
Towards Scalable Content-based Publish-Subscribe Networks

 Fengyun Cao Jaswinder Pal Singh
Princeton University Princeton University

Princeton, NJ 08540, USA Princeton, NJ 08540, USA
 fcao@cs.princeton.edu jps@cs.princeton.edu

Abstract — Architecture design for content-based publish-
subscribe service networks is challenging for two reasons: first,
communication in such systems is guided by the content of event
publications and subscriptions, rather than by network
addresses; second, while an event often matches subscriptions
from multiple locations, the highly diversified matching patterns
and hence communication needs imply that existing multicast
techniques cannot be readily used for efficient event delivery.

In this paper, we propose a new architectural approach called
MEDYM – Match Early with DYnamic Multicast. Unlike existing
approaches, MEDYM does not build static overlay networks for
event delivery. Instead, an event is matched against subscriptions
as early as possible, to identify destinations with matching
subscriptions; then, a multicast tree is dynamically constructed to
route the event to the destinations with high network efficiency.

We evaluate the MEDYM architecture using detailed
simulations, and compare it with the two major existing design
approaches: Content-based Forwarding and Channelization.
Experimental results show that MEDYM significantly improves
efficiency of event delivery, and is highly flexible and robust. We
also analyze potential overheads introduced in MEDYM, and
found them to be well acceptable and more than outweighed by
the benefits of the approach. We expect the basic MEDYM
architecture to scale to pub-sub networks of thousands of servers,
which we believe is adequate for many interesting applications.

Keyword — System design, Simulations, Publish-subscribe,
Event notification.

A. INTRODUCTION

 Content-based publish-subscribe (pub-sub for short)
is an important paradigm for asynchronous
communication among entities in a distributed network.
In such systems, users subscribe to content-based
conditions, and will be notified when other users publish
events to the system that satisfy their conditions.
Content-based subscriptions are highly expressive, and
can specify complex filtering criteria along multiple
dimensions of event content. A content-based stock alert
system, for example, may allow subscriptions on stock
price movement events with “(ticker=IBM) AND
(price>100 OR volume>8 million)”. Such timely delivery
of highly customized information is of great value to
many distributed applications, such as distributed system
monitoring [22], alerting and notification [30],
personalized information dissemination [31] and multi-
party games [2], and application integration [28].

In this paper, we study architecture design for large-
scale content-based pub-sub service networks, which are

expected to handle large numbers of content-based
subscriptions and high volume of event publications
from widely distributed users. As shown in Figure 1, in
such a network, a set of pub-sub servers is distributed
over the Internet; clients access the pub-sub service,
either to publish events or to register subscriptions,
through appropriate servers, such as those that are close
to them or in the same administrative domains. Thus,
pub-sub servers serve as publication/subscription proxies
on behalf of clients, and we can view the pub-sub service
as one of getting events from servers where they are
published to the servers that subscribe – as proxies – to
the events. We call these publication servers (p-servers)
and subscription servers (s-servers). The same server
may serve as a p-server and as an s-server. In this paper,
we focus on the internal design of the service, and do not
address the communication between pub-sub servers and
their associated clients.

A content-based pub-sub service network presents a
unique design challenge, because its communication
paradigm is not directly supported by existing network
protocol primitives. First, communication is based on the
content of events and subscriptions, rather than network
addresses. Publishers do not specify destination
addresses for the events. Rather, events have to be
matched with subscriptions to identify where they should
be sent. Second, it is not clear how to best route the
event, even after the destinations are known. While an
event may match subscriptions from multiple s-servers,
existing group communication techniques, such as IP
multicast [12] or application-layer multicast [10], cannot
be directly used. This is due to the high diversity of
content-based subscriptions: different events may satisfy
the interests of widely varying sets of s-servers. In the
worst case, the number of such sets can be exponential in

A

D

C G

F

H

E

B

Publish
 Notify

Subscribe

End
users

End
users

Pub-sub server
Figure 1. Example of a publish-subscribe service network.

CBF tree

Matched server Multicast channel ch1 (event belongs to)
Multicast channel ch2

Matched server Matched server

{.., ..} Destination list

A

D

B

C G

F

H

E

event

A

D

B

C G

F

H

E

 event

 A

D

C G

F

H

E

B event
{C,E,H}

{H}
{E}

Figure 2. Event delivery in Content
Based Forwarding (CBF) network.

Figure 3. Event delivery in
Channelization network.

Figure 4. Event delivery in MEDYM
network.

the network size (2n where n is the number of servers),
and it is impractical to build and manage a multicast
group for each such set. Finally, the matching and
routing problems are interrelated: routing decisions are
based on matching results, while routing capabilities in
turn affect where and how events are matched.

The contributions of the research described in this
paper can be summarized as follows:
• We propose a new architecture for content-based

pub-sub networks, called MEDYM (Match Early
with DYnamic Multicast), which embodies a new
way to address the matching and routing problems.

• We present design and efficient implementation
techniques for MEDYM. We also closely analyze
the new challenges it introduces, and show that they
can be addressed with acceptable overhead.

• We propose and design dynamic multicast as a
general routing method. While content-based pub-
sub is the driving application to which it is very well
suited, we expect this flexible multicast scheme to be
broadly applicable for group communication
scenarios where there is wide diversity and
unpredictability in message destinations.

• We evaluate MEDYM and compare it with the major
existing alternative approaches through detailed
simulation. We find that compared to these
approaches, MEDYM provides a better combination
of efficient event delivery and low implementation
and maintenance cost.

The rest of the paper is organized as follows: In the
next section, we review two major existing design
approaches for content-based pub-sub service networks
and discuss their tradeoffs. In Section C, we present an
overview of the MEDYM approach, including its major
benefits and key challenges. In Section D, we explore the
design space for dynamic multicast, and develop
methods for efficient implementation. We describe our
simulation setup in Section F and present detailed
simulation results in Section G. In Section H, we
conclude the paper and identify directions for future
work.

B. RELATED WORK

Existing content-based pub-sub network architecture
design can be largely categorized into two classes, which
we call the Content-based Forwarding (CBF) approach
[1][4][6][7][11] and the Channelization approach
[16][23][24][29].

1st. Content-based Forwarding (CBF)

As shown in Figure 2, in a CBF network, pub-sub
servers organize a priori into one or more acylic overlay
networks, which we call CBF trees. Subscriptions from
s-servers are broadcast along a CBF tree and recorded in
the forwarding table at every server, in the form of sum
of subscriptions from each direction. Thus, subscriptions
from the same direction can be aggregated for efficient
storage, update, and matching. Events are routed along
the CBF tree, matched with subscriptions in the
forwarding tables at every step, and forwarded only
towards directions with matching subscriptions.

