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Abstract

Distributed systems generally employ asynchronous com-
munication, despite most theoretical models of such sys-
tems being synchronous, and despite synchrony having
established performance and robustness benefits for dis-
tributed applications. One reason is that synchronous
communication is often impractical. Existing mecha-
nisms for providing synchronous abstractions either are
not general or do not scale. To address this shortcoming,
this document proposes a scalable communication syn-
chronization framework to provide shared logical time.
Communication synchronization aligns all network com-
munication to create a single shared sequence of commu-
nication events. This sequence is then used as a time ref-
erence. The decentralized “average neighbor algorithm”
is proposed to maintain synchrony despite drift between
local clocks in the system, and this algorithm is proven
to be correct and robust. Simulation results indicate that
the overhead costs of providing synchrony are minimal,
requiring only a small (e.g. 0.1%) fraction of the band-
width at each network link, and small fixed incoming data
buffers. Thus, the framework allows adoption of syn-
chrony in many circumstances where it has previously
been impractical.

1 Introduction

Asynchronous communication is the current standard for
computer networks, including the Internet. However,
when multiple distributed applications share such a sys-
tem, they must be designed with flexible performance ex-
pectations, as they must tolerate fluctuating contention for
potentially limited resources. Formally reasoning about
the behavior or correctness of applications in the face
of this non-determinism is often unmanageable. Reflect-
ing this, most theoretical models of distributed systems
are synchronous [7] – readily allowing powerful temporal
reasoning.

While systems exist that match the formal models,
such as SONET [25] and most digital circuits, the meth-
ods used for creating synchrony do not scale. Higher

level techniques, which can be called “synchronous over-
lays”, have alternatively sought to create a synchronous
abstraction above an asynchronous communication layer
[1, 19, 23, 10, 2]. These overlays also do not scale, how-
ever, requiring broadcast communication to maintain syn-
chrony.

This document proposes a framework of algorithmic
techniques to synchronize a distributed system precisely
with a shared logical time, and approximately with phys-
ical time. By leveraging low-level resource control, the
overhead cost of the framework is minimized. Scalabil-
ity is possible because overhead is independent of appli-
cations and network size, a function only of bandwidth
and clock stability. For example, simulation results in-
dicate that single microsecond synchrony for a network,
with 0.1% clock instability and 1 Gbps links, requires at
most 1 Mbps communication overhead (0.1%, matching
the clock instability) and 2000 b of buffering for each di-
rection on each link. This degree of efficiency enables
synchrony in many situations where only asynchrony has
previously been practical.

The principle synchronization technique of the frame-
work is network-wide alignment of communication into a
single lock-step sequence. This allows each node in the
network to independently but equivalently define logical
time in terms of the shared communication sequence. By
controlling the frequency of communication, the fidelity
of logical to physical time can be controlled – limited by
the stability of the clocks in the network.

A distributed system with synchronous communication
provides a highly desirable platform for implementing
distributed algorithms, including concurrency control and
more traditional clock synchronization. The useful prop-
erties of synchronous communication include:

• globally shared frequency without local drift

• ability to test for absence of messages

Drift is the process where nodes in a distributed system,
that were once synchronized, lose their synchrony over
time. Eliminating drift can dramatically improve per-
formance for some applications. For example, Byzan-
tine fault-tolerant clock synchronization can be imple-
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mented with only a single iteration of distributed consen-
sus. Compare this with existing systems, where the ex-
pensive synchronization process must be repeated period-
ically.

Testing for the absence of data is a key feature in formal
synchronous models. In a distributed system, this capabil-
ity allows more efficient communication protocols where
some information can be exchanged implicitly, without
actual messages. Key examples include fault-tolerant dis-
tributed concurrency control [12], as well as most digital
circuit design, where binary data is normally defined as
either the presence or absence of signal.

1.1 Clock synchronization

Consider a distributed system composed of communicat-
ing but spatially separate processes, where each process
has access to a local clock. Assume that, in principle, the
clocks all operate at an equal nominal frequency. In prac-
tice, clocks are never perfectly accurate and small differ-
ences in frequency will manifest over time. Synchroniza-
tion is the process of correcting or tolerating this problem.

The terms “clock synchronization”, “clock distribu-
tion”, or “network synchronization” are commonly under-
stood to mean, for a network of nodes with independent
clocks, adjusting the time reported by each clock to fall
within a bounded interval of that reported by an external
reference (such as GMT or UTC, via GPS or LORAN).
Techniques for addressing this issue have been exhaus-
tively researched [6, 5, 13, 18, 21], and some techniques
(such as NTP [17]) are widely deployed.

Communication synchronization is a different process
where time is defined logically, to allow perfect agreement
between processes at all times. Clock synchronization
is more complex than communication synchronization.
The trouble with clock synchronization is reaching global
agreement on a unit of shared state, specifically a time
value. Sharing explicit global state in a distributed system
is expensive, and canonically known as “distributed con-
sensus” [4]. If system components can fail in a malicious
or methodically destructive manner, which is known to re-
sult from programming errors, much additional complex-
ity is introduced. This conclusion, which has significant
impact on distributed system design, is known as the FLP
result [8]. The difficulty of consensus is well illustrated
by the famous Byzantine generals analogy [14].

While this document does not directly address clock
synchronization, communication synchronization can be
used (among other things) to simplifyexistingclock syn-
chronization approaches by eliminating drift. Without
drift, the complex consensus procedure need only be ap-
plied once to agree upon an initial time value, after which
nodes can increment that value independently, without

risk of skew. This is a dramatic improvement over the tra-
ditional approach, where nodes must re-synchronize on a
periodic basis to recalibrate diverging clock values.

Messerschmitt [15] is recommended as a reference for
other synchronization terminology.

1.2 Logical time and event ordering

Communication synchronization depends on the ordering
of communication events to define shared logical time.
Consider that each process in a distributed system can be
considered as a totally ordered set of events. The correct-
ness of a distributed application may depend on the in-
teraction between its component processes, and hence on
the relative ordering between their events. Logical time
has been shown to be important for both the robustness
and performance of distributed applications [12].

