Evolving beyond asynchrony

Tammo Spalink
Princeton University
TR-721-05

February 9, 2005

Abstract 1.1 Vertical partitioning

St);nc?rono_ll_ﬁ distributed s.);jstem.s deser\ée tr’?lotf rezeq:r(gpa distributed system which is shared by diverse and in-
attention. 1his paper considers in more detall the a V'Eﬂﬁé'pendent applications, interference between them in the

tages of W.'der adoptlon_ of _synchrony, b(_)th for_ ?X'Stmﬁ) m of contention for scarce resources can limit the use-
and potential noyel _apphcanon; Supppsmg efficient a ness of the system both in terms of performance and
robust synchronization mechanisms existed, there are l8ization
nificant benefits to be had, even for existing applications. '

A technique is proposed to reduce or eliminate conges¥or a sequential system, isolating applications from one
tion for statistically multiplexed packet networks, usingnother, to limit interference between them, is well under-
decentralized coordination of packet forwarding bufferstood by the operating systems community [20, 19]. In
This technique can be implemented efficiently on a syf&ct, some approaches such as Xen [3] and the Exokernel
chronous network because it leverages the available 8-are sufficiently strict to prevent interference entirely.
terminism — something missing from asynchronous ndthese latter systems both provide abstractions that parti-
works. Formal system analysis techniques, such as tdiin the resources of a physical platform into smaller vir-
poral logic, assume synchrony because asynchrony ¢kl platforms with deterministic performance properties.
ates too much non-determinism. Likely the main advaW/hat determinism means, in this case, is that applications
tage of synchrony is enabling wider application of sudtin assume unconditional availability for a precise quan-
powerful analysis, which is currently relegated to specidity of resources within their vertical partition during each
ized domains such as safety-critical real-time control sydjscrete unit of time.

tems. An alternative to this strict isolation is to employ a

scheduler which distributes resources between applica-
. tions in a more dynamic and unpredictable manner. Such
1 Introduction a scheduler can be thought of as a layer of abstraction
which hides properties of the real platform from appli-
This document argues for increased research effortdations. The reason for this might be, for example, to
synchronous communication and in derivative distributeake advantage of the tradeoff between resource non-
systems which allow deterministic resource control. Afteterminism and utilization.

though synchronous communication currently used OnlyLet the concept based on deterministic isolation be

for specialized systems, the recent development of an effi- . L C
pecialized systems, the re op ora calledvertical partitioning to distinguish it from the hor-

cient algorithmic synchronous communication techniqulebntal lavering approach. Certain applications simoly re-
enables its use in much wider contexts [22]. The implicg— . yering app ' PP Py

. . ire deterministic resource availability, meaning they are
tions of such use are explored for current infrastructur Y g they

in terms of potential new capabilities and improved pe'ﬂft?;iri?ttﬁ;itreir:qp?erilqgﬂzggtg Ir:atggrfner_fosrgl:;;?nprﬁsé
formance. The concluded advantages are sufficient to rﬁ?e'dia for exam f; In order to Fs)u ort these a Iicgations
tivate adoption of synchrony and deterministic resource pie. PP pp

control wherever possible, including systems such as %a shared general-purpose infrastructure, it must pro-

Internet. For example, an architecture is outlined beloi?® vertical partitioning.

which leverages synchrony and determinism to eliminateOn distributes systems, as opposed to sequential sys-
traffic congestion for asynchronous packet communidems, isolating applications from one another vertically is
tion, a significant Internet performance issue. greatly complicated by physical distance and parallelism.

1.2 Synchronous communication general-purpose infrastructure. However, there exist ap-

. . . plications which cannot be efficiently or safely deployed
Given a network of processing nodes and communl%, y y cep’oy

ion links. th | —tion b h i /er the Internet. Instead, if they are not provisioned
tion links, the natural variation etween_t € oscl a_to ith dedicated platforms (share nothing), they only use
at each node forces all nodes to experience time in

. . . €smaller fraction of the shared infrastructure such as
pendently. This means that there is no internal fraq&Ner level MPLS/ATM [21, 11] or SONET/SDH net-
OT tlme-referencg Whlch \.NOUId alllow ahny |s%lat|on techiorks [23]. The value of the market for these applications
Elque to cr:eatg gterémmsr.?, lljln es§”t € noh es are SO\VLJea'pproximately US$28B [17]. In some cases sharing is
ow synchronized. Even it all oscillators have a nOn};\'ctually impossible, for example, because the distributed

inally equal operating frequency, they will only ever bey o is mobile or physically disjoint from other infras-

