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Abstract

In [ACN], Ailon, Charikar and Newman address the problems of rank aggregation, minimum
feedback arc set in tournaments, correlation clustering and consensus clustering. They present
new and improved combinatorial algorithms for approximating these problems. They also present
variants of these algorithms based on linear programming rounding techniques, further improving
the approximation factors. The LP based results in [ACN] are, however, left as conjectures based
on numerical evidence. In this work, which should be read as an annex to [ACN], we prove these
conjectures and henceforth establish theorems.

0 Introduction

We refer the reader to [ACN] for the definitions of the problems (weighted) Fas-Tournament, Rank-

Aggregation, (weighted) Correlation-Clustering and Consensus-Clustering, as well as the
definitions of the algorithms FasLP-Pivot, Pick-A-Perm, CCLP-Pivot and Pick-A-Cluster.
We prove the following theorems.

Theorem 1 The best of FasLP-Pivot and Pick-A-Perm on Rank-Aggregation is a 4/3 ap-

proximation.

Theorem 2 FasLP-Pivot on weighted Fas-Tournament with probability constraints is a 5/2 ap-

proximation.

Theorem 3 FasLP-Pivot on weighted Fas-Tournament with triangle inequality and probability

constraints is a 2 approximation.

Theorem 4 The best of CCLP-Pivot and Pick-A-Cluster on Consensus-Clustering is a 4/3
approximation.

Theorem 5 CCLP-Pivot on weighted Correlation-Clustering with probability constraints is a

5/2 approximation.

Theorem 6 CCLP-Pivot on weighted Correlation-Clustering with triangle inequality and prob-

ability constraints is a 2 approximation.
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†
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The proofs of Theorems 1-6 in Sections 1-6 are based on showing that certain multinomials are
nonpositive in certain polytopes. The reader is again referred to [ACN] for the reduction of the
theorems to the multinomial inequalities.

1 Proof of Theorem 1

Define

piv(x1, x2, x3, w1, w2, w3) = x1x2w3 + (1 − x1)(1 − x2)(1 − w3)

+ x2x3w1 + (1 − x2)(1 − x3)(1 − w1)

+ x3x1w2 + (1 − x3)(1 − x1)(1 − w2)

pap(x1, x2, x3, w1, w2, w3) = (x1x2 + (1 − x1)(1 − x2))2w3(1 − w3)

+ (x2x3 + (1 − x2)(1 − x3))2w1(1 − w1)

+ (x3x1 + (1 − x3)(1 − x1))2w2(1 − w2)

opt(x1, x2, x3, w1, w2, w3) = (x1x2 + (1 − x1)(1 − x2))(x3(1 − w3) + (1 − x3)w3)

+ (x2x3 + (1 − x2)(1 − x3))(x1(1 − w1) + (1 − x1)w1)

+ (x3x1 + (1 − x3)(1 − x1))(x2(1 − w2) + (1 − x2)w2)

f(x1, x2, x3, w1, w2, w3) =
2

3
piv +

1

3
pap − 4

3
opt

(1)

We want to prove that f ≤ 0 in the following polytope:

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

1 ≤ w1 + w2 + w3 ≤ 2

1 ≤ x1 + x2 + x3 ≤ 2

(2)

To do this, we first make the following assumption, without loss of generality

w1 + w2 + w3 ≥ 3/2.

(Otherwise, we can replace all wi with 1 − wi and all xi with 1 − xi). Next, we assume a slightly
larger polytope for the xi variables, therefore proving something slightly stronger. More precisely, we
prove that f ≤ 0 in the following polytope

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

3/2 ≤ w1 + w2 + w3 ≤ 2

x1 + x2 + x3 ≤ 2

(3)

(we removed the constraint 1 ≤ x1 + x2 + x3). Let Px denote the x polytope, and Pw denote the w
polytope, so the region of feasibility is Px × Pw ⊆ R

6.
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We first observe that for any i = 1, 2, 3, f if linear in xi when all other variables xj, wk are fixed,
for j ∈ {1, 2, 3}−{i}, k ∈ {1, 2, 3}. Therefore, if at a certain point (x,w) = (x1, x2, x3, w1, w2, w3) it is
possible to both increase and decrease xi without changing the other variables and without leaving the
polytope, then (x,w) is not a local maximum of f . Therefore, it suffices to analyze f in the following
regions:

P1 = {(0, 0, 0)} × Pw

P2 = {(0, 0, 1)} × Pw

P3 = {(0, 1, 0)} × Pw

P4 = {(1, 0, 0)} × Pw

P5 = (Px ∩ {x1 + x2 + x3 = 2}) × Pw

(4)

We start with P1. Simple calculations show that

f(0, 0, 0, w1, w2, w3) = 2 − 4

3
(w1 + w2 + w3) − 2

3
(w2

1 + w2
2 + w2

3) .

Clearly, this cannot be more than 0 under our assumption that w1 + w2 + w3 ≥ 3/2.

Next, we analyze f on P2. Simple calculations show that

f(1, 0, 0, w1, w2, w3) = −2

3
(w1 − 1)2,

which is, again, clearly at most 0.

Regions P3 and P4 are symmetric to P2 under variable renaming.

