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Abstract — Architecture design for content-based publish-
subscribe service networks is challenging for two reasons: first, 
communication in such systems is guided by the content of event 
publications and subscriptions, rather than by network 
addresses; second, while an event often matches subscriptions 
from multiple locations, the highly diversified matching patterns 
and hence communication needs imply that existing multicast 
techniques cannot be readily used for efficient event delivery.  

In this paper, we propose a new architectural approach called 
MEDYM – Match Early with DYnamic Multicast. Unlike existing 
approaches, MEDYM does not build static overlay networks for 
event delivery. Instead, an event is matched against subscriptions 
as early as possible, to identify destinations with matching 
subscriptions; then, a multicast tree is dynamically constructed to 
route the event to the destinations with high network efficiency.  

We evaluate the MEDYM architecture using detailed 
simulations, and compare it with the two major existing design 
approaches: Content-based Forwarding and Channelization. 
Experimental results show that MEDYM significantly improves 
efficiency of event delivery, and is highly flexible and robust. We 
also analyze potential overheads introduced in MEDYM, and 
found them to be well acceptable and more than outweighed by 
the benefits of the approach. We expect the basic MEDYM 
architecture to scale to pub-sub networks of thousands of servers, 
which we believe is adequate for many interesting applications. 

Keyword — System design, Simulations, Publish-subscribe, 
Event notification. 

A. INTRODUCTION 

    Content-based publish-subscribe (pub-sub for short) 
is an important paradigm for asynchronous 
communication among entities in a distributed network. 
In such systems, users subscribe to content-based 
conditions, and will be notified when other users publish 
events to the system that satisfy their conditions. 
Content-based subscriptions are highly expressive, and 
can specify complex filtering criteria along multiple 
dimensions of event content. A content-based stock alert 
system, for example, may allow subscriptions on stock 
price movement events with “(ticker=IBM) AND 
(price>100 OR volume>8 million)”. Such timely delivery 
of highly customized information is of great value to 
many distributed applications, such as distributed system 
monitoring [22], alerting and notification [30], 
personalized information dissemination [31] and multi-
party games [2], and application integration [28]. 

In this paper, we study architecture design for large-
scale content-based pub-sub service networks, which are 

expected to handle large numbers of content-based 
subscriptions and high volume of event publications 
from widely distributed users. As shown in Figure 1, in 
such a network, a set of pub-sub servers is distributed 
over the Internet; clients access the pub-sub service, 
either to publish events or to register subscriptions, 
through appropriate servers, such as those that are close 
to them or in the same administrative domains. Thus, 
pub-sub servers serve as publication/subscription proxies 
on behalf of clients, and we can view the pub-sub service 
as one of getting events from servers where they are 
published to the servers that subscribe – as proxies – to 
the events. We call these publication servers (p-servers) 
and subscription servers (s-servers). The same server 
may serve as a p-server and as an s-server. In this paper, 
we focus on the internal design of the service, and do not 
address the communication between pub-sub servers and 
their associated clients.  

A content-based pub-sub service network presents a 
unique design challenge, because its communication 
paradigm is not directly supported by existing network 
protocol primitives. First, communication is based on the 
content of events and subscriptions, rather than network 
addresses. Publishers do not specify destination 
addresses for the events. Rather, events have to be 
matched with subscriptions to identify where they should 
be sent. Second, it is not clear how to best route the 
event, even after the destinations are known. While an 
event may match subscriptions from multiple s-servers, 
existing group communication techniques, such as IP 
multicast [12] or application-layer multicast [10], cannot 
be directly used. This is due to the high diversity of 
content-based subscriptions: different events may satisfy 
the interests of widely varying sets of s-servers. In the 
worst case, the number of such sets can be exponential in 
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Figure 1. Example of a publish-subscribe service network. 
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Figure 2. Event delivery in Content 
Based Forwarding (CBF) network. 

Figure 3. Event delivery in 
Channelization network. 

Figure 4. Event delivery in MEDYM 
network. 

the network size (2n where n is the number of servers), 
and it is impractical to build and manage a multicast 
group for each such set. Finally, the matching and 
routing problems are interrelated: routing decisions are 
based on matching results, while routing capabilities in 
turn affect where and how events are matched.  

The contributions of the research described in this 
paper can be summarized as follows: 
• We propose a new architecture for content-based 

pub-sub networks, called MEDYM (Match Early 
with DYnamic Multicast), which embodies a new 
way to address the matching and routing problems.  

• We present design and efficient implementation 
techniques for MEDYM.  We also closely analyze 
the new challenges it introduces, and show that they 
can be addressed with acceptable overhead. 

• We propose and design dynamic multicast as a 
general routing method. While content-based pub-
sub is the driving application to which it is very well 
suited, we expect this flexible multicast scheme to be 
broadly applicable for group communication 
scenarios where there is wide diversity and 
unpredictability in message destinations. 

• We evaluate MEDYM and compare it with the major 
existing alternative approaches through detailed 
simulation. We find that compared to these 
approaches, MEDYM provides a better combination 
of efficient event delivery and low implementation 
and maintenance cost. 

The rest of the paper is organized as follows: In the 
next section, we review two major existing design 
approaches for content-based pub-sub service networks 
and discuss their tradeoffs. In Section C, we present an 
overview of the MEDYM approach, including its major 
benefits and key challenges. In Section D, we explore the 
design space for dynamic multicast, and develop 
methods for efficient implementation. We describe our 
simulation setup in Section F and present detailed 
simulation results in Section G. In Section H, we 
conclude the paper and identify directions for future 
work. 

B.  RELATED WORK  

Existing content-based pub-sub network architecture 
design can be largely categorized into two classes, which 
we call the Content-based Forwarding (CBF) approach 
[1][4][6][7][11] and the Channelization approach 
[16][23][24][29].  

