
SUBLINEAR GEOMETRIC ALGORITHMS AND

GEOMETRIC LOWER BOUNDS

DING LIU

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

MAY 2005

c© Copyright by Ding Liu, 2005. All rights reserved.

Abstract

This thesis consists of two parts unified under the common theme that both of them

are concerned with the complexity of geometric problems.

The first part of this thesis initiates a study of sublinear algorithms for geometric prob-

lems in two and three dimensions when no preprocessing is allowed. The problems we

consider include intersection detection of convex polygons and polyhedra, point location

in two-dimensional Voronoi diagrams and triangulations, ray shooting towards convex

polyhedra, and nearest neighbor type problems. Our (randomized) algorithms read only

a small fraction of the input. Unlike their predecessors, our algorithms never err and ran-

domization only affects the running time but not the correctness of the output. For each

problem considered (with input size n), we achieve expected running time of O(
√

n),

which we show to be optimal. We also approximate, for any fixed ε > 0, the volume of

a n-vertex convex polytope and the length of the shortest path between two points on its

boundary, to within a relative factor of 1 + ε and in expected time O(
√

n).

In the second part of this thesis, we prove strong lower bounds for geometric problems

in standard models of computation. We prove several near-optimal lower bounds for in-

tersection searching problems in two and three dimensions in the pointer machine model.

Our lower bounds resolve a couple of long-standing open problems in computational ge-

ometry. We show that: (1) The two-dimensional generalization of fractional cascading is

impossible; (2) There exists a n-vertex convex polytope that admits of no boundary domi-

nant Dobkin-Kirkpatrick hierarchy, for any n large enough. We also prove a near-optimal

deterministic query time lower bound for Approximate Nearest Neighbor Searching – a

basic problem in computational geometry with a variety of applications – in the cell probe

model. This lower bound holds in a very special space (the Hamming Cube) and for a

very loose approximation factor.

iii

Acknowledgments

First and foremost, I am forever indebted to my advisor Bernard Chazelle, whose

generosity, enthusiasm, broad and deep knowledge of mathematics and theoretical com-

puter science, and ability to see the mathematical essence of a complicated problem has

constantly amazed me. Bernard introduced me to the fascinating area of theoretical com-

puter science. He has taught me how to practice and enjoy research: how to understand

a problem from a fundamental level, how to improve the solutions relentlessly, and how

to present the key ideas clearly. Being an excellent speaker himself, Bernard also taught

me how to give talks, which I found extremely useful. I cannot thank him enough for his

enormous guidance and encouragement in my research, as well as the financial support

he has provided over the years.

I am grateful to Sanjeev Arora and Moses Charikar for serving on my dissertation

committee as readers and for their careful reading of this thesis. I am grateful to David

Dobkin and Robert Sedgewick for serving on my dissertation committee as non-readers.

I am also grateful to Andy Yao for his encouragement during my early years at Prince-

ton. One of my research papers originated from attending his research seminar in Spring

2001. I thank Andy for introducing to me the problem studied in that paper. Besides,

Andy is one of the best teachers I have seen. I was also impressed by his enthusiasm for

attacking fundamental open problems.

Many results presented in this thesis are based on collaborations. I am grateful to my

co-authors Bernard Chazelle and Avner Magen. In particular, most results in the first part

of this thesis are taken from joint work with Bernard and Avner, and results in Chapter 4

are taken from joint work with Bernard.

iv

It is impossible to overstate the influence of the theory group of Princeton Computer

Science on my research. I enjoyed attending theory courses in our department as well as

our weekly theory lunch seminars. I thank all theory faculty members who shaped my

broad perspective on theoretical computer science by teaching these courses and orga-

nizing these seminars. I also thank my fellow graduate students in the theory group who

influenced my research directly or indirectly. At the risk of leaving out many of them, I

acknowledge Nir Ailon, Amit Chakrabarti, Seshadhri Comandur, Subhash Khot, Manoj

Prabhakaran, Yaoyun Shi, and Shengyu Zhang.

Thanks also go to Melissa Lawson who helped me on many important things. For

example, she wrote a letter for me on behalf of the department to consulate officers of the

United States Embassy in Beijing. This letter (along with another letter from Bernard)

helped my wife getting her visa to the United States to accompany me during my final

year of PhD.

I would like to take this opportunity to thank all my friends who made my life at

Princeton so enjoyable. Amongst them, I am especially thankful to Ming Zhang, Xinming

Ou, Li Shang, and Yulei Luo for their help and support.

Finally, my infinite thanks to my parents and my wife Yuan for their love and support

throughout the years.

Ding Liu

I gratefully acknowledge my advisor Bernard Chazelle’s NSF Grant CCR-96-23768,

NSF grant CCR-998817, NSF grant 0306283, ARO Grant DAAH04-96-1-0181, and the

George Van Ness Lothrop Fellowship of Princeton University Graduate School for sup-

porting my PhD research at Princeton University.

v

Contents

Abstract . iii

1 Introduction 1

1.1 Sublinear Algorithms . 2

1.1.1 Overview of Sublinear Algorithms 3

1.1.2 New Results in this Thesis . 10

1.2 Geometric Lower Bounds . 12

1.2.1 Geometric Lower Bounds: An Overview 13

1.2.2 New Results in this Thesis . 23

I Sublinear Geometric Algorithms 26

2 Las Vegas Type Algorithms 27

2.1 A Warm-up: Successor Searching . 27

2.2 Intersection Detection for Convex Polygons 29

2.3 Intersection Detection for Convex Polyhedra 32

2.3.1 The Algorithm . 32

2.3.2 The Analysis . 34

2.4 Ray Shooting Applications . 38

vi

2.4.1 Ray Shooting towards a Convex Polytope 38

2.4.2 Point Location in 2D Delaunay Triangulations and Voronoi Dia-

grams . 40

2.5 Nearest Neighbor Searching and Related Problems 41

2.6 Point Location in Planar Subdivisions 42

2.6.1 Point Location in Triangulations 43

2.6.2 Point Location in Subdivisions with Large Faces 44

2.7 Conclusion and Future Work . 46

3 Approximation Algorithms 49

3.1 Dudley’s Construction . 49

3.2 Volume Approximation . 50

3.2.1 A Constant Factor Approximation 51

3.2.2 Sublinear Time (1 + ε)-Approximation 54

3.3 Approximate Shortest Paths on a Convex Polytope 55

3.3.1 The Shortest Path Problem . 55

3.3.2 Our New Results . 56

3.3.3 Computing Short Paths . 57

3.3.4 Sublinear Time (1 + ε)-Approximation 58

3.4 Open Problems . 65

II Geometric Lower Bounds 67

4 Lower Bounds for Intersection Searching and Fractional Cascading 68

4.1 Intersection Searching . 68

4.2 Planar Subdivisions and Convex Polytopes 70

vii

4.3 Fractional Cascading in Higher Dimension 75

4.4 The Dobkin-Kirkpatrick Hierarchy . 77

4.5 Nonconvex Polytopes . 79

4.5.1 A Quasi-Optimal Lower Bound 79

4.5.2 The Upper Bound . 87

4.6 Open Problems . 88

5 A Lower Bound for Approximate Nearest Neighbor Searching 90

5.1 The Approximate Nearest Neighbor Searching Problem 90

5.1.1 Introduction . 90

5.1.2 Previous Lower Bounds . 91

5.1.3 The New Result . 93

5.2 Preliminaries for the Proof . 94

5.3 A Near-Optimal Lower Bound for ANNS 97

5.3.1 The (λ, β)-Approximate Neighbor Problem 97

5.3.2 The Proof of the Lower Bound 99

5.4 Concluding Remarks . 102

6 Future Directions 103

6.1 Sublinear Algorithms . 103

6.2 Geometric Lower Bounds . 106

viii

List of Figures

2.1 Intersecting two convex polygons . 29

2.2 The edges of P incident to p; the thick lines form the random sample. . . 33

3.1 Dudley’s construction. 50

3.2 Approximating P from within. 52

3.3 The grid G. 59

3.4 The path σ. 61

3.5 The curve σ′
i. 62

3.6 How Hp intersects the xz plane. 63

4.1 Towards a hard convex subdivision. 71

4.2 Completing the convex subdivision. 73

4.3 A “house” and its projection. 74

4.4 Carving out the details. 74

4.5 Gaps are filled by taking the convex hull. 74

4.6 A catalog graph in which 2D fractional cascading is impossible. 77

4.7 Carving P out of a cube. 80

4.8 Turning transversals into protrusions. 81

4.9 The query set Q. 82

ix

4.10 Intersection parallelotope. 83

x

Chapter 1

Introduction

This thesis is concerned with the complexity of geometric problems in terms of both

upper and lower bounds. It has two independent parts: sublinear geometric algorithms

and geometric lower bounds.

The first part of this thesis initiates a study of sublinear algorithms for geometric prob-

lems in two and three dimensions when no preprocessing is allowed. The problems we

consider include intersection detection of convex polygons and polyhedra, point location

in two-dimensional Voronoi diagrams and triangulations, ray shooting towards convex

polyhedra, and nearest neighbor type problems. For each of these problems with input

size n, our new algorithm achieves expected running time of O(
√

n), which we show to

be optimal. Given a n-vertex convex polytope, we can also approximate its volume, or

the length of the shortest path between two points on its boundary, to within arbitrary

fixed precision in expected time O(
√

n). These new results are presented in Chapters 2

and 3.

In the second part of this thesis, we prove strong lower bounds for several geometric

problems. In Chapter 4, we prove near-optimal lower bounds for intersection searching

1

problems in two and three dimensions. As a result, these lower bounds resolve some

long-standing open problems in computational geometry. In Chapter 5, we prove a near-

optimal lower bound on the query time of any deterministic algorithms for Approximate

Nearest Neighbor Searching, a fundamental problem in computational geometry.

Before describing our specific new results, we begin with a brief overview of sublinear

algorithms (Section 1.1) and geometric lower bounds (Section 1.2).

1.1 Sublinear Algorithms

With the current information explosion, massive data sets are now pervasive. The most fa-

miliar example is today’s Internet: the number of webpages has already exceeded a billion

and is still growing fast. In telecommunication industries, big phone companies collect

huge amount of call data everyday. Massive data sets also appear in scientific simulation

and computation, electronic commerce, and business transactions. Fundamentally new

algorithms are needed to organize, process, and analyze this vast amount of information.

This is because traditional algorithmic techniques may be of little use for massive data

sets. For example, a linear-time algorithm, which is considered as the ultimate efficiency

goal for many years, may take several days to finish on massive data sets. In some other

situations, the amount of data is so enormous that it is impossible (or impractical) to store

the whole input. There is thus a need to develop algorithms that use sublinear amount of

time or space resources – the so-called sublinear algorithms. In Section 1.1.1, we give

a brief overview of the different types of sublinear algorithms developed in Theoretical

Computer Science.

2

1.1.1 Overview of Sublinear Algorithms

Property Testing

One class of sublinear algorithms that has been extensively studied in the last ten years

is property testing, a relaxation of the standard decision problem. In a decision problem,

we must determine whether an input object has a property P or not. Unfortunately, this

could be very hard. For example, it is NP-complete to decide whether an arbitrary graph

is 3-colorable or not [89]. In property testing, we only need to give correct answers (with

high probability) when the input has P or when it is far from doing so. Surprisingly,

this relaxation brings in sublinear-time property testers for a long list of combinatorial,

algebraic, and geometric problems.

Let’s focus on the “graph 3-colorability” problem mentioned earlier. We say that a

n-vertex graph G is ε-far from being 3-colorable for some ε > 0, if after deleting any

subset of εn2 edges of G the remaining graph is still not 3-colorable. In property testing,

we only need to give an algorithm that accepts every 3-colorable graph and rejects every

graph that is ε-far from being 3-colorable with probability at least 2/3. Such an algorithm

is called an ε-tester for 3-colorability.1 Consider the following simple algorithm. It ex-

tracts uniformly at random a subset T of vertices of the graph G. Let GT be the induced

subgraph of G on T . It then tests 3-colorability of GT using the naive exponential time

algorithm, and accepts G if and only if GT is 3-colorable. If G is 3-colorable then GT is

also 3-colorable. On the other hand, Goldreich et al. [90] proved that if G is ε-far from

being 3-colorable, then with probability at least 1/2, GT is not 3-colorable for a random

1Since we require the algorithm to accept every 3-colorable graph, it is called an one-sided error tester.
There are other property testers that may also err with small probability when the object has the property.
They are called two-sided error testers. For one-sided error tester, the choice of success probability 2/3 is
arbitrary, and any fixed constant c > 0 can be used. We can repeat the algorithm enough times to achieve
the desired success probability.

3

T of size O(1/ε3). The size of T was later improved to O(1/ε2) by Alon and Krivele-

vich [11]. This illustrates the main advantage of property testing, that is, a property tester

runs in time sublinear on, or even independent of, the size of the input.

There is a huge literature on property testing. We recommend the surveys by Ron [125]

and Fischer [82] to readers who want to pursue this topic further.

Streaming Algorithms

In the past few years, the data streaming model was extensively studied by the Theoretical

Computer Science community. In this model, the input comes as a continuous stream and

the algorithm must process each input element as it passes. Once the algorithm has seen

an element, it is gone forever.2 Moreover, the algorithm does not have enough space to

archive the whole input. It thus must maintain a succinct “synopsis” of the data seen

so far. Typically, a data streaming algorithm uses poly-logarithmic amount of space and

spends poly-logarithmic processing time for each element of the input.

Let’s focus on a specific problem: estimating the zero-th frequency moment. Given

a sequence S of n elements from the domain [m] = {1, . . . , m}, the zero-th frequency

moment of S is the number of distinct elements in S. We denote it by F0 = F0(S). It is

obvious that we can compute F0 using O(m) space, but what happens if m is very large

and we cannot afford that much space? Surprisingly, it turns out that, as long as we allow

a small probability of error, it is possible to approximate F0 to within arbitrary precision

using only O(log m) bits [12, 19]. The time needed to process each element is also

roughly O(logm). Here is the intuition for the algorithm of [12]. It first picks a random

(linear) hash function f : [m] → [0, 1]. It then computes f(xi) for each element xi of the

sequence, and maintains f0 = min1≤i≤n f(xi). In the end, it returns 1/f0 as an estimation

2In some variation of the data streaming model, we allow the algorithm to have a small number of
passes over the input data.

4

of F0. Since there are F0 distinct elements and the hash function is chosen at random,

we can think of the images of these F0 elements as uniformly distributed in the interval

[0, 1]. Their expected minimum is then around3 1/F0. In [12], this intuitive argument

is made precise and f is chosen from a pairwise independent family of hash functions.

The theorem there is that for every c > 2, there exists a streaming algorithm that uses

O(log m) bits and computes a number Y such that 1/c ≤ Y/F0 ≤ c with probability at

least 1−2/c. Recently, this result was improved by Bar-Yossef et al. [19] in the following

way: For any ε, δ > 0, there exists a streaming algorithm that approximates F0 to within a

relative error of 1+ε (from both sides) with probability at least 1−δ. The algorithm uses

Õ(log m + 1/ε2) space and processes each element in worst case Õ(1/ε2 · log m) time.4

Alternatively, the algorithm processes each element in amortized Õ(log m + log (1/ε))

time. For simplicity, we also ignored the dependence on δ for both the space and time

bounds, which is a multiplicative factor of log (1/δ).

We avoid discussing more results in the data streaming model here, and refer inter-

ested readers to the survey by Muthukrishnan [122].

Sublinear Time Approximation Algorithms

In the last few years, sublinear time approximation algorithms have been developed for

a wide range of problems, including in particular, fast matrix approximation and multi-

plication [1, 71, 87], approximating the edit distance between two strings [23], approxi-

mating the entropy of a discrete distribution [22], approximating the minimum spanning

tree weight [50, 60], and approximate clustering [61, 98, 99, 116]. We don’t try to survey

all these results here. Instead, we give a flavor of sublinear approximation algorithms

3To be precise, the expected minimum of F0 real numbers chosen uniformly and independently at
random from [0, 1] is 1/(F0 + 1).

4In this thesis Õ(f) means O(f logc f) for some constant c.

5

by describing the algorithm of Chazelle et al. [50] for approximating the weight of the

minimum spanning tree (MST) of a graph.

We first state the main result of [50]. Given a connected graph G in adjacency list rep-

resentation with average degree d and edge weights in the set {1, 2, . . . , w}, the algorithm

of [50] approximates the MST weight of G to within a relative factor of 1 + ε for any

0 < ε < 1/2. The algorithm runs in time O(dwε−2 log (dwε−1)) and succeeds with prob-

ability at least 3/4. The algorithm can also be extended to the case when the weights of G

are in the range [1, w] but not necessarily integral, at the cost of an additional multiplica-

tive factor of ε−1 in the running time. The same paper also proves an almost matching

lower bound for any randomized algorithm that approximates the MST weight of such a

graph G to within a factor of 1+ ε. The main idea of [50] is to reduce the computation of

the MST weight of G to counting the number of connected components in several sub-

graphs of G. Specifically, for each 1 ≤ t ≤ w, let Gt be the subgraph of G consisting of

all the edges with weight at most t. Denote the number of connected components in Gt

by ct. It is shown in [50] that the MST weight of G is exactly n − w +
∑w−1

t=1 ct. So it

suffices to estimate each ct.

By slight abuse of notation, suppose we want to estimate the number of connected

components c in a graph G with vertex set V . Here we follow the description given

in [60], which is a minor modification of the original algorithm in [50]. Consider the

following procedure that outputs either 0 or 1:

1. Pick a vertex v ∈ V uniformly at random.

2. Choose a random integer X according to the probability distribution Prob[X ≥

k] = 1/k.

6

3. Check to see if the connected component containing v has at most X vertices or

not. If yes then output 1, otherwise output 0.

Let b denote the output of this procedure and C denote the set of connected compo-

nents of G, we have,

E[b] =
∑

C∈C
Prob[v ∈ C] · Prob[|C| ≤ X] =

∑

C∈C

|C|
n

· 1

|C| =
c

n

That is, the expected value of b is proportional to c. We can repeat the above pro-

cedure s times, get s binary values b1, . . . , bs, and use (n
∑s

i=1 bi)/s as an estimation of

c. This estimation has the right expected value, and the difficult part of [50] is to bound

its variance and show how to make the above procedure efficient, i.e. within the desired

sublinear time bound. Using similar techniques, Czumaj and Sohler [60] showed how to

(1 + ε)-estimate the MST weight of an n-point metric space in Õ(n/εO(1)) time. Note

that this is a sublinear time algorithm because the full description of an n-point metric

space is of size Θ(n2).

Geometric Algorithms

In computational geometry, sublinear algorithms have been found for many problems

when preprocessing is allowed [3, 108]. For example, checking whether a point lies in

a convex 3-polyhedron can be done in logarithmic time with linear time preprocessing.

However, little of this technology is of any use with massive data sets, since examining the

whole input—let alone preprocessing it—is out of the question. Large geometric data sets

often call for algorithms that examine only a small fraction of the input, but it is fair to say

that sublinear computational geometry is still largely unchartered territory. The first part

of this thesis initiates a study of sublinear algorithms for fundamental geometric problems

7

when no preprocessing is assumed. Before presenting our new results in Section 1.1.2,

we review some related results first.

Geometric property testing. There has been work on geometric property testing, both

in an approximate [58, 62, 77] and exact [112] setting. For example, Czumaj et al. [62]

showed how to test if a set P of n points in R
d is in convex position or far from being

so in sublinear time. We say that P is ε-far from being in convex position if there does

not exist Q ⊂ P such that |Q| = εn and the set P/ Q is in convex position. Given any

ε > 0, the algorithm in [62] accepts P if it is in convex position and rejects it if it is ε-far

from being so. That algorithm works by selecting, uniformly at random, a subset of size

Θ((nd/ε)1/(d+1)) from P . It then checks whether this subset is in convex position or not.

If yes then P is accepted; otherwise P is rejected.

Approximating Euclidean minimum spanning tree weight. In [57], the authors pre-

sented several sublinear time algorithms for estimating the weight of a Euclidean mini-

mum spanning tree (EMST) of a set P of n points in R
d. One of their main results is an

algorithm that with probability at least 3/4 estimates the weight of a EMST of P to within

a relative error of 1 + ε, for any 0 < ε < 1/2. The algorithm runs in time Õ(
√

n/εd/2+2).

However, the algorithm assumes that two multidimensional data structures are available:

(1) an orthogonal range query data structure which, given an axis-parallel cube in R
d,

answers whether there is a point of P within that cube; (2) a cone approximate nearest

neighbor data structure which, given a point p ∈ P and a cone C, returns an approximate

nearest point to p in the cone p + C and from P . Besides, the algorithm needs access to

a minimal bounding cube that contains P . See the original paper for details.

8

Randomized point location. Point location is a classical problem in computational ge-

ometry [63]. In its full generality, the point location problem deals with locating query

points in arbitrary subdivisions. In [65], Devroye et al. considered the problem of locat-

ing a query point in a two-dimensional Delaunay triangulation of n random points. They

showed that a simple “walk-through” technique, namely random sampling followed by

walking towards the query from its nearest neighbor in the sample, has expected running

time close to O(n1/3). Later, Mücke et al. [120] generalized this result to three dimen-

sion and gave a bound of roughly O(n1/4) on the expected running time for locating a

query point in a three-dimensional Delaunay triangulation of n random points. These

algorithms do not assume any preprocessing on the Delaunay triangulations, and hence

fit into our framework of sublinear geometric algorithms (see Section 1.1.2). However,

these algorithms only work for Delaunay triangulations of random point sets. In Sec-

tion 2.4.2, we give a new sublinear algorithm that works for any Delaunay triangulations.

In Section 2.6.1, we further show that a variation of the walk-through technique actually

works for any triangulations.

Dynamic geometric optimization. In [76], Eppstein gave sublinear algorithms for sev-

eral geometric optimization problems in the dynamic setting. For example, he showed

how to maintain the Euclidean bichromatic closest pair, bichromatic farthest pair, or di-

ameter of any planar n-point set undergoing point insertions and deletions, in amortized

time O(nε) per update for any ε > 0. Another result is that for any planar n-point

set undergoing insertions and deletions, its EMST can be maintained in amortized time

O(n1/2 log2 n) per update. All these results can be extended to any fixed dimension, but

with larger amortized update time (depending on the dimension).

9

1.1.2 New Results in this Thesis

In this thesis, we give sublinear algorithms for several fundamental geometric problems

in two and three dimensions when no preprocessing is allowed. Most of these results

(Chapters 2 and 3) were first published by Chazelle, Liu and Magen [48].

In our algorithms, the input is taken to be in any standard representation with no ex-

tra assumptions. For example, a planar subdivision or a polyhedron in 3D is given in

classical edge-based fashion (e.g., DCEL, winged-edge), with no extra preprocessing.

This implies that we can pick an edge at random in constant time, but we cannot sam-

ple randomly among the neighbors of a given vertex in constant time. Our motivation is

two-fold: (i) we seek the minimal set of computational assumptions under which sublin-

earity is achievable; (ii) the assumptions should be realistic and nonrestrictive. Note, for

example, that sublinear separation algorithms for convex objects are known [44, 69], but

all of them require preprocessing, so they fall outside our model. Under these conditions

one might ask whether there exist any interesting “offline” problems that can be solved

in sublinear time. The answer is yes. Note that randomization is a necessity because, in

a deterministic setting, most problems in computational geometry require looking at the

entire input. As far as we know, the two papers on randomized point location [65, 120]

(see Section 1.1.1) are the only previous works on sublinear geometric algorithms that

fall inside of our model.

