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Abstract level technigues, which can be called “synchronous over-
lays”, have alternatively sought to create a synchronous
Distributed systems generally employ asynchronous coabstraction above an asynchronous communication layer
munication, despite most theoretical models of such sy$; 19, 23, 10, 2]. These overlays also do not scale, how-
tems being synchronous, and despite synchrony haviwgr, requiring broadcast communication to maintain syn-
established performance and robustness benefits for dis-ony.
tributed applications. One reason is that synchronousThis document proposes a framework of algorithmic
communication is often impractical. Existing mechaechniques to synchronize a distributed system precisely
nisms for providing synchronous abstractions either axéth a shared logical time, and approximately with phys-
not general or do not scale. To address this shortcomiitgl time. By leveraging low-level resource control, the
this document proposes a scalable communication sgmerhead cost of the framework is minimized. Scalabil-
chronization framework to provide shared logical timdty is possible because overhead is independent of appli-
Communication synchronization aligns all network contations and network size, a function only of bandwidth
munication to create a single shared sequence of comrane clock stability. For example, simulation results in-
nication events. This sequence is then used as a time ditate that single microsecond synchrony for a network,
erence. The decentralized “average neighbor algorithmith 0.1% clock instability and 1 Gbps links, requires at
is proposed to maintain synchrony despite drift betweearost 1 Mbps communication overhead (0.1%, matching
local clocks in the system, and this algorithm is provehe clock instability) and 2000 b of buffering for each di-
to be correct and robust. Simulation results indicate thattion on each link. This degree of efficiency enables
the overhead costs of providing synchrony are minimalynchrony in many situations where only asynchrony has
requiring only a small (e.g. 0.1%) fraction of the bandsreviously been practical.
width at each network link, and small fixed incoming data The principle synchronization technique of the frame-
buffers. Thus, the framework allows adoption of symwork is network-wide alignment of communication into a
chrony in many circumstances where it has previoustingle lock-step sequence. This allows each node in the
been impractical. network to independently but equivalently define logical
time in terms of the shared communication sequence. By
controlling the frequency of communication, the fidelity
1 Introduction of logical to physical time can be controlled — limited by
the stability of the clocks in the network.
Asynchronous communication is the current standard forA distributed system with synchronous communication
computer networks, including the Internet. Howeveprovides a highly desirable platform for implementing
when multiple distributed applications share such a sydistributed algorithms, including concurrency control and
tem, they must be designed with flexible performance exiore traditional clock synchronization. The useful prop-
pectations, as they must tolerate fluctuating contention &ties of synchronous communication include:
potentially limited resources. Formally reasoning about . _
the behavior or correctness of applications in the face® 9lobally shared frequency without local drift
pf thi; non-determinis_m is often unmanag_eable. Reflect-, ability to test for absence of messages
ing this, most theoretical models of distributed systems
are synchronous [7] — readily allowing powerful tempor@rift is the process where nodes in a distributed system,
reasoning. that were once synchronized, lose their synchrony over
While systems exist that match the formal modelsme. Eliminating drift can dramatically improve per-
such as SONET [25] and most digital circuits, the metfermance for some applications. For example, Byzan-
ods used for creating synchrony do not scale. Hightame fault-tolerant clock synchronization can be imple-



mented with only a single iteration of distributed consenisk of skew. This is a dramatic improvement over the tra-

sus. Compare this with existing systems, where the @litional approach, where nodes must re-synchronize on a

pensive synchronization process must be repeated perjgerodic basis to recalibrate diverging clock values.

ically. Messerschmitt [15] is recommended as a reference for

Testing for the absence of data is a key feature in formgher synchronization terminology.

synchronous models. In a distributed system, this capabil-

ity allows more efficient communication protocols where

some information can be exchanged implicitly, without

actual messages. Key examples include fault-tolerant dls2 ~ Logical time and event ordering

tributed concurrency control [12], as well as most digital

circuit design, where binary data is normally defined &pmmunication synchronization depends on the ordering

either the presence or absence of signal. of communication events to define shared logical time.

Consider that each process in a distributed system can be

o considered as a totally ordered set of events. The correct-

1.1 Clock synchronization ness of a distributed application may depend on the in-

Consider a distributed system composed of communictettaction between its component processes, and hence on
y P fiie relative ordering between their events. Logical time

ing but spatially separate processes, whe_re e_acr_\ ProeE been shown to be important for both the robustness
has access to a local clock. Assume that, in principle, the - .

. and performance of distributed applications [12].
clocks all operate at an equal nominal frequency. In prac-

tice, clocks are never perfectly accurate and small differ-/n the paper introducing event-based time to distributed
ences in frequency will manifest over time. Synchroniz&YStems [11], Lamport defines theppened beforevent
tion is the process of correcting or tolerating this problefglation, to partially order events. Lamport explains that,
The terms “clock synchronization”, “clock distribu-91Ven any d|§crete measurement_oftlme, itis not generally
tion”, or “network synchronization” are commonly underposs'ble to impose a total ordering on all system events.

stood to mean, for a network of nodes with independgfcause processes in a distributed system operate concur-
clocks, adjusting the time reported by each clock to f:iﬁ'mly’ events may occur simultaneously W'th',n m!J'“p'e
within a bounded interval of that reported by an externBiocesses. Thus the happened before relation imposes
reference (such as GMT or UTC, via GPS or LORAN only a partial order. Lamport also defirlegical clocksas
Techniques for addressing this issue have been exh f@se relations between simultaneous events which extend
tively researched [6, 5, 13, 18, 21], and some technqu@Opened before to totally order events, possibly arbitrar-
(such as NTP [17]) are widely deployed. ily. There can be multiple logical clocks for a system, as