1st. Content-based Forwarding (CBF) 

As shown in Figure 2, in a CBF network, pub-sub 
servers organize a priori into one or more acylic overlay 
networks, which we call CBF trees. Subscriptions from 
s-servers are broadcast along a CBF tree and recorded in 
the forwarding table at every server, in the form of sum 
of subscriptions from each direction. Thus, subscriptions 
from the same direction can be aggregated for efficient 
storage, update, and matching. Events are routed along 
the CBF tree, matched with subscriptions in the 
forwarding tables at every step, and forwarded only 
towards directions with matching subscriptions. 

As an optimization, to avoid sending subscriptions to 
servers that will not publish any relevant events, p-
servers may broadcast advertisements, which describe 
the possible content of their future publications, on the 
CBF tree. Then, subscriptions are forwarded along the 
tree only toward p-servers that have made matching 
advertisements. 

By content-based filtering at every step, CBF 
accurately routes events (and subscriptions) toward 
matching directions. However, its implementation and 
maintenance cost can be high. 

First, performing content-based matching at every step 
is expensive. It includes parsing event content, extracting 
values from fields, and evaluating complex criteria, such 
as full-text search, range queries and/or Boolean 
expressions, against large number of subscriptions. 
Furthermore, many matching operations in the process of 
delivery may be redundant, when an event is repeatedly 
matched with the same subscriptions (at intermediate 
servers) before reaching the destination(s).  



Second, the event traffic load on servers can be high 
and imbalanced. Since the CBF tree is built a priori, to 
reach matching destinations events may be routed 
through intermediate servers that are not interested in the 
events, resulting in unnecessary processing and 
bandwidth load. Servers and network links at the center 
of the network are especially susceptible and can become 
system bottlenecks.  

Finally, the maintenance cost can be high. Whenever 
CBF tree topology changes, such as to adapt to server or 
underlying network environment changes, the forwarding 
tables associated with the tree also need to change. 
Because subscriptions have been aggregated and their 
source information unavailable, it is not known how to 
efficiently adjust the forwarding tables to reflect the 
changes. One way to reconstruct the forwarding tables is 
to broadcast subscriptions and advertisements again 
along the changed CBF tree, generating high network 
traffic and processing load. 

In this paper, we use work in [6] and [7] as 
representatives for the CBF approach, as they are among 
the most prominent and complete works in this direction. 
Many other distributed pub-sub systems follow the CBF 
approach. In JEDI [11], a hierarchical event routing 
network was proposed, but was found in [6] to perform 
worse than the peer-to-peer topology as in Siena. In 
Gryphon [1], a link-matching algorithm was designed to 
partially match the event with an annotated network 
topology data structure to determine the directions in 
which to forward the event to. [8] designed detailed 
content-based forwarding algorithm for CBF. [4] 
proposed to build multiple small CBF trees, so that event 
routing in each tree can be implemented with lower cost. 

2nd. Channelization 

The central idea in the Channelization approach is to 
utilize existing multicast techniques, such as IP multicast 
[12] or application-level multicast [9], for event delivery. 
An example network is shown in Figure 3. Offline, the 
event space is partitioned into a limited number of 
disjoint channels. For each channel, a multicast group is 
built that spans all the servers that carry any client 
subscription that overlaps with (could match) any event 
in that channel. When publishing an event, a p-server 
first identifies the channel that the event belongs to, and 
then multicasts the event in the corresponding group. 
Event forwarding is by multicast routing, which is 
simpler and faster than content-based forwarding in CBF. 

The main challenge for Channelization approach is 
that the available number of multicast channels is often 
much smaller than the 2n possible event destination sets 
(see Section A). As a result, the same channel often has 
to accommodate events with substantially non-
overlapping destination sets, and servers can easily 

receive irrelevant events in groups that they join for other 
events.  

To reduce extraneous traffic and inappropriate receipt, 
clustering techniques are used to compute event space 
partitions, with the goal of maximizing the destination 
set overlap between events in the same channel. 
However, the effectiveness of clustering depends heavily 
on the distribution properties of events and subscriptions, 
and it is likely to be often difficult to accurately match 
the diversified user interests with a small number of 
groups. Furthermore, the distributions themselves can be 
difficult to estimate and react to changes in time. 

In this paper, we will use the work in [23] as a 
representative for the Channelization approach.  

The CBF and Channelization approaches thus balance 
very differently the tradeoff between network traffic 
reduction in event delivery and low computational and 
maintenance cost. CBF achieves higher routing accuracy 
and thus lower traffic than Channelization, but incurs 
significant computational and maintenance cost. 
However, since both use 'statically' determined overlay 
networks, both still generate unnecessary network traffic, 
and both also require potentially expensive network 
management and state maintenance when network 
topology changes.  Our goal is to develop an approach 
with both lower computational cost than CBF and at least 
as good network traffic efficiency, while also easy to 
manage and maintain. 

C. MEDYM OVERVIEW 

In this section, we propose a new architecture for 
content-based pub-sub network called MEDYM:  Match 
Early with DYnamic Multicast. Unlike existing 
approaches, MEDYM does not build static overlay 
networks. Its event delivery process is as shown in 
Figure 4. At a p-server, a published event is first matched 
against subscriptions from remote s-servers, to obtain a 
destination list of s-servers with matching subscriptions. 
Then, the event is routed to the destination servers 
through dynamic multicast: On receiving an event 
message with its associated destination list, based on its 
destination list, a server dynamically computes the next-
hop servers to which to forward the message, as well as 
the new destination list for each of the next-hop servers. 
In this way, a transient dynamic multicast tree is built 
step by step. Along this tree, the event is routed to (and 
also through) only its matching s-servers. 

Benefits. The match-early and dynamic multicast 
aspects of MEDYM both offer synergistic advantages. 
With match-early, an event is matched only once in the 
process of delivery, achieving low computation cost. 
While the match may be against a larger number of 
aggregated subscriptions than is done at each server 
along the path in CBF, the overall computational cost is 



expected to be much smaller Once matched, the rest of 
event delivery is through simple address-based 
forwarding in dynamic multicast, with early accurate 
destination information that allows efficient routing 
decisions to be made.  