In the paper introducing event-based time to distributed
systems [11], Lamport defines thehappened beforeevent
relation, to partially order events. Lamport explains that,
given any discrete measurement of time, it is not generally
possible to impose a total ordering on all system events.
Because processes in a distributed system operate concur-
rently, events may occur simultaneously within multiple
processes. Thus the happened before relation imposes
only a partial order. Lamport also defineslogical clocksas
those relations between simultaneous events which extend
happened before to totally order events, possibly arbitrar-
ily. There can be multiple logical clocks for a system, as
only the partial ordering is uniquely determined by system
events.

Communication synchrony provides a happened before
ordering for all system communication events by aligning
them in a globally symmetrical manner. By forcing all
communication between a pair of neighboring nodes to
occur as a symmetrical exchange of messages, the logical
ordering of messages is observed by both sides. By plac-
ing this constraint upon all neighboring pairs in the entire
network, global message ordering is imposed.

Ordering only communication is sufficient to allow ap-
plications to create meaningful logical clocks for other
events, by capturing all potential event causality. Consider
that non-communication events may occur within pro-
cesses between cycles of communication, but that these
events can only have local effects. By focusing on com-
munication, these local-only events are simply ignored
by the communication synchrony ordering. Since com-
munication events are the only opportunity for processes
to affect one another, however, the resulting partial or-
der is sufficient to expose any potential causality between
events.
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1.3 Efficiency requirements

The communication synchronization framework proposed
below provides event ordering very efficiently by leverag-
ing low-level control over deterministic communication
resources. Specifically, the framework requires that net-
work links support time-division multiplexing, meaning
they must have fixed latency, fixed bandwidth, and no
minimum transfer size – e.g. serial connections. This
means that the implementation level for the framework
corresponds approximately with the “data link” layer of
the OSI model [26], or with the “network access” layer of
the Internet (DoD) model.

To reconcile this (effectively) mandated low-level im-
plementation with the end-to-end argument [22], which
generally demands that functionality be provided at the
highest possible level, recall the cost of high-level ap-
proaches. Synchronous overlays, introduced in Section
1, are forced to broadcast continuously between nodes to
maintain synchronization. In fact, Awerbuch [1] formally
shows that continuous communication between neighbors
in a network is optimal, less communication being in-
sufficient to maintain synchrony. Although the frame-
work obeys this Awerbuch bound, it leverages low-level
implementation to avoid any negative performance im-
pact. Communication at the overlay level requires ex-
plicit exchange of packets, whereas direct access to the
actual links between neighbors can provide synchroniza-
tion feedback implicitly, for free.

Furthermore, the framework is significantly more ro-
bust than any of the overlays. No overlay is tolerant of
Byzantine failure. Conversely, by avoiding a high-level
protocol, the framework can avoid even the possibility of
Byzantine failure – there is no need for explicit consen-
sus of any kind, and hence no opportunity for traitorous
behavior.

1.4 Synchronous multiplexing

Low-level communication synchrony is not new. SONET
[25], also called the “synchronous digital hierarchy”
(SDH) outside the US, is the foundation protocol for most
of the global telecommunications infrastructure. SONET
is designed around a process calledsynchronous multi-
plexing, which depends on communication synchrony to
coordinate the intersection of multiple time division mul-
tiplexed links at each node in its network. In brief, data is
encoded on each network link in such a way that frames
of data can be switched between the links intersecting at
a node based solely on time, not on any in-band signals.

Switching SONET frames occurs at 8KHz on all nodes,
meaning that frames are read from all network links dur-
ing each interval of 125us. The data within these frames
is then demultiplexed, possibly reordered across multi-

ple frames, and finally multiplexed and transmitted again.
This process only works if exactly the right amount of
data to form a frame is available at each node during each
interval. If an upstream node were to transmit slowly and
send less than the expected amount of data during an inter-
val, demultiplexing will fail and result in communication
failure.

To synchronize communication, SONET requires a so-
phisticated clock distribution network. This process is
similar to making a single clock available across a digital
circuit, but is adapted for the physical scales of a global
system. Each node has a highly accurate and reliable
clock, combined with dedicated communication band-
width for a clock synchronization protocol. For redun-
dancy, there are multiple tiers of clock quality, allowing
for reliable operation during periods where either com-
munication fails or some reference clocks are unavailable.
By guaranteeing clock synchronization of at least 125us,
SONET can guarantee communication synchrony.

Although this approach is successful for SONET, be-
ing used nearly universally in global telecommunications
infrastructure, it is too “brute-force” to transfer well to
other application domains. Using clock synchronization
to create communication synchrony is expensive, espe-
cially when redundant high quality clocks are needed for
robustness. This document provides an alternative algo-
rithmic approach, which is highly robust while tolerating
inferior clocks. Thus, it can be deployed on a larger set of
implementation platforms. It can also be tuned to differ-
ent synchronization granularities, which can allow appli-
cation both a small and large scale.

1.5 Overview

The rest of this document is organized to incrementally
introduce the communication synchronization framework.
There are three stages of increasing complexity, and each
will be dealt with in turn. First, a limited formal ver-
sion of the framework is defined to address only logical
communication synchronization. Although logical syn-
chronization provides all the desired properties in prin-
ciple, it is completely intolerant of failure and thus im-
practical. The second stage utilizes physical timers to ad-
dress this shortfall, but unfortunately suffers from drift be-
tween these timers ultimately destroying any synchrony.
The third stage addresses the drift problem. A decentral-
ized “average neighbor algorithm” is introduced to co-
ordinate correcting drift as it occurs across the network,
which utilizes only local timing information to measure
it. This algorithm is proven to be both correct and robust.
To provide more quantitative examples of framework per-
formance, results of some simulations are discussed. Fi-
nally, the conclusion speculates on the implications of ef-
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ficient communication synchronization for future network
designs.