It remains to analyze f on P5. To do this we will slightly enlarge P5 and replace it with P ′
5, defined

as
P ′

5 = (Px ∩ {x1 + x2 + x3 = 2}) × P ′
w,

where P ′
w is the region obtained when removing the constraint 3/2 ≤ w1 + w2 + w3 from Pw. We now

write the partial derivatives of f w.r.t. w3 (similarly for w1, w2):

∂f

∂w3

=
1

3
((8x3 − 4w3)(x1x2 + (1 − x1)(1 − x2)) − 4(1 − x1)(1 − x2)) . (5)

Elementary computation shows that 5wf = 0 exactly when

w1 =
x2x3

x2x3 + (1 − x2)(1 − x3)
+ 2x1 − 1

w2 =
x3x1

x3x1 + (1 − x3)(1 − x1)
+ 2x2 − 1

w3 =
x1x2

x1x2 + (1 − x1)(1 − x2)
+ 2x3 − 1

(6)

Because we assume x1 + x2 + x3 = 2, we have that for any i 6= j, xi + xj ≥ 1, equivalently,
xixj ≥ (1 − xi)(1 − xj). Therefore (6) implies the following for i = 1, 2, 3:

wi ≥ 1

2
+ 2xi − 1 . (7)

Consequently, w1 + w2 + w3 ≥ 3

2
+ 2(x1 + x2 + x3) − 3 ≥ 5

2
> 2, which is outside Pw.
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Similarly, setting w1 = 1 and requiring that ∂f/∂w2 = ∂f/∂w3 = 0 results in a point which
is outside Pw, unless w2 + w3 = 1 (we take care of this case w1 + w2 + w3 = 2 shortly). . The
same for w2 = 1 or w3 = 1. If two of w1, w2, w3 are 1, then the third is 0, which is again the case
w1 + w2 + w3 = 2.

We now show that no local maximum of f can be obtained in P ′
5 when wi = 0, for any i. Assume

i = 1 (similarly for i = 2, 3). Using elementary techniques (details omitted), we can show that
∂f/∂w1 ≥ 0 when w1 = 0. Therefore, if (w2, w3) 6= (1, 1), then slightly increasing w1 would increase
f . If, however, (w1, w2, w3) = (0, 1, 1), then again, using elementary techniques, we show that f ≤ 0.

It therefore remains to investigate f on the region

(Px ∩ {x1 + x2 + x3 = 2}) × (Pw ∩ {w1 + w2 + w3 = 2}).

Let Qx = Px ∩ {x1 + x2 + x3 = 2} and Qw = Pw ∩ {w1 + w2 + w3 = 2}. Instead of investigating f on
Qx × Qw, we will investigate it on Qx × H, where H is the affince closure of Qw in R

3 (the unique
2 − dimensional hyperplane containing Qw). We fix x ∈ Qx and investigate f as a function of w. To
do this, we find the global maximum of f in H. It is easy to verify that unless x is a vertex of Qx (a
case which we already took care of), limw→∞ f = −∞, therefore f has a global maximum on Qx ×H.
This maximum is obtained when

5wf = λ(1, 1, 1)

for some λ 6= 0 (we already took care of the case λ = 0). That is, w has to satisfy:

∂f

∂w1

=
∂f

∂w2

=
∂f

∂w3

(8)

on H. It is immediate to verify that the unique solution to (8) is w = x. It therefore remains to
investigate g(x) = f(x,x) on Qx. We start by investigating it on intQx. A necessary condition for a
local maximum of g on intQx is

5g = λ′(1, 1, 1),

for some λ′. If λ′ = 0, then 5g = 0, which solves to the following possibilities: (x1, x2, x3) ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1)} . On all of these possibilities it is elementary to verify that g ≤ 0. If λ ′ 6= 0,
it means that

∂g

∂x1

=
∂g

∂x2

=
∂g

∂x3

.

Elementary calculations shows that this happens when

(x1, x2, x3) ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1), (2/3, 2/3, 2/3)} .

It is immediate to verify that g ≤ 0 on all of these possibilities. We now investigate g on the edges
of Qx. We pick the edge int({(1, x2, 1 − x2} ∩ Qx). (other 2 edges argued similarly). Letting h(x2) =
g(1, x2, 1 − x2), we immediately verify that h ≡ 0. The vertices of Qx can be argued for by trying all
possibilities and verifying that g ≤ 0. 2

2 Proof of Theorem 2

Let piv, opt be defined as in Section 1. Let

f(x,w) = piv − 5

2
opt ,
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where x = (x1, x2, x3) and w = (w1, w2, w3). We prove that f ≤ 0 on

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

1 ≤ x1 + x2 + x3 ≤ 2 .

(9)

Let Px denote the polytope corresponding to x and Pw denote the polytope (cube) corresponding to
w.

Clearly f is linear in w when x is fixed. So it suffices to investigate f on the vertices of Pw.
Due to the symmetric structure of f , it will suffice to investigate f on two points w = (0, 0, 0) and
w = (0, 0, 1).

1. Case w = (0, 0, 0). Let g(x) = f(x, 0, 0, 0). So

g = 3 − 9

2
(x1 + x2 + x3) + 6(x1x2 + x2x3 + x3x1) − 15x1x2x3 .

Since g is linear in each one of xi when the others are fixed, we can assume that either x1 +x2 +
x3 = 1 or x1 +x2 +x3 = 2 (otherwise, we can slightly both increase and decrease one of the xi’s
without leaving the polytope, therefore we are not at a local maximum).

(a) Subcase x1 + x2 + x3 = 1. Let h(x1, x2) = g(x1, x2, 1 − x1 − x2). We want to show that
h ≤ 0 on 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −3

2
+ 6(x1 + x2) − 6(x2

1 + x2
2) + 15(x1x

2
2 + x2

1x2) − 21x1x2 .

If x1 = 0 or x1 = 1 − x2 then h = −3(1 − 2x2)
2/2 ≤ 0. If ∂h/∂x1 = 0 then x1 = (1 − x2)/2

and h = −3x2(1 − 4x2 + 5x2
2)/4 which is ≤ 0 on x2 ∈ [0, 1].

(b) Subcase x1 + x2 + x3 = 2. Let h(x1, x2) = g(x1, x2, 2 − x1 − x2). We want to show that
h ≤ 0 on x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1.

h(x1, x2) = −6 + 12(x1 + x2) − 6(x2
1 + x2

2) + 15(x2
1x2 + x1x

2
2) − 36x1x2 .

