
Evolving beyond asynchrony

Tammo Spalink
Princeton University

TR-721-05

February 9, 2005

Abstract

Synchronous distributed systems deserve more research
attention. This paper considers in more detail the advan-
tages of wider adoption of synchrony, both for existing
and potential novel applications. Supposing efficient and
robust synchronization mechanisms existed, there are sig-
nificant benefits to be had, even for existing applications.
A technique is proposed to reduce or eliminate conges-
tion for statistically multiplexed packet networks, using
decentralized coordination of packet forwarding buffers.
This technique can be implemented efficiently on a syn-
chronous network because it leverages the available de-
terminism – something missing from asynchronous net-
works. Formal system analysis techniques, such as tem-
poral logic, assume synchrony because asynchrony cre-
ates too much non-determinism. Likely the main advan-
tage of synchrony is enabling wider application of such
powerful analysis, which is currently relegated to special-
ized domains such as safety-critical real-time control sys-
tems.

1 Introduction

This document argues for increased research effort in
synchronous communication and in derivative distributed
systems which allow deterministic resource control. Al-
though synchronous communication currently used only
for specialized systems, the recent development of an effi-
cient algorithmic synchronous communication technique,
enables its use in much wider contexts [22]. The implica-
tions of such use are explored for current infrastructures,
in terms of potential new capabilities and improved per-
formance. The concluded advantages are sufficient to mo-
tivate adoption of synchrony and deterministic resource
control wherever possible, including systems such as the
Internet. For example, an architecture is outlined below
which leverages synchrony and determinism to eliminate
traffic congestion for asynchronous packet communica-
tion, a significant Internet performance issue.

1.1 Vertical partitioning

For a distributed system which is shared by diverse and in-
dependent applications, interference between them in the
form of contention for scarce resources can limit the use-
fulness of the system both in terms of performance and
utilization.

For a sequential system, isolating applications from one
another, to limit interference between them, is well under-
stood by the operating systems community [20, 19]. In
fact, some approaches such as Xen [3] and the Exokernel
[9] are sufficiently strict to prevent interference entirely.
These latter systems both provide abstractions that parti-
tion the resources of a physical platform into smaller vir-
tual platforms with deterministic performance properties.
What determinism means, in this case, is that applications
can assume unconditional availability for a precise quan-
tity of resources within their vertical partition during each
discrete unit of time.

An alternative to this strict isolation is to employ a
scheduler which distributes resources between applica-
tions in a more dynamic and unpredictable manner. Such
a scheduler can be thought of as a layer of abstraction
which hides properties of the real platform from appli-
cations. The reason for this might be, for example, to
take advantage of the tradeoff between resource non-
determinism and utilization.

Let the concept based on deterministic isolation be
calledvertical partitioning, to distinguish it from the hor-
izontal layering approach. Certain applications simply re-
quire deterministic resource availability, meaning they are
intolerant of temporal volatility in the performance prop-
erties of their implementation platform – streaming live
media for example. In order to support these applications
on a shared general-purpose infrastructure, it must pro-
vide vertical partitioning.

On distributes systems, as opposed to sequential sys-
tems, isolating applications from one another vertically is
greatly complicated by physical distance and parallelism.

1

1.2 Synchronous communication

Given a network of processing nodes and communica-
tion links, the natural variation between the oscillators
at each node forces all nodes to experience time inde-
pendently. This means that there is no internal frame
of time-reference which would allow any isolation tech-
nique to create determinism, unless the nodes are some-
how synchronized. Even if all oscillators have a nom-
inally equal operating frequency, they will only ever be
“plesiochronous”, or approximately synchronous in prac-
tice. This means that time could progress, as measured
locally, faster or slower at different nodes.

However, this problem can be solved by imposing a
strict order on the interaction between nodes, such that
they can be synchronized to equally experience a discrete
sequence of time steps. These steps can then be used to
implement vertical partitioning.

To create this shared definition of time, the communica-
tion across all links in the network can be forced to occur
in lock-step. If the communication is also forced to occur
at a regular periodic rate, this frequency defines a shared
notion of time for all nodes in the network independent
of their individual oscillators. The technical details for a
technique to achieve these communication properties ro-
bustly and efficiently can be found in [22].