Given the results of early matching, dynamic multicast 
routing conceptually provides substantial benefits. It 
routes each event through only the set of servers that 
actually subscribe to it. It is highly flexible, and allows 
routing decisions and paths to be optimized for 
individual event messages, which suits well the 
diversified and unpredictable communication needs of 
content-based pub-sub. Such fine-grained routing 
optimization is difficult to achieve in static, 
predetermined event delivery networks.  

A final advantage of a MEDYM network is its 
maintainability, since it does not have to maintain ‘static’ 
overlay topologies and routing states that can be 
complicate when dealing with dynamic network changes. 

Challenges. However, MEDYM also introduces new 
challenges that are not present in existing approaches.   

First, every MEDYM server must be able to 
communicate directly (at the overlay layer) with all the 
other MEDYM servers in the system. This is not a 
requirement in static overlay networks, in which servers 
communicate with only a fixed set of neighbors. 
However, we believe it is reasonable given the scale and 
nature of a managed service network, and we will 
address efficient connection management in Section E.  
We also expect that in a content-intensive network, the 
amount of information kept about other servers 
information will be much smaller than the information 
kept for content-based subscriptions and will not add to 
too much storage or update overhead.  

Second, dynamic multicast introduces new overheads 
such as real-time route computation and the traffic 
overhead of destination lists. As a new routing scheme, it 
is unclear a priori whether and how it can be 
implemented with high enough efficiency.  

Finally, MEDYM servers need to also know about 
(sum of) subscriptions from all other servers for early 
matching, and server network location information for 
network-efficient dynamic multicast. This information is 
not required in the other approaches; e.g. CBF can 
potentially store aggregated information for each 
direction from a server. The overhead of this information 
is also an important question.  

To address these challenges, we examine methods for 
efficient implementation of dynamic multicast in Section 
D, and mechanisms for state and network magement of 
MEDYM in Section E. The content-based matching used 
in match-early is an application-specific plug-in module 
in MEDYM, and is not a focus of this paper.                           
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Figure 5. Dynamic multicast routing. 

D. DYNAMIC MULTICAST  

Dynamic multicast is designed as a general scheme for 
routing a message to a group of destinations. As shown 
in Figure 5, it serves a simple interface to the upper layer 
application: Send(DestinationList, message), and delivers 
received messages to application through a callback 
function Receive(message).  

Dynamic multicast is a stateless protocol in which no 
session information needs to be established or managed. 
For a message received from either the upper layer 
application or another server, based on its associated 
destination list (DL), dynamic multicast routing runs as 
follows: 

            < ni, DLi > = fs (DL)           i = 1 … d 
The routing algorithm fs computes a list of d <ni, DLi> 

pairs, where ni is the ith next-hop server, and DLi is the 
new destination list for ni. The algorithm’s input and 
output must satisfy the following routing invariants: 

(a)  }{
1

sDLDL
d

i
i −=

=
U

(b)  jiDLDL ji ≠=∩ ,φ
(c) ii DLn ∈  
Correctness of dynamic multicast can be derived from 

the invariants: a message is delivered to all destination 
servers, as the routing process does not stop until with 
empty destination lists. The invariants also guarantee that 
dynamic multicast is efficient and fair: a message only 
traverses the destination servers, and each server at most 
once. This results in minimal total routing load, and the 
load is aligned with servers’ self-interests: unlike in CBF 
or Channelization approach, MEDYM servers receive 
and route for messages that they themselves are 
interested in. Given the heterogeneous server interests in 
content-based pub-sub service networks, we believe this 
property provides an important incentive for servers to 
participate in the network. Dynamic multicast is highly 
flexible. Different routing algorithms fs can be developed 
for different routing optimization goals and will have the 
above properties as long as the invariants hold.  

In MEDYM, it is used to route not only events, but 
also subscription and control messages when needed.   
Next, we discuss its efficient implementation. 



1st.       High-level Routing Method 

1) Source-based dynamic multicast 
One way to implement dynamic multicast is source-

based routing. The source server computes the whole 
multicast tree and encodes it in the destination list, for 
instance by sorting server IDs in depth-first order. A 
forwarding server simply reads the tree structure from 
the destination list and forwards the message as 
instructed. The drawback of this approach is that its 
routing quality depends on source’s knowledge about the 
network, at the time of message sending. If this 
knowledge is incomplete or out-of-date, the multicast 
tree computed can be sub-optimal.  
2) Distributed dynamic multicast 

Distributed dynamic multicast is a scheme in which 
each server independently resolves its local part of the 
tree. In a widely distributed network, servers often have 
more accurate or up-to-date information about local 
network environments than for remote areas. In 
distributed dynamic multicast, such information can be 
utilized to improve routing decisions. Distributed 
dynamic multicast is also highly resilient to failures. 
When a server fails to deliver a message to next-hop 
server ni, it re-runs fs(DLi –{ni}) so that the message can 
bypass ni and still be delivered to other servers in DLi. 
Due to these advantages, in our work, we focus on 
distributed dynamic multicast. 
3) Caching routing decisions 

An interesting question is whether there is enough 
temporal locality among destination lists that dynamic 
multicast routing decisions can be effectively cached. We 
will examine caching in the context of real pub-sub 
workloads in future work, and do not assume it here. 

2nd. Detailed Routing Algorithms 

We have designed three routing algorithms for 
computing fs with different optimization goals.  

The first algorithm, MST, aims at minimizing the total 
communication cost in message routing. It uses 
Kruskal’s algorithm [9] to compute the minimum 
spanning tree for destination servers, and then extracts 
<ni,  DLi> from the tree. It can be implemented in either 
source-based or distributed way. A potential problem 
with this algorithm is its high computation complexity of 
O(D2logD), where D is the number of destination 
servers. Because the routing algorithm is run for every 
incoming message in real time, it is important that it can 
be run fast enough to support high routing throughput.  