If x1 = 1 or x1 = 1 − x2 then h = −9(1 − x2)x2 ≤ 0 on x2 ∈ [0, 1]. If ∂h/∂x1 = 0 then
x1 = (2 − x2)/2 and h = −3x2(12 − 14x2 + 5x2

2)/4, which is ≤ 0 when x2 ∈ [0, 1].

2. Case w = (0, 0, 1). Let g(x) = f(x, 0, 0, 1). So

g = −1

2
− (x1 + x2) +

1

2
x3 + (x1x2 + x2x3 + x3x1) − 5x1x2x3 .

As before, it suffices to investigate g when either x1 + x2 + x3 = 1 or x1 + x2 + x3 = 2.

(a) Subcase x1 + x2 + x3 = 1. Let h(x1, x2) = g(x1, x2, 1 − x1 − x2). We want to show that
h ≤ 0 on 0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −1

2
(x1 + x2) − (x2

1 + x2
2) + 5(x1x

2
2 + x2

1x2) − 6x1x2 .

If x1 = 0 then h = − 1

2
x2(1 + 2x2) ≤ 0 on x2 ∈ [0, 1]. Similarly holds when x2 = 0. If

x1 = 1 − x2 then h = − 3

2
+ x2 − x2

2 ≤ 0. We completed checking the boundary. There is no
solution to 5x1,x2

h = 0 in the interesting region.
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(b) Subcase x1 + x2 + x3 = 2. Let h(x1, x2) = g(x1, x2, 2 − x1 − x2). We want to show that
h ≤ 0 on x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1.

h(x1, x2) =
1

2
+

1

2
(x1 + x2) − (x2

1 + x2
2) + 5(x2

1x2 + x1x
2
2) − 11x1x2 .

If x1 = 1 then h = x2(−11 + 8x2)/2 ≤ 0 on x2 ∈ [0, 1]. Similarly if x2 = 1. If x1 = 1 − x2

then h = −4(1−x2)x2 ≤ 0 on x2 ∈ [0, 1]. The only solution to 5x1,x2
h = 0 in the interesting

region is x1 = x2 = (13 +
√

139)/30. At that point h = (−937 − 139
√

139)/1350 ≤ 0.

2

3 Proof of Theorem 3

Let piv, opt be defined as in Section 1. Let

f(x,w) = piv − 2opt ,

where x = (x1, x2, x3) and w = (w1, w2, w3). We prove that f ≤ 0 on

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

1 ≤ w1 + w2 + w3 ≤ 2

1 ≤ x1 + x2 + x3 ≤ 2 .

(10)

Let Px denote the polytope corresponding to x and Pw denote the polytope corresponding to w.

Clearly f is linear in w when x is fixed. So it suffices to investigate f on the vertices of Pw. Due
to the symmetric structure of f , it will suffice to investigate f on the point w = (0, 0, 1).

Let g(x) = f(x, 0, 0, 1). So

g = −(x1 + x2) + (x1x2 + x2x3 + x3x1) − 4x1x2x3 .

As in the previous sections, it suffices to investigate g when either x1 +x2 +x3 = 1 or x1 +x2 +x3 = 2.

1. Case x1 + x2 + x3 = 1. Let h(x1, x2) = g(x1, x2, 1 − x1 − x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −(x2
1 + x2

2) + 4(x1x
2
2 + x2

1x2) − 5x1x2 .

If x1 = 0 then h = −x2
2 ≤ 0. Similarly holds when x2 = 0. If x1 = 1−x2 then h = −1+x2 −x2

2,
which is ≤ 0 when x2 ∈ [0, 1]. We completed checking the boundary. The only solutions to
5x1,x2

h = 0 in the interior of the interesting region are x1 = x2 = 7/12 and x1 = x2 = 0. In the
former case we get h = −343/432 ≤ 0, and in the latter we get h = 0.

2. Case x1 + x2 + x3 = 2. Let h(x1, x2) = g(x1, x2, 2 − x1 − x2). We want to show that h ≤ 0 on
x1 ≤ 1, x2 ≤ 1, x1 + x2 ≥ 1.

h(x1, x2) = (x1 + x2) − (x2
1 + x2

2) + 4(x2
1x2 + x1x

2
2) − 9x1x2 .

If x1 = 1 then h = x2(−4 + 3x2) ≤ 0 on x2 ∈ [0, 1]. Similarly if x2 = 1. If x1 = 1 − x2 then
h = −3(1 − x2)x2 ≤ 0 on x2 ∈ [0, 1]. The only solution to 5x1,x2

h = 0 in the interesting region
is x1 = x2 = (11 +

√
73)/24. At that point h = (−539 − 73

√
73)/864 ≤ 0.

2
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4 Proof of Theorem 4

Define

piv(x1, x2, x3, w1, w2, w3) = (1 − x1)(1 − x2)w3 + (x1(1 − x2) + (1 − x1)x2)(1 − w3)

+ (1 − x2)(1 − x3)w1 + (x2(1 − x3) + (1 − x2)x3)(1 − w1)

+ (1 − x3)(1 − x1)w2 + (x3(1 − x1) + (1 − x3)x1)(1 − w2)

pap(x1, x2, x3, w1, w2, w3) = ((1 − x1)(1 − x2) + x1(1 − x2) + (1 − x1)x2)2w3(1 − w3)

+ ((1 − x2)(1 − x3) + x2(1 − x3) + (1 − x2)x3)2w1(1 − w1)

+ ((1 − x3)(1 − x1) + x3(1 − x1) + (1 − x3)x1)2w2(1 − w2)

opt(x1, x2, x3, w1, w2, w3) = ((1 − x1)(1 − x2) + x1(1 − x2) + (1 − x1)x2)(x3(1 − w3) + (1 − x3)w3)

+ ((1 − x2)(1 − x3) + x2(1 − x3) + (1 − x2)x3)(x1(1 − w1) + (1 − x1)w1)

+ ((1 − x3)(1 − x1) + x3(1 − x1) + (1 − x3)x1)(x2(1 − w2) + (1 − x2)w2)

f(x1, x2, x3, w1, w2, w3) =
2

3
piv +

1

3
pap − 4

3
opt

(11)

We want to prove that f ≤ 0 in the following polytope:

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

w1 ≤ w2 + w3, w2 ≤ w3 + w1, w3 ≤ w1 + w2

x1 ≤ x2 + x3, x2 ≤ x3 + x1, x3 ≤ x1 + x2

(12)

Let Px denote the x polytope, and Pw denote the w polytope, so the region of feasibility is
Px × Pw ⊆ R

6. It is not hard to see that

Px = Pw = conv{(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)} .

