
Policy-based Multihost Multistage Vulnerability Analysis ∗

Xinming Ou Sudhakar Govindavajhala Andrew W. Appel
Princeton University

{xou, sudhakar, appel}@cs.princeton.edu

Abstract
To determine the security impact software vulnerabili-
ties have on a particular network, one must consider in-
teractions among multiple components of the operating
systems and multiple hosts. For a vulnerability analy-
sis tool to be useful in practice, two features are crucial.
First, the model used in the analysis must be able to au-
tomatically integrate formal vulnerability specifications
from the bug-reporting community. Second, the analy-
sis must be able to scale to networks with thousands of
machines.

We show how to achieve these two goals by present-
ing MulVAL, an end-to-end framework and reasoning
system that conducts multihost, multistage vulnerability
analysis on a network. MulVAL adopts Datalog as the
modeling language for the elements in the analysis (bug
specification, configuration description, reasoning rules,
operating-system permission and privilege model, etc.).
We easily leverage existing vulnerability-database and
scanning tools by expressing their output in Datalog and
feeding it to our MulVAL reasoning engine. Once the
information is collected, the analysis can be performed
in seconds for networks with thousands of machines.

We implemented our framework on the Red Hat Linux
platform. Our framework can reason about 84% of the
Red Hat bugs reported in OVAL, a formal vulnerability
definition language. We tested our tool on a real network
with hundreds of users. The tool detected a policy vio-
lation caused by software vulnerabilities and the system
administrators took remediation measures.

1 Introduction
Dealing with software vulnerabilities on network hosts
poses a great challenge to network administration. With

∗This research was supported in part by DARPA award F30602-99-
1-0519 and by ARDA award NBCHC030106. This information does
not necessarily reflect the opinion or policy of the federal government
and no official endorsement should be inferred.

the number of vulnerabilities discovered each year grow-
ing rapidly, it is impossible for system administrators
to keep the software running on their network machines
free of security bugs. One of a sysadmin’s daily chores is
to read bug reports from various sources (such as CERT,
BugTraq etc.) and understand which reported bugs are
actually security vulnerabilities in the context of his own
network. In the wake of new vulnerabilities, assessment
of their security impact on the network is important in
choosing the right countermeasures: patch and reboot,
reconfigure a firewall, dismount a file-server partition,
and so on.

A vulnerability analysis tool can be useful to such a
sysadmin, but only if it can automatically integrate for-
mal vulnerability specifications from the bug-reporting
community, and only if the analysis can scale to net-
works with thousands of machines. These two issues
have not been addressed by the previous work in this
area.

We present MulVAL (Multihost, multistage Vulner-
ability Analysis), a framework for modeling the interac-
tion of software bugs with system and network configu-
rations. MulVAL uses Datalog as its modeling language.
The information in the vulnerability database provided
by the bug-reporting community, the configuration infor-
mation of each machine and the network, the operating
system behavior and other relevant information are all
encoded as Datalog facts. The reasoning engine consists
of a collection of Datalog rules that captures the interac-
tion of different components in the network. Thus inte-
grating information from the bug-reporting community
and off-the-shelf scanning tools in the reasoning model
is straightforward. The reasoning engine in MulVAL
scales well with the size of the network. Once all the
information is collected, the analysis can be performed
in seconds for networks with thousands of machines.

The inputs to MulVAL’s analysis are, Advisories:
What vulnerabilities have been reported and do they ex-
ist on my machines? Host configuration: What soft-
ware and services are running on my hosts, and how are
they configured? Network configuration: How are my

1

network routers and firewalls configured? Principals:
Who are the users of my network? Interaction: What is
the model of how all these components interact? Policy:
What accesses do I want to permit?

In the next section, we give examples of the Datalog
clauses for each of these elements and the tools that can
be leveraged to gather the information.

2 Representation
MulVAL comprises a scanner—run asynchronously on
each host and which adapts existing tools such as OVAL
to a great extent—and an analyzer, run on one host when-
ever new information arrives from the scanners.

Advisories. Recently, the Open Vulnerability Assess-
ment Language [22] (OVAL) has been developed that
formalizes how to recognize the presence of vulnerabili-
ties on computer systems. An OVAL scanner takes such
formalized vulnerability definitions and tests a machine
for vulnerable software. We convert the result of the test
into Datalog clauses like the following:

vulExists(webServer, ’CAN-2002-0392’, httpd).

Namely, the scanner identified a vulnerability with
CVE 1 ID CAN-2002-0392 on machine webServer. The
vulnerability involved the server program httpd. How-
ever, the effect of the vulnerability — how it can be ex-
ploited and what is the consequence — is not formalized
in OVAL. ICAT [15], a vulnerability database developed
by the National Institute of Standards and Technology,
provides the information about a vulnerability’s effect.
We convert the relevant information in ICAT into Data-
log clauses such as

vulProperty(’CAN-2002-0392’, remoteExploit,
privilegeEscalation).

The vulnerability enables a remote attacker to exe-
cute arbitrary code with all the program’s privileges.

Host configuration. An OVAL scanner can be directed
to extract configuration parameters on a host. For exam-
ple, it can output the information of a service program
(port number, privilege, etc). We convert the output to
Datalog clauses like

networkService(webServer, httpd,
TCP, 80, apache).

1Common Vulnerabilities and Exposures (CVE) is a list of stan-
dardized names for vulnerabilities and other information security ex-
posures. http://cve.mitre.org

That is, program httpd runs on machine webServer

as user apache, and listens on port 80 using TCP proto-
col.

Network configuration. MulVAL models network (router
and firewalls) configurations as abstract host access-control
lists (HACL). This information can be provided by a fire-
wall management tool such as the Smart Firewall [4].
Here is an example HACL entry that allows TCP traffic
to flow from internet to port 80 on webServer:

hacl(internet, webServer, TCP, 80).

Principals. Principal binding maps a principal symbol
to its user accounts on network hosts. The administrator
should define the principal binding like:

hasAccount(user, projectPC, userAccount).
hasAccount(sysAdmin, webServer, root).

Interaction. In a multistage attack, the semantics of
the vulnerability and the operating system determine an
adversary’s options in each stage. We encode these as
Horn clauses (i.e., Prolog), where the first line is the con-
clusion and the remaining lines are the enabling condi-
tions. For example,

fullControl(Attacker, Host, Priv) :-
vulExists(Host, VulID, Program),
vulProperty(VulID, remoteExploit,

privEscalation),
networkService(Host, Program,

Protocol, Port, Priv),
netAccess(Attacker, Host, Protocol, Port),
malicious(Attacker).

