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Abstract. The motif finding problem is to locate a collection of mutu-
ally similar subsequences within a given set of DNA sequences. This is
an important problem, as such shared motifs often correspond to regula-
tory elements. We study a combinatorial framework for the motif finding
problem, where the goal is to find a minimum (or maximum) weighted
clique in a k-partite graph. Previous approaches to find these cliques have
relied on graph pruning and divide-and-conquer techniques. Recently, it
has been shown that mathematical programming is a promising approach
for motif finding. Here, we describe a novel integer linear programming
formulation for the problem. A key observation driving our formulation
is that the weights on the edges in the graph come from a small set of
possibilities. We show that our new formulation leads to a method that is
highly effective in practice on instances arising from biological sequence
data. We are able to solve these problems to optimality often many times
faster than the existing mathematical programming approach.

1 Introduction

A central challenge in post-genomic biology is to reconstruct the regulatory net-
work of an organism. A key step in this process is the discovery of regulatory
elements. A commonly studied paradigm starts with a set of DNA sequences that
contain binding sites for a common regulatory protein, and then finds shared (or
similar) subsequences in each. These subsequences, or motifs, are putative bind-
ing sites for the same factor. The effectiveness of identifying regulatory elements
in this manner has been demonstrated when considering sets of sequences iden-
tified via shared co-expression [29], orthology [6, 12], and genome-wide location
analysis [16]).

From a computational point of view, the motif finding problem can be for-
mulated in different ways, and while many methods work reasonably well, a
recent comprehensive study by [31] shows that no single motif finding method
exhibits a high absolute measure of correctness. Broadly speaking, the methods
are either probabilistic or combinatorial. Probabilistic approaches estimate pa-
rameters of a motif model using maximum likelihood or maximum a posterior
estimation to find the parameters of these models [15, 4, 14, 17, 9]. Combinato-
rial approaches either enumerate through all allowed motifs (e.g., [30, 27, 18, 32,



8, 21]), or attempt to maximize some measure based on sequence similarity, or
minimize some measure based on distance (e.g., [11, 24, 22, 28]).

We take the combinatorial approach and formulate the motif finding prob-
lem as that of finding the best gapless local multiple sequence alignment using
the sum-of-pairs (SP) scoring scheme. The SP-score is one of many reasonable
schemes for assessing motif conservation [20, 26]. The combinatorial problem is
equivalent to that of finding a minimum weight clique of size p in a p-partite
graph (e.g. [23, 22, 28]).

For general notions of distance, this problem is NP-hard to approximate
within any reasonable factor [5]. In the motif finding setting, where the distances
obey the triangle inequality, the problem remains NP-hard [1]. While constant-
factor approximation algorithms exist [10, 3], the ability to find the optimal
solution in practice is preferable.

Our approach follows that of [33], which introduced the integer linear pro-
gramming (ILP) formulation of the motif finding problem. Their testing on iden-
tifying known DNA binding sites of E. coli transcription factors [25] shows that
the approach performs well for motif finding, identifying either known motifs or
motifs of higher conservation. However, a difficulty mentioned in [33] is the size
of the integer linear programs, which can have millions of variables for interesting
biological problems. In that work, the authors tackle the ILPs by preprocessing
with graph pruning and decomposition techniques. Here, we take an alternate
direction and propose a novel, more compact ILP that cleverly utilizes the dis-
crete nature of the distance metric imposed on pairs of subsequences. We present
a class of constraints to make the linear programming relaxation of the new for-
mulation provably as tight as that given in [33]. Instead of introducing all of
these additional constraints, we describe and test a heuristic approach to solve
the LP relaxation of our novel ILP formulation that, in all observed cases, finds
a solution of the same objective value as the LP relaxation of [33], often an order
of magnitude faster. Moreover, we show that in practice, the LP relaxations for
both of the ILP formulations often have integral optimal solutions, making solv-
ing the LP relaxations sufficient for solving the original ILP. Even if this were
not the case, the ability to find faster solutions to the relaxations may translate
into significant speed-ups in branch-and-bound approaches for ILP solving.