As an optimization, to avoid sending subscriptions to
servers that will not publish any relevant events, p-
servers may broadcast advertisements, which describe
the possible content of their future publications, on the
CBF tree. Then, subscriptions are forwarded along the
tree only toward p-servers that have made matching
advertisements.

By content-based filtering at every step, CBF
accurately routes events (and subscriptions) toward
matching directions. However, its implementation and
maintenance cost can be high.

First, performing content-based matching at every step
is expensive. It includes parsing event content, extracting
values from fields, and evaluating complex criteria, such
as full-text search, range queries and/or Boolean
expressions, against large number of subscriptions.
Furthermore, many matching operations in the process of
delivery may be redundant, when an event is repeatedly
matched with the same subscriptions (at intermediate
servers) before reaching the destination(s).

Second, the event traffic load on servers can be high
and imbalanced. Since the CBF tree is built a priori, to
reach matching destinations events may be routed
through intermediate servers that are not interested in the
events, resulting in unnecessary processing and
bandwidth load. Servers and network links at the center
of the network are especially susceptible and can become
system bottlenecks.

Finally, the maintenance cost can be high. Whenever
CBF tree topology changes, such as to adapt to server or
underlying network environment changes, the forwarding
tables associated with the tree also need to change.
Because subscriptions have been aggregated and their
source information unavailable, it is not known how to
efficiently adjust the forwarding tables to reflect the
changes. One way to reconstruct the forwarding tables is
to broadcast subscriptions and advertisements again
along the changed CBF tree, generating high network
traffic and processing load.

In this paper, we use work in [6] and [7] as
representatives for the CBF approach, as they are among
the most prominent and complete works in this direction.
Many other distributed pub-sub systems follow the CBF
approach. In JEDI [11], a hierarchical event routing
network was proposed, but was found in [6] to perform
worse than the peer-to-peer topology as in Siena. In
Gryphon [1], a link-matching algorithm was designed to
partially match the event with an annotated network
topology data structure to determine the directions in
which to forward the event to. [8] designed detailed
content-based forwarding algorithm for CBF. [4]
proposed to build multiple small CBF trees, so that event
routing in each tree can be implemented with lower cost.

2nd. Channelization

The central idea in the Channelization approach is to
utilize existing multicast techniques, such as IP multicast
[12] or application-level multicast [9], for event delivery.
An example network is shown in Figure 3. Offline, the
event space is partitioned into a limited number of
disjoint channels. For each channel, a multicast group is
built that spans all the servers that carry any client
subscription that overlaps with (could match) any event
in that channel. When publishing an event, a p-server
first identifies the channel that the event belongs to, and
then multicasts the event in the corresponding group.
Event forwarding is by multicast routing, which is
simpler and faster than content-based forwarding in CBF.

The main challenge for Channelization approach is
that the available number of multicast channels is often
much smaller than the 2n possible event destination sets
(see Section A). As a result, the same channel often has
to accommodate events with substantially non-
overlapping destination sets, and servers can easily

receive irrelevant events in groups that they join for other
events.

To reduce extraneous traffic and inappropriate receipt,
clustering techniques are used to compute event space
partitions, with the goal of maximizing the destination
set overlap between events in the same channel.
However, the effectiveness of clustering depends heavily
on the distribution properties of events and subscriptions,
and it is likely to be often difficult to accurately match
the diversified user interests with a small number of
groups. Furthermore, the distributions themselves can be
difficult to estimate and react to changes in time.

In this paper, we will use the work in [23] as a
representative for the Channelization approach.

The CBF and Channelization approaches thus balance
very differently the tradeoff between network traffic
reduction in event delivery and low computational and
maintenance cost. CBF achieves higher routing accuracy
and thus lower traffic than Channelization, but incurs
significant computational and maintenance cost.
However, since both use 'statically' determined overlay
networks, both still generate unnecessary network traffic,
and both also require potentially expensive network
management and state maintenance when network
topology changes. Our goal is to develop an approach
with both lower computational cost than CBF and at least
as good network traffic efficiency, while also easy to
manage and maintain.

C. MEDYM OVERVIEW

In this section, we propose a new architecture for
content-based pub-sub network called MEDYM: Match
Early with DYnamic Multicast. Unlike existing
approaches, MEDYM does not build static overlay
networks. Its event delivery process is as shown in
Figure 4. At a p-server, a published event is first matched
against subscriptions from remote s-servers, to obtain a
destination list of s-servers with matching subscriptions.
Then, the event is routed to the destination servers
through dynamic multicast: On receiving an event
message with its associated destination list, based on its
destination list, a server dynamically computes the next-
hop servers to which to forward the message, as well as
the new destination list for each of the next-hop servers.
In this way, a transient dynamic multicast tree is built
step by step. Along this tree, the event is routed to (and
also through) only its matching s-servers.

Benefits. The match-early and dynamic multicast
aspects of MEDYM both offer synergistic advantages.
With match-early, an event is matched only once in the
process of delivery, achieving low computation cost.
While the match may be against a larger number of
aggregated subscriptions than is done at each server
along the path in CBF, the overall computational cost is

expected to be much smaller Once matched, the rest of
event delivery is through simple address-based
forwarding in dynamic multicast, with early accurate
destination information that allows efficient routing
decisions to be made.

Given the results of early matching, dynamic multicast
routing conceptually provides substantial benefits. It
routes each event through only the set of servers that
actually subscribe to it. It is highly flexible, and allows
routing decisions and paths to be optimized for
individual event messages, which suits well the
diversified and unpredictable communication needs of
content-based pub-sub. Such fine-grained routing
optimization is difficult to achieve in static,
predetermined event delivery networks.

A final advantage of a MEDYM network is its
maintainability, since it does not have to maintain ‘static’
overlay topologies and routing states that can be
complicate when dealing with dynamic network changes.

Challenges. However, MEDYM also introduces new
challenges that are not present in existing approaches.

First, every MEDYM server must be able to
communicate directly (at the overlay layer) with all the
other MEDYM servers in the system. This is not a
requirement in static overlay networks, in which servers
communicate with only a fixed set of neighbors.
However, we believe it is reasonable given the scale and
nature of a managed service network, and we will
address efficient connection management in Section E.
We also expect that in a content-intensive network, the
amount of information kept about other servers
information will be much smaller than the information
kept for content-based subscriptions and will not add to
too much storage or update overhead.

Second, dynamic multicast introduces new overheads
such as real-time route computation and the traffic
overhead of destination lists. As a new routing scheme, it
is unclear a priori whether and how it can be
implemented with high enough efficiency.

Finally, MEDYM servers need to also know about
(sum of) subscriptions from all other servers for early
matching, and server network location information for
network-efficient dynamic multicast. This information is
not required in the other approaches; e.g. CBF can
potentially store aggregated information for each
direction from a server. The overhead of this information
is also an important question.