That is, if Program running on Host contains a re-
motely exploitable vulnerability whose impact is privi-
lege escalation, the buggy program is running under priv-
ilege Priv and listening on Protocol and Port, and the
attacker can access the service through the network, then
the attacker can gain full control of the machine under
Priv. This rule can be applied to any vulnerability that
matches the pattern.

Policy. In MulVAL, a policy describes which principal
can have what access to data. Anything not explicitly
allowed is prohibited. Following is a sample policy.

allow(Everyone, read, webPages).
allow(systemAdmin, write, webPages).

Because Everyone is capitalized, it is a Prolog variable,
so it can match any user.

2

Host 1
Network

Configuration

Principal and
Data Binding Security policy

…

…

Interaction
Rules

violation &
attack trace

Prolog Environment

OVAL
definition

ICAT
database

OVAL
Scanner

Host 1

OVAL
Scanner

Figure 1: The MulVAL framework

Analysis framework. Since Datalog is a subset of Pro-
log, the encoded information can be directly loaded into
a Prolog environment and executed. We use the XSB [18]
environment because it supports tabled execution of Pro-
log programs. Tabling is a form of dynamic program-
ming that avoids recomputation of previously calculated
facts. Also, tabling provides complete declarative-style
logic programing because the order of rules does not af-
fect the result of the execution. The framework is shown
in Figure 1. An OVAL scanner runs on each machine
and outputs vulnerability report and relevant configura-
tion parameters. The tuples from the scanners, the net-
work configuration (represented as HACL), the deduc-
tion rules, and the administrator-defined security policy
are loaded into an XSB environment. A Prolog query
(see section 5.2) can then be made to search for policy vi-
olations. Our program can also generate a detailed trace
showing each step of the attack that leads to the viola-
tion2. Here is one step in a trace:

fullControl(attacker, webServer, apache)
because
---vulExists(webServer,’CAN-2002-0392’),
---netAccess(attacker, webServer, tcp, 80);

The rest of the paper describes in detail the various
components of MulVAL. Section 3 briefly introduces the
formal vulnerability definitions from bug-reporting com-
munities and how they are integrated into MulVAL. Sec-
tion 4 discusses the reasoning and input Datalog clauses
used in MulVAL and the analysis algorithm. Section 5
shows two examples that illustrate the analysis process.
Section 6 discusses how to conduct hypothetical vulner-
ability analysis in MulVAL. Some performance data is

2Trace generation in MulVAL is currently semiautomatic and we
are working to fully automate the process, and to generate better
natural-language explanations.

shown in section 7. We compare our approach with some
related work in section 8 and conclude in section 9.

3 Bug specification
A specification of a bug consists of two parts: how to
recognize the existence of the bug on a system, and what
is the effect of the bug on a system. The recognition
specification is only used in the scanning of a machine,
whereas the effect specification is used in the reason-
ing process. Recently, the bug-reporting community has
started to provide these kinds of information in formal,
machine-readable formats. In the next two subsections,
we briefly describe OVAL, a formal specification lan-
guage for recognizing vulnerabilities, and ICAT, a data-
base that provides a vulnerability’s effect.

3.1 The OVAL language and scanner
The Open Vulnerability Assessment Language
(OVAL) [22] is a common language for specifying how
to recognize the presence of vulnerabilities on computer
systems. The language is defined in three platform-depen-
dent schemas: the OVAL Definition Schema, the System
Characteristics Schema, and the OVAL Result Schema.
Whenever a new software vulnerability is discovered, an
OVAL definition will be released by the OVAL Board.
The OVAL effort also includes open-source OVAL scan-
ners. A scanner runs on a machine, takes as input OVAL
vulnerability definitions, analyzes the machine’s config-
uration, and outputs the vulnerabilities found on the host
in the OVAL Result Schema. Currently, OVAL vulnera-
bility definitions are available for the Windows, Red Hat
Linux and Solaris platforms. OVAL-compliant scanners
are available for Windows and Red Hat Linux platforms.
OVAL vulnerability definitions have been created since

3

2002 and new definitions are being submitted and re-
viewed on a daily basis. As of January 31, 2005, the
number of OVAL definitions for each platform is:

Platform Submitted Accepted
Microsoft Windows 543 489
Red Hat Linux 203 202
Sun Solaris 73 57
Total 819 748

For example, we ran the OVAL scanner on one machine
using the latest OVAL definition file and found the fol-
lowing vulnerabilities:

VULNERABILITIES FOUND:
OVAL Id CVE Id

OVAL2819 CAN-2004-0427
OVAL2915 CAN-2004-0554
OVAL2961 CAN-2004-0495
OVAL3657 CVE-2002-1363

We convert the output of an OVAL scanner into Dat-
alog clauses like the following:

vulExists(webServer, ’CVE-2002-0392’, httpd).

Besides producing a list of discovered vulnerabili-
ties, the OVAL scanner can also output a detailed ma-
chine configuration information in the System Charac-
teristics Schema. Some of this information is useful for
reasoning about multistage attacks. For example, the
protocol and port number a service program is listening
on, in combination with the firewall rules and network
topology expressed as HACL, helps determine whether
an attacker can send a malicious packet to a vulnerable
program. Currently the following predicates about ma-
chine configurations are used in the reasoning engine.

networkService(Host, Program,
Protocol, Port, Priv).

clientProgram(Host, Program, Priv).
filePath(H, Owner, Path).
nfsExport(Server, Path, Access, Client).
nfsMountTable(Client, ClientPath,

Server, ServerPath).

networkService describes the port number and pro-
tocol under which a service program is listening and the
user privilege the program has on the machine. If the
same server is listening under multiple ports and proto-
cols, this is described by multiple networkService state-
ments. clientProgram describes the privilege of a client
program once it gets executed. filePath specifies the
owner of a particular path in the file system. nfsExport
describes which portion of the file system on an NFS
server is exported to a client. nfsMountTable describes
an NFS mounting table entry on the client machine.