“plesiochronous’, or approximately synchronous in Prafiycture. However, in all other cases, reduced sharing im-

tice. This means that time could progress, as measum s increased cost

Ioc:(l)lzl\;ef\a/lz'ﬁert r?i:;SIOr\(l)Vslrei’tl i‘:ﬁrzgt 2;323' by IMbosin Consider the following scenario as an example of shar-
' P y Imp 9iflg not practical using current infrastructure. Suppose

.) : i
strict order on the interaction between nodes, such t'ﬂ?it a safety-critical air traffic control (ATC) system were
they can be synchronized to equally experience a discregte

sequence of time steps. These steps can then be useagcﬁ%e system for (possibly live) music distribution (such

implement vertical partitioning. . C .

. o . . as iTunes) which is often targeted by (potentially global
To create this shared definition of time, the communmﬁésh Crov3ds Clearly the A%]'C syst)t/-:‘r(r? should {33 unaf)-
tion across all links in the network can be forced to occ ;

in lock-step. If th ication is also f dt fcted by activities of other applications on the shared
In lock-step. € communication 1S also forced {o occyy tform, e.g. the release of popular information. If shar-

at a regulqr periodic rate, thi; frequency defines a sha 4 between these applications were possible the cost of
notloq qf t'.m.e for all podes in the netwgrk mdepende troviding both services could likely be reduced. The de-
of their individual oscillators. The technical details for ree of performance and robustness available for a given

technique to achieve these communication properties Odaet is li : L _
- ; get is likely higher than for any combination of dedi-
bustly and efficiently can be found in [22]. cated platforms.

Once a global communication frequency has been es- . . . I
: L . : - Alternatively, consider a hypothetical future application
tablished for a distributed system, it becomes possible (in. . o .)
o . . hich requires deterministic resource sharing, not just for
principle) to partition the resources in the system such that

. . .) |tsolation from others others, but for simple correctness be-
the quantity of available resources in each vertical parfi-

L Lo . fween its own components. Suppose a large number of
tion is deterministic with respect to the shared time. For . mp RO 19 X
. - o eographically distributed people wish to virtually partic-

example, the processes in a distributed application can‘be . .
ate in a simulated sport or game. Further suppose that

coordinated across nodes to form a pipeline of computﬁé quality of this experience depends on providing a vir-

tion and communication stages with precise total latenc : ; . . .
:) . .~ fWal physics model with equivalent timing properties for
properties. In this sense, vertical partitioning is similar { o S
all participants. Such an application would naturally re-

the concept of "quality of service” (QoS) in networkmqéuire extensive reasoning about the temporal relationships

research, although the latter is usually used to describ :
: o etween its processes, and hence between the resources of
more flexible range of resource availability guarantees., . .
the implementation platform.

share the same physical infrastructure with an inter-

1.3 Motivating examples _
_ . . 1.4 Overview
To achieve economies of scale, infrastructures are de-

signed to support sharing of resources between multigleis document argues that most currently asynchronous
applications. Imagine dedicated independent platformmdrastructures would benefit from deploying a syn-
for each possible application in a complex system, anbironous “underlay”, to make available extra capabilities.
then recursively for each independent component withln this end, it will first formally define the necessary func-
each application. This is obviously not a scalable apenality. Once the desired new functionality is defined,
proach. Instead, infrastructures are normally designedhe benefits for both existing asynchronous applications
be general-purpose, to support as broad a set of appliad for more novel or specialized applications are ana-
tions as possible. Maximizing the scope of what appliclzed. Finally, the conclusion is preceded by a discus-
tions are supported by a platform best leverages the ressilon of the implications for interoperability and integra-
ing economies of scale for performance, reliability, artibn with legacy systems.
operations. The technical details for possible implementations are
The Internet is the most widely available, sharebeyond the scope of this document, which only seeks