To address these challenges, we examine methods for
efficient implementation of dynamic multicast in Section
D, and mechanisms for state and network magement of
MEDYM in Section E. The content-based matching used
in match-early is an application-specific plug-in module
in MEDYM, and is not a focus of this paper.

 Send(DL, msg) Receive(msg)

. . . .
 n1

fs(DL)

Underlying
network

 DL msg
 DL1 msg

 DLd msg
 nd

 < ni, DLi > msg

Server
location

Upper layer
application

Dynamic
Multicast

 Another server

Figure 5. Dynamic multicast routing.

D. DYNAMIC MULTICAST

Dynamic multicast is designed as a general scheme for
routing a message to a group of destinations. As shown
in Figure 5, it serves a simple interface to the upper layer
application: Send(DestinationList, message), and delivers
received messages to application through a callback
function Receive(message).

Dynamic multicast is a stateless protocol in which no
session information needs to be established or managed.
For a message received from either the upper layer
application or another server, based on its associated
destination list (DL), dynamic multicast routing runs as
follows:

 < ni, DLi > = fs (DL) i = 1 … d
The routing algorithm fs computes a list of d <ni, DLi>

pairs, where ni is the ith next-hop server, and DLi is the
new destination list for ni. The algorithm’s input and
output must satisfy the following routing invariants:

(a) }{
1

sDLDL
d

i
i −=

=
U

(b) jiDLDL ji ≠=∩ ,φ
(c) ii DLn ∈
Correctness of dynamic multicast can be derived from

the invariants: a message is delivered to all destination
servers, as the routing process does not stop until with
empty destination lists. The invariants also guarantee that
dynamic multicast is efficient and fair: a message only
traverses the destination servers, and each server at most
once. This results in minimal total routing load, and the
load is aligned with servers’ self-interests: unlike in CBF
or Channelization approach, MEDYM servers receive
and route for messages that they themselves are
interested in. Given the heterogeneous server interests in
content-based pub-sub service networks, we believe this
property provides an important incentive for servers to
participate in the network. Dynamic multicast is highly
flexible. Different routing algorithms fs can be developed
for different routing optimization goals and will have the
above properties as long as the invariants hold.

In MEDYM, it is used to route not only events, but
also subscription and control messages when needed.
Next, we discuss its efficient implementation.

1st. High-level Routing Method

1) Source-based dynamic multicast
One way to implement dynamic multicast is source-

based routing. The source server computes the whole
multicast tree and encodes it in the destination list, for
instance by sorting server IDs in depth-first order. A
forwarding server simply reads the tree structure from
the destination list and forwards the message as
instructed. The drawback of this approach is that its
routing quality depends on source’s knowledge about the
network, at the time of message sending. If this
knowledge is incomplete or out-of-date, the multicast
tree computed can be sub-optimal.
2) Distributed dynamic multicast

Distributed dynamic multicast is a scheme in which
each server independently resolves its local part of the
tree. In a widely distributed network, servers often have
more accurate or up-to-date information about local
network environments than for remote areas. In
distributed dynamic multicast, such information can be
utilized to improve routing decisions. Distributed
dynamic multicast is also highly resilient to failures.
When a server fails to deliver a message to next-hop
server ni, it re-runs fs(DLi –{ni}) so that the message can
bypass ni and still be delivered to other servers in DLi.
Due to these advantages, in our work, we focus on
distributed dynamic multicast.
3) Caching routing decisions

An interesting question is whether there is enough
temporal locality among destination lists that dynamic
multicast routing decisions can be effectively cached. We
will examine caching in the context of real pub-sub
workloads in future work, and do not assume it here.

2nd. Detailed Routing Algorithms

We have designed three routing algorithms for
computing fs with different optimization goals.

The first algorithm, MST, aims at minimizing the total
communication cost in message routing. It uses
Kruskal’s algorithm [9] to compute the minimum
spanning tree for destination servers, and then extracts
<ni, DLi> from the tree. It can be implemented in either
source-based or distributed way. A potential problem
with this algorithm is its high computation complexity of
O(D2logD), where D is the number of destination
servers. Because the routing algorithm is run for every
incoming message in real time, it is important that it can
be run fast enough to support high routing throughput.

The second algorithm, SPMST for Short-Path-MST, is
a new algorithm we designed that computes an
approximate minimum spanning tree in a faster way. The
algorithm is as shown in Figure 6. Offline, an array
called ShadowBitVector is maintained to help in quickly

computetShadowBitVectors s() { // offline
 foreach server si {
 foreach server sj
 if (DistanceMatrix[i][j]<DistanceMatrix[s][i] &&
 DistanceMatrix[s][j]<DistanceMatrix[s][i])
 Set_jth_bit_in_ShadowBitVector[i]; }}

SPMSTs(DL) { // online
 Nexthops = DL;
 foreach server si in DL
 if (ShadowBitVector[i] & DLBitVector !=0)
 Nexthops_remove(si);
 if (|Nexthops|>maxNextHops))
 Nexthops = closest_nexthops(maxNextHops);
 foreach server sj in (DL-Nexthops) {
 ni = closest_nexthop_to(sj);
 DLi +={sj}; }
 return(<ni, DLi>); }

Figure 6. SPMST routing algorithm.

BLSPMSTs(DL) {
 if (I_am_overloaded) {
 if (all_destinations_overloaded)
 n0 = closest_destination;
 else
 n0 = closest_not_overloaded_destination;
 DL0 = DL-{s}-{n0};
 return <n0, DL0>; }
 choose_nexthops_as_in_SPMST;
 if (all_nexthops_overloaded)
 assign_new_DL_as_in_SPMST;
 else
 foreach server sj in (DL-Nexthops) {
 ni = closest_non_overloaded_nexthop_to(sj);
 DLi +={sj}; }
 return(<ni, DLi>); }

Figure 7. BLSPMST routing algorithm.

choosing next-hop servers. We say that server si is
shadowed by server sj, if si is closer to sj than to current
server s, and s is closer to sj than to si. Under this
condition, it is deemed as more efficient to let sj forward
the message to si than s directly sending to si. Therefore,
si will not be chosen as next-hop server if sj is
also a destination server. Note that in this way, it is
inclined to choose close by servers as next-hop servers,
and result in multicast trees with lower diameters than
the minimum spanning trees. After choosing the next-
hop servers, the rest of the destinations are assigned to
new destination lists of the next-hop servers closest to
them. Using bit vector operations, the algorithm runs fast
enough to support high event traffic volume.