2 Formal Problem Specification

In the motif finding problem, we are given p sequences, which are assumed
without loss of generality to each have length N ′, and a motif length `. The
goal is to find a substring si of length l in each sequence i, such that the sum
of the pairwise distances between the substrings (i.e.,

∑
i<j distance(si, sj)) is

minimized. The distance between substrings may be defined in several ways.
The simplest measure, and the one we restrict ourselves to in this paper is the
Hamming distance.

It is convenient to rephrase the motif finding problem in graph theoretic
terms [23]. For a problem with p sequences, we define a complete, weighted p-



partite graph, with a part Vi for each sequence. In Vi, there is a node for every
possible window of length ` in sequence i. Thus there are N := N ′ − ` + 1 nodes
in each Vi, and the vertex set V = V1 ∪ · · · ∪ Vp has size Np. For every pair
u and v in different parts there is an edge (u, v) ∈ E . Letting seq(u) denote
the subsequence corresponding to node u, the weight wuv on edge (u, v) equals
distance(seq(u), seq(v)). The goal in motif finding is to choose a node from each
part so as to minimize the weight of the induced subgraph. We note that the
combinatorial formulation of the “subtle motifs” problem is similar [22], though
in that case edges exist only between nodes corresponding to subsequences that
are within a certain distance of one another. The approach we outline below can
be extended to that context as well.

3 Integer and Linear Programming Formulations

3.1 Original integer linear programming formulation

[33] introduced the following integer linear programming (ILP) formulation of
the motif finding problem. In this ILP formulation, there is a variable Xu for
each node u in the graph described above. The variable Xu is set to 1 if node
u is chosen, and 0 otherwise. Additionally, there is one variable Xuv for each
edge in the graph (Xuv is the same as Xvu). These edge variables are set to 1 if
both end points of the edge are chosen. In the integer programming setting all
variables are constrained to take values from {0, 1}. The following ILP is easily
seen to model the above graph problem:

Minimize
∑

{u,v}∈E wuv · Xuv

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p∑
u∈Vi

Xuv = Xv for i = 1, . . . , p and v ∈ V \ Vj

(IP1)

The first set of constraints ensures that one node is chosen from each part, and
the second set requires that an edge is chosen if its end points are. This ILP is
the same as the ILP formulation for side-chain positioning presented in [13], and
similar to the ILP in [2].

3.2 New integer linear programming formulation

Since the alphabet and the length of the sequences are finite, there are only a
finite number of possible pairwise distances. For example, in the case of Hamming
distances, edge weights can only take on `+1 different values. We take advantage
of the small number of possible weights and the fact that the edge variables of IP1
are only used to ensure that if two nodes u and v are chosen in the optimal
solution then wuv is added to the cost of the clique. We introduce a second ILP
in which we no longer have edge variables Xuv. Instead, in addition to the node
variables Xu, we have a variable Yujc for each node u, each position j such that u



is not in Vj , and each possible edge weight c. These Y variables model groupings
of the edges by cost into cost bins. The intuition is that Yujc is 1 if node u and
some node v ∈ Vj are chosen s. t. wuv = c. Formally, let D be the set of possible
edge weights and let W = {(u, j, c) : c ∈ D,u ∈ V, j ∈ 1, . . . p and u 6∈ Vj} be
the set of triples over which the Yujc variables are indexed. Then the following
ILP models the motif-finding graph problem:

Minimize
∑

(u,j,c)∈W :part(u)<j c · Yujc

subject to∑
u∈Vi

Xu = 1 for i = 1, . . . , p (IP2a)∑
c∈D Yujc = Xu for j ∈ 1, . . . , p and u ∈ V \ Vj (IP2b)∑
v∈Vj :wuv=c Yvic ≥ Yujc for (u, j, c) ∈ W s.t. part(u) < j (IP2c)

(IP2)

Fig. 1. Schematic of IP2. Adjacent to
each node u there are at most |D| cost
bins, each associated with a variable
Yujc. Associated with each cost c are
the nodes v ∈ Vj for which wuv =
c (represented in the figure by stars).
Constraints (IP2b) say that we must
spread a total of Xu weight apportioned
over the bins, while constraints (IP2c)
limit us to choosing cost bin variables
where there is some node v ∈ Vj chosen
such that wuv = c.