to motivate additional research. However, related papeiging an interval, demultiplexing might fail and result in
show that the required platform is not only possible, babmmunication failure. What is required is synchronous
practical and efficient across a wide range of platforreemmunication, meaning that the switching intervals at
[22]. all nodes occur in lock-step.
There are two primary reasons why the SONET archi-
)) tecture cannot be easily generalized to multiple resources
2 Synchronous multiplexing and other timescales. First, SONET achieves synchrony
)) ~using the brute-force approach of equipping each nodes
As suggested by its name, synchronous multiplexing,{§t a highly precise clock and coordinating them with an
the sharing of resources in a synchronous manner. Spegiernal clock synchronization system. Each clock must
ically, it means partitioning the resources in a system o\t sfficiently accurate and stable to have negligible drift
time, for multiple disjoint flows of data, such that transigenyeen re-synchronization updates. Second, SONET is
tions across a sequence of resources can occurwithoubigssive, meaning that reconfiguration occurs at human
tgr_mediate buffe_ring_. While the common defin_ition is SPime-scales (minutes, hours) and not as the ongoing ac-
cific to communication resources, think of this as a sifjye result of computation — changes are coarse and costly.
ple historical artifact — the concept applies equally wefih,s SONET provides only fixed bandwidth communi-
to other resources. If fact, it abstracts the mechanism £8ition, and it makes for a poor general-purpose platform,
quired to implement vertical partitioning in a distribute%eing too specialized to suit the more dynamic needs of

system. _ many applications.
One example of a synchronously multiplexed system is

a pipelined processor, where each stage in the pipeling, i _
a resource, and a shared clock governs the durationi’o End-to-end revisited

which each resource acts on a unit of data. For brevity, their landmark paper, Saltzer et. al. collected and
synchronous multiplexing will henceforth be callsgn- codified the community wisdom regarding the design of
muxin this document. . _ ~_protocol layers in communication systems. The resulting

In the processor model, at each clock iteration, pipelifgnd-to-end argument” provides excellent design guide-
stages are all reused. To avoid being lost, the data at ef§8ls, not just for communication systems, but for man-
stage must go somewhere at each time step. This praging abstractions in complex systems in general. How-
erty of regularity in resource usage Is w_hat makes Sydyer it does not address vertical partitioning, which allows
muxed systems deterministic. For a pipeline of synmuxgthmore general and thus more powerful end-to-end argu-
resources, unless the pipeline becomes disconnected (faént to be developed.

ure may always cause data loss), the latency between anyo manage complexity, systems are often horizontal

pair of stages can always be precisely calculated. partitioning into layers. Each layer is used to abstract the
complexity of those beneath it, with the intent of simpli-
2.1 SONET/SDH fying the implementation of those layers above it. The

end-to-end argument advises applying an imperative form
SONET [23], or the synchronous digital hierarchicaf Occam’s “razor” to this layering. The key of the argu-
(SDH) outside the US, is an example of an existing s¥grent says that each layer added to a system should add
tem based on the synmux principle. Itis widely deployeg, minimum unit of functionality. This prevents a “pork-
forming the basis for most of the global telecommunicgarrer’ approach to |ayering, where h|gher level app”ca_
tions backbone. However, few of the users of this sy§ons are forced to pay the cost of unnecessary features in
tem worry about performance or other risks of using thisonolithic lower layers. This philosophy is exemplified
shared infrastructure as opposed to building a dedicagglthe following quote from the end-to-end paper, which
one — interference between users does not exist at fistivates elevating functionality as much as possible, but

level. uses the term “level” instead of layer:
In terms of widely deployed systems, SONET is unique
in employing synmux. In brief, what SONET does is “... performing the function at the lower level

switch data between intersecting links at a global fre- may cost more — for two reasons. First, since
guency of 8KHz. This means that, at each node, frames the lower level subsystem is common to many
of data are received and transmitted for each link during applications, those applications that do not need
every 125us time interval.This process only works if ex- the function will pay for it anyway. Second, the
actly the right amount of data is available at each node low level subsystem may not have as much in-
during each interval. If an upstream node were to trans- formation as the higher levels, so it cannot do
mit slowly and send less than the expected amount of data the job as efficiently.”

The end-to-end guideline is paramount for a shared i3- Eliminating congestion
frastructure. The Internet architecture, for example, im-
poses the Internet Protocol (IP) as the waistline for 4 illustrate the potential benefits of synchrony and deter-
hourglass of abstract interfaces. Below IP there can Béism, this section describes an architecture to constrain
many different platform-specific protocols, while aboveontention for scarce resources in asynchronous packet
it are application-specific protocols. The capabilities é@mmunication, and thereby prevent congestion. Packets
these higher levels are all bounded by those of IP. Thag¢ the basic unit of communication in the Internet, and
in general, any constraints imposed by such a “waistlineengestion is a significant source of inefficiency for that
layer will naturally limit the scope of all higher layers. infrastructure.