The third algorithm, BLSPMST for BaLanced-SPMST,
is shown in Figure 7. It is a variant of SPMST that tries to
balance routing load across servers, loosely measured by
server bandwidth usage in this work A MEDYM server
is deemed as overloaded if its bandwidth consumed in
routing the last K messages is above OverloadThreshold
times the total message size. In our experiments, K is set
to 1000 and OverloadThreshold is set to 3.

Table 1 presents the computation time of the three
algorithms, written in Java and run with 2.0 GHz
Pentium-III CPU and 512MB memory. Note that the

destination list sizes used in the table are much larger
than the average destination list size (see below) in the
process of routing one event. The results show that the
algorithms, especially SPMST and BLSPMST, are
efficient enough to support high routing throughput,
confirming our expectation that address-based forward-
ing in dynamic multicast should be simple and fast.

3rd. Destination List Size

As discussed earlier, a potential overhead in dynamic
multicast is that the increased network traffic for
destination lists. In Figure 8 we present an analysis of
the average destination list size in the process of routing
one event, averaged over the edges in a dynamic
multicast tree. Since destination list size is reduced at
every step by a factor equal to the outgoing degree of the
node, we expect the average list size to be about equal to
the diameter of the tree. This is confirmed in Figure 9,
which shows that the average destination list sizes in
multicast trees computed using the three algorithms
above are really about equal to the diameters of the trees,
a grow slowly with total number of destinations (which
are usually all the matched s-servers). We believer such
overhead is quite acceptable, especially considering that
messages in content-based pub-sub systems are likely to
carry complex information, such as attribute-values pairs,
full texts or XML documents.

While the average destination list size is small, it can
be imbalanced across pub-sub servers, as it is longer at
servers close to the root of the multicast tree. We address
this issue from two perspectives:

First, we do not attempt to reduce the destination list
length at the message source; rather, we believe that a
server ID in the destination list is a reasonable and fair
“cost” that a server “pays” for using the dynamic
multicast routing service. The more use the server makes
of the service, i.e. the more destinations its messages are
delivered to, the more (bandwidth) cost the server is
expected to pay for. This is also an effective mechanism
to prevent servers from spamming the network.

Second, destination list size is not the only reason for
imbalanced server bandwidth consumption, which is also
affected by factors such as the server degrees in the
multicast tree. Therefore, our algorithm BLSPMST aims
at balancing server bandwidth as a whole, not
distinguishing bandwidth consumed for destination list or
message payload.

Table 1. Computation time of dynamic multicast routing
algorithms, with destination list size |DL|.

Computation time (ms) Routing
algorithm |DL|=100 |DL|=500 |DL|=1,000

MST 1.8 9 34
SPMST 0.08 0.29 0.62

BLSPMST 0.08 0.32 0.69

Sum(|DL|) < m
l levels

Sum(|DL|) < m

In total: < ml destinations. (m-1) messages.
On average: l destinations/message

Figure 8. Analysis of average destination list size in dynamic
multicast tree with m servers.

0

5

10

15

20

25

0 200 400 600 800 1000
#Destination servers

A
ve

ra
ge

 D
L

si
ze

MST SPMST
BLSPMST

0

4

8

12

16

20

0 200 400 600 800 100
0

#Destination servers

Tr
ee

 d
ia

m
et

er

MST SPMST
BLSPMST

Figure 9. Average destination list size and multicast tree
diameter, using different dynamic multicast routing algorithms.

E. MEDYM STATE AND NETWORK MANAGEMENT

In this section, we describe how MEDYM servers
maintain state to support event delivery, as well as
MEDYM network management.

1st. State Management

In MEDYM, each p-server maintains a matching table
with an entry (server ID, sum_of_subscriptions) for
every s-server in the system. And every MEDYM server
maintains a routing table, which includes a list of (server
ID, IP address, status) for all s-servers, and a distance
matrix M, where Mi,j represents communication cost
between s-server i and j. Advertisement is an optional
optimization, in which p-servers broadcast their
advertisements to s-servers, using dynamic multicast.
Matching table maintenance

Matching tables in MEDYM differ from the CBF
forwarding tables in three ways: first, in MEDYM, only
p-servers maintain matching tables, and only
subscriptions from s-servers that overlap with local
publication interest (local advertisement, if used) need to
be maintained. These are not true for CBF, because the
CBF servers may need to forward (and thus match for)
events that do not match their own subscriptions. On the
other hand, MEDYM offers less subscription aggregation
opportunity than CBF. In MEDYM matching tables, only
subscriptions from the same server can be aggregated,
while in CBF forwarding tables, subscriptions from all
servers in the same direction can be aggregated.
However, subscription aggregation is a very difficult

problem and there have been no efficient, systematic
methods developed for it and no evaluations on how
successful it can be. Therefore, although it is difficult to
quantitatively compare the storage in the two approaches,
we expect that the matching tables in MEDYM do not
introduce much overhead compared to CBF, and may be
even advantageous. Finally, unlike in CBF, matching
tables are independent of network topology, and
therefore do not need to adapt to network environment
changes.

To make a new subscription or cancel a previous one,
a server broadcasts the subscription using dynamic
multicast. If advertisement is used, s-servers record the
advertisements received, and only send the subscription
to p-servers with overlapping advertisements, using
dynamic multicast. Receiving the subscriptions, p-
servers update their matching tables accordingly.
Routing table

Routing table is used to build network-efficient routing
paths in dynamic multicast. In MEDYM, s-servers
periodically broadcast Refresh messages, which include
their ID, IP address, status (such as load condition) and
network location information.

Server network location information is used in
computing the distance matrix. It can be obtained in two
ways: first, a server may actively probe other servers and
report the probing results. This scheme measures real
network latency but generates O(n3) total network traffic,
where n is number of servers in the network. However,
note that the probing and broadcasting can be rather
infrequent: first, studies show that Internet paths are
fairly stable: [32] reported that roughly 80% of Internet
routes studied were stable for longer than a day, and [33]
shows that in general delay appears steady on time scales
of 10-30 minutes. Second and more importantly,
inaccurate server distance information or inconsistent
information on different servers does not affect dynamic
multicast correctness; it may only result in sub-optimal
routing network efficiency. As an alternative, MEDYM
can benefit from state-of-the-art techniques
[15][19][21][27] to approximately yet efficiently
estimate server network locations. In this work, we
simulated [27] for this purpose. In Section G, we will
compare maintenance overhead as well as routing
performance between using measurement and estimation.

2nd. Network Management

In MEDYM, network management is also relatively
easy because no overlay network topology or session
states need to be maintained.
Server join

A MEDYM network has one or more servers as
Rendezvous Points (RP) that are in charge of network
membership. A new server locates an RP, probably

through DNS, and sends a Join Request message, asking
for permission to join the network. If permitted, RP
replies with a Welcome message, which includes an ID
for the new server, a list of (server ID, IP address,
advertisement) for all servers in the network, and a
distance matrix M.

