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Abstract

Motivation: Discovering approximately repeated patterns, or motifs, in genomic sequences

is an important problem in computational molecular biology. Most frequently, motif finding

applications arise when identifying shared regulatory signals within DNA sequences or shared

functional and structural elements within protein sequences. Due to the diversity of contexts in

which motif finding is applied, several variations of the problem are commonly studied.

Results: We introduce a versatile combinatorial optimization framework for the motif finding

problem, which couples graph pruning techniques with a novel integer linear programming for-

mulation. Our method is flexible and robust enough to accommodate several variants of the

motif finding problem, and we extend it to discover multiple motifs, as well as motifs found in

evolutionarily related sequences of varying phylogenetic distance. In contrast to commonly-used

stochastic search methods for the problem, our combinatorial approach yields optimal solutions.

We apply our method to numerous DNA and protein datasets, as well as to synthetic data, and

in all cases it performs very well, identifying either known motifs or motifs of high conservation.

Contact: msingh@princeton.edu

Introduction

Motif discovery, or the problem of finding approximately repeated patterns in unaligned sequence

data, is an important and long-studied problem in computational molecular biology. It has ap-

plications in uncovering transcriptional networks, as short common subsequences in the data may

∗To whom correspondence should be addressed.
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correspond to a regulatory protein’s binding sites, and in protein function identification, where

short blocks of conserved protein sequences code for important structural or functional elements.

Numerous approaches to motif finding have been suggested (e.g., [Lawrence and Reilly 1990,

Lawrence et al. 1993,Bailey and Elkan 1995,Brazma et al. 1998,Rigoutsos and Floratos 1998,Hertz

and Stormo 1999,Tompa 1999,Hughes et al. 2000,Marsan and Sagot 2000,van Helden et al. 2000,

Workman and Stormo 2000,Pevzner and Sze 2000,Liu et al. 2001,Eskin and Pevzner 2002,Buhler

and Tompa 2002, Sinha and Tompa 2003, Pavesi et al. 2004, Frith et al. 2004]). The biological

problems addressed by motif finding are complex and varied, and no single currently existing

method can solve them completely (e.g., see [Tompa et al. 2005]). For DNA sequences, motif find-

ing algorithms have typically been applied to sets of sequences from a single genome that have

been identified as possessing a common motif, either through DNA microarray studies [Tavazoie

et al. 1999], ChIP-chip experiments [Lee et al. 2002] or protein binding microarrays [Mukherjee

et al. 2004]. An orthogonal approach, which attempts to identify regulatory sites among a set

of orthologous genes across genomes of varying phylogenetic distance, is adopted by [McGuire

et al. 2000,McCue et al. 2001,Blanchette and Tompa 2002,Kellis et al. 2003,Cliften et al. 2003].

Yet another formulation of motif finding for DNA sequences, that of ‘subtle’ motifs, was introduced

by [Pevzner and Sze 2000]. For protein sequences, motif finding can reveal structural and func-

tional constraints, and especially in the case of divergent sequence motifs, incorporating amino acid

substitution matrices [Dayhoff et al. 1978,Henikoff and Henikoff 1992] is particularly useful.

Here, we consider a combinatorial optimization framework for motif finding that is flexible

enough to model several variants of the problem. Underlying our approach, we consider motif

finding as the problem of finding the best gapless local multiple sequence alignment using the

sum-of-pairs (SP) scoring scheme, and then give extensions to account for multiple motifs and

phylogenetic distance. The SP-score is one of many reasonable schemes for assessing motif conser-

vation [Osada et al. 2004,Schuler et al. 1991,Carillo and Lipman 1988]. We then formulate the motif

finding problem as an instance of integer linear programming (ILP), which is NP-hard to solve in

general, and consider its linear programming (LP) relaxation. Typically, the linear programs are

very large, numbering in the millions of variables, and prove too difficult even for highly optimized

commercial solvers. To reduce the complexity of the linear programs, we employ a number of

pruning techniques, building upon the ideas of [Gusfield 1993,Vingron and Pevzner 1995,Pevzner

and Sze 2000,Lukashin and Rosa 1999]. These fall into the broad category of dead-end elimination

(DEE) algorithms (e.g. [Desmet et al. 1992]), where sequence positions that are incompatible with
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the optimal solution are discarded. The resulting linear programs are often small, and are easily

solved by the solver [CPLEX 7.1]. Interestingly, the vast majority of solutions are integral, guaran-

teeing optimality for the original integer linear program and motif finding problem, and obviating

the need to employ ILP solvers. Thus, our approach runs in polynomial time for many practical

instances of the problem. Since it is known that finding optimal global or local multiple sequence

alignments under the SP measure is NP-hard [Akutsu et al. 2000,Wang and Jiang 1994], integral

solutions to the linear programs and consequently polynomial-time convergence of the algorithm

cannot be guaranteed. In the cases where fractional solutions are found for the linear programs,

integer linear programming solvers are applied to find optimal solutions. In practice, the ability of

our method to find optimal solutions to large problems attests to its overall effectiveness.