. . . o Conceptually, the proposed solution has two parts.
Vertical partitioning, meaning the deterministic alloca-. . .
. ; ; |¥st, a conservative heuristic is used to prevent overflow
tion of resources, can completely isolate the penalties o

horizontal partitioning. Think of a vertical partition asfor all packet buffers. This is done independently for each

similar in all respects to the underlying platform, but Withetwork link, using precisely timed feedback and lever-
P ying p ’ ag_ing deterministic latency and bandwidth. Applied to

Igss resources. By app_lymg a ;tgck of hqnzo_ntal abs_tr?he whole network, the effect is to delay excess packets
tions only within a vertical partition, applications which

. . : . ; at their sources in overload situations. The second part
are incompatible with those abstractions can still be sup- . o ; : T :
orted in other vertical partitions _the solutu_)n utilizes lightweight communication cir-
P _ _ o . _cuits to provide short-cuts through the network for pre-
To summarize this reasoning, consider the followingictable traffic. These circuits maximize the effectiveness
reinterpreted and extended end-to-end argument: of packet buffers to handle unanticipated traffic. Together,
these techniques should allow for full communication re-
source utilization without data loss, without retransmis-

When modularizing a system using horizontal ~ Sion, and with less processing and buffering resources

layers, first provide an interface for vertical par- than a similar (but lossy) asynchronous system.

titioning. Layers can then be isolated within

a particular partition, and the generality of the 3,1 Congestion model

system as a whole still preserved. To also max- . . .

imize the generality of each partition, provide ~ When sending a packet in an asynchronous system, it is

only a minimum of additional functionality with often impossible to know if resources will be available for

each layer. This allows higher levels the great- it at the destination node, or along its transmission path.

est flexibility to avoid unnecessary and poten- ~ This is because non-zero communication Iatencies.pre—

tially costly abstractions. vent globally shared up-to-date usage state. The widely
employedstatistical multiplexing (statmuxgchnique ad-
dresses this limitation by providing a waiting area for

ackets, in the form of dedicated buffer memory, to re-

Often, horizontal layers impose a “policy” on the usgolve temporary resource contention. So long as buffers

of lower level resources. This can happen explicitly in ﬂbere not full, packets can be forwarded between nodes

form of a layer [mplemgntlng a scheduler which rT]ak(?lﬁthout concern for precise link availability. If a link is
resource allocation decisions. It can also happen |mpl{ mporarily full, packets can wait for it

itly if the layer hides capabilities or properties available at However, packets may be lost once buffers become full.

lower levels. In this light, the new argument calls for SY3fa packet arrives at a node, if the resource which it needs

;Enls to klje deSiﬁ.niq in a policy—n?_utrclell ma:’.‘“e.r' .melartgg%tbound link) is unavailable, and if the packet buffers
atany layer which Imposes a particutar policy IS 1Solateff 1,5t node are full, then the packet is simply lost (for

by a vertical partition. it has no place to go). This state of events is generally
This asymmetric need to allow vertical partitioning beealled “congestion”. The performance impact of lost data

fore imposing any horizontal constraints also highlightsan be severe for some applications, since they must first

the similar lack of symmetry in the relationship betweesstablish that the data was lost and finally negotiate re-

synchrony and asynchrony. Synchrony allows determinansmission.

ism which allows vertical partitions which can each sup-

port asynchrony, but not the reverse. This is why ing'z Reliable forwarding

plementation of synmux must naturally occur at the low

level. The ability to implement deterministic partitions i#\ simple way to prevent buffer overflows is to apply flow

likely the primary advantage of synmux platforms, and tle@ntrol between all adjacent nodes. By providing feed-

reason that they should be adopted as widely as possilidlack between nodes, they can inform one another about