Receiving the Welcome message, the new server
initializes its matching table and routing table. It then
broadcasts a Greeting message with its (server ID, IP
address, advertisement) to all servers in the network,
using dynamic multicast. The new server also sends
subscriptions to servers with overlapping advertisements.

Receiving a Greeting message, an existing server adds
the information about the new server into its matching
and routing table. If the new server’s advertisement
overlaps with local subscriptions, it sends Subscribe
message to the new server with the subscriptions.

The new server then starts participating in information
update and pub-sub communication in the network.
Server leave and failure

When a MEDYM server leaves, it tells an RP node,
which broadcasts a Departure message, and all servers
remove information about that server from their local
tables. If a server abruptly goes down, its failure can be
detected either by lack of Refresh messages, or in the
dynamic multicast routing process, as described in
Section D. Failure detection is reported to an RP. RP will
try to contact the server, and if this fails, it broadcasts the
Departure message. We note that handling failure is
relatively easy in MEDYM, as unlike in overlay
networks with static topologies, the failure will not lead
to network partition or incorrect routing.
Connection Management

Reliability is an important feature in pub-sub
communication. We use reliable network protocol such
as TCP for inter-server communication. Unlike other
approaches, in MEDYM, a server may need to directly
communicate with any other server(s) at any time.
Frequently opening and closing TCP connections is
expensive and limits system throughput. We use
persistent connection and pipelining techniques
introduced in HTTP/1.1 protocol [14] for efficient
connection management. If the total number of
simultaneously open TCP connections reaches system’s
limit, reliable UDP or user-level TCP [13] can be used.

F. SIMULATION SETUP

To evaluate efficiency of event delivery in MEDYM,
and compare it with existing approaches, we have
developed a message-level, event-driven simulator.

1st. Architecture Approaches

We simulated two versions of the CBF approach:
CBF_MST as in [6], which builds a single CBF tree as

the minimum spanning tree spanning all servers, and
CBF_SPT as in [7], which builds CBF trees as source-
specific shortest path trees, each rooted at a potential p-
server. A challenge for CBF_SPT, not addressed directly
in [7], is that a source-specific shortest-path tree in the
overlay layer, constructed directly upon IP routing, is
likely to degenerate into a star topology. In our
simulation, we adopt a mesh-first approach for
CBF_SPT, as in [10]. We first extract a 2-spanner [18]
mesh from the underlying IP network, and then build
SPT trees on top of the mesh.

We simulated Channelization approach as in [23]. We
use Forgy K-means algorithm to cluster events into 50
event channels. This algorithm was found to generate the
best clustering results among alternatives.

We simulated three versions of MEDYM, with the
routing algorithms described in Section D. We call these
MEDYM_MST, MEDYM_SPMST and
MEDYM_BLSPMST.

2nd. Network Topology

We simulate a pub-sub network of 1000 servers. The
underlying network topology is generated using the
transit-stub model from GT-ITM Internet topology
generator [3]1. There are 20 transit domains with an
average of 5 routers in each. Each transit router has an
average of 3 stub domains attached, and each stub
domain has an average of 8 routers. Link latencies are
randomly assigned as: between 50-100ms for intra-
transit domain links, 10-40ms for transit-stub links, and
1-5ms for intra-stub domain links. Altogether there are
2500 routers and 8938 links, and the pub-sub servers are
randomly attached to routers with 1ms latency.

3rd. Data Model

We assume that an event message has payload of 200
bytes and TCP/IP header of 44 bytes. Each MEDYM
server has an ID of 16 bits. Since our focus is not on
matching algorithms and our results are independent of
them, for simplicity and without loss of generality, we
use integers on [0, 100,000] as event and subscription
values and perform only equality matching.

For comprehensiveness, we have experimented with
various publication and subscription distributions, and
found that CBF and MEDYM perform consistently while
Channelization is sensitive to data distribution, but the
difference is not large enough to change the comparative
positions of the approaches. For space reasons, in this
paper, we only present results for uniform distribution, in
which publications and subscriptions are uniformly
randomly generated and assigned to pub-sub servers. We

1 We have also simulated with network topologies generated by Inet [17]

and from Rocketfuel [25] and obtained similar results. They are omitted in this
paper for space reasons.

expect it to provide the most basic and clear
understanding of characteristics of the approaches.
Results under other distributions are similar to the ones
presented here and can be found in [5].

G. SIMULATION RESULTS

We evaluate event delivery efficiency along two
dimensions: server routing load, which includes
processing load and network bandwidth consumption at
pub-sub servers, and routing network efficiency, which
includes traffic load on underlying network links and the
event delivery delay introduced.

We experiment with various levels of subscription
selectivity, since different event delivery solutions can
perform very differently for different selectivity
situations, and it is desirable that an approach achieves
consistent high efficiency under all circumstances. We
define matching ratio to be the probability that an
average event matches any subscription on a given pub-
sub server. Low matching ratio means user subscriptions
are highly selective, and vice versa.

1st. Server load

Event routing generates both processing load and
network bandwidth consumption at pub-sub servers. Let
us examine each.
1) Processing load

Because different approaches use event-forwarding
methods, it is difficult to directly compare their
computation cost. Instead, we use the number of events
servers receive and route for as a metric to reflect the
overall processing load. Figure 10 presents the average
number of events a server receives in different
approaches, normalized as a percentage of all events
published. Note that this number can also be interpreted
as the percentage of servers an average event is routed
through, thus indicating the total routing load generated
in the delivery process.

Figure 10 shows that servers in CBF and
Channelization approaches receive more events than
what they are interested in. In particular, a server that is
interested in only 1% events receives 8% events in
CBF_MST, 9% in CBF_SPT, and 29% in
Channelization; a server interested in 10% events
receives 29% events in CBF_MST, 34% in CBF_SPT,
and 98% in Channelization. The curve for
Channelization rises and saturates quickly, showing the
ineffectiveness of clustering with less selective
subscriptions: servers are likely to join more groups and
receive many irrelevant events. The CBF approaches
achieve higher routing accuracy than Channelization, but
the proportion of irrelevant events received is still quite
high when subscriptions are highly selective. This is

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%
Matching ratio

P
er

ce
nt

ag
e

of
 e

ve
nt

s
an

av

er
ag

e
se

rv
er

 re
ce

iv
es

CBF_MST
CBF_SPT
Channelization
MEDYM

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Percentage of events received

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f
se

rv
er

s

CBF_MST
CBF_SPT
Channelization
MEDYM

Figure 10. Average percentage of events servers receive. Figure 11. Cumulative distribution of percentage of events

servers receive, with 10% matching ratio.