We test our coupled mathematical programming and pruning approach in various settings.

First, we consider the problem of finding shared sequence motifs in protein sequences. Unlike the

commonly-used stochastic search methods for motif finding (e.g., [Lawrence et al. 1993,Bailey and

Elkan 1995], our combinatorial formulation naturally incorporates amino acid substitution matrices,

and also guarantees optimal solutions for the objective function being maximized. Second, we

consider sets of genes known to be regulated by the same E. coli transcription factor, and apply our

approach to find the corresponding binding sites. Third, we consider the phylogenetic footprinting

problem [Blanchette and Tompa 2002], and find shared motifs upstream of orthologous genes.

The difficulty of this problem lies in that the sequences may not have had enough evolutionary

time to diverge and may share sequence level similarity beyond the functionally important site;

incorporation of additional information, in the form of the weightings obtained from a phylogenetic

tree relating the species, proves useful in this context. Finally, we consider the subtle motifs

formulation of [Pevzner and Sze 2000], where a fixed pattern is inserted into the input sequences

with some number of perturbations. In particular, we show that our formulation can be used to

find many optimal solutions, thereby retrieving the correct implanted one, along with others that

may occur by chance. In all scenarios, we show that our method works well in practice, either

recovering the known motifs or other motifs of high conservation.
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Methods

Broad Problem Formulation

The motif finding problem is modeled here as that of finding the ungapped local multiple sequence

alignment (MSA) with best sum-of-pairs (SP) score. Informally, given N sequences {S1, . . . , SN}

and a block length parameter l, the goal is to find an l-long subsequence from each input sequence

so that the total similarity among selected blocks is maximized. More formally let sk
i refer to the

l–long block (l-mer) in sequence Si beginning in position k and let sim(x, y) denote a similarity

score between the l-long subsequences x, y. The objective is then to find the set of positions {k1,

. . . , kN} in each sequence, such that the sum-of-pairs score
∑

i<j sim(ski

i , s
kj

j ) is maximized.

It is convenient to consider a graph-theoretic formulation of this problem [Reinert et al. 1997].

Let G be an undirected N -partite graph with node set V1 ∪ . . . ∪ VN , where Vi includes a node u

for each l-long subsequence sk
i in the i-th sequence. Note that the subsequences corresponding to

two consecutive vertices overlap in l − 1 positions, and that the Vi’s may have varying sizes. Each

pair of nodes u ∈ Vi and v ∈ Vj (i 6= j), corresponding to subsequences sk
i and sk′

j in Si and Sj

respectively, is joined by an edge with weight of wuv = sim(sk
i , s

k′

j ). By this construction G is a

complete N -partite graph. The MSA is achieved by picking the highest weight N -partite clique

(denoted N -clique) in graph G.

The rest of this section describes the combinatorial optimization framework for the MSA prob-

lem. We first explain our approach to the basic formulation of the problem, and then consider

extensions. Our method consists of two components: the mathematical programming formula-

tion of the maximum-weight clique problem in G, and graph pruning techniques. Though the

problem can theoretically be solved using mathematical programming tools directly, biologically

relevant instances are typically very large, numbering in the millions of variables, and would take

a prohibitively long time to solve. To reduce the running-times we employ a number of pruning

techniques, generally referred to as dead-end elimination (DEE) in the protein design community,

which discard vertices and/or edges that cannot possibly be part of the optimal solution1.

1Our framework can be recast as a minimization problem as well. In that case the graph edge weights are derived

from a distance measure between l-long subsequences. The MSA is then achieved by picking the lowest-weight clique

in the graph, and the described DEE techniques can be easily adjusted.
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Basic Motif Finding Framework

Similarity scores

To fully specify the graph as above, we need to define its edge weights. In the simplest case of

finding DNA motifs we use a 1/0 similarity score for match/mismatch between pairs of bases, and

sum the scores for l–long blocks in pairs of sequences to derive the weights. We also apply the

same basic problem formulation to the protein motif finding problem. In this case we compute the

weights based on amino acid substitution matrices, which assign higher scores to more favorable

substitutions and better reflect biochemical properties of such pairings. We experiment with both

PAM [Dayhoff et al. 1978] and BLOSUM [Henikoff and Henikoff 1992] matrix families. To calculate

the edge weights, we sum the matrix entries for amino acid pairs in each position of the l-long block.