We first observe that for any i = 1, 2, 3, f if linear in xi when all other variables xj, wk are fixed,
for j ∈ {1, 2, 3}−{i}, k ∈ {1, 2, 3}. Therefore, if at a certain point (x,w) = (x1, x2, x3, w1, w2, w3) it is
possible to both increase and decrease xi without changing the other variables and without leaving the
polytope, then (x,w) is not a local maximum of f . Therefore, it suffices to analyze f in the following
regions:

P1 = {(1, 1, 1)} × Pw

P2 = conv{(0, 0, 0), (0, 1, 1), (1, 0, 1)} × Pw

P3 = conv{(0, 0, 0), (1, 0, 1), (1, 1, 0)} × Pw

P4 = conv{(0, 0, 0), (0, 1, 1), (1, 1, 0)} × Pw

(13)

It is easy to show that f(1, 1, 1, w1, w2, w3) = 0. It remains to analyze f on P2,P3 and P4. Due to
symmetery, we can consider only P2, which we rewrite as:

P2 = (Px ∩ {x3 = x1 + x2}) × Pw .
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From now on we therefore assume x3 = x1 + x2.

∂f

∂w3

=
1

3
[(8x3 − 4w3)((1 − x1)(1 − x2) + x1(1 − x2) + x2(1 − x1)) − 4(x1(1 − x2) + (1 − x1)x2)] .

(14)

(Similarly for ∂f/∂w1, ∂f/∂w2). Elementary computation shows that 5wf = 0 exactly when

w1 = w∗
1 :=

(1 − x2)(1 − x3)

(1 − x2)(1 − x3) + x2(1 − x3) + (1 − x2)x3

+ 2x1 − 1

w2 = w∗
2 :=

(1 − x3)(1 − x1)

(1 − x3)(1 − x1) + x3(1 − x1) + (1 − x3)x1

+ 2x2 − 1

w3 = w∗
3 :=

(1 − x1)(1 − x2)

(1 − x1)(1 − x2) + x1(1 − x2) + (1 − x1)x2

+ 2x3 − 1

(15)

Substituting x3 = x1 + x2, equation (15) implies

w∗
1 + w∗

2 =
(−1 + x1 + x2)

2(x1 + x2)(−1 + 2x1x2)

(−1 + x2
1
+ x1x2)(−1 + x2

2
+ x1x2)

.

This is easily proven to be ≤ 0, with equality when x1 + x2 = x3 = 1 or x1 = x2 = x3 = 0. Denote
these special cases by (i) and (ii), respectively. Therefore, unless we are in cases (i) or (ii), 5w1,w2

f = 0
is infeasible in the interesting region.

We can say more than that: It can be easily verified that w∗
3 ≥ 0, therefore, w∗

1 + w∗
2 < w∗

3 (unless
we are in cases (i) or(ii)). Let w

∗ = (w∗
1 , w

∗
2, w

∗
3). Let H be the hyperplane {w3 = w1 + w2}. By our

last claim, w
∗ and Pw are on either side of H (unless we are in cases (i) or (ii)). Let H+ denote the

closed halfspace determined by H that intersects Pw. Unless at least two xi’s equal 1 (in our case
this means (x1, x2, x3) = (1, 0, 1) or (0, 1, 1) - call this case (iii)), it is easy to see that f → −∞ as
‖w‖ → ∞. This is because the coefficient of w2

i in f are strictly negative. Therefore, the maximum of
f on w ∈ H+ (remember: x is fixed) is obtained on H (remember: (15) has only one solution). We
postpone cases (i),(ii) and (iii) to the end of the proof. So we need only consider f on

(Px ∩ {x3 = x1 + x2}) × (Pw ∩ {w3 = w1 + w2}.

From now on, we assume both x3 = x1 + x2 and w3 = w1 + w2. Let h(x1, x3, w1, w3) = f(x1, x3 −
x1, x3, w1, w3 − w1, w3). We investigate the 3 cases: w1 = 0, w1 = w3 and ∂h/∂w1 = 0.

1. If w1 = 0, then we define y(x1, x3, w3) = h(x1, x3, 0, w3). We want to show that y ≤ 0 in the
interesting region 0 ≤ x1 ≤ x3, 0 ≤ w3 ≤ 1. If w3 = 0, then we obtain the following polynomial
in x1, x3 of total degree 3 which is ≤ 0 in the interesting region (proof omitted):

4

3
x2

1 − 4

3
x1x3 − 4x2

1x3 − 4

3
x2

3 + 4x1x
2
3 .

If w3 = 1, then we obtain the following polynomial in x1, x3 of total degree 3 which is ≤ 0 (proof
omitted):

−4

3
− 4x1 − 2x2

1 +
8

3
x3 +

16

3
x1x3 +

4

3
x2

1x3 − 4

3
x2

3 − 4

3
x1x

2
3 .