Communication synchronization is a different proceggly the partial ordering is uniquely determined by system
where time is defined logically, to allow perfect agreemeﬁYentS'
between processes at all times. Clock synchronizatiolCommunication synchrony provides a happened before
is more complex than communication synchronizatiofirdering for all system communication events by aligning
The trouble with clock synchronization is reaching glob#tem in a globally symmetrical manner. By forcing all
agreement on a unit of shared state, specifically a tiemmunication between a pair of neighboring nodes to
value. Sharing explicit global state in a distributed systePgcur as a symmetrical exchange of messages, the logical
is expensive, and canonically known as “distributed cofitdering of messages is observed by both sides. By plac-
sensus” [4]. If system components can fail in a maliciodfdd this constraint upon all neighboring pairs in the entire
or methodically destructive manner, which is known to ré&etwork, global message ordering is imposed.
sult from programming errors, much additional complex- Ordering only communication is sufficient to allow ap-
ity is introduced. This conclusion, which has significanlications to create meaningful logical clocks for other
impact on distributed system design, is known as the Felents, by capturing all potential event causality. Consider
result [8]. The difficulty of consensus is well illustratedhat non-communication events may occur within pro-
by the famous Byzantine generals analogy [14]. cesses between cycles of communication, but that these

While this document does not directly address cloglwents can only have local effects. By focusing on com-
synchronization, communication synchronization can beunication, these local-only events are simply ignored
used (among other things) to simpliéxistingclock syn- by the communication synchrony ordering. Since com-
chronization approaches by eliminating drift. Withouhunication events are the only opportunity for processes
drift, the complex consensus procedure need only be &p-affect one another, however, the resulting partial or-
plied once to agree upon an initial time value, after whiater is sufficient to expose any potential causality between
nodes can increment that value independently, withawents.



1.3 Efficiency requirements ple frames, and finally multiplexed and transmitted again.
Th _— hronization f K This process only works if exactly the right amount of

c commgmcatmn syne rpmzatlon ramewor proposggta to form a frame is available at each node during each
_below provides event ordering very gff!mently by le_zver_agﬁterval. If an upstream node were to transmit slowly and
ing low-level control over deterministic communicatiolle 4 jess than the expected amount of data during an inter-

resources. Spemﬁcglly, the. framework requires that_ n%‘l, demultiplexing will fail and result in communication
work links support time-division multiplexing, meaning i re

they must have fixed latency, fixed bandwidth, and nor, synchronize communication, SONET requires a so-

minimum transfer size — e.g. serial connections. Thi%. . C . :
i ; isticated clock distribution network. This process is
means that the implementation level for the framewofk

corresponds approximately with the “data link” layer O:?!mllar to making a single clock available across a digital

the OSI model [26], or with the “network access” layer O<f|rcmt, but is adapted for the phy3|cal scales of a glqbal
system. Each node has a highly accurate and reliable
the Internet (DoD) model. ) . : o
To reconcile this (effectively) mandated low-level im-C|0Ck’ combined with dedicated communication band-
y idth for a clock synchronization protocol. For redun-

plementation with the end-to-end argument [22], Whic\ﬁ . : . :
generally demands that functionality be provided at tlggncy’ there are multiple tiers of clock quality, allowing

highest possible level. recall the cost of hiah-level a or reliable operation during periods where either com-
9 P ' 9 unication fails or some reference clocks are unavailable.

proaches. - Synchronous overlgys, introduced in Sect@n guaranteeing clock synchronization of at least 125us,
1, are forced to broadcast continuously between nOde%%NET can guarantee communication synchrony

maintain synchronization. In fact, Awerbuch [1] formally . .
shows that continuous communication between neighboréo‘IthOngh this approach is successful for SONET, be-

in a network is optimal, less communication being 9 used nearly L{nlversillly n gIoba!,telecommumcatlons
infrastructure, it is too “brute-force” to transfer well to

sufficient to maintain synchrony. Although the frame- her lication domains. Using clock svnchronization
work obeys this Awerbuch bound, it leverages low-lev f €r appiication domains. 1’sing clock synchronizatio
0 create communication synchrony is expensive, espe-

implementation to avoid any negative performance im- . .
pact. Communication at the overlay level requires e%'—a”y when redundant high quality clocks are needed for

plicit exchange of packets, whereas direct access to {Egustness. This document provides an alternative algo-

actual links between neighbors can provide synchronifI nmic approach, which is highly robust while tolerating
tion feedback implicitly, for free inferior clocks. Thus, it can be deployed on a larger set of

S implementation platforms. It can also be tuned to differ-
Furthermore, the framework is significantly more ro- o o . .
. e]nt synchronization granularities, which can allow appli-

bust than any of the overlays. No overlay is tolerant of .

B . ; - o qatlon both a small and large scale.
yzantine failure. Conversely, by avoiding a high-leve

protocol, the framework can avoid even the possibility of

Byzantine failure — there is no need for explicit CoOnNseR -5 Overview

sus of any kind, and hence no opportunity for traitorous

behavior. The rest of this document is organized to incrementally
introduce the communication synchronization framework.
1.4 Synchronous multiplexing There are three stages of increasing complexity, and each

will be dealt with in turn. First, a limited formal ver-

Low-level communication synchrony is not new. SONESion of the framework is defined to address only logical
[25], also called the “synchronous digital hierarchy¢ommunication synchronization. Although logical syn-
(SDH) outside the US, is the foundation protocol for moshronization provides all the desired properties in prin-
of the global telecommunications infrastructure. SONEple, it is completely intolerant of failure and thus im-
is designed around a process calBahchronous multi- practical. The second stage utilizes physical timers to ad-
plexing which depends on communication synchrony tiress this shortfall, but unfortunately suffers from drift be-
coordinate the intersection of multiple time division multween these timers ultimately destroying any synchrony.
tiplexed links at each node in its network. In brief, data iBhe third stage addresses the drift problem. A decentral-
encoded on each network link in such a way that frame®ed “average neighbor algorithm” is introduced to co-
of data can be switched between the links intersectingaatlinate correcting drift as it occurs across the network,
a node based solely on time, not on any in-band signalsvhich utilizes only local timing information to measure