Integer Linear Programming Formulation

For graph G = (V, E), where V = V1∪. . .∪VN and E = {(u, v) : u ∈ Vi, v ∈ Vj , i 6= j}, we introduce

a binary decision variable xu for every vertex u, and a binary decision variable yuv for every edge

(u, v). Setting xu to 1 corresponds to selecting vertex u for the N -clique and thus choosing the

sequence position corresponding to u in the alignment. Setting variable yuv to 1 corresponds to

choosing both the vertices u and v for the N -clique.

The following integer linear program solves the motif finding problem formulated above:

Maximize
∑

(u,v)∈E wuv · yuv

subject to
∑

u∈Vj
xu = 1 for 1 ≤ j ≤ N (node constraints)

∑
u∈Vj

yuv = xv for 1 ≤ j ≤ N, v ∈ V \ Vj (edge constraints)

xu, yuv ∈ {0, 1} for u ∈ V, (u, v) ∈ E

The first set of constraints ensures that exactly one vertex is picked from every graph part,

corresponding to one position being chosen from every input sequence. The second set of constraints

relates vertex variables to edge variables, allowing the objective function to be expressed in terms

of finding a maximum edge-weight clique. An edge is chosen only if it connects two chosen vertices.

This formulation is similar to that used by [Kingsford et al. 2005] for fixed-backbone protein design

and homology modeling.

ILP itself is NP-hard, but replacing the integrality constraints on the x and y variables with

0 ≤ xu, yuv ≤ 1 gives a polynomial-time heuristic for the problem. It is important to note that
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should a linear programming solution happen to be integral, it is guaranteed to be optimal for

the original ILP and motif finding problem. Non-integral solutions, on the other hand, are not

feasible for the ILP and do not translate to a selection of positions for the MSA problem. Those

instances need to be solved by other means, such as using an ILP solver. Interestingly, we find

integral solutions in an overwhelming majority of instances (especially after applying our pruning

techniques).

Graph pruning techniques

Basic clique-bounds DEE. The idea of our first pruning technique is as follows. Suppose there

exists a clique of weight C∗ in G. Then a vertex u, whose participation in any possible clique in G

reduces the weight of that clique below C∗, is incompatible with the optimal alignment and can be

safely eliminated (similar to [Lukashin and Rosa 1999]).

For u ∈ Vi define star(u) to be a selection of vertices from every graph part other than Vi. Let

Fu be the value induced by the edge weights for a star(u) that form best pairwise alignments with

u:

Fu =
∑

j 6=i

max
v∈Vj

wuv (1)

If u were to participate in any clique in G, it cannot possibly contribute more than Fu to the weight

of the clique. Similarly, let F ∗
i be the value of the best possible star(u) among all u ∈ Vi:

F ∗
i = max

u∈Vi

Fu (2)

F ∗
i is an upper bound on what any vertex in Vi can contribute to any alignment.

Now, if Fz, the most a vertex z ∈ Vk can contribute to a clique, assuming the best possible

contributions from all other graph parts, is insufficient compared to the value C∗ of an existing

clique, i.e. if

Fz < 2 × C∗ −
∑

i6=k

F ∗
i , (3)

z can be discarded. The clique value C∗ is used with a factor of 2 since two edges are accounted

for between every pair of graph parts in the above inequality.

In fact, the values of F ∗
i are further constrained by requiring a connection to z when z is under

consideration. That is, when considering a node z ∈ Vk to eliminate, and calculating F ∗
i according
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to Equation 2 among all possible u ∈ Vi, the Fu of Equation 1 is instead computed as:

Fu = wzu +
∑

j 6=i,k

max
v∈Vj

wuv (4)

The value of C∗ can be computed from any “good” alignment. We use the weight of the clique

imposed by the best overall star.

Tighter constraints for clique-bounds DEE. For a vertex u ∈ Vi and every other Vj , an

edge has to connect u to some v ∈ Vj in any alignment. When calculating Fu, we can constrain

its value by considering three-way alignments and requiring that the vertices in the best star(u)

chosen as neighbors of u in graph parts other than Vj are also good matches to v. Performing this

computation for every pair of u, Vj and considering every edge incident on u would be too costly.

Therefore, we only consider such three-way alignments for every vertex u in the graph where u ∈ Vi

and the next part Vi+1 of the graph (with the last and first parts paired). Essentially, this procedure

shifts the emphasis onto edges, allowing better alignments and bounds, and yet eliminates vertices

by considering the best edge incident on it. We define Fuv for edge (u, v) with endpoints u ∈ Vi

and v ∈ Vi+1 as

Fuv = wuv +
1

2

∑

j 6=i
j 6=i+1

max
x∈Vj

(wux + wvx). (5)

Fuv can be viewed as summing over two stars, one centered at u and the other at v. Defining Fu

for u ∈ Vi as

Fu = max
v∈Vi+1

Fuv.

and leaving the other definitions as above, Equation 3 can be used to eliminate vertices. The scaling

above is necessary as every pair of graph parts i, j would have otherwise been accounted for four

times2 in Equation 3.