2 Logical synchrony

Communication synchrony can be established for a net-
work by imposing a set of invariants on the behavior of all
nodes. Whenever any pair of nodes wish to communicate,
their communication must coincide with communication
between all other nodes as well. This allows each node to
participate in each “cycle” of communication, and thereby
establish a globally shared logical ordering for communi-
cation events.

More precisely, let anetworkbe a distributed system
composed ofnodes, which are connected using bidirec-
tional point-to-pointlinks. Nodes perform computation,
and each node executes a single sequential process. Nodes
communicate by sendingmessagesto their immediate
neighbors. Define the set of nodes and their neighbor sets:

N = { i | node( i ) }
ηi = { j | j ∈ N ∧ link ( i , j ) }

Constrain this model with the following two invariants:

INVARIANT symmetry: Communication be-
tween connected nodes must occur as a se-
quence of symmetrical message exchanges.
Once a nodeA has sent a message to a neigh-
borB, the nodeA must wait for a message from
B in return before sending any further messages
to B.

INVARIANT yoke: Messages must be sent in
equal quantity by a node to all connected neigh-
bors. If a nodeA exchanges messages with a
connected neighborB, the nodeA must also
exchange messages with all other connected
neighbors before sending any further messages
to B.

Define nodes to belogically synchronousif they ob-
serve enough information to construct equivalent order-
ings for their shared communication. The symmetry in-
variant creates this agreement for two nodes. Applying
only symmetry between all connected nodes would estab-
lish independent shared orderings for each link. Nodes
would not, however, be able to reason about order across
conversations with different neighbors. The yoke invari-
ant aligns orderings across the network, creating an eter-
nal sequence of “atomic steps” where nodes communicate
with each of their neighbors during each step.

Since all connected nodes must exchange messages for
any nodes to communicate, consider that messages may
be effectively empty – acting simply as placeholders to
comply with the invariants.

Node A

Node B
balanced

Node A

Node B
A fast, B slow

Figure 1: Illustration of the “law of conservation of mes-
sages”, meaning that the total message count persists
across any link, despite variation in node processing fre-
quency.

2.1 Self-timing and initialization

The above invariants impose what can be considered a
“law of conservation of messages” for each link. When
a message is removed from a link in one direction, an-
other must be added in the opposite direction. This con-
straint is quite similar to the desired equilibrium behavior
of TCP [20]. To ensure robust behavior during conges-
tion, a “conservation of packets” approach is used, also
called self-timing [9], which tries to match the generation
rate for packets on a connection to the consumption rate.

To prevent self-timing from limiting link bandwidth,
introduce a link initialization phase to fill the delay-
bandwidth product of each link, “priming” it with mes-
sages. If applied immediately to empty links, the invari-
ants would limit each link to a single message in each
direction per round-trip time – a significant performance
limitation. Because the rate of message exchanges must
be equivalent for all links (yoke invariant), the through-
put of all links would be further bounded by the maximal
link delay, since the link with the longest propagation de-
lay must finish its message exchange in lock-step with all
other links.

During the initialization phase, nodes transmit mes-
sages but perform no receive processing. Assuming that
the capacity of each link is known, nodes can generate the
appropriate number of messages to fill each link. Once
links are full, the invariants are imposed and the conser-
vation property ensures that the number of total messages
carried by each link remains constant.

This process addresses the inequality created by vary-
ing link propagation delays, and allows for longer links to
have more messages “in flight” than shorter links. Note
that the invariants need not change to accommodate these
additional messages.
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2.2 Variable bandwidth

It might seem that the framework imposes bandwidth lim-
its on links, by forcing all links to only exchange the same
number of messages. However, the framework does not
restrict message size, allowing higher bandwidth links to
use correspondingly larger messages. Only the frequency
of message exchanges is governed by the invariants.

2.3 Robustness

A real problem with the framework, as currently defined,
is intolerance forcommunication faults– meaning cir-
cumstances where a link or node becomes unable to trans-
mit messages, or where messages are lost. Communica-
tion faults result in “starvation”, where all nodes will wait
forever for messages and the system as a whole will halt.
Specifically, the destination nodes for any missing mes-
sages will wait for them, and thereby interrupt the global
message exchange cycle. To quote Lamport [11]:

“... the entire concept of failure is only mean-
ingful in the context of physical time, there is
no way to distinguish a failed process from one
which is only pausing between events.”

Because the invariants ignore time, they imply un-
bounded blocking of nodes if messages are expected from
neighbors but have not yet been received. Tolerating com-
munication faults appears to require that nodes imple-
ment timeouts and behave in a temporally regular manner,
adding significant additional complexity. This is the focus
of the next sections.

3 Physical synchrony

Communication faults can be identified by bounding the
duration for which nodes await messages. This means that
measurement of time must be introduced into the frame-
work. Accordingly, extend the framework with the fol-
lowing invariant:

INVARIANT isochrony: Nodes must produce
messages on each connected link at a constant
frequency (isochronously).

While the initial two invariants created a global se-
quence of message exchanges, this new invariant imposes
the temporal regularity of acommunication frequency
upon that sequence. Let the termperiod refer to the con-
stant wavelength of this communication frequency, mean-
ing the amount of time between communication cycles.

Extend also the network model, by assuming that links
have fixed latency and bandwidth. The resulting pro-
cess of transmitting data using a fixed frequency over a

deterministic medium is commonly called time division
multiplexing (TDM). Accordingly, let the termframesre-
place messages as the name for information exchanged by
nodes – indicating the change of focus to TDM. Each link
transmits one frame in each direction during each period.
Let frames be of fixed size for each link, also called the
link width, and let link length be the duration of frame
transmission in periods.

In principle, the isochrony invariant allows each node in
the system to identify communication faults. At the end of
each period, if a frame has not arrived on each link at each
node, the node expecting the missing data can assume a
fault has occurred and simply abandon the link in question
to maintain communication with its other neighbors.