The second algorithm, SPMST for Short-Path-MST, is 
a new algorithm we designed that computes an 
approximate minimum spanning tree in a faster way. The 
algorithm is as shown in Figure 6. Offline, an array 
called ShadowBitVector is maintained to help in quickly 

computetShadowBitVectors s() {        // offline 
    foreach server si { 
        foreach server sj  
            if (DistanceMatrix[i][j]<DistanceMatrix[s][i] &&  
                DistanceMatrix[s][j]<DistanceMatrix[s][i]) 
                Set_jth_bit_in_ShadowBitVector[i]; }} 
 
SPMSTs(DL) {                                      // online 
    Nexthops = DL;                       
    foreach server si in DL  
        if (ShadowBitVector[i] & DLBitVector !=0)  
            Nexthops_remove(si); 
    if (|Nexthops|>maxNextHops))  
        Nexthops = closest_nexthops(maxNextHops); 
   foreach server sj in (DL-Nexthops) {  
        ni = closest_nexthop_to(sj); 
        DLi +={sj}; } 
    return(<ni, DLi>); }  

 
Figure 6. SPMST routing algorithm. 

BLSPMSTs(DL) { 
    if (I_am_overloaded) { 
        if (all_destinations_overloaded)  
            n0 = closest_destination; 
        else  
            n0 = closest_not_overloaded_destination; 
        DL0 = DL-{s}-{n0}; 
        return <n0, DL0>; } 
    choose_nexthops_as_in_SPMST; 
    if (all_nexthops_overloaded) 
        assign_new_DL_as_in_SPMST; 
    else  
        foreach server sj in (DL-Nexthops) {  
            ni = closest_non_overloaded_nexthop_to(sj); 
            DLi +={sj}; } 
     return(<ni, DLi>); }  

 

Figure 7. BLSPMST routing algorithm. 

choosing next-hop servers. We say that server si is 
shadowed by server sj, if si is closer to sj than to current 
server s, and s is closer to sj than to si. Under this 
condition, it is deemed as more efficient to let sj forward 
the message to si than s directly sending to si. Therefore, 
si will not be chosen as next-hop server if sj is 
also a destination server. Note that in this way, it is 
inclined to choose close by servers as next-hop servers, 
and result in multicast trees with lower diameters than 
the minimum spanning trees. After choosing the next-
hop servers, the rest of the destinations are assigned to 
new destination lists of the next-hop servers closest to 
them. Using bit vector operations, the algorithm runs fast 
enough to support high event traffic volume.  

The third algorithm, BLSPMST for BaLanced-SPMST, 
is shown in Figure 7. It is a variant of SPMST that tries to 
balance routing load across servers, loosely measured by 
server bandwidth usage in this work A MEDYM server 
is deemed as overloaded if its bandwidth consumed in 
routing the last K messages is above OverloadThreshold 
times the total message size. In our experiments, K is set 
to 1000 and OverloadThreshold is set to 3.  

Table 1 presents the computation time of the three 
algorithms, written in Java and run with 2.0 GHz 
Pentium-III CPU and 512MB memory. Note that the 



destination list sizes used in the table are much larger 
than the average destination list size (see below) in the 
process of routing one event. The results show that the 
algorithms, especially SPMST and BLSPMST, are 
efficient enough to support high routing throughput, 
confirming our expectation that address-based forward- 
ing in dynamic multicast should be simple and fast. 

3rd. Destination List Size  

As discussed earlier, a potential overhead in dynamic 
multicast is that the increased network traffic for 
destination lists. In  Figure 8 we present an analysis of 
the average destination list size in the process of routing 
one event, averaged over the edges in a dynamic 
multicast tree. Since destination list size is reduced at 
every step by a factor equal to the outgoing degree of the 
node, we expect the average list size to be about equal to 
the diameter of the tree. This is confirmed in Figure 9, 
which shows that the average destination list sizes in 
multicast trees computed using the three algorithms 
above are really about equal to the diameters of the trees, 
a grow slowly with total number of destinations (which 
are usually all the matched s-servers). We believer such 
overhead is quite acceptable, especially considering that 
messages in content-based pub-sub systems are likely to 
carry complex information, such as attribute-values pairs, 
full texts or XML documents. 

While the average destination list size is small, it can 
be imbalanced across pub-sub servers, as it is longer at 
servers close to the root of the multicast tree. We address 
this issue from two perspectives: 

First, we do not attempt to reduce the destination list 
length at the message source; rather, we believe that a 
server ID in the destination list is a reasonable and fair 
“cost” that a server “pays” for using the dynamic 
multicast routing service. The more use the server makes 
of the service, i.e. the more destinations its messages are 
delivered to, the more (bandwidth) cost the server is 
expected to pay for. This is also an effective mechanism 
to prevent servers from spamming the network. 

Second, destination list size is not the only reason for 
imbalanced server bandwidth consumption, which is also 
affected by factors such as the server degrees in the 
multicast tree. Therefore, our algorithm BLSPMST aims 
at balancing server bandwidth as a whole, not 
distinguishing bandwidth consumed for destination list or 
message payload.   

Table 1. Computation time of dynamic multicast routing 
algorithms, with destination list size |DL|. 

Computation time (ms) Routing 
algorithm |DL|=100 |DL|=500 |DL|=1,000 

MST 1.8 9 34 
SPMST 0.08 0.29 0.62 

BLSPMST 0.08 0.32 0.69 
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Figure 8. Analysis of average destination list size in dynamic 
multicast tree with m servers. 
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Figure 9. Average destination list size and multicast tree 
diameter, using different dynamic multicast routing algorithms. 