Graph Decomposition.DEE techniques work well for simpler instances of the motif finding prob-

lem (see Results), but tend to be inadequate, leaving a large final graph, for more complex cases.

To overcome this difficulty we propose a divide-and-conquer graph decomposition approach. For

every graph part i and vertex u ∈ Vi we consider induced subgraphs Gu = (V u, Eu) in turn, where

V u = u ∪ V \ Vi. Application of the clique-bounds DEE technique to graphs Gu is very effective

2Pairs of adjacent parts i, i + 1 would have been counted once directly as the first term of Equation 5 and twice

when considering pairs i − 1, i and i + 1, i + 2. Pairs of non-adjacent parts i, j would have been counted once each

when considering adjacent parts i− 1 and i, i and i + 1, j − 1 and j, and j and j + 1.

7



since one of the graph parts, Gu
i contains only one vertex, u, and all the F and F ∗ values that

need to be recomputed for the new graph Gu are greatly constrained. The process of updating the

F and F ∗ values is efficient as the changes are localized to one part in the graph. Importantly,

the C∗ remains intact, since the clique of that larger value exists in the original graph and can be

used for the decomposed one, helping to eliminate vertices. For some of the vertices u, iterative

application of the DEE criterion and re-computation of the F and F ∗ values causes Gu to become

disconnected, implying that vertex u cannot be part of the optimal alignment. Such a vertex u

is marked for deletion, and that information is propagated to all subsequently considered induced

subgraphs, further constraining the corresponding F and F ∗ values and helping to eliminate other

vertices in turn.

Algorithm Description

We combine the various elements described above and apply them in the order of increasing com-

plexity. At every juncture a decision is made whether to send the problem in its current state to

the LP solver, and this decision hinges on the size of the graph. If the graph is “small” enough for

some suitable definition of small (currently set at 600 vertices), we submit the appropriate linear

program to the LP solver and, in rare instances, to the ILP solver. To reduce the graph to that

necessary small size, we apply the DEE variants, terminating the process when the specified size

has been reached. First, we attempt to prune the graph using basic clique-bounds DEE alone, and

then consider graph decomposition in conjunction with basic clique-bounds DEE and tighter bound

computations.

Subtle Motifs Framework

Pevzner and Sze [Pevzner and Sze 2000] introduced the ‘subtle’ motifs version of the motif finding

problem. They formulate it as a signal finding problem in which an unknown pattern of a given

length is inserted with modifications into each of the input sequences. The positions of insertion

are unknown, as are the modifications in the instances of the pattern. Pevzner and Sze focus

on what they call the (l, d)-signal version, in which the pattern is a string of length l and each

pattern instance differs from the pattern in exactly d positions. The mutations are allowed to

occur anywhere in the pattern, and thus any two instances of the pattern may differ from each

other in as many as 2d positions. On the other hand, if two subsequences differ in more than 2d

positions, they cannot possibly be instances of the implanted pattern.
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We can solve the subtle motifs problem just as above by formulating it as a multiple sequence

alignment with the sum-of-pairs score. The graph version of the problem remains largely the same

except that it is no longer a complete N -partite graph. By definition, vertices that correspond to

subsequences whose Hamming distance is greater than 2d should not be connected by an edge, as

such an edge cannot possibly be part of the optimal clique. The weights on the edges, as suggested

in [Pevzner and Sze 2000], are computed by considering the number of matches and mismatches.

It is straightforward to adjust our linear program to reflect the fact that graph G is no longer

a complete graph by removing variables corresponding to non-existent edges. The main difference

is in the edge constraints, in that the summation is made over the existing edges only.

Graph pruning. We begin by noting that these graphs may be pruned using any of the methods

introduced by previous authors (e.g., in [Pevzner and Sze 2000,Sze et al. 2004]), and our LP/ILP

can be applied whenever the graph size has decreased sufficiently. Here, we experiment with only

a couple of DEE procedures.

The first DEE technique we apply is that of graph connectivity, suggested in [Vingron and

Pevzner 1995, Pevzner and Sze 2000]. Since graph G = (V, E) is no longer a complete N -partite

graph, we can use connectivity properties of G to prune “dead-end” vertices and edges. Following

the notation of [Pevzner and Sze 2000], let vertex u ∈ Vi be a neighbor of vertex v ∈ Vj if (u, v) is

an edge in the graph, and vertex x be a neighbor of an edge (u, v) if {u, v, x} is a connected triangle

in the graph. The strategy we call vertex removal is to delete any vertex u that does not have at

least one neighbor in every part of G other than Vi. Edge removal eliminates any edge (u, v) that

does not have at least one neighbor in every part of G excluding Vi and Vj . These two strategies

are applied iteratively until no further vertices or edges are detected for removal.