As in the previous formulation, the
first set of constraints forces a single
node to be chosen in each part. The
second set of constraints says that if
a node u is chosen, for each j, one of
its “adjacent” cost bins must also be
chosen (Fig. 1). The third set of con-
straints ensures that Yujc can be cho-
sen only if some node v ∈ Vj is also
chosen such that wuv = c. We discard
variables Yujc if there is no v ∈ Vj such
that wuv = c. Fig. 1 gives a schematic
drawing of these constraints.

It is straightforward to see that
IP2 correctly models the motif-finding
problem if the variables are ∈ {0, 1}.
For any choice of p-clique {u1, . . . , up}
of weight µ =

∑
i<j wuiuj

, a solution
of cost γ to IP2 can be found by tak-
ing Xui

= 1 for i = 1 . . . , p, and taking
Yuijc = 1 for all 1 ≤ j ≤ p such that
wuiuj

= c. This solution is easily seen
to be feasible, and between any pair of
positions i, j it contributes cost wuiuj

; therefore, the total cost is γ. On the
other hand, consider any solution (X,Y ) to IP2 of objective value γ. Consider
the clique formed by the nodes u such that Xu = 1. Between every two positions
i < j, the constraints (IP2a) and (IP2b) imply that exactly one one Yujc and
one Yvid are set to 1 for some u ∈ Vi and v ∈ Vj and costs c, d. Constraint (IP2c)
corresponding to (u, j, c) with Yujc on its right-hand side can only be satisfied if
the sum on its left-hand side is 1, which implies c = d = wuv. Thus, a clique of
weight γ exists in the motif-finding graph problem.



3.3 Advantages of IP2

In practice, IP2 has many fewer variables than IP1. IP1 has Np(N(p−1)/2+1)
variables and p + Np(p − 1) constraints. If none of the Yujc variables can be
thrown out, IP2 has Np((p − 1)d + 1) variables and p + Np(p − 1)(d/2 + 1)
constraints, where d = |D|, the number of kinds of weights. If d < N/2, the
second IP will have fewer variables. In practice, d is expected to be much smaller
than N , and while N could reasonably be expected to grow large as longer and
longer sequences become practical to study, d is constrained by the geometry of
transcription factor binding and will remain small. Also, in practice, it is likely
that many Yujc variables are removed because seq(u) does not have matches of
every possible weight in each of the other sequences. IP2, on the other hand, will
have O(d) times more constraints than IP1.

While the space requirement for the simplex algorithm is related to the num-
ber of constraints and variables, running time is not necessarily directly related.
Smaller integer programs with weaker LP relaxations are often less useful for
branch-and-bound approaches to IP solving. Thus, we seek the tightest, small-
est IP possible. In the end, experiments must be performed to gauge the efficacy
of various formulations on practical problems. We present experiments below
which suggest IP2 can be more than an order of magnitude faster than IP1.

The recasting of the problem such that the number of edge weights becomes
the determining factor of problem size suggests several avenues for practical per-
formance enhancements. For example, it is often the case that one is interested
in an optimal solution only if it is of high enough quality, meaning that no motif
instance in the solution is further than α away from any other (the diameter
of the solution is ≤ α). If this is the case, edges of weight > α can be deleted.
Such a requirement reduces d and makes IP2 still smaller. In many applications,
even if large diameter solutions are acceptable, there is an expectation that the
diameter is likely small, and a solution with a small diameter may be preferred
to one with a lower sum-of-pairs score but more outliers. In such a case, the IP2
formulation may allow one to check for low diameter solutions quickly.