Requiring ∂y/∂w3 = 0 implies

w3 = γ(x1, x3) =
−3x1 − 2x2

1 + 2x3 + 4x1x3 + 4x2
1x3 − 4x1x

2
3

2 + x2
1
− 2x1x3

.
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Let z(x1, x3) = (2 + x2
1 − 2x1x3)y(x1, x3, γ(x1, x3)). Since 2 + x2

1 − 2x1x3 ≥ 0, we need to prove
that z(x1, x3) ≤ 0 in the region 0 ≤ x1 ≤ x3 ≤ 1. Calculations show that

z(x1, x3) =
2

3
x1(13x1 + 12x2

1 + 6x3
1 − 16x3 − 44x1x3 − 46x2

1x3 − 22x3
1x3

+28x2
3 + 58x1x

2
3 + 66x2

1x
2
3 + 16x3

1x
2
3 − 12x3

3 − 44x1x
3
3 − 32x2

1x
3
3 + 16x1x

4
3) .

We want to show that z ≤ 0 in the interesting region 0 ≤ x1 ≤ x3 ≤ 1. For the sake of
simplicity, redefine z by ignoring the term 2

3
x1. We first prove our claim for x1 = 0: In this case,

z = −16x3 + 28x2
3 − 12x3

3. It is elementary to check that this expression is ≤ 0 when x3 ∈ [0, 1].
Assume now that x1 > 0. Define the set J = (0, 0.55] ∪ [0.7, 1]. We define 3 sets as follows:

l1 = {(x1, x3)|x3 = x1, x1 ∈ (0, 1]}
l2 = {(x1, x3)|x3 = 1, x1 ∈ (0, 1]}
l3 = {(x1, x3)|x3 = 1 + x1/2, x1 ∈ (0, 1]}
l4 = {(x1, x3)|x3 = 1.8, x1 ∈ J} .

On l1, it is elementary to verify that z = −x1 − 4x2
1 + 6x3

1, which is negative when x1 ∈ (0, 1].
On l2 it is elementary to verify that z = −x1, which is negative when x1 ∈ (0, 1]. On l3 it is
elementary to verify that z = x1 −x3

1 +x5
1, which is obviously positive when x1 ∈ (0, 1]. On l4 it

is elementary to verify that z = (−5040 + 20671x1 − 27240x2
1 + 11400x3

1)/625 < 0 when x1 ∈ J .
It is now clear that z < 0 in the interesting region restricted to {x1 ∈ J}: Fix x1 ∈ J , and notice
that z → +∞ when x3 → ±∞. By counting the number of sign changes as a function of x3 we
conclude that z must be negative in the interesting region restricted to {x1 ∈ J}. It remains to
analyze z in the region

R = {(x1, x3)|x1 ∈ K,x1 ≤ x3 ≤ 1} ,

where K is the open interval (0.55, 0.7). We first show that in the interior of R, the equation
∂z/∂x3 = 0 has a solution only for x3 < 0.7. We prove this by arguing (details omitted) that:

∂z/∂x3 < 0 when x3 = 1.7, x1 ∈ K

∂z/∂x3 > 0 when x3 = 1, x1 ∈ K

∂z/∂x3 > 0 when x3 = 0.7, x1 ∈ K .

Then by a simple counting of sign changes of ∂z/∂x3 as a function of x3 (which is a degree 3
polynomial when x1 ∈ K fixed) we reach the required conclusion. It remains to analyze z in the
region

Q = {(x1, x3)|x1, x3 ∈ K,x1 ≤ x3} .

We show that z does not have any local maxima in the interior of Q. It suffices to show that
∂2z/∂x2

3 > 0 in the interior of Q. We prove this by arguing (details omitted) that:

∂2z/∂x2
3 < 0 when x3 = 1, x1 ∈ K

∂2z/∂x2
3 > 0 when x3 = 0.7, x1 ∈ K

∂2z/∂x2
3 > 0 when x3 = x1, x1 ∈ K ,

Then by a simple counting of sign changes of ∂2z/∂x2
3 as a function of x3 (which is a degree 2

polynomial when x1 ∈ K fixed) we reach the required conclusion.
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2. Assume w1 = w3: If w1 = w3 = 0, then

h = 4x2
1/3 − 4x1x3/3 − 4x2

1x3 − 4x2
3/3 + 4x1x

2
3 .

The can be shown to be ≤ 0 in the interesting region (proof omitted). If w1 = w3 = 1 then

h =
2

3
(−2 + 6x1 − 3x2

1 − 2x3 − 2x1x3 + 2x2
1x3 + 3x2

3 − 2x1x
2
3 .

This polynomial can be shown to be ≤ 0 in the interesting region (proof omitted). Setting
p(x1, x3, w1) = h(x1, x3, w1, w1), and forcing ∂p/∂w1 = 0 implies

w1 = δ(x1, x2) =
3x1 − 2x2

1 − x3 + 4x2
1x3 + 2x2

3 − 4x1x
2
3

2 + x2
1
− x2

3

.

Let q(x1, x3) = (2+x2
1 −x2

3)p(x1, x3, δ(x1, x3)). We want to prove that q ≤ 0 in 0 ≤ x1 ≤ x3 ≤ 1.
Calculations show that

q(x1, x3) =
2

3
(x1 − x3)(13x1 − 12x2

1 + 6x3
1 + 3x3 − 20x1x3 + 28x2

1x3

− 22x3
1x3 + 4x2

3 − 16x1x
2
3 + 16x3

1x
2
3 − 6x3

3 + 22x1x
3
3 − 16x2

1x
3
3) .

To prove this, we omit the 2

3
(x1 − x3) factor and redefine

q(x1, x3) = (13x1 − 12x2
1 + 6x3

1 + 3x3 − 20x1x3 + 28x2
1x3

− 22x3
1x3 + 4x2

3 − 16x1x
2
3 + 16x3

1x
2
3 − 6x3

3 + 22x1x
3
3 − 16x2

1x
3
3) .

We want to show that q ≥ 0 in 0 ≤ x1 ≤ x3 ≤ 1. We omit the proof of this on the boundary of
the region. We prove this for two subcases.