We also introduce a second graph decomposition technique for solving more difficult instances

of the subtle motifs problem. Though any DEE routine can be employed in conjunction with graph

decomposition, we concentrate on the iterative application of vertex removal and edge removal

procedures. The idea of decomposition becomes more effective if modified slightly from its version

above. Here we choose an arbitrary part Vi of V , and consider all the vertices u ∈ Vi in turn. The

intuition is that some vertex u in Vi has to be in the optimal alignment, and considering each one

exhausts the possibilities. As before, we consider induced subgraphs Gu = (V u, Eu) and process

them with the connectivity DEE routines. For some u, their corresponding graphs Gu become

disconnected, and those vertices can be discarded; for others, typically, the graph remaining after

this processing is small. As a final step we solve a number of these small linear programs, and
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select the optimal solution to the original problem among them. Note that for some difficult and

dense instances of the subtle motifs problem, we can extend this graph decomposition technique to

multiple graph parts, considering pairs or even triplets of vertices for elimination.

Other Motif Finding Frameworks

Phylogenetic Footprinting

As mentioned earlier, one way of finding regulatory sites is to look for them among a set of homolo-

gous genes across species. In this case additional data, in the form of the phylogenetic tree relating

the species, is available and should be exploited. It is especially important when closely related

species are part of the input, and, unweighted, they contribute duplicate information and skew the

alignment. We use a phylogenetic tree and branch lengths when calculating the edge weights in the

graph, with highly diverged sequence pairs getting larger weights. The precise weighting scheme

follows the ideas of weighted progressive alignment [Feng and Doolittle 1987], in which weights

αi are computed for every sequence i. The calculation sums branch lengths along the path from

the tree root to the sequence at the leaf, splitting shared branches among the descendant leaves,

and thereby reducing the weight for related sequences. In essence, we solve a multiple sequence

alignment problem with weighted SP-score using match/mismatch, where the computed weight for

a pair of positions in sequences i and j is multiplied by αi ×αj . The rest of the algorithm operates

as in the basic motif finding case above, employing the same linear programming formulation and

DEE techniques.

Multiple Motifs

Here we give several extensions to address the issue of multiple motifs existing in a set of sequences.

First, distinct multiple motifs, such as sets of binding sites for two different transcription factors,

can be found iteratively by first locating a single optimal motif, masking it out from the problem

instance, and then looking for the next one. We mask the previous motif by deleting its solution

vertices from the original graph, and then reapplying the DEE/LP techniques to locate the next

optimal motif.

Second, it is possible to solve iteratively several ILPs in order to find multiple near-optimal

solutions, corresponding to the best cliques of successively decreasing total weights. At iteration t,

we add a constraint to the integer linear programming formulation so as to exclude all previously
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discovered solutions:
∑

u∈Sk

xu ≤ N − 1 for k = 1, . . . , t − 1, (6)

where Sk contains the optimal set of vertices found in iteration k. This requires that the new solution

differs from all previous ones in at least one graph part. We note that to use this constraint for the

basic formulation of the motif finding problem, the DEE methods given above have to be modified

so as not to eliminate nodes taking part in near-optimal but not necessarily optimal solutions. For

the subtle motifs problem, the DEE methods only eliminate nodes and edges based on whether

they can take part in any clique in the graph, and thus constraint 6 can be immediately applied to

iteratively find all possible cliques.

Finally, finding repeated motifs where a single pattern occurs in m distinct positions in each

sequence, requires a slight modification to the construction of the graph G = (V, E). The set of

vertices remains the same, but the edge set is modified in two ways. First, we introduce edges

between vertices corresponding to positions in the same sequence, since the instances of the motif

are all mutually similar. Secondly, to address the issue of low complexity regions, such as poly-A

repeats, being selected as a solution, we would like the motif instances to be non-overlapping. Thus,

vertices corresponding to overlapping l-mers in each sequence are not connected by an edge. The

ILP formulation to address this problem is similar to the case of single motif; additional constraints

are needed, though, to ensure a proper vertex selection since the graph now has edges within each

part.

Maximize
∑

(u,v)∈E wuv · xuv

subject to
∑

u∈Vj
xu = m for 1 ≤ j ≤ N (node constraints)

∑
u∈Vj

yuv = m × xv for 1 ≤ j ≤ N, v ∈ V \ Vj (inter-part edge constraints)
∑

u∈Vj
yuv = (m − 1) × xv for 1 ≤ j ≤ N, v ∈ Vj (intra-part edge constraints)

xu, yuv ∈ {0, 1} for u ∈ V, (u, v) ∈ E

The difference with the single motif ILP in the node constraints is in that m of the vertices

are chosen in each graph part, corresponding to m positions in each input sequence. The next two

sets of constraints ensure a proper edge selection between chosen vertices both inside and between

partitions.
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Experimental Analysis

We apply the basic combinatorial optimization framework to several motif finding problems. We

attempt to discover motifs in instances arising from both DNA and protein sequence data. We

then discuss subtle motif finding in simulated data.