3.4 Linear Programming Relaxation

The typical approach to solving an ILP is to solve the linear program derived
from the ILP by dropping the requirement that the variables be in {0, 1}, and
instead requiring only that the variables lie in the continuous range [0, 1]. This
modified problem is called the linear programming (LP) relaxation. Efficient
algorithms are known for solving linear programs. In the case of minimization,
an ILP formulation is weaker than another if the corresponding LP relaxation
of the first admits a solution of lower objective value than is possible with the
second (stronger formulation is defined accordingly). Weaker relaxations are
often less useful in solving the corresponding ILP.

The LP relaxation of IP1, which we refer to as LP1, is stronger than the LP
relaxation of IP2 as stated. In this section, we present a fairly natural (though
exponential) class of constraints that, if added to the LP relaxation of IP2, makes



(a) (b)
Fig. 2. (a) N (u, j, c) is shown assuming that v and w are the only nodes in Vj that
have cost c with u. (b) Graph used to show (1) are sufficient.

the two formulations equivalent. We refer to this fully constrained relaxation of
IP2 as LP2. In the subsequent sections, we provide a separation algorithm and
also show that in practice we can focus on just two types of these constraints
in LP2, and we are able to solve the original ILP iteratively by adding cutting
planes corresponding to violated constraints of these types.

Additional constraints. Focus on a single pair of positions i and j. In IP1
the edge variables between Vi and Vj explictly model the bipartite graph be-
tween those two positions. In IP2, however, the bipartite graph is only implicitly
modeled by an understanding of which Y variables are compatible to be cho-
sen together. We study this implicit representation by considering the bipartite
compatibility graph Cij between two positions i and j. Intuitively, we have a
node in this compatibility graph for each Yujc and Yvic, and there is an edge
between the nodes corresponding to Yujc and Yvic if wuv = c. These two Y vari-
ables are compatible in that they can both be set to 1 in IP2. More formally,
Cij = (Aij , Aji, F ), where Aij = {(u, j, c) : u ∈ Vi, c ∈ D} is the set of indices
of Y variables adjacent to a node in Vi, going to position j, and Aji is defined
analogously, going in the opposite direction. The edge set F is defined in terms
of the neighbors of a triple (u, j, c). Let N (u, j, c) = {(v, i, c) : u ∈ Vi, (v, i, c) ∈
Aji and wuv = c} be the neighbors of (u, j, c). They are the indices of the Yvic

variables adjacent to position j going to position i so that the edge {u, v} has
weight c. There is an edge in F going between (u, j, c) and each of its neighbors.
We call c the cost of triple (u, j, c). All this notation is summarized in Fig. 2(a).

In any feasible integral solution, if Yujc = 1, then some Yvic for which
(v, i, c) ∈ N (u, j, c) must also be 1. Extending this insight to subsets of the
Yujc variables yields a class of constraints which will ensure that the resulting
linear programming formulation is as tight as LP1. If Qij is a subset of Aij , then
let N (Qij) =

⋃
(u,j,c)∈Qij

N (u, j, c) be the set of indices that are neighbors to

any vertex in Qij . If Qij ⊆ Aij then N (Qij) ⊆ Aji. The following constraint is



true in IP2 for any such Qij :

∑

(u,j,c)∈Qij

Yuic ≤
∑

(v,i,c)∈N (Qij)

Yvic . (1)

That is, choose any set of Yujc variables adjacent to position i that go to position
j. The sum of the Y variables for their neighbors must be greater than or equal to
the sum of the variables originally chosen. Notice that the third set of constraints
in IP2 are of the form (1), taking Qij to be the singleton set {(u, i, c)}.