3.2 Vulnerability effect
One can find detailed information about the vulnerabil-
ities from OVAL’s web site3. For example, the OVAL
description for the bug OVAL2961 is:

Multiple unknown vulnerabilities in Linux kernel 2.4
and 2.6 allow local users to gain privileges or access
kernel memory, ...

This informal short description highlights the effect
of the vulnerability — how the vulnerability can be ex-
ploited and the consequence it can cause. If a machine-
readable database were to provide information on the ef-
fect of a bug such as bug 2961 is only locally exploitable,
one could formally prove properties like if all local users
are trusted, then the network is safe from remote attacker.
Unfortunately, OVAL does not present the information
about the effect of a vulnerability in a machine read-
able format. Fortunately, the ICAT database [15] clas-
sifies the effect of a vulnerability in two dimensions: ex-
ploitable range and consequences.

• exploitable range: local, remote

• consequence: confidentiality loss, integrity loss,
denial of service, and privilege escalation

A local exploit requires that the attacker already have
some local access on the host. A remote exploit does not
have this requirement. Two most common exploit con-
sequences are privilege escalation and denial of service.

We converted the above classification provided by
ICAT database into Datalog clauses such as

vulProperty(’CVE-2004-00495’,
localExploit, privEscalation).

4 The MulVAL Reasoning System
The reasoning rules in MulVAL are declared as Datalog
clauses. A literal, p(t1, . . . , tk) is a predicate applied
to its arguments, each of which is either a constant or a
variable. In the formalism of Datalog, a variable is an
identifier that starts with an upper-case letter. A constant
is one that starts with a lower-case letter. Every sentence
in MulVAL is represented as a Horn clause:

L0 :- L1, . . . , Ln

Semantically, it means if L1, . . . , Ln are true then
L0 is also true. The left-hand side is called the head and
the right-hand side is called the body. A clause with an
empty body is called a fact. A clause with a nonempty
body is called a rule.

3http://oval.mitre.org/oval/

4

4.1 Reasoning rules
MulVAL reasoning rules specify semantics of different
kinds of exploits, compromise propagation, and multi-
hop network access. Currently there are around 80 rules
in MulVAL. The MulVAL rules are carefully designed
so that information about specific vulnerabilities are fac-
tored out into the data generated from OVAL and ICAT.
The interaction rules characterize general attack method-
ologies (such as “Trojan Horse client program”), not spe-
cific vulnerabilities. Thus the rules do not need to be
changed frequently, even if new vulnerabilities are re-
ported frequently.

4.1.1 Exploit rules

We introduce several predicates that are used in the ex-
ploit rules. fullControl(P,H,UserPriv) indicates that
principal P can execute arbitrary code with privilege UserPriv
on machine H. netAccess(P, H, Protocol, Port) in-
dicates principal P can send packets to Port on machine
H through Protocol.

The effect classification of a vulnerability indicates
how it can be exploited and what is the consequence. We
have already seen a rule for remote exploit of a service
program in section 2. Following is the exploit rule for
remote exploit of a client program.

fullControl(Attacker, Host, Priv) :-
vulExists(Host, VulID, Program),
vulProperty(VulID, remoteExploit,

privEscalation),
clientProgram(Host, Program, Priv),
malicious(Attacker).

The body of the rule specifies that 1) the Program is
vulnerable to a remote exploit; 2) the Program is client
software with privilege Priv4; 3) the Attacker is some
principal that originates from a part of the network where
malicious users may exist. The consequence of the ex-
ploit is that the attacker can execute arbitrary code with
privilege Priv.

The rule for the exploit of a local privilege escalation
vulnerability is as follows:

fullControl(Attacker, Host, ProgPriv) :-
vulExists(Host, VulID, Prog),
vulProperty(VulID, localExploit,

privEscalation),
clientProgram(Host, Prog, ProgPriv),
fullControl(Attacker, Host, SomePriv),
malicious(Attacker).

4Different Priv constructors distinguish between setuid and non-
setuid permissions. For lack of space in this paper, we have not de-
scribed the details of our privilege model, which combines concrete
users accounts and special symbols that represent groups of accounts.

For this exploit, the precondition fullControl re-
quires that an attacker first have some access to the ma-
chine Host. The consequence of the exploit is that the
attacker can gain the privilege of the program.

4.1.2 Compromise propagation

One of the important features of MulVAL is the ability
to reason about multistage attacks. After an exploit is
successfully applied, the reasoning engine must discover
how the attacker can further compromise a system.

For example, the following rule says if an attacker P
gets full control on machine H with Owner’s privilege, he
can have arbitrary access to files owned by Owner.

accessFile(P, H, Access, Path) :-
fullControl(P, H, Owner),
filePath(H, Owner, Path).

On the other hand, if an attacker can modify files
under Owner’s directory, he can gain privilege of Owner.
That is because a Trojan horse can be injected by modi-
fied execution binaries, which Owner might then execute:

fullControl(Attacker, H, Owner) :-
accessFile(Attacker, H, write, Path),
filePath(H, Owner, Path),
malicious(Attacker).

Network file systems Some multistage attacks also ex-
ploit normal software behaviors. For example, through
talking to system administrators we found that the NFS
file-sharing system is widely used in many organizations
and has contributed to many intrusions. One scenario is
that an attacker gets root access on a machine that can
talk to an NFS server. Depending on the file server’s con-
figuration, the attacker may be able to mount a partition
from the server. Then the attacker will get access to files
on the server that belong to other users. Two rules about
the semantics of NFS are involved for this attack.

nfsMounted(Server, Path, Access,
Client, ClientPath) :-

fullControl(Attacker, Client, root),
nfsExport(Server, Path, Access, Client).

accessFile(P,Server,Access,ServerPath) :-
nfsMounted(Server, ServerPath, Access,

Client, ClientPath),
accessFile(P,Client,Access,ClientPath).

The first rule specifies the semantics of the mount op-
eration. A root user on machine Client can mount any
Path on Server that is exported to it. The second rule
specifies the semantics of the NFS file sharing relation-
ship. An NFS server trusts its clients. If principal P can

5

Access files via ClientPath on Client, and ServerPath

on Server is mounted as ClientPath on Client, then ef-
fectively he can access files via ServerPath on Server.

4.1.3 Multihop network access
netAccess(P, H2, Protocol, Port) :-

fullControl(P, H1, Priv),
hacl(H1, H2, Protocol, Port).