Protein motifs

We study the performance of our algorithm on a number of protein datasets with different charac-

teristics. The datasets, summarized in Table 1, were constructed using the SwissProt [Boeckmann

et al. 2003] database from the descriptions of [Lawrence et al. 1993,Lukashin and Rosa 1999,Neuwald

et al. 1995]. These datasets are highly variable in the number and length of their input sequences as

well as the degree of motif conservation. The motif length parameters are set based on the lengths

described by the above authors. The default amino acid substitution matrix we use for all the

datasets is BLOSUM62. For more closely related proteins, like the human tumor necrosis factor

(TNF) proteins, we also experiment with the BLOSUM80 and PAM100 matrices. However, choice

of substitution matrix and slight variations in sought motif length do not substantially affect the

results as similar motifs are found. The five datasets are of varying difficulty to solve, with some

employing the basic clique-bounds DEE technique to prune the graphs, while others require more

elaborate pruning that is constrained by three-way alignments (see Table 1).

In all the test datasets our algorithm recovers the motifs found by [Lawrence et al. 1993,Lukashin

and Rosa 1999, Neuwald et al. 1995] and reported in the literature. As described by [Lawrence

et al. 1993], the HTH dataset is very diverse, and the detection of the motif is a difficult task.

Nonetheless, our HTH motif is identical to that of [Lawrence et al. 1993], and agrees with the

known annotations in every sequence. We likewise find the lipocalin motif; it is a weak motif

with few generally conserved residues that is in perfect correspondence with the known lipocalin

signature. We also precisely recover the immunoglobulin fold, TNF and zinc metallopeptidase

motifs. In contrast to [Lukashin and Rosa 1999], who limit sequence lengths to 500, we retain

the original protein sequences, making the problem more difficult computationally as the average

sequence length in the zinc metallopeptidase dataset is approximately 800, and some sequences are

as long as 1300 residues3. Nonetheless, we find the motif using our method, and some of the motif

3Our implementation of the method of [Lukashin and Rosa 1999] applied to the zinc metallopeptidase dataset

with full length sequences failed to converge.
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instances we recover are superior to those of [Lukashin and Rosa 1999].

DNA motifs

We analyze the performance of our method on a set of sequences consisting of DNA binding sites

embedded in their respective upstream regions (up to 600 bp) for a number of regulatory proteins.

Our dataset is constructed from the data of [Robison et al. 1998,McGuire et al. 2000] as described

in [Osada et al. 2004]. In short, we remove duplicate sites, sigma factors and transcription factors

with fewer than three known binding sites. Additionally, we include only one copy of a sequence

corresponding to multiple known binding sites. Of the 35 transcription factor families we considered,

23 were solved in seconds with the application of basic clique-bounds, 10 required application of

graph decomposition with clique-bounds DEE, constrained by three-way alignments and took a few

minutes to three hours to solve, and the two largest datasets, CRP and IHF, were not reduced in size

by our DEE methods and their linear programs proved infeasible to solve. Of the 33 solved problems

all but two resulted in integral solutions to their linear programs that immediately translated to a

motif selection. The two instances with fractional solutions were easily solved by the ILP solver.

Evaluating performance of any motif finding algorithm is not a straightforward task, as other,

better-conserved, biologically-relevant motifs may exist in the data. To that end, we compute

the degree of agreement between the motifs discovered by our method, and the known binding

sites, and also compare them with motifs found by a widely used stochastic-search motif finder,

Gibbs Motif Sampler [Thompson et al. 2003]. First we compare the quality of the discovered

motifs by their average information content (IC), a measure related to one maximized by the Gibbs

algorithm. Even though the measure we maximize is not directly related to IC, our approach finds

motifs of slightly higher level of conservation as measured by average IC than the Gibbs Motif

Sampler, identifying such better conserved motifs in 10 instances (vs. 7 better motifs by Gibbs

Motif Sampler), and discovering an identical motif for 16 other instances. All motifs found by

both methods exhibit equal or higher average IC than that of the sets of known transcription

factor binding sites. Whereas our method fails to identify a motif in two datasets, the Gibbs Motif

Sampler fails for five transcription factors (one dataset resulting in failure is shared), reporting

no significant motif after 20 random restarts in each case. Surprisingly, of these five families two

possess a motif of very high IC.

