
APPROXIMATION ALGORITHMS FOR

CLUSTERING

ANTHONY IAN WIRTH

A DISSERTATION

PRESENTED TO THE FACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

JANUARY 2005

c© Copyright by Anthony Ian Wirth, 2004. All rights reserved.

Abstract

Approximation Algorithms for Clustering

Clustering items into groups is a fundamental problem in the information sciences.

Many typical clustering optimization problems are NP-hard and so cannot be expected

to be solved optimally in a reasonable amount of time. Although the use of heuristics

is common, in this dissertation we seek approximation algorithms, whose performance

ratio in relation to the optimal solution can be guaranteed and whose running time is a

polynomial function of the problem instance size.

We start by examining variants of the asymmetric k-center problem. We demon-

strate an O(log∗ n)-approximation algorithm for the asymmetric weighted k-center prob-

lem. Here, the vertices have weights and we are given a total budget for opening centers.

In the p-neighbor variant each vertex must have p (unweighted) centers nearby: we give

an O(log∗ k)-bicriteria algorithm using 2k centers, for small p. We also show that the fol-

lowing three versions of the asymmetric k-center problem are inapproximable: priority

k-center, k-supplier, and outliers with forbidden centers.

The bulk of the dissertation concerns correlation clustering: clustering a collection of

elements based on pairwise judgments of similarity and dissimilarity. The problem in-

iii

stance does not include a distance relation between the elements. We partition the ele-

ments into clusters so that the number of pairs correctly (resp. incorrectly) classified with

respect to the input judgment labeling is maximized (resp. minimized). It is worthwhile

studying both complete instances, in which every pair is labeled, and general instances,

in which some input pairs might not have labels.

Specifically, we demonstrate a factor 4 approximation for minimization on complete

instances, and a factor O(log n) approximation for general instances. For the maximiza-

tion version, we give a factor 0.7664 approximation for general instances, noting that a

PTAS is unlikely by proving APX-hardness. We also prove the APX-hardness of mini-

mization on complete instances.

We provide the first nontrivial approximation algorithm for maximizing the corre-

lation: the difference between the number of pairs correctly classified and the number

incorrectly classified. The factor Ω(1/ log n) algorithm is derived from an approximation

algorithm for maximizing a fairly general type of quadratic program on the unit hyper-

cube.

iv

Acknowledgements

First and foremost I would like to thank Moses Charikar for his support, patience, advice,

friendship, and his brilliant mind. It was a pleasure being his research student and a

stimulating and exciting experience being part of his research group.

I am most grateful to Sanjeev Arora for recruiting me to Princeton, acting as my ad-

visor during my first year, and introducing me to approximation algorithms.

I greatly appreciate the two opportunities that Bob Tarjan gave me to work for and

learn from him, as a teaching assistant and as a lab intern at Hewlett-Packard.

The quality and fun of my PhD research was considerably enhanced by the many

interactions with my excellent coauthors: Amit Chakrabarti†, Inge Li Gørtz, Venkatesan

Guruswami, Yaoyun Shi†, and Andrew Yao†.

I am especially indebted to Elad Hazan and Satyen Kale for sharing their expertise

with efficient semidefinite programming algorithms.

Amongst others, my research has been aided by communications and conversations

with Noga Alon, Shuchi Chawla, Michael Dinitz, Ben Green, George Karakostas, Sub-

hash Khot, Konstantin Makarychev, Yury Makarychev, Assaf Naor, and Renato Werneck.

I thank the reviewers of my papers for their helpful suggestions and insightful im-

v

provements.

I met many inspiring and fascinating people and made many friends at Princeton,

but amongst these I would like to single out Amit Chakrabarti for his encouragement,

mentoring, wonderful conversations, and his taste in music, film, and food.

To my best friend Chaitanya: I am glad that we have both had the American PhD

experience and I am looking forward to your coming back home to Melbourne too.

And to my parents, Eve and Andrew, my sister Karen, and my grandmothers Susan

and Stefa: I missed you deeply while I was away, but we are all together again now.