E. MEDYM STATE AND NETWORK MANAGEMENT 

In this section, we describe how MEDYM servers 
maintain state to support event delivery, as well as 
MEDYM network management. 

1st. State Management 

In MEDYM, each p-server maintains a matching table 
with an entry (server ID, sum_of_subscriptions) for 
every s-server in the system. And every MEDYM server 
maintains a routing table, which includes a list of (server 
ID, IP address, status) for all s-servers, and a distance 
matrix M, where Mi,j represents communication cost 
between s-server i and j. Advertisement is an optional 
optimization, in which p-servers broadcast their 
advertisements to s-servers, using dynamic multicast. 
Matching table maintenance 

Matching tables in MEDYM differ from the CBF 
forwarding tables in three ways: first, in MEDYM, only 
p-servers maintain matching tables, and only 
subscriptions from s-servers that overlap with local 
publication interest (local advertisement, if used) need to 
be maintained. These are not true for CBF, because the 
CBF servers may need to forward (and thus match for) 
events that do not match their own subscriptions. On the 
other hand, MEDYM offers less subscription aggregation 
opportunity than CBF. In MEDYM matching tables, only 
subscriptions from the same server can be aggregated, 
while in CBF forwarding tables, subscriptions from all 
servers in the same direction can be aggregated. 
However, subscription aggregation is a very difficult 



problem and there have been no efficient, systematic 
methods developed for it and no evaluations on how 
successful it can be.  Therefore, although it is difficult to 
quantitatively compare the storage in the two approaches, 
we expect that the matching tables in MEDYM do not 
introduce much overhead compared to CBF, and may be 
even advantageous. Finally, unlike in CBF, matching 
tables are independent of network topology, and 
therefore do not need to adapt to network environment 
changes.  

To make a new subscription or cancel a previous one, 
a server broadcasts the subscription using dynamic 
multicast. If advertisement is used, s-servers record the 
advertisements received, and only send the subscription 
to p-servers with overlapping advertisements, using 
dynamic multicast. Receiving the subscriptions, p-
servers update their matching tables accordingly.   
Routing table  

Routing table is used to build network-efficient routing 
paths in dynamic multicast. In MEDYM, s-servers 
periodically broadcast Refresh messages, which include 
their ID, IP address, status (such as load condition) and 
network location information.  

Server network location information is used in 
computing the distance matrix. It can be obtained in two 
ways: first, a server may actively probe other servers and 
report the probing results. This scheme measures real 
network latency but generates O(n3) total network traffic, 
where n is number of servers in the network. However, 
note that the probing and broadcasting can be rather 
infrequent: first, studies show that Internet paths are 
fairly stable: [32] reported that roughly 80% of Internet 
routes studied were stable for longer than a day, and [33] 
shows that in general delay appears steady on time scales 
of 10-30 minutes. Second and more importantly, 
inaccurate server distance information or inconsistent 
information on different servers does not affect dynamic 
multicast correctness; it may only result in sub-optimal 
routing network efficiency. As an alternative, MEDYM 
can benefit from state-of-the-art techniques 
[15][19][21][27] to approximately yet efficiently 
estimate server network locations. In this work, we 
simulated [27] for this purpose. In Section G, we will 
compare maintenance overhead as well as routing 
performance between using measurement and estimation. 

2nd. Network Management 

In MEDYM, network management is also relatively 
easy because no overlay network topology or session 
states need to be maintained.  
Server join 

A MEDYM network has one or more servers as 
Rendezvous Points (RP) that are in charge of network 
membership. A new server locates an RP, probably 

through DNS, and sends a Join Request message, asking 
for permission to join the network. If permitted, RP 
replies with a Welcome message, which includes an ID 
for the new server, a list of (server ID, IP address, 
advertisement) for all servers in the network, and a 
distance matrix M.  

Receiving the Welcome message, the new server 
initializes its matching table and routing table. It then 
broadcasts a Greeting message with its (server ID, IP 
address, advertisement) to all servers in the network, 
using dynamic multicast. The new server also sends 
subscriptions to servers with overlapping advertisements. 

Receiving a Greeting message, an existing server adds 
the information about the new server into its matching 
and routing table. If the new server’s advertisement 
overlaps with local subscriptions, it sends Subscribe 
message to the new server with the subscriptions. 

The new server then starts participating in information 
update and pub-sub communication in the network.  
Server leave and failure  

When a MEDYM server leaves, it tells an RP node, 
which broadcasts a Departure message, and all servers 
remove information about that server from their local 
tables. If a server abruptly goes down, its failure can be 
detected either by lack of Refresh messages, or in the 
dynamic multicast routing process, as described in 
Section D. Failure detection is reported to an RP. RP will 
try to contact the server, and if this fails, it broadcasts the 
Departure message. We note that handling failure is 
relatively easy in MEDYM, as unlike in overlay 
networks with static topologies, the failure will not lead 
to network partition or incorrect routing. 
Connection Management  

Reliability is an important feature in pub-sub 
communication. We use reliable network protocol such 
as TCP for inter-server communication. Unlike other 
approaches, in MEDYM, a server may need to directly 
communicate with any other server(s) at any time. 
Frequently opening and closing TCP connections is 
expensive and limits system throughput. We use 
persistent connection and pipelining techniques 
introduced in HTTP/1.1 protocol [14] for efficient 
connection management. If the total number of 
simultaneously open TCP connections reaches system’s 
limit, reliable UDP or user-level TCP [13] can be used.   

F. SIMULATION SETUP 

To evaluate efficiency of event delivery in MEDYM, 
and compare it with existing approaches, we have 
developed a message-level, event-driven simulator. 