If a principal P has full control of machine H1 under
some privilege and the network allows H1 to access H2

through Protocol and Port, then the principal can ac-
cess host H2 through the protocol and port. This allows
for reasoning about multihost attacks, where an attacker
first gains access on one machine inside a network and
launches an attack from there. Predicate hacl stands for
an entry in the host access control list (HACL).

4.2 Host Access Control List
A host access control list specifies all accesses between
hosts that are allowed by the network. It consists of a
collection of entries of the following form:

hacl(Source, Destination, Protocol, DestPort).

Packet flow is controlled by firewalls, routers, switches,
and other aspects of network topology. HACL is an ab-
straction of the effects of the network topology, firewall
rules, the configuration settings of routers and switches,
etc. In a large network installation, these configurations
can be complex and dynamic. We envision that an auto-
matic tool such as the Smart Firewall [4] can provide the
HACL list automatically for our analysis.

4.3 Policy specification
The security policy specifies which principal can access
what data. Each principal and data is given a symbolic
name, which is mapped to a concrete entity by the bind-
ing information discussed in section 4.4. Each policy
statement is of the form allow(Principal, Access, Data).
The arguments can be either constants or variables (vari-
ables start with a capital letter and can match any con-
stant). Following is an example policy:

allow(Everyone, read, webPages).
allow(user, Access, projectPlan).
allow(sysAdmin, Access, Data).

The policy says anybody can read webPages, user
can have arbitrary access to projectPlan. And sysAdmin

can have arbitrary access to arbitrary data. Anything not
explicitly allowed is prohibited.

The policy language presented in this section is quite
simple and easy to make right. However, the MulVAL
reasoning system can handle more complex policies as
well (see section 4.7).

4.4 Binding information
Principal binding maps a principal symbol to its user ac-
counts on network hosts. For example:

hasAccount(user, projectPC, userAccount).
hasAccount(sysAdmin, webServer, root).

Data binding maps a data symbol to a path on a ma-
chine. For example:

dataBind(projectPlan,workstation,’/home’).
dataBind(webPages, webServer, ’/www’).

The binding information is provided manually.

4.5 Algorithm
The analysis algorithm is divided into two phases: at-
tack simulation and policy checking. In the attack sim-
ulation phase, all possible data accesses that can result
from multistage, multihost attacks are derived. This is
achieved by the following Datalog program.

access(P, Access, Data) :-
dataBind(Data, H, Path),
accessFile(P, H, Access, Path).

That is, if Data is stored on machine H under path
Path, and principal P can access files under the path, then
P can access Data. The attack simulation happens in the
derivation of accessFile, which involves the Datalog in-
teraction rules and data tuples from various components
of MulVAL. For a Datalog program, there are at most
polynomial number of facts that can be derived. Since
tabling guarantees each fact is computed only once, the
attack simulation phase is polynomial.

In the policy checking phase, the data access tuples
output from the attack simulation phase are compared
with the given security policy. If an access is not allowed
by the policy, a violation is detected. The following Pro-
log program performs policy checking.

policyViolation(P, Access, Data) :-
access(P, Access, Data),
not allow(P, Access, Data).

This is not a Datalog rule because it uses negation.
Still, the complexity of the policy checking phase is pro-
portional to the number of data access tuples gotten from
the attack simulation phase. So the whole algorithm is
polynomial. In practice it runs very efficiently (see sec-
tion 7).

6

4.6 Discussion
Our framework is flexible and can handle new protocols
seamlessly. For example, let us consider the Remote Pro-
cedure Call protocol. Suppose that we want to model
the server program ypbind answering to RPC # 100007.
Further assume that this program is running under the
user root. We model this program in our framework as:

networkService(Host, ypbind,
rpc, 100007, root).

Thus to model a new protocol, one just needs to add
the capability to the scanner to generate the appropri-
ate Datalog predicate and add its interaction rules to the
analysis engine.

Network dynamism In dynamic environments involv-
ing the use of Dynamic Host Configuration Protocol (es-
pecially in wireless networks), firewall rules can be very
complex and can be affected by the status of the network,
the ability of users to authenticate to a central authenti-
cation server, etc. In such environments, it is infeasible
to ask the system administrator to manually provide all
HACL rules. A tool like the Smart Firewall [4] can be
used for automatic derivation of network access control
rules from firewall configurations.

Modeling normal software behavior Let us consider
the sudo program in GNU/Linux operating system. It
is a mechanism to enable a permitted user to execute
a command as the superuser or another user, as speci-
fied in the sudoers configuration file. Upon execution,
the sudo program runs with superuser privileges and the
command supplied as argument is executed as superuser
or another user depending on the configuration.

Suppose that there is a misconfiguration in the sudoers
file that lets any user execute any command as user joe.
Currently, our framework does not have the granularity
to reason about the security behavior of individual pro-
grams and hence a configuration bug in sudoers file is
considered equivalent to a bug in the program sudo, a
privileged program. Thus, a configuration bug in sudoers

file letting any user access the files of a user joe is mis-
identified as a bug enabling the adversary gaining com-
plete control of the superuser privilege and hence the
host.

To remediate this false positive, we would have to
model the behavior of the sudo program. In general, we
expect that we need to model the normal software behav-
ior of a small number of programs. Although it’s easy
enough to model new programs using Datalog clauses,

internet

dmz

internal

webServer

projectPC

webPages
projectPlan

fileServer

fw1

fw2

binaries

Figure 2: Example

a substantial advantage of our approach (empirically ob-
served) has been that the set of modeling clauses grows
much more slowly than the number of advisories.

4.7 More complex policies
The two-phase separation in the MulVAL algorithm al-
lows us to use richer policy languages than Datalog with-
out affecting the complexity of the attack simulation phase.
The MulVAL reasoning system supports general Prolog
as the policy language. Should one need even richer pol-
icy specification, the attack simulation can still be per-
formed efficiently and the output data access tuples can
be sent to a policy resolver that can handle the richer
policy specification efficiently.

No policy? Because the attack simulation is not guided
by or dependent on the security policy, it is possible to
use MulVAL without a security policy; the system ad-
ministrator may find useful the raw report of who can
access what. However, the policy is useful in filtering
undesirable accesses from harmless accesses.

5 Examples

5.1 A small real world example
We ran our tool on a small network used by seven hun-
dred users. We analyzed a subset of the network that

7

contains only machines managed by the system admin-
istrators.5 Our tool found a violation of policy because of
a vulnerability. The system administrators subsequently
patched the bug.