To determine the extent of agreement between the motif predictions versus known motifs, we

compute the degree of overlap by a commonly used comparison statistic, proposed by [Pevzner and
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Sze 2000], the performance coefficient, defined as follows. In a dataset of t sequences and motif

length l, let P be the set of t×l sequence positions occupied by one (known) motif, and K be the set

of t× l sequence positions occupied by the predicted motif. Then the performance coefficient (p.c.)

is |K ∩P |/|K ∪P |. We give a histogram of the performance coefficients for our algorithm vs. Gibbs

Motif Sampler in Figure 1. Though the methods perform similarly for the cases of extensive overlap

where the biological motif has essentially been completely identified, overall our method discovers

motifs that exhibit a slightly higher overlap with the known transcription factor regulatory sites,

such that the average p.c. for the entire dataset is 0.422 vs. 0.397 for the Gibbs Motif Sampler.

Phylogenetic Footprinting

We experiment with motif discovery among sets of upstream regions of orthologous genes in a

number of genomes, having incorporated phylogenetic information in constructing our graphs.

Here we use data sets, varied in size and genome selection, from [Blanchette and Tompa 2002].

We identify well-conserved interesting motifs in every dataset4. The consensus sequences for the

discovered motifs are listed in Table 2 along with the description of their DNA regions and source

species. All the motifs we find have been documented in the TRANSFAC database [Wingender

et al. 1996], and the majority of them correspond to those that have been reported by [Blanchette

and Tompa 2002].

This dataset is also an excellent testing ground for finding distinct multiple motifs using our

method, as such motifs exist and have been reported in previous studies. We iteratively identify

motifs and remove their corresponding vertices from the constructed graphs. As proof of princi-

ple, we find multiple motifs for the insulin dataset. In this case, we successfully identify all four

motifs reported by [Blanchette and Tompa 2002]. Since our objective function differs from that

of [Blanchette and Tompa 2002] and we require motif occurrences in every input sequence, we

recover the motifs in a different order. Of course, we identify numerous shifts of motifs found in

previous iterations before arriving at the next distinct motif. In practice, therefore, it may be more

beneficial to remove all vertices corresponding to subsequences overlapping the optimal solution

when modifying the problem for successive iterations.

4Motif reported for the C-fos promoter dataset was discovered second, after having discarded the poly-A repeat

region.
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Subtle motifs

We test our algorithm’s performance in finding subtle motifs on synthetically generated data.

Following the terminology of [Pevzner and Sze 2000], we produce the problem instances according

to the FM (fixed mutation) model. For the (l, d)-signal finding problem we first randomly select

a pattern M of length l. For each of t background sequences (t = 20 for all test cases) exactly d

random positions are chosen in M , and the pattern is then implanted with each of these d positions

mutated to a different, randomly chosen base. Both the background sequence and the position of

the implanted pattern instance are selected randomly. All random choices above are independent

and drawn uniformly.

The original challenge problem proposed by [Pevzner and Sze 2000] is the (15, 4) motif finding

problem with background sequence length 600. Various algorithms [Buhler and Tompa 2002,Keich

and Pevzner 2002,Eskin and Pevzner 2002,Price et al. 2003] have extended the length to 1500 and

beyond and considered other combinations of the l and d parameters. Previous approaches have

reported the performance coefficient p.c. defined earlier, averaged over several generated problem

instances (denoted a.p.c.) for every set of parameters considered.

Here, we implant (15, 4), (14, 4), and (12, 3) patterns into background sequences of length

N = 600. These problems are of varying difficulty; for example, the a.p.c for the Projection

method of [Buhler and Tompa 2002] is 0.93 for (15, 4), 0.71 for (14, 4), and 0.77 for (12, 3). We

consider 20 random instances of each, and use constraint in Equation 6 to find up to the first

1000 heaviest weight cliques (if that many exist) by enumerating near-optimal solutions. In each

case, one of the cliques output corresponds to the actual implanted pattern. Since edges between

vertices are weighted by the total number of matches between the corresponding subsequences, the

implanted motif typically corresponds to one of the higher scoring ones. For the simpler case of the

(15, 4) motif, the implanted pattern is often found among the optimal-weight cliques. However, in

some of the (14, 4) and (12, 3) cases, there appear to be many higher weight cliques occurring by

chance, suggesting that these patterns are too hard to distinguish from background. Nevertheless,

our approach of finding multiple, successive near-optimal solutions allows us to retrieve all valid

possible implanted patterns.
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Discussion

We have described a versatile mathematical programming framework for the motif finding problem.

In order to solve the linear programs, numbering sometimes in the millions of variables, we employ

graph decomposition and pruning techniques to identify vertices guaranteed to be excluded from

the optimal solution. While these algorithms cause a tremendous reduction to the size of the

problem, some datasets are more challenging and computationally expensive than others. Clearly,

the difficulty is correlated with the total number of vertices in the graphs, and the average sequence

length is the dominant factor (see Table 1). Interestingly, and often regardless of problem size, most

resulting linear programs exhibit integral solutions. The reasons for this phenomenon are unclear,

and constitute an exciting research question. It is also noteworthy that presence of a well conserved

motif allows the pruning to be especially effective. For example, the human zinc metallopeptidase

dataset contains a very highly conserved motif, a well-recognized zinc-binding region signature; its

reduced graph size is 10 (albeit with application of involved decomposition and pruning techniques),

a mere one vertex per graph part.

