ψ2 ` {l1 . p′1} (A.52.2)
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Use Lemma A.52, together with the result A.52.1, to get

p′1 ' wp(l1, F1 ∪ F2, Ψ
′) (A.52.3)

Since p1 ' wp(l1, {l : (s1; s2) : l′}, Ψ′), we can derive that |= p1 ⇔ p′1. Because

D is complete, `D p1 ⇔ p′1 is derivable.

Use the weaken rule on the judgment A.52.2 to get

F1 ; Ψ′ ∪Ψ2 ` {l1 . p1} (A.52.4)

Since the above judgment is derivable for each l1 . p1 ∈ Ψ1, the combine rule can

derive

F1 ; Ψ′ ∪Ψ2 ` Ψ1 (A.52.5)

Use a similar reasoning on Ψ2, the following judgment is also derivable:

F2 ; Ψ′ ∪Ψ1 ` Ψ2. (A.52.6)

Now discuss the label l in the statement of theorem. Without loss of generality,

assume l ∈ entries(F1). Use the induction hypothesis on F1 and l, we have some

p ∈ Assertion such that

p ' wp(l, F1, Ψ
′ ∪Ψ2) (A.52.7)

F1 ; Ψ′ ∪Ψ2 ` {l . p} (A.52.8)
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By Lemma A.52, together with the result A.52.7, we have

p ' wp(l, F1 ∪ F2, Ψ
′) (A.52.9)

Use the combine rule to combine judgments A.52.5, A.52.6 and A.52.8, to get

F1 ∪ F2 ; Ψ′ ∪Ψ1 ∪Ψ2 ` Ψ1 ∪Ψ2 ∪ {l . p} (A.52.10)

Use the discharge rule multiple times to discharge Ψ1 ∪Ψ2 on the left of `:

F1 ∪ F2 ; Ψ′ ` Ψ1 ∪Ψ2 ∪ {l . p} (A.52.11)

Use the weaken rule, together with ` Ψ1 ∪Ψ2 ∪ {l . p} ⇒ {l . p}, to get

F1 ∪ F2 ; Ψ′ ` {l . p} (A.52.12)

�

Theorem A.53 (Completeness.)

Assume D is complete and Assertion is expressive relative to
∮
. Assume Assertion

is negatively testable by the statement language. Let Assume (F, Ψ′, Ψ) is normal.

If F ; Ψ′ |= Ψ, then F ; Ψ′ ` Ψ.

Proof. For each l . p ∈ Ψ, F ; Ψ′ |= {l . p}, because F ; Ψ′ |= Ψ.
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Since Ψ is a normal entry label-continuation set relative to F , we have l ∈

entries(F ). Use Theorem A.51, there is some p′ ∈ Assertion, such that

p′ ' wp(l, F, Ψ′) (A.53.1)

F ; Ψ′ ` {l . p′} (A.53.2)

By Lemma A.49 (ii), together with F ; Ψ′ |= {l . p} and the result A.53.1, get

|= p ⇒ p′

By the completeness of D, `D p ⇒ p′ is derivable. By the weaken rule, together

with the judgment A.53.2, gives that

F ; Ψ′ ` {l . p}

The above judgment is derivable for each l . p ∈ Ψ. Then the combine rule gives

F ; Ψ′ ` Ψ

�
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