Theorem 1. If for every pair i < j, constraints of the form (1) are added to IP2
for each Q ⊆ Aij such that all triples in Q are of the same cost then the resulting
LP relaxation LP2 is as strong as the relaxation LP1 of IP1.

Proof. For any feasible solution for LP2, we will show that there is a feasible
solution for LP1 with the same objective value, thereby demonstrating that the
optimal solution to LP2 is no smaller than the optimal solution to LP1. In
particular, fix a solution (X,Y ) to the LP2 with objective value γ. We need to
show that for any feasible distribution of weights on the Y variables a solution
to LP1 can be found with objective value γ.

In order to reconstruct a solution X̂ for LP1 of objective value γ, we will
set X̂u = Xu, using the values of the node variables Xu in the optimal solution
to LP2. We must assign values to X̂uv to complete the solution. Recall the
compatibility graph Cij described above. Because all edges in Cij are between
nodes of the same cost, Cij is really |D| disjoint bipartite graphs Cc

ij , one for
each cost. Let Ac

ij ∪ Ac
ji be the node set for the subgraph Cc

ij for cost c. Each
edge in a subgraph Cc

ij corresponds to one edge in the graph G underlying LP1.
Conversely, each edge in G corresponds to exactly one edge in one of the Cc

ij

graphs (if edge {u, v} has cost c1, it corresponds to an edge in Cc1

ij ). We will thus
proceed by assigning values to the edges in the various Cc

ij , and this will yield

values for the X̂uv.
If y(A) :=

∑
(u,j,c)∈A Yujc, by the first two sets of constraints in LP2, y(Aij) =

y(Aji) = 1. Since the constraints (1) are included with Q = Ac
ij for each cost

c, by the pigeonhole principle, y(Ac
ij) = y(Ac

ji) for every cost c. Thus, for each
subgraph Cc

ij , the weight placed on the left half equals the weight placed on the
right half. We will consider each induced subgraph Cc

ij separately.
We modify Cc

ij as follows to make it a directed, capacitated graph. Direct
the edges of Cc

ij so that they go from Ac
ji to Ac

ij , and set the capacities of these
edges to be infinite. Add two dummy nodes {r, s} and edges directed from r to
each node in Ac

ji and edges from each node in Ac
ij to s. Every edge adjacent to

r and s is also adjacent to some node representing a Y variable. Put capacities
on these edges equal to the value of the Y variable to which they are adjacent
(see Fig. 2(b)).

The desired solution to LP1 can be found if the weight of the nodes (Y
variables) in each compatibility subgraph can be spread over the edges. In other
words, a solution to LP1 of weight γ can be found if, for each c, there is a flow



of weight y(Ac
ij) from r to s in the above constructed graph. The assignment to

X̂uv will be the flow crossing the corresponding edge in the Cc
ij of appropriate

cost. Below we show that the set of constraints described in the theorem ensure
that the minimum cut in the constructed graph is ≥ y(Ac

ij), and thus that there
is a flow of the required weight. The proof of this fact can be found in [7] on
page 54-55, and is reproduced in our notation in the following lemma.

Lemma 1. The minimum cut of the flow graph described in the proof of Theo-
rem 1 (and shown in Fig. 2(b)) is y(Ac

ij).

Proof. Recall that the capacities of the edges leaving r are Yvic and those
entering s are Yujc, and that the total capacity leaving r equals the total entering
s, and this total capacity equals y(Ac

ij). We want to show that the minimum r−s
cut in this graph is ≥ y(Ac

ij).
Consider an r − s cut {r} ∪ A ∪ B where A ⊆ Ac

ji and B ⊆ Ac
ij . (Such a

cut is shaded in Fig. 2(b).) If any edges go between A and Ac
ij \ B then the

capacity is infinite, and we are done. Otherwise the value of the cut is the sum
of the capacities of the edges leaving r and going to Ac

ji \A plus the sum of the
capacities of the edges entering s from a node in B. This value is > y(Ac

ij) if
and only if

y(Ac
ji \ A) ≥ y(Ac

ij \ B) . (2)

Assume for a moment that all nodes in Ac
ji \ A have a neighbor in Ac

ij \ B.
Then N (Ac

ij \ B) = Ac
ji \ A because there are no edges between A and Ac

ij \ B.
Thus, (2) is satisfied if and only if

y(Q) ≤ y(N (Q)) , (3)

for any Q ⊆ Ac
ij , where Q is now standing in for Ac

ij \ B for various choices of
B in various cuts. Eqn. (3) equivalent to (1).