0

1000

2000

3000

4000

5000

0% 20% 40% 60% 80% 100%
Matching ratio

A
ve

ra
ge

 s
er

ve
r

ba
nd

w
id

th
 (

bi
ts

)

CBF_MST CBF_SPT
Channelization MEDYM_MST
MEDYM_SPMST MEDYM_BLSPMST

0

5000

10000

15000

20000

25000

30000

0% 20% 40% 60% 80% 100%
M atching ratio

M
ax

im
um

 s
er

ve
r b

an
dw

id
th

(b

its
)

CBF_M ST CBF_SPT
Channelization M EDYM _M ST
M EDYM _SPM ST M EDYM _BLSPM ST

Figure 12. Average server bandwidth consumption. Figure 13. Maximum server bandwidth consumption.

because the number of intermediate servers an event
traverses does not change with matching ratio, but with
lower matching ratio, the probability that they happen to
match the event forwarded is lower. In contrast,
MEDYM servers always receive and route only the
events that they are interested in. As this basic property
of dynamic multicast is independent of specific routing
algorithms, only one curve for MEDYM is shown.

Next, we look at how the processing load is distributed
across pub-sub servers. Figure 11 shows the cumulative
distribution of servers that receive certain number of
events, when matching ratio is 10%. At the left end, it
shows that every MEDYM server receives only the 10%
of events that it is interested in. At the right end, it shows
that almost all Channelization servers receive more than
90% of events each. In the middle, it shows load on CBF
servers is highly imbalanced: about 40% servers receive
only 10% events each, while 20% servers in CBF_MST
and 10% in CBF_SPT receive more than 80% events
each. This confirms our analysis in Section B that servers
at the center of the CBF tree(s) are likely to route for
many more events than their peripheral peers, most of
which are irrelevant to their own interests. The heavy
load on these servers can be bottleneck of system
throughput and scalability.
2) Server bandwidth consumption

The average server bandwidth consumption in event
routing is proportional to the average number of events

each server receives, except for the destination list
overhead in MEDYM schemes. Figure 12 shows that due
to destination list overhead, MEDYM_MST consumes
more bandwidth than CBF and Channelization when
matching ratio is above 80%. It has highest destination
list overhead among the MEDYM approaches, due to the
long diameter of it multicast tree. MEDYM_SPMST and
MEDYM_BLSPT has lower average destination list
overhead, and outperform CBF and Channelization until
matching ratio is above 90%. Interestingly, the points at
which the destination list overhead hurts MEDYM
efficiency relative to other systems is close to a point at
which we may as well switch to broadcast.

Distribution of server bandwidth consumption can be
different than that of number of events received. This is
because bandwidth consumption also depends on server
degree in the routing trees. Figure 13 shows maximum
server bandwidth consumption with various matching
ratios. Compared to Figure 12, three observations can be
made. First, both CBF approaches perform much worse
than for the average case, showing imbalanced network
load across servers – servers at the network center not
only receive more irrelevant events, but also have high
degree in the CBF trees and forward more event copies.
Second, despite its low routing accuracy, Channelization
outperforms the CBF approaches under low matching
ratios. This is because when clustering is effective,
servers only join some of the multicast groups, and even

the most heavily loaded servers only receive events in
their own groups. In contrast, all servers are always in all
CBF trees. Finally, despite destination list overhead,
MEDYM approaches significantly outperform the others,
showing well balanced network load across MEDYM
servers. This is for two reasons: the small number of
events servers receive, as well as the high routing
diversity in dynamic multicast. The advantage is
especially significant with low matching ratios. With 1%
matching ratio, the maximum bandwidth consumption in
MEDYM_SPMST is only about 1% of that in CBF and
2% of that in Channelization. With 10% matching ratio,
it is about 7% of that in CBF and Channelization.
MEDYM_BLSPMST effectively reduces the maximum
bandwidth consumption even further. Compared to these
two algorithms, MEDYM_MST performs less well, due
to its higher destination list overhead, and lower diversity
between its non-source-specific multicast trees.
3) False positive routing in CBF_SPT

It was counterintuitive to us that with shortest path
trees and per step filtering, CBF_SPT did not perform
much better than CBF_MST. Interestingly, in our
simulation, we found that CBF_SPT can have false
positive event routing, i.e. sending event toward
directions with no matching subscriptions, which is
contradictory to the CBF design philosophy. An example
is shown in Figure 14. For a similar reason as for IP
multicast [12], we expect that accurate event routing in
CBF_SPT (or other similar CBF approach with multiple
routing trees) can only be achieved by also maintaining
source information for subscriptions in the forwarding
tables. The tradeoff between routing accuracy and state
amount is an interesting topic that is beyond the scope of
this paper.2

2nd. Network Efficiency

Next, we examine how event routing is carried out on
the underlying network links.
1) Traffic load on network links
We compute total network resource usage as
∑trafficl*delayl for all underlying network link l
traversed in event delivery. Trafficl measures total
amount of network traffic l carries, therefore taking into
account destination list overhead in MEDYM. We define
Normalized Resource Usage (NRU) as the ratio of the
total network resource usage of an event delivery scheme
over that of the ideal multicast. In ideal multicast, we
assume there exists an IP multicast group for delivery of
every event to and only to its matching servers, achieving
high network efficiency.

Figure 15 compares the NRU of various approaches.

2 We are in correspondence with the authors of the CBF_SPT

approach and plan to investigate the tradeoff further together.

C

 B A

 D

False
 positive

Subscription from B

Subscription from C

event e

Network links

Figure 14. Example of false positive event routing in CBF_SPT.

Server B and C broadcast their subscriptions along the shortest
path trees rooted at each. Then, server A publishes event e that

matches both subscriptions. Server C forwarding e to D is a false
positive operation, because C-D is not on the shortest path from A
to B, and e will not arrive reach B (or any matching server) in this

direction.

0
2
4
6
8

10
12
14
16

1% 10% 50% 100%
Matching ratio

N
or

m
al

iz
ed

 N
et

w
or

k
R

es
ou

rc
e

U
sa

ge
CBF_MST CBF_SPT Channelization
MEDYM_MST MEDYM_SPMST MEDYM_BLSPMST
Unicast Broadcast

Figure 15. Normalized Network Resource Usage.