We divide our results into two groups: Las Vegas type algorithms5 and approximation

algorithms.

5A Las Vegas algorithm is a randomized algorithm that always produces correct results, with the only
variation from one run to another being its running time.

10

Las Vegas Type Algorithms

Here is a summary of our Las Vegas type sublinear geometric algorithms. In all cases, n

denotes the input size and all polyhedra are understood to be in R
3:

• An optimal O(
√

n) time algorithm for checking whether two convex polyhedra

intersect. The algorithm reports an intersection point if they do and a separating

plane if they don’t.

• Optimal O(
√

n) time algorithms for point location in two-dimensional Delaunay

triangulations and Voronoi diagrams, and ray shooting towards a convex polytope.

• An O(
√

n) time algorithm for finding the nearest neighbor of a given point in a

convex polyhedron, and similar algorithms for related problems.

• An optimal O(
√

n) time algorithm for point location in any triangulations in the

plane. The algorithm generalizes to planar subdivisions with constant face size as

well as three-dimensional triangulations. Additionally, there is a Ω(n) lower bound

for point location in planar subdivisions with large faces.

In contrast with geometric property testing (see Section 1.1.1), our algorithms never

err and randomization only affects the running time but not the correctness of the output.6

Devroye et al. [65] showed that a simple walk-through technique for locating a query

point in a two-dimensional Delaunay triangulation of n random data points has expected

running time roughly O(n1/3). This does not contradict the optimality of our O(n1/2)

bound because the data points must be chosen randomly in [65].

6Throughout this thesis, the running times of our sublinear geometric algorithms are understood in the
expected sense. They are expected over the random bits used by the algorithms, and not over any input
distribution.

11

Approximation Algorithms

We also consider geometric problems for which approximate solutions are sought. We

give:

• An O(ε−1
√

n) time algorithm for approximating the volume of a convex polytope

to within a relative error of 1 + ε for any ε > 0.

• An O(ε−5/4
√

n) + f(ε−5/4) time algorithm for approximating the length of the

shortest path between two points on the boundary of a convex polyhedron to within

a relative error of 1 + ε for any ε > 0. Here, f(n) denotes the complexity of

computing the exact shortest path between two points on a convex polyhedron of

size n. This implies that the running time of our algorithm is O(
√

n), for any fixed

ε > 0.

Our approximate shortest path algorithm improves on the (1 + ε)-approximation al-

gorithm of Agarwal et al. [5], which runs in time O(n log ε−1 + ε−3), for any ε > 0. Our

method also makes progress on an important geometric problem of independent interest.

• Given a convex polytope P of n vertices, how many vertices must an enclosing

polytope Q have if it is to approximate any (large enough) shortest path on ∂P

with relative error at most 1 + ε? We reduce to O(ε−5/4) the best previous bound

of O(ε−3/2), due to Agarwal et al. [5].

1.2 Geometric Lower Bounds

Most of the research in computational geometry is devoted to algorithms and data struc-

tures, that is, finding the fastest solutions to geometric problems. The second part of this

12

thesis, however, is concerned with lower bounds on the complexity of geometric prob-

lems. Studying lower bounds for geometric problems is also important. A high lower

bound for a problem in a very general model of computation indicates that an efficient

solution for this problem is impossible. In this situation, people usually turn to approx-

imation algorithms that produce near-optimal solutions; or randomized algorithms that

produce correct answers only with high probability; or more efficient algorithms for in-

teresting special cases. Unfortunately, proving lower bounds in a very general model

of computation (such as the Turing machine) could be very hard. Facing this difficulty,

people turn to more specialized models of computation. These models are still general

enough to encompass all known algorithms for the problems considered. Lower bounds in

these specialized models are useful because they reveal the inherent limitations of current

approaches, and, by demonstrating why current approaches fail, direct algorithm design-

ers to consider new techniques. In Section 1.2.1, we review geometric lower bounds in

several specialized models of computation. In Section 1.2.2 we describe our new results.

1.2.1 Geometric Lower Bounds: An Overview

Algebraic Decision Trees

Decision trees are one of the most widely studied models of computation. A k-ary deci-

sion tree is a directed tree in which every node has k children. In most cases, k is either 2

or 3. Associated with each internal node v is a query about the input that has k possible

answers. Each answer is associated with one child of v. Each leaf of the tree is labelled

with an output value. Given an input instance, we start at the root and traverse the tree

in a top-down fashion. At each internal node, the query result on the input instance tells

13

us which child we should proceed to. The running time is measured as the number of

queries asked. In the worst case, it is the depth of the tree.

An algebraic decision tree is a ternary decision tree in which every query asks for

the sign of a multivariate polynomial. Specifically, the input is assumed to be a vector

(x1, . . . , xn) of real numbers, and each internal node queries the sign of a polynomial

f(x1, . . . , xn). If all these polynomials are of degree at most d then it is called a degree-

d algebraic decision tree. In practice, d is usually a constant. An important special

case is when d = 1: such a tree is called a linear decision tree. A common technique

for proving lower bounds in algebraic decision trees is via information-theoretic argu-

ment. For example, sorting n numbers in any comparison tree7 requires worst case time

log(n!) = Ω(n log n) simply because there are n! different orderings of n numbers.

Yao [135] proved that any quadratic decision tree (i.e., degree-2 algebraic decision

tree) for computing the convex hull of n points in the plane must use Ω(n log n) time.

This technique was later generalized to higher-order algebraic decision trees by Ben-

Or [26], who also applied it to many other problems. Ben-Or also derived similar lower

bounds in a stronger algebraic computation tree model. A current limitation of these

information-theoretic arguments is that they cannot provide ω(n log n) lower bounds. In

fact, no ω(n log n) lower bounds are known in the algebraic decision tree model for any

natural problem solvable in polynomial time.8 More recently, new lower bounds are

proved for non-geometric problems in algebraic decision trees. These lower bounds are

based on novel use of topological invariants [28] or topological complexity measures

such as Betti numbers [138] and Euler characteristics [139]. However, these new tools

are still inherently information-theoretic and therefore unlikely to beat the n log n bound.

7This is a special kind of decision tree in which every query is a comparison between two input values.
8Quadratic lower bounds are known for some NP-complete problems in the algebraic decision tree

model.

14

The Semigroup Arithmetic Model

The semigroup arithmetic model was introduced to study the complexity of range search-

ing, a classical problem in computational geometry [2, 3, 108]. Here, we need to pre-

process a set P of n points in R
d so that, given a range R chosen from a predetermined

class (e.g., all d-dimensional boxes, simplices, or halfspaces), the points of P ∩ R can

be counted or reported quickly. In the semigroup arithmetic model, each point is given a

value from a commutative semigroup, and the answer to a query range is the semigroup

sum of the values associated with the points falling in that range. Note that this form of

the problem is very general. For example, if we let the semigroup be (Z, +) and assign

value 1 to each point, then we obtain range counting – count the number of points in the

query range. If we let the semigroup be (2P , ∪) and assign to each point the singleton set

consisting of itself, then we obtain range reporting – report all points in the query range.

In the semigroup arithmetic model, the data structure is a set of precomputed partial sums

in the underlying semigroup. A query is answered by adding a subset of partial sums. The

size of the data structure is the number of partial sums stored. The time required to an-

swer a query is the minimum number of partial sums that add up to the correct answer.

All other computational costs (branchs, pointer traversals, selecting the right partial sums

to add, etc.) are ignored from the query time. For this reason, lower bounds proved in the

semigroup arithmetic model apply to all conceivable algorithms for range searching. As

its name suggests, the semigroup arithmetic model disallows subtraction of semigroup

values even if the underlying semigroup is actually a group (more on this later).

The semigroup arithmetic model was originally introduced by Fredman, who proved

time lower bounds for dynamic orthogonal (i.e., queries are axis-parallel boxes) and half-

plane range searching [85, 86]. Yao first applied this model to static range searching and

proved lower bounds for orthogonal range searching in the plane [137]. For orthogonal

15

range searching in higher dimensions, Vaidya proved nontrivial but sub-optimal lower

bounds [132]. Chazelle proved tight (or almost tight) space-time tradeoff lower bounds

for orthogonal and simplex (i.e., queries are d-dimensional simplices) range searching in

any dimension [40, 38]. Halfspace range searching is a special case of simplex range

searching: here only a sub-optimal space-time tradeoff lower bound is known [30].

A core technique in several of the above lower bounds is considering some extremal

property of a bipartite graph between a set of points and a set of ranges. In such a graph,

there is an edge between a point p and a range R if and only if p ∈ R. In the proofs

of these lower bounds, a key step is to construct a set of points and ranges such that the

corresponding bipartite graph has many edges but no large complete bipartite subgraphs.

The Discrepancy Method plays an important role in constructing those “hard” points and

ranges [42].

So far we only discussed on-line range searching, that is, queries must be answered

on-line and preprocessing is done before the algorithm starts. There is also the off-line

version, where all queries are given ahead of time and they are to be processed in batched

mode. Chazelle proved nearly optimal lower bounds for off-line orthogonal and simplex

range searching [42]. Here the inputs are n points p1, . . ., pn with semigroup values

x1, . . ., xn and n ranges R1, . . ., Rn, and we want to compute
∑

pi∈Rj
xi for each j.

In other words, given x = (x1, . . . , xn) ∈ R
n, we want to compute Ax where A is

a n by n 0/1 matrix such that Aij = 1 if and only if xi ∈ Rj . The model is further

refined as a linear arithmetic circuit (or, equivalently, a straight-line program) where each

circuit gate (or program step) performs an addition of two input values or previously

computed variables. Similar to the case of on-line range searching, lower bounds for off-

line range searching are also based on special properties of the incidence matrix A for a

16

set of carefully constructed points and ranges. Specifically, in a “hard” matrix many of

its entries are 1, but it does not contain a large submatrix of 1s.

A major limitation of the semigroup arithmetic model is that it disallows subtraction

of semigroup values (even though the underlying semigroup is actually a group). Prov-

ing lower bounds in the group model (when subtraction is allowed) appears difficult and

is still largely open. Chazelle proved nontrivial lower bounds for off-line halfplane and

orthogonal range searching in the group model by examining the spectra of point-range

incidence matrices [42]. As far as we know, however, this is the only work on range

searching lower bounds in the group model. It was widely believed that allowing sub-

traction should not help much in range searching. Recently, Chazelle’s work [43] casts

some doubts on this belief by exhibiting the first nontrivial separation between the semi-

group arithmetic and group arithmetic complexity of a natural range searching problem.

This result implies that Θ(n log n) might be the right answer for most (nonorthogonal)

off-line range searching problems in the group model.

The Pointer Machine Model

The pointer machine model was originally developed by Tarjan to study the complexity

of maintaining disjoint sets [131]. Chazelle used it to study the complexity of range

reporting problems, a special case of range searching.9 A data structure in the pointer

machine model is a directed graph in which every node has constant outdegree. Each

node in the graph is either unlabeled or labeled with the index of one point. Given a

query, the algorithm starts from a distinguished node (called the source) and travers the

graph in some arbitrary order. The requirement (for a valid algorithm) is that it must see

the index of every point in the query range at least once during its traversal. Note that a

9In range reporting, we want to know which points are in the query range, not just how many of them.

17

new node must be visited by traversing an edge from a previously visited node. In other

words, the only way to access a node is through a series of pointers. This is different

from the RAM model where any memory cell can be accessed in constant time. The

algorithm is also allowed to modify the data structure: for example, it can add a new

node (unlabeled) whose outgoing edges point to previously visited nodes; it can also add

or delete edges between previously visited nodes. Thus this model accommodates both

static and self-adjusting data structures. The size of the data structure is the number of

nodes in the graph, and the query time for a range R is the minimum possible number of

nodes visited by a valid algorithm for R. The query time ignores all other computational

costs such as the time to decide which edges to traverse. The pointer machine model is

general enough to describe all known algorithms for range reporting, and lower bounds

proved in this model have wide applicability.

Chazelle proved optimal lower bounds for orthogonal range reporting in the pointer

machine model [39]. His techniques were later applied to simplex range reporting by

Chazelle and Rosenberg, who proved a quasi-optimal lower bound [49]. In Chapter 4

of this thesis, we use these techniques to prove lower bounds for several intersection

searching problems.

Other More Restricted Models

There are several very successful stories on proving geometric lower bounds in the mod-

els described in previous sections. For example, orthogonal and simplex range searching

are essentially solved problems as of today (at least in theory) due to their (almost) tight

lower bounds in the semigroup arithmetic model [42]. On the other hand, we cannot al-

ways derive satisfying lower bounds in these models either because we don’t know how

to do that or because they are inappropriate for some problems. For example, consider

18

the following affine degeneracy testing problem: given n points in R
d, decide if any d+1

of them lie on a hyperplane. This problem can be solved in time O(nd) [74, 75], but in

the algebraic decision tree model, the only available lower bound is a somewhat trivial

bound of Ω(n log n). The reason is that, as mentioned in Section 1.2.1, we don’t know

how to prove a ω(n log n) lower bound in the algebraic decision tree model for any natu-

ral problem solvable in polynomial time. As another example, Hopcroft’s problem asks,

for a set of n points and n lines in the plane, if any point lies on any line. There are

several solutions that solve this problem in roughly O(n4/3) time, the best of which is

due to Matoušek [107], but Ω(n log n) is the only lower bound in the algebraic decision

tree model. The challenge here is to deal with computationally oriented models instead

of combinatorial ones. The semigroup arithmetic model is suitable for studying range

searching problems, but inappropriate for range emptiness problems where we want to

know if at least one point lies inside the query range. If the query range is empty then no

semigroup addition is performed; on the other hand, even a single addition is enough to

indicate that the range is not empty. So there is really no lower bound for range emptiness

in the semigroup arithmetic model.

Our discussion above implies that other (more restricted) models are needed to prove

better lower bounds in some cases. In the following, we address a couple of such models.

Restricted decision trees. We mentioned earlier that the best lower bound for affine de-

generacy testing in the general algebraic decision tree model is Ω(n log n). On the other

hand, Erickson and Seidel obtained an optimal Ω(nd) lower bound for this problem in a

restricted version of algebraic decision trees [80]. In their model, only the following type

of query (called a sidedness query) is allowed: given d + 1 points p0, . . ., pd, decide the

incidence relationship (above, on, or below) between p0 and the oriented hyperplane de-

19

fined by p1, . . ., pd. This query essentially asks for the sign of the determinant of a (d+1)

by (d + 1) matrix formed by the coordinates of the given points. In this model, every de-

cision is based on the result of a sidedness query. Other algebraic tests such as comparing

the determinants of two sidedness queries are disallowed. Since all known algorithms for

affine degeneracy testing use (or can be made to use) only sidedness queries, the lower

bound in [80] implies that we cannot improve the existing algorithms unless other compu-

tational primitives are used. Erickson also proved near-optimal lower bounds for convex

hull problems in the same model, and optimal lower bounds for spherical degeneracy

testing in a similar model [78].

The famous 3SUM problem in computational geometry asks if a given set of n num-

bers has three elements whose sum is zero. While this problem can be solved in time

O(n2), the best known lower bound is only Ω(n log n) in the general algebraic decision

tree model. The 3SUM problem is important because there is a multitude of problems

in computational geometry (called 3SUM-hard problems) that can be reduced from it via

subquadratic reductions [88]. In other words, a Ω(n2) lower bound for 3SUM would

imply a Ω(n2) lower bound for all these problems. The class of 3SUM-hard problems

includes detecting collinear points in the plane, separating line segments by a line, sort-

ing the vertices of a line arrangement, computing the Minkowski sum of two polygons,

checking for polygon containment under translation, testing if a union of triangles is sim-

ply connected, minimizing the Hausdorff distance between segment sets, moving a line

segment from one position and orientation to another in the presence of polygonal obsta-

cles, and many more. Since many of these problems can indeed be solved in O(n2) time,

a Ω(n2) lower bound for 3SUM would settle down their complexity completely.

The r-variate linear satisfiability problem (also called r-variate linear degeneracy test-

ing) is a generalization of the 3SUM problem. Here, given n numbers and an integer

20

r ≤ n, we ask if any r of these numbers satisfy a fixed linear equation
∑r

i=1 aixi = b,

with ai 6= 0 for all i. A r-variate linear satisfiability problem can be solved in O(ndr/2e)

time when r is odd, or O(ndr/2e log n) time when r is even. On the other hand, no lower

bound better than Ω(n log n) is known for this problem in the general algebraic decision

tree model. Improving on previous work [84, 67], Erickson [79] proved a lower bound of

Ω(ndr/2e) for any r-variate linear satisfiability problem in the so-called r-linear decision

tree model. In this model, each decision is based on the sign of a linear combination of at

most r input numbers. Note that Erickson’s lower bound is tight when r is odd and almost

tight when r is even. An obvious limitation of Erickson’s lower bound is that every lin-

ear test performed by the decision tree involves at most r numbers. Recently, Ailon and

Chazelle [7] generalized Erickson’s technique and established nontrivial lower bounds for

r-variate linear degeneracy testing in any s-linear decision tree, for s up to 2r. They also

improved on Erickson’s lower bound in r-linear decision trees from pseudopolynomial to

exponential when r is large enough.

The partition graph model. We already know that the semigroup arithmetic model is in-

appropriate for studying range emptiness queries. To handle this problem, Erickson [78]

introduced the partition graph model to study the complexity of geometric divide-and-

conquer algorithms for range emptiness queries and other problems. The justification is

that almost all geometric range searching (in particular, range emptiness) data structures

are constructed by subdividing the space into several regions (with some desired proper-

ties) and building a data structure for each region recursively. Range queries are answered

by performing depth-first search in the resulting space partition.

Formally, a partition graph is a directed acyclic graph with constant outdegree. The

graph contains a distinguished node called the source, and several leaves that have no

21

outgoing edges. Each internal node is associated with a constant number of connected

subsets of R
d called query regions that together cover the whole space10, and each query

region is associated with an outgoing edge of that internal node. Each internal node is also

labeled as either “primal” or “dual”, indicating whether its query regions reside in the pri-

mal or dual space. The actual algorithm that uses a partition graph data structure depends

on the specific problem at hand (e.g., Hopcroft’s problem, halfspace range searching).

Let’s take for example the hyperplane range emptiness problem: this is the problem of

preprocessing a set of points so that given any query hyperplane we can quickly decide if

any point lies on this hyperplane. In preprocessing, each point is fed into the data struc-

ture one at a time. We preform a depth-first search on the graph starting from the source.

At each primal node, we traverse the outgoing edges corresponding to query regions that

contain the point; at each dual node, we traverse the outgoing edges corresponding to

query regions that intersect the point’s dual hyperplane. For each leaf of the partition

graph, we maintain a set of points that reach it during preprocessing. To answer a hyper-

plane query, we perform a depth-first search similar to those used in preprocessing. That

is, at primal nodes we traverse to query regions that intersect the hyperplane, and at dual

nodes we traverse to query regions that contain the hyperplane’s dual point. The answer

is determined by checking the point sets associated with all leaves reached by the query

hyperplane. For example, if all such point sets are empty then the query hyperplane does

not contain any point. The size of a partition graph is its number of edges. The query

time for a hyperplane is the number of edges traversed during the depth-first search; other

costs (such as constructing the partition graph) are ignored.

10These query regions are not required to be disjoint, convex, simply connected, or of constant combi-
natorial complexity.

22

In the partition graph model, Erickson [78] proved: (1) a lower bound for Hopcroft’s

problem that nearly matches the best known upper bound; (2) lower bounds for offline

halfspace emptiness problems in dimensions five and higher.

1.2.2 New Results in this Thesis

Intersection Searching and Fractional Cascading

In Chapter 4, we prove lower bounds for a class of intersection searching problems in

two and three dimensions in the pointer machine model. Several of our lower bounds are

nearly optimal. These lower bounds have interesting corollaries that resolve a couple of

long-standing open problems in computational geometry.

Here is a brief summary of our results (first published by Chazelle and Liu [47]). See

Chapter 4 for the meaning and background of each problem, as well as the implications

of our results. All lower bounds hold in the pointer machine model (Section 1.2.1).

1. There is a graph with 2D catalogs attached to its nodes such that to perform the

same point location query at the k nodes of a connected subgraph in time O(k+ polylog(n))

requires storage Ω̃(n2), where n is the combined size of all the catalogs.11 This

means that the two-dimensional generalization of fractional cascading is impossi-

ble.

2. For any n large enough, there is a convex planar subdivision with n vertices such

that to compute all k edges intersected by a query line in O(k+ polylog(n)) time

requires storage Ω̃(n2). On the other hand, O(n2) storage is sufficient to achieve

O(k + log n) query time (even if the query is a line segment). The same lower

bound holds for intersecting a query line with a simple polygon with n vertices.

11The Õ notation hides a polylogarithmic factor.

23

3. For any n large enough, there is a (nonconvex) polytope P in R
3 with n ver-

tices such that, given a query plane π, to compute its intersection P ∩ π in time

O(k+ polylog(n)), where k is the number of vertices in P ∩ π, requires storage

Ω(n3−ε), where ε is an arbitrarily small positive constant. On the other hand, O(n3)

storage is sufficient to achieve O(k + log n) query time.

4. For any n large enough, there exists a convex polytope with n vertices that admits

of no boundary dominant Dobkin-Kirkpatrick hierarchy. This resolves a question

that had been open since the mid-eighties.

Remarks: In all cases, the lower bounds remain true, up to a factor of nε, if we replace

the polylog term in the query time by a function of the form nδ, for small enough δ, ε > 0.

Our third result also holds for convex polytopes but the lower bound then drops to Ω̃(n2).

(We have been unable to find a matching upper bound for that restricted version of the

problem.)

How do our results compare to previous work? The upper bounds are mostly ap-

plications of known techniques; in particular, duality, filtering search, navigation in ar-

rangements. The lower bounds, on the other hand, should come as more of a surprise.

Although not particularly difficult technically, they are rather counter-intuitive. Pointer

machine lower bounds exist for all sorts of problems, including union-find [111, 131] and

range searching [39, 49]; see surveys [3, 108]. However, we are not aware of previous

lower bounds for intersection searching or 2D fractional cascading. Our proofs rely on a

general volume argument developed in [49] and a Heilbronn-type result proven in [38].

The rest is new and self-contained.

24

Approximate Nearest Neighbor Searching

In Chapter 5, we prove a new lower bound for Approximate Nearest Neighbor Searching

(ANNS), a basic problem in computational geometry with a variety of applications. This

result was published by the author [106]. To be precise, we prove a lower bound of

d1−o(1) on the query time for any deterministic algorithms that solve ANNS in Yao’s cell

probe model [136]. Our result holds for ANNS with a very loose approximation factor

and in the special case of a Hamming Cube. (Note that this makes our lower bound even

stronger.) Our result greatly improves on the previously best known lower bound for this

problem (in the same model and with the same assumptions), which is Ω(log log d
log log log d

) [33].

Moreover, our proof is much simpler than the proof in [33]. Chapter 5 presents all the

details.