If there had been a node in Ac
ji \ A that did not have a neighbor in Ac

ij \ B
then we could have added that node to A to make A′, and (2) will hold for A if
and only if it holds for A′.

It is also clear that linear relaxation LP2 described in Theorem 1 is no
stronger than LP1 as any solution to LP1 can be converted to a solution of LP2
by putting the weight on edge variables Xuv onto Yujc and Yvic, where wuv = c.
This solution to LP2 will satisfy all the constraints in the theorem. Thus, we
have shown LP1 and LP2 to be equivalent. �

To solve LP2, a linear program with an exponential number of constraints, we
provide a separation algorithm, which finds a violated constraint, if one exists,
in polynomial time.

Theorem 2. There is an polynomial-time algorithm that can find a violated
constraint in LP2 or report that none exists.

Proof. Because each constraint in (1) involves variables of a single cost, if (1) is
violated for some set Q, then Q is a subset of an Ac

ji for some i, j, c, and so we



can consider each subgraph Cc
ij independently. The proof of Theorem 1 shows

that there is a violated constraint of the form (1) between i, j involving variables
of cost c if and only if the maximum flow in Cc

ij is less than y(Ac
ij). Thus, the

minimum cut can be found for each triple i, j, c, and, if a triple i, j, c is found
where the minimum cut is less than w(Ac

ij), one knows that a violated constraint
exists between positions i and j with Q ⊂ Ac

ij .
The minimum cut can then be examined to determine the violated constraint

explicitly. Let {r} ∪ A ∪ B be the minimum r – s cut in Cc
ij , with A ⊆ Ac

ji and
B ⊆ Ac

ij (following the notation of Lemma 1). Such a cut is shaded in Figure 2.
Let m be the capacity of this cut, and assume, because we are considering a
triple i, j, c that was identified as having a violated constraint, that w(Ac

ij) > m.

For ease of notation let Ā = Ac
ij \ A. Because m < ∞ there are no edges going

from A to Ac
ji \ B, and hence two things hold: (1) m = y(B) + y(Ā) and (2)

N (A) ⊆ B, and therefore y(N (A)) ≤ y(B). Chaining these facts together, we
have

y(A) = y(Ac
ij) − y(Ā) > m − y(Ā) = y(B) ≥ y(N(A)) ,

Thus, the set A is a set for which the constraint of the form (1) is violated. �

Fig. 3. Example graph Cc
ij

where the added constraints are
insufficient. All the constraints
with |Q| = 1 or |Q| = |Aij | are
satisfied, but the weights on one
side cannot be matched up with
weights on the other.

In practice not all of these constraints are
necessary. Some particular choices of Qij yield
constraints that are intuitively very useful
and are usually enough in practice. The con-
straints with the largest Qij , that is Qij =
Aij , were used in the proof of Theorem 1, and
we have found them to be useful in practice. In
fact, for this Qij inequality (1) is an equality.
LP2 already includes all the constraints with
Qij = {Yujc} ⊂ Ac

ij . Rather than including
constraints with 1 < |Qij | < |Ac

ij |, we include
the constraints with i and j reversed, taking
Qji = {Yvic} ⊆ Ac

ji for v ∈ Vj , which can be
seen to be weaker versions of constraints (1) with larger Qij sets. More detail
about our approach to and experiences with real problems can be found in Sec-
tion 4. Examples can be constructed for which these constraints are insufficient
to make LP2 as tight as LP1. For example, Fig. 3 gives a graph Cc

ij for a single
color for which all the constraints (1) hold but for which no solution of IP1 can
be constructed. However, we have not encountered such pathological cases in
practice, and so we do not explore adding constraints with |Q| > 1.