A major advantage of our algorithm over previous approaches for motif finding is that we are

able to find optimal local alignments for many practical problems. In the future, we hope to

extend the capabilities of our approach by incorporating features common to more widely-used

motif finding algorithms. A basic improvement would be to assess statistical significance of the

discovered motifs; this is independent of the mathematical programming framework, and we hope

to use some of the same techniques outlined in previous research (e.g., [Sinha and Tompa 2003]).

Additionally, we would like to allow zero occurrences of a motif in some of the input sequence;

this may be possible in our framework by including an additive term in the objective function that

creates a tradeoff between the weight of the induced clique-like structure that is being maximized

and the potential motif absence. It is possible to include other types of useful constraints into our

linear program. For example, we may want to look for two shorter motifs that are within some

distance of each other; there are natural linear constraints that can enforce this.

In summary, the described optimization framework provides a flexible approach to tackle many

important issues in motif finding. We have successfully applied it to a variety of problems, including

DNA motifs, protein motifs, and subtle motifs, and have been able to incorporate phylogenetic

information in the context of cross-species motif discovery, as well as to find multiple near-optimal

solutions. We hope in the future to extend its capabilities to model more complex types of motif
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finding problems.
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Dataset # Seq. Motif Len. |V | DEE Methods |V | after DEE

Lipocalin 5 16 861 (1) 58

Helix-Turn-Helix 30 18 6871 (1,2) 145

Tumor Necrosis Factor 10 17 2329 (1) 593

Zinc Metallopeptidase 10 12 7760 (1,2,3) 10

Immunoglobulin Fold 18 14 7425 (1,2,3) 114

Table 1: Descriptions of the protein datasets. The first two datasets are from [Lawrence et al. 1993], the next two from [Lukashin

and Rosa 1999], and the last one from [Neuwald et al. 1995]. # Seq. gives in the number of input protein sequences; Motif

Len. gives the length of the protein motif searched for; |V | gives the number of vertices in the original graph constructed from

the dataset; DEE Methods gives the methods involved in pruning the graph and are denoted by (1) clique-bounds DEE, (2)

graph decomposition, and (3) tighter constrained bounds. |V | after DEE gives the size of the graph after graph pruning.
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Figure 1: Degree of overlap (performance coefficient) between known regulatory sites [Robison et al. 1998] and motifs identified

by LP/DEE and Gibbs Motif Sampler [Thompson et al. 2003]. For each method, the height of the bar indicates the number of

transcription factor datasets, for which the performance coefficient falls in the specified interval. Higher overlap indicates better

correspondence with known binding sites. Crp is excluded from the data as its motif was not identified by either method.
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DNA region Species Motif (id)

Growth-hormone 5’

UTR + promoter

(380 bp)

Salmon, trout, white fish, se-

riola, lates, tilapia, fugu, grass

carp, catfish, chicken, rat,

mouse, dog, sheep, goat, human

TATAAAAA (7)

Histone H1 5’ UTR +

promoter (650 bp)

Chicken, duck, frog, mouse AAACAAAAGT (2)

C-fos 5’ UTR + pro-

moter (800 bp)

Tetraodon, chicken, mouse,

hamster, pig, human

CCATATTAGG

C-fos first intron (376

to 758 bp)

Fugu, tetraodon, chicken, pig,

mouse, hamster, human

AGGGATATTT (3)

Interleukin-3 5’ UTR

+ promoter (490 bp)

Rat, mouse, cow, sheep, human,

macaca

TGGAGGTTCC (3)

C-myc second intron

(971 to 1376 bp)

Chicken, pig, rat, marmoset,

gibbon, human

TTTGCAGCTA (5)

C-myc 5’ promoter

(1000 bp)

Goldfish, frog, chicken, rat, pig,

marmoset, human

GCCCCTCCCG

Insulin family 5’ pro-

moter (500 bp)

Human, chimp, aotus, pig, rat

(I, II), mouse (I, II)

GCCATCTGCC (2)

TAAGACTCTA (1)

CTATAAAGCC (3)

CAGGGAAATG (4)

Table 2: Motifs identified with use of phylogenetic information. All datasets tested are from [Blanchette and Tompa 2002].

DNA region details the DNA regions considered; Species lists the species and isoforms considered; Motif (id) identifies

the consensus sequence of the discovered motif and its correspondence with the motifs of [Blanchette and Tompa 2002] where

applicable. All listed motifs have been documented as regulatory elements in TRANSFAC [Wingender et al. 1996]. For datasets

other than the insulin dataset only the best motif is reported, and for the insulin dataset multiple motifs are reported in order

of discovery.
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