25

Part I

Sublinear Geometric Algorithms

26

Chapter 2

Las Vegas Type Algorithms

2.1 A Warm-up: Successor Searching

As a warm-up exercise, consider the classical successor searching problem: Given a

sorted (doubly-linked) list of n keys and a number x, find the smallest key y ≥ x (the

successor of x) in the list or report that none exists. Although we could not find a refer-

ence, the following algorithm is probably folklore. Choose
√

n list elements at random,

and find the predecessor and successor of x among those (perhaps only one exists). This

provides an entry point into the list, from which a naive search takes us to the successor.

To make random sampling possible, we may assume that the list elements are stored in

consecutive locations (say, in a table). However—and this is the key point—no assump-

tion is made on the ordering of the elements in the table (otherwise we could do a binary

search).

Lemma 2.1.1 Successor searching can be done in O(
√

n) expected time per query,

which is optimal.

27

Proof: For i ≥ 1, let Qi be the set of all elements that are at distance at most i away

from the answer on the list (in either direction). Let P>i be the probability of not hitting

Qi after
√

n random choices of the list elements, with P>0 = 1. The expected distance

of the answer to its nearest neighbor in the random sample is
∑

i≥1 i(P>i−1 − P>i) =

∑
i≥0 P>i. The first

√
n terms sum up to O(

√
n). The rest of the sum is upper bounded

by
√

n
∑

c≥1 P>c
√

n ≤ √
n

∑
c≥1(1 − c/

√
n)

√
n =

√
n

∑
c≥1 2−Ω(c) = O(

√
n). This

immediately implies that the expected time of the algorithm is O(
√

n).

For the lower bound, we use Yao’s minimax principle [134]. We fix a distribution on

the input, and we lower-bound the expected complexity of any deterministic algorithm.

The input is a linked list containing the numbers 1 through n in sorted order. In our

model, the list is represented by a table T [1 · · ·n], with the i-th element in the list stored

in location σ(i) of the table; hence, T [σ(i)] = i. The input distribution is formed by

choosing the permutation σ uniformly from the symmetric group on n elements. The

query is set to be n. In other words, the problem is to locate the last element in the list.

A deterministic algorithm can be modeled as a sequence of steps of the form: (A) pick

a location T [k] already visited and look up the next (or previous) item, i.e., T [σ(i ± 1)],

where k = σ(i); (B) compute a new index k and look up T [k]. Each step may involve the

consideration of every piece of information gathered so far. In particular, in a B-step we

may not consult either one of the adjacent items in the list before computing k (unless,

of course, these items were visited earlier). In this way, σ−1(k) is equally likely to lie

anywhere in the portion of the list still unvisited. For this reason, after a A-steps and b

B-steps, there is a probability at least
(
1 −

√
n+a+b

n

)b

that none of the last
√

n elements

in the list has been visited in a B-step. Right after the last B-step, either the total number

of A- and B-steps exceeds
√

n or, with constant nonzero probability, at least
√

n A-steps

(some of which may have already been taken) are required to reach the last element in

28

R

R p

q

p
2

p
1

p
Cp

L

Figure 2.1: Intersecting two convex polygons

the list. This immediately implies that the expected time of any deterministic algorithm

is Ω(
√

n). �

2.2 Intersection Detection for Convex Polygons

We can generalize the successor searching algorithm to polygon intersection. Given two

convex polygons P and Q in the plane, with n vertices each, determine whether they

intersect or not and, if they do, report one point in the intersection. We assume that P

and Q are given by their doubly-linked lists of vertices (or edges) such that each vertex

points to its predecessor and successor in clockwise order. As in successor searching, we

assume that the two lists are stored in two tables to allow random sampling.

Choose a random sample of r vertices from each polygon, and let Rp ⊆ P and Rq ⊆

Q denote the two corresponding convex hulls. By two dimensional linear programming,

we can test Rp and Rq for intersection without computing them explicitly. This can be

done probabilistically (or even deterministically) in linear time. There are many ways of

doing that (see [42] for references). It is easy to modify the algorithm (of, say, [126]) so

29

that in O(r) time it reports a point in the intersection of Rp and Rq if there is one, and a

bi-tangent separating line L otherwise (Figure 2.1). Let p be the vertex of Rp in L, and

let p1, p2 be their two adjacent vertices in P . If neither of them is on the Rq side of L,

then define Cp to be the empty polygon. Otherwise, by convexity exactly one of them is;

say, p1. We walk along the boundary of P starting at p1, away from p, until we cross L

again. This portion of the boundary, clipped by the line L, forms a convex polygon, also

denoted by Cp. A similar construction for Q leads to Cq.

It is immediate that P ∩ Q 6= ∅ if and only if P intersects Cq or Q intersects Cp. We

check the first condition and, if it fails, check the second one. We restrict our explanation

to the case of P ∩ Cq. First, we check whether Rp and Cq intersect, again using a linear

time algorithm for LP, and return with an intersection point if they do. Otherwise, we find

a line L′ that separates Rp and Cq and, using the same procedure as described above, we

compute the part of P , denoted C ′
p, on the Cq side of L′. Finally, we test C ′

p and Cq for

intersection in time linear on their sizes, using LP or any other straightforward linear-time

algorithms for intersection detection of convex polygons. Correctness is immediate. The

running time is O(r+|Cp|+|C ′
p|+|Cq|+|C ′

q|). It follows from a standard union bound that

E |Cp| = O(n/r) logn, but a more carefully analysis shows that in fact E |Cp| = O(n/r).

(The three-dimensional case discussed in the next section will subsume this result, so

there is no need for a proof now.) Similarly, E |C ′
p| = E |Cq| = E |C ′

q| = O(n/r). The

overall complexity of the algorithm is O(r + n/r), and choosing r = b√n c gives the

desired bound of O(
√

n). To show optimality, consider the following distributions on

pairs of polygons. One polygon is fixed and degenerate: all its vertices lie in the origin.

The other polygon (also degenerate) has n − 1 vertices on the positive y-axis, and one

vertex, p, in the origin or in (0, δ), where δ is a positive number small enough so that p

is the lowest vertex of the polygon. Moreover, the edges of this polygon are randomly

30

orderd in the edge table. Clearly, these two polygons interesct if and only if p is in

the origin. Since nothing in the structure of the input except the geometry of p reveals

whether it is indeed the origin, any algorithm that detects intersection must have access

to p. Now recall that the only operations allowed are the random sampling of edges and

edge-traversing via links, which means that, as in Lemma 2.1.1, an expected Ω(
√

n) time

is needed to access p. Optimality of subsequent results follow these lines very closely

and shall not be proved again. We have:

Theorem 2.2.1 To check whether two convex n-gons intersect can be done in O(
√

n)

time, which is optimal.

To put Theorem 2.2.1 in perspective, recall that the intersection of two convex poly-

gons can be determined in logarithmic time if the vertices are stored in an array in cyclic

order [44]. The key point of our result is that, in fact, a linked list is sufficient for sublin-

earity. Similarly, if polyhedra are preprocessed à la Dobkin-Kirkpatrick then fast inter-

section detection is possible [69]. What we show in the next section is that sublinearity

is achievable even with no preprocessing at all. Again, we use a two-stage process: In

the first stage we break up the problem into r subproblems of size roughly n/r, and then

identify which ones actually need to be solved; in the second stage we solve these sub-

problems in standard (i.e., non-sublinear) fashion. Their number is constant; hence the

square root complexity. What prevents us from solving these subproblems recursively

is the model’s restriction to global random sampling. In other words, one can sample

efficiently for the main problem but not for the subproblems.

31

2.3 Intersection Detection for Convex Polyhedra

2.3.1 The Algorithm

Given two n-vertex convex polyhedra P and Q in R
3, determine whether they intersect

or not. If they intersect then we report one point in the intersection; otherwise we report a

plane that separates them. We assume that a convex polyhedron is given in any classical

edge-based fashion (e.g., DCEL, winged-edge), but with no extra preprocessing. The

main structure is a table of edges that allows us to pick an edge at random in constant time.

There are also two tables for vertices and faces. Moreover, these tables are interconnected

via pointers to make various local operations possible. For example, each edge points to

its two vertices and two adjacent faces. It also points to its predecessor and successor

edges in its two adjacent faces. Such a structure is a standard representation for convex

polyhedra in computational geometry. It allows us to traverse a portion of a convex

polyhedron in a local fashion and in time linear in the number of edges visited.

Choose a random sample of r = b√n c edges from P and Q, and let Rp and Rq denote

the convex hulls of these random edges in P and Q, respectively. We do not compute Rp

and Rq explicitly, but merely use their vertices to get an LP as described in the last section

for the case of polygons. We use this LP to detect intersection of Rp and Rq in O(r) time,

by invoking a linear-time algorithm for low-dimensional linear programming. We stop

with a point of intersection if there is one. Otherwise, we find a separating plane L that is

tangent to both Rp and Rq. It is important to choose the plane L in a canonical fashion.

To do that, we set up the linear program so as to maximize, say, the coefficient a in the

equation1 ax + by + cz = 1 of L.

1With perturbation techniques, we can always assume general position, and hence avoid having
a solution passing through the origin. We will also assume that the relative position of P and Q is
general.

32

f

p

e

1
p

Figure 2.2: The edges of P incident to p; the thick lines form the random sample.

Next, choose a plane π normal to L and consider projecting P and Q onto it. (Of

course, we do not actually do it.) Let p be a vertex of Rp in L (there could be two of

them, but not more if we assume general position between P and Q) and let p∗ be its

projection onto π. Let p∗
1, p∗

2, . . ., p∗
k be the set of vertices adjacent to p∗ in the projection

of P onto π. We test to see if any of them is on the Rq side of L, and identify one

such point, p1, if the answer is yes (more on that below). If none of them is on the Rq

side, then we define Cp to be the empty polyhedron. This is because in this case, P is

completely on the other side of L. Otherwise, we construct the portion of P , denoted Cp,

that lies on the Rq side of L. Note that Cp is a convex polytope, not just the boundary

of P cut off by L. We compute Cp by using a standard flooding mechanism. Beginning

at p1, we perform a depth-first search through the facial structure of P , restricted to the

relevant side of L. Because Cp is convex, the edges form a single connected component,

so we never need to leave Cp. This allows us to build the entire facial representation of

Cp in time proportional to its number of edges. From then on, the algorithm has the same

structure as its polygonal counterpart, i.e., we compute Cp, C
′
p, Cq, C

′
q and perform the

same sequence of tests.

The question is now: how do we find p1 if it exists? To simplify the analysis, once

we have p, we resample by picking r edges in P at random; let E be the subset of those

33

incident to p. To find p1, we project on π all of the edges of E. If there exists an edge of

E that is on the Rq side of L, then we identify its endpoint as p1. Otherwise all the edges

of E lie on one side of L. We then identify the two extreme ones (e and f in Figure 2.2);

being extreme means that all the other projected edges of E lie in the wedge between e

and f in π. Assume that e and f are well defined and distinct. Consider the cyclic list V

of edges of P incident to p. The edges of E break up V into blocks of consecutive edges.

It is not hard to prove that pp1 lies in blocks starting or ending with e or f , if such a p1

(as defined above) exists. So, we examine each of these relevant blocks (at most four)

exhaustively. If e and f are not both distinct and well defined, we may simply search

for p1 by checking every edge of P incident to p. This completes the description of the

algorithm. In the next section we give the analysis.

2.3.2 The Analysis

Theorem 2.3.1 Two convex n-vertex polyhedra in R
3 can be tested for intersection in

O(
√

n) time; this is optimal.

Proof: Optimality was already discussed in the polygonal case and correctness follows

from elementary convex geometry, so we limit our discussion to the complexity of the

algorithm. Because of the resampling, the expected sizes of the blocks next to e and f (or

alternatively the expected size of the neighborhood of p if the blocks are not distinct) are

O(n/r), so the running time is O(r + n/r + E |Cp|), where |Cp| denotes the number of

edges of Cp. We may exclude the other terms |C ′
p|, |Cq|, and |C ′

q|, since our upper bound

on E |Cp| will apply to them as well. The naive bound of O((n/r) logn) on E |Cp| can

be improved to O(n/r). Here is how.

34

We modify the sampling distribution a little. Then we argue that reverting back to

the original setting does not change the asymptotic value of the upper bound. The mod-

ification is two-fold: (i) we view P as a multiset M where each vertex appears as many

times as its number of incident edges; (ii) Rp is formed by picking each point of M

independently with probability r/n. With respect to the modified distribution, |Cp| is

proportional to the number of constraints in M that violate the linear program P(Rp, Rq)

used to define L (with each point of Rp and Rq defining a linear constraint). Consider a

subset M ′ ⊆ M such that the solution of P(M ′, Rq) (if it exists) has exactly k violations

in M . We distinguish between the solutions with one point in M and two in Rq and those

with two points in M and one in Rq. (Assuming general position between P and Q, these

are the only possibilities.) Let fk and gk count the number of solutions of the first and

second type respectively, and let f≤k = f0 + · · · + fk (with the same definition for g).

For example, we have f0 + g0 = 1 and f|M | = g|M | = 0. We can prove by standard

arguments [54, 121] that

f≤k = O(k) and g≤k = O(k2). (2.1)

To see why, form a random sample S by picking each point of M independently with

probability s/n. Obviously, the number of solutions of P(S, Rq) is one; therefore, so is

its expected value. This gives us

∑

j≤|M |
fj

(s

n

)(
1 − s

n

)j

+
∑

j≤|M |
gj

(s

n

)2(
1 − s

n

)j

= 1.

35

Choosing s = n/k we have,

∑

j≤k

fj

(s

n

)(
1 − 1

k

)j

+
∑

j≤k

gj

(s

n

)2(
1 − 1

k

)j

≤ 1.

it follows easily that
(s

n

)
f≤k +

(s

n

)2

g≤k = O(1),

which proves (2.1).

Returning to our modified distribution, which assigns probability r/n to each point

of M , we now have

E |Cp| = O(1)
∑

k≤|M |

{
kfk

(r

n

)(
1 − r

n

)k

+ kgk

(r

n

)2(
1 − r

n

)k
}

The first k0 = O(n/r) summands add up to

(r

n

)
k0f≤k0

+
(r

n

)2

k0g≤k0
= O

(n

r

)
.

Setting uk = k
(
1− r

n

)k

, we can use summation by parts to bound the contribution of the

last |M | − k0 summands. This gives an upper bound of

(r

n

) ∑

k0≤k<|M |

{
(uk − uk+1)f≤k

}
+

(r

n

)
u|M |f≤|M |

+
(r

n

)2 ∑

k0≤k<|M |

{
(uk − uk+1)g≤k

}
+

(r

n

)2

u|M |g≤|M |.

By (2.1) and the inequality

uk − uk+1 ≤ rk

n
e−kr/n,

36

this is also bounded by

O
(r

n

)2 ∑

k0≤k<|M |
k2e−kr/n + O

(r

n

)3 ∑

k0≤k<|M |
k3e−kr/n + O(1)

= O
(n

r

)
.

This implies that

E |Cp| = O
(n

r

)
. (2.2)

Let D be the original distribution (the one used by the actual algorithm) with r replaced

by 7r. Of course, by (2.2) this scaling has no asymptotic effect on the upper bound for

E |Cp|. We define an intermediate distribution D1 by going through each edge (u, v) of

P twice, selecting it with probability r/n, and then throwing into the sample both u and

v, provided that the edge (u, v) has not been selected yet. (Note that this implies that u

and v are kept out with probability (1 − r/n)2.) There are at most 3n edges in P , so the

probability that a sample from D1 is of size less than 7r is overwhelmingly high. Since all

equal-size subsets of edges are equally likely to be chosen, ED |Cp| is nonincreasing with

the sample size, and so, ED |Cp| = O(ED1
|Cp|). Let D2 denote the modified distribution

used in the calculations. Observe that D2 is derived from D1 by picking only u if (u, v)

is chosen the first time it is considered for selection, and then only v if it is picked the

second time around. By monotonicity, we then have ED1
|Cp| = O(ED2

|Cp|). This

proves that (2.2) holds in the distribution used by the algorithm.

Recall that the running time is O(r+n/r+E |Cp|) which is O(r+n/r) by the above

analysis. For r = b√n c it is O(
√

n). �

When the two convex polyhedra intersect the algorithm reports a point in the inter-

section. On the other hand when they are disjoint, we can report a plane that separates

37

them. Here is a brief description on how to do that. Note that we cannot simply return a

separating plane for Cp and C ′
q (or C ′

p and Cq) because it is not necessarily separating for

P and Q. Instead, we resort to geometric duality to compute the desired plane in expected

O(
√

n) time. In a standard geometric duality transform, a vertex in the primal space is

mapped to a plane in the dual space and vice versa. Moreover, the upper (resp. lower)

hull of a convex polyhedron is transformed to a lower (resp. upper) envelope [63]. When

P and Q are disjoint, at least one of the following must be true: (1) there exists a plane

above the upper hull of P and below the lower hull of Q; (2) there exists a plane below

the lower hull of P and above the upper hull of Q. Since they are symmetric, it suffices

to consider the first one. By duality, such a plane dualizes to a point in the common inter-

section of an upper and a lower envelope, which is a convex polyhedron. Although this

polyhedron is not available explicitly, we have access to its geometric features (vertices,

edges, etc.) in constant time via the corresponding features in the primal space. Hence

we can apply the previous algorithm to find an intersection point in O(
√

n) time, which

is the dual of a separating plane for P and Q.

2.4 Ray Shooting Applications

2.4.1 Ray Shooting towards a Convex Polytope

Given a convex polyhedron P with n vertices and a directed line ` in R
3, the ray shooting

problem asks for the point on (the boundary of) P hit by ` if it exists. We apply essentially

the same techniques as in convex polyhedral intersection to ray shooting and solve it in

expected O(
√

n) time. Choose a random sample of b√n c edges from P and let Rp

denote the convex hull of these edges. We first use LP to detect intersection of Rp and

` in time O(
√

n). There are two cases. If Rp and ` do not intersect, we get a plane L

38

that separates them and passes through a vertex q of Rp. Starting from q we construct

the intersection Cp of P with the halfspace bounded by L that contains `. We already

explained how to do that in the previous section. Finally, we solve ray shooting for Cp

and `. Now suppose that Rp and ` intersect. We first find the point p on Rp hit by `

in time O(
√

n). We cannot afford to compute an explicit representation of Rp in time

Ω(
√

n log n). To find p we again use LP. We can assume that ` is the positive x-axis

by rotating the coordinate system. Of course we do not rotate the whole polytope P .

Instead, we maintain such a rotation transform implicitly. In other words, whenever we

need a geometric feature (vertex, edge, etc.) of P after the rotation, we compute it from

its corresponding feature on the original input in constant time. Finding p is equivalent

to finding a plane L such that: (1) all vertices of Rp are on one side of L (the side that

contains (+∞, 0, 0)); (2) the intersection point of L with the x-axis has its x coordinate

as large as possible. In fact, p is that intersection point. It is straightforward to formulate

this problem as a three-dimensional LP and solve it in time O(
√

n). In particular, to

ensure (2) above we minimize the coefficient a in the equation ax + by + cz = 1 for L.

Once we have L and p, we construct Cp as before and solve the problem for Cp and `. An

analysis very similar to the proof of Theorem 2.3.1 shows that the expected size of Cp is

O(
√

n). We thus have:

Theorem 2.4.1 Given a convex polyhedron with n vertices and a directed line, we can

compute their intersection explicitly in optimal O(
√

n) time.

39

2.4.2 Point Location in 2D Delaunay Triangulations and Voronoi Di-

agrams

The above sublinear time algorithm for ray shooting towards a convex polyhedron gives

us useful ammunition for all sorts of location problems.

Given the Delaunay triangulation T of a set S of n points in the plane and a query

point q, consider the problem of locating q, i.e., retrieving the triangle of T that contains

it. The Delaunay triangulation can be given in any classical edge-based data structure

(e.g. DCEL) that supports O(1) time access to a triangle from a neighboring triangle. We

use the close relationship between Delaunay triangulations and convex hulls given by the

mapping h : (x, y) 7→ (x, y, x2 + y2). As is well known [63], the Delaunay triangulation

of S is facially isomorphic to the lower hull of h(S) (i.e., the part of the convex hull that

sees z = −∞). In this way, point location in T is equivalent to ray shooting towards the

convex hull, where the ray originates from the query point q and shoots in the positive

z direction. Obviously, any facial feature of the convex hull can be retrieved in constant

time from its corresponding feature in the Delaunay triangulation. (The one exception

is the set of faces outside the lower hull: we can simplify matters by adding a dummy

vertex to the hull at z = ∞.)

The same argument can be used for point location in Voronoi diagrams. Recall that

each point (px, py) is now lifted to the plane Z = 2pxX + 2pyY − (p2
x + p2

y), which is

tangent to the paraboloid Z = X2 + Y 2. The Voronoi diagram of S is isomorphic to the

lower envelope of the arrangement formed by the n tangent planes [63]. Note that any

vertex (resp. edge) of the envelope can be derived in constant time from the three (resp.

two) faces incident to the corresponding vertex (resp. edge).

40

Theorem 2.4.2 Point location in the Delaunay triangulation or Voronoi diagram of n

points in the plane can be done in optimal O(
√

n) time.

2.5 Nearest Neighbor Searching and Related Problems

We consider the following problem, which will arise in our discussion of volume approx-

imation and shortest paths algorithms in Chapter 3. Given a convex polyhedron P with

n vertices and a point q, let nP (q) denote the (unique) point of P that is closest to q.

Of course, we can assume that q does not lie inside P , which we can test by using the

previous algorithm. To compute nP (q) we extract a sample polyhedron Rp of size
√

n (as

we did before) and find nRp
(q). Since we just have a collection of vertices of Rp instead

of its full facial representation, it is not obvious how to find nRp
(q) in time O(

√
n). For

this purpose, we express this problem as a LP-type problem and solve it using the method

in [42] (see Chapter 8). A reformulation of the problem would be to seek the plane L

that separates q from the vertices of Rp and maximizes the distance from q to it. To apply

the method in [42], we view each vertex of Rp as a constraint. We also check that all the

assumptions (i.e. monotonicity, locality, violation test and range space oracle) needed to

solve this problem efficiently hold. See [42] for details. Thus we get L in time O(
√

n):

it is tangent to Rp at nRp
(q) and normal to the segment qnRp

(q). Next, we compute the

intersection Cp of P with the halfspace bounded by L that contains q. Again, a similar

analysis shows that the expected size of Cp is O(
√

n). Obviously, nP (q) = nCp
(q), so

we can finish the work by exhaustive search in Cp.

Theorem 2.5.1 Given a convex polyhedron P with n vertices and a point q, the nearest

neighbor of q in P can be found in O(
√

n) time.

41

We can compute a related function by similar means. Given a directed line `, consider

an orthogonal system of coordinates with ` as one of its axes (in the positive direction),

and define ξP (`) to be any point of P with maximum `-coordinate. If we choose a point

q at infinity on `, then ξP (`) can be chosen as nP (q), and so we can apply Theorem 2.5.1.

Another function we can compute in this fashion maps a plane L and a direction ` in

L to the furthest point of P in L along `: in other words, ξP (L, `) = ξP∩L(`). Again, the

nonobvious part is computing ξRp
(L, `) in time O(

√
n) for a sample polytope Rp. As in

the case of ray shooting, we can assume without loss of generality that L is the xy plane

and ` is the positive x direction. Finding ξRp
(L, `) is the same as finding a plane L′ such

that: (1) all vertices of Rp are on one side of L′ (the side that contains (−∞, 0, 0)); (2) L′

is parallel to the y axis; (3) the intersection point of L′ with the x-axis has its x coordinate

as small as possible. We solve this problem in time O(
√

n) by formulating it as a three-

dimensional LP. Other parts of the algorithm (e.g. constructing Cp) and its analysis are

similar to other problems discussed in this section. We summarize our results.