4 Computational Results

4.1 Methodology

We have found the following methodology to work well in practice. We first solve
the LP relaxation of IP2. If the solution is integral, we are finished. Otherwise,



we add any violated constraint of the form (1) with i and j reversed and with
|Qji| = 1, and resolve. We use the optimal basis of the previous iteration as a
starting point for the next, setting the dual variables for the added constraints
to be basic.

Because the variant of the simplex algorithm can make a large difference in
running time in practice, LP1 was solved using two different variants. In the
first (primal dualopt), the primal problem was solved using the dual simplex
algorithm. In the second (dual primalopt), the dual problem was solved using
the primal simplex algorithm. While, in theory, these two variants should per-
form similarly, in practice running times can differ significantly. Applying the
dual simplex method to the dual problem or the primal simplex to the primal
problem are not expected to perform as well, and small scale testing confirms
this intuition. LP2 was always solved using the dual simplex method applied to
the primal problem to make adding constraints faster.

The linear and integer programs were specified with Ampl and solved using
CPLEX 7.1. All experiments were run on a public 1.2 GHz SPARC workstation
shared by many researchers, using a single processor. All the timings reported
are in CPU seconds on this machine. For any run, any problem taking longer
than 5 hours was aborted.

4.2 Test Sets

We present results on identifying the binding sites of 50 transcription factor
families. We construct our data set from the data of [25, 19] in a fashion sim-
ilar to [20]. In short, we remove all sites for sigma-factors, duplicate sites, as
well as those that could not be unambiguously located in the genome. For each
transcription factor under consideration, we extract the proteins it is regulat-
ing, and gather at least 300 base pairs of genomic sequence upstream of ther
transcription start sites. In those cases where the binding site is located further
upstream, we extend the sequence to include the binding site. The window size
for each family was chosen based on the length of the consensus binding site
size, determined from other biological studies. The families, their sizes and the
length of the binding site are shown in Table 1.

4.3 Performance of the LP relaxations

We solved LP1 and LP2 relaxations for the 50 problems in Table 1. The running
times of LP2 are shown in Fig. 4(b). Generally, the initial set of constraints
is sufficient to get a tight solution. Six problems required adding constraints
to LP2 in order to make it as tight as LP1. The problems flhCD, torR, and hu
required 2 cutting plane iterations, ompR required 3, oxyR required 4, and nagC
required 5. Running times reported in Fig. 4(b) are the sum of the solve times
of all cutting plane iterations.

Of the problems solvable in < 5 hours, only 3 were not integral. This is
somewhat surprising. Of course, there is much structure to real problems, which
may make them less susceptible to the worst-case analysis. The success of the



TF ` p n TF ` p n TF ` p n TF ` p n

ada 31 3 810 fhlA 27 2 731 ilvY 27 2 1079 ntrC 17 5 1516
araC 48 6 1715 fis 35 18 5371 lacI 21 2 560 ompR 20 9 3057
arcA 15 13 4790 flhCD 31 3 810 lexA 20 19 5554 oxyR 39 4 1048
argR 18 17 5960 fnr 22 12 3705 lrp 25 14 4090 pdhR 17 2 568
carP 25 2 552 fruR 16 11 4082 malT 10 10 3410 phoB 22 14 4618
cpxR 15 9 2614 fur 18 9 3182 marR 24 2 813 purR 26 20 5856
cspA 20 4 1410 galR 16 7 2188 melR 18 2 717 rhaS 50 2 502
cynR 21 2 854 gcvA 20 4 1234 metJ 16 15 5754 soxS 35 13 4004
cysB 40 3 783 glpR 20 11 3829 metR 15 8 3312 torR 10 4 2198
cytR 18 5 1695 hipB 30 4 1084 modE 24 3 934 trpR 24 4 1108
dnaA 15 8 2381 hns 11 5 1485 nagC 23 6 1870 tus 23 5 1390
fadR 17 7 2122 hu 16 2 571 narL 16 10 3301 tyrR 22 17 5258
farR 10 3 873 iclR 15 2 588

Table 1. Sizes for the 50 problems considered: number of sequences (p), motif length
(`), and total number of nodes in the underlying graph (n).