Switching SONET frames occurs at 8KHz on all nodes, This algorithm is proven to be both correct and robust.
meaning that frames are read from all network links dufe provide more quantitative examples of framework per-
ing each interval of 125us. The data within these fram&smance, results of some simulations are discussed. Fi-
is then demultiplexed, possibly reordered across multially, the conclusion speculates on the implications of ef-



ficient communication synchronization for future networ. | [TTTTTTT1T] Node A
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their communication must coincide with communicatio Node B (TTITTITITTITTITIT
g::\tql;;;tzl::g]airhn‘% ()j/(calse ?zfvzglrlﬁgzlr?i::t(i)(\;\f Zig?hn;(izlitl ure 1: IIIust_ration of the “law of conservation of mes-
establish a globally shared logical ordering f’or commu ages’, meaning thqt the .tot_al message count .perS|sts
cation events. Meross any link, despite variation in node processing fre-
More precisely, let anetworkbe a distributed systemquency'

composed ohodes which are connected using bidirec-
tional point-to-pointlinks. Nodes perform computation,
and each node executes a single sequential process. Nodes L e
communicate by sendingiessageso their immediate 2-1  Self-timing and initialization
neighbors. Define the set of nodes and their neighbor sets:

N={i - The above invariants impose what can be considered a

={i|node(i)} B _ ., .
ni={jlieNAlnk(i,j)} law of conservation of messages” for each link. When

a message is removed from a link in one direction, an-
Constrain this model with the following two invariants: other must be added in the opposite direction. This con-

INVARIANT symmetry. Communication be-
tween connected nodes must occur as a se-
guence of symmetrical message exchanges.
Once a node has sent a message to a neigh-
bor B, the nodeA must wait for a message from

B in return before sending any further messages
to B.

INVARIANT yoke: Messages must be sent in
equal quantity by a node to all connected neigh-
bors. If a nodeA exchanges messages with a
connected neighboB, the nodeA must also
exchange messages with all other connected
neighbors before sending any further messages
to B.

straint is quite similar to the desired equilibrium behavior
of TCP [20]. To ensure robust behavior during conges-
tion, a “conservation of packets” approach is used, also
called self-timing [9], which tries to match the generation
rate for packets on a connection to the consumption rate.

To prevent self-timing from limiting link bandwidth,
introduce alink initialization phase to fill the delay-
bandwidth product of each link, “priming” it with mes-
sages. If applied immediately to empty links, the invari-
ants would limit each link to a single message in each
direction per round-trip time — a significant performance
limitation. Because the rate of message exchanges must
be equivalent for all links (yoke invariant), the through-
put of all links would be further bounded by the maximal
link delay, since the link with the longest propagation de-

Define node_s to bmgica”y synchronous';f_they ob- |jay must finish its message exchange in lock-step with all
serve enough information to construct equivalent ordgfher links.

ings for their shared communication. The symmetry in- . o .
variant creates this agreement for two nodes. Applyin During the initialization phase, nod_es transmlt_ mes-
only symmetry between all connected nodes would est§J€S Put perform no receive processing. Assuming that

lish independent shared orderings for each link. Nod@@ capacity of each link is known, nodes can generate the

would not, however, be able to reason about order acr é)ropriate number of messages to fill each link. Once
inks are full, the invariants are imposed and the conser-

conversations with different neighbors. The yoke invari-"

ant aligns orderings across the network, creating an et\éeﬁ'c_m property ensures that the number of total messages

nal sequence of “atomic steps” where nodes communicﬁ?é”ed by each link remains constant.

with each of their neighbors during each step. This process addresses the inequality created by vary-
Since all connected nodes must exchange messagesitink propagation delays, and allows for longer links to

any nodes to communicate, consider that messages inaye more messages “in flight” than shorter links. Note

be effectively empty — acting simply as placeholders tbat the invariants need not change to accommodate these

comply with the invariants. additional messages.



2.2 Variable bandwidth deterministic medium is commonly called time division
. . . . multiplexing (TDM). Accordingly, let the ternframesre-
It might seem that the framework imposes bandwidth | lace messages as the name for information exchanged by

its on links, by forcing all links to only exchange the sa odes — indicating the change of focus to TDM. Each link

number of messages. However, the framework does fi8hsmits one frame in each direction during each period.

restrict message size, allowing higher bandwidth links [t frames be of fixed size for each link, also called the
use correspondingly larger messages. Only the frequenﬁx width, and let linklength be the duration of frame
of message exchanges is governed by the invariants. transmiss,ion in periods

In principle, the isochrony invariant allows each node in
2.3 Robustness the system to identify communication faults. At the end of
A real problem with the framework, as currently define(?,aCh period, if a frame has not amvgd on each link at each
o o . . node, the node expecting the missing data can assume a
is intolerance forcommunication faults- meaning cir- . - .
fault has occurred and simply abandon the link in question

cumstances where a link or node becomes unable to trgns- .~ L . .
Q0 maintain communication with its other neighbors.

mit messages, or where messages are lost. Commumczil- : : o :
. o . . .. In practice, perfect isochrony is impossible and deal-
tion faults result in “starvation”, where all nodes will wait

forever for messages and the system as a whole will halg with communication faults is more complex. The sig-

Specifically, the destination nodes for any missing m‘%qls generated by different nodes are never identical, and

sages will wait for them. and thereby interruot the glob r':\nsmission over any distance also imparts natural varia-
g ' y P . 990N to a signal. Herein lies the real difficulty of achieving
message exchange cycle. To quote Lamport [11]:

physical synchrony. Designing the framework to tolerate
“... the entire concept of failure is only mean- such variation over time is the focus for the rest of this
ingful in the context of physical time, there is ~ document.

no way to distinguish a failed process from one

which is only pausing between events.” 3.1 Jitter and drift

Because the invariants ignore time, they imply umssume that each node has access to an independent local
bounded blocking of nodes if messages are expected frosgillator with a frequency resolution matching at least
neighbors but have not yet been received. Tolerating cotie data rate of its widest connected link (the product of
munication faults appears to require that nodes implink width and communication frequency). Assume that
ment timeouts and behave in a temporally regular mannggse oscillators are used to encode the outbound trans-
adding significant additional complexity. This is the focusiissions of each node. The word “clock” is intentionally
of the next sections. avoided, to highlight that only frequencies and durations
are needed by the framework for timing, not any specific
counter values that refer to absolute time.