Theorem 2.5.2 Given a convex polyhedron P with n vertices, a directed line `, and a

plane π, the points ξP (`) and ξP (π, `) can be found in O(
√

n) time.

2.6 Point Location in Planar Subdivisions

Given a convex planar subdivision S with n edges and a query point q, the point location

problem asks for the face of S that contains q [63]. The subdivision S can be given in

any classical edge-based data structure such as DCEL.

In [65], Devroye et al. showed that a simple walk-through technique locates a query

point in a Delaunay triangulation of n random points in expected (roughly) O(n1/3) time.

In Section 2.6.1 below, we show that a variation of the walk-through technique actually

42

locates any query point in any planar triangulations in expected O(
√

n) time, which is

optimal. Our result thus removes the two fold assumption on the input triangulation: be-

ing Delaunay and formed by random points. Our algorithm also generalizes to planar

subdivisions with constant face size as well as three-dimensional triangulations. In Sec-

tion 2.6.2, we show a Ω(n) lower bound for point location in planar subdivisions with

large faces.

2.6.1 Point Location in Triangulations

First we need some definitions. Let S be a planar triangulation with n edges. For some

edge e of S, let pe be the nearest neighbor of q on e. In other words, |peq| ≤ |pq| for any

p ∈ e. The Euclidean distance between e and q is just |peq|. We also define a “crossing

distance” between e and q: it is the number of edges of S intersected by the segment peq.

Given a subset S ′ ⊆ S, we call an edge e ∈ S ′ the nearest edge of q if e has the smallest

Euclidean distance from q among all edges of S ′.

Now consider the following algorithm. Sample
√

n edges of S at random. Let e be

the nearest edge of q in this random sample. We identify pe, the nearest neighbor of q on

e. We then walk from pe towards q by traversing all triangles intersected by the segment

peq. Note that this traversal is easy to implement given an edge-based data structure for

S such as DCEL. Suppose we enter a triangle ∆ from one of its neighboring triangles Γ,

then in constant time we can decide which of the other two neighboring triangles of ∆

we will enter next. Continuing in this way, we will finally reach the triangle that contains

q. The time complexity of this traversal is proportional to the number of triangles crossed

by peq, or the crossing distance between q and e.

To prove that this algorithm runs in expected time O(
√

n), it suffices to show that the

expected crossing distance between q and e is O(
√

n). To do this, we rank each edge of S

43

according to its Euclidean distance to q. In other words, we sort the n Euclidean distances

(from the n edges to q) and the rank of e is the rank of its Euclidean distance to q in this

sorted list. The crossing distance between q and e is at most the rank of e, because for

every edge intersected by peq that edge has smaller Euclidean distance to q than e. It

is a simple fact that the expected minimum rank of
√

n numbers chosen randomly from

an n-element list is O(
√

n) (see also the proof of Lemma 2.1.1). Finally, our algorithm

generalizes to point location in planar subdivisions with constant face size as well as point

location in three-dimensional triangulations.

Theorem 2.6.1 Point location in an n-edge planar subdivision with constant face size or

an n-facet triangulation in R
3 can be done in optimal O(

√
n) time.

Remark. Our algorithm is a variation of the walk-through technique used by several

previous algorithms. However, in our algorithm it is crucial to walk from the nearest

neighbor of q on its nearest edge. This makes our algorithm run in expected time O(
√

n)

for any triangulations. In contrast, previous algorithms either walk from an endpoint (or

the midpoint) of the nearest sample edge, or sample by vertices and walk from the nearest

sample vertex. These algorithms cannot guarantee sublinear expected running time for

arbitrary triangulations.

2.6.2 Point Location in Subdivisions with Large Faces

We have seen sublinear time point location in planar subdivisions with constant face size.

What if the subdivision has large faces: Is sublinear time point location still possible?

The answer is no.

44

Theorem 2.6.2 There exists an n-edge planar subdivision such that any randomized al-

gorithm for point location in this subdivision has expected running time Ω(n). The sub-

division contains faces of size Ω(n).

Proof: We first consider the following problem. We are given a doubly-linked list of

numbers. We know that exactly one number is nonzero and would like to find out its

sign (positive or negative). It is obvious that a deterministic algorithm has to check every

number in the worst case, but what about randomized algorithms? Here is a lower bound

argument showing that any randomized algorithm has Ω(n) expected running time.

We use Yao’s minimax principle. We fix a distribution on the input list and lower-

bound the expected complexity of any deterministic algorithm. The input distribution is

formed by picking a list L uniformly at random from the following 2n lists: for 1 ≤ i ≤

n, Ai represents the list in which the i-th number is 1 and all the others are 0; similarly, Bi

represents the list in which the i-th number is −1 and all the others are 0. A deterministic

algorithm can be modeled as a sequence of steps of the form: (A) compute a index k

and look up list element L[k]; (B) pick an element L[k] already visited and look up the

next (or previous) element, i.e., L[k + 1] or L[k − 1]. Since the algorithm must give the

correct answer, it can only terminate after seeing the nonzero element. Moreover, since

the algorithm is deterministic, its behavior is completely determined by its internal state

and the list elements it visited so far. In other words, if we run the algorithm on a list

of all zeros, then we obtain a fixed ordering among the (indices of) list elements. This is

the order on which the elements are visited. Now we change an element to 1 (or −1) and

run the algorithm on the new list. The algorithm will visit the elements according to the

fixed ordering until it hits the nonzero element. Viewing this ordering as a permutation,

the time taken by the algorithm on a list is the shortest prefix of this permutation that

45

contains the nonzero element. This implies that the expected running time (over the input

distribution) is at least (
∑n

i=1 i)/n, or Ω(n).

Now we return to the point location problem. Again we use Yao’s minimax principle

and pick a distribution of planar subdivisions as follows. First, we identify a rectangle R

in the plane whose corners are: (−1, n + 1), (−1, 0), (1, n + 1), (1, 0). We then break

each vertical side of R into n + 1 unit length segments. For example, there is a segment

that connects (−1, j) to (−1, j + 1) for every 0 ≤ j ≤ n. In othe words, R is now a face

with 2n + 4 edges. Finally, We obtain a two-face subdivision Si (1 ≤ i ≤ n) by adding

to R the segment that connects (−1, i) to (1, i). The input distribution is the uniform

distribution among all Si, and the query point is (0, (n + 1)/2), the center of R. Given

an (unknown) subdivision Si, any deterministic algorithm must find the “middle” edge

(from (−1, i) to (1, i)) to locate the query point. Since it is hopeless to hit that edge with

good probability by sampling o(n) edges, the only way to discover it is through its four

adjacent edges: from (−1, i− 1) to (−1, i); from (−1, i) to (−1, i+1); from (1, i− 1) to

(1, i); from (1, i) to (1, i + 1). Now we view the vertical edges of Si as a list of numbers,

and the four adjacent edges as nonzero elements. We then essentially need to solve the

problem discussed at the beginning of this proof.2 We thus get the desired lower bound

of Ω(n). �

2.7 Conclusion and Future Work

We have presented sublinear algorithms for several fundamental geometric problems in

two and three dimensions when no preprocessing is assumed. The problems we con-

2The point location problem is slightly different. For example, there are two lists of vertical edges
instead of one; there are four special edges; etc., but these are minor issues.

46

sider include intersection detection of convex polygons and polyhedra, ray shooting to-

wards convex polytopes, point location in two-dimensional triangulations and Voronoi

diagrams, as well as nearest neighbor type problems. Our randomized algorithms read

only a small fraction of the input and this makes them appealing to large geometric data

sets. In contrast with geometric property testing, our algorithms never err and random-

ization only affects the running time but not the correctness of the output. In most cases,

our algorithms achieve optimal expected running time.

There are many interesting open problems concerning sublinear geometric algorithms.

Here are a few of them:

• The scope of geometric problems for which sublinear algorithms exist is not well

understood. It is therefore important to identify the class of geometric problems

that can be solved in sublinear time.

• A classical result of Gary Miller states that every 2-connected triangulated planar

graph with n vertices has a simple cycle separator of size O(
√

n) [113]. Given the

importance of planar separators in divide-and-conquer algorithms, a sublinear time

algorithm for finding small separators in a planar graph would be very interesting.

• Our algorithm for polyhedral intersection relies heavily on the convexity of input

polytopes. On the other hand, it is not hard to show that sublinear time intersection

detection for arbitrary non-convex polytopes is impossible. But what happens if

the input polytopes are just slightly non-convex? (In practice, convex polytopes

may come as being slightly non-convex due to various causes such as roundoff

errors, bursty noise, and aliasing.) To state the problem more precisely, we say that

47

a polytope P is ε-close to being convex if the Hausdorff distance3 between P and

its convex hull is at most εdiam (P), where diam (P) denotes the diameter of

P . Intuitively, given two polytopes that are ε-close to being convex for small ε, it

should be possible to adapt our algorithm to detect their intersection in sublinear

time. Now the question is: how does the running time depend on n and ε?

3For two point sets A, B in R
3, their Hausdorff distance is defined as:

H(A, B) = max{max
a∈A

min
b∈B

|ab|, max
a∈B

min
b∈A

|ab|}

.

48

Chapter 3

Approximation Algorithms

3.1 Dudley’s Construction

Given a n-vertex convex polytope P in R
3, a classical result of Dudley [72] states that

there exists a low complexity polytope Q that approximates P fairly well. Specifically,

for any ε > 0, there exists a convex polytope Q with O(1/ε) vertices such that P ⊆ Q

and the Hausdorff distance1 between P and Q is at most ε. This result plays an important

role in our algorithms to be presented in this chapter. In the following we review the

method of constructing such a polytope Q.

We may assume that the diameter of P is 1. Let S be a sphere of radius 2 centered at

some arbitrary point in P . Draw a grid of longitudes and latitudes on S, so that each grid

cell is of length
√

ε by
√

ε. In other words, the length of a side of a cell (a circular arc)

is
√

ε. Let V be the set of grid points, we have |V | = O(1/ε). For each point v ∈ V , we

1See the footnote in Section 2.7 for the definition of Hausdorff distance.

49

P

Q

Figure 3.1: Dudley’s construction.

compute nP (v), its nearest neighbor in ∂P (see Section 2.5), and define

Q =
⋂

{ H+
nP (v) | v ∈ V }. (3.1)

Here HnP (v) is the plane tangent to P at nP (v), and H+
nP (v) is the halfspace bounded by

HnP (v) that contains P . See Figure 3.1 for illustration. It is immediate that P ⊆ Q and Q

has O(1/ε) vertices.

One property of V is that for every point s ∈ S, there exists a grid point v ∈ V such

that the Euclidean distance between v and s is at most
√

ε. Based on this property, Dudley

proved that the Hausdorff distance between P and Q is O(ε) [72].

3.2 Volume Approximation

We seek to approximate the volume of a convex polytope P . We proceed in two stages.

First, we compute a large enough enclosed ellipsoid, which we use to rescale P affinely.

This is intended to make P round enough so that good Hausdorff distance approximation

yields good volume approximation. Second, we use Dudley’s construction to find, via

50

the methods of Section 2.5, an enclosing polytope of O(1/ε) vertices whose boundary is

at Hausdorff distance at most ε from P .

3.2.1 A Constant Factor Approximation

We begin by computing, in O(
√

n) time, a polytope P ′ ⊆ P , such that vol (P ′) ≥

c0 vol (P) for some constant c0 > 0. Compute the six points ξP (`), for ` = ±x, ±y,

±z. (See Section 2.5 for the meaning of ξP (`) and ξP (π, `) below.) These points come in

pairs, so let w1, w2 be the pair forming the largest distance. Given a point w on the line L

passing through w1 and w2, let Pw denote the intersection of P with the plane through w

that is orthogonal to L. Let w0 be the midpoint of w1w2 (Figure 3.2). We first show that

if S is a set of points in Pw0
such that

area (conv (S)) ≥ c1 area (Pw0
), (3.2)

for some constant c1 > 0, then vol (conv (S
⋃{w1, w2})) ≥ c2vol (P), for some other

constant c2 > 0. Therefore, we can take P ′ = conv (S
⋃{w1, w2}) to achieve our goal.

Indeed, assume we have such a set S. As a straightforward consequence of Pythagoras’

theorem, we find that diam (P) ≤
√

3 d(w1, w2); therefore, the orthogonal projection of

P on L is a segment v1v2 ⊇ w1w2 of length at most
√

3 d(w1, w2). This implies that, for

any w in L, area (Pw) ≤ 12area (Pw0
). To see why, observe that if, say, w ∈ v1w0,

then, by convexity, Pw is enclosed in the cone with apex w2 and base Pw0
. Therefore,

Pw lies in a copy of Pw0
scaled by at most d(w, w2)/d(w0, w2) ≤ 2

√
3, which proves our

claimed upper bound on area (Pw). Of course, the same argument can be repeated if

51

z

2

2

0

1

0
y

0

w1

2w

1wP

L

y

z
w

y

Figure 3.2: Approximating P from within.

w ∈ w0v2. Since vol (P) =
∫ v2

v1
area (Pw) dw, we can conclude that the 4 quantities

vol (P), vol (conv (Pw0
∪ {v1, v2})),

vol (conv (Pw0
∪ {w1, w2})), vol (conv (S ∪ {w1, w2}))

are all equal up to within constant factors.

We now show how to find a set S satisfying (3.2). We essentially repeat in 2D what

we did so far in 3D. Specifically, we take a, b to be two mutually orthogonal vectors

both normal to L, and let π be the plane spanned by a and b. We compute the four

points (two pairs) ξP (π, `), for ` = a, −a, b, −b. Let y1, y2 be the more distant pair

(analogous to w1, w2 before). Let y0 be the midpoint of y1, y2 and let segment `y0
be the

intersection of P with the line in π orthogonal to y1y2. We can find the two endpoints

z1, z2 of `y0
using ray shooting. Using almost the same argument as the one showing that

conv (Pw0
∪{w1, w2}) has a volume proportional to vol (P), we get that the quadrilateral

with vertex set S = {y1, y2, z1, z2} has an area proportional to area (Pw0
), and thus

satisfies (3.2). We comment that a similar approach to the one we described above was

used by Barequet and Har-Peled in [20]. The difference is that they approximate the

52

volume of a convex polytope from outside by a bounding box, whereas we approximate

it from within.

Let E be the largest ellipsoid enclosed in P ′ = conv ({y1, y2, z1, z2, w1, w2}), also

known as the Löwner-John ellipsoid. It is computable in constant time within any fixed

relative error by solving a constant-size quadratic program [93]. As is well known, its

volume is at least (1/dim)2 times that of the enclosing polytope; therefore,

vol (E) ≥ 1

9
vol (P ′) ≥ c · vol (P),

for some constant c > 0. Make the center of the ellipsoid the origin of the system

of coordinates, and use the ellipsoid’s positive semidefinite matrix to rescale P . To do

that, we consider the linear transformation that takes the ellipsoid into a ball of the same

volume. Specifically, if xT AT Ax ≤ 1 is the equation of the ellipsoid, then we consider

the transformation T = A/(det A). The polytope TP has the same volume as P , but

it is round, namely it contains a ball B of volume Ω(vol (TP)). Thus, we might as

well assume that P has this property to begin with. Note that P is also enclosed in a

concentric ball B ′ that differs from B by only a constant-factor scaling. (If not then TP

would contain a point p so far away from B that the convex hull of p and B, although

contained in P , would have volume much larger than vol (B) and hence vol (P), which

would give a contradiction.) Finally, by rescaling we can also assume that P is enclosed in

the unit ball and its volume is bounded below by a positive constant. By Theorems 2.4.1

and 2.5.2, all of the work in this section can be done in O(
√

n) time.

53

3.2.2 Sublinear Time (1 + ε)-Approximation

We implement Dudley’s construction of a convex polytope Q such that: (i) Q ⊇ P ;

(ii) Q ⊂ Pε, where Pε is the Minkowski sum of P with a ball of radius ε; (iii) Q has

O(1/ε) vertices. Dudley’s result was used constructively in [5]. The difference here is

that our implementation is sublinear. We compute an
√

ε-net on the unit sphere,2 and

project this net down to ∂P , using the nearest-neighbor function nP as a projection map

(Section 2.5). Finally, we form Q as the intersection of the O(1/ε) halfspaces bounded

by the appropriate tangent planes passing through the vertices of the projected net. With

suitable use of the nearest neighbor algorithm of Theorem 2.5.1, we can implement the

entire construction in time O(ε−1
√

n) for the projection construction (since the facial

representations of P and TP are the same, the algorithm can use TP as though it had its

full facial representation at its disposal) and O(ε−1 log ε−1) for intersecting the halfspaces

needed to form Q. Since we can obviously assume that Q does not have more vertices

than P , there is no need for ε to be smaller than, say, 1/n2. This implies that the entire

construction time is in fact O(ε−1
√

n).

We now show that vol (Q) = (1 + O(ε))vol (P). Recall that P is “sandwiched”

between two concentric balls B and B ′ such that rad(B ′) = 1 and rad(B) = Ω(1).

We may assume that B and B ′ are centered at the origin. We claim that Q ⊂ (1 +

2ε/rad(B))P which will immediately show that vol (Q) = (1 + O(ε))vol (P). To prove

the claim, consider any point q ∈ Q and let p be its nearest neighbor in P (so that |pq| ≤

2ε by condition (ii) above), and p′ be the intersection of ∂P and the segment Oq. Also,

let r be the point on the line pp′ so that Or is parallel to pq. Then by convexity of P , r

2This is a collection of O(ε−1) points on the sphere such that any spherical cap of radius
√

ε
contains at least one of the points.

54

is outside of P and hence |Or| > rad(B). Then, |qp′|/|Op′| = |pq|/|Or| < 2ε/rad(B).

Since this holds for any q, we have Q ⊂ (1 + 2ε/rad(B))P = (1 + O(ε))P .

Theorem 3.2.1 Given any ε > 0, it is possible to approximate the volume of an n-vertex

convex polytope with arbitrary relative error ε > 0 in time O(ε−1
√

n).

3.3 Approximate Shortest Paths on a Convex Polytope

3.3.1 The Shortest Path Problem

The shortest path problem for polyhedral surfaces has been extensively studied, drawing

its motivation from applications in route planning, injection molding, computer assisted

surgery [4, 94, 117]. An interesting special case is computing a shortest path between two

points along the boundary of a n-vertex convex polyhedron. In this case, an O(n3 log n)

algorithm was given by Sharir and Schorr [128], later improved by Mitchell et al. [118]

to O(n2 log n) and by Chen and Han [51] to O(n2). More recently, Kapoor [102] has

announced an (unverified) algorithm that works in time O(n log2 n).

These exact shortest path algorithms are too complicated to be practical. This moti-

vates research on faster and simpler algorithms for finding an approximate shortest path.

Hershberger and Suri [97] presented a simple algorithm that computes a 2-approximate

shortest path between two points on a n-vertex convex polytope in time O(n). Agarwal

et al. [5] developed an algorithm that, given any ε > 0, computes a (1 + ε)-approximate

shortest path in time O(n log ε−1 + ε−3) for any two points that are not too close. Their

algorithm is based on the aforementioned Dudley’s approximation polytope. Specifically,

given two points s, t ∈ ∂P , they first compute an approximating polytope Q for P such

that Q has O(ε−3/2) vertices and the Hausdorff distance between Q and P is at most ε3/2.

55

They compute an exact shortest path between s and t along the boundary of Q and project

it onto ∂P without increasing its length.3 It is proved in [5] that this projected path is a

(1 + ε)-approximate shortest path.

3.3.2 Our New Results

Given a convex polyhedron P with n vertices and two points s and t on its boundary ∂P ,

find the shortest path between s and t outside the interior of P . It is well known that the

shortest path lies on the boundary ∂P . In fact, it is easy to construct instances where any

reasonable approximation of the shortest path on ∂P involves Ω(n) edges. This rules out

sublinear algorithms, unless we are willing to follow paths outside of P . We show how

to compute a path between s and t whose length exceeds the minimum by a factor of at

most 1 + ε, for any ε > 0.

Our algorithm relies on a new result of independent interest. Let dP (s, t) denote the

length of the shortest path between s and t in ∂P . Given a point v ∈ ∂P , let Hv be the

supporting plane of P at v (or any such plane if v is a vertex), and let H+
v denote the

halfspace bounded by Hv that contains P . Given ε > 0, we say that a convex polytope Q

is an ε-wrapper of P if: (c0 is an absolute constant discussed below.)

(i) Q encloses P ;

(ii) the Hausdorff distance between ∂P and ∂Q is O(εdiam (P));

(iii) given any s, t ∈ ∂P such that dP (s, t) ≥ c0 diam (P), d bQ(s, t) ≤ (1 + ε)dP (s, t),

where Q̂ = Q ∩ H+
s ∩ H+

t .

Lemma 3.3.1 Any convex 3-polytope has an ε-wrapper of size O(1/ε5/4), for any ε > 0.

3The construction of Q ensures that s, t ∈ ∂Q.

56

This result improves on the O(1/ε3/2) bound of Agarwal et al. [5]. The use of a

wrapper is self-evident. First, we clip the polytope to ensure that dP (s, t) ≥ c0 diam (P)

(Section 3.3.3). Next, we compute an ε-wrapper (Section 3.3.4) and approximate the

shortest path between s and t by computing the shortest path between the two points in

∂Q̂. This can be done in quadratic time by using an algorithm by Chen and Han [51]. The

resulting path, which is of length (1+O(ε))dP (s, t), can be shortened to (1+ε)dP (s, t) by

rescaling ε suitably. Note that in (iii) the condition on s and t being sufficiently far apart

is essential. It is a simple exercise to show that no variant of a wrapper can accommodate

all pairs (s, t) simultaneously. If f(n) denotes the complexity of the exact version of the

shortest path problem, then we have,

Theorem 3.3.2 Given any ε > 0 and two points s, t on the boundary of a convex polytope

P of n vertices, it is possible to find a path between s and t outside P of length at most

(1 + ε)dP (s, t) in time O(ε−5/4
√

n) + f(ε−5/4).

As mentioned in Section 3.3.1, it is known for sure that f(n) = O(n2) [51]. On

the other hand, Kapoor’s (unverified) algorithm [102] implies that f(n) = O(n log2 n),

which would make our algorithm run in expected time O(ε−5/4
√

n). This improves on

Agarwal et al.’s algorithm [5], which runs in O(n log ε−1 + ε−3) time , for any ε > 0.

3.3.3 Computing Short Paths

Given two points s, t ∈ ∂P , our first task is to ensure that dP (s, t) ≥ c0 diam (P), for

some constant c0 > 0. To do this, we first compute a value δ such that δ ≤ dP (s, t) ≤ 8δ.

We will substitute for P the intersection P ′ of P with a box centered at s of side length

16δ. Obviously, the shortest path between s and t relative to P and P ′ are identical. The

only computational primitive we need is the nearest neighbor function of Theorem 2.5.1.

57

It is clear that if we can compute the function relative to P , then we can do it with respect

to P ′ with only constant-time overhead.