In practice, perfect isochrony is impossible and deal-
ing with communication faults is more complex. The sig-
nals generated by different nodes are never identical, and
transmission over any distance also imparts natural varia-
tion to a signal. Herein lies the real difficulty of achieving
physical synchrony. Designing the framework to tolerate
such variation over time is the focus for the rest of this
document.

3.1 Jitter and drift

Assume that each node has access to an independent local
oscillator with a frequency resolution matching at least
the data rate of its widest connected link (the product of
link width and communication frequency). Assume that
these oscillators are used to encode the outbound trans-
missions of each node. The word “clock” is intentionally
avoided, to highlight that only frequencies and durations
are needed by the framework for timing, not any specific
counter values that refer to absolute time.

Despite nominal isochrony, the waveform produced by
any oscillator will vary naturally over time, due to effects
of the environment on involved physical materials. Link
transmission introduces similar timing irregularity upon
carried data signals. Under normal conditions, let each
transmitted signal be encoded by a nodei at the nomi-
nal frequency of its oscillatorFi , and constrained to vary
within the rangeFi ± εi , for a known finite valueεi . Thus,
the transmission frequency for a nodei is:

fi ( t ) s.t. Fi − εi ≤ fi ( t ) ≤ Fi + εi

Outside this range, the transmission is defined to have
failed and may cause a communication fault. This maps
well to practice, where oscillator manufacturers generally
publish these performance properties for their products.
Nodes are defined to operate correctly if they maintain the
invariants for all neighbors with non-faulty transmissions.

Definemesochronoussignals as those with equal aver-
age frequency, but where individual cycles in the wave-
form may occasionally be out of phase (not be perfectly
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Figure 2: Visualization of some nodeA with frames arriv-
ing into its buffers from neighborsB, C, andD. Incoming
frames are not perfectly aligned but outbound frames are.
The misalignment is the result of drift.

aligned, i.e. “jittering” back and forth). Definejitter as
the difference between mesochronous signals. Defineple-
siochronoussignals as those where frequencies are nom-
inally equal, but have diverged over time with no reason-
able expectation of re-convergence. Definedrift as the
difference between plesiochronous signals. In principle
jitter and drift are the same thing, the distinguishing fac-
tor being the time-frame over which frequency differences
are considered.

To give an example of these terms, parallel signals sent
from the same source along similar links will likely expe-
rience jitter due to physical differences in the paths, but
are unlikely to experience drift since they share the same
source timing. Signals from different sources have likely
drifted, because oscillators are assumed to be indepen-
dent. On the other hand, heterochronous signals, meaning
those with nominally different frequencies, are obviously
not meaningful to compare.

3.2 Loopback timing

Because of jitter and drift, the incoming signals for each
link may not be perfectly synchronized with the local os-
cillator. Assume that some mechanism exists to tolerate
this variation, capture the incoming data, and record it to a
buffer. The process of recovering the timing, and thereby
the data, for an independently timed signal is called “loop-
back timing”. This allows a node to consume data frames
at its own frequency. Such mechanisms are common in
practice, and are normally based on phase-locked loops
(PLLs).

Suppose that one frame of buffer memory is available
for each incoming signal. This allows the data recovery
process to tolerate jitter between bits of data smaller than
frames. However, jitter that affects the timing of entire
frames may still cause communication faults. If too much
or too little frame data arrives during a period, additional

mechanisms are needed.

3.3 Buffering

Jitter in the timing of data frames can be addressed in
a straightforward manner. By adding additional receive
buffer memory to each link, the length of a link can be
artificially extended to create more frame arrival timing
flexibility. By buffering more than just one frame, the
chances can be improved that at least one frame is always
available for node consumption. Jitter then simply effects
frames that are only needed in the future, and thus can be
ignored. The performance downside for buffering is the
increase in link latency.

The quantity of available buffering determines the
quantity of jitter which can be tolerated. Consider that
jitter is analogous to burstiness of data in a signal. To best
tolerate both bursts and idle periods, the buffer should ide-
ally be, on average, only half full. This allows for both
kinds of jitter effects, bursts and idleness, which fill or
empty the buffer respectively.

Let buffers be used circularly, with consumption of
frames “chasing” arriving data around the buffer. The ar-
rival rate for bits of data into the buffer is determined by
the incoming data signal. Data departs from the buffer
by the node consuming one frame on each local period
threshold, determined by the local oscillator.

Accordingly, the definition of communication faults
can be refined to account for buffering. Let a communica-
tion fault occur either when the consuming node requires
a frame that has not yet completely arrived, or when in-
sufficient buffer is available to store arriving data without
destroying data yet un-consumed. In other words, failure
occurs when the producer and consumer processes oper-
ate at different frequencies for sufficient time to “collide”,
exceeding the tolerance created by the buffer.

3.4 Flow control

The only solution for drift is elimination. Buffering does
nothing to help tolerate drift. Any persistent difference
in frequency between the consumption rate of a receiving
rx node and the rate of an incomingtx signal, will either
under-run or over-run any finite buffer. In fact, jitter and
drift are cumulative in their negative effects. Drift reduces
the jitter tolerance for a buffer by changing the balance,
and thus decreasing the buffer amount available for the
corresponding jitter effect.

Drift can be eliminated only by changing one or both of
therx or tx frequencies. In other words, synchronizing the
plesiochronous signals with flow control over time. Flow
control is a common technique, and the one proposed here
is similar to those used by other link-layer protocols, such
as PAUSE frames in Ethernet (IEEE 802.3x) [16].
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Figure 3: Format of correction frame with≤ 2x bits of
padding.

Let the termdata frameindicate what has so far simply
been called a frame, meaning untyped higher-level data,
and let theeffective frequencyfor a signal be that of these
data frames. Let the termcorrection frameindicate a new
kind of frame which does not carry any useful data, but
rather acts as variable sized padding. Accordingly, revise
the invariants to apply only to data frames, and redefinefi
as the effective frequency of nodei instead of the actual
oscillator frequency.