Once a global communication frequency has been es-
tablished for a distributed system, it becomes possible (in
principle) to partition the resources in the system such that
the quantity of available resources in each vertical parti-
tion is deterministic with respect to the shared time. For
example, the processes in a distributed application can be
coordinated across nodes to form a pipeline of computa-
tion and communication stages with precise total latency
properties. In this sense, vertical partitioning is similar to
the concept of “quality of service” (QoS) in networking
research, although the latter is usually used to describe a
more flexible range of resource availability guarantees.

1.3 Motivating examples

To achieve economies of scale, infrastructures are de-
signed to support sharing of resources between multiple
applications. Imagine dedicated independent platforms
for each possible application in a complex system, and
then recursively for each independent component within
each application. This is obviously not a scalable ap-
proach. Instead, infrastructures are normally designed to
be general-purpose, to support as broad a set of applica-
tions as possible. Maximizing the scope of what applica-
tions are supported by a platform best leverages the result-
ing economies of scale for performance, reliability, and
operations.

The Internet is the most widely available, shared,

general-purpose infrastructure. However, there exist ap-
plications which cannot be efficiently or safely deployed
over the Internet. Instead, if they are not provisioned
with dedicated platforms (share nothing), they only use
a smaller fraction of the shared infrastructure such as
lower level MPLS/ATM [21, 11] or SONET/SDH net-
works [23]. The value of the market for these applications
is approximately US$28B [17]. In some cases sharing is
actually impossible, for example, because the distributed
system is mobile or physically disjoint from other infras-
tructure. However, in all other cases, reduced sharing im-
plies increased cost.

Consider the following scenario as an example of shar-
ing not practical using current infrastructure. Suppose
that a safety-critical air traffic control (ATC) system were
to share the same physical infrastructure with an inter-
active system for (possibly live) music distribution (such
as iTunes) which is often targeted by (potentially global)
flash crowds. Clearly the ATC system should be unaf-
fected by activities of other applications on the shared
platform, e.g. the release of popular information. If shar-
ing between these applications were possible the cost of
providing both services could likely be reduced. The de-
gree of performance and robustness available for a given
budget is likely higher than for any combination of dedi-
cated platforms.

Alternatively, consider a hypothetical future application
which requires deterministic resource sharing, not just for
isolation from others others, but for simple correctness be-
tween its own components. Suppose a large number of
geographically distributed people wish to virtually partic-
ipate in a simulated sport or game. Further suppose that
the quality of this experience depends on providing a vir-
tual physics model with equivalent timing properties for
all participants. Such an application would naturally re-
quire extensive reasoning about the temporal relationships
between its processes, and hence between the resources of
the implementation platform.

1.4 Overview

This document argues that most currently asynchronous
infrastructures would benefit from deploying a syn-
chronous “underlay”, to make available extra capabilities.
To this end, it will first formally define the necessary func-
tionality. Once the desired new functionality is defined,
the benefits for both existing asynchronous applications
and for more novel or specialized applications are ana-
lyzed. Finally, the conclusion is preceded by a discus-
sion of the implications for interoperability and integra-
tion with legacy systems.

The technical details for possible implementations are
beyond the scope of this document, which only seeks

2

to motivate additional research. However, related papers
show that the required platform is not only possible, but
practical and efficient across a wide range of platforms
[22].

2 Synchronous multiplexing

As suggested by its name, synchronous multiplexing is
the sharing of resources in a synchronous manner. Specif-
ically, it means partitioning the resources in a system over
time, for multiple disjoint flows of data, such that transi-
tions across a sequence of resources can occur without in-
termediate buffering. While the common definition is spe-
cific to communication resources, think of this as a sim-
ple historical artifact – the concept applies equally well
to other resources. If fact, it abstracts the mechanism re-
quired to implement vertical partitioning in a distributed
system.

One example of a synchronously multiplexed system is
a pipelined processor, where each stage in the pipeline is
a resource, and a shared clock governs the duration for
which each resource acts on a unit of data. For brevity,
synchronous multiplexing will henceforth be calledsyn-
muxin this document.

In the processor model, at each clock iteration, pipeline
stages are all reused. To avoid being lost, the data at each
stage must go somewhere at each time step. This prop-
erty of regularity in resource usage is what makes syn-
muxed systems deterministic. For a pipeline of synmuxed
resources, unless the pipeline becomes disconnected (fail-
ure may always cause data loss), the latency between any
pair of stages can always be precisely calculated.