To compute a constant-factor approximation for dP (s, t), we adapt an algorithm of

Har-Peled [94] to our sublinear setting. All that is needed is an implementation of the

following primitive: Given two rays r1, r2 from a fixed point p ∈ P , let H be the plane

spanned by these two rays and let C denote the two-dimensional cone in H wedged

between r1 and r2. Given an additional query ray r ∈ H (not necessarily emanating from

p), we need to compute ξC∩P (H, r). By Theorem 2.5.2, this can be done in O(
√

n) time.

3.3.4 Sublinear Time (1 + ε)-Approximation

Assuming without loss of generality that diam (P) = 1, it suffices to prove the follow-

ing:

Theorem 3.3.3 Given any ε > 0 and a convex polytope P of n vertices, there exists

a convex polytope Q with O(ε−5/4) vertices such that: (i) Q ⊇ P ; (ii) the Hausdorff

distance between ∂P and ∂Q is O(ε); and (iii) given any s, t ∈ ∂P such that dP (s, t) ≥

c0 for some constant c0, d bQ(s, t) ≤ (1 + O(ε))dP (s, t), where Q̂ = Q ∩ H+
s ∩ H+

t .

We first show how to construct Q. Let S be a sphere of radius 2 centered at some

arbitrary point in P . Draw a grid G of longitudes and latitudes on S, so that each cell

is of length
√

ε by
√

ε (with an exception made for the last latitude and longitude, if
√

ε

does not divide π). All lengths in this discussion are Euclidean, except in this case where

the length of a circular arc refers to its corresponding angle. We choose a parameter

λ = ε3/4 and subdivide each side of a cell into sub-arcs of length λ (Figure 3.3). In

this way each cell has O(
√

ε/λ) vertices, and the whole construction defines a set V of

O(1/λ
√

ε) vertices. For each point v ∈ V , we compute nP (v), its nearest neighbor in

58

ε

λ

Figure 3.3: The grid G.

∂P , and define

Q =
⋂

{ H+
nP (v) | v ∈ V }. (3.3)

It is immediate from our choice of λ that Q has O(ε−5/4) vertices. Every point of the

sphere S has at least one vertex of G at distance O(
√

ε). By a result of Dudley [72], this

implies part (ii) of Theorem 3.3.3. Since (i) is obvious, it remains for us to prove (iii).

Borrowing terminology from Agarwal et al. [5], we say that a pair (σ, H) forms a

supported path of P if σ = p1,q1,p2,q2,. . ., qm−1,pm is a polygonal line disjoint from the

interior of P and H = Hp1
, . . . , Hpm

is a sequence of supporting planes of P , such that

qi−1pi and piqi both lie in Hpi
, with q0 = p1 qm = pm (Figure 3.4). For 0 < i < m, the

folding angle αi at qi is the dihedral angle of the wedge between Hpi
and Hpi+1

(the one

outside P). The folding angle of σ is defined as α(σ) =
∑

0<i<m αi.

Lemma 3.3.4 (Agarwal et al. [5]) Given s, t ∈ ∂P , there exists a supported path σ of P

with O(1/ε) edges, joining s and t, such that:

dP (s, t) ≤ |σ| ≤ (1 + ε)dP (s, t) and α(σ) = O(ε−1/2).

To help build intuition for the remainder of our discussion, it is useful to sketch the

proof of the lemma. Mapping the grid G to P via the nearest neighbor function nP creates

59

a grid nP (G) on ∂P (with curved, possibly degenerate edges). It is convenient to think

of P as a smooth manifold by infinitesimally rounding the vertices and edges. It does

not much matter how we do that as long as the end result endows each point p ∈ ∂P

with an (outward) unit normal vector ηp that is a continuous function of p. Note that in

this way, for any u ∈ S, the vectors unP (u) and ηnP (u) are collinear, and the function

nP is a bijection. The fundamental property of the nearest-neighor function is that it is

non-expansive. We need only a weak version of that fact, which follows directly from

Lemmas 4.3 and 4.4 in [72].

Lemma 3.3.5 (Dudley [72]) Given two points p, q ∈ ∂P , |pq| and ∠(ηp, ηq) are both in

O(|n−1
P (p)n−1

P (q)|).

This implies that, for any two points p, q ∈ ∂P in the same cell of the mapped grid

nP (G), both |pq| and ∠(ηp, ηq) are in O(
√

ε). We shortcut the shortest path on ∂P from

s to t to form a supported path σ that passes through each cell at most once. In this

manner, we identify O(1/ε) points p1, . . . , pm on ∂P , where pi (resp. pi+1) is the entry

(resp. exit) point of the path through the i-th cell in the sequence. The points pi’s lie

on the edges of nP (G). There are two exceptions, p1 = s and pm = t, which might lie

in the interior of the cell. Next, we connect each pair (pi, pi+1) by taking the shortest

path on Hpi
∪ Hpi+1

. The path intersects Hpi
∩ Hpi+1

at a point denoted qi. (Note that qi

might be infinitesimally close to pi.) This forms a supported path σ with O(1/ε) vertices

s = p1, q1, p2, q2, . . . , qm−1, pm = t. The only real difference with the proof in [5] is that

we skip the final “trimming” step and keep the points pi’s unchanged. We mention two

useful, immediate consequences of Lemma 3.3.5.

• The folding angle at qi is O(
√

ε).

60

p
1

1
q p

2

2
q

m−1
p

q
m−1

p
m

Figure 3.4: The path σ.

• For each 1 ≤ i ≤ m, the point pi belongs to ∂P and, for i 6= 1, m, there exists a

point wi = nP (vi), where vi ∈ V , such that both |piwi| and ∠(ηpi
, ηwi

) are in O(λ).

From σ we build a curve σ′ of length (1 + O(ε))|σ| that joins s and t outside the interior

of Q̂. The classical result below shows that the shortest path on ∂Q̂ from s to t cannot be

longer than σ′, which proves Theorem 3.3.3.

Theorem 3.3.6 (Pogorelov [124]) Given a convex body C, let γ be a curve joining two

points s, t ∈ ∂C outside the interior of C. Then the length of γ is at least that of the

shortest path joining s and t on ∂C.

We now explain how to construct σ′. For 0 < i < m, let (pi, ηpi
) and (qi, ηpi

) be the

rays emanating from pi and qi, respectively, in the direction normal to Hpi
away from P .

Together with the segments piqi and qipi+1, the four rays (pi, ηpi
), (qi, ηpi

), (qi, ηpi+1
), and

(pi+1, ηpi+1
) define a polyhedral surface Σi, which consists of two unbounded rectangles,

Σ1
i and Σ3

i , joined together at qi by an unbounded triangle, Σ2
i (Figure 3.5). Note that the

surface is in general nonplanar but Σ2
i is always normal to the line Hpi

∩ Hpi+1
. Out of

Σi we carve a polyhedral strip Si as follows. Fix a large enough constant c > 0, and let

Ki denote the plane Hpi
+ cλ2ηpi

. In other words, Ki is a parallel copy of Hpi
translated

by cλ2 away from P : As usual, the superscripted K+
i denotes the halfspace enclosing P .

61

p
i

q
i

p
i
/

iq /
q

i
/ /

p
i+1

C λ2

i+1
p /

Σ
iΣ i

1

2

Σ 3
i

Figure 3.5: The curve σ′
i.

Recall that wi is the nearest neighbor of vi defined earlier. We need to consider

Si = Σi ∩
{

(K+
i ∩ K+

i+1) ∪ (H+
wi

∩ H+
wi+1

)
}
.

Again, we have two exceptions for i = 1, m − 1, where we use H+
p1

instead of H+
w1

and

H+
pm

instead of H+
wm

.

Let pip
′
i be the edge of Si incident to pi collinear with ηpi

. We denote by σ′
i the portion

of ∂Si between p′
i and p′

i+1, and define σ′ as
⋃

0<i<m σ′
i. To provide a connection to s and

t, we also add to σ′ the segments p1p
′
1 and pmp′

m. To show that σ′ is a connected curve

outside the interior of Q̂ of length (1 + O(ε))|σ| requires a simple technical lemma.

Lemma 3.3.7 Given an orthogonal system of reference (O, xyz), assume that P is tan-

gent to the xy plane at O and lies below it. Given a point p on ∂P , if |n−1
P (O)n−1

P (p)| < δ,

for some small enough δ > 0, then the intersection of Hp with the xz plane has for equa-

tion, Z = aX + b, where |a| = O(δ) and 0 ≤ b = O(δ2).

Proof: By Lemma 3.3.5, the normal to Hp forms a small angle θ = O(δ) with the z axis,

so the plane Hp, being nonparallel to the z axis, can be expressed as Z = aX + cY +

b. The cross product between the normal (a, c, −1) and the z-axis vector is the vector

(c, −a, 0). By the cross product formula, its length, which is
√

a2 + c2, is also equal to

62

p

pH

y

x

z

O

Figure 3.6: How Hp intersects the xz plane.

√
a2 + c2 + 1 sin θ. It follows that a2 + c2 = O(a2 + c2 + 1)δ2; therefore,

a2 + c2 =
O(δ2)

1 − O(δ2)
= O(δ2), (3.4)

and hence |a| = O(δ). By convexity of P , the plane Hp intersects the nonnegative part

of the z axis, and pz, the z coordinate of p, is nonpositive. By (3.4) and |Op| = O(δ), it

follows that

0 ≤ b = pz − apx − cpy ≤
√

a2 + c2
√

p2
x + p2

y = O(δ2).

�

We examine each σ′
i separately, omitting the cases i = 1, m − 1, which are trivial

modifications of the general case 1 < i < m − 1. The curve σ ′
i lies outside the interior

of H+
wi

∩ H+
wi+1

and hence of Q̂. It is naturally broken up into three parts, σj
i ⊂ Σj

i

(j = 1, 2, 3), each one of them being a polygonal curve whose edges lie in any one of

four planes: Ki, Ki+1, Hwi
, and Hwi+1

. Applying Lemma 3.3.7 with (pi,
−→piqi,

−→
pip

′
i) in the

role of (O, x, z) and wi in the role of p, we find that Hwi
intersects the segment pip

′
i, for

c large enough; similarly, Hwi+1
intersects pi+1p

′
i+1. This shows that p′

i is the intersection

63

of the ray (pi, ηpi
) with the plane Ki; therefore, p′

i is the same point in the definition of σ′
i

and σ′
i−1, thus proving that the curve σ′ is, indeed, connected. (The danger was having p′

i

defined by Hwi+1
.) We now bound the length of σ′

i.

• By Lemma 3.3.7 the slopes of the edges of σ1
i are chosen among: 0 for Ki; O(

√
ε)

for Ki+1; O(λ) for Hwi
; and O(

√
ε) for Hwi+1

. It follows that |σ1
i | ≤ |piqi|/ cos θ,

where θ = O(
√

ε); therefore, |σ1
i | = (1 + O(ε))|piqi|. The same argument shows

that |σ3
i | = (1 + O(ε))|qipi+1|.

• Let q′
i, q

′′
i be the endpoints of the curve σ2

i (Figure 3.5), and let a, a′, b, b′ be the

distances along the ray (qi, ηpi
) from qi to Ki, Ki+1, Hwi

, and Hwi+1
, respectively.

By definition of Si,

|qiq
′
i| = max

{
min{a, a′}, min{b, b′}

}
.

Obviously, a = cλ2 and, by Lemma 3.3.7, b = O(λ|piqi| + λ2). This implies that

|qiq
′
i| = O(λ|piqi| + λ2) and, by the same argument,

|qiq
′
i| + |qiq

′′
i | = O(λ(|piqi| + |qipi+1|) + λ2).

Within Σ2
i , the curve σ2

i is a polygonal line consisting of at most a constant number

of edges. It is easy to see that for any vertex v of σ2
i (including q′

i and q′′
i), the angle

between qiv and edges of σ2
i incident to v is π/2 ± O(

√
ε). This follows from a

simple geometric observation: given any plane H whose normal makes with qiv

an angle at most α, the angle formed by qiv and any line on H lies in the range

[π/2 − α, π/2 + α]. Since any of the edges of σ2
i lies on one of four planes: Ki,

Ki+1, Hwi
and Hwi+1

, and the normal of each of them makes an angle of O(
√

ε)

64

with qiv, the claim follows. Because the folding angle of O(
√

ε) can be assumed

to be less than, say, π/2, this implies that the curve σ2
i lies entirely at a distance

O(|qiq
′
i| + |qiq

′′
i |) from qi. It follows that |σ2

i | = O(|qiq
′
i| + |qiq

′′
i |)

√
ε.

Putting everything together we find that

|σ′
i| = (1 + O(ε) + O(λ

√
ε))(|piqi| + |qipi+1|) + O(λ2

√
ε).

In view of the fact that |p1p
′
1| = |pmp′

m| = cλ2, summing up over all |σ′
i|’s (there are

O(1/ε) of them),

|σ′| = (1 + O(ε) + O(λ
√

ε))|σ| + O(λ2/
√

ε)

= (1 + O(ε))|σ| + O(ε)

= (1 + O(ε))|σ|,

which completes the proof of Theorem 3.3.3. Note that the setting of λ is made to ensure

that the additive term O(λ2/
√

ε) is O(ε). �

3.4 Open Problems

We have seen that an ε-wrapper of a convex polytope P can be used to approximate

the shortest path between any two (not too close) points on ∂P . Our result provides

an improved upper bound of O(ε−5/4) on the size of an ε-wrapper. On the other hand,

Dudley’s result [72] implies that the lower bound is Ω(ε−1). An obvious open problem

is: what is the true bound? We conjecture that it is O(ε−1).

65

Another open problem is whether we can extend the (1 + ε)-approximate shortest

path algorithms in this thesis (or in previous work) to nonconvex polyhedra or polyhedral

terrain surfaces. Varadarajan and Agarwal [133] gave a subquadratic algorithm that com-

putes a O(1)-approximate shortest path between two points on the surface of a nonconvex

polyhedron. It is open whether we can compute a (1 + ε)-approximate shortest path in

near-linear time for nonconvex polyhedra or polyhedral surfaces.

66

Part II

Geometric Lower Bounds

67

Chapter 4

Lower Bounds for Intersection

Searching and Fractional Cascading

4.1 Intersection Searching

Intersection searching refers to the following type of problem: Given a set S of geometric

“objects” (e.g., edges of a planar subdivision, facets of a polytope), we wish to preprocess

S into a data structure so that, given any query q from a predefined class (line segment,

hyperplane), the set of all objects in S intersected by q can be reported efficiently. It is

understood that the set S is fixed once for all, while queries are presented and answered

on-line. Note that this definition need not make any reference to geometry; in fact it

is often useful to view intersection searching abstractly by simply assuming a relation

between each q and a subset of S (the “intersected” objects). In the pointer machine

framework [131], a data structure for intersection searching is modeled as a directed

graph G with bounded outdegree. The graph G is referred to as a search structure for

S. Some of the nodes are assigned objects of S (not necessarily injectively). Given a

68

query q, the algorithm navigates through the graph G, beginning at some start node, until

the subgraph traversed contains at least one node assigned to each object of S intersected

by q. For lower bound purposes, it suffices to count the number of nodes visited as a

conservative estimate of the query time. (This also covers randomized query-answering

algorithms as well.)

We first give a general lemma on the size of any pointer machine data structure for

efficient intersection searching; then we establish the desired storage lower bound by

exhibiting a set of “hard” queries.

Definition 4.1.1 A search structure G for a set S is (α, ω)-effective, with α a positive

constant and ω an additive overhead, if for any query q, we have |G(q)| ≤ α(k + ω).

Here G(q) is the set of nodes visited in G while answering query q, and k is the output

size, i.e., the number of objects in S intersected by q.

This definition expresses our focus on search structures that answer queries in time

linear in the output size, aside from an additive overhead of ω = ω(|S|). Of course, we

can also handle arbitrary multiplicative overheads by setting α = α(|S|).

Definition 4.1.2 A collection of queries Q = {qi} is (m, ω)-favorable for S, with m > 1,

if Q satisfies the following relevance and independence conditions.

1. Relevance: |S ∩ qi| ≥ ω, for any query qi ∈ Q.

2. Independence: |S ∩ qi1 ∩ · · · ∩ qim | = O(1), for all possible i1 < · · · < im.

Here S ∩ qi denotes the set of objects in S intersected by qi, and S ∩ qi1 ∩ · · · ∩ qim has a

similar meaning.

The relevance condition means that each query intersects enough objects so that the

output size dominates the additive overhead. The independence condition gets to the heart

69

of the matter: It is a Zarankiewicz-type condition stating that the bipartite graph induced

by objects and queries should be free of large complete subgraphs. The motivation for

these definitions comes from a general volume argument [39, 49] about pointer machines.

Adapted to our purposes it states that:

Lemma 4.1.3 Given a search structure G for S and a set Q of queries, assume that G is

(α, ω)-effective for some constant α, and Q is (m, ω)-favorable for S. For any ω large

enough, the size of G is Ω(|Q| ω/m).

Lemma 4.1.3 is the main vehicle for proving lower bounds on the storage required by

a search structure with a given query time. Complexity questions are in this way reduced

to purely combinatorial ones, involving the existence of “favorable” sets of queries.

The rest of this chapter is organized as follows. In Section 4.2 we establish lower

bounds on the complexity of intersecting a planar subdivision (resp. convex polytope)

with a query line segment (resp. query plane). These results give us the stepping stone

from which we can conclude that 2D fractional cascading is impossible (Section 4.3),

and that not all convex polytopes admit of a boundary dominant Dobkin-Kirkpatrick hi-

erarchy (Section 4.4). We establish the Ω(n3−ε) lower bound for (nonconvex) polytopes

in Section 4.5.1, and also provide a nearly matching upper bound (Section 4.5.2).

4.2 Planar Subdivisions and Convex Polytopes

Theorem 4.2.1 Given a planar subdivision with n vertices, to compute all k edges inter-

sected by a query line in O(k + ω) time requires Ω(n2/ω2) storage.

Theorem 4.2.2 Given an n-vertex convex polytope in R
3, to compute all k edges inter-

sected by a query plane in O(k + ω) time requires Ω(n2/ω2) storage.

70

n
ω

12ω
2l

2a
l1

b3

Figure 4.1: Towards a hard convex subdivision.

The lower bound for planar subdivisions is essentially optimal: an O(k+logn) query

time solution using O(n2) storage is described in [37]. Note that the lower bound also

holds for the problem of intersecting a query line with a simple polygon, since any n-

vertex planar subdivision can be easily transformed into a simple O(n)-gon (by essen-

tially duplicating each edge and creating a polygon of very small area). For convex poly-

topes the complexity gap is still large. The best solution with O(k+ polylog(n)) query

time requires O(n3) storage and is obtained by applying the solution for the nonconvex

case described in Section 4.5.2.

Both theorems use the same basic starting construction. Take dωe congruent vertical

segments evenly distributed horizontally, labeled 1, . . . , dωe, from right to left (Fig. 4.1).

Next, decompose each segment into t = dn/ωe subsegments of the same length, bringing

the total number of edges to Θ(n). Let ai (resp. bi) denote the midpoint of the i-th

subsegment on segment 1 (resp. 2), counting top down. Of the t2 lines passing through

pairs (ai, bj), any one that intersects segment dωe is called hitting. For example, line l1 in

Fig. 4.1 is such a hitting line. A few simple observations:

Fact 4.2.3 Every hitting line intersects all vertical segments 1 to dωe, and every inter-

section point is the midpoint of some subsegment.

71

To bound the number of hitting lines, observe that any point on segment 1 can join,

via a hitting line, at least dn/ωe/(dωe − 1) points on segment 2; and hence,

Fact 4.2.4 The number of hitting lines is at least n2/ω3.

Let the canonical subset of a hitting line refer to the set of subsegments that intersect

it. By Fact 4.2.3, intersections take place at midpoints, and so two lines that intersect the

same subsegments pass through the same two points and therefore are identical.

Fact 4.2.5 Each canonical subset is of size dωe and the intersection of any two of them

is of size at most 1.

Now let S (resp. Q) be the set of subsegments (resp. hitting lines). Fact 4.2.5 implies

that Q is (2, ω)-favorable for S. We are now ready to build a convex subdivision around

S. In this subdivision, as well as all the others in this chapter, we shall ensure that the

subdivision is in “general position”, meaning that no two adjacent edges are collinear.

Thicken the vertical segments in S, turn them into thin ladder-like concave strips, and

add horizontal rungs to ensure the convexity of their decompositions (Fig. 4.2). Finally,

cap the top and bottom parts of the ladders with two suitable convex pieces. We redefine

S to be the left subsegments of the ladders, and check that, by keeping the ladders thin

enough, Q still is (2, ω)-favorable for S: we then are ready to apply Lemma 4.1.3 to

derive a lower bound. The only problem is that the intersection search problem defined

by Q and S is not, properly speaking, a “line-intersects-subdivision” problem since the

output contains edges outside of S. However, by keeping the ladders thin enough, we see

that each set of intersected edges in S is a subset at least half the size of the actual set

of intersected edges. And so the lower bound for the (S, Q) problem also applies to the

“line-intersects-subdivision.” Theorem 4.2.1 follows from the fact that the number n of

vertices in the resulting subdivision is O(|S|).

72

δ
l1

Figure 4.2: Completing the convex subdivision.

The reader might wonder why we did not choose to augment S by including in it all

the edges of the subdivision, and then check again that the relevance and independence

conditions still hold. The reason is that although augmenting S works in this case, it does

not in the more complex configurations discussed below. So, we prefer to use a reduc-

tion argument, where the actual geometric problem is reduced to an abstract intersection

searching problem specified by a map Q 7→ 2S .

It is easy to modify the construction used in Theorem 4.2.1 to derive Theorem 4.2.2.

The modifications are sufficiently straightforward to dispense with a formal explanation.

The idea is to raise the planar subdivision to form the “roof” of a shed-like polytope in

R
3. Each hitting line is replaced by a plane passing through that line and perpendicular

to the ground, then the set of planes is favorable for the box. A brief sketch follows:

We begin with the polytope of Fig. 4.3, whose xy-projection reproduces the configu-

ration of segments in Fig. 4.1. Next, we replace each rectangle on the roof by a convex

polygon with 2(dn/ωe+1) edges, as shown in Fig. 4.4. (The bounding box is drawn only

for illustration purposes.)

We patch the gaps between consecutive polygons on the roof by taking the convex

hull (Fig. 4.5). Note that the polygonal chains p1, p2, . . . and q1, q2, . . . both lie in a plane

but are not coplanar. Our construction is a lifted version of the hard convex subdivision

73

ω

Figure 4.3: A “house” and its projection.

p

p

p

y

y

y

q

q

q

δ

1

2

3

1

2

3

1

2

3

2

Figure 4.4: Carving out the details.

of Fig. 4.2. The floor and vertical walls of the shed add only a constant number of edges

to the intersection with any hitting plane, and so the same lower bound argument applies,

leading to Theorem 4.2.2.

gaps fixed

1

p1

q2 p2

q 1

p
q1

2q p2

Figure 4.5: Gaps are filled by taking the convex hull.