Despite nominal isochrony, the waveform produced by

c ication fault be identified by boundi tany oscillator will vary naturally over time, due to effects
ommunication faults can be identified by bounding %;fthe environment on involved physical materials. Link

duration for which nodes await messages. This means Zhsmission introduces similar timing irregularity upon

measurement of time must be introduced inio the framc(':‘alrried data signals. Under normal conditions, let each

wor_k. Acco_rdmgly, extend the framework with the fOI"cransmitted signal be encoded by a nadst the nomi-
lowing invariant:

nal frequency of its oscillatd, and constrained to vary
messages on each connected link at a constant the transmission frequency for a nade:

frequency (isochronously). fi(t)sth—g&<fi(t)<F+g

While the initial two invariants created a global se@utside this range, the transmission is defined to have
guence of message exchanges, this new invariant impdaéied and may cause a communication fault. This maps
the temporal regularity of @ommunication frequencywell to practice, where oscillator manufacturers generally
upon that sequence. Let the tepariodrefer to the con- publish these performance properties for their products.
stant wavelength of this communication frequency, meddedes are defined to operate correctly if they maintain the
ing the amount of time between communication cycles.invariants for all neighbors with non-faulty transmissions.

Extend also the network model, by assuming that links Definemesochronousignals as those with equal aver-
have fixed latency and bandwidth. The resulting prage frequency, but where individual cycles in the wave-
cess of transmitting data using a fixed frequency ovefam may occasionally be out of phase (not be perfectly

3 Physical synchrony



3.3 Buffering

Jitter in the timing of data frames can be addressed in

a straightforward manner. By adding additional receive

buffer memory to each link, the length of a link can be
‘ artificially extended to create more frame arrival timing

flexibility. By buffering more than just one frame, the
Node B Node C Node D chances can be improved that at least one frame is always
available for node consumption. Jitter then simply effects
frames that are only needed in the future, and thus can be
a@hored. The performance downside for buffering is the
increase in link latency.

The quantity of available buffering determines the
quantity of jitter which can be tolerated. Consider that
jitter is analogous to burstiness of data in a signal. To best

aligned, i.e. “jittering” back and forth). Defingter as tolerate both bursts and idle periods, the buffer should ide-
the difference between mesochronous signals. Defete ally be, on average, only half full. This allows for both
siochronoussignals as those where frequencies are noRinds of jitter effects, bursts and idleness, which fill or
inally equal, but have diverged over time with no reasoBmpty the buffer respectively.
able expectation of re-convergence. Defihét as the  Let buffers be used circularly, with consumption of
difference between plesiochronous signals. In princigi@mes “chasing” arriving data around the buffer. The ar-
jitter and drift are the same thing, the distinguishing fagival rate for bits of data into the buffer is determined by
tor being the time-frame over which frequency differencege incoming data 5igna|_ Data departs from the buffer
are considered. by the node consuming one frame on each local period
To give an example of these terms, parallel signals seffteshold, determined by the local oscillator.
from the same source along similar links will likely expe- Accordingly, the definition of communication faults
rience jitter due to physical differences in the paths, bg#in be refined to account for buffering. Let a communica-
are unlikely to experience drift since they share the safién fault occur either when the consuming node requires
source timing. Signals from different sources have likely frame that has not yet completely arrived, or when in-
drifted, because oscillators are assumed to be indepguficient buffer is available to store arriving data without
dent. On the other hand, heterochronous signals, meariagtroying data yet un-consumed. In other words, failure
those with nominally different frequencies, are obviousbyccurs when the producer and consumer processes oper-
not meaningful to compare. ate at different frequencies for sufficient time to “collide”,
exceeding the tolerance created by the buffer.

NodeB Node C Node D ‘ mechanisms are needed.
<C
]
S
=

Figure 2: Visualization of some nodewith frames arriv-
ing into its buffers from neighbotB, C, andD. Incoming
frames are not perfectly aligned but outbound frames
The misalignment is the result of drift.

3.2 Loopback timing

Because of jitter and drift, the incoming signals for eac%f4 Flow control

link may not be perfectly synchronized with the local osFhe only solution for drift is elimination. Buffering does
cillator. Assume that some mechanism exists to toleratething to help tolerate drift. Any persistent difference
this variation, capture the incoming data, and record it tarafrequency between the consumption rate of a receiving
buffer. The process of recovering the timing, and thereby node and the rate of an incomitigsignal, will either

the data, for an independently timed signal is called “loopader-run or over-run any finite buffer. In fact, jitter and
back timing”. This allows a node to consume data framdsft are cumulative in their negative effects. Drift reduces
at its own frequency. Such mechanisms are commontlir jitter tolerance for a buffer by changing the balance,
practice, and are normally based on phase-locked logpsl thus decreasing the buffer amount available for the
(PLLs). corresponding jitter effect.