2.1 SONET/SDH

SONET [23], or the synchronous digital hierarchical
(SDH) outside the US, is an example of an existing sys-
tem based on the synmux principle. It is widely deployed,
forming the basis for most of the global telecommunica-
tions backbone. However, few of the users of this sys-
tem worry about performance or other risks of using this
shared infrastructure as opposed to building a dedicated
one – interference between users does not exist at this
level.

In terms of widely deployed systems, SONET is unique
in employing synmux. In brief, what SONET does is
switch data between intersecting links at a global fre-
quency of 8KHz. This means that, at each node, frames
of data are received and transmitted for each link during
every 125us time interval.This process only works if ex-
actly the right amount of data is available at each node
during each interval. If an upstream node were to trans-
mit slowly and send less than the expected amount of data

during an interval, demultiplexing might fail and result in
communication failure. What is required is synchronous
communication, meaning that the switching intervals at
all nodes occur in lock-step.

There are two primary reasons why the SONET archi-
tecture cannot be easily generalized to multiple resources
and other timescales. First, SONET achieves synchrony
using the brute-force approach of equipping each nodes
with a highly precise clock and coordinating them with an
external clock synchronization system. Each clock must
be sufficiently accurate and stable to have negligible drift
between re-synchronization updates. Second, SONET is
passive, meaning that reconfiguration occurs at human
time-scales (minutes, hours) and not as the ongoing ac-
tive result of computation – changes are coarse and costly.
Thus, SONET provides only fixed bandwidth communi-
cation, and it makes for a poor general-purpose platform,
being too specialized to suit the more dynamic needs of
many applications.

2.2 End-to-end revisited

In their landmark paper, Saltzer et. al. collected and
codified the community wisdom regarding the design of
protocol layers in communication systems. The resulting
“end-to-end argument” provides excellent design guide-
lines, not just for communication systems, but for man-
aging abstractions in complex systems in general. How-
ever it does not address vertical partitioning, which allows
a more general and thus more powerful end-to-end argu-
ment to be developed.

To manage complexity, systems are often horizontal
partitioning into layers. Each layer is used to abstract the
complexity of those beneath it, with the intent of simpli-
fying the implementation of those layers above it. The
end-to-end argument advises applying an imperative form
of Occam’s “razor” to this layering. The key of the argu-
ment says that each layer added to a system should add
a minimum unit of functionality. This prevents a “pork-
barrel” approach to layering, where higher level applica-
tions are forced to pay the cost of unnecessary features in
monolithic lower layers. This philosophy is exemplified
by the following quote from the end-to-end paper, which
motivates elevating functionality as much as possible, but
uses the term “level” instead of layer:

“... performing the function at the lower level
may cost more – for two reasons. First, since
the lower level subsystem is common to many
applications, those applications that do not need
the function will pay for it anyway. Second, the
low level subsystem may not have as much in-
formation as the higher levels, so it cannot do
the job as efficiently.”

3

The end-to-end guideline is paramount for a shared in-
frastructure. The Internet architecture, for example, im-
poses the Internet Protocol (IP) as the waistline for an
hourglass of abstract interfaces. Below IP there can be
many different platform-specific protocols, while above
it are application-specific protocols. The capabilities of
these higher levels are all bounded by those of IP. Thus,
in general, any constraints imposed by such a “waistline”
layer will naturally limit the scope of all higher layers.

Vertical partitioning, meaning the deterministic alloca-
tion of resources, can completely isolate the penalties of
horizontal partitioning. Think of a vertical partition as
similar in all respects to the underlying platform, but with
less resources. By applying a stack of horizontal abstrac-
tions only within a vertical partition, applications which
are incompatible with those abstractions can still be sup-
ported in other vertical partitions.

To summarize this reasoning, consider the following
reinterpreted and extended end-to-end argument:

When modularizing a system using horizontal
layers, first provide an interface for vertical par-
titioning. Layers can then be isolated within
a particular partition, and the generality of the
system as a whole still preserved. To also max-
imize the generality of each partition, provide
only a minimum of additional functionality with
each layer. This allows higher levels the great-
est flexibility to avoid unnecessary and poten-
tially costly abstractions.

Often, horizontal layers impose a “policy” on the use
of lower level resources. This can happen explicitly in the
form of a layer implementing a scheduler which makes
resource allocation decisions. It can also happen implic-
itly if the layer hides capabilities or properties available at
lower levels. In this light, the new argument calls for sys-
tems to be designed in a policy-neutral manner, meaning
that any layer which imposes a particular policy is isolated
by a vertical partition.