1st.     Architecture Approaches 

We simulated two versions of the CBF approach: 
CBF_MST as in [6], which builds a single CBF tree as 



the minimum spanning tree spanning all servers, and 
CBF_SPT as in [7], which builds CBF trees as source-
specific shortest path trees, each rooted at a potential p-
server. A challenge for CBF_SPT, not addressed directly 
in [7], is that a source-specific shortest-path tree in the 
overlay layer, constructed directly upon IP routing, is 
likely to degenerate into a star topology. In our 
simulation, we adopt a mesh-first approach for 
CBF_SPT, as in [10]. We first extract a 2-spanner [18] 
mesh from the underlying IP network, and then build 
SPT trees on top of the mesh.  

We simulated Channelization approach as in [23]. We 
use Forgy K-means algorithm to cluster events into 50 
event channels. This algorithm was found to generate the 
best clustering results among alternatives. 

We simulated three versions of MEDYM, with the 
routing algorithms described in Section D. We call these 
MEDYM_MST, MEDYM_SPMST and 
MEDYM_BLSPMST. 

2nd. Network Topology 

We simulate a pub-sub network of 1000 servers. The 
underlying network topology is generated using the 
transit-stub model from GT-ITM Internet topology 
generator [3]1. There are 20 transit domains with an 
average of 5 routers in each. Each transit router has an 
average of 3 stub domains attached, and each stub 
domain has an average of 8 routers. Link latencies are 
randomly assigned as:  between 50-100ms for intra-
transit domain links, 10-40ms for transit-stub links, and 
1-5ms for intra-stub domain links. Altogether there are 
2500 routers and 8938 links, and the pub-sub servers are 
randomly attached to routers with 1ms latency. 

3rd. Data Model 

We assume that an event message has payload of 200 
bytes and TCP/IP header of 44 bytes. Each MEDYM 
server has an ID of 16 bits. Since our focus is not on 
matching algorithms and our results are independent of 
them, for simplicity and without loss of generality, we 
use integers on [0, 100,000] as event and subscription 
values and perform only equality matching.  

For comprehensiveness, we have experimented with 
various publication and subscription distributions, and 
found that CBF and MEDYM perform consistently while 
Channelization is sensitive to data distribution, but the 
difference is not large enough to change the comparative 
positions of the approaches. For space reasons, in this 
paper, we only present results for uniform distribution, in 
which publications and subscriptions are uniformly 
randomly generated and assigned to pub-sub servers. We 

                                                      
1 We have also simulated with network topologies generated by Inet [17] 

and from Rocketfuel [25] and obtained similar results. They are omitted in this 
paper for space reasons. 

expect it to provide the most basic and clear 
understanding of characteristics of the approaches. 
Results under other distributions are similar to the ones 
presented here and can be found in [5].   

G. SIMULATION RESULTS  

We evaluate event delivery efficiency along two 
dimensions: server routing load, which includes 
processing load and network bandwidth consumption at 
pub-sub servers, and routing network efficiency, which 
includes traffic load on underlying network links and the 
event delivery delay introduced. 

We experiment with various levels of subscription 
selectivity, since different event delivery solutions can 
perform very differently for different selectivity 
situations, and it is desirable that an approach achieves 
consistent high efficiency under all circumstances. We 
define matching ratio to be the probability that an 
average event matches any subscription on a given pub-
sub server. Low matching ratio means user subscriptions 
are highly selective, and vice versa. 

1st. Server load 

Event routing generates both processing load and 
network bandwidth consumption at pub-sub servers. Let 
us examine each. 
1) Processing load  

Because different approaches use event-forwarding 
methods, it is difficult to directly compare their 
computation cost. Instead, we use the number of events 
servers receive and route for as a metric to reflect the 
overall processing load.  Figure 10 presents the average 
number of events a server receives in different 
approaches, normalized as a percentage of all events 
published. Note that this number can also be interpreted 
as the percentage of servers an average event is routed 
through, thus indicating the total routing load generated 
in the delivery process. 

Figure 10 shows that servers in CBF and 
Channelization approaches receive more events than 
what they are interested in. In particular, a server that is 
interested in only 1% events receives 8% events in 
CBF_MST, 9% in CBF_SPT, and 29% in 
Channelization; a server interested in 10% events 
receives 29% events in CBF_MST, 34% in CBF_SPT, 
and 98% in Channelization. The curve for 
Channelization rises and saturates quickly, showing the 
ineffectiveness of clustering with less selective 
subscriptions: servers are likely to join more groups and 
receive many irrelevant events. The CBF approaches 
achieve higher routing accuracy than Channelization, but 
the proportion of irrelevant events received is still quite 
high when subscriptions are highly selective. This is 

 



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100%
Matching ratio

P
er

ce
nt

ag
e 

of
 e

ve
nt

s 
an

 
av

er
ag

e 
se

rv
er

 re
ce

iv
es

CBF_MST
CBF_SPT
Channelization
MEDYM

                       

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Percentage of events received

C
um

ul
at

iv
e 

pe
rc

en
ta

ge
 o

f 
se

rv
er

s

CBF_MST
CBF_SPT
Channelization
MEDYM

 
Figure 10. Average percentage of events servers receive.  Figure 11. Cumulative distribution of percentage of events 

servers receive, with 10% matching ratio.
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Figure 12. Average server bandwidth consumption.     Figure 13. Maximum server bandwidth consumption.

because the number of intermediate servers an event 
traverses does not change with matching ratio, but with 
lower matching ratio, the probability that they happen to 
match the event forwarded is lower.  In contrast, 
MEDYM servers always receive and route only the 
events that they are interested in. As this basic property 
of dynamic multicast is independent of specific routing 
algorithms, only one curve for MEDYM is shown.  