Interleave correction frames between data frames dur-
ing transmission in a fixed periodic manner, and let the
correction frames be discarded immediately upon arrival.
As illustrated in Figure 3, a correction frame carries only
variable sized padding and a size field, in-band signaling
to indicate the padding quantity.

Separating effective from actual frequency places the
least restrictions on implementation platforms, where tun-
ing the actual frequency of a signal may be impossible or
at least undesirable. From the perspective of anrx node,
only the effective frequency really matters. In summary,
correction can be thought of as artificially induced drift
to counteract natural drift, in a form that can be precisely
controlled and thereby create a stable drift-free effective
frequency.

4 Self-stabilization

Define thecommon ratefor a network as the frequency of
data frame transmissions which is nominally maintained
by all nodes to meet the isochrony invariant. This sec-
tion presents a simple algorithm, which can be applied
at each node, to self-stabilize [3] the network around an
approximation of the common rate by using only locally
available information to estimate appropriate flow control
correction over time. This algorithm is formally shown to
be both robust and correct, in that it is resistant to failure
and that node frequencies always converge over time.

The difficulty with flow control is that correction must
be applied equally by each node to all outbound trans-
missions, to ensure meeting the yoke invariant. While
correcting transmissions independently may be sufficient
to prevent communication faults, the transmission sig-
nals might drift with respect to one another and ulti-
mately cause some communication sequences to get il-
legally ahead of others. Thus, all transmissions must be

corrected together, ideally to the common rate.
Because only local oscillators are available at each

node, direct measurement of infidelity to the common rate
is not possible. To do so would require treating the local
frequency or one of the incoming data frequencies as a
reference, and all of these are assumed to be imperfect
and thus insufficient for this purpose. Instead, nodes can
compare their own transmission frequencies to those of
incoming data signals, and adjust theirs such that all node
frequencies converge to a global average over time. Note
that this is sufficient to meet the invariants, and thus cre-
ate communication synchrony. The nominal common rate
simply serves as a target, and is the middle point in the
range of possible convergence frequencies.

4.1 Inverse buffer symmetry

Just as no references exist to allow direct comparison be-
tween node frequencies and the common rate, nodes can-
not directly measure incoming data frequencies. To calcu-
late the deviation between the local frequency and those
of neighbor nodes, nodes must compare data arrival with
local consumption over time.

Conveniently, communication synchrony creates a
symmetric relationship between the buffers on opposite
sides of each bidirectional link. This is best explained us-
ing the “law of conservation of messages” from Section
2.1, which ensures a “closed system” of data. If the buffer
on one side of a link is short data, then the buffer on the
other side must be long an equal amount of data.

Assume that buffers for a link are of equal sizes at both
ends. Consider directly connected nodesi and j, with
buffers of sizeBi j = B ji , where communication initial-
ization leaves buffers half-filled, and where the amount of
actual data in buffers at each node at periodt is b ji ( t )
andbi j ( t ) respectively. Define theimbalancefor a buffer
as:

φi j ( t ) = bi j − ( Bi j / 2 )

The law of conservation of messages implies that the fol-
lowing formulas hold:

bi j + b ji = ( Bi j + B ji ) / 2 ⇔
( bi j − ( Bi j / 2 ) ) = − ( b ji − ( B ji / 2 ) ) ⇔
φi j ( t ) = − φ ji ( t )

Hence, the imbalance for a buffer is the difference be-
tween its current fullness and it being half full. A buffer
is perfectly balanced if the imbalance value is zero.

Notice that inverse buffer symmetry depends upon an
assumption that the length-width products of associated
links are constant. In practice, of course, few things are
precisely constant. Natural factors may slightly change
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nominally fixed link lengths. In these circumstances,
attempts to achieve precise balance may actually cause
nodes to trade slight imbalances back and forth. Alter-
natively, a threshold could be added to the calculations
below to hide minor imbalances. Because this issue is not
expected to be severe, it is ignored by the rest of this doc-
ument.

To calculate the relationship between a node’s local fre-
quency and those of neighbor nodes, the node can exploit
this buffer relationship. By observing local buffer imbal-
ance over time, the relative deviation between the local
consumption and remote transmission frequencies can be
quantified, and this information used to adjust flow con-
trol correction. Buffer imbalance could be considered a
form of implicit feedback, incidental shared state which is
created for free, as opposed to information which requires
explicit feedback communication (overhead) to acquire.

4.2 Measuring drift

Drift between local consumption and the incoming signal
frequency for a link is reflected in the slope of the function
of imbalance values for the corresponding buffer. If the
the imbalance is constant, data arrival must match con-
sumption, meaning the frequencies are synchronous. If
imbalance is changing, the degree of change in balance
over time is the difference in the two frequencies over that
time.

Supposing that each node records the imbalance for all
local buffers once each period, it can approximate the drift
between itself and each neighbor. Of course, nodes can-
not know if the drift was caused by local or remote fre-
quency variation, but they can determine if it happens and
the amount.

Assuming that drift is constant over a measurement in-
terval, its effect on imbalance values should be that of a
linear function. Hence, it should be well estimated by a
linear regression across the imbalance values in that in-
terval. For each nodei, over the interval of periods from
t − m to t, use the imbalance valuesφi j ( t ) ∀ j ∈ ηi to
calculate the driftδi j ( t ), which is the slope component
of the standard regression formula:

t − m≤ p≤ t
φavg = ( ∑ φi j ( p ) ) / m
htop = ∑ ( ( φi j ( p )− φavg)× ( p− ( m/ 2 ) ) )
hbot = ∑ ( ( φi j ( p ) − φavg )2 )
δi j ( t ) = htop / hbot

4.3 Synchronization granularity

Providing synchrony in the face of natural drift is intu-
itively similar to the well understood problem of provid-
ing reliable communication over noisy channels [24]. In

both cases, order is imposed upon a noisy or chaotic sys-
tem at some overhead cost. For synchrony, the degree
of order imposed is the granularity of the common rate
relative to local oscillator rates. The overhead cost is a
tradeoff between bandwidth sacrificed to correction and
oscillator stability requirements.