buffer availability and constrain data rates appropriatekive. This issue is addressed in more detail below, by pro-
However, the efficiency of flow control for two nodes deviding an additional mechanism for large transfers.
pends on the consistency of the path between them. If path
properties like bandwidth or latency can vary, the fI0\g__3 Without determinism
control can be only approximate or must be made suffi-
ciently conservative tolerate any possible variation. Co@ the other hand, if the nodes are not synchronized or
sequently, flow control can be implemented with maxit link latencies are nondeterministic, reliability becomes
mal efficiently using a synmux platform with determinismore expensive. Optimizing this process has received a
tic communication. great deal of research attention in the form of the con-
Consider a pair of directly connected nodes, idengestion control technique used by the Internet transport
fied assourceandsink respectively, such that the sourc€ontrol protocol (TCP) [18], but efficiency is limited by
wishes to use some resource at the sink which is non#fee great complexity involved. TCP congestion control is
terministically available. Assume that some memory milar to flow control, but instead treats packet loss as
set aside at the sink to buffer data arriving from the souragproximate and indirect feedback. This is because there
when the resource is unavailable. can be an indeterminate number of intermediate nodes
Let a feedback message be sent at a regular intérvalong a communication path. While they may each cause
with the measured quantity of available buffi, at the variations in the path latency and bandwidth properties,
time the message was sent. If the message is receivedigct communication with each one is impractical.
time T, after a latencyL, this means thaA amount of In the special case where the link latency is known and
buffer was available at tim&y, = T,x — L. The source only synchronization is missing, interestingly, the flow
can then conservatively estimate the remaining availabntrol process itself can cause synchronization. This
buffer Ae, by subtracting the amount of data which haginciple, combined with isochronous (fixed frequency)
arrived at the sink sinc@y from A. Note that this requires €mptying of buffer memory, is the gist of an efficient pro-
knowing the data transfer latency. By sending less the@ss to provide network-wide communication synchrony
Acr data before performing the same calculation for tfé2].
next feedback update, the source can maintain the invariThe ultimate form of nondeterminism is physical com-
ant that data is not lost due to buffer overflow. ponent failure. If such failure occurs, data can always be
Basically, this protocol allows the source to send burd@st. As explained by the end-to-end argument, tolerance
of data to the sink. The size of a burst is bounded by tf@ failure must always be dealt with at the application
size of the buffer which the sink has dedicated to data vel, even if intermediate components are highly reliable.
riving from the source. Once a burst worth of data has
been sent, however, the source must wait for feedbagkq4 Lightweight circuits
The source conservatively estimates that the resource may
be unavailable and thus that the buffer may remain fiyifhile careful flow control can make statmux forwarding
(not drain). This estimate is then revised on each fedgliable, itis also possible to configure synmux resources
back iteration, based on actual measurements at the siAkcreate dedicated communication channels which are
Thus, the buffer capacity is never exceeded. When &9th reliable and more efficient.
plied for all links in a network, these bounds on trans- Definecircuit to indicate a fixed path communication
mission achieve a form of distributed “source blocking€hannel between two nodes in the system with precisely
where nodes are unable to transmit more data than carkB@wn latency and bandwidth. Circuits are very simple
accepted by the network without risk of loss. to provide in a synmux system, since communication re-
Because feedback is required to send more than one QHrces behave deterministically. Each link directly con-
burst of data, the sink has control over the source rate/#Fting two nodes is a circuit. If nodes are not directly
choosing the buffer size. The maximum source transfé&nnected, a circuit can be formed by combining those

rate R (in data units per time unit) is determined by thgircuits.along a path between them. This require; that in-
following formula over the link latency, the buffer size termediate nodes forward data between the adjacent cir-

B, and the feedback intervél cuits on the path. Assume that these connections can be
rapidly created and destroyed at low cost, making the cir-
R=B/(L+1) cuitslightweight

The primary complexity with circuits is not implement-
This equation can also derive the amount of buffarg the circuits themselves, but rather the mechanism to
memory needed to support a specific source rate. Hagtablish and manage them. For example, the circuit net-
ever, since the relationship is not constant but a lineaork for voice telecommunications is very simple in prin-
function, supporting high source rates can become expeiple — all channels have equal bandwidth (e.g. 64Kbps)

and last for long periods of time (minutes). However, egoing utilization. Consider a chains of three node8
ternal networks of great complexity were built to operasndC, connected in that sequence. If at any timeis
it, such as TMN and SS7 [24, 25]. In turn, this lead to tHerwarding packets throughto C at some non-zero aver-
misconception that circuit networks must be more corage rate, the buffer utilization & could be improved by
plex or “smarter” (and thus more expensive) than paclatation of a circuit to directly conneétandC. This is
networks. true for all such chains of nodes. In fa&,need not be
For the purpose of the arguments being made here, ijtist one node, it can represent a whole cloud that is best
sufficient to assume that some circuit allocation and manpassed. This situation can be recognized atfangde
agement system exists. The implementation of the allodey-monitoring outbound traffic and identifying flows with
tion system for circuits are beyond the scope of this doceverlapping paths. IA is the source for a multi-packet
ment. Because the synmux platform assumed by this dotessage, it may thus create a circuit for the full path to
ument includes processing and storage resources as #helidestination and thus eliminate any statmux penalty for
as communication, this allocator does not need to belarge messages.
external system like TMN — it can exist within a vertical Given some circuit signaling mechanism, the band-
partition. This avoids a fundamental (often ignored) prol4dth for these short-cut circuits can be modulated over
lem with external management systems, which is mdime to match any continuous or predictable traffic load.
aging the management system. An example allocatidsing this technique, the latency benefits of a packet net-
system could be a vertical partition across the whole ngterk are retained while eliminating congestion and im-
work, within which a subset of the Internet protocol suiteroving utilization — all for arbitrary traffic patterns. It
is deployed. Circuit establishment could involve RSV#8 not coincidental that circuits and statmux work so well
[2], modified to configure synmux resources instead of tPgether. Statmux is naturally a local allocation process,
routers. while circuits are a distributed one. Traffic that exceeds
local resource availability cannot be addressed locally,
)) . rather a distributed process should ideally cause traffic
3.5 Traffic self-engineering to be generated at the source at an appropriate rate to