74

4.3 Fractional Cascading in Higher Dimension

Fractional cascading is a general technique for speeding up lookup queries in catalogs as-

sociated with the nodes of a graph [46]. Specifically, suppose that G is a bounded-degree

graph, where each node v is associated with a catalog Cv (which is just a sorted list of

numbers). The successor of x in Cv is defined as min{y ∈ Cv ∪ {∞} | y ≥ x}. Given a

subset of k nodes in G whose induced subgraph is connected, it is easy, by repeated bi-

nary search, to compute the successors of any query x in the k catalogs in time O(k log n),

where n is the combined size of all the catalogs. Fractional cascading reduces the query

time to O(k+log n) while increasing the storage by only a constant factor. The technique

has found numerous applications in computational geometry (from which it originated),

but also in constraint databases [27], IP routing [31], packet classification [105], data

mining [119], geographical information systems [14], etc. This versatility has motivated

the design of all sorts of variants: dynamic, probabilistic, parallel, external-memory frac-

tional cascading [17, 14, 64, 92, 110, 130, 127].

An outstanding open problem has been the two-dimensional generalization of frac-

tional cascading: what if we replaced the catalogs at the nodes by planar subdivisions?

The question is motivated by more than mere curiosity. Indeed, the wide applicabil-

ity of the technique stems from the fact that many data structures for multidimensional

searching [63, 109] consist of a skeleton graph whose nodes are themselves repositories

of auxiliary (often recursively defined) data structures. As long as linear lists reside at

the bottom of the hierarchy, fractional cascading can be called into action. In some cases,

however, the bottom layer consists of planar maps (i.e., 2D catalogs) and the current

technology fails.

75

2D fractional cascading would immediately lead to improved algorithms for nearest

neighbor searching in E3, intersection search for query segments in planar line arrange-

ments and convex subdivisions, intersection search for query planes and polygons in

polytopes, fixed-directional ray shooting in 3D, not to mention numerous instances of

range searching. Our result dashes all such hopes. We show that not only generalizing

FC to 2D catalogs is impossible but that no pointer machine solutions can provide the

sort of logarithmic speed-up associated with fractional cascading.

Furthermore, the counterexamples are hardly pathological: in fact, catalogs consist-

ing of simple parallel strips are enough to break the whole fractional cascading scheme

apart. This can seem rather surprising in view of previous results suggesting that such

generalizations might, indeed, be possible. For example, navigation among geodesic tri-

angles as described in [45, 96] can be naturally viewed as an instance of 2D fractional

cascading. So, it appears that the catalog graphs of geodesically triangulated polygons

are more exceptional than previously thought.

We use the results of the previous section to show that 2D fractional cascading is

impossible. The construction of Fig. 4.1 tells the whole story: The graph G is a simple

path whose nodes are associated with the dωe vertical segments. The catalog at a node

consists of the lines dual to the midpoints of the dn/ωe subsegments. We use the duality:

(a, b) 7→ y = ax + b and y = ax + b 7→ (−a, b)

because it respects above/below relationships. In this way, a catalog appears as a collec-

tion of parallel strips, i.e., a planar convex subdivision (Fig. 4.6). A hitting query line du-

alizes to a query point, and the line/subsegment intersections identify which of the strips

76

v1 v2

G

Figure 4.6: A catalog graph in which 2D fractional cascading is impossible.

contain the dual point. Thus, 2D fractional cascading is seen to suffer from exactly the

same lower bound as intersection searching for line/planar subdivision (Theorem 4.2.1).

Theorem 4.3.1 There is a graph with planar subdivisions attached to its nodes such that

to perform the same point location query at the k nodes of a connected subgraph in

time O(k+ polylog(n)) requires storage Ω̃(n2), where n is the combined size of all the

catalogs.

4.4 The Dobkin-Kirkpatrick Hierarchy

Let P be an n-vertex convex polytope in R
3 whose vertex set is V (P). A sequence of

convex polytopes, H(P) = P0, . . . , Pk, is called a (polyhedral) hierarchy if: (i) P0 =

P and Pk is a simplex; (ii) Pi+1 ⊂ Pi and V (Pi+1) ⊂ V (Pi) for 0 ≤ i < k; (iii)

V (Pi) \ V (Pi+1) forms an independent set with respect to the facial graph of ∂Pi. The

size of H(P) is defined as
∑k

i=0 |V (Pi)|, its height is k, and its degree is:

max
0≤i≤k

#edges of Pi incident to a vertex of V (Pi) \ V (Pi+1).

The hierarchy is called Dobkin-Kirkpatrick (or DK for short) if its size is O(n), its degree

is O(1), and its height is O(log n). It is well known [68] that any convex polytope P

admits of a DK hierarchy, which is an essential tool for all sorts of polyhedral operations,

mesh simplification, etc. In fact, a polytope will typically have an exponential number

77

of distinct DK hierarchies. Of particular interest are the boundary dominant hierarchies:

These have the additional property that, given any plane π,

k∑

i=0

|Pi ∩ π| = O(|P ∩ π| + log n),

where | polygon | denotes the number of vertices in the polygon. Intuitively, it means that

any planar cross-section should essentially be like the 2D equivalent of a DK hierarchy:

a collection of concentric layers with a fraction of the complexity on the outermost layer.

It is folk knowledge that the existence of a boundary dominant DK hierarchy would

carry with it all sorts of algorithmic benefits: For example, we could use such a hierarchy

to compute, in optimal time, the shadow of a polytope cast by a single light source.

Among the (usually) exponentially many possible DK hierarchies for a convex polytope,

could it be that at least one of them is boundary dominant? We prove that the answer

is no by exhibiting polytopes with no boundary dominant DK hierarchies. Of anecdotal

interest, we should mention that this purely combinatorial question is resolved by using

algorithmically inspired arguments.

A remarkable feature of a DK hierarchy is that it lends itself naturally to navigation

along piecewise linear curves and surfaces. Specifically, the pockets formed by Pi \ Pi+1

can be triangulated so as to turn the whole polytope P into a simplicial cell complex C

(with the standard glueing properties one expects of a cell complex). Given any plane

π, one can find, in O(log n) time, a starting point in P ∩ π, and then explore every

simplex of C that intersects π in a breadth first search traversal that takes constant time

per simplex [41]. Suppose now that the DK hierarchy is boundary dominant. Because the

pockets are each of constant size, the number of intersected simplices would be O(|P ∩

π| + log n). So, we could compute the intersection between a query plane and a convex

78

polytope in O(k+log n) time, using only O(n) storage. This would stand in contradiction

with Theorem 4.2.2.

Theorem 4.4.1 For any n large enough, there exists a convex polytope with n vertices

that admits of no boundary dominant DK hierarchy.

4.5 Nonconvex Polytopes

4.5.1 A Quasi-Optimal Lower Bound

We consider the problem of intersecting a (possibly nonconvex) n-vertex polytope in R
3

with a query plane. We prove a lower bound first; then we give a nearly matching upper

bound in Section 4.5.2.

Theorem 4.5.1 Given an n-vertex polytope in R
3, to compute all k edges intersected by

a query plane in O(k + ω) time requires Ω(n3−ε/ω3) storage, where ε is an arbitrarily

small positive constant.

Note that this implies a Ω(n3−ε) lower bound when ω(n) is polylogarithmic or even of

the form nδ, for any constant δ > 0 with ε = ε(δ). From now on, ε denotes an arbitrarily

small positive constant. Since the storage is at least linear in n, we may assume with no

loss of generality that ω/n(2−ε)/3 is small enough. Our proof relies on the construction

of a “hard” polytope P and a set Q of query planes that is (Θ(log n), ω)-favorable (see

definition 4.1.2) for some designated edges of P that constitute the set S. For notational

convenience, we use n as a parameter that differs from the number of vertices of P by at

most a constant factor. As usual, we ensure that of all the edges intersected by any query

plane of Q, at least a fixed fraction of them are designated. To achieve a query time of

79

x

z

o

y
shiftrandom

Figure 4.7: Carving P out of a cube.

O(|P ∩ π| + ω), we know from Lemma 4.1.3 that the size of the data structure should be

Ω(|Q|ω/ logn).

The input polytope P is carved out of the unit cube C = [0, 1]3 in several “carving”

steps. Let ε0 > 0 be a small enough absolute constant (i.e., with no dependence on ε). To

begin with, we choose dωe random points in the subsquare |2y − 1| ≤ ε0, |2z − 1| ≤ ε0

of the face x = 0 of C, independently and uniformly, and join them to the face x = 1

by x-parallel segments. Next, decompose each such unit-length segment s into d6n/ωe

congruent subsegments. For technical reasons, we need to perform a random shift of this

decomposition: For each s, pick a random real α uniformly between − 1
2
d6n/ωe−1 and

1
2
d6n/ωe−1 and move each of the d6n/ωe − 1 interior endpoints along s (not including

the two endpoints at each end of s) by α (Fig. 4.7). Note that each interior endpoint in a

given s is shifted by the same amount, but that the dωe random shifts are independent.

The next step is to turn this configuration of edges into a bona fide polytope. First,

make each horizontal segment into a cylinder with a tiny square base, say, of side length

1/n2. Next, attach these cylinders to the face x = 0 but not to the face x = 1; let

it come very near the latter but not touch it. What happens to the (randomly shifted)

decompositions? They naturally partition the boundary of each cylinder into rectangles.

The polytope P consists of the unit cube with the protrusions through x = 0 formed by

80

Figure 4.8: Turning transversals into protrusions.

the cylinders (Fig. 4.8). Each shifted endpoint gives rise to four vertices of P : all the

x-parallel edges that are incident upon any of them are called designated and form the set

S. Note that many faces are coplanar in this construction but it is routine to perturb the

polytope P to make it simplicial and in general position. Trivally,

Fact 4.5.2 The number of vertices of P and the number of designated edges are both in

Θ(n). Furthermore, no designated edge is of length larger than ω/2n.

Next, we define a large set Q of query planes that satisfy both the relevance and

independence conditions (Definition 4.1.2). Choose t random points q1, . . . , qt uniformly

in the square 1 − ε0 ≤ x, y ≤ 1 on the face z = 1, where t = dn2−ε/ω3e. Next, along

each segment Oqi, add the points (3jω/n)qi, for all integers n/6ω < j < n/5ω. This

defines a set {q} of Θ(tn/ω) points,1 which in turn specifies the set Q of query planes,

each defined by the equation πq : 〈p, q〉 = ‖q‖2
2 (Fig. 4.9). In other words, πq is the plane

passing through q and normal to Oq.

Let Sq be the slab consisting of all points at distance at most ω/n from the plane πq.

By using a Heilbronn-type argument [38], we can prove along the lines of [49]:

1By abuse of terminology we also use q to denote the vector Oq.

81

o

q

o

n
ω

Figure 4.9: The query set Q.

Lemma 4.5.3 With probability 1 − o(1) the query set Q satisfies the following property:

for some fixed c large enough, any subset of at least c log n planes in Q contains three

planes πbq1
, πbq2

, πbq3
such that the volume of the polyhedron Sbq1

∩ Sbq2
∩ Sbq3

is O(1/n1+ε).

Note that the probability given in the lemma is over the initial random choices of the

set Q of query planes, and the statement is over all large enough subsets of Q.

Proof: We may allow ourselves a subset S of size c log t planes, since log t = O(log n).

Recall that each plane is normal to some segment Oqi where qi is a point on the face

z = 1. Slabs normal to the same Oqi do not intersect, and so we may assume without loss

of generality that the planes of S are normal to distinct segments Oq1, Oq2, . . . , Oq |S|.

Because the qi’s are chosen randomly in an ε0-by-ε0 square at z = 1, they have the fol-

lowing Heilbronn-type property (proven in [38]). For c large enough, with probability

1 − o(1), the convex hull of { q1, . . . , q |S| } is a polygon of area Ω(ε2
0(log t)/t). A tri-

angulation of this convex hull produces at least one triangle of area Ω(ε2
0/(ct)), which

we relabel q1q2q3. We now show that the corresponding planes πbq1
, πbq2

, πbq3
satisfy the

desired condition (note that q̂i is a point that lies on segment Oqi, for i = 1, 2, 3):

vol
3⋂

i=1

Sbqi
= O(1/n1+ε). (4.1)

82

w1

w2

q2

q1

0x

Figure 4.10: Intersection parallelotope.

The polyhedron Sbq1
∩ Sbq2

∩ Sbq3
is spanned by w1, w2, w3 where,

〈wj, q̂i〉 =

(2ω/n)‖q̂i‖2 if i = j, and

0 otherwise.

In other words, Sbq1
∩ Sbq2

∩ Sbq3
is the set of linear combinations x0 +

∑
i αiwi, for 0 ≤

αi ≤ 1, where x0 is the unique point satisfying

〈x0, q̂i〉 =
(
‖q̂i‖2 − ω

n

)
‖q̂i‖2

for 1 ≤ i ≤ 3 (Fig. 4.10). Denote by [w] the 3-by-3 matrix (w1, w2, w3) and define the

matrices [q] and [q̂] similarly. Finally, let Λ be the diagonal matrix with Λii = ‖q̂i‖2. It

follows from [w]T [q̂] = (2ω/n)Λ that

det [w] det [q̂] =
(2ω

n

)3
3∏

i=1

‖q̂i‖2

83

Recall that qi (i = 1, 2, 3) is a point in the small square in the plane z = 1, and q̂i lies on

Oqi. It then follows
∏

i ‖q̂i‖2(det [q]) =
∏

i ‖qi‖2(det [q̂]), and each ‖qi‖2 is Θ(1),

det [w] det [q] =
(2ω

n

)3
3∏

i=1

‖qi‖2 = Θ
(ω3

n3

)

The determinant of [q] is, in absolute value, at least proportional to the area of triangle

q1q2q3, which is Ω(1/t). By our choice of t = dn2−ε/ω3e, | det [w] | = O(tω3/n3) =

O(1/n1+ε). Note that vol
⋂

i Sbqi
= | det [w] |, which proves (4.1). �

Lemma 4.5.3 shows that, for any subset K ⊆ Q of size at least c log n, the volume of
⋂{ Sq | πq ∈ K } is itself in O(1/n1+ε). We now verify that with high enough probability

the relevance and independence conditions hold.

Lemma 4.5.4 Any plane in Q intersects at least dωe designated edges.

Proof: It suffices to show that, given any y, z with |2y − 1| ≤ ε0 and |2z − 1| ≤ ε0,

the points p0 = (0, y, z) and p1 = (1, y, z) lie cleanly on opposite sides of any plane πbq

of Q. (The adjective “cleanly” refers to the fact that this must remain true after turning

segments into thin cylinders and perturbing P slightly.) Recall that q̂ = (βu, βv, β),

where

1 − ε0 ≤ u, v ≤ 1 and
1

2
< β <

3

5
.

We easily verify that for some small enough c0 > 0:

〈p0, q̂〉 − ‖q̂‖2
2 = βvy + βz − β2(u2 + v2 + 1) = −β

2
+ O(ε0) < −c0.

〈p1, q̂〉 − ‖q̂‖2
2 = βu + βvy + βz − β2(u2 + v2 + 1) =

β

5
− O(ε0) > c0.

�

84

Lemma 4.5.5 With probability 1 − o(1), given any set of at least c log n planes in Q, at

most a constant number of designated edges intersect all of them.

Proof: Let K be a set of at least c log n planes in Q and let K∗ be the (interior of the)

polyhedron C ∩ ⋂{ Sq | πq ∈ K }. Recall that to build P we choose random points on

the face x = 0 of C. Let (0, y, z) be one of them and let ` = `(y, z) be the line passing

through it parallel to the x-axis. The construction of P proceeds by choosing points on `

at regular intervals of length λ = d6n/ωe−1 and shifting the d6n/ωe − 1 endpoints by a

fixed, random amount between −λ/2 and λ/2. At the end of this process, let N(K ∗, `)

denote the number of endpoints in K∗ ∩ `. A simple calculation shows that the expected

value of N(K∗, `) (over the random shift) is at most |K∗∩`|/λ, where |K∗∩`| designates

the length of the corresponding segment (we say “at most” and not “equal to” for the rare

case where K∗ intersects ` very near the boundary of C). It follows that

vol K∗ =

∫

[0,1]2
|K∗ ∩ `(y, z)| dy dz

≥ λ

∫

[0,1]2
E N(K∗, `(y, z)) dy dz .

Restricting the integration domain to the ε0-by-ε0 squares to which each ` is actually

adjacent and identifying E N(K∗, `(y, z)) with the conditional expectation of N(K∗, `)

given ` = `(y, z), we find that

vol K∗ ≥ λ

∫

[(1−ε0)/2,(1+ε0)/2]2
E N(K∗, `(y, z)) dy dz

= Ω(ε2
0λ) E(y,z) E [N(K∗, `) | ` = `(y, z)]

= Ω(ε2
0λ) E N(K∗, `) ,

85

where ` is a random x-parallel segment of the type used in the construction (i.e., with

endpoints in the tiny squares at x = 0, 1). It follows that

Prob[N(K∗, `) > 0] = O
(vol K∗

ε2
0λ

)
.

On the other hand, a simple geometric argument shows that |Sq ∩ `| = (2ω/n)/ cos θ,

where θ is the angle between Oq and the x axis.

cos θ = qx/‖q‖2 = Θ(1),

and so

|Sq ∩ `| = Θ(λ)

and, therefore, any given ` can contribute only O(1) such endpoints. By Lemma 4.5.3,

it follows that a given ` contributes either no endpoint to K∗, or if it does, the num-

ber of endpoints is O(1) and this event happens with probability O(vol K∗)/ε2
0λ =

O(ε−2
0)/ωnε. The choice of ` is repeated dωe times independently, so the expected

number is O(n−ε). By a Chernoff-type estimate (Theorem A.1.12 [13]), the probabil-

ity that the number of endpoints in K∗ exceeds n−ε∆ is at most O(1/∆)O(n−ε∆). Setting

∆ = bnε, for some large enough constant b = b(ε), we find that O(1) endpoints lie in K ∗

with probability at most n−10.

The size of Q is O(n3), which bounds by O(n9) the number of triplets of slabs that

can be formed in Lemma 4.5.3. We can thus ensure that with high probability no K ∗

contains more than a constant number of endpoints. By Fact 4.5.2, we know that the

designated edges of P are all of length at most ω/2n and so at most O(1) of them can

intersect any set of query planes of size at least c log n. (The 2 in the denominator is an

86

overly generous slack factor to account for the distortions resulting from turning ` into a

cylinder.) �

We observed earlier that, because of Lemma 4.1.3, to achieve a query time of O(|P ∩

π| + ω) requires Ω(|Q|ω/ logn) storage. By Lemmas 4.5.4 and 4.5.5, we now have

a polytope P and a set Q of query planes that is (Θ(log n), ω)-favorable for the Θ(n)

designated edges of P . The storage requirement is Ω(|Q|ω/ log n) = Ω(n3−ε/ω3 log n),

which, after suitably readjusting ε, proves Theorem 4.5.1.

4.5.2 The Upper Bound

We prove a nearly matching upper bound for the case where ω = O(log n).

Theorem 4.5.6 Given an n-vertex polytope in R
3, there is a data structure of size O(n3)

that allows us to compute all k edges intersected by a query plane in O(k + log n) time.

Proof: Actually, our solution is more general than that: the input can be any set of

line segments in R
3. We begin with an O(n4) solution, which we improve to O(n3)

in a second stage. We dualize the problem by transforming the endpoints of the input

segments into 2n planes, using the polarity ax + by + cz = 1. A line segment is dualized

into a double wedge. We can preprocess the arrangement of 2n planes for fast point

location [42] so that, given a point (here, the dual of the query plane), the convex cell that

contains it can be found in O(log n) time. If each cell keeps a list of the double wedges

that enclose it, then an intersection query can be answered in time O(k + log n), using

O(n4) storage.

We use filtering search to reduce the storage to O(n3). Think of the cells as forming

the nodes of a graph, with an edge joining two nodes whose corresponding cells share

87

a facet. By doubling each edge, we can form an Eulerian tour that visits all the nodes.

Now observe that the wedge lists in the O(n4) solution have a great deal of “coherence.”

Indeed, fix a double wedge and observe the nodes of the tour in whose lists it appears:

these nodes form intervals along the tour, whose endpoints correspond to an entry into

or an exit from the wedge in question. Thus, there are only O(n3) such intervals. So the

problem is reduced to this: given m intervals on a line, where m = O(n3), build a data

structure of size O(m), such that, given a query x, all k intervals that contain x can be

reported in O(k + log m) time. The window list of [37] does just that. �

4.6 Open Problems

We have proven a Ω(n3−ε) space lower bound for any algorithm in the pointer machine

model that finds the set of k edges of a n-vertex polytope intersected by a query plane

in time O(k+ polylog(n)), and it matches the upper bound to within a factor of nε for

arbitrarily small ε > 0 in the general (nonconvex) case. However, in the convex case the

lower bound drops to (roughly) Ω(n2) and the best known upper bound is still the general

O(n3) bound. The main open problem is to bridge this big gap.

In the general case, the n−ε factor in the lower bound was introduced in the construc-

tion of a hard query set in order to make sure that certain probability is small enough. We

believe that there might be a better construction (some deterministic number-theoretical

construction?) that will improve the lower bound from Ω(n3−ε) to Ω(n3/ polylog(n)).

To remove this extra factor completely (i.e., get a tight bound of Ω(n3)), however, seems

very difficult.

Finally, we mention an open problem in the related area of range searching. In halfs-

pace reporting, we need to preprocess a set of n points in R
d so that, given any halfspace

88

we can quickly report all the k points inside of it, preferably in time O(k+ polylog(n)).

We expect similar techniques to give a space lower bound Ω(nbd/2c−ε) for this problem in

the pointer machine model when O(k+ polylog(n)) time is used. This would match the

best known upper bound to within a factor of nε. Note that for orthogonal and simplex

range reporting, nearly optimal lower bounds are already known [39, 49].

89

Chapter 5

A Lower Bound for Approximate

Nearest Neighbor Searching

5.1 The Approximate Nearest Neighbor Searching Prob-

lem

5.1.1 Introduction

Nearest neighbor searching (henceforth, NNS) is a fundamental problem in computa-

tional geometry with applications to a number of areas [56, 66, 55, 83, 25, 81]. A typical

setting for this problem is: given a set of n points (called a database) in a vector space

of dimension d (for example, d-dimensional Euclidean space), we want to preprocess the

database so that given any query point q, we can quickly find the closest point to q in

the database. In low dimensions the problem is well solved [73]. On the other hand,

many applications involve database points represented as vectors in high dimensional

spaces. Unlike the low dimensional case, the problem is considerably more difficult in

90

high dimensions [70, 140, 52, 6]. To our knowledge, there is currently no algorithm with

storage poly(n, d) and query time poly(log n, d). This is often referred to as the “curse of

dimensionality”.

It is then natural to consider the approximate nearest neighbor searching problem

(henceforth, ANNS): instead of insisting on a true closest point to the query q, we only

seek a β-approximate nearest neighbor (henceforth, an β-ANN) of q, for some approxi-

mation factor β > 1. An β-ANN of q is any point p such that dist(p, q) ≤ β · dist(p′, q)

for any p′ in the database. There has been considerable research on ANNS [15, 16, 53,

35, 103], culminating in a couple of recent papers [101, 104] that give randomized al-

gorithms with the following guarantee: approximation factor β = 1 + ε for any ε > 0,

space dO(1)nO(1/ε2) and query time ((d logn)/ε)O(1). Thus ANNS does not suffer from

the curse of dimensionality, at least from the point of view of randomized algorithms and

a fixed ε > 0.