AIW

October 2004

I gratefully acknowledge NSF ITR grant CCR-0205594 (awarded to Moses Charikar),

a DIMACS summer research fellowship (2002), a Dean’s fund for scholarly travel award,

and a Gordon Wu graduate fellowship for supporting my PhD research.

† The research related to our joint paper Informational complexity and the direct sum

problem for simultaneous message complexity [Proc. of 42nd FOCS, pp270–8, 2001] does not

appear in this dissertation.

vi

This dissertation is dedicated to the memory of my grandfather Arthur Lindner, whom I

wish I could have met.

vii

Contents

Abstract iii

Acknowledgements v

1 Setting the scene 1

1.1 The clustering problems in the dissertation 2

1.2 Approximation algorithms . 4

1.3 Results highlights and organization . 5

1.4 Notation and conventions . 8

1.5 Prior publication . 9

2 Asymmetry in k-center variants 10

2.1 Introduction . 10

2.2 Definitions . 15

2.3 Asymmetric k-center review . 18

2.4 Asymmetric weighted k-center . 19

2.5 Asymmetric p-neighbor k-center . 26

viii

2.6 Inapproximability results . 31

2.7 Pattern rotation . 34

3 Correlation clustering 38

3.1 Introduction . 38

3.2 Previous and related work . 40

3.3 Our results . 41

4 Minimizing disagreements 46

4.1 General graphs . 46

4.2 Complete graphs . 49

4.3 Approximation limitations . 55

4.4 The connection to feedback edge sets . 59

5 Maximizing agreements 65

5.1 A linear program with poor integrality gap 65

5.2 Rounding a semidefinite program . 66

5.3 Almost satisfiable instances . 69

6 Maximizing correlation 72

6.1 Reduction to the two cluster case . 72

6.2 Maximizing quadratic programs . 76

6.3 Approximating MAXCORR: the two cluster case 79

6.4 The relationship with max cut . 84

6.5 Correlated random variables and distributions on cuts 86

ix

7 Hardness of approximation 88

7.1 MINDISAGREE in general graphs . 88

7.2 MAXAGREE in general graphs . 90

7.3 MINDISAGREE in complete graphs . 94

8 Efficient approximation algorithms 101

8.1 The MAXCORR SDP . 101

8.2 MINDISAGREE in complete instances . 106

9 What’s next 109

9.1 Improving the algorithms . 109

9.2 Consensus clustering . 111

9.3 Epilogue . 112

x

List of Figures

2.1 A cover with half the weight: near and far centers. 22

2.2 Recursive greedy set cover . 25

2.3 Reduction to asymmetric priority k-center 33

2.4 Simple pattern rotation instance . 35

4.1 The two cases of ALGCOMPLETE . 50

4.2 Charging mistakes to the LP costs in ALGCOMPLETE 53

4.3 MINDISAGREE instance with integrality gap almost 2 56

4.4 Region growing with fixed thresholds . 58

4.5 Construction of a new NEPPC . 62

6.1 Optimum versus singleton and two cluster solutions 73

7.1 Reduction from MAX 3SAT to MAXAGREE 92

7.2 Flower gadget for APX-hardness of complete MINDISAGREE 96

xi

List of Tables

2.1 Overview of approximation results for k-center variants 14

3.1 Correlation clustering approximation results 42

xii

Chapter 1

Setting the scene

Humans have a strong temptation to place objects, people and ideas into groups. It is

hard to resist the apparent efficiency of stereotyping. For many scientific and computa-

tional problems, clustering is a key tool in ensuring data consistency, cost minimization

and computational efficiency.

There is a myriad of problems in location theory that one might want to consider,

such as where to open warehouses and where to place network hubs. These can often be

modeled using the k-center, k-median and uncapacitated facility location frameworks.

Contemporary clustering problems include classifying documents and books, deter-

mining which images represent the same object and associating gene expression patterns

with specific medical conditions in microarray experiments.

Many clustering problems, and their proposed solution methods, share certain desir-

able properties.

First, the databases or data sets under consideration are often very large. For this rea-

1

CHAPTER 1. SETTING THE SCENE 2

son it is imperative to have methods whose running times are slowly growing functions.