This asymmetric need to allow vertical partitioning be-
fore imposing any horizontal constraints also highlights
the similar lack of symmetry in the relationship between
synchrony and asynchrony. Synchrony allows determin-
ism which allows vertical partitions which can each sup-
port asynchrony, but not the reverse. This is why im-
plementation of synmux must naturally occur at the low
level. The ability to implement deterministic partitions is
likely the primary advantage of synmux platforms, and the
reason that they should be adopted as widely as possible.

3 Eliminating congestion

To illustrate the potential benefits of synchrony and deter-
minism, this section describes an architecture to constrain
contention for scarce resources in asynchronous packet
communication, and thereby prevent congestion. Packets
are the basic unit of communication in the Internet, and
congestion is a significant source of inefficiency for that
infrastructure.

Conceptually, the proposed solution has two parts.
First, a conservative heuristic is used to prevent overflow
for all packet buffers. This is done independently for each
network link, using precisely timed feedback and lever-
aging deterministic latency and bandwidth. Applied to
the whole network, the effect is to delay excess packets
at their sources in overload situations. The second part
of the solution utilizes lightweight communication cir-
cuits to provide short-cuts through the network for pre-
dictable traffic. These circuits maximize the effectiveness
of packet buffers to handle unanticipated traffic. Together,
these techniques should allow for full communication re-
source utilization without data loss, without retransmis-
sion, and with less processing and buffering resources
than a similar (but lossy) asynchronous system.

3.1 Congestion model

When sending a packet in an asynchronous system, it is
often impossible to know if resources will be available for
it at the destination node, or along its transmission path.
This is because non-zero communication latencies pre-
vent globally shared up-to-date usage state. The widely
employedstatistical multiplexing (statmux)technique ad-
dresses this limitation by providing a waiting area for
packets, in the form of dedicated buffer memory, to re-
solve temporary resource contention. So long as buffers
are not full, packets can be forwarded between nodes
without concern for precise link availability. If a link is
temporarily full, packets can wait for it.

However, packets may be lost once buffers become full.
If a packet arrives at a node, if the resource which it needs
(outbound link) is unavailable, and if the packet buffers
at that node are full, then the packet is simply lost (for
it has no place to go). This state of events is generally
called “congestion”. The performance impact of lost data
can be severe for some applications, since they must first
establish that the data was lost and finally negotiate re-
transmission.

3.2 Reliable forwarding

A simple way to prevent buffer overflows is to apply flow
control between all adjacent nodes. By providing feed-
back between nodes, they can inform one another about

4

buffer availability and constrain data rates appropriately.
However, the efficiency of flow control for two nodes de-
pends on the consistency of the path between them. If path
properties like bandwidth or latency can vary, the flow
control can be only approximate or must be made suffi-
ciently conservative tolerate any possible variation. Con-
sequently, flow control can be implemented with maxi-
mal efficiently using a synmux platform with determinis-
tic communication.

Consider a pair of directly connected nodes, identi-
fied assourceandsink respectively, such that the source
wishes to use some resource at the sink which is nonde-
terministically available. Assume that some memory is
set aside at the sink to buffer data arriving from the source
when the resource is unavailable.

Let a feedback message be sent at a regular intervalI
with the measured quantity of available bufferAm at the
time the message was sent. If the message is received at
time Trx, after a latencyL, this means thatA amount of
buffer was available at timeTtx = Trx − L. The source
can then conservatively estimate the remaining available
buffer Aer, by subtracting the amount of data which has
arrived at the sink sinceTtx from A. Note that this requires
knowing the data transfer latency. By sending less than
Aer data before performing the same calculation for the
next feedback update, the source can maintain the invari-
ant that data is not lost due to buffer overflow.

Basically, this protocol allows the source to send bursts
of data to the sink. The size of a burst is bounded by the
size of the buffer which the sink has dedicated to data ar-
riving from the source. Once a burst worth of data has
been sent, however, the source must wait for feedback.
The source conservatively estimates that the resource may
be unavailable and thus that the buffer may remain full
(not drain). This estimate is then revised on each feed-
back iteration, based on actual measurements at the sink.
Thus, the buffer capacity is never exceeded. When ap-
plied for all links in a network, these bounds on trans-
mission achieve a form of distributed “source blocking”,
where nodes are unable to transmit more data than can be
accepted by the network without risk of loss.