5.1.2 Previous Lower Bounds

Several lower bounds for NNS and ANNS are known in Yao’s cell-probe model [136].

The cell-probe model is a general data structure model for measuring the number of

memory accesses required by a search algorithm. Given a database of n points, a table

T is built in preprocessing: it consists of a set of cells with possibly different sizes.

To answer a query, the algorithm makes several probes to T . Each probe is made by

computing an index k and looking up the entry T [k]. The running time is defined as the

maximum number of probes needed (in the worst case) to correctly answer any possible

query. Because of its generality, a lower bound proved in the cell-probe model can be

applied to any sequential algorithms. In the cell-probe model there are three parameters

91

s, b and t: s denotes the number of cells in the table; b denotes the maximum cell size in

terms of the number of bits1; and t denotes the number of probes made on the table.

All previous lower bounds for NNS and ANNS are proved in the Hamming cube [29,

33, 21]. In this setting, the database points and the query are from the Hamming cube

Cd (the d-dimensional binary cube {0, 1}d), and the distance function is the Hamming

distance. All previous lower bounds [29, 33, 21] are established in the following scenario:

s = (nd)O(1) and b = (d log n)O(1), and lower bounds are given for t. They also make the

assumption that d = ω(log n). This assumption is necessary because for d = O(log n),

the trivial solution of storing all possible answers uses space nO(1) and makes a single

probe for each query. Here we also make this assumption.

Depending on which problem is considered (NNS or ANNS), and whether the algo-

rithm is deterministic or randomized, there are four cases.

• NNS, deterministic. A lower bound of t = Ω(d/ log n) is proved by Borodin et

al. [29] for any deterministic algorithm that solves NNS, when s = poly(n, d) and

b = poly(logn, d).

• NNS, randomized. A lower bound of t = Ω(d/ log n) is proved by Barkol and

Rabani [21] for any randomized algorithm that solves NNS, when s = poly(n, d)

and b = poly(log n, d).

• ANNS, deterministic. The only previous lower bound in this case is proved by

Chakrabarti et al. [33] (and presented in much more detail in [42, 32]). Specifically,

it is shown that t ≥ δ log log d/(2 log log log d) when the approximation factor is at

most 2b(log d)1−δc, for any fixed constant δ > 0.

1The cells may have different sizes. This assumption makes the model even more general.

92

• ANNS, randomized. Very recently (after the result in this thesis was published),

Chakrabarti and Regev [34] proved an optimal lower bound of Ω(log log d/ log log log d)

on the query time of any randomized algorithm that solves ANNS. The approxima-

tion factor may be as loose as 2b(log d)1−δc, for any fixed δ > 0.

5.1.3 The New Result

We prove a new lower bound for ANNS in the deterministic case in the Hamming cube

Cd. Thus the problem considered in this thesis is the same as [33], and our lower bound

is significantly stronger than that one. Here is our result2.

Theorem 5.1.1 For the β-approximate nearest neighbor searching problem with n points

in Cd = {0, 1}d, any deterministic algorithm in the cell-probe model that uses (nd)O(1)

cells with maximum cell size dO(1), must make Ω(d/(β2 log n)) probes in the worst case.

This holds for any β ≤
√

d/20. Specifically, for any fixed ε > 0 and any β up to

2b(log d)1−εc, the lower bound is d1−o(1).

Our result is a significant improvement on the previous lower bound [33], which says

that, under exactly the same conditions as stated in Theorem 5.1.1, for any fixed ε > 0

and any approximation factor up to 2b(log d)1−εc, the query time is Ω(log log d
log log log d

). Here our

result implies that for any approximation factor up to 2b(log d)1−εc, the query time lower

bound is d1−o(1).

Our proof is much simpler than the proof in [33], which is based on a complicated

hierarchical structure. On the other hand, our proof uses the standard richness tech-

nique [115] and follows essentially the same line as the proof in [29]. Note that the

2As usual, log refers to logarithm to the base 2.

93

approximation factor in Theorem 5.1.1 is quite generous: in fact, it is trivial to achieve

d-approximation by returning an arbitrary database point.

We comment that ANNS can be solved by a randomized algorithm that makes only

O(log log d) probes to a table with parameters s = (nd)O(1) and b = (d log n)O(1) [101,

104]. Thus our lower bound gives a sharp contrast of d1−o(1) versus O(log log d) between

the search time complexity of deterministic versus randomized algorithms for ANNS.

This shows that randomization is essential in the algorithms of [101, 104].

5.2 Preliminaries for the Proof

Our proof is very similar to the lower bound proof for NNS by Borodin et al. [29]. The

basic idea there is to consider the decision version of NNS which asks, for some given

λ > 0, whether or not there exists a database point within distance λ from the query. The

advantage of considering the decision version of NNS is that it has a binary communica-

tion matrix3, so that we can apply the richness technique from asymmetric communica-

tion complexity to derive a communication lower bound for the decision version. Such a

communication lower bound immediately implies the desired cell probe lower bound due

to a reduction in [115].

In the attempt to apply the same proof technique to ANNS, we need to define its

decision version first. However, the meaning of the decision version of ANNS is not as

clear as that of NNS. This is because a correct answer to an ANNS query could be any

database point in the allowed approximation region. To handle this problem, we exploit a

certain gap regarding the distance relations that can hold among all possible queries and

3This is a matrix of all possible problem instances of the decision version of NNS, with each row being
a possible query and each column a possible database, and the entry indexed by that row and column being
the answer for that particular instance.

94

databases. This idea leads to the following definition of the decision version of ANNS:

given λ > 0 and an approximation factor β > 1, if all database points are at distance

more than λ from the query then output 1; if there exists a database point within distance

λ/β from the query then output 0; otherwise output 0 or 1 arbitrarily. Note that unlike the

NNS case, there are many possible decison versions of ANNS. We prove a lower bound

that holds for all of them using the framework of [29]. This lower bound then holds for

ANNS.

In the following we review the necessary preliminaries for the proof. Most of them

have appeared in [29], and we include them here for completeness. We begin with a few

useful facts. For 0 < p < 1, the entropy function is H(p) = −p log p−(1−p) log (1 − p).

The following fact is an estimation on the entropy function when p is close to 1/2.

Fact 5.2.1 For x > 0 small enough, H(1/2 − x) = 1 − (2 log e)x2 + O(x4).

A proof of this fact follows by approximating log (1/2 − x) and log (1/2 + x) by their

respective Taylor’s series expansions for small x > 0. Let Bd(λ) denote the Hamming

ball of radius λ centered at an arbitrary point in Cd. We need to bound |Bd(λ)|, the

number of points inside this Hamming ball. The following fact is probably folklore.

Fact 5.2.2 For any 0 < p < 1/2, |Bd(pd)| ≤ 2dH(p).

Proof: Since p < 1/2, for any i ≤ pd, we have ppd(1 − p)(1−p)d ≤ pi(1 − p)d−i. Thus,

|Bd(pd)|2−dH(p) = |Bd(pd)|ppd(1 − p)(1−p)d

=

pd∑

i=0

(
d

i

)
ppd(1 − p)(1−p)d

≤
d∑

i=0

(
d

i

)
pi(1 − p)d−i = 1.

95

�

We also need the following standard Chernoff bound.

Fact 5.2.3 (Chernoff bound [42]) For every a > 0, |Bd(d/2 − a)| ≤ e−a2/(2d) · 2d.

Another useful result is Harper’s isoperimetric inequality [95, 29].

Fact 5.2.4 (Harper’s isoperimetric inequality [95]) For A ⊂ Cd, let r > 0 be such that

A ≥ |Bd(r)|. Then for every λ > 0, |Bd(A, λ)| ≥ |Bd(r + λ)|, where Bd(A, λ) denotes

the set of cube points at distance at most λ from a point in A.

Next we state a relationship between asymmetric communication complexity and cell-

probe complexity. Let a function f : X × Y → U . In the asymmetric communication

complexity model there are two players, Alice and Bob. Alice gets an input x ∈ X and

Bob gets an input y ∈ Y , and the goal is to compute f(x, y) ∈ U (that is, at least one

player should know f(x, y) at the end of this communication game). The complexity

measure is the total number of bits communicated by each side, and an [a, b]-protocol is

one in which Alice sends a bits and Bob sends b bits. The following observation [114]

shows that lower bounds in asymmetric communication complexity lead to lower bounds

in the cell-probe model.

Lemma 5.2.5 (Miltersen [114]) For any function f if there is a deterministic (resp. ran-

domized) solution in the cell probe model with parameters s, b, and t, then there is a

deterministic (resp. randomized) [tdlog se, tb]-protocol for the corresponding communi-

cation problem.

It thus suffices to show a strong lower bound for ANNS in the asymmetric commu-

nication complexity model. A general technique for this purpose is the richness tech-

96

nique [115]. We now briefly review it. Let f : X × Y → {0, 1}. We associate a com-

munication matrix Mf with the function f . The rows of Mf are indexed by the possible

inputs to Alice and the columns by the possible inputs to Bob, and the (x, y) entry of

Mf is f(x, y). Following the notations in [29], we say that a communication problem f

is [u, v]-rich if Mf has at least v columns each containing at least u ones. The richness

technique is given by the following lemma [115].

Lemma 5.2.6 (Miltersen et al. [115]) Let f be [u, v]-rich. If f has a deterministic [a, b]-

protocol then Mf contains a submatrix of dimension at least u/2a+2 × v/2a+b+2 contain-

ing only 1-entries.

To use this lemma to prove lower bounds for f in the asymmetric communication

complexity model, we need to show: (1) Mf is rich enough; (2) Mf does not contain any

large 1-monochromatic submatrix.

5.3 A Near-Optimal Lower Bound for ANNS

5.3.1 The (λ, β)-Approximate Neighbor Problem

We define the (λ, β)-approximate neighbor problem by defining its communication func-

tion f . Suppose Alice has a query x ∈ Cd and Bob has a database D ∈ Cn
d (we allow

repetitions in the database). Let h(x, D) be the distance between x and its nearest neigh-

bor in D. A function f : x × D → {0, 1} is called a valid communication function for

the (λ, β)-approximate neighbor problem if:

97

f(x, D) =

1 if h(x, D) > λ;

0 if h(x, D) ≤ λ/β;

arbitrary (0 or 1) otherwise.

Note that this definition gives a family F of functions. We will prove a communi-

cation complexity lower bound that holds for every f ∈ F . Before this we first show a

reduction from the (λ, β)-approximate neighbor problem to β-ANNS.

Fact 5.3.1 Suppose there is a [a, b]-protocol for β-ANNS in the asymmetric communica-

tion complexity model, then there is a [a, b + d]-protocol for some valid communication

function f of the (λ, β)-approximate neighbor problem. This is true for any λ > 0.

To see why, suppose we have a [a, b]-protocol for β-ANNS. We run it on input (x, D)

and get a point p ∈ D on at least one side (Alice or Bob), such that p is a β-approximate

nearest neighbor of x. In case Bob is the only one who knows p, he sends it to Alice

using d bits. Thus both sides know p after a [a, b + d]-protocol. Alice compares H(x, p)

with λ and outputs f(x, D) = 1 if and only if H(x, p) > λ. The correctness of this

protocol is justified as follows: Let p∗ be a true nearest neighbor of x. If H(x, p∗) > λ

then the protocol is supposed to output 1, it does so because H(x, p) ≥ H(x, p∗) > λ.

On the other hand if H(x, p∗) ≤ λ/β then the protocol is supposed to output 0, it does so

because H(x, p) ≤ βH(x, p∗) ≤ λ.

In view of the discussions above, a good communication lower bound for β-ANNS

follows immediately from a good communication lower bound that applies to every valid

communication function for the (λ, β)-approximate neighbor problem.

98

5.3.2 The Proof of the Lower Bound

Let f be any valid communication function for the (λ, β)-approximate neighbor problem.

We prove the following lower bound for any asymmetric communication protocol that

computes f .

Lemma 5.3.2 Let β ≤
√

d/20. There exists a λ such that in any communication protocol

that computes f , either Alice sends Ω(d/β2) bits or Bob sends Ω(nd/β2) bits. In partic-

ular, for any fixed ε > 0 and any β up to 2b(log d)1−εc, either Alice sends at least d1−o(1)

bits or Bob sends at least nd1−o(1) bits.

Note that the lower bound in Lemma 5.3.2 is nearly optimal (resp. asymptotically

optimal) when β = do(1) (resp. when β = O(1)). In fact, any function of the query and

the database can be computed after Alice sends her input using d bits or Bob sends his

input using nd bits. Below is the proof of Lemma 5.3.2.

Proof: We set the relevant parameters as follows:

• n and d are large enough integers such that d = ω(log n) and d is even.

• β ≤
√

d/20; it is also larger than any constant appearing in the proof.

• λ = d/2 −
√

2d ln (2n); λ0 = λ/β.

We look at the communication matrix Mf that has 2d rows and 2nd columns.

Claim 5.3.3 Mf is [2d−1, 2nd]-rich.

To see this, we fix a column (a database). For each point p in the database, the number

of queries within distance at most λ from p is |Bd(λ)| ≤ 2d−1/n by Fact 5.2.3, thus the

number of queries within distance at most λ from at least one point in the database is

99

at most 2d−1. This means that there are at least 2d−1 queries such that for each such

a query its nearest neighbor in the chosen database is at distance more than λ from it.

By the definition of f , all the entries indexed by these 2d−1 queries in that fixed column

are 1. Claim 5.3.3 follows. The next claim is that Mf does not contain any large 1-

monochromatic submatrix.

Claim 5.3.4 Every 2d−d/(169β2) × 2nd−nd/(32β2) submatrix of Mf contains a zero entry.

Proof: Consider any fixed set Q of queries of cardinality 2d−d/(169β2). Let λQ be the

largest integer such that |Bd(λQ)| ≤ |Q|. It must be the case that λQ < d/2−1. Otherwise

we have |Q| = 2d−d/(169β2) ≥ |Bd(d/2− 1)| > 2d−1 −
(

d
d/2

)
≥ 2d−2, a contradiction with

β <
√

d/20.

Let p = (λQ + 1)/d, then 0 < p < 1/2. By Fact 5.2.2, |Q| < |Bd(λQ + 1)| ≤ 2dH(p).

We then have 1 − 1/(169β2) < H(p). This shows that H(p) is close to 1 for β large

enough, and hence p is close to 1/2. Applying Fact 5.2.1 we have 1 − (1/2 − p)2 >

H(p) > 1 − 1/(169β2), and so

1/2 − p < 1/(13β). (5.1)

We now consider the set Bd(Q, λ0). Recall that Bd(Q, λ0) =
⋃

q∈Q Bd(q, λ0). We say

that a point p ∈ Cd is good for Q if p /∈ Bd(Q, λ0). We say that a database D is good for

Q if every point in D is good for Q. Note that, from the above definitions, if a database

D is not good for Q, then there must exist p ∈ D and q ∈ Q such that H(p, q) ≤ λ0.

Since f is a valid communication function, then by its definition (also recall λ0 = λ/β),

f(q, D) = 0. This shows that once we pick a column indexed by a “not good” database

for Q, there exists a zero entry in the |Q|×1 submatrix formed by Q and that column, and

this is true for any Q. In the following we show that for any Q of cardinality 2d−d/(169β2),

100

the number of good databases for Q is less than 2nd−nd/(32β2). It then follows immediately

that every 2d−d/(169β2) × 2nd−nd/(32β2) submatrix contains at least one zero entry.

We first bound the number of points in Cd that are “not good” for Q. Clearly this

number is |Bd(Q, λ0)| which is at least |Bd(λQ + λ0)| by Fact 5.2.4. We have:

|Bd(λQ + λ0)| ≥ |Bd(pd − 1 + d/(3β))|

= |Bd(d/2 + d/(3β) − (1/2 − p)d − 1)|

≥ |Bd(d/2 + d/(3β) − d/(13β) − 1)|

≥ |Bd(d/2 + d/(4β))|.

The first inequality above follows from the fact that λ0 = λ/β > d/(3β), and the second

follows from inequality 5.1. So the number of good points for Q is at most:

2d − |Bd(d/2 + d/(4β))| ≤ |Bd(d/2 − d/(4β))|

≤ e−d/(32β2)2d

< 2d−d/(32β2).

The second inequality above follows from Fact 5.2.3. Since each good database has

n good points, it is immediate that the number of good databases for Q is less than

2nd−nd/(32β2). This completes the proof of Claim 5.3.4. �

Combining Claim 5.3.3, Claim 5.3.4, Lemma 5.2.6 we then prove Lemma 5.3.2. �

In view of Fact 5.3.1, we have the same lower bound for the asymmetric commu-

nication complexity of β-ANNS. Finally by applying Lemma 5.2.5 we then establish

Theorem 5.1.1.

101

5.4 Concluding Remarks

We have proven a near-optimal deterministic query time lower bound for ANNS in the

Hamming cube. Along with the recent randomized lower bound of Chakrabarti and

Regev [34], this settles down the status of ANNS in the cell probe model completely.

All known lower bounds for NNS and ANNS (and other related problems such as

“partial match”) in the cell probe model are proved using tools from communication

complexity. As a result, any such lower bound cannot exceed Ω(d/ log n) for the reason

below. In the communication complexity interpretation, Alice holds the query point q

and Bob holds the database P . The goal is to let Alice learn the nearest neighbor (or ap-

proximate nearest neighbor) of q in P . Since the data structure has size nO(1), each access

to its memory cells is equivalent to Alice sending O(logn) bits (the index of a cell) to

Bob. If we could show that Alice has to send at least k bits to Bob to solve the problem,

then we obtain a Ω(k/ log n) lower bound on the query time. However, since obviously

k ≤ d (Alice can send q to Bob), Ω(d/ log n) is the best we can hope for using the com-

munication complexity approach. One possible solution for this problem is to consider

other models that are less general than the cell probe model but more suitable for NNS

and ANNS. Recently, a step in this direction was made by Beame and Vee [24]. They

proved lower bounds for NNS in the branching programs model of computation. Their

lower bounds4 are slightly better than the Ω(d/ log n) bound in the cell probe model [21].

Eventually, we would like to see the “curse of dimensionality” conjecture for NNS

being solved. In the Hamming cube Cd, it states that (assuming d ∈ no(1) ∩ω(log n)) any

data structure with query time dO(1) must use space nω(1).

4They proved several different lower bounds depending on the underlying metric space: Ω(d),
Ω(d

√
log d/ log log d), or Ω(d log d).

102

Chapter 6

Future Directions

We have described our work in sublinear geometric algorithms and geometric lower

bounds. We have also mentioned some specific open problems in these areas through-

out this thesis. Finally, we conclude with a few possible directions of future research.

These directions are not meant to be representative. They are chosen based on personal

preference.

6.1 Sublinear Algorithms

Recall that in the streaming model (Section 1.1.1), data comes as a continuous stream and

the algorithm does not have enough space to archive the whole input. Early streaming

algorithms focused on computing simple statistics of the input such as its frequency mo-

ments. Recently, researchers considered interesting geometric problems in the streaming

model. Among other results, efficient approximation algorithms are now known in the

streaming model for range counting [129, 18], geometric optimization [36], and dynamic

geometric problems [100]. One possible research direction is to identify more geometric

103

problems amenable to the streaming model, and design efficient streaming algorithms for

them.

Property testing is a well-developed field now and efficient property testers are known

for a wide range of problems. However, a general and unifying theory seems to be lacking

here. For example, for graph properties in the dense graph model (i.e., the adjacency ma-

trix representation of graphs), property testing can be either very efficient or impossible:

Recall that in time O(1/ε2) we can test the (NP-hard) property of “3-colorability” for a

graph (Section 1.1.1); on the other hand, it was shown that there exists a monotone graph

property in NP which does not admit of any sublinear property tester [91]. Therefore,

it is very interesting (and challenging) to obtain some “structural” results regarding eas-

ily testable properties in the dense graph model. There has been some progress towards

this goal in the last few years. For example, in [91] it was shown that for every graph

property whose query complexity is independent of the size of the graph, it can be so

tested by uniformly selecting a subset of vertices and checking the induced subgraph for

some fixed graph property (which is not necessarily the same as the one being tested).

In [10], it was shown that all first order graph properties of type ‘∃∀’ are testable with a

number of queries independent of the size of the graph; on the other hand, there exists

a ‘∀∃’ property that is not thus testable. In [59], a framework for analyzing (one-sided

error) property testing algorithms was given. In that paper, the authors defined a class of

problems called abstract combinatorial programs and proved that a property admits of an

efficient tester if its testing can be reduced to an abstract combinatorial program of small

dimension. In spite of all these progress, however, we are still far from having a general

principle for classifying all easily testable graph properties in the dense graph model.

A weakness of property testing is that it does not deliver any information on the true

distance of the object to the property being tested, because a property tester could say

104

“no” for every object that does not have the property. Very recently, people studied a

generalization of property testing [8, 123]: the new property tester (called a tolerant

property tester) computes an estimation of the distance of the object to the property, and

so it provides more information than a standard property tester. Efficient tolerant property

testers are given for testing monotonicity of functions as well as clustering problems [8,

123]. One research direction is to design tolerant testers for all sorts of properties testable

in standard property testing. This immediately brings in a list of open problems.

In algorithm design and analysis, it is usually the case that more efficient algorithms

exist for data sets with some structural properties. For example, collision detection of

convex polytopes is much easier than general nonconvex polytopes. On the other hand,

those algorithms rely heavily on the expected property and may break down completely

even when the data set violates the property slightly (e.g., due to bursty noise or data pro-

cessing errors). To make the computation robust, it is desirable to insert a filter between

the algorithm and the original input such that the algorithm is always provided with some

“filtered” input that has the expected property. Of course, the filtered input should differ

as little as possible from the original input. In an effort to formalize this idea, an on-

line variant of property testing (called on-line property-preserving data reconstruction)

was proposed in [9]. There, an unknown fraction of the data is assumed to be in viola-

tion with the expected property, and we want to design efficient filters that answer data

probing queries on-line when no preprocessing is done on the data set. In [9], this new

algorithmic paradigm was investigated in the context of maintaining monotone functions.

In future work, we could study on-line property-preserving data reconstruction for more

challenging tasks such as maintaining convex polytopes in R
3.

105

6.2 Geometric Lower Bounds

Many challenging problems in geometric lower bounds await answers. For example, we

can study on-line and off-line range searching in the semigroup and group arithmetic

models. This gives us four versions of range searching. While lower bounds are known

for three versions, no results exist for on-line range searching in the group model. It

is therefore important to fill up this gap. We expect to adapt the techniques in [42] to

prove nontrivial space-time tradeoff lower bounds for on-line range searching in the group

model.

As a special case of range searching, halfspace range searching is arguably the only

case that is still largely open in the semigroup model and the pointer machine model. The

main reason is that the core technique used in lower bound proofs of other range searching

problems, namely the construction of a set of points and ranges such that their incidence

relationship bipartite graph does not contain large complete bipartite subgraphs, does not

apply to halfspace queries. In fact, in halfspace range searching such large complete

bipartite subgraphs do exist. In [30], this problem was avoided by a clever weighting

strategy on the graph edges. However, the bound thus obtained is only sub-optimal. The

situation is even worse for halfspace range reporting, no lower bound has been established

in the pointer machine model (or in any other model). For this reason, we single out

halfspace range searching as a future research direction in geometric lower bounds.