Network topology. The topology of the network is very
similar to the one in Figure 2. There are three zones
(internet, dmz and internal) separated by two fire-
walls (fw1 and fw2). The administrators manage the
webserver, the projectPC and the fileserver. The
users have access to the public server projectPC which
they use for their computing needs. The host access con-
trol list for this network is:

hacl(internet, webServer, tcp, 80).
hacl(webServer, fileServer, rpc, 100003).
hacl(webServer, fileServer, rpc, 100005).
hacl(fileServer, AnyHost,

AnyProtocol, AnyPort).
hacl(projectPC, AnyHost,

AnyProtocol, AnyPort).
hacl(H, H, AnyProtocol, AnyPort).

Machine configuration The following Datalog tuples
describe the configuration information of the three ma-
chines.

networkService(webServer , httpd,
tcp , 80 , apache).

nfsMount(webServer, ’/www’,
fileServer, ’/export/www’).

networkService(fileServer, nfsd,
rpc, 100003, root).

networkService(fileServer, mountd,
rpc, 100005, root).

nfsExport(fileServer, ’/export/share’,
read, projectPC).

nfsExport(fileServer, ’/export/www’,
read, webServer).

nfsMount(projectPC, ’/usr/local/share’,
fileServer, ’/export/share’).

The fileServer serves files for the webServer and
the projectPC through the NFS protocol. There are ac-
tually many machines represented by projectPC. They
are managed by the administrators and run the same soft-
ware configuration. To avoid the hassle of installing each
application on each of the machines separately, the ad-
ministrators maintain a collection of application binaries

5In this benchmark we did not model hundreds of user machines.
We recommend that these should be modeled as we did “internet,” as
one machine. In this case, unlike “internet, ” the host would have non-
malicious users, but would be assumed to have many vulnerabilities. In
our future work we plan to experiment with such models; at present we
recommend our framework for networks of managed, not unmanaged,
hosts.

under /export/share on fileServer so that any change
like recompilation of an application program needs to
be done only once. These binaries are exported through
NFS to the projectPC. The directory /export/www is ex-
ported to webServer.

Data binding.

dataBind(projectplan, projectPC, ’/home’).
dataBind(webPages, webServer, ’/www’).

Principals. The principal sysAdmin manages the the
machines with user name root. Since all the users are
treated equally, we model one of them as principal user.
user uses the projectPC with user name userAccount.
For this organization, the primary worry is a remote at-
tacker launching an attack from outside the network. The
attackers are modeled by a single principal attacker

who uses the machine internet and has complete con-
trol of it. The Datalog tuples for principal bindings are:

hasAccount(user, projectPC, userAccount).

hasAccount(sysAdmin, projectPC, root).
hasAccount(sysAdmin, webServer, root).
hasAccount(sysAdmin, fileServer, root).

hasAccount(attacker, internet, root).
malicious(attacker).

Security policy The administrators need to ensure that
the confidentiality and the integrity of users’ files will
not be compromised by an attacker. Thus the policy is

allow(Anyone, read, webPages).
allow(user, Access, projectPlan).
allow(sysAdmin, Access, Data).

Results We ran the MulVAL scanner on each of the
machines. The interesting part of the output was that
projectPC had the following vulnerabilities:

vulExists(projectPC, ’CAN-2004-0427’, kernel).
vulExists(projectPC, ’CAN-2004-0554’, kernel).
vulExists(projectPC, ’CAN-2004-0495’, kernel).
vulExists(projectPC, ’CVE-2002-1363’, libpng).

The MulVAL reasoning engine then analyzed this
output in combination with the other inputs described
above. The tool did indeed find a policy violation be-
cause of the bug CVE-2002-1363— a remotely exploitable
bug in the libpng library. A reasoning rule for remote
exploit derives that the projectPC machine can be com-
promised. Thus the projectPlan data stored on it can be

8

accessed by the attacker, violating the policy. Our sys-
tem administrators subsequently patched the vulnerable
libpng library.

One might be curious that there was only one vul-
nerability that contributed to the policy violation though
the host projectPC actually had four vulnerabilities. The
other three bugs on the projectPC are locally exploitable
vulnerabilities in the kernel. Since only trusted users ac-
cess these hosts, after patching the libpng bug our tool
indicates the policy is no longer violated. These ma-
chines have uptimes in the order of months and upgrad-
ing the kernel would require a reboot. Patching these
vulnerabilities would result in a loss of availability, which
is best avoided. The administrators can meet the secu-
rity goals without patching the kernel and rebooting the
projectPC. We expect our tool to be useful in mission-
critical systems like commercial mail servers serving mil-
lions of users and servers running long computations.

5.2 An example multistage attack
We now illustrate how our framework works in the case
of multistage attacks. Let us consider a simulated attack
on the network discussed in the previous example. Sup-
pose the following two vulnerabilities are reported by the
scanner:

vulExists(webServer, ’CVE-2002-0392’,
httpd).

vulExists(fileServer, ’CAN-2003-0252’,
mountd).

Both vulnerabilities are remotely exploitable and can
result in privilege escalation. The corresponding Datalog
clauses from ICAT database are:

vulProperty(’CVE-2002-0392’,
remoteExploit, privEscalation).

vulProperty(’CAN-2003-0252’,
remoteExploit, privEscalation).

The machine and network configuration, principal
and data binding, and the security policy are the same
as in the previous example.

Results The MulVAL reasoning engine analyzed the
input Datalog tuples. The Prolog session transcript is as
follows:

| ?- policyViolation(Adversary,
Access, Resource).

Adversary = attacker
Access = read
Resource = projectPlan;

Adversary = attacker
Access = write
Resource = webPages;

Adversary = attacker
Access = write
Resource = projectPlan;

We show the trace of the first violation in Appendix A.
Here we explain how the attack can lead to the policy vi-
olation.

An attacker can first compromise webServer by re-
motely exploiting vulnerability CVE-2002-0392

to get control of webServer. Since webServer is allowed
to access fileServer, he can then compromise fileServer
by exploiting vulnerability CAN-2003-0252 and become
root on the server. Next he can modify arbitrary files on
fileServer. Since the executable binaries on projectPC

are mounted on fileServer, their integrity will be com-
promised by the attacker. Eventually an innocent user
will execute the compromised client program; this will
give the attacker complete control of projectPC. Thus
the files stored on it would also be compromised.