Synchronization grows progressively less efficient as
the ratio between the common rate and oscillator frequen-
cies approaches parity. Synchrony at the granularity of
single oscillator cycles is obviously impossible for imper-
fect oscillators, since they may all operate for a different
number of cycles during any absolute time interval. Cor-
rection allows nodes to hide any “extra time” caused by
drift, by using it to encode correction padding. Thus, the
less oscillators can drift, the less correction is needed.

4.4 Calculating frame sizes

The bandwidth allowance for correction frames, and
thereby for data frames, depends on the least stable os-
cillator in the network. Given an oscillator at nodei, with
frequency range for correct operation offi ( t ) ∈ Fi ± εi

cycles per period of the common rate, define theinstabil-
ity of the oscillator as the maximum fraction which the
oscillator may be slow or fast:

σi = εi / Fi

An example instability value for commonly available
components is 1/1000. Defineσmax as the largest (mean-
ing worst) instability in the network:

σmax = max( σi ∀ i ∈ N )

Since data is encoded at the oscillator rate, the maxi-
mum possible transmission widthWi for the node is equal
to its maximum possible frequency:

Wi = Fi + εi

The network must operate at the rate of the weakest
component with which synchrony must be maintained.
Thus, a node with maximum transmission widthWi must
reserve at leastWi × σmax bits for correction padding per
period. The network is like a marching army, which must
proceed at the rate of the slowest soldiers or leave them
behind.

Let thecorrection intervalbe the span ofτ periods at
which correction frames are interleaved. In principle cor-
rection frames could be interleaved between all pairs of
data frames. However, if data frames and padding are
small, the size field in correction frames becomes rela-
tively expensive and is best amortized over more padding
and a larger interval. Also, the padding field must allow
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for at least two bits. Balanced operation would trans-
mit one bit, leaving one bit of correction in either direc-
tion. Correction frames are best interleaved at intervals
sufficiently large to require at least such whole numbers
of padding bits. For convenience in reasoning about the
framework, assume that correction intervals are equal for
all transmissions.

Calculate the maximum correction frame size as the
sum of maximum padding bits and sufficient size field bits
to quantify the padding. Specifically, for a link of maxi-
mum widthWi , the maximum paddingΦi and resulting
correction frame sizeCi are:

Pi = τ ×Wi × σmax

Ci = Pi + log2 ( Pi )

Calculate the corresponding data frame sizeDi to utilize
the remaining capacity:

Di = ( ( τ ×Wi ) −Ci ) / τ

These frame size definitions allow for correction to oc-
cupy all the “extra” cycles in the range of natural varia-
tion. Although the calculation above implicitly assumes
that all links have maximum width to exactly match oscil-
lator frequencies, consider that smaller links could be sup-
ported by scaling oscillator frequencies to allow multiple
Wi values. However, the fraction of bandwidth reserved
for correction on each of these links must remain fixed, as
explained above.

4.5 Average neighbor algorithm

Given the above techniques for measuring and correcting
frequencies, this algorithm is a decentralized process for
choosing correction amounts, which causes global con-
vergence of transmission frequencies. Each node itera-
tively seeks an outgoing frequency that matches the aver-
age across incoming data frequencies.

Consider a noderegular if its buffers are balanced and
each adjacent link has zero drift. Nodes must constantly
seek regularity by correcting for drift as it varies over
time. Correction must also serve the dual purposes of
restoring buffer balance as it becomes disturbed by drift.

Since both nodes sharing a link will apply the same al-
gorithm, it is important that both nodes do not each cor-
rect the entire drift. Correction is cumulative for a link,
and this would likely result in more drift caused by over-
compensation. A conservative approach is for both nodes
to assume equal sharing, and themselves attempt only half
of any necessary correction.

Define themeasurement intervalas the span ofmc cor-
rection intervals, thusm = mc × τ periods, over which
drift is estimated and between which correction is calcu-
lated appropriately. This value should be chosen to match

the relationship between buffer sizes and oscillator insta-
bility. The interval should be long enough to allow for
meaningful measurement of drift, but not long enough for
it to have significant impact.

The aim of correction is to maintain zero imbalance.
For each link between nodesi and j, at the start period
t of each measurement interval, use the techniques above
to estimate the driftδi j ( t ) over the pastm periods. Let
φ ji ( t ) be the buffer imbalance at nodei. The estimated
drift will cause an expected imbalance during the next in-
terval ofδi j ( t )×m. This allows calculation of an aggre-
gate padding for the coming measurement interval to cre-
ate enough drift to correct any imbalance. If imbalance is
zero, simply choose padding to counteract any measured
drift. Thus, to correct drift and existing buffer imbalance,
choose per period padding between nodei and each adja-
cent neighborj:

ρi j ( t ) = ( ( δi j ( t ) × m ) + φ ji ( t ) ) / 2m

However, all transmissions at each node must be cor-
rected equivalently to prevent relative drift. As its name
suggests, the average neighbor algorithm uses an averag-
ing process to resolve the potentially differing correction
demands between links. Let theαi ( t ) be the actual
padding for the correction frames following timet be-
tween nodei and all of its neighborsj:

αi ( t ) = d ( ∑ ρi j ( t ) ∀ j ∈ ηi ) / card ( ηi ) e

In summary, each node calculates correction padding
for each adjacent link for each measurement interval in-
dependently, averages these padding results together, and
then uses one half of this average. This approach allows
each node to iteratively seek regularity in a completely
decentralized manner with only local information. To ex-
tend this process for links of differing widths, theρi j val-
ues can be normalized, then averaged together, and finally
the average re-scaled to match the width of each link. The
algebra to support this was omitted here to simplify rea-
soning about the system.

Consider that any algorithm for calculation of correc-
tion is sufficient if it converges and avoids communica-
tion failure. It seems likely that other such algorithms
exist. This document simply proposes one algorithm,
which achieves the purpose of establishing proper correc-
tion and avoiding failure. There is no claim to optimality –
there may exist better algorithms, for example with lower
buffering requirements.