All of the algorithms in this dissertation run in polynomial time in the input size. How-

ever, for enormous databases, quadratic or even linear time algorithms may be more

appropriate. Some gain might be possible if it is known that certain parts of the input

will never be clustered with others and so we can process each block at a time. If not, we

might also have to consider algorithms that do not store much information, but instead

process the data in a small number of passes.

We would like some confidence in the partitioning that emerges from our procedure.

It should be relatively insensitive to small changes in the input data and to different

(sensible) clustering schemes.

One of the purposes of clustering is to make other computational processes efficient.

An object recognition tool might have a library with millions of images, some of which

might be different views of the same object. It makes sense to preprocess the library

into a number of clusters so that a new image need only be compared with a single

representative image from each cluster.

1.1 The clustering problems in the dissertation

This dissertation presents a number of new approximation algorithms for some contem-

porary clustering problems. We open with asymmetric variants of the k-center problem.

Being one of the standard location theory problems, we mention only that there has been

a great deal of activity recently related to asymmetric versions.

The remainder of the dissertation relates to a fairly new clustering paradigm: corre-

CHAPTER 1. SETTING THE SCENE 3

lation clustering. Two key features of this framework are that the number of clusters to

be built is not specified in the input and that instead of a distance function on the data

items we are given advice as to which pairs of items are similar. Chapter 3 contains the

necessary theoretical background; at this point we consider the position of correlation

clustering in the world of clustering techniques and applications.

Uncapacitated facility location is the first example that comes to mind of a problem

in which the number of clusters is an outcome of the solution procedure. The various

hierarchical clustering procedures also share this property, though they suffer from a

level of subjectivity as the user can choose where to cut the dendrogram. On the other

hand they do provide a large amount of information in a single representation. We know

how to produce a hierarchical clustering whose performance is only a constant factor

worse than the optimum if the number of clusters had been specified in advance [24].

Another generic approach is to maximize the between-cluster variance while minimizing

the within-cluster variance. This criterion alone would force every item into a single

cluster, so it is essential to include a penalty for model complexity [63].

There are a number of clustering algorithms that take advice about which items are

similar, possibly in addition to a distance relation between the items. This advice might

take the form of hard constraints, that a pair of items must (or cannot) be clustered to-

gether, or perhaps soft constraints, that there is evidence that they should (not) be in one

cluster [76]. It is generally assumed that this advice is self-consistent. In correlation clus-

tering, however, we make no such assumption: this is one of the principal difficulties in

the clustering task. If the data items come with a metric, another approach is to distort

the metric so that similar pairs of items end up near each other [78]. Both Wagstaff et

CHAPTER 1. SETTING THE SCENE 4

al. [76] and Xing et al. [78] use the k-means procedure to derive the clustering. Although

k-means is a fundamental technique, it is a heuristic and makes no guarantee about the

performance of the algorithm in relation to the optimum.

The principal application for these advice-taking clustering processes is in data clean-

ing [12]. We might have a family of bibliographic records or different collections of med-

ical records and we want to remove the duplicates, merge the relevant information and

ensure consistency in the information [22]. Alternatively, you might have one list of

people who are registered to vote and another list of people who are, for some reason, in-

eligible to vote. Your task is to remove the latter from the former, but how do you ensure

that records refer to the same people? A further application is the coreference problem:

an automated text analyzer must match pronouns with the nouns they refer to [60].

1.2 Approximation algorithms

So much has been said about approximation algorithms in the last fifteen years that it

is hard to offer any new generic wisdom here. We therefore merely present a defini-

tion of the type of problem under examination and the notion of the approximation al-

gorithm. There are a number of excellent compendiums [45, 77, 74] of approximation

algorithms. Some early glimpses of how approximation algorithms might cope with NP-

completeness are in Garey and Johnson’s classic text [33].