Suppose that one frame of buffer memory is availableDrift can be eliminated only by changing one or both of
for each incoming signal. This allows the data recovetigerx ortx frequencies. In other words, synchronizing the
process to tolerate jitter between bits of data smaller thalesiochronous signals with flow control over time. Flow
frames. However, jitter that affects the timing of entireontrol is a common technique, and the one proposed here
frames may still cause communication faults. If too mudb similar to those used by other link-layer protocols, such
or too little frame data arrives during a period, additionas PAUSE frames in Ethernet (IEEE 802.3x) [16].



- - N - """"" . corrected together, ideally to the common rate.

Because only local oscillators are available at each
I X I 2Ny | node, direct measurement of infidelity to the common rate
is not possible. To do so would require treating the local
frequency or one of the incoming data frequencies as a
reference, and all of these are assumed to be imperfect
and thus insufficient for this purpose. Instead, nodes can
compare their own transmission frequencies to those of

Let the termdata frameindicate what has so far simplyincoming data signals, and adjust theirs such that all node
been called a frame, meaning untyped higher-level dafi@quencies converge to a global average over time. Note
and let theeffective frequencfor a signal be that of thesethat this is sufficient to meet the invariants, and thus cre-
data frames. Let the teroorrection framendicate a new ate communication synchrony. The nominal common rate
kind of frame which does not carry any useful data, byimply serves as a target, and is the middle point in the
rather acts as variable sized padding. Accordingly, rev%ge of possible convergence frequencies.
the invariants to apply only to data frames, and redefine
as the effective frequency of nodénstead of the actual
oscillator frequency,. 4.1 Inverse buffer symmetry

Interleave correction frames between data frames dgist as no references exist to allow direct comparison be-
ing transmission in a fixed periodic manner, and let thgeen node frequencies and the common rate, nodes can-
correction frames be discarded immediately upon arrivabt directly measure incoming data frequencies. To calcu-
As illustrated in Figure 3, a correction frame carries on|jte the deviation between the local frequency and those
variable sized padding and a size field, in-band signaliggneighbor nodes, nodes must compare data arrival with
to indicate the padding quantity. local consumption over time.

Separating effective from actual frequency places theconveniently, communication synchrony creates a
least restrictions on implementation platforms, where tu§gymmetric relationship between the buffers on opposite
ing the actual frequency of a signal may be impossible §ties of each bidirectional link. This is best explained us-
at least undesirable. From the perspective obanode, ing the “law of conservation of messages” from Section
only the effective frequency really matters. In summary,1 which ensures a “closed system” of data. If the buffer
correction can be thought of as artificially induced driin one side of a link is short data, then the buffer on the
to counteract natural drift, in a form that can be precisefither side must be long an equal amount of data.
controlled and thereby create a stable drift-free effectiveassume that buffers for a link are of equal sizes at both
frequency. ends. Consider directly connected nodesnd j, with

buffers of sizeBjj = Bjj, where communication initial-
.- . ization leaves buffers half-filled, and where the amount of
4 Self-stabilization actual data in buffers at each node at petiggib; (t)
fandbi j (t) respectively. Define thimbalancefor a buffer

Figure 3: Format of correction frame with 2% bits of
padding.

Define thecommon ratdor a network as the frequency o s
data frame transmissions which is nominally maintaineé'
by all nodes to meet the isochrony invariant. This sec- i (t)y=hbj — (Bij/2)
tion presents a simple algorithm, which can be applied
at each node, to self-stabilize [3] the network around e |aw of conservation of messages implies that the fol-
approximation of the common rate by using only locallywing formulas hold:
available information to estimate appropriate flow control
correction over time. This algorithm is formally shownto  bj; + bji = (Bjj +Bji) /2 &
be both robust and correct, in that it is resistant to failure (b — (Bj; /2) )=~ (bji — (Bji /2)) &
and that node frequencies always converge over time. @ (t)=—a; (t)

The difficulty with flow control is that correction must
be applied equally by each node to all outbound trartdence, the imbalance for a buffer is the difference be-
missions, to ensure meeting the yoke invariant. Whitereen its current fullness and it being half full. A buffer
correcting transmissions independently may be sufficiésiperfectly balanced if the imbalance value is zero.
to prevent communication faults, the transmission sig-Notice that inverse buffer symmetry depends upon an
nals might drift with respect to one another and ultassumption that the length-width products of associated
mately cause some communication sequences to getiflks are constant. In practice, of course, few things are
legally ahead of others. Thus, all transmissions must jppecisely constant. Natural factors may slightly change



nominally fixed link lengths. In these circumstancebpth cases, order is imposed upon a noisy or chaotic sys-
attempts to achieve precise balance may actually catex® at some overhead cost. For synchrony, the degree
nodes to trade slight imbalances back and forth. Altesf order imposed is the granularity of the common rate
natively, a threshold could be added to the calculatioreative to local oscillator rates. The overhead cost is a
below to hide minor imbalances. Because this issue is tratdeoff between bandwidth sacrificed to correction and
expected to be severe, it is ignored by the rest of this dascillator stability requirements.
ument. Synchronization grows progressively less efficient as
To calculate the relationship between a node’s local frile ratio between the common rate and oscillator frequen-
quency and those of neighbor nodes, the node can expbiéts approaches parity. Synchrony at the granularity of
this buffer relationship. By observing local buffer imbalsingle oscillator cycles is obviously impossible for imper-
ance over time, the relative deviation between the lodatt oscillators, since they may all operate for a different
consumption and remote transmission frequencies cambenber of cycles during any absolute time interval. Cor-
guantified, and this information used to adjust flow comection allows nodes to hide any “extra time” caused by
trol correction. Buffer imbalance could be considereddift, by using it to encode correction padding. Thus, the
form of implicit feedback, incidental shared state which Iess oscillators can drift, the less correction is needed.
created for free, as opposed to information which requires

explicit feedback communication (overhead) to acquire.4 4 Calculating frame sizes

4.2 Measuring drift The bandwidth allowance for correction frames, and
thereby for data frames, depends on the least stable os-

Drift between local consumption and the incoming signgfjjator in the network. Given an oscillator at nodevith

frequency for a link is reflected in the slope of the functiofiequency range for correct operationff(t ) € F =+ &;

of imbalance values for the corresponding buffer. If thgcles per period of the common rate, defineitisabil-

the imbalance is constant, data arrival must match cef of the oscillator as the maximum fraction which the
sumption, meaning the frequencies are synchronous.odkillator may be slow or fast:

imbalance is changing, the degree of change in balance
over time is the difference in the two frequencies overthat g, =¢ / F
time.