Because feedback is required to send more than one full
burst of data, the sink has control over the source rate by
choosing the buffer size. The maximum source transfer
rateR (in data units per time unit) is determined by the
following formula over the link latencyL, the buffer size
B, and the feedback intervalI :

R= B / (L + I)

This equation can also derive the amount of buffer
memory needed to support a specific source rate. How-
ever, since the relationship is not constant but a linear
function, supporting high source rates can become expen-

sive. This issue is addressed in more detail below, by pro-
viding an additional mechanism for large transfers.

3.3 Without determinism

On the other hand, if the nodes are not synchronized or
if link latencies are nondeterministic, reliability becomes
more expensive. Optimizing this process has received a
great deal of research attention in the form of the con-
gestion control technique used by the Internet transport
control protocol (TCP) [18], but efficiency is limited by
the great complexity involved. TCP congestion control is
similar to flow control, but instead treats packet loss as
approximate and indirect feedback. This is because there
can be an indeterminate number of intermediate nodes
along a communication path. While they may each cause
variations in the path latency and bandwidth properties,
direct communication with each one is impractical.

In the special case where the link latency is known and
only synchronization is missing, interestingly, the flow
control process itself can cause synchronization. This
principle, combined with isochronous (fixed frequency)
emptying of buffer memory, is the gist of an efficient pro-
cess to provide network-wide communication synchrony
[22].

The ultimate form of nondeterminism is physical com-
ponent failure. If such failure occurs, data can always be
lost. As explained by the end-to-end argument, tolerance
for failure must always be dealt with at the application
level, even if intermediate components are highly reliable.

3.4 Lightweight circuits

While careful flow control can make statmux forwarding
reliable, it is also possible to configure synmux resources
to create dedicated communication channels which are
both reliable and more efficient.

Definecircuit to indicate a fixed path communication
channel between two nodes in the system with precisely
known latency and bandwidth. Circuits are very simple
to provide in a synmux system, since communication re-
sources behave deterministically. Each link directly con-
necting two nodes is a circuit. If nodes are not directly
connected, a circuit can be formed by combining those
circuits along a path between them. This requires that in-
termediate nodes forward data between the adjacent cir-
cuits on the path. Assume that these connections can be
rapidly created and destroyed at low cost, making the cir-
cuits lightweight.

The primary complexity with circuits is not implement-
ing the circuits themselves, but rather the mechanism to
establish and manage them. For example, the circuit net-
work for voice telecommunications is very simple in prin-
ciple – all channels have equal bandwidth (e.g. 64Kbps)

5

and last for long periods of time (minutes). However, ex-
ternal networks of great complexity were built to operate
it, such as TMN and SS7 [24, 25]. In turn, this lead to the
misconception that circuit networks must be more com-
plex or “smarter” (and thus more expensive) than packet
networks.

For the purpose of the arguments being made here, it is
sufficient to assume that some circuit allocation and man-
agement system exists. The implementation of the alloca-
tion system for circuits are beyond the scope of this docu-
ment. Because the synmux platform assumed by this doc-
ument includes processing and storage resources as well
as communication, this allocator does not need to be an
external system like TMN – it can exist within a vertical
partition. This avoids a fundamental (often ignored) prob-
lem with external management systems, which is man-
aging the management system. An example allocation
system could be a vertical partition across the whole net-
work, within which a subset of the Internet protocol suite
is deployed. Circuit establishment could involve RSVP
[2], modified to configure synmux resources instead of IP
routers.

3.5 Traffic self-engineering

Neither of the above techniques perform well in isolation,
but they seem to complement one another perfectly. The
trouble with statmux, is that non-“bursty” traffic clogs up
forwarding buffers. Continuous data flows imposes a con-
stant memory load, reducing the burst-capacity for other
incoming data. The trouble with circuits, on the other
hand, is the cost of establishing them. The extra com-
munication to configure circuit resources (signaling), im-
poses both latency and bandwidth overhead. However,
these drawbacks effectively cancel one another out when
the approaches are applied cooperatively.

Traffic engineering for a packet network is the process
of provisioning capacity to match usage patterns [1]. The
above techniques support this in a fully automated fash-
ion. By combining rapidly configurable circuits with a
congestion-free statmux network, short-cut circuits can be
created for any traffic that would otherwise impose ongo-
ing buffer utilization.