Neither of the above techniques perform well in isolatiomatch botdenecks along its path. - Circuits embody the
9 P istributed signaling and distributed state needed to im-
but they seem to complement one another perfectly. ment this
trouble with statmux, is that non-“bursty” traffic clogs U|§) y . . .
) . . Although the details here may be novel, this use of cir-
forwarding buffers. Continuous data flows imposes a cof-. . .
stant memorv load. reducing the burst-capacity for othCl#ItS bears strong resemblance to previous work, includ-
incomin dat)fa Tk;e troubleg-] with circuitspon ¥he otheﬁg that by Zhang, Fernandez, and McKeown [17, 16] on
hand isgthe cbst of establishing them 1,'he extra COH]S-ing ATM virtual circuits for TCP traffic. An important
S X DlShing S . . difference, however, is that the technique here do not de-
munication to configure circuit resources (signaling), im- . ; :
. end on any higher level protocol to provide connection
poses both latency and bandwidth overhead. Howe\Pe{; . .
these drawbacks effectively cancel one another out wh'grP rmation. Short-cuts can be created in a general man-
ey . ner for all higher level causes of ongoing resource con-
the approaches are applied cooperatively.

X . . . tention.
Traffic engineering for a packet network is the process

of provisioning capacity to match usage patterns [1]. The

above techniques support this in a fully automated fasf}- App”ed tempora| |ogic

ion. By combining rapidly configurable circuits with a

congestion-free statmux network, short-cut circuits can R less significant than improving existing applications,

created for any traffic that would otherwise impose onggs the prospect of enabling new ones. The field of tem-

ing buffer utilization. poral logic provides powerful tools to analyze and de-
Let a network be initially configured such that all linksign complex systems, but which generally assume syn-

bandwidth is used for statmux packet data, extended witironous communication. While it is possible to automat-

the reliable forwarding feedback and associated dedicaigally translate synchronous systems into asynchronous

buffer memory at each node. This facilitates low latengnes, there is normally a cost in terms of communication

communication for small messages, where the maximwwerhead (application synchronization) or in terms of lost

size is determined by the burst capacity of the buffeparallelism. Synmux platforms provide the needed syn-

along the message path. Large messages are possibtshasny, and hence can enable those applications that can-

well, but they may end up spread across the buffers oot tolerate the translation penalties.

multiple nodes and suffer latency penalties accordingly. Temporal logic is currently widely used for specifying
Short-cut circuits are established when nodes face amd verifying the correctness of programs, especially con-

current ones. A special type of modal logic, it providesfaedback, meaning that the outputs during one cycle may
formal system to reason about changes in the truth of affect the inputs during future cycles. This class of pro-

sertions over time. Examples of temporal logic operataggsams is the usual focus of temporal logic. Examples
include sometimesand always in addition to the tradi- of reactive programs include network protocols, process
tional operators in boolean logic. Naturally, the logic asontrol systems, etc.

sumes that a single discrete sequence of time applies to all

program components. 4.3 Synchronous languages

. Esterel [7], Lustre [13], and Signal [12] form a family
4.1 Testing for absence of languages designed to express reactive programs in a

Possibly the most important feature of a synchronous s{fa@nner that promotes the application of temporal logic.
tem is the ability to test for the absence of data on a cofngntral to their design, is the assumption that all concur-
munication channel. This concept is fundamental to digf"t Processes are synchronized to share a sequence of
tal circuit design, since binary data is often defined as &iScrete time steps. This property allows the language to
ther the presence or absence of signal on a channel. orce deterministic interaction between software com-
chronous communication provides the same ability fBPN€Nts and thereby increase confidence in overall sys-
distributed systems, the ability to know when to samplgM correctness. Accordingly, these languages have had
a channel without explicit coordination. commercial success in the domain of safety critical sys-