Supposing that each node records the imbalance for&afl example instability value for commonly available
local buffers once each period, it can approximate the ditimponents is 21000. Defineomax as the largest (mean-
between itself and each neighbor. Of course, nodes cigr worst) instability in the network:
not know if the drift was caused by local or remote fre-
quency variation, but they can determine if it happens and Omax=max(g; Vi e N)
the amount.

Assuming that drift is constant over a measurement in-Since data is encoded at the oscillator rate, the maxi-
terval, its effect on imbalance values should be that ofreum possible transmission widitf for the node is equal
linear function. Hence, it should be well estimated byta its maximum possible frequency:
linear regression across the imbalance values in that in-
terval. For each nodeg over the interval of periods from W=F+g
t — mtot, use the imbalance valugg (t )V j € njto
calculate the drif§j ( t ), which is the slope component The network must operate at the rate of the weakest

of the standard regression formula: component with which synchrony must be maintained.
Thus, a node with maximum transmission witfthmust
t—m<p<t reserve at leadM x onay bits for correction padding per
Pavg= (Y@ (p))/m period. The network is like a marching army, which must
hop=3 ((@j (P) —@avg) X (P—(M/2))) proceed at the rate of the slowest soldiers or leave them
Moot = 3 (@ (P) — Gavg)?) behind.
ij (t) =htop / hoot Let the correction intervalbe the span of periods at

which correction frames are interleaved. In principle cor-
rection frames could be interleaved between all pairs of
data frames. However, if data frames and padding are
Providing synchrony in the face of natural drift is intusmall, the size field in correction frames becomes rela-
itively similar to the well understood problem of providtively expensive and is best amortized over more padding
ing reliable communication over noisy channels [24]. land a larger interval. Also, the padding field must allow

4.3 Synchronization granularity



for at least two bits. Balanced operation would tranthe relationship between buffer sizes and oscillator insta-
mit one bit, leaving one bit of correction in either direchility. The interval should be long enough to allow for
tion. Correction frames are best interleaved at intervatgeaningful measurement of drift, but not long enough for
sufficiently large to require at least such whole numbetgo have significant impact.
of padding bits. For convenience in reasoning about theThe aim of correction is to maintain zero imbalance.
framework, assume that correction intervals are equal fear each link between nodésand j, at the start period
all transmissions. t of each measurement interval, use the techniques above
Calculate the maximum correction frame size as the estimate the drif;; (t ) over the pasim periods. Let
sum of maximum padding bits and sufficient size field bitg; ( t ) be the buffer imbalance at nodeThe estimated
to quantify the padding. Specifically, for a link of maxidrift will cause an expected imbalance during the next in-
mum widthW, the maximum padding; and resulting terval ofg;; (t) x m. This allows calculation of an aggre-
correction frame siz€; are: gate padding for the coming measurement interval to cre-
ate enough drift to correct any imbalance. If imbalance is
zero, simply choose padding to counteract any measured
drift. Thus, to correct drift and existing buffer imbalance,
choose per period padding between nbdad each adja-
cent neighboij:

P =1 xW X Omax
Ci:F)I+Ing(F>I)

Calculate the corresponding data frame $izeo utilize
the remaining capacity:

Di=((TxW)-G)/t pij (1) =((8 (1) xm)+@;(t))/2m

These frame size definitions allow for correction to oc- However, all transmissions at each node must be cor-
cupy all the “extra” cycles in the range of natural variaected equivalently to prevent relative drift. As its name
tion. Although the calculation above implicitly assumesuggests, the average neighbor algorithm uses an averag-
that all links have maximum width to exactly match osciing process to resolve the potentially differing correction
lator frequencies, consider that smaller links could be sugemands between links. Let tlog ( t ) be the actual
ported by scaling oscillator frequencies to allow multipleadding for the correction frames following tintebe-

W values. However, the fraction of bandwidth reservedieen node and all of its neighborg:
for correction on each of these links must remain fixed, as
explained above. ai (t)=[(3pj(t)vjeni)/card(ni)]

In summary, each node calculates correction padding
for each adjacent link for each measurement interval in-
Given the above techniques for measuring and correctigpendently, averages these padding results together, and
frequencies, this algorithm is a decentralized process then uses one half of this average. This approach allows
choosing correction amounts, which causes global c&@®ch node to iteratively seek regularity in a completely
vergence of transmission frequencies. Each node ited@centralized manner with only local information. To ex-
tively seeks an outgoing frequency that matches the avi@nd this process for links of differing widths, thg val-
age across incoming data frequencies. ues can be normalized, then averaged together, and finally

Consider a nodeegular if its buffers are balanced andthe average re-scaled to match the width of each link. The
each adjacent link has zero drift. Nodes must constan@igebra to support this was omitted here to simplify rea-
seek regularity by correcting for drift as it varies ovegoning about the system.
time. Correction must also serve the dual purposes ofConsider that any algorithm for calculation of correc-
restoring buffer balance as it becomes disturbed by driftion is sufficient if it converges and avoids communica-

Since both nodes sharing a link will apply the same dlon failure. It seems likely that other such algorithms
gorithm, it is important that both nodes do not each cagxist. This document simply proposes one algorithm,
rect the entire drift. Correction is cumulative for a linkyhich achieves the purpose of establishing proper correc-
and this would likely result in more drift caused by ovettion and avoiding failure. There is no claim to optimality —
compensation. A conservative approach is for both nodbsre may exist better algorithms, for example with lower
to assume equal sharing, and themselves attempt only haffering requirements.
of any necessary correction.