4.6 Convergence

For the average neighbor algorithm to be practical and
correct, it must ensure that the transmission frequency and
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the input signal frequencies converge at all nodes within
finite time. If convergence always occurs in finite time,
there exists a finite amount of buffering sufficient to en-
sure no data is lost during the convergence process.

The formal proof of convergence can be found in Sec-
tion 7. It uses the following intuition. During each correc-
tion interval, all those nodes which are “outliers” must be
improved. Outlier nodes are those which have either uni-
form positive or negative frequency differences with their
neighbors. Because correction is updated during each iter-
ation to match the average of neighboring rates, the degree
of difference for these nodes must decrease. Since this
property is true for each interval, and since the amount
of decrease must be discrete, convergence in finite time is
guaranteed. The proof depends upon a couple of assump-
tions, namely that drift amounts do not change while the
algorithm is adapting to them, and that estimation of drift
is accurate.

Notice that the proof only guarantees convergence in
finite time. This is however sufficient to show communi-
cation robustness, in that finite buffers can prevent drift
from causing communication failure. While finite does
not necessarily mean small, consider that small buffers
are likely to be sufficient in practice. Drift is generally
a gradual process, occurring at the timescale of at least
seconds. For gradual drift in localized regions of the net-
work, the algorithm is likely to correct it within a single
correction interval under good circumstances. The proof
primarily serves to show that no diabolical situations exist
which can cause collapse of all network communication.

4.7 Failure isolation

The average neighbor algorithm is robust, in that it gen-
erally prevents failures from cascading and causing ad-
ditional failures elsewhere in the network. Proving that
failures are isolated is simpler than proving convergence.

All faults must appear as communication faults to prop-
erly functioning good nodes, meaning the the over or
under-flow of a communication buffer. Actual failures
may include physical damage to links and nodes, or mal-
function of an oscillator – with the result that transmis-
sions from the associated node occur at frequencies out-
side of the allowed range. All of these failures cause com-
munication faults at adjacent good nodes.

Robustness implies that one communication fault may
not artificially cause another by negatively affecting the
transmission frequency of good nodes. Until the actual
fault occurs, the buffer imbalance associated with the fail-
ure cannot be distinguished from simple drift and will af-
fect the calculation of correction amounts and thus trans-
mission frequency. However, for a node withn neigh-
bors, each imbalanced buffer can only change the correc-

tion amount by 1/n of the maximal amount. Meanwhile,
the degree of drift for the bad neighbors is greater than
that for any of the good neighbors by definition. Thus,
a fault must occur, the failure be detected, and the asso-
ciated communication abandoned before additional artifi-
cial faults occur.

Notice that managing failure for the average neighbor
algorithm is purely local. To guarantee an artificial fault,
communication with more than half of the neighbors at a
node must fail simultaneously. This is in contrast to algo-
rithms which depend on shared state, meaning they face
potential Byzantine failures, and thus require distributed
consensus for robustness.

5 Simulation results

To quantify the potential performance of the communica-
tion synchrony framework, some simple and some chal-
lenging scenarios are evaluated more closely using simu-
lation. The results confirm expectations that drift can be
mitigated rapidly, even for highly inconvenient network
topologies.

This section is not intended to be exhaustive. The many
degrees of freedom allowed by the framework prevent do-
ing so with any brevity. Instead, interesting topologies are
selected to illustrate potential good and bad case behav-
ior. Specifically, consider very tightly and very sparsely
connected networks. The more connected a network is,
the more feedback is generally available to the average
neighbor algorithm about the global average rate. Con-
versely, when nodes are far apart and only weakly con-
nected, incompatibility between their rates may take a
long time to be noticed and reconciled. The prototypi-
cal network topologies for these cases are stars and chains
respectively.

All of the following simulation trials reflect equal node
parameters:

Di = 1000 bits (data frame size)
Bi j = 2× Di bits (buffer size per link)
σi = 0.001 bits per period (instability)
m= 100 periods (measurement interval)

Furthermore, all links are assumed to be of zero length.
These parameters are fixed to limit the quantity of re-
sults and simplify reasoning about them. Except for link
length, which plays little role so long as it remains a small
fraction ofm, the other values are believable values. The
goal of simulation is primarily to show that reasonable
network configurations lead to desirable algorithm behav-
ior.

Drift is modeled in two ways. The effective frequencies
of all nodes are randomized (within the valid range) at the
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Figure 4: Effective frequency convergence for both chain
and star topologies of 1001 nodes each, with randomized
frequencies but no drift. Each data point is the average
over 100 trials. The absolute maximum imbalance seen in
any trial was 200 bits.

start of each trial. For the first set of trials, convergence is
observed without any additional frequency variation. The
second set models ongoing drift by re-randomizing the
frequency of each node with 1% probability once each
measurement interval. This crude drift model is intended
to be simple but conservative, as it is likely much more
volatile than drift in practice.

Figure 4 shows the behavior of the algorithm for the
two prototypical topology types, over trials of up to 256
measurement intervals. The star is a root node with 1000
neighbors, all of which have degree 1. The chain is ef-
fectively a linked list of 1001 nodes, with all but the end-
points of degree 2. As expected, convergence for the star
is very rapid, while the chain is slower. However, it is
gratifying to see that, even for a chain of this great length,
the imbalance is rapidly brought to manageable levels.

Figure 5 shows a more complex tree topology, to indi-
cate behavior for more complex networks, again for up to
256 measurement intervals. Only tree topologies are con-
sidered as they show conservative behavior – more con-
nected networks are less challenging, as demonstrated by
the star example. This tree is formed such that the root,
and all internal branch nodes, have degree 5.