(a) Case 0.4 ≤ x1 < 1. We define three line segments:

l1 = {(x1, x3)|x3 = x1, 0.4 ≤ x1 < 1}
l2 = {(x1, x3)|x3 = 1, 0.4 ≤ x1 < 1}
l3 = {(x1, x3)|x3 = 1.2, 0.4 ≤ x1 < 1}

It is not hard to show that q > 0 on l1 and l2 and q < 0 on l3. It is also not hard to see
that q → ±∞ as x3 → ±∞, when 0.4 ≤ x1 < 1 (simply by showing that the coefficient of
x3

3 is positive for such x1). Therefore, by counting sign changes, we conclude that q ≥ 0 in
the region.

(b) Case 0 < x1 < 0.4. We look for a point (x1, x3) in this region for which ∂q/∂x1 = 0.

∂q

∂x1

= 13 − 24x1 + 18x2
1 − 20x3 + 56x1x3 − 66x2

1x3 − 16x2
3 + 48x2

1x
2
3 + 22x3

3 − 32x1x
3
3 .

We define four line segments

l1 = {(x1, x3)|x3 = 0, 0 < x1 < 0.4}
l2 = {(x1, x3)|x3 = 0.59, 0 < x1 < 0.4}
l3 = {(x1, x3)|x3 = 0.65, 0 < x1 < 0.4}
l4 = {(x1, x3)|x3 = 1, 0 < x1 < 0.4}
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It is not hard to show that ∂q/∂x1 > 0 on l1 and l2, and that ∂q/∂x1 < 0 on l3 and
l4. Also it is easy to see that ∂q/∂x1 → ±∞ as x3 → ±∞ when 0 < x1 < 0.4. By
counting sign changes, we conclude that ∂q/∂x1 can vanish in the interesting region only
when 0.59 < x3 < 0.65. We are therefore left with the task of showing that q ≥ 0 in the
region

{(x1, x3)|0.59 < x3 < 0.65, 0 < x1 < 0.4} .

To do this we replace q with a function q̃ that lower bounds q, as follows: replace x3 with
0.59 in any positive term of q, and with 0.65 in any negative term of q. The function
q̃ thus obtained clearly lower bounds q, and it suffices to show that q̃ ≥ 0 in the region
0 < x1 < 0.4. It can be easily verified that

q̃ =
30293

20000
− 1120831

500000
x1 +

63

500
x2

1 − 3413

1250
x3

1 .

Proving that q̃ ≥ 0 in the region 0 < x1 < 0.4 is omitted.

3. Assume ∂h/∂w1 = 0. We distinguish between 3 subcases: case x1 = 0, case x1 = x3 and case
∂h/∂x1 = 0.

(a) (∂h/∂w1 = 0, x1 = 0). In this case we get

w1 = ν(x3, w3) =
−w3 + 3x3 − 2x2

3

−2 + x2
3

.

Substituting, we define v(x3, w3) = (2 − x2
3)h(0, x3, ν(x3, w3), w3). We need to show that

v ≤ 0 in 0 ≤ x3 ≤ 1, 0 ≤ w3 ≤ 1. We have an additional constraint, namely, the assertion
w1 = ν(x3, w3) ≥ 0, which implies w3 ≥ 3x3 − 2x2

3. We omit the technical proof of v ≤ 0 in
this region.

(b) (∂h/∂w1 = 0, x1 = x3). In this case we get

w1 = µ(x3, w3) =
−w3 − 3x3 + 2x2

3 + w3x
2
3

−2 + x2
3

.

We define u(x3, w3) = (2−x2
3)h(x3, x3, µ(x3, w3), w3). We want to prove u ≤ 0 in the region

0 ≤ x3 ≤ 1, 0 ≤ w3 ≤ 1, with the additional constraint w1 = µ(x3, w3) ≤ w3, which implies
w3 ≥ 3x3 − 2x2

3. We omit the proof of this assertion.

(c) (∂h/∂w1 = 0, ∂h/∂x1 = 0). Calculations show that this implies w1 = w3/2, x1 = x3/2.
Thus we define

r(w3, x3) = h(x3/2, x3, w3/2, w3) =
1

3
(−3w2

3 +2w3x3 −5x2
3 +6w3x

2
3 +w2

3x
2
3 +3x3

3 −4w3x
3
3) .

We show that r ≤ 0 in the region 0 ≤ x3 ≤ 1, 0 ≤ w3 ≤ 1. If w3 = 0, then it can be easily
shown that r = −5x2

3/3 + x3
3 ≤ 0. If w3 = 1, then r = (−3 + 2x3 + 2x2

3 − x3
3)/3, which is

also ≤ 0 (proof omitted). If ∂r/∂w3 = 0, then

w3 = ρ(x3) =
−x3 − 3x2

3 + 2x3
3

−3 + x2
3

.

We define s(x3) = (3 − x2
3)r(x3, ρ(x3)). We need to prove that s ≤ 0 when 0 ≤ x3 ≤ 1.

Simple calculations show that

s(x3) =
1

3
(−2 + x3)(−1 + x3)x

2
3(1 + x3)(−7 + 4x3) ≤ 0 .
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We are left with cases (i), (ii) and (iii), defined above.

Case (i). x1 + x2 = x3 = 1. Let g(x1, w1, w2, w3) = f(x1, 1 − x1, 1, w1, w2, w3). In this case,
5w1,w2

g = 0 exactly when w1 = −1 + 2x1 and w2 = 1 − 2x1. This implies that w1 + w2 = 0, meaning
that w

∗ is again on the other side of H (w.r.t Pw), unless w3 = 0. The proof therefore continues as
before. If w1 = w2 = w3 = 0, we get g = 4(−1 + 2x1(1 − x1))/3 ≤ 0.

Case(ii). x1 = x2 = x3 = 0. This implies f = −2(w2
1 + w2

2 + w2
3) ≤ 0.

Case(iii). Assume x1 = 1, x2 = 0, x3 = 1. In this case we have,

f = −(4 + 2w1(2 − w1) + 2w3(2 − w3))/3 ≤ 0 .