Approximation algorithms are one of the strategies for coping with the apparent dif-

ficulty of many common optimization problems. A decision problem (one that requires

a yes or no answer) is in the class NP if it is possible to verify that a yes instance is indeed

CHAPTER 1. SETTING THE SCENE 5

a yes instance in polynomial time. A decision problem is NP-hard if it as least as hard

as any problem in the class NP: an instance of any problem in NP can be reduced to a

corresponding instance of the NP-hard problem in polynomial time.

Alternatively, we can consider NP-optimization problems, in which each instance has

a family of feasible solutions, each of which has an objective value. The feasibility and

the objective value of a solution can be determined in polynomial time. This objective

value is often some size, cost, length, or weight. For a minimization (or maximization)

problem, an optimal solution is one with the smallest (or largest) objective value. We

will call an NP-optimization problem NP-hard if the related decision problem (Is there a

feasible solution with objective value less/more than such-and-such?) is NP-hard.

Finally, given any instance of a particular minimization problem, a factor α approx-

imation algorithm for that minimization problem returns a feasible solution whose ob-

jective value is at most a factor α greater than the optimum, in polynomial time. Note

that the algorithm guarantees that the result returned is within the specified factor of the

optimum. We adopt the convention here of expressing the performance ratio of an ap-

proximation algorithm for a maximization problem with a quantity less than 1. That is

to say, an approximation algorithm for a maximization problem returns a solution whose

objective value is at least α multiplied by the optimum.

1.3 Results highlights and organization

This section provides concise definitions of the problems examined in this dissertation

and a summary of the main results.

CHAPTER 1. SETTING THE SCENE 6

We start with the k-center problem. Given an n-vertex graph whose edges have costs,

we are to find a subset of k vertices, called centers, so that the maximum distance of

any vertex from its nearest center is minimized. In the asymmetric version we need not

assume that the distance from x to y is that same as that from y to x. Alternatively, each

vertex might have a weight assigned so that, rather than only being allowed k centers,

there is a restriction on the total weight of centers.

Chapter 2

• An O(log∗ n) approximation algorithm for the weighted asymmetric k-center prob-

lem. Previously, an O(log∗ k) approximation was known for the unweighted prob-

lem [4], as well as an Ω(log∗ n) hardness result [21, 42, 20].

• An O(log∗ k) approximation for the asymmetric p-neighbor k-center problem, for

p ≤ n/k.

The remainder of the dissertation is concerned with the correlation clustering frame-

work, introduced in Chapter 3. There are three key problems, all closely related. Given

a graph whose edges are labeled either + or −, the aim is to find a clustering of the

vertices so that the number of edges in disagreement with the clustering is minimized.

The disagreements are the + edges between clusters and the − edges within clusters.

Alternatively we might wish to maximize the number of agreements, or to maximize

the correlation, which is the difference between the number of agreements and disagree-

ments. We also consider general instances in which the edges have weights in addition to

sign labels. This allows for the possibility of some edges having zero weight, effectively

CHAPTER 1. SETTING THE SCENE 7

implying that they are absent.

Chapter 4

• An O(log n) approximation for minimizing disagreements in general instances. In-

dependently, but simultaneously, two other research groups proved this result [28,

25].

• A factor 4 approximation algorithm for minimizing disagreements in complete in-

stances, improving on the previous factor 17433 algorithm [7].

Chapter 5

• A 0.7664 semidefinite program-based approximation for maximizing agreements

in general instances, improving on the naive 1/2 approximation.

• A method to obtain a solution with 1 − O(
√

ε log(1/ε)) proportion of the edges as

agreements even if the optimal clustering has 1− ε fraction of edges in agreement.

Chapter 6

An Ω(1/ log n) approximation for maximizing the correlation in general instances, a prob-

lem for which there were no previous significant results.

Chapter 7

• A reduction from minimum multicut to the problem of minimizing disagreements

in complete instances, a fact also demonstrated by other groups [28, 25]. This sug-

CHAPTER 1. SETTING THE SCENE 8

gests that an o(log n) approximation algorithm is unlikely. Previously, this problem

was known to be APX-hard [8].

• Related hardness of approximation results for maximizing agreements (79/80 + ε),

minimizing disagreements (29/28 − ε) and maximizing correlation (25/26 + ε) in

general instances.