The final simulation imposes the re-randomizing drift
model on the tree topology. A simulation interval of
100,000 measurement intervals is used to capture latent
negative effects. The result for a single trial has the abso-
lute maximum imbalance of 560 bits, with per-trial aver-
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Figure 5: Effective frequency convergence for a tree
topology with 426 nodes, with all branches of degree 5,
and with randomized frequencies but no drift. Each data
point is the average over 100 trials. The absolute maxi-
mum imbalance seen in any trial was 280 bits.

ages of 163 bits maximum and 15 bits average. 427224
instances of drift re-randomization occurred.

6 Conclusion

The contribution of this document is a framework for syn-
chronizing all communication in a distributed system to
efficiently create shared logical time. This framework is
shown to be highly robust, operating in a decentralized
manner and tolerating multiple simultaneous failures, and
being structured such that Byzantine failure is meaning-
less. The framework is further shown to impose minimal
communication overhead. Simulation results indicate that
likely costs are only a small fraction of the bandwidth on
each communication link, and that only two data frames
of buffering are needed to tolerate the drift caused by com-
mon oscillators.

This efficiency is closely tied to the primary drawback
of the framework, which is the requirement for implemen-
tation at the low level, with direct control over determinis-
tic communication resources. Low-level implementation
allows for implicit synchronization signals and implicit
feedback about the relative timing of nodes, which is in
contrast to higher level overlay approaches that must com-
municate all information explicitly.

Aside from this implementation constraint, the plat-
form requirements of the framework are quite general and
implementation across a wide range of scales is possible,
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both in terms of number of nodes as well as granularity of
the synchronization frequency. For example, the frame-
work can be adapted to tolerate arbitrary clock instabil-
ity, allowing use of inexpensive components. The degree
of overhead introduced by the framework scales inversely
with the quality of the platform and with the expected pre-
cision of synchrony. This is similar to the information
theoretic tradeoff between overhead costs and the signal-
noise ratio of communication channels.

Given the extent to which the advantages of communi-
cation synchrony outweigh the disadvantages, the primary
limiting factor for immediate widespread adoption of syn-
chronous communication is the significant difference in
philosophical approach between the proposed synchrony
and the prevailing asynchrony. For some similar technolo-
gies, such as SONET, the improved efficiency and robust-
ness available from the framework may make adoption
straightforward. For other networks, however, consider
that the framework specifies only a link-layer architec-
ture. This allows seamless and incremental deployment
beneath existing higher level architectures, such as the In-
ternet. Exposing the superior features of synchrony can
thus be made orthogonal to adoption.

7 Convergence proof

A more formal proof for the claim from Section 4.6 is
included here to show the formal power which commu-
nication synchrony can provide. The proof assumes a
network which has experienced some drift but is still
synchronous. Hence, all nodes share the same timeline,
allowing formal reasoning about node relationships at
precise discrete times. Proving properties with this level
of complexity about asynchronous systems is often either
impossible or requires orders of magnitude more logic.
Thus this proof demonstrates (in addition to its formal
argument) how synchrony allows for greater objective
rigor in a domain currently plagued by imprecise or
subjective analysis.

HYPOTHESIS: Within finite time, the frequency of each
node in the network will converge to match a global net-
work average:

Ravg ( t ) = ( ∑ ( fi ( t ) ∀ i ∈ N ) ) / card ( N )

Formally, fort → ∞ and∀ i ∈ N,

fi ( t )→ Ravg ( t )

PROOF: Consider the properties of the algorithm forout-
lier nodes, those whose frequencies are maximally de-
viant fromRavg at any time. Define the set of such nodes
O as follows:

O ( t ) = { i | i ∈N ∧ ( ∆i ( t )≥ ∆ j ( t ) ∀ j ∈N ) }

Where∆i is the frequency deviation for nodei from the
average:

∆i ( t ) = | fi ( t ) − Ravg ( t ) |

Consider three cases. 1. The outlier set may be empty.
2. The outlier set may be a singleton. 3. There may exist
multiple outlier nodes.

CASE 1: If O ( t ) = /0 then obviously all nodes must
have the same frequency, equal to the average, and the
hypothesis is met. Notice thatO ( t ) 6= N, since equality
would imply that all frequencies are equal to one another
but not to the average, a contradiction.

CASE 2: IfO ( t ) is a singleton set, containing only node
i, theni is either the fastest or slowest node, meaning that
drift with all neighbors must be in the same direction as
Ravg, meaning thati will correct in that direction. Suppos-
ing thati is fast, then:

fi ( t ) > Ravg ( t ) ⇒
fi ( t ) − Ravg ( t ) = | fi ( t ) − Ravg ( t ) |

It is known that, byi being the only node inO ( t ):

∀ j ∈ N, j 6= i
∆i ( t ) > ∆ j ( t ) ⇒
fi ( t ) > f j ( t )

Assume thatδ and φ have the same sign for each link,
meaning that current imbalance can be explained by ex-
isting drift. Assume also that correction works correctly,
meaning:

fi ( t + 1 ) = fi ( t ) × αi ( t )

Which allows:

ρi j ( t ) < 0 ⇒
αi ( t ) < 0 ⇒
fi ( t + 1 ) < fi ( t )

If, insteadfi ( t ) < Ravg ( t ), meaning that nodei is slow.
The same reasoning can be turned around to show thati
must speed up.
CASE 3:O ( t ) 6= N implies that some nodei ∈ O must
have at least one neighborj /∈ O. By reasoning quite sim-
ilar to that in CASE 2, including the need to consider both
fast and slow possibilities, it can be shown thati must
change speed to approachRavg ( t ). For example, ifi is
fast:
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fi ( t ) > f j ( t ) ⇒
αi ( t ) < αi ( t − 1 ) ⇒
fi ( t + 1 ) < fi ( t )

CONCLUSION: In CASE 1, the hypothesis is simply
met. For CASE 2, the maximum∆i value in the system
is reduced. For CASE 3,

card ( O ( t + 1 ) ) < card ( O ( t ) )

Between these two constraints, and given that correction
is discrete

card ( O ( t ) )→ 0 as t → ∞

proving the hypothesis.
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