Next, we look at how the processing load is distributed 
across pub-sub servers. Figure 11 shows the cumulative 
distribution of servers that receive certain number of 
events, when matching ratio is 10%. At the left end, it 
shows that every MEDYM server receives only the 10% 
of events that it is interested in. At the right end, it shows 
that almost all Channelization servers receive more than 
90% of events each. In the middle, it shows load on CBF 
servers is highly imbalanced: about 40% servers receive 
only 10% events each, while 20% servers in CBF_MST 
and 10% in CBF_SPT receive more than 80% events 
each. This confirms our analysis in Section B that servers 
at the center of the CBF tree(s) are likely to route for 
many more events than their peripheral peers, most of 
which are irrelevant to their own interests. The heavy 
load on these servers can be bottleneck of system 
throughput and scalability.  
2) Server bandwidth consumption  

The average server bandwidth consumption in event 
routing is proportional to the average number of events 

each server receives, except for the destination list 
overhead in MEDYM schemes. Figure 12 shows that due 
to destination list overhead, MEDYM_MST consumes 
more bandwidth than CBF and Channelization when 
matching ratio is above 80%. It has highest destination 
list overhead among the MEDYM approaches, due to the 
long diameter of it multicast tree. MEDYM_SPMST and 
MEDYM_BLSPT has lower average destination list 
overhead, and outperform CBF and Channelization until 
matching ratio is above 90%. Interestingly, the points at 
which the destination list overhead hurts MEDYM 
efficiency relative to other systems is close to a point at 
which we may as well switch to broadcast.  

Distribution of server bandwidth consumption can be 
different than that of number of events received. This is 
because bandwidth consumption also depends on server 
degree in the routing trees.  Figure 13 shows maximum 
server bandwidth consumption with various matching 
ratios. Compared to Figure 12, three observations can be 
made. First, both CBF approaches perform much worse 
than for the average case, showing imbalanced network 
load across servers – servers at the network center not 
only receive more irrelevant events, but also have high 
degree in the CBF trees and forward more event copies. 
Second, despite its low routing accuracy, Channelization 
outperforms the CBF approaches under low matching 
ratios. This is because when clustering is effective, 
servers only join some of the multicast groups, and even  



the most heavily loaded servers only receive events in 
their own groups. In contrast, all servers are always in all 
CBF trees. Finally, despite destination list overhead, 
MEDYM approaches significantly outperform the others, 
showing well balanced network load across MEDYM 
servers. This is for two reasons: the small number of 
events servers receive, as well as the high routing 
diversity in dynamic multicast. The advantage is 
especially significant with low matching ratios. With 1% 
matching ratio, the maximum bandwidth consumption in 
MEDYM_SPMST is only about 1% of that in CBF and 
2% of that in Channelization. With 10% matching ratio, 
it is about 7% of that in CBF and Channelization. 
MEDYM_BLSPMST effectively reduces the maximum 
bandwidth consumption even further. Compared to these 
two algorithms, MEDYM_MST performs less well, due 
to its higher destination list overhead, and lower diversity 
between its non-source-specific multicast trees.   
3) False positive routing in CBF_SPT 

It was counterintuitive to us that with shortest path 
trees and per step filtering, CBF_SPT did not perform 
much better than CBF_MST. Interestingly, in our 
simulation, we found that CBF_SPT can have false 
positive event routing, i.e. sending event toward 
directions with no matching subscriptions, which is 
contradictory to the CBF design philosophy. An example 
is shown in Figure 14. For a similar reason as for IP 
multicast [12], we expect that accurate event routing in 
CBF_SPT (or other similar CBF approach with multiple 
routing trees) can only be achieved by also maintaining 
source information for subscriptions in the forwarding 
tables. The tradeoff between routing accuracy and state 
amount is an interesting topic that is beyond the scope of 
this paper.2           

2nd. Network Efficiency  

Next, we examine how event routing is carried out on 
the underlying network links. 
1) Traffic load on network links  
We compute total network resource usage as 
∑trafficl*delayl for all underlying network link l 
traversed in event delivery. Trafficl measures total 
amount of network traffic l carries, therefore taking into 
account destination list overhead in MEDYM. We define 
Normalized Resource Usage (NRU) as the ratio of the 
total network resource usage of an event delivery scheme 
over that of the ideal multicast. In ideal multicast, we 
assume there exists an IP multicast group for delivery of 
every event to and only to its matching servers, achieving 
high network efficiency.  

Figure 15 compares the NRU of various approaches. 

                                                      
2 We are in correspondence with the authors of the CBF_SPT 

approach and plan to investigate the tradeoff further together. 
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Figure 14. Example of false positive event routing in CBF_SPT. 

Server B and C broadcast their subscriptions along the shortest 
path trees rooted at each. Then, server A publishes event e that 

matches both subscriptions. Server C forwarding e to D is a false 
positive operation, because C-D is not on the shortest path from A 
to B, and e will not arrive reach B (or any matching server) in this 

direction.                           
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Figure 15. Normalized Network Resource Usage.  

For reference, we also present results of two simple event 
delivery solutions: unicast and broadcast. Figure 15 
shows that CBF_MST and MEDYM_MST achieve low 
network resource usage consistently. This is as expected, 
because their multicast trees are built with the goal of 
minimizing total communication cost. MEDYM_SPMST 
and MEDYM_BLSPMST, perform less well than 
MEDYM_MST, as they trade off network usage 
efficiency for computation efficiency and load balancing. 
However, when matching ratio is low, the advantage of 
MEDYM is apparent: at matching ratio of 1%, even with 
destination list overhead, all MEDYM approaches 
outperform CBF and Channelization. With low matching 
ratios, CBF_SPT performs even worse than unicast, 
clearly showing the effect of false positive routing. 
Results for Channelization are close to those of 
broadcast, showing that per-event content-based 
matching is indeed important to achieve high routing 
accuracy and efficiency. Under very high matching 
ratios, all approaches conform to broadcast, while the 
MEDYM schemes have higher resource usage due to 
destination list overhead. 