• A proof that minimizing disagreements in complete instances is APX-hard.

Chapter 8

• An Õ(mn) time procedure for solving the semidefinite program used to maximize

the correlation, based on existing efficient algorithms for the max cut SDP [55].

Standard interior point techniques exhibit worst case Õ(n3.5) time complexity.

• An Õ(n5) time procedure for solving the linear program used to minimize the

disagreements in a complete instance. Standard interior point techniques require

O(n8) time in the worst case.

1.4 Notation and conventions

Throughout this dissertation, n will stand for the number of items to be clustered, and m

to the number of pairs of items that have some relevant property or constraint. When the

problem can be represented as a graph, n is the number of vertices and m the number of

edges.

To avoid any uncertainty, we note that log stands for log2 by default, while ln stands

for loge.

CHAPTER 1. SETTING THE SCENE 9

For every integer i > 1, logi x = log(logi−1 x), and log1 x = log x. We let log∗ x repre-

sent the smallest integer i such that logi x ≤ 2.

Terms such as Õ(·) and Ω(·) that describe the asymptotic behavior of functions are

described in Chapter 3 of Cormen et al.’s text [23].

In correlation clustering diagrams, solid lines indicate positive edges, whereas dashed

lines indicate negative edges.

1.5 Prior publication

Many of the results in this dissertation have appeared in prior publications [38, 14, 16].

The first two publications have, subject to minor amendment, been accepted to appear in

Theoretical Computer Science and the Journal of Computer and System Sciences, respectively.

Chapter 2

Asymmetry in k-center variants

2.1 Introduction

Imagine that you have been given funding to establish a new terrorism-response team

in a large city. You have a model of the time it takes to reach one point in the city from

another. As part of a pledge to the public, you have guaranteed that the response time

to any emergency will be at most 10 minutes. Although you have the power to seize

land to establish the bases for the terror-response team, your budget only allows you to

open k such bases. Can you meet this challenge? Where should you place the k bases to

minimize the worst case response time?

This is the k-center problem—a type of clustering problem that is similar to the facil-

ity location [59] and k-median [6] problems. The motivation for the asymmetric k-center

problem, in our example, is that traffic patterns or one-way streets might cause the travel

time from one point to another to differ depending on the direction of travel. Although

the k-center problem has traditionally been analyzed in the context of a metric, here we

10

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 11

retain the triangle inequality, but abandon the symmetry.

Symmetry is a vital concept in graph approximation algorithms. Recently, the k-

center problem was shown to be Ω(log∗ n) hard to approximate [21, 42, 20], even though

the symmetric version has a factor 2 approximation. Facility location and k-median both

have constant factor algorithms in the symmetric case, but are provably Ω(log n) hard

to approximate without symmetry [3]. The traveling salesman problem is a little better,

in that no super-constant hardness is known, but without symmetry no approximation

algorithm better than O(log n) has been found either.

Definition 2.1 (k-center) Given G = (V,E), a complete graph with nonnegative (but possibly

infinite) edge costs, and a positive integer k, find a set S of k vertices, called centers, with mini-

mum covering radius. The covering radius of a set S is the minimum distance R such that every

vertex in V is within distance R of some vertex in S.

Note that the approximation ratio reflects the length of the radius, not the size of the

cover, which is a fixed value k.

Kariv and Hakimi [51] showed that the k-center problem is NP-hard. Without the

triangle inequality the problem is NP-hard to approximate within any factor (there is a

straightforward reduction from the dominating set problem). We henceforth assume that

the edge costs satisfy the triangle inequality. Hsu and Nemhauser [48], using the same re-

duction, showed that the metric k-center problem cannot be approximated within a factor

of (2 − ε) unless P = NP. In 1985 Hochbaum and Shmoys [46] provided a factor 2 algo-

rithm, essentially the best possible, for the metric k-center problem. In 1996 Panigrahy

and Vishwanathan [75, 66] gave the first approximation algorithm for the asymmetric

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 12

problem, with factor O(log∗ n). Archer [4] proposed two O(log∗ k) algorithms based on

many of the ideas of Panigrahy and Vishwanathan. The complementary Ω(log∗ n) hard-

ness result [21, 42, 20] shows that these approximation algorithms are asymptotically

optimal.