This is obviously impossible for an asynchronous Sytse_ms such as those for avionics, automotive control, and

tem, since there is no time relationship between compyiclear power plants [6].
nents by definition — a component would not know when To ensure the correctness of a system, both the software

or for how long to wait. A plesiochronous system ofnd the hardware require extensive analysis. While these

the other hand provides some information of how long {Bn9uages provide capabilities to ensure software deter-
wait, but still requires additional synchronizing commun[ltinism, the lack of general purpose deterministic plat-

cation to establish when to test — effectively defeating tffyM$ Often requires expensive custom implementations
efficiency implied by “absence” of data. for their programs. Within the realm of hard-real-time

The use of timeout mechanisms in architectures like tFI)éStems’ efforts such as the Time-Triggered Architecture

Internet is an interesting example. The timing interval %5] seekj[o addr(]izs this _needf.t is al
for timeouts is often extremely coarse, reflecting an as_lncreasmg confidence In software correctness is always

sumption of rough synchrony for the system, at least 'gtPOrtant, including for general purpose shared infras-
the level of human time (seconds). This assumption is ggctures. In hardware design, synchronization has long

ten reasonable, because routers which can arbitrarily t &N the foundation for ensuring the correctness of com-

either nanoseconds or years to switch a packet are erlgg-x systems. The synchronous language community has
o

tively useless. However, greater synchrony would allo monstra:]ed.thalt the same pr:n?plesfapply tho sc;ftware.
greater efficiency and robustness. owever, the implementation platform for such software

is missing.
Without a deterministic synchronous platform, im-
4.2 Reactive systems plementation of synchronous programs must be “de-

. i synchronized” [5]. This means either that all communi-
Consider what kinds of programs are best targeted Hyion petween concurrent components must include ex-

powerful temporal logic analysis. Suppose programs &jigit synchronization signaling, or that concurrency is
classified into two groups, those that are self-containggyinated by imposing a sequential total order on the
with sequential execution, and all the rest. Sequential Sgft,gram. Both solutions are undesirable. The former im-
contained programs are given starting inputs, and theyses significant overhead and prevents hard real-time ap-
simply perform calculations without further '”teraCt'O’incations which must remain not only internally synchro-
until providing a result and terminating. It is the behasizeq, put also interact with devices in a timely manner.

ior of the other class of programs, call@ictive systems The |atter eliminates any scalability otherwise available
which is more complex and hence required powerful toc}ﬁrough parallelism.

to help reason about [8, 14].
Reactive systems include those programs which are de-
signed to continuously interact with their environmen§ Conclusion
meaning other programs, sensors, actuators, etc. These
programs follow a “reactive cycle” of input, processingziven that synchronous communication can be efficiently
and output. Because of this, they can even experieneplemented on a wide variety of platforms, most com-

puting and communication infrastructures should evolv@4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-
to include this capability and exploit its benefits. This is

not to say that asynchronous approaches should be super-

seded, simply that they are not universal. Instincts to as-
sume that they are, on the part of the community, should
be reconsidered. Synchronous architectures deserve of
far more research attention. Because this domain is sig-
nificantly outside the familiar subjects of the community,
this document tries to extensively motivate its relevancdd] Albert Benveniste, Benot Caillaud, and Paul Le
at the expense of technical details. Supporting technical
papers provide specific design and implementation points
to show that achieving the needed platform capabilities is
not only possible, but practical.

A convenient feature of vertical partitioning is that it
simplifies supporting legacy systems — they can simplgs]
be implemented in such a partition and possibly be none
the wiser. Take the Internet architecture for example, or
even better an extension of it to support computation and
storage such as PlanetLab [4] or the Grid [10]. Any of

these can be deployed within a distributed virtual parti-
tion with no negative performance implications. In fact,

(7]

multiple instances of possibly different software versions
could co-exist side by side.

While it might seem unrealistic to change core infras-
tructure in the fundamental manner needed to support SY[8]
chrony and determinism, consider that the new platforms
can be deployed and also taken advantage of incremen-
tally. This is because it can easily interface with legacy
systems, while only exposing the new functionality where

needed.

(9]

References

[1]

[3]

Daniel O. Awduche, Angela Chiu, Anwar Elwalid,
Indra Widjaja, and XiPeng Xiao. Overview and prin-
ciples of internet traffic engineering. Internet-Drai{tj'O]
Version 02, Internet Engineering Task Force (IETF),
2001.