In Chapter 5, we proved a nearly optimal query time lower bound for approximate

nearest neighbor searching (ANNS) in the cell probe model. As pointed out in Sec-

tion 5.4, lower bounds proved in the cell probe model for ANNS are inherently low. The

same is true for nearest neighbor searching (NNS) lower bounds. In order to go around

106

this difficulty, we think that it is necessary to consider specific models for ANNS and

NNS.1

Given n points in R
d, there are several algorithms [3] that solve NNS with (roughly)

O(m) space and Õ(n/m1/bd/2c) query time, for any n ≤ m ≤ nbd/2c. All these algorithms

are based on geometric divide-and-conquer. In a nutshell, these algorithms divide the

space (primal or dual) into several regions, identify a region relevant to the query point,

and solve NNS recursively for data points in that region. This suggests that we could

model these algorithms as partition graphs [78]: the space is the size of the whole graph

and the query time is the size of the largest subgraph visited over all possible queries. It

would be great to prove a strong (or even matching) space-time tradeoff lower bound in

this model.

Returning to ANNS, given n points in R
d and ε > 0, a couple of algorithms compute

an (1 + ε)-approximate nearest neighbor in time ((d logn)/ε)O(1) with high probabil-

ity [101, 104]. They use space dO(1)nO(1/ε2). These algorithms are based on dimension-

ality reduction techniques such as random linear projections. To get a better lower bound

for ANNS (than what we could prove in the cell probe model), we can define a new

model that captures the essential features of dimensionality reduction. Once we have

such a model, we can also use it to prove space lower bounds for ANNS. Note that for a

fixed ε the space used by the aforementioned algorithms is polynomial, but the exponent

is quadratic on 1/ε. Is this quadratic dependence necessary? Or, could we improve the

exponent to O(1/ε)? A good space lower bound in a model for dimensionality reduction

might answer this question.

1Of course, such models must be general enough to describe all existing algorithms.

107

Bibliography

[1] D. Achlioptas and F. McSherry. Fast computation of low rank matrix approxima-
tions. In Proc. 33rd Annual ACM Symposium on the Theory of Computing, pages
611–618, 2001.

[2] P. Agarwal. Range searching. In J. Goodman and J. O’Rourke, editors, Handbook
of Discrete and Computational Geometry, 2nd ed. Chapman and Hall, CRC, 2004.

[3] P. Agarwal and J. Erickson. Geometric range searching and its relatives. In
B. Chazelle, J. Goodman, and R. Pollack, editors, Contemporary Mathematics:
Advances in Discrete and Computational Geometry, volume 223. Amer. Math.
Soc., 1999.

[4] P. Agarwal, S. Har-Peled, and M. Karia. Computing approximate shortest paths on
convex polytopes. Algorithmica, 33:227–242, 1999.

[5] P. Agarwal, S. Har-Peled, M. Sharir, and K. Varadarajan. Approximating shortest
paths on a convex polytope in three dimensions. Journal of the ACM, 44:567–584,
1997.

[6] P. Agarwal and J. Matoušek. Ray shooting and parametric search. In Proc. 24th
Annual ACM Symposium on the Theory of Computing, pages 517–526, 1992.

[7] N. Ailon and B. Chazelle. Lower bounds for linear degeneracy testing. In Proc.
36th Annual ACM Symposium on the Theory of Computing, pages 554–560, 2004.

[8] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Estimating the distance to a
monotone function. In Proc. 8th International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 229–236, 2004.

[9] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Property-preserving data recon-
struction. In Proc. 15th International Symposium on Algorithms and Computation,
2004.

[10] N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large
graphs. Combinatorica, 20:451–476, 2000.

108

[11] N. Alon and M. Krivelevich. Testing k-colorability. SIAM Journal on Discrete
Mathematics, 15:211–227, 2002.

[12] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
the frequency moments. In Proc. 28th Annual ACM Symposium on the Theory of
Computing, pages 20–29, 1996.

[13] N. Alon and J. Spencer. The Probabilistic Method. Wiley-Interscience, 2000.

[14] L. Arge, D. Vengroff, and J. Vitter. External-memory algorithms for processing
line segments in geographic information systems. In Proc. 3rd Annual European
Symposium on Algorithms, pages 295–310, 1995.

[15] S. Arya and D. Mount. Approximate nearest neighbor searching. In Proc. 4th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 271–280, 1993.

[16] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algo-
rithm for approximate nearest neighbor searching in fixed dimensions. In Proc.
5th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 573–582, 1994.

[17] M. Atallah, R. Cole, and M. Goodrich. Cascading divide-and-conquer: A tech-
nique for designing parallel algorithms. SIAM Journal on Computing, 18:499–532,
1989.

[18] A. Bagchi, A. Chaudhary, D. Eppstein, and M. Goodrich. Deterministic sampling
and range counting in geometric data streams. In Proc. 20th Annual ACM Sympo-
sium on Computational Geometry, pages 144–151, 2004.

[19] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting dis-
tinct elements in a data stream. In Proc. 6th International Workshop on Random-
ization and Approximation Techniques in Computer Science, pages 1–10, 2002.

[20] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38:91–
109, 2001.

[21] O. Barkol and Y. Rabani. Tighter lower bounds for nearest neighbor search and
related problems in the cell probe model. In Proc. 32nd Annual ACM Symposium
on the Theory of Computing, pages 388–396, 2000.

[22] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approx-
imating the entropy. In Proc. 34th Annual ACM Symposium on the Theory of
Computing, pages 678–687, 2002.

109

[23] T. Batu, F. Ergun, J. Kilian, A. Magen, S. Raskhodnikova, R. Rubinfeld, and
R. Sami. A sublinear algorithm for weakly approximating edit distance. In Proc.
35th Annual ACM Symposium on the Theory of Computing, pages 316–324, 2003.

[24] P. Beame and E. Vee. Time-space tradeoffs, multiparty communication complexity,
and nearest-neighbor problems. In Proc. 34th Annual ACM Symposium on the
Theory of Computing, pages 688–697, 2002.

[25] J. Beis and D. Lowe. Shape indexing using approximate nearest-neighbor search
in high-dimensional spaces. In Proc. IEEE Conf. Comp. Vision Patt. Recog., pages
1000–1006, 1997.

[26] M. Ben-Or. Lower bounds for algebraic computation trees. In Proc. 15th Annual
ACM Symposium on the Theory of Computing, pages 80–86, 1983.

[27] E. Bertino, B. Catania, and B. Shidlovsky. Towards optimal indexing for segment
databases. Technical Report, University of Milano, Italy, 1998.

[28] A. Bjorner, L. Lovász, and A. Yao. Linear decision trees: Volume estimates and
topological bounds. In Proc. 24th Annual ACM Symposium on the Theory of Com-
puting, pages 170–177, 1992.

[29] A. Borodin, R. Ostrovsky, and Y. Rabani. Lower bounds for high dimensional
nearest neighbor search and related problems. In Proc. 31st Annual ACM Sympo-
sium on the Theory of Computing, pages 312–321, 1999.

[30] H. Bronnimann, B. Chazelle, and J. Pach. How hard is halfspace range searching.
Discrete and Computational Geometry, 10:143–155, 1993.

[31] M. Buddhikot, S. Suri, and M. Waldvogel. Fast layer-4 packet classification using
space decomposition techniques. In Proc. Protocols for High Speed Networks,
1999.

[32] A. Chakrabarti. Limitations of non-uniform computational models. Ph.D. thesis,
Computer Science Department, Princeton University, 2002.

[33] A. Chakrabarti, B. Chazelle, B. Gum, and A. Lvov. A lower bound on the com-
plexity of approximate nearest-neighbor searching on the hamming cube. In Proc.
31st Annual ACM Symposium on the Theory of Computing, pages 305–311, 1999.

[34] A. Chakrabarti and O. Regev. An optimal randomised cell probe lower bound for
approximate nearest neighbour searching. In Proc. 45th Annual IEEE Symposium
on Foundations of Computer Science, pages 473–482, 2004.

110

[35] T. Chan. Approximate nearest neighbor queries revisited. In Proc. 13th Annual
ACM Symposium on Computational Geometry, pages 352–358, 1997.

[36] T. Chan. Faster core-set constructions and data stream algorithms in fixed dimen-
sions. In Proc. 20th Annual ACM Symposium on Computational Geometry, pages
152–159, 2004.

[37] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal
on Computing, 15:703–724, 1986.

[38] B. Chazelle. Lower bounds on the complexity of polytope range searching. Journal
of the American Mathematical Society, 2:637–666, 1989.

[39] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case.
Journal of the ACM, 37:200–212, 1990.

[40] B. Chazelle. Lower bounds for orthogonal range searching: Ii. the arithmetic
model. Journal of the ACM, 37:439–463, 1990.

[41] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex poly-
hedra. SIAM Journal on Computing, 21:671–696, 1992.

[42] B. Chazelle. The Discrepancy Method: Randomness and Complexity. Cambridge
University Press, Cambridge, 2000.

[43] B. Chazelle. The power of nonmonotonicity in geometric searching. Discrete and
Computational Geometry, 31:3–16, 2004.

[44] B. Chazelle and D. Dobkin. Intersection of convex objects in two and three dimen-
sions. Journal of the ACM, 34:1–27, 1987.

[45] B. Chazelle, H. Edelsbrunner, M. Grigni, L. Guibas, J. Hershberger, M. Sharir,
and J. Snoeyink. Ray shooting in polygons using geodesic triangulations. Algo-
rithmica, 12:54–68, 1994.

[46] B. Chazelle and L. Guibas. Fractional cascading: I. a data structuring technique,
ii. applications. Algorithmica, 1:133–191, 1986.

[47] B. Chazelle and D. Liu. Lower bounds for intersection searching and fractional
cascading in higher dimension. Journal of Computer and System Sciences, 68:269–
284, 2004.

[48] B. Chazelle, D. Liu, and A. Magen. Sublinear geometric algorithms. In Proc. 35th
Annual ACM Symposium on the Theory of Computing, pages 531–540, 2003.

111

[49] B. Chazelle and B. Rosenberg. Simplex range reporting on a pointer machine.
Computational Geometry: Theory and Applications, 5:237–247, 1996.

[50] B. Chazelle, R. Rubinfeld, and L. Trevisan. Approximating the minimum spanning
tree weight in sublinear time. In Proc. 28th International Colloquium on Automata,
Languages and Programming, pages 190–200, 2001.

[51] J. Chen and Y. Han. Shortest paths on a polyhedron. In Proc. 6th Annual ACM
Symposium on Computational Geometry, pages 360–369, 1990.

[52] K. Clarkson. A randomized algorithm for closest-point queries. SIAM Journal on
Computing, 17:830–847, 1988.

[53] K. Clarkson. An algorithm for approximate closest-point queries. In Proc. 10th
Annual ACM Symposium on Computational Geometry, pages 160–164, 1994.

[54] K. Clarkson and P. Shor. Applications of random sampling in computational ge-
ometry, ii. Discrete and Computational Geometry, 4:387–421, 1989.

[55] S. Cost and S. Salzberg. A weighted nearest neighbor algorithm for learning with
symbolic features. Machine Learning, 10:57–67, 1993.

[56] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13:21–27, 1967.

[57] A. Czumaj, F. Ergun, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and
C. Sohler. Sublinear-time approximation of euclidean minimum spanning tree.
In Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 813–
822, 2003.

[58] A. Czumaj and C. Sohler. Property testing with geometric queries. In Proc. 9th
Annual European Symposium on Algorithms, pages 266–277, 2001.

[59] A. Czumaj and C. Sohler. Abstract combinatorial programs and efficient prop-
erty testers. In Proc. 43rd Annual IEEE Symposium on Foundations of Computer
Science, pages 83–92, 2002.

[60] A. Czumaj and C. Sohler. Estimating the weight of metric minimum spanning
trees in sublinear-time. In Proc. 36th Annual ACM Symposium on the Theory of
Computing, pages 175–183, 2004.

[61] A. Czumaj and C. Sohler. Sublinear-time approximation for clustering via random
sampling. In Proc. 31st International Colloquium on Automata, Languages and
Programming, pages 396–407, 2004.

112

[62] A. Czumaj, C. Sohler, and M. Ziegler. Property testing in computational geometry.
In Proc. 8th Annual European Symposium on Algorithms, pages 155–166, 2000.

[63] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry. Springer-Verlag, 1997.

[64] F. Dehne, A. Ferreira, and A. Rau-Chaplin. Parallel fractional cascading on hyper-
cubemultiprocessors. Computational Geometry: Theory and Applications, 2:141–
167, 1992.

[65] L. Devroye, E. Mucke, and B. Zhu. A note on point location in delaunay triangu-
lations of random points. Algorithmica, 22:477–482, 1998.

[66] L. Devroye and T. Wagner. Nearest neighbor methods in discrimination. In P. Kr-
ishnaiah and L. Kanal, editors, Handbook of Statistics, volume 2. North Holland,
1982.

[67] M. Dietzfelbinger. Lower bounds for sorting of sums. Theoretical Computer Sci-
ence, 66:137–155, 1989.

[68] D. Dobkin and D. Kirkpatrick. A linear algorithm for determining the separation
of convex polyhedra. Journal of Algorithms, 6:381–392, 1985.

[69] D. Dobkin and D. Kirkpatrick. Determining the separation of preprocessed poly-
hedra – a unified approach. In Proc. 17th International Colloquium on Automata,
Languages and Programming, pages 400–413, 1990.

[70] D. Dobkin and R. Lipton. Multidimensional search problems. SIAM Journal on
Computing, 5:181–186, 1976.

[71] P. Drineas and R. Kannan. Fast monte carlo algorithms for approximate matrix
multiplication. In Proc. 42nd Annual IEEE Symposium on Foundations of Com-
puter Science, pages 452–459, 2001.

[72] R. Dudley. Metric entropy of some classes of sets with differentiable boundaries.
Journal of Approx. Theory, 10:227–236, 1974.

[73] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[74] H. Edelsbrunner, J. O’Rourke, and R. Seidel. Constructing arrangements of lines
and hyperplanes with applications. SIAM Journal on Computing, 15:341–363,
1986.

[75] H. Edelsbrunner, R. Seidel, and M. Sharir. On the zone theorem for hyperplane
arrangements. SIAM Journal on Computing, 22:418–429, 1993.

113

[76] D. Eppstein. Dynamic euclidean minimum spanning trees and extrema of binary
functions. Discrete and Computational Geometry, 13:111–122, 1995.

[77] F. Ergun, S. Kannan, R. S. Kumar, R. Rubinfeld, and M. Viswanathan. Spot-
checkers. In Proc. 30th Annual ACM Symposium on the Theory of Computing,
pages 259–268, 1998.

[78] J. Erickson. Lower bounds for fundamental geometric problems. Ph.D. thesis,
Computer Science Division, University of California at Berkeley, 1996.

[79] J. Erickson. Lower bounds for linear satisfiability problems. Chicago Journal of
Theoretical Computer Science, 8, 1999.

[80] J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical
degeneracies. Discrete and Computational Geometry, 13:41–57, 1995.

[81] R. Fagin. Fuzzy queries in multimedia database systems. In Proc. 17th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages
1–10, 1998.

[82] E. Fischer. The art of uninformed decisions: A primer to property testing. In
The Computational Complexity Column, volume 75. The Bulletin of the European
Association for Theoretical Computer Science, 2001.

[83] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dorn, M. Gorkani,
J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by image and video
content: the qbic system. IEEE Computer, 28:23–32, 1995.

[84] M. Fredman. How good is the information theory bound in sorting. Theoretical
Computer Science, 1:355–361, 1976.

[85] M. Fredman. A lower bound on the complexity of orthogonal range queries. Jour-
nal of the ACM, 28:696–705, 1981.

[86] M. Fredman. Lower bounds on the complexity of some optimal data structures.
SIAM Journal on Computing, 10:1–10, 1981.

[87] A. Frieze and R. Kannan. Quick approximation to matrices and applications. Com-
binatorica, 19:175–220, 1999.

[88] A. Gajentaan and M. Overmars. On a class of o(n2) problems in computational
geometry. Computational Geometry: Theory and Applications, 5:165–185, 1995.

[89] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of Np-Completeness. W.H. Freeman & Co., 1979.

114

[90] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to
learning and approximation. Journal of the ACM, 45:653–750, 1998.

[91] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties.
Random Structures and Algorithms, 23:23–57, 2003.

[92] M. Goodrich. Efficient parallel techniques for computational geometry. Ph.D.
thesis, Dept. Comput. Sci., Purdue Univ., 1987.

[93] M. Grotschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization. Springer-Verlag, Berlin, 1988.

[94] S. Har-Peled. Approximate shortest-path and geodesic diameter on convex poly-
topes in three dimensions. Discrete and Computational Geometry, 21:217–231,
1999.

[95] L. Harper. Optimal numberings and isoperimetric problems on graphs. Journal of
Combinatorial Theory, 1:385–394, 1966.

[96] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk. Journal of Algorithms, 18:403–431, 1995.

[97] J. Hershberger and S. Suri. Practical methods for approximating shortest paths
on a convex polytope in r3. Computational Geometry: Theory and Applications,
10:31–46, 1998.

[98] P. Indyk. Sublinear-time algorithms for metric space problems. In Proc. 31st
Annual ACM Symposium on the Theory of Computing, pages 428–434, 1999.

[99] P. Indyk. A sublinear-time approximation scheme for clustering in metric spaces.
In Proc. 40th Annual IEEE Symposium on Foundations of Computer Science,
pages 154–159, 1999.

[100] P. Indyk. Algorithms for dynamic geometric problems over data streams. In Proc.
36th Annual ACM Symposium on the Theory of Computing, pages 373–380, 2004.

[101] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proc. 30th Annual ACM Symposium on the Theory of
Computing, pages 604–613, 1998.

[102] S. Kapoor. Efficient computation of geodesic shortest paths. In Proc. 31st Annual
ACM Symposium on the Theory of Computing, pages 770–779, 1999.

[103] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimensions. In
Proc. 29th Annual ACM Symposium on the Theory of Computing, pages 599–608,
1997.

115

[104] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate near-
est neighbor in high dimensional spaces. SIAM Journal on Computing, 30:457–
474, 2000.

[105] T. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. In Proc. ACM SIGCOMM, pages 191–
202, 1998.

[106] D. Liu. A strong lower bound for approximate nearest neighbor searching in the
cell probe model. Information Processing Letters, 92:23–29, 2004.

[107] J. Matoušek. Range searching with efficient hierarchical cuttings. Discrete and
Computational Geometry, 10:157–182, 1993.

[108] J. Matoušek. Geometric range searching. In ACM Computing Survey, volume 26.
1994.

[109] K. Mehlhorn. Data Structures and Algorithms 3: Multidimensional Searching and
Computational Geometry. Springer-Verlag, Berlin, 1984.

[110] K. Mehlhorn and S. Naher. Dynamic fractional cascading. Algorithmica, 5:215–
241, 1990.

[111] K. Mehlhorn, S. Naher, and H. Alt. A lower bound on the complexity of the union-
split-find problem. SIAM Journal on Computing, 17:1093–1102, 1988.

[112] K. Mehlhorn, S. Naher, T. Schilz, S. Schirra, M. Seel, R. Seidel, and C. Uhrig.
Checking geometric programs or verification of geometric structures. Computa-
tional Geometry: Theory and Applications, 12:85–103, 1999.

[113] G. Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and System Sciences, 32:265–279, 1986.

[114] P. Miltersen. Lower bounds for union-split-find related problems on random access
machines. In Proc. 26th Annual ACM Symposium on the Theory of Computing,
pages 625–634, 1994.

[115] P. Miltersen, N. Nisan, S. Safra, and A. Wigderson. On data structures and asym-
metric communication complexity. Journal of Computer and System Sciences,
57:37–49, 1998.

[116] N. Mishra, D. Oblinger, and L. Pitt. Sublinear time approximate clustering. In
Proc. 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 439–
447, 2001.

116

[117] J. Mitchell. An algorithmic approach to some problems in terrain nevigation. In
Autonomous Mobile Robots: Perception, Mapping and Nevigation. IEEEE com-
puter society press, Los Alamitos, CA, 1991.

[118] J. Mitchell, D. Mount, and C. Papadimitriou. The discrete geodesic problem. SIAM
Journal on Computing, 16:647–668, 1987.

[119] Y. Morimoto, T. Fukuda, S. Morishita, and T. Tokuyama. Implementation and
evaluation of decision trees with range and region splitting. Constraint, 2:163–
189, 1997.

[120] E. Mucke, I. Saias, and B. Zhu. Fast randomized point location without prepro-
cessing in two and three-dimensional delaunay triangulations. In Proc. 12th An-
nual ACM Symposium on Computational Geometry, pages 274–283, 1996.

[121] K. Mulmuley. Output sensitive and dynamic constructions of higher order voronoi
diagrams and levels in arrangements. Journal of Computer and Systems Sciences,
47:437–458, 1993.

[122] S. Muthukrishnan. Data streams: Algorithms and applications. Preprint, 2003.

[123] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant property testing and distance ap-
proximation. ECCC Report TR04-010, 2004.

[124] A. Pogorelov. Extrinsic geometry of convex surfaces, volume 35. American Math-
ematical Society, Providence, RI, 1973.

[125] D. Ron. Property testing. In S. Rajasekaran, P. Pardalos, J. Reif, and J. Rolim,
editors, Handbook on Randomization, volume II. 2001.

[126] R. Seidel. Small-dimensional linear programming and convex hulls made easy.
Discrete and Computational Geometry, 6:423–434, 1991.

[127] S. Sen. Fractional cascading revisited. Journal of Algorithms, 19:161–172, 1995.

[128] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. SIAM Journal on
Computing, 15:193–215, 1986.

[129] S. Suri, C. Tóth, and Y. Zhou. Range counting over multidimensional data streams.
In Proc. 20th Annual ACM Symposium on Computational Geometry, pages 160–
169, 2004.

[130] R. Tamassia and J. Vitter. Optimal cooperative search in fractional cascaded data
structures. Algorithmica, 15, 1996.

117

[131] R. Tarjan. A class of algorithms which require nonlinear time to maintain disjoint
sets. Journal of Computer and Systems Sciences, 18:110–127, 1979.

[132] P. Vaidya. Space-time tradeoffs for orthogonal range queries. SIAM Journal on
Computing, 18:748–758, 1989.

[133] K. Varadarajan and P. Agarwal. Approximating shortest paths on a nonconvex
polyhedron. SIAM Journal on Computing, 30:1321–1340, 2000.

[134] A. Yao. Probabilistic computations: Towards a unified measure of complexity. In
Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, pages
222–227, 1977.

[135] A. Yao. A lower bound to finding convex hulls. Journal of the ACM, 28:780–787,
1981.

[136] A. Yao. Should tables be sorted. Journal of the ACM, 28:615–628, 1981.

[137] A. Yao. On the complexity of maintaining partial sums. SIAM Journal on Com-
puting, 14:277–288, 1985.

[138] A. Yao. Decision tree complexity and betti numbers. In Proc. 26th Annual ACM
Symposium on the Theory of Computing, pages 615–624, 1994.

[139] A. Yao. Algebraic decision trees and euler characteristics. Theoretical Computer
Science, 141:133–150, 1995.

[140] A. Yao and F. Yao. A general approach to d-dimension geometric queries. In Proc.
17th Annual ACM Symposium on the Theory of Computing, pages 163–168, 1985.

118