Define themeasurement intervals the span af cor-
rection intervals, thusn = m. x T periods, over which
drift is estimated and between which correction is calcker the average neighbor algorithm to be practical and
lated appropriately. This value should be chosen to matarrect, it must ensure that the transmission frequency and

4.5 Average neighbor algorithm

4.6 Convergence



the input signal frequencies converge at all nodes witliion amount by ¥n of the maximal amount. Meanwhile,
finite time. If convergence always occurs in finite timehe degree of drift for the bad neighbors is greater than
there exists a finite amount of buffering sufficient to erhat for any of the good neighbors by definition. Thus,
sure no data is lost during the convergence process. a fault must occur, the failure be detected, and the asso-
The formal proof of convergence can be found in Seciated communication abandoned before additional artifi-
tion 7. It uses the following intuition. During each correcsial faults occur.
tion interval, all those nodes which are “outliers” must be Notice that managing failure for the average neighbor
improved. Outlier nodes are those which have either uaigorithm is purely local. To guarantee an artificial fault,
form positive or negative frequency differences with thedlommunication with more than half of the neighbors at a
neighbors. Because correction is updated during each itevde must fail simultaneously. This is in contrast to algo-
ation to match the average of neighboring rates, the degrigems which depend on shared state, meaning they face
of difference for these nodes must decrease. Since thigential Byzantine failures, and thus require distributed
property is true for each interval, and since the amouransensus for robustness.
of decrease must be discrete, convergence in finite time is
guaranteed. The proof depends upon a couple of assump- . )
tions, namely that drift amounts do not change while e~ Simulation results
algorithm is adapting to them, and that estimation of drift
is accurate. To quantify the potential performance of the communica-
Notice that the proof only guarantees convergencelifn Synchrony framework, some simple and some chal-
finite time. This is however sufficient to show commun{€Nging scenarios are evaluated more closely using simu-
cation robustness, in that finite buffers can prevent dri@ion. The results confirm expectations that drift can be
from causing communication failure. While finite doelitigated rapidly, even for highly inconvenient network
not necessarily mean small, consider that small bufidpologies. . .
are likely to be sufficient in practice. Drift is generally This section is not intended to be exhaustive. The many
a gradual process, occurring at the timescale of at le@ggrees of freedom allowed by the framework prevent do-
seconds. For gradual drift in localized regions of the ndfid SO with any brevity. Instead, interesting topologies are
work, the algorithm is likely to correct it within a singleSelected to illustrate potential good and bad case behav-
correction interval under good circumstances. The prd8f- Specifically, consider very tightly and very sparsely
primarily serves to show that no diabolical situations exigPhnected networks. The more connected a network is,

which can cause collapse of all network communicatiorihe more feedback is generally available to the average
neighbor algorithm about the global average rate. Con-

versely, when nodes are far apart and only weakly con-

4.7 Failure isolation nected, incompatibility between their rates may take a
. . ) ) _long time to be noticed and reconciled. The prototypi-
The average neighbor algorithm is robust, in that it gega) network topologies for these cases are stars and chains
erally prevents failures from cascading and causing agdspectively.
ditional failures elsewhere in the network. Proving that p|| of the following simulation trials reflect equal node
failures are isolated is simpler than proving convergencSarameters:
All faults must appear as communication faults to prop-
erly functioning good nodes, meaning the the over or  D; = 1000 bits (data frame size)
under-flow of a communication buffer. Actual failures Bij = 2 x Dj bits (buffer size per link)
may include physical damage to links and nodes, or mal- g; = 0.001 bits per period (instability)
function of an oscillator — with the result that transmis-  m = 100 periods (measurement interval)
sions from the associated node occur at frequencies out-
side of the allowed range. All of these failures cause comurthermore, all links are assumed to be of zero length.
munication faults at adjacent good nodes. These parameters are fixed to limit the quantity of re-
Robustness implies that one communication fault maylts and simplify reasoning about them. Except for link

not artificially cause another by negatively affecting tHength, which plays little role so long as it remains a small
transmission frequency of good nodes. Until the actugdction of m, the other values are believable values. The
fault occurs, the buffer imbalance associated with the fajleal of simulation is primarily to show that reasonable
ure cannot be distinguished from simple drift and will afaetwork configurations lead to desirable algorithm behav-
fect the calculation of correction amounts and thus traner.
mission frequency. However, for a node withneigh-  Driftis modeled in two ways. The effective frequencies
bors, each imbalanced buffer can only change the corretall nodes are randomized (within the valid range) at the
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Figure 4: Effective frequency convergence for both chalfigure 5: Effective frequency convergence for a tree
and star topologies of 1001 nodes each, with randomizegology with 426 nodes, with all branches of degree 5,
frequencies but no drift. Each data point is the averaged with randomized frequencies but no drift. Each data
over 100 trials. The absolute maximum imbalance seerpiaint is the average over 100 trials. The absolute maxi-
any trial was 200 bits. mum imbalance seen in any trial was 280 bits.

start of each trial. For the first set of trials, convergence3§€s of 163 bits maximum and 15 bits average. 427224
observed without any additional frequency variation. THestances of drift re-randomization occurred.