One way to fix this violation is moving webPages to
webServer and blocking inbound access from dmz zone
to internal zone. After incorporating these counter mea-
sures, we ran MulVAL reasoning engine on the new in-
puts and verified that the security policy is satisfied.

6 Hypothetical analysis
One important usage of vulnerability reasoning tools is
to conduct “what if” analysis. For example, the admin-
istrator would like to ask “Will my network still be se-
cure if two CERT advisories arrive tomorrow?”. Per-
forming this kind of hypothetical analysis is easy in our
framework. We introduce a predicate bugHyp to repre-
sent hypothetical software vulnerabilities. For example,
following is a hypothetical bug in the web service pro-
gram httpd on host webServer.

bugHyp(webServer, httpd,
remoteExploit, privEscalation).

The following two clauses will introduce the fake
bugs into the reasoning process.

vulExists(Host, VulID, Prog) :-
bugHyp(Host, Prog, Range, Consequence).

vulProperty(VulID, Range, Consequence) :-
bugHyp(Host, Prog, Range, Consequence).

9

The following Prolog program will determine whether
a policy violation will happen with two hypothetical bugs.

checktwo(P, Acc, Data, Prog1, Prog2) :-
program(Prog1),
program(Prog2),
cleanState,
assert(bugHyp(H1, Prog1, Range1, Conseq1)),
assert(bugHyp(H2, Prog2, Range2, Conseq2)),
policyViolation(P, Acc, Data).

The two assert statements introduce dynamic clauses
about hypothetical bugs in two programs (Prolog back-
tracking will cycle through all possible combination of
two programs.). The policy check is conducted with the
existence of the dynamic clauses. If no policy viola-
tion is found, the execution will back track and another
two hypothetical bugs (in different two programs) will
be tried. If there exist two programs whose hypothetical
bugs will break the security policy of the network, the
violation will be reported by checktwo. Otherwise the
network can withstand two hypothetical bugs.

7 Performance and Scalability
We measured the performance of our scanner on a Red
Hat Linux 9 host (kernel version 2.4.20-8). The CPU
is a 730 MHz Pentium III processor with 128MB RAM.
The analysis engine runs on a Windows PC with 2.8GHz
Pentium 4 processor with 513MB RAM. We constructed
examples with configurations similar to the above exam-
ples, but with different number of web servers, file ser-
vers and project PCs.

To analyze a network in the MulVAL reasoning en-
gine, one needs to run the MulVAL scanner on each host
and transfer the results to the host running the analysis
engine. The scanners can execute in parallel on multiple
machines. The analysis engine then operates on the data
collected from all hosts. Since the functioning of the
scanner is the same on various hosts, we measured the
scanner running time on one host. We measured the run-
ning time for the analysis engine for real and synthetic
benchmarks. The running times (in seconds) are as:

MulVAL scanner 236 s
§5.1 0.08

MulVAL 1 host 0.08
reasoning 200 hosts 0.26

engine 400 hosts 1.24
1000 hosts 7.62
2000 hosts 30.1

MulVAL scanner is the time to run the scanner on one
(typically configured) Linux host; in principle, the scan-

Execution time for hypothetical analysis

0.08

0.23

4.5

0.08

0.48

9.2

0.08
0.14

0.29
0.59

12

273

0.01

0.1

1

10

100

1000

0 1 2

Number of hypothetical bugs

R
un

ni
ng

 ti
m

e
(s

)

(1000, 20)

(50, 10)

(100, 20)

(50, 20)

Legend: (#Host, #Prog)

Figure 3: Hypothetical analysis. For a network of 1000 hosts
running 20 kinds of installed software, analyzing security assuming the
existence of any 1 unreported vulnerability takes 12 seconds.

ner can run on all hosts in parallel. The benchmark §5.1
is the real-world 3-host network described in section 5.1.
Each benchmark labeled “n hosts” consists of n similar
Linux hosts, (approximately one third web servers, one-
third file servers, and one-third project PCs), with host
access rules (i.e., firewalls) similar to §5.1. Our reason-
ing engine can handle networks with thousands of hosts
in less than a minute.

A typical network might have a dozen kinds of hosts:
many web servers, many file servers, many compute ser-
vers, many user machines. Depending on network topol-
ogy and installed software (e.g., are all the web servers in
the same place with respect to firewalls, and are they all
running the same software?) it may be possible that each
group of hosts can be treated as one host for vulnerabil-
ity analysis, so that n = 12 rather than n = 12, 000. It
would be useful to formally characterize the conditions
under which such grouping is sound.

To test the speed of our hypothetical analysis, we
constructed synthesized networks with different numbers
of hosts and different numbers of programs. Each pro-
gram runs on multiple machines. Since the hypothetical
analysis goes through all combination of programs to in-
ject bugs, the running time is dependent on both the num-
ber of programs and the number of hypothetical bugs.
Figure 3 shows the performance with regard to different
number of hosts, number of programs and number of in-
jected bugs. The running time increases with the number
of hypothetical bugs, because the analysis engine will
need to go through nk combinations of programs, where

10

n is the number of different kinds of programs and k is
the number of injected bugs. k = 0 is the case where no
hypothetical bug is injected. The performance degraded
significantly with the increase of k. But it still only takes
273 seconds for k = 2 on a network with 1000 hosts
and 20 different kinds of programs. Since hypothetical
analysis can be performed offline before the existence of
a bug is known, it is not important to have fast real-time
response time. The degraded performance is acceptable.
Figure 3 shows our system can perform this analysis in a
reasonable time frame for a big network.