For reference, we also present results of two simple event
delivery solutions: unicast and broadcast. Figure 15
shows that CBF_MST and MEDYM_MST achieve low
network resource usage consistently. This is as expected,
because their multicast trees are built with the goal of
minimizing total communication cost. MEDYM_SPMST
and MEDYM_BLSPMST, perform less well than
MEDYM_MST, as they trade off network usage
efficiency for computation efficiency and load balancing.
However, when matching ratio is low, the advantage of
MEDYM is apparent: at matching ratio of 1%, even with
destination list overhead, all MEDYM approaches
outperform CBF and Channelization. With low matching
ratios, CBF_SPT performs even worse than unicast,
clearly showing the effect of false positive routing.
Results for Channelization are close to those of
broadcast, showing that per-event content-based
matching is indeed important to achieve high routing
accuracy and efficiency. Under very high matching
ratios, all approaches conform to broadcast, while the
MEDYM schemes have higher resource usage due to
destination list overhead.

Next, we look at how event routing traffic is
distributed on underlying network links. We compute the
stress of a network link by total amount of traffic it
carries in the process of event delivery, and present the
worst-case link stress in Figure 16. The results are

0
2000
4000
6000
8000

10000
12000
14000
16000

0% 20% 40% 60% 80% 100%
Matching ratio

M
ax

im
um

 li
nk

 s
tre

ss
 (

bi
ts

)

CBF_MST CBF_SPT
Channelization MEDYM_MST
MEDYM_SPMST MEDYM_BLSPMST

Figure 16. Worst-case link stress in event routing.

0

0.5

1

1.5

2

2.5

3

1% 10% 50% 100%
Matching ratio

R
D

P

CBF_MST CBF_SPT Channelization
MEDYM_MST MEDYM_SPMST MEDYM_BLSPMST
Figure 17. Relative Delay Penalty (RDP) in event routing.

similar to those of maximum bandwidth distribution,
showing that MEDYM distributes event routing traffic
across underlying network links in more balanced way
that the other approaches.
2) Event delivery delay

In real-time pub-sub applications, it is desirable that
events be sent to subscribers within short latency. Figure
17 presents the average Relative Delay Penalty (RDP) of
event delivery in various approaches. RDP is computed
as the ratio of event delivery delay in a pub-sub network
to the delay of underlying IP routing between the p-
server and s-server, averaged over all event routing
paths. Using shortest-path trees, CBF_SPT always
achieves lowest RDP, only slightly higher than 1. Note
that its RDP should be 1 if the CBF trees were built
directly on top of IP topology (rather than upon a 2-
spanner mesh as in the simulation). MEDYM_SPMST
and MEDYM_BLSPMST both achieve quite low RDP
of about 1.5. Compared to MEDYM_MST, they benefit
from the algorithm’s biased selection of close
destinations are next-hop servers. MEDYM_BLSPMST
has slightly higher RDP because events are sometimes
detoured for load balancing reasons.
3) Server location estimation

Finally, we compare the maintenance overhead and
routing performance of event delivery in MEDYM using
accurate server latency information versus using
approximate server distance estimations. We simulated

marized by
co

those in the measurement
ne

on can be broadly

er routing load on pub-sub
se

ratio ss

two scenarios: first, in a measurement network, each
server probes one random server every 1 second, and
broadcasts the probing results every 1000 seconds. We
assume that in this way, the server distance information
obtained is accurate. The bandwidth overhead generated
is 210 Kbps. While such overhead is acceptable for
servers in large-scale service networks, its O(n3) growth,
where n is the number of servers in the network, is likely
to prevent the network from scaling further.

We also simulate an estimation network as in [27], in
which server locations are efficiently sum

ordinates in a virtual d-dimensional Euclidean space,
reducing total traffic overhead to O(n2). In our
simulations, we randomly choose 50 servers as landmark
nodes. Each server probes one landmark node every 20
seconds and computes its coordinates in a 20-
dimensional Euclidean space. The coordinates are then
broadcasted every 1000 seconds. The total bandwidth
overhead is only 4.3 Kbps.

Table 2 presents the ratio of various metrics in the
estimation network over

twork. Results show that the inefficiency introduced is
largely reasonable, but higher with higher matching ratio.
Overall, we expect server location estimation techniques
offer promising opportunities to balance the tradeoff of
routing performance and state maintenance cost in
MEDYM. Because detailed results can be sensitive to
real network environments and we plan to investigate
this issue further through implementation.

3rd. Simulation results discussion

The simulation results in this secti
summarized as follows:

Compared to existing approaches, event delivery in
MEDYM generates low

rvers and underlying network links, and the routing
load is distributed in a more balanced way. Advantage of
MEDYM is most prominent with high subscription
selectivity (low matching ratio), which is exactly the
scenario when content-based pub-sub is most powerful
and an efficient event delivery scheme is most needed.
We also found that the destination list overhead in

Table 2. Network efficiency penalty for server distance
estimation in MEDYM.

 Matching NRU Average
link stress

Max
 link stre RDP

1% 1.19 1.09 1.22 1.28
10% 1.26 1.05 0.84 1.89 MEDYM_

MST
100% 1.55 1.19 0.88 2.18
1% 1.16 1.09 1.14 1.29

10% 1.34 1.15 1.15 1.58 MEDYM_
SPMST

100% 2.07 1.26 1.07 1.98
1% 1.16 1.09 1.17 1.27

10% 1.33 1.13 1.22 1.56 MEDYM_
BLMST

100% 1.96 1.33 1.18 1.89

M s q w a cep unre nta

 AND FUTURE WORK

In this paper, we presented design and evaluation of a
new architecture approach for content-based pub-sub

se

lig

su

of

 M. K. Aguilera, R. E. Strom, D. C. Sturman, M.Astley, and T. D.
ng events in a content-based subscription system,” In

Eighteenth A

 IEEE INFOCOM 2002.

Proc. IEEE
INF

[31]

[33]
properties”, In Proc. Internet Measurement Workshop 2001

EDYM i uite lo nd, ex t for prese tive
situations of low ctiv s m more than
outweighed by the advantages MEDYM provides

very sele ity, i uch
.

Among the three dynamic multicast routing algorithms,
MEDYM_SPMST and MEDYM_BLSPMST perform
very well under all metrics. MEDYM_MST results in
higher destination list overhead and link stress, due to the
“skinny” shape of the tree it constructs, and lower
routing diversity it offers.

H. CONCLUSION

service networks, called MEDYM – Match Early with
DYnamic Multicast. The high-level design of MEDYM
follows the End-to-end argument in distributed system
design [26]: it decouples the functionality of matching
and routing in content-based pub-sub paradigm, placing
expensive, application-specific event matching at end
servers, and a relatively simple, generic address-based
routing scheme in the network.

Simulation results show that MEDYM significantly
improves event delivery efficiency, both in terms of

rver load and network efficiency, compared to existing
design approaches. The overheads introduced in
MEDYM are acceptable and more than outweighed by
the benefits it brings. We also expect MEDYM network
to be relatively easy to implement and maintain,
compared to pub-sub networks with static event routing
overlay networks.