second set models ongoing drift by re-randomizing the

frequency of each node with 1% probability once ea ;

measurement interval. This crude drift model is intend(§d Conclusion

o be, simple b,Ut .conser\./atlve, as it is likely much MO¥he contribution of this document is a framework for syn-
volqt|le than driftin practice. _ ) chronizing all communication in a distributed system to
Figure 4 shows the behavior of the algorithm for thegsiciently create shared logical time. This framework is
two prototypical topology types, over trials of up to 25@nown to be highly robust, operating in a decentralized
measurement intervals. The star is a root node with 10§@nner and tolerating multiple simultaneous failures, and
neighbors, all of which have degree 1. The chain is &faing structured such that Byzantine failure is meaning-
fectively a linked list of 1001 nodes, with all but the endgss. The framework is further shown to impose minimal
points of degree 2. As expected, convergence for the f{gimunication overhead. Simulation results indicate that
is very rapid, while the chain is slower. However, it i§kely costs are only a small fraction of the bandwidth on
gratifying to see that, even for a chain of this great lengBach communication link, and that only two data frames
the imbalance is rapidly brought to manageable levels. of hyffering are needed to tolerate the drift caused by com-
Figure 5 shows a more complex tree topology, to indinon oscillators.
cate behavior for more complex networks, again for up toThis efficiency is closely tied to the primary drawback
256 measurement intervals. Only tree topologies are cefithe framework, which is the requirement for implemen-
sidered as they show conservative behavior — more cegtion at the low level, with direct control over determinis-
nected networks are less challenging, as demonstratedi®¥ommunication resources. Low-level implementation
the star example. This tree is formed such that the rogliows for implicit synchronization signals and implicit
and all internal branch nodes, have degree 5. feedback about the relative timing of nodes, which is in
The final simulation imposes the re-randomizing driftontrast to higher level overlay approaches that must com-
model on the tree topology. A simulation interval ofmunicate all information explicitly.
100,000 measurement intervals is used to capture latenAside from this implementation constraint, the plat-
negative effects. The result for a single trial has the abgorm requirements of the framework are quite general and
lute maximum imbalance of 560 bits, with per-trial aveimplementation across a wide range of scales is possible,
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both in terms of number of nodes as well as granularity of O (t)={i[ieNA (A (t)>Aj(t)VjeN)}

the synchronization frequency. For example, the frame-

work can be adapted to tolerate arbitrary clock instabilvhered\; is the frequency deviation for noddrom the

ity, allowing use of inexpensive components. The degraeerage:

of overhead introduced by the framework scales inversely

with the quality of the platform and with the expected pre- A (t) =] fi (t) — Ravg(t) |

cision of synchrony. This is similar to the information

theoretic tradeoff between overhead costs and the signalconsider three cases. 1. The outlier set may be empty.

noise ratio of communication channels. 2. The outlier set may be a singleton. 3. There may exist
Given the extent to which the advantages of communmiultiple outlier nodes.

cation synchrony outweigh the disadvantages, the primary

limiting factor forimmediate widespread adoption of syf=ASE 1: If O (t ) = 0 then obviously all nodes must

chronous communication is the significant difference mave the same frequency, equal to the average, and the

philosophical approach between the proposed synchrdypothesis is met. Notice th@t (t ) # N, since equality

and the prevailing asynchrony. For some similar technoleould imply that all frequencies are equal to one another

gies, such as SONET, the improved efficiency and robubt# not to the average, a contradiction.

ness available from the framework may make adoption

straightforward. For other networks, however, consid€ASE 2: IfO ( t ) is a singleton set, containing only node

that the framework specifies only a link-layer archited; theni is either the fastest or slowest node, meaning that

ture. This allows seamless and incremental deploymenift with all neighbors must be in the same direction as

beneath existing higher level architectures, such as theRagg, meaning thai will correct in that direction. Suppos-

ternet. Exposing the superior features of synchrony cang thati is fast, then:

thus be made orthogonal to adoption.

fi(t)>Rag(t) =

fi(t)— t)y=|fi(t)-— t

7 Convergence proof i (t) —Ravg(t)=1[fi (t)—Ravg(t)]

) ) _Itis known that, byi being the only node i© ( t ):
A more formal proof for the claim from Section 4.6 is

included here to show the formal power which commu- v j e N, j i

nication synchrony can provide. The proof assumes a (t)>4)(t) =

network which has experienced some drift but is still ¢ (¢) > fi (t)

synchronous. Hence, all nodes share the same timeline,

allowing formal reasoning about node relationships Atsume tha® and @ have the same sign for each link,
precise discrete times. Proving properties with this lev@leaning that current imbalance can be explained by ex-

of complexity about asynchronous systems is often eithgfing drift. Assume also that correction works correctly,
impossible or requires orders of magnitude more logigeaning:

Thus this proof demonstrates (in addition to its formal

argument) how synchrony allows for greater objective  f; (t+1)="f(t)xa(t)
rigor in a domain currently plagued by imprecise or

subjective analysis. Which allows:

HYPOTHESIS: Within finite time, the frequency of each  p;; (t) <0 =
node in the network will converge to match a global net-  a; (t) <0 =
work average: fi(t+1)<fi(t)

Ravg (1) = (3 (fi(t)VieN))/card(N) If, insteadf; (t) < Ravg (t ), meaning that nodieis slow.
The same reasoning can be turned around to show that
must speed up.

fi (t) — Ravg (1) CASE 3:0 (t ) # N implies that some nodec O must

have at least one neighbpg O. By reasoning quite sim-

PROOF: Consider the properties of the algorithmdot- ilar to that in CASE 2, including the need to consider both
lier nodes, those whose frequencies are maximally dast and slow possibilities, it can be shown thahust
viant from R,y at any time. Define the set of such nodeshange speed to approaBh,g (t ). For example, if is
O as follows: fast:

Formally, fort — oo andVi € N,
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fi(t)>fj(t)=>
o (t)y<oj(t—1) =
fi(t+1)<fi(t)

(8]

CONCLUSION: In CASE 1, the hypothesis is simply
met. For CASE 2, the maximuwy; value in the system

is reduced. For CASE 3,

(9]
card(O(t+1))<card(O(t))

Between these two constraints, and given that correct{df]
is discrete

card(O(t))—0 ast— o
[11]

proving the hypothesis.
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