Variants of the k-center problem

A number of variants of the k-center problem have already been explored in the context

of symmetric graphs. An obvious first consideration is that some delivery hubs are more

expensive to establish than others. Instead of a restriction on the number of centers we

can use, in the weighted k-center problem each vertex has a weight and we are given a

budget W , which limits the total weight of centers that are established. Hochbaum and

Shmoys [47] produced a factor 3 algorithm for this problem, which has recently been

shown to be tight [21, 20].

Hochbaum and Shmoys [47] also studied the k-supplier problem, where the vertex

set is segregated into suppliers and customers. Only supplier vertices can be centers

and only the customer vertices need to be covered. Hochbaum and Shmoys gave a 3-

approximation algorithm and showed that it is the best possible.

Khuller et al. [54] investigated the p-neighbor k-center problem, where the aim is to

minimize the distance of the pth furtherest center. This problem is motivated by the need

to account for facility failures: even if up to p − 1 facilities fail, every demand point has

a functioning facility nearby. They gave a 3-approximation algorithm for all p, and a best

possible 2-approximation algorithm when p < 4, noting that the case where p is small is

“perhaps the practically interesting case”.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 13

Maybe some demand points are more important than others. Plesnik [68] studied the

priority k-center problem, in which the effective distance to a demand point is enlarged in

proportion to its specified priority. Plesnik approximates the symmetric version within a

factor of 2.

Charikar et al. [15] note that a disadvantage of the standard k-center formulation is

that a few distant clients, outliers, can force centers to be located in isolated places. They

suggest a variant of the problem, the k-center problem with outliers and forbidden centers,

where a small subset of clients may be denied service, and some points are forbidden

from being centers. Charikar et al. gave a (best possible) 3-approximation algorithm for

the symmetric version of this problem.

Finally, Bhatia et al. [11] considered a network model, such as a city street network,

in which the traversal times change as the day progresses. This is known as the k-center

problem with dynamic distances: we wish to assign the centers so that the maximum dis-

tance of any vertex from its nearest center at any time of the day is minimized.

Results and organization

Table 2.1 gives an overview of the best known results for the various k-center problems.

In this chapter, we explore some of the asymmetric variants that are not yet in the litera-

ture.

Section 2.2 contains the definitions and notation required to develop the results. In

Section 2.3 we briefly review the algorithms of Panigrahy and Vishwanathan [66], and

Archer [4]. The techniques used in the standard k-center problem are often applicable to

the variants.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 14

Table 2.1: An overview of the approximation results for k-center variants. The results

presented in this chapter are in boldface. †The maximum ratio of an edge’s greatest

length to its smallest length is denoted by β. ‡This is a bicriteria algorithm using k(1 +

3/(ν+1)) centers. §For p < 4. ¶This is a bicriteria algorithm using 2k centers, for p ≤ n/k.

Problem Symmetric Asymmetric

k-center 2 [46] O(log∗ k) [4]

k-center with dynamic distances 1 + β † [11] O(log∗ n + ν) ‡ [11]

weighted k-center 3 [47] O(log∗n) [38]

p-neighbor k-center 3 (2 §) [17] O(log∗k) ¶ [38]

priority k-center 2 [68] Inapproximable [38]

k-center with outliers and 3 [15] Inapproximable [38]

forbidden centers

k-suppliers 3 [47] Inapproximable [38]

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 15

Our first result, in Section 2.4, is an O(log∗ n) approximation for the asymmetric

weighted k-center problem. In Section 2.5 we develop an O(log∗ k) approximation for the

asymmetric p-neighbor k-center problem, for p ≤ n/k. As noted by Khuller et al. [54], the

case where p is small is the most interesting case in practice. This a bicriteria algorithm,

allowing 2k centers to be used rather than just k. Turning to hardness, we show that

the asymmetric versions of the k-center problem with outliers (and forbidden centers),

the priority k-center problem, and the k-supplier problem are NP-hard to approximate

within any factor (Section 2.6).