Let a network be initially configured such that all link
bandwidth is used for statmux packet data, extended with
the reliable forwarding feedback and associated dedicated
buffer memory at each node. This facilitates low latency
communication for small messages, where the maximum
size is determined by the burst capacity of the buffers
along the message path. Large messages are possible as
well, but they may end up spread across the buffers on
multiple nodes and suffer latency penalties accordingly.

Short-cut circuits are established when nodes face on-

going utilization. Consider a chains of three nodesA, B
andC, connected in that sequence. If at any time,A is
forwarding packets throughB toC at some non-zero aver-
age rate, the buffer utilization atB could be improved by
creation of a circuit to directly connectA andC. This is
true for all such chains of nodes. In fact,B need not be
just one node, it can represent a whole cloud that is best
bypassed. This situation can be recognized at anyA node
by monitoring outbound traffic and identifying flows with
overlapping paths. IfA is the source for a multi-packet
message, it may thus create a circuit for the full path to
the destination and thus eliminate any statmux penalty for
large messages.

Given some circuit signaling mechanism, the band-
width for these short-cut circuits can be modulated over
time to match any continuous or predictable traffic load.
Using this technique, the latency benefits of a packet net-
work are retained while eliminating congestion and im-
proving utilization – all for arbitrary traffic patterns. It
is not coincidental that circuits and statmux work so well
together. Statmux is naturally a local allocation process,
while circuits are a distributed one. Traffic that exceeds
local resource availability cannot be addressed locally,
rather a distributed process should ideally cause traffic
to be generated at the source at an appropriate rate to
match bottlenecks along its path. Circuits embody the
distributed signaling and distributed state needed to im-
plement this.

Although the details here may be novel, this use of cir-
cuits bears strong resemblance to previous work, includ-
ing that by Zhang, Fernandez, and McKeown [17, 16] on
using ATM virtual circuits for TCP traffic. An important
difference, however, is that the technique here do not de-
pend on any higher level protocol to provide connection
information. Short-cuts can be created in a general man-
ner for all higher level causes of ongoing resource con-
tention.

4 Applied temporal logic

No less significant than improving existing applications,
is the prospect of enabling new ones. The field of tem-
poral logic provides powerful tools to analyze and de-
sign complex systems, but which generally assume syn-
chronous communication. While it is possible to automat-
ically translate synchronous systems into asynchronous
ones, there is normally a cost in terms of communication
overhead (application synchronization) or in terms of lost
parallelism. Synmux platforms provide the needed syn-
chrony, and hence can enable those applications that can-
not tolerate the translation penalties.

Temporal logic is currently widely used for specifying
and verifying the correctness of programs, especially con-

6

current ones. A special type of modal logic, it provides a
formal system to reason about changes in the truth of as-
sertions over time. Examples of temporal logic operators
include sometimesand always, in addition to the tradi-
tional operators in boolean logic. Naturally, the logic as-
sumes that a single discrete sequence of time applies to all
program components.

4.1 Testing for absence

Possibly the most important feature of a synchronous sys-
tem is the ability to test for the absence of data on a com-
munication channel. This concept is fundamental to digi-
tal circuit design, since binary data is often defined as ei-
ther the presence or absence of signal on a channel. Syn-
chronous communication provides the same ability for
distributed systems, the ability to know when to sample
a channel without explicit coordination.

This is obviously impossible for an asynchronous sys-
tem, since there is no time relationship between compo-
nents by definition – a component would not know when
or for how long to wait. A plesiochronous system on
the other hand provides some information of how long to
wait, but still requires additional synchronizing communi-
cation to establish when to test – effectively defeating the
efficiency implied by “absence” of data.

The use of timeout mechanisms in architectures like the
Internet is an interesting example. The timing intervals
for timeouts is often extremely coarse, reflecting an as-
sumption of rough synchrony for the system, at least at
the level of human time (seconds). This assumption is of-
ten reasonable, because routers which can arbitrarily take
either nanoseconds or years to switch a packet are effec-
tively useless. However, greater synchrony would allow
greater efficiency and robustness.