2

5 Proof of Theorem 5

Let piv, opt be defined as in Section 4. Let

f(x,w) = piv − 5

2
opt ,

where x = (x1, x2, x3) and w = (w1, w2, w3). We prove that f ≤ 0 on

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

x1 ≤ x2 + x3, x2 ≤ x3 + x1, x3 ≤ x1 + x2

(16)

Let Px denote the polytope corresponding to x and Pw denote the polytope (cube) corresponding to
w.

Clearly f is linear in w when x is fixed. So it suffices to investigate f on the vertices of Pw. Due to
the symmetric structure of f , it will suffice to investigate f on the points w = (0, 0, 0), w = (0, 0, 1),
w = (1, 1, 0), w = (1, 1, 1).

1. Case w = (0, 0, 0). Let g(x) = f(x, 0, 0, 0). So

g = −1

2
(x1 + x2 + x3) − 2(x1x2 + x2x3 + x3x1) +

15

2
x1x2x3 .

Since g is linear in each one of xi when the others are fixed, we can assume that either x3 = x1+x2,
x2 = x1 +x3, x1 = x2 +x3 or (x1, x2, x3) = (1, 1, 1) (see Section 4). The latter case will be taken
care of at the end of the proof. Due to symmetry, we can consider only x3 = x1 + x3.

• Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −(x1 + x2) − 2(x2
1 + x2

2) +
15

2
(x1x

2
2 + x2

1x2) .

If x1 = 0 then h = −x2(1 + 2x2) ≤ 0. Similarly if x2 = 0. If x1 = 1 − x2 then h =
(−6 + 11x2 − 11x2

2)/2 ≤ 0. There is no solution to 5x1,x2
h = 0 in the region of interest.
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2. Case w = (0, 0, 1). Let g(x) = f(x, 0, 0, 1). So

g = −3

2
− 5

2
(x1 + x2) +

9

2
x3 − 2(x1x3 + x2x3) +

7

2
x1x2 +

5

2
x1x2x3 .

Due to the structure of f and the symmetries, it suffices to investigate g when either x1 = x2+x3,
x3 = x1 + x2 or x = (1, 1, 1). The latter case will be taken care of separately.

(a) Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −3

2
+ 2(x1 + x2) − 2(x2

1 + x2
2) +

5

2
(x1x

2
2 + x2

1x2) − 1

2
x1x2 .

If x1 = 0 then h = − 3

2
+ 2(1 − x2)x2 ≤ 0 on x2 ∈ [0, 1]. Similarly holds when x2 = 0. If

x1 = 1 −x2 then h = − 3

2
(1 − 2x2)

2 ≤ 0. We completed checking the boundary. There is no
solution to 5x1,x2

h = 0 in the interesting region.

(b) Subcase x1 = x2 + x3. Let h(x2, x3) = g(x2 + x3, x2, x3). We want to show that h ≤ 0 on
0 ≤ x2, 0 ≤ x3, x2 + x3 ≤ 1.

h(x1, x2) = −3

2
+ −5x2 + 2x3 +

7

2
x2

2 − 2x2
3 +

5

2
(x2

2x3 + x2x
2
3) − 1

2
x2x3 .

If x2 = 0 then h = −3/2 − 2(−1 + x3)x3 ≤ 0. If x3 = 0 then h = − 3

2
+ x2(−5 + 7

2
x2) ≤ 0

when x2 ∈ [0, 1]. If x2 = 1 − x3 then h = (−6 + 4x3 − x2
3)/2 ≤ 0 on x2 ∈ [0, 1]. There is no

solution to 5x2,x3
h = 0 in the interesting region.

3. Case w = (1, 1, 0). Let g(x) = f(x, 1, 1, 0). So

g = −3 +
5

2
(x1 + x2) − 9

2
x3 +

7

2
(x1x3 + x2x3) − 2x1x2 − 5

2
x1x2x3 .

Due to the structure of f and the symmetries, it suffices to investigate g when either x1 = x2+x3

,x3 = x1 + x2, or x = (1, 1, 1). The latter case will be taken care of separately.

(a) Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −3 − 2(x1 + x2) +
7

2
(x2

1 + x2
2) − 5

2
(x1x

2
2 + x2

1x2) + 5x1x2 .

If x1 = 0 then h = −3 + x2(−2 + 7

2
x2) ≤ 0 when x1 ∈ [0, 1]. Similarly holds when

x2 = 0. If x1 = 1 − x2 then h = 3(−1 − 3x2 + 3x2
2)/2 ≤ 0 when x2 ∈ [0, 1]. We completed

checking the boundary. The only solution to 5x1,x2
h = 0 in the interesting region is

x1 = x2 = 2(6 −
√

21)/15, at which h = (−243 − 112
√

21)/225 ≤ 0.

(b) Subcase x1 = x2 + x3. Let h(x2, x3) = g(x2 + x3, x2, x3). We want to show that h ≤ 0 on
0 ≤ x2, 0 ≤ x3, x2 + x3 ≤ 1.

h(x2, x3) = −3 + 5x2 − 2x3 − 2x2
2 +

7

2
x2

3 − 5

2
(x2

2x3 + x2x
2
3) + 5x2x3 .

If x2 = 0 then h = −3 + x3(−2 + 7

2
x3) ≤ 0 when x3 ∈ [0, 1]. If x3 = 0 then h =

−3 + x2(5 − 2x2) ≤ 0 for x2 ∈ [0, 1]. If x2 = 1 − x3 then h = −x3/2 − x2
3 ≤ 0 on x3 ∈ [0, 1].

There is no solution to 5x2,x3
h = 0 in the interesting region.
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4. Case w = (1, 1, 1). Let g(x) = f(x, 1, 1, 1). So

g = −9

2
+

1

2
(x1 + x2 + x3) +

7

2
(x1x2 + x2x3 + x3x1) − 15

2
x1x2x3 .