As an event routing scheme designed for MEDYM,
dynamic multicast is a highly flexible, robust and

htweight (stateless) multicast routing scheme. We
believe its design and efficient implementation methods
presented in this paper can be valuable for contexts other
than pub-sub as well.

Overall, we believe that MEDYM presents a
promising architectural approach for content-based pub-

b service network. We have implemented a prototype
of MEDYM on the PlanetLab testbed [20]. Preliminary
results have validated our simulation findings and can be
found in [5]. We plan to deploy a publicly available pub-
sub service network using MEDYM approach. This work
has three goals: to provide a useful pub-sub service, to
collect real pub-sub workload, which is in great need in
this research area, and to further analyze and understand
MEDYM performance in real networks.

The current MEDYM architecture and the techniques
it uses are expected to scale to pub-sub service networks

 thousands of servers. As each server is expected to
serve a large number of end users, this scale is adequate
for most known interesting pub-sub applications at
realistic scales for the foreseeable future. Meanwhile, we
are also exploring opportunities of further scaling

MEDYM using hierarchical structure and content-
partition techniques.

REFERENCES
[1]

Chandra, “Matchi
CM Symp on Principles of Distributed Computing, 1999.

[2] A. Bharambe, M. Agrawal, S. Seshan. “Mercury: Supporting Scalable
Multi-Attribute Range Queries”. In Proc. ACM SIGCOMM, 2004

K. Calvert, E. Zegura, and S. Bhattacharjee. “How to Model [3] an
Internet-work”. In Proceedings of IEEE Infocom, 1996.

F. Cao, J. P. Singh, “Efficient event routing in content-based pu[4] blish-
subscribe service network”. In Proc. IEEE INFOCOM 2004.

F. Cao, J. P. Singh, “MEDYM: Architectural design f[5] or content-based
publish-subscribe service networks”. Tech. Rep. Princeton U. 2004.

A. Carzaniga, D. Rosenblum, and A. Wolf, “Design and e[6] valuation of
a wide-area event notification service,” In ACM TOCS., 2001.

A. Carzaniga, A.L. Wolf, “A routing scheme for content-ba[7] sed
networking". In Proc. of IEEE INFOCOM 2003.

A. Carzaniga, A.L. Wolf, “Forwarding in a Content-Based [8] Network".
In Proceedings of ACM SIGCOMM 2003.

T. H. Cormen, C. E. Leiserson, R. L. Ri[9] vest, "Introduction to
algorithms", MIT Press, 1990.

Y. H. Chu, S. G. Rao and H. Zhan[10] g, “A case for end system
multicast,” in ACM SIGMETRICS, 2000.

G. Cugola, E. Di Nitto, [11] A. Fuggetta, “The JEDI Event-based
Infrastructure and its Application to the Development of the OPSS
WFMS”, in Proc. Of IEEE Transactions on Software Engineering, 2001.

[12] S. E. Deering, “Multicast Routing in Internetworks and Extended
Lans”. In Proc. ACM SIGCOMM, 25(1), Jan 1995

D. ELY, S. SAVAGE et al. “Alpine: A user-level infrastructure for [13]
network protocol development.” In Proc. 3rd USITS, 2001.

R. Fielding, J. Gettys, et al. “Hypertext [14] Transfer Protocol --
HTTP/1.1”. RFC 2616, 1999.

P. Francis, S. Jamin, et al, “IDMaps: a global internet host distance[15]
estimation service”. In Proc. IEEE/ACM Trans. Netw., 2001

Z. Ge, M. Adler, J. K[16] urose, D. Towsley and Steve Zabele,
“Channelization problem in large scale data dissemination,” Technical
report, University of Massachusetts at Amherst, 2001.

[17] C. Jin, Q. Chen, and S. Jamin, "Inet: Internet Topology Generator,"
Technical Report, EECS Department, University of Michigan, 2000.

G. Kortsarz, D. Peleg, "Generating Low-Degree[18] 2-Spanners", In
SIAM Journal on Computing, Volume 27, Number 5, pp. 1438-1456.

A. Nakao, L. Peterson, “A routing underlay for overlay networks”[19] , In
Proc. ACM SIGCOMM 2003.

PlanetLab Testbed: http://planet-lab.org [20]
[21] T. S. E. Ng and H. Zhang. “Predicting Internet Network Distance

with Coordinates-Based Approaches.” In Proc.
[22] R. Renesse, K. P. Birman, W. Vogels, "Astrolabe: A robust and

scalable technology for distributed system monitoring, management, and
data mining". In ACM Trans. Comput. Syst. 2003

[23] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang, “Clustering
Algorithms for content-based publication-subscription systems,” In
ICDCS 2002.

[24] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang, “New Algorithms
for content-based publication-subscription systems”, In ICDCS 2003.

N. Spring,[25] R. Mahajan, et al, “Measuring ISP Topologies with
Rocketfuel”. In SIGCOMM 2002.

J. Saltzer, D. Reed, and D. Clark. “End-to-end arguments in syst[26] em
design”. In ACM Trans. Computer System, 2(4), pp. 277--88, 1984.

L. Tang, M. Crovella. “Virtual[27] Landmark for the Internet”, in Proc.
ACM SIGCOMM Internet Measurement Conference, 2003

TIBCO, http://www.tibco.com [28]
[29] T. Wong, R. Katz, and S. McCanne. “An evaluation of preference

clustering in large scale multicast applications,” In
OCOM 2000.

[30] Yahoo! Alert service. http://mobile.yahoo.com/wireless/alert
T. Yan and H. Garcia-Molina. “SIFT---A tool for wide-area

information dissemination”. In Proc USENIX TECH CONF. 1995
[32] Y. Zhang, V. Paxson and S. Shenker, “The stationarity of internet

path properties: Routing , loss, and throughput”, Tech.Rep., ACIRI, 2000
Y. Zhang, N. Duffield, et al, “On the constancy of internet path

	Introduction
	Related Work
	Content-based Forwarding (CBF)
	Channelization

	MEDYM Overview
	Dynamic Multicast
	High-level Routing Method
	Source-based dynamic multicast
	Distributed dynamic multicast
	Caching routing decisions

	Detailed Routing Algorithms
	Destination List Size

	MEDYM State and Network Management
	State Management
	Matching table maintenance
	Routing table

	Network Management
	Server join
	Server leave and failure
	Connection Management

	Simulation Setup
	Architecture Approaches
	Network Topology
	Data Model

	Simulation Results
	Server load
	Processing load
	Server bandwidth consumption
	False positive routing in CBF_SPT

	Network Efficiency
	Traffic load on network links
	Event delivery delay
	Server location estimation

	Simulation results discussion

	Conclusion and Future Work
	References