4.2 Reactive systems

Consider what kinds of programs are best targeted by
powerful temporal logic analysis. Suppose programs are
classified into two groups, those that are self-contained
with sequential execution, and all the rest. Sequential self-
contained programs are given starting inputs, and they
simply perform calculations without further interaction
until providing a result and terminating. It is the behav-
ior of the other class of programs, calledreactive systems,
which is more complex and hence required powerful tools
to help reason about [8, 14].

Reactive systems include those programs which are de-
signed to continuously interact with their environment,
meaning other programs, sensors, actuators, etc. These
programs follow a “reactive cycle” of input, processing,
and output. Because of this, they can even experience

feedback, meaning that the outputs during one cycle may
affect the inputs during future cycles. This class of pro-
grams is the usual focus of temporal logic. Examples
of reactive programs include network protocols, process
control systems, etc.

4.3 Synchronous languages

Esterel [7], Lustre [13], and Signal [12] form a family
of languages designed to express reactive programs in a
manner that promotes the application of temporal logic.
Central to their design, is the assumption that all concur-
rent processes are synchronized to share a sequence of
discrete time steps. This property allows the language to
enforce deterministic interaction between software com-
ponents and thereby increase confidence in overall sys-
tem correctness. Accordingly, these languages have had
commercial success in the domain of safety critical sys-
tems such as those for avionics, automotive control, and
nuclear power plants [6].

To ensure the correctness of a system, both the software
and the hardware require extensive analysis. While these
languages provide capabilities to ensure software deter-
minism, the lack of general purpose deterministic plat-
forms often requires expensive custom implementations
for their programs. Within the realm of hard-real-time
systems, efforts such as the Time-Triggered Architecture
[15] seek to address this need.

Increasing confidence in software correctness is always
important, including for general purpose shared infras-
tructures. In hardware design, synchronization has long
been the foundation for ensuring the correctness of com-
plex systems. The synchronous language community has
demonstrated that the same principles apply to software.
However, the implementation platform for such software
is missing.

Without a deterministic synchronous platform, im-
plementation of synchronous programs must be “de-
synchronized” [5]. This means either that all communi-
cation between concurrent components must include ex-
plicit synchronization signaling, or that concurrency is
eliminated by imposing a sequential total order on the
program. Both solutions are undesirable. The former im-
poses significant overhead and prevents hard real-time ap-
plications which must remain not only internally synchro-
nized, but also interact with devices in a timely manner.
The latter eliminates any scalability otherwise available
through parallelism.

5 Conclusion

Given that synchronous communication can be efficiently
implemented on a wide variety of platforms, most com-

7

puting and communication infrastructures should evolve
to include this capability and exploit its benefits. This is
not to say that asynchronous approaches should be super-
seded, simply that they are not universal. Instincts to as-
sume that they are, on the part of the community, should
be reconsidered. Synchronous architectures deserve of
far more research attention. Because this domain is sig-
nificantly outside the familiar subjects of the community,
this document tries to extensively motivate its relevance,
at the expense of technical details. Supporting technical
papers provide specific design and implementation points
to show that achieving the needed platform capabilities is
not only possible, but practical.

A convenient feature of vertical partitioning is that it
simplifies supporting legacy systems – they can simply
be implemented in such a partition and possibly be none
the wiser. Take the Internet architecture for example, or
even better an extension of it to support computation and
storage such as PlanetLab [4] or the Grid [10]. Any of
these can be deployed within a distributed virtual parti-
tion with no negative performance implications. In fact,
multiple instances of possibly different software versions
could co-exist side by side.

While it might seem unrealistic to change core infras-
tructure in the fundamental manner needed to support syn-
chrony and determinism, consider that the new platforms
can be deployed and also taken advantage of incremen-
tally. This is because it can easily interface with legacy
systems, while only exposing the new functionality where
needed.

References

[1] Daniel O. Awduche, Angela Chiu, Anwar Elwalid,
Indra Widjaja, and XiPeng Xiao. Overview and prin-
ciples of internet traffic engineering. Internet-Draft
Version 02, Internet Engineering Task Force (IETF),
2001.

[2] F. Baker, B. Braden, S. Bradner, M. O‘Dell, A. Ro-
manow, A. Weinrib, and L. Zhang. Resource
reservation protocol (RSVP). Request for Com-
ments (RFC) 2208, Internet Engineering Task Force
(IETF), September 1997.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of virtu-
alization. InProceedings of the ACM Symposium on
Operating Systems Principles (SOSP), pages 164–
177, Bolton Landing (Lake George), NY, October
2003.