Finally, in Section 2.7, we introduce pattern rotation, a combinatorial covering problem

that we considered when attempting to prove a super-constant integrality gap for asym-

metric k-center. We demonstrate an Ω(log n) integrality gap for the pattern rotation cover

size.

2.2 Definitions

The input to the asymmetric k-center problem is a distance function d on every ordered

pair of vertices—distances are allowed to be infinite—and a bound k on the number of

centers. Note that we assume that the edges are directed.

Definition 2.2 Vertex c covers vertex v within r, or c r-covers v, if dcv ≤ r. We extend this

definition so that a set C r-covers a set A if for every a ∈ A there is some c ∈ C such that c covers

a within r. Often we abbreviate “1-covers” to “covers”.

Many of the algorithms for k-center and its variants do not, in fact, operate on graphs

with edge costs. Rather, they operate on bottleneck graphs [47], in which every edge has

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 16

unit cost, but an edge is included only if its distance in the original graph is lower than

some threshold. The only sensible thresholds are the n(n−1) inter-vertex distance values.

Consequently, many algorithms essentially run through a sequence of bottleneck graphs

with these thresholds in ascending order. This can be thought of as guessing the optimal

radius ROPT. The approach works because the algorithm either returns a solution, within

the specified factor of the current threshold radius, or it fails, in which case ROPT must

be greater than the current radius.

Definition 2.3 (Bottleneck graph Gr) For r > 0, define the bottleneck graph Gr of the graph

G = (V,E) to be the graph Gr = (V,Er), where Er = {(i, j) : dij ≤ r} and all edges have unit

cost.

Most of the following definitions apply to bottleneck graphs.

Definition 2.4 (Power of graphs) The tth power of a graph G = (V,E) is the graph G(t) =

(V,E(t)), t > 1, where E(t) is the set of ordered pairs of distinct vertices that have a path of at

most t edges between them in G.

Definition 2.5 For i ∈ N define

Γ+
i (v) = {u ∈ V | (v, u) ∈ E(i)} ∪ {v}, Γ−

i (v) = {u ∈ V | (u, v) ∈ E(i)} ∪ {v} ,

that is, in the bottleneck graph there is a path of length at most i from v to u, respectively u to v.

Notice that in a symmetric graph Γ+
i (v) = Γ−

i (v). We extend this notation to sets so that

Γ+
i (S) = {u ∈ V | u ∈ Γ+

i (v) for some v ∈ S} , with Γ−
i (S) defined similarly. We use

Γ+(v) and Γ−(v) instead of Γ+
1 (v) and Γ−

1 (v).

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 17

Definition 2.6 For i ∈ N define

Υ+
i (v) = Γ+

i (v) \ Γ+
i−1(v), Υ−

i (v) = Γ−
i (v) \ Γ−

i−1(v) ,

that is, the nodes for which the path distance from v is exactly i, and the nodes for which the path

distance to v is exactly i, respectively.

For a set S, the extension follows the pattern Υ+
i (S) = Γ+

i (S)\Γ+
i−1(S). We use Υ+(v)

and Υ−(v) instead of Υ+
1 (v) and Υ−

1 (v).

Definition 2.7 (Center capturing vertex [CCV]) A vertex v is a center capturing vertex

(CCV) if Γ−(v) ⊆ Γ+(v), that is, v covers every vertex that covers v.

In the graph GROPT
the optimum center that covers v must lie in Γ−(v); for a CCV v,

it lies in Γ+(v), hence the name. In symmetric graphs all vertices are CCVs: this property

leads to the standard 2-approximation [46].

The following three fundamental problems, related to k-center, are NP-complete [33].

Definition 2.8 (Dominating set) Given a graph G = (V,E), and a weight function w : V →

Q+ on the vertices, find a minimum weight subset D ⊆ V such that every vertex v ∈ V is covered

by D, that is, Γ+(D) = V .

Definition 2.9 (Set cover) Given a universe U of n elements, a collection S = {S1, . . . , Sk} of