Since g is linear in each one of xi when the others are fixed, we can assume that either x3 = x1+x2,
x2 = x1+x3,x1 = x2+x3 or (x1, x2, x3) = (1, 1, 1). The latter case will be taken care of separately.
Due to symmetry, we can consider only x3 = x1 + x3.

• Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −9

2
+ (x1 + x2) +

7

2
(x2

1 + x2
2) − 15

2
(x1x

2
2 + x2

1x2) +
21

2
x1x2 .

If x1 = 0 then h = − 9

2
+x2(1+ 7

2
x2) ≤ 0 when x2 ∈ [0, 1]. Similarly if x2 = 0. If x1 = 1−x2

then h = 4x2(−1 + x2), which is ≤ 0 when x2 ∈ [0, 1]. There is no solution to 5x1,x2
h in

the interesting region.

It remaines to investigate f when x = (1, 1, 1). It is not hard to see that f(1, 1, 1,w) = 0, as
required. 2

6 Proof of Theorem 6

Let piv, opt be defined as in Section 4. Let

f(x,w) = piv − 2opt ,

where x = (x1, x2, x3) and w = (w1, w2, w3). We prove that f ≤ 0 on

0 ≤ wi ≤ 1 i = 1, 2, 3

0 ≤ xi ≤ 1 i = 1, 2, 3

w1 ≤ w2 + w3, w2 ≤ w3 + w1, w3 ≤ w1 + w2

x1 ≤ x2 + x3, x2 ≤ x3 + x1, x3 ≤ x1 + x2

(17)

Let Px denote the polytope corresponding to x and Pw denote the polytope (cube) corresponding to
w.

Clearly f is linear in w when x is fixed. So it suffices to investigate f on the vertices of Pw. Due to
the symmetric structure of f , it will suffice to investigate f on the points w = (0, 0, 0), w = (1, 1, 0),
w = (1, 1, 1).

1. Case w = (0, 0, 0). Let g(x) = f(x, 0, 0, 0). So

g = −2(x1x2 + x2x3 + x3x1) + 6x1x2x3 .

Since g is linear in each one of xi when the others are fixed, we can assume that either x3 = x1+x2,
x2 = x1 + x3, x1 = x2 + x3 or (x1, x2, x3) = (1, 1, 1). The latter case will be taken care of at the
end of the proof. Due to symmetry, we can consider only x3 = x1 + x3.
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• Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −2(x2
1 + x2

2) + 6(x1x
2
2 + x2

1x2) − 6x1x2 .

If x1 = 0 then h = −2x2
2 ≤ 0. Similarly if x2 = 0. If x1 = 1−x2 then h = −2+4x2(1−x2) ≤

0. The equation 5x1,x2
h = 0 has no solution in the interior of the interesting region.

2. Case w = (1, 1, 0). Let g(x) = f(x, 1, 1, 0). So

g = −2 + 2(x1 + x2) − 4x3 + 3(x3x1 + x2x3) − 2x1x2 − 2x1x2x3 .

Due to the structure of f and the symmetries, it suffices to investigate g when either x1 = x2+x3,
x3 = x1 + x2, or x = (1, 1, 1). The latter case will be taken care of separately.

(a) Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −2 − 2(x1 + x2) + 3(x2
1 + x2

2) − 2(x1x
2
2 + x2

1x2) + 4x1x2.

If x1 = 0 then h = −2 + x2(−2 + 3x2) ≤ 0 on x2 ∈ [0, 1]. Similarly if x2 = 0. If x1 = 1 − x2

then h = −1 +4x2(−1 + x2) ≤ 0 for x2 ∈ [0, 1]. We completed checking the boundary. The
only solution to 5x1,x2

h = 0 in the interesting region is x1 = x2 = (5 −
√

13)/6, at which
h = (−19 − 13

√
13)/27 ≤ 0.

(b) Subcase x1 = x2 + x3. Let h(x2, x3) = g(x2 + x3, x2, x3). We want to show that h ≤ 0 on
0 ≤ x2, 0 ≤ x3, x2 + x3 ≤ 1.

h(x2, x3) = −2 + 4x2 − 2x3 − 2x2
2 + 3x2

3 − 2(x2
2x3 + x2x

2
3) + 4x2x3 .

If x2 = 0 then h = −2+x3(−2+3x3) ≤ 0 on x3 ∈ [0, 1]. If x3 = 0 then h = −2+x2(4−2x2) ≤
0. If x2 = 1 − x3 then h = −x2

3 ≤ 0. There is no solution to 5x2,x3
h = 0 in the interior of

the interesting region.

3. Case w = (1, 1, 1). Let g(x) = f(x, 1, 1, 1). So

g = 3 + 3(x1x2 + x2x3 + x3x1) − 6x1x2x3 .

Since g is linear in each one of xi when the others are fixed, we can assume that either x3 = x1+x2,
x2 = x1 + x3, x1 = x2 + x3 or (x1, x2, x3) = (1, 1, 1). The latter case will be taken care of
separately. Due to symmetry, we can consider only x3 = x1 + x3.

• Subcase x3 = x1 + x2. Let h(x1, x2) = g(x1, x2, x1 + x2). We want to show that h ≤ 0 on
0 ≤ x1, 0 ≤ x2, x1 + x2 ≤ 1.

h(x1, x2) = −3 + 3(x2
1 + x2

2) − 6(x1x
2
2 + x2

1x2) + 9x1x2 .

If x1 = 0 then h = −3 + 3x2
2 ≤ 0 for x2 ∈ [0, 1]. Similarly for x2 = 0. If x1 = 1 − x2 then

h = −3x2 + 3x2
2 ≤ 0 for x2 ∈ [0, 1]. There is no solution to 5x1,x2

h = 0 in the interior of
the interesting region.

It remaines to investigate f(1, 1, 1,w). It is not hard to see that f(1, 1, 1,w) = 0, as required.

2
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