LP relaxations in finding integral solutions suggests that handling non-integral
cases may not be as pressing a problem as one would think.

We compared the running time of LP2 with that of LP1 by taking as the
running time of LP1 that of the simplex variant that performed the best. In
order words, we take the speed-up factor to be:

min(primal dualopt, dual primalopt)

LP2
(4)

This gives LP1 the benefit of the doubt. In practice, always achiving the runtime
used in the numerator would require running each variant in parallel using 2
processors. The speed-up factors for these problems are shown in Fig. 4(a).
For 10 problems, neither simplex variant completed in < 5 hours when applied
to LP1, whereas LP2 did. For these problems, the numerator of (4) was taken
to be 5 hours. This gives a lower bound on the speed up. For one problem, cytR,
the reverse is true and LP2 could not finish within 5 hours, while both simplex
variants successfully solved it using LP1. For this problem, the denominator was
taken to be 5 hours, and (4) gives an upper bound. For 5 problems, no method
found a solution in < 5 hours; these are omitted from Fig. 4. Only cytR was
slower using LP2, and an order of magnitude increase in speed is common when
using LP2 compared with LP1.

As expected, the size of the constraint matrix (defined as the number of
constraints times the number of variables) is often be smaller for LP2. Fig. 4(c)
plots (size for LP2)/(size for LP1). While, in 5 cases the matrix for LP2 is larger,
in many cases it is < 50% the size of the matrix for LP1. A smaller constraint
matrix can often lead to faster iterations.

We also compared the motifs found by our approach to the set of known
transcription factor binding sites. In all cases, we found motifs that are at least
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Fig. 4. (a) Speed-up factor of LP2 over LP1 as defined in 4. Shaded bars correspond
to problems for which LP1 did not finish in < 5 hours. The doublely shaded bar (far
right) marks the problem for which LP2 did not finish in < 5 hours, but LP1 did. (b)
Running times in seconds for LP2. The y-axis is in log scale. (c) Matrix size for LP2
divided by that for LP1.

as well conserved as the actual binding sites (measured by average information
content). Since our test data are real genomic sequences, co-regulated genes may
in fact have multiple shared binding sites for different transcription factors.

5 Conclusions

In this paper, we introduced a novel ILP formulation of the motif finding problem
that works well in practice. In particular, it is significantly faster in finding
optimal solutions to motif finding instances than a previous ILP formulation
introduced by [33]. We note that a variety of graph pruning and decomposition
techniques have been introduced for motif finding (e.g., [23, 22]), and it is likely
that, in conjunction with those techniques, our formulation will be able to tackle
problems of significantly larger sizes.



There are many interesting avenues for future work. While the underlying
graph problem is essentially identical to that of [5, 13], one central difference
is that when minimizing distance in the motif finding application based on nu-
cleotide matches and mismatches, the triangle inequality is satisfied. The current
ILP formulations do not exploit this, and as a result, work in its absence. An-
other feature commonly present in motif finding that is not used here is that the
edge weights in the graph are not independent, as each node represents a subse-
quence from a window sliding along the DNA. Incorporating either the triangle
inequality or the correlation between edge weights into the ILP or its analy-
sis may lead to further advances in computational methods for motif finding.
Finally, it would also be useful to extend the basic formulation presented here
to other motif finding applications, for example, to find multiple co-occuring or
repeated motifs.
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