The input size to the MulVAL reasoning engine is:

Data Source6 hosts=200 =2000
Data Bind sys admin 26 3004 lines
Policy sys admin 3 3
Principal Bind sys admin 10 10
HACL Smart Firewall 342 3342
Scanner Output OVAL/ICAT 1222 12022

Coverage Our system can reason about privilege es-
calation vulnerabilities and denial of service vulnerabil-
ities. We cannot currently reason about confidentiality
loss or integrity loss vulnerabilities. For six OVAL def-
initions for Red Hat Linux, we had to manually supply
the missing ICAT database entries. Overall, we could
reason about 84% of the Red Hat Linux bugs reported
in OVAL. The detailed statistics are (as of January 31,
2005):

OVAL definitions for Red Hat 202
Those with PrivEsc or only DoS 169
Coverage 84%

Size of our code base To implement our framework on
Red Hat platform, we adapted the OVAL scanner, added
some entries to the ICAT database, and wrote the inter-
action rules. The size of our code base is:

Module Original New
OVAL scanner 13484 668 lines
ICAT database 6994 6
Interaction rules 393

The modularity and simplicity of our design allowed us
to effectively leverage the existing tools and databases by
writing about a thousand lines of code. We note that the
small size and declarative style of our interaction rules
makes them easy to understand and debug. The inter-
action rules model Unix-style security semantics. We

6The indicated “Source” shows what person or tool would provide
the information in a real installation; for this benchmark measurement,
we constructed the data synthetically.

foresee that to reason about Windows platforms in ad-
dition, the effort involved is comparable. The rules are
independent of the vulnerability definitions.

7.1 Scanning a distributed network
We measured the performance of running the MulVAL
scanner in parallel on multiple hosts. We used Planet-
Lab, a worldwide testbed of over 500 Linux hosts con-
nected via the Internet [16]. We selected 47 hosts in such
a way as to get geographical diversity (U.S., Canada,
Switzerland, Germany, Spain, Israel, India, Hong Kong,
Korea, Japan). We were able to log into 39 of these
hosts; of these, we successfully installed the scanner on
33 hosts.7 We ran a script that, in parallel on 33 hosts,
opened an SSH session and ran the MulVAL scanner. We
assume that many hosts were carrying a normal work-
load, as we made no attempt to reserve them for this use.
The first host responded with data in 1.18 minutes; the
first 25 hosts responded within 10 minutes; the first 29
hosts responded within 15 minutes; at this point we ter-
minated the experiment.

For a local area network, we expect fast and uniform
response time. But for distributed networks, we rec-
ommend that scanning be done asynchronously. Each
machine, either when its configuration is known to have
changed or periodically, should scan and report configu-
ration information. Then, whenever newly scanned data
arrives or whenever new vulnerability data is obtained
from OVAL or ICAT, the reasoning engine can be run
within seconds.

8 Related Work
There is a long line of work on network vulnerability
analysis [23, 21, 19, 20, 1, 14]. Some of these works
applied model checking techniques to uncover network
security problems caused by combinations of vulnerabil-
ities [19, 20]. Some of them applied graph-based search
algorithms to conduct the analysis [23, 21, 1, 14, 11].
What these works did not address is how to automati-
cally integrate vulnerability specifications from the bug-
reporting community into the reasoning model, which is
crucial in applying the analysis in practice. A major dif-
ference between MulVAL and these previous works is
that MulVAL adopts Datalog as the modeling language
for the elements in the analysis. This makes integrat-
ing existing bug database straightforward. Datalog also

7Normally one needs root privileges to install the scanner; Planet-
Lab gives its users fake “root” privileges in a chroot environment; for
production use of MulVAL, root privileges are advisable.

11

makes it easy to factor out various information needed
in the reasoning process, which enabled us to leverage
off-the-shelf OVAL scanner and yield a deployable end-
to-end system.

Datalog has also been used in other security systems.
For example, in Binder [6], DeTreville extended Datalog
with modal operators to express access control, delega-
tion and trust. We feel Datalog is an adequate language
for many security purposes due to its declarative seman-
tics and efficient reasoning.

Modeling vulnerabilities and their interactions can
be dated back to the Kuang and COPS security analyz-
ers for Unix [2, 7]. Recent works in this area include
the one by Ramakrishnan and Sekar [17], and the one
by Fithen et al [8]. These works consider vulnerabili-
ties on a single host and use a much finer grained model
of the operating system than ours. The goal is to ana-
lyze intricate interactions of components on a single host
that would render the system vulnerable to certain at-
tacks. The result of this analysis could serve as attack
methodologies to be added as interaction rules in Mul-
VAL. Specifically, it is possible that one can write an in-
teraction rule that expresses the attack pre and postcon-
ditions without mentioning the details of how the low-
level system components interact. These rules can then
be used to reason about the vulnerability at the network
level. Thus the work on single-host vulnerability analy-
sis is complementary to ours.

MulVAL leverages existing work to gather informa-
tion needed for its analysis. OVAL [22] provides an ex-
cellent baseline method for gathering per-host configura-
tion information. Also, research in the past ten years has
yielded numerous tools that can manage network con-
figurations automatically [9, 10, 3, 4]. Although these
works do not directly involve vulnerability analysis, they
provide a good abstraction for network configuration in-
formation (such as in the form of host access control list).
This abstract network model is used in MulVAL and sim-
plifies its reasoning process.

Intrusion detection systems have been widely deploy-
ed in networks and extensively studied in the literature [5,
13, 12]. Unlike IDS, MulVAL aims at detecting poten-
tial attack paths before an attack happens. The goal of
the work is not to replace IDS, but rather to complement
it. Having an a priori analysis on the configuration of
a network is important from the defense-through-depth
point of view. Undoubtedly, the more problems discov-
ered before an attack happens, the better the security of
the network.

9 Conclusion
We have demonstrated how to model a network system
in Datalog so that network vulnerability analysis can be
performed automatically and efficiently. Datalog enables
us to effectively incorporate bug databases into our anal-
ysis and leverage existing vulnerability and configura-
tion scanning tools. With all the information represented
in Datalog, a simple Prolog program can perform “what-
if” analysis for hypothetical software bugs efficiently.
We have implemented an end-to-end system and tested it
on real and synthesized networks. MulVAL runs very ef-
ficiently for networks with thousands of hosts, and it has
discovered interesting security problems in a real net-
work.

References
[1] Paul Ammann, Duminda Wijesekera, and Saket

Kaushik. Scalable, graph-based network vulnera-
bility analysis. In Proceedings of 9th ACM Confer-
ence on Computer and Communications Security,
Washington, DC, November 2002.

[2] R. Baldwin. Rule based analysis of computer se-
curity. Technical Report TR-401, MIT LCS Lab,
1988.

[3] Yair Bartal, Alain J. Mayer, Kobbi Nissim, and
Avishai Wool. Firmato: A novel firewall manage-
ment toolkit. In IEEE Symposium on Security and
Privacy, pages 17–31, 1999.