[4] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Kar-
lin, S. Muir, L. Peterson, T. Roscoe, T. Spalink,
and M. Wawrzoniak. Operating system support for
planetary-scale network services. InSymposium
on Networked Systems Design and Implementation
(NSDI), pages 253–266, San Francisco, CA, March
2004.

[5] Albert Benveniste, Benot Caillaud, and Paul Le
Guernic. Compositionality in dataflow synchronous
languages: specification and distributed code gener-
ation. Information and Computation, 163(1):125–
171, November 2000.

[6] Albert Benveniste, Paul Caspi, Stephan A. Edwards,
Nicolas Halbwachs, Paul Le Guernic, and Robert
de Simone. The synchronous languages 12 years
later. Proceedings of the IEEE, 91(1):64–83, Jan-
uary 2003.

[7] Gerard Berry. The foundationis of esterel. In
G. Plotkin, C. Stirling, and M. Tofte, editors,Proof,
Language and Interaction: Essays in Honour of
Robin Milner. The MIT Press, 1998.

[8] E. Allen Emerson. Temporal and modal logic. In
Handbook of theoretical computer science (vol. B):
formal models and semantics, pages 995–1072. The
MIT Press, Cambridge, MA, 1991.

[9] Dawson R. Engler and M. Frans Kaashoek. Ex-
okernel: an operating system architecture for
application-level resource management. InProceed-
ings of the ACM Symposium on Operating Systems
Principles (SOSP), pages 251–266, Copper Moun-
tain Resort, CO, October 1997.

[10] Ian Foster and Carl Kesselman, editors.The GRID:
Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann Publishers, Inc., San Francisco, CA,
1999.

[11] Jim Grace, Richard Breault, John Jaeger, and Lou
Wojnaroski. ATM user-network interface specifica-
tion v3.0. Standard Specification af-uni-0010.001,
ATM Forum, September 1993.

[12] P. Le Guernic, A. Benveniste, P. Bournai, and
T. Gautier. Signal – a data flow-oriented language
for signal processing.IEEE Transactions on Signal
Processing, 34(2):362–374, April 1986.

[13] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEEE, 1991.

8

[14] Nicholas Halbwachs. Synchronous programming of
reactive systems: a tutorial and commented bibli-
ography. InProceedings of the International Con-
ference on Computer Aided Verication (CAV), num-
ber 1497 in LNCS, pages 1–16, Vancouver, British
Columbia, Canada, June 1998.

[15] Hermann Kopetz and Gunther Bauer. The time-
triggered architecture. Proceedings of the IEEE,
91(1):112–126, January 2003.

[16] Pablo Molinero-Ferńandez and Nick McKeown.
The performance of circuit switching in the inter-
net. OSA Journal of Optical Networking, 2(4):83–
96, March 2003.

[17] Pablo Molinero-Ferńandez, Nick McKeown, and
Hui Zhang. Is IP going to take over the world (of
communications)? InACM HotNets, October 2002.

[18] Jon Postel. Transmission control protocol (TCP).
Request for Comments (RFC) 793, Internet Engi-
neering Task Force (IETF), September 1981.

[19] Richard Rashid, Daniel Julin, Douglas Orr, Richard
Sanzi, Robert Baron, Alesandro Forin, David Golub,
and Michael B. Jones. Mach: a system software ker-
nel. In Proceedings of the IEEE Computer Society
International Conference (COMPCON), pages 176–
178, San Francisco, CA, March 1989.

[20] Dennis M. Ritchie and Ken Thompson. The
unix time-sharing system. Communications of
the Association for Computing Machinery (CACM),
17(7):365–375, July 1974.

[21] E. Rosen. Multiprotocol label switching architec-
ture. Request for Comments (RFC) 3031, Internet
Engineering Task Force (IETF), January 2001.

[22] Tammo Spalink. Communication synchronization.
Technical Report TR-722-05, Princeton University,
2005.

[23] Telcordia Technologies, Inc. Synchronous opti-
cal network (SONET) transport systems: Com-
mon generic criteria. Document Number GR-253,
September 2000.

[24] Divakara K. Udupa. TMN: Telecommunications
Management Network. The McGraw-Hill Compa-
nies, Inc., New York, NY, 1999.

[25] John G. van Bosse.Signaling in Telecommunication
Networks. John Wiley & Sons, Inc., New York, NY,
1998.

9