F. Baker, B. Braden, S. Bradner, M. O'Dell, A. Rotq]
manow, A. Weinrib, and L. Zhang. Resource
reservation protocol (RSVP). Request for Com-
ments (RFC) 2208, Internet Engineering Task Force
(IETF), September 1997.

[12]
Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, lan
Pratt, and Andrew Warfield. Xen and the art of virtu-
alization. InProceedings of the ACM Symposium on
Operating Systems Principles (SOSPages 164— [13]
177, Bolton Landing (Lake George), NY, October
2003.

lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak. Operating system support for
planetary-scale network services. 8ymposium
on Networked Systems Design and Implementation
(NSDI), pages 253-266, San Francisco, CA, March
2004.

Guernic. Compositionality in dataflow synchronous
languages: specification and distributed code gener-
ation. Information and Computatiqnl63(1):125—
171, November 2000.

Albert Benveniste, Paul Caspi, Stephan A. Edwards,
Nicolas Halbwachs, Paul Le Guernic, and Robert
de Simone. The synchronous languages 12 years
later. Proceedings of the IEEE1(1):64-83, Jan-
uary 2003.

Gerard Berry. The foundationis of esterel. In
G. Plotkin, C. Stirling, and M. Tofte, editor®roof,
Language and Interaction: Essays in Honour of

Robin Milner The MIT Press, 1998.

E. Allen Emerson. Temporal and modal logic. In
Handbook of theoretical computer science (vol. B):
formal models and semantigsages 995-1072. The

MIT Press, Cambridge, MA, 1991.

Dawson R. Engler and M. Frans Kaashoek. Ex-
okernel: an operating system architecture for
application-level resource managementPinceed-
ings of the ACM Symposium on Operating Systems
Principles (SOSR)pages 251-266, Copper Moun-
tain Resort, CO, October 1997.

lan Foster and Carl Kesselman, editof$ie GRID:
Blueprint for a New Computing InfrastructurMor-

gan Kaufmann Publishers, Inc., San Francisco, CA,
1999.

1] Jim Grace, Richard Breault, John Jaeger, and Lou

Wojnaroski. ATM user-network interface specifica-
tion v3.0. Standard Specification af-uni-0010.001,
ATM Forum, September 1993.

P. Le Guernic, A. Benveniste, P. Bournai, and
T. Gautier. Signal — a data flow-oriented language
for signal processinglEEE Transactions on Signal
Processing34(2):362—374, April 1986.

N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEER.991.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

Nicholas Halbwachs. Synchronous programming of
reactive systems: a tutorial and commented bibli-
ography. InProceedings of the International Con-
ference on Computer Aided Verication (CAYym-
ber 1497 in LNCS, pages 1-16, Vancouver, British
Columbia, Canada, June 1998.

Hermann Kopetz and Gunther Bauer. The time-
triggered architecture. Proceedings of the IEEE
91(1):112-126, January 2003.

Pablo Molinero-Ferandez and Nick McKeown.
The performance of circuit switching in the inter-
net. OSA Journal of Optical Networkin@(4):83—
96, March 2003.

Pablo Molinero-Ferandez, Nick McKeown, and
Hui Zhang. Is IP going to take over the world (of
communications)? IACM HotNetsOctober 2002.

Jon Postel. Transmission control protocol (TCP).
Request for Comments (RFC) 793, Internet Engi-
neering Task Force (IETF), September 1981.

Richard Rashid, Daniel Julin, Douglas Orr, Richard
Sanzi, Robert Baron, Alesandro Forin, David Golub,
and Michael B. Jones. Mach: a system software ker-
nel. InProceedings of the IEEE Computer Society
International Conference (COMPCON)ages 176—
178, San Francisco, CA, March 1989.

Dennis M. Ritchie and Ken Thompson. The
unix time-sharing system. Communications of
the Association for Computing Machinery (CAGM)
17(7):365-375, July 1974.

E. Rosen. Multiprotocol label switching architec-
ture. Request for Comments (RFC) 3031, Internet
Engineering Task Force (IETF), January 2001.

Tammo Spalink. Communication synchronization.
Technical Report TR-722-05, Princeton University,
2005.

Telcordia Technologies, Inc. Synchronous opti-
cal network (SONET) transport systems: Com-
mon generic criteria. Document Number GR-253,
September 2000.

Divakara K. Udupa. TMN: Telecommunications
Management NetworkThe McGraw-Hill Compa-
nies, Inc., New York, NY, 1999.

John G. van Bosse&ignaling in Telecommunication
Networks John Wiley & Sons, Inc., New York, NY,
1998.