Next, we look at how event routing traffic is 
distributed on underlying network links. We compute the 
stress of a network link by total amount of traffic it 
carries in the process of event delivery, and present the 
worst-case link stress in Figure 16. The results are 
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similar to those of maximum bandwidth distribution, 
showing that MEDYM distributes event routing traffic 
across underlying network links in more balanced way 
that the other approaches. 
2) Event delivery delay 

In real-time pub-sub applications, it is desirable that 
events be sent to subscribers within short latency. Figure 
17 presents the average Relative Delay Penalty (RDP) of 
event delivery in various approaches. RDP is computed 
as the ratio of event delivery delay in a pub-sub network 
to the delay of underlying IP routing between the p-
server and s-server, averaged over all event routing 
paths. Using shortest-path trees, CBF_SPT always 
achieves lowest RDP, only slightly higher than 1. Note 
that its RDP should be 1 if the CBF trees were built 
directly on top of IP topology (rather than upon a 2-
spanner mesh as in the simulation). MEDYM_SPMST 
and MEDYM_BLSPMST both achieve quite low RDP 
of about 1.5. Compared to MEDYM_MST, they benefit 
from the algorithm’s biased selection of close 
destinations are next-hop servers. MEDYM_BLSPMST 
has slightly higher RDP because events are sometimes 
detoured for load balancing reasons. 
3) Server location estimation 

Finally, we compare the maintenance overhead and 
routing performance of event delivery in MEDYM using  
accurate server latency information versus using 
approximate server distance estimations. We simulated 
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two scenarios: first, in a measurement network, each 
server probes one random server every 1 second, and 
broadcasts the probing results every 1000 seconds. We 
assume that in this way, the server distance information 
obtained is accurate. The bandwidth overhead generated 
is 210 Kbps. While such overhead is acceptable for 
servers in large-scale service networks, its O(n3) growth, 
where n is the number of servers in the network,  is likely 
to prevent the network from scaling further. 

We also simulate an estimation network as in [27], in 
which server locations are efficiently sum

ordinates in a virtual d-dimensional Euclidean space, 
reducing total traffic overhead to O(n2). In our 
simulations, we randomly choose 50 servers as landmark 
nodes. Each server probes one landmark node every 20 
seconds and computes its coordinates in a 20-
dimensional Euclidean space. The coordinates are then 
broadcasted every 1000 seconds. The total bandwidth 
overhead is only 4.3 Kbps. 

Table 2 presents the ratio of various metrics in the 
estimation network over 

twork. Results show that the inefficiency introduced is 
largely reasonable, but higher with higher matching ratio. 
Overall, we expect server location estimation techniques 
offer promising opportunities to balance the tradeoff of 
routing performance and state maintenance cost in 
MEDYM.  Because detailed results can be sensitive to 
real network environments and we plan to investigate 
this issue further through implementation.  

3rd. Simulation results discussion 

The simulation results in this secti
summarized as follows:  

Compared to existing approaches, event delivery in 
MEDYM generates low

rvers and underlying network links, and the routing 
load is distributed in a more balanced way. Advantage of 
MEDYM is most prominent with high subscription 
selectivity (low matching ratio), which is exactly the 
scenario when content-based pub-sub is most powerful 
and an efficient event delivery scheme is most needed. 
We also found that the destination list overhead in  

Table 2. Network efficiency penalty for server distance 
estimation in MEDYM.  

 Matching NRU Average 
link stress 

Max 
 link stre RDP 

1% 1.19 1.09 1.22 1.28 
10% 1.26 1.05 0.84 1.89 MEDYM_

MST 
100% 1.55 1.19 0.88 2.18 
1% 1.16 1.09 1.14 1.29 

10% 1.34 1.15 1.15 1.58 MEDYM_
SPMST 

100% 2.07 1.26 1.07 1.98 
1% 1.16 1.09 1.17 1.27 

10% 1.33 1.13 1.22 1.56 MEDYM_
BLMST 

100% 1.96 1.33 1.18 1.89 
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Among the three dynamic multicast routing algorithms, 
MEDYM_SPMST and MEDYM_BLSPMST perform 
very well under all metrics. MEDYM_MST results in 
higher destination list overhead and link stress, due to the 
“skinny” shape of the tree it constructs, and lower 
routing diversity it offers. 

H. CONCLUSION

service networks, called MEDYM – Match Early with 
DYnamic Multicast. The high-level design of MEDYM 
follows the End-to-end argument in distributed system 
design [26]: it decouples the functionality of matching 
and routing in content-based pub-sub paradigm, placing 
expensive, application-specific event matching at end 
servers, and a relatively simple, generic address-based 
routing scheme in the network. 

Simulation results show that MEDYM significantly 
improves event delivery efficiency, both in terms of 

rver load and network efficiency, compared to existing 
design approaches. The overheads introduced in 
MEDYM are acceptable and more than outweighed by 
the benefits it brings. We also expect MEDYM network 
to be relatively easy to implement and maintain, 
compared to pub-sub networks with static event routing 
overlay networks.  

As an event routing scheme designed for MEDYM, 
dynamic multicast is a highly flexible, robust and 

htweight (stateless) multicast routing scheme. We 
believe its design and efficient implementation methods 
presented in this paper can be valuable for contexts other 
than pub-sub as well. 

Overall, we believe that MEDYM presents a 
promising architectural approach for content-based pub-

b service network. We have implemented a prototype 
of MEDYM on the PlanetLab testbed [20]. Preliminary 
results have validated our simulation findings and can be 
found in [5]. We plan to deploy a publicly available pub-
sub service network using MEDYM approach. This work 
has three goals: to provide a useful pub-sub service, to 
collect real pub-sub workload, which is in great need in 
this research area, and to further analyze and understand 
MEDYM performance in real networks. 

The current MEDYM architecture and the techniques 
it uses are expected to scale to pub-sub service networks 

 thousands of servers. As each server is expected to 
serve a large number of end users, this scale is adequate 
for most known interesting pub-sub applications at 
realistic scales for the foreseeable future. Meanwhile, we 
are also exploring opportunities of further scaling 

MEDYM using hierarchical structure and content-
partition techniques. 
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