[4] James Burns, Aileen Cheng, Proveen Gurung,
David Martin, Jr., S. Raj Rajagopalan, Prasad Rao,
and Alathurai V. Surendran. Automatic manage-
ment of network security policy. In DARPA In-
formation Survivability Conference and Exposition
(DISCEX II’01), volume 2, Anaheim, California,
June 2001.

[5] Frdric Cuppens and Alexandre Mige. Alert cor-
relation in a cooperative intrusion detection frame-
work. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, page 202. IEEE Computer
Society, 2002.

[6] John DeTreville. Binder, a logic-based security
language. In Proceedings of the 2002 IEEE Sym-
posium on Security and Privacy, page 105. IEEE
Computer Society, 2002.

12

[7] Daniel Farmer and Eugene H. Spafford. The cops
security checker system. Technical Report CSD-
TR-993, Purdue University, September 1991.

[8] William L. Fithen, Shawn V. Hernan, Paul F.
O’Rourke, and David A. Shinberg. Formal model-
ing of vulnerabilities. Bell Labs technical journal,
8(4):173–186, 2004.

[9] Joshua D. Guttman. Filtering postures: Local en-
forcement for global policies. In Proc. IEEE Symp.
on Security and Privacy, pages 120–129, Oakland,
CA, 1997.

[10] Susan Hinrichs. Policy-based management: Bridg-
ing the gap. In 15th Annual Computer Security
Applications Conference, Phoenix, Arizona, Dec
1999.

[11] Sushil Jajodia, Steven Noel, and Brian O’Berry.
Topological analysis of network attack vulnerabity.
In V. Kumar, J. Srivastava, and A. Lazarevic, edi-
tors, Managing Cyber Threats: Issues, Approaches
and Challanges, chapter 5. Kluwer Academic Pub-
lisher, 2003.

[12] Samuel T. King, Z. Morley Mao, Dominic G. Luc-
chetti, and Peter M. Chen. Enriching intrusion
alerts through multi-host causality. In The 12th
Annual Network and Distributed System Security
Symposium (NDSS 05), Feb. 2005.

[13] Peng Ning, Yun Cui, and Douglas S. Reeves. Con-
structing attack scenarios through correlation of in-
trusion alerts. In CCS ’02: Proceedings of the
9th ACM conference on Computer and communica-
tions security, pages 245–254. ACM Press, 2002.

[14] Steven Noel, Sushil Jajodia, Brian O’Berry, and
Michael Jacobs. Efficient minimum-cost network
hardening via exploit dependency graphs. In 19th
Annual Computer Security Applications Confer-
ence (ACSAC), December 2003.

[15] National Institute of Standards and Technology.
ICAT metabase. http://icat.nist.gov/icat.cfm, Octo-
ber 2004. web page fetched on October 28, 2004.

[16] Larry Peterson, Tom Anderson, David Culler, and
Timothy Roscoe. A blueprint for introducing dis-
ruptive technology into the internet. In Proceed-
ings of the 1st Workshop on Hot Topics in Networks
(HotNets-I), October 2002.

[17] C. R. Ramakrishnan and R. Sekar. Model-based
analysis of configuration vulnerabilities. Journal
of Computer Security, 10(1-2):189–209, 2002.

[18] Prasad Rao, Konstantinos F. Sagonas, Terrance
Swift, David S. Warren, and Juliana Freire. XSB:
A system for efficiently computing well-founded
semantics. In Proceedings of the 4th Interna-
tional Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’97), pages 2–
17, Dagstuhl, Germany, July 1997. Springer Ver-
lag.

[19] Ronald W. Ritchey and Paul Ammann. Using
model checking to analyze network vulnerabilities.
In 2000 IEEE Symposium on Security and Privacy,
pages 156–165, 2000.

[20] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard
Lippmann, and Jeannette M. Wing. Automated
generation and analysis of attack graphs. In Pro-
ceedings of the 2002 IEEE Symposium on Security
and Privacy, pages 254–265, 2002.

[21] Steven J. Templeton and Karl Levitt. A re-
quires/provides model for computer attacks. In
Proceedings of the 2000 workshop on New security
paradigms, pages 31–38. ACM Press, 2000.

[22] Matthew Wojcik, Tiffany Bergeron, Todd Wittbold,
and Robert Roberge. Introduction to OVAL: A new
language to determine the presence of software vul-
nerabilities. http://oval.mitre.org/documents/docs-
03/intro/intro.html, November 2003. Web page
fetched on October 28, 2004.

[23] Dan Zerkle and Karl Levitt. NetKuang–A multi-
host configuration vulnerability checker. In Proc.
of the 6th USENIX Security Symposium, pages
195–201, San Jose, California, 1996.

13

A A Sample Attack Trace
In this section, we present a trace for example policy vio-
lation discussed in section 5.2. Since XSB does not pro-
vide trace generation itself, we had to do this in our pro-
gram. Currently each step of the attack has to be queried
manually. We are working on fully automating this pro-
cess.

The trace for one of the policy violation is shown
below.

policyViolation(attacker,
read, projectPlan)

because
---dataBind(projectPlan,projectPC,/home),
---accessFile(attacker,projectPC,read,/home);

accessFile(attacker,projectPC,read,/home)
because
---fullControl(attacker,projectPC,root);

fullControl(attacker,projectPC,root)
because
---accessFile(attacker,projectPC,

write,/usr/local/share);

accessFile(attacker,projectPC,
write,/usr/local/share)

because
---nfsMounted(fileServer,/export,write,

projectPC,/usr/local/share),
---accessFile(attacker,fileServer,

write,/export);

accessFile(attacker,fileServer,
write,/export)

because
---fullControl(attacker,fileServer,root);

fullControl(attacker,fileServer,root)
because
---networkService(fileServer,mountd,root),
---vulnerability(fileServer,’CAN-2003-0252’),
---netAccess(attacker,fileServer,rpc,100005);

netAccess(attacker,fileServer,rpc,100005)
because
---fullControl(attacker,webServer,apache);

fullControl(attacker,webServer,apache)
because
---networkService(webServer,httpd,apache),
---vulnerability(webServer,’CVE-2002-0392’),
---netAccess(attacker,webServer,tcp,80);

netAccess(attacker,webServer,tcp,80);
because
---fullControl(attacker,internet,root),
---netAccess(internet, webServer, tcp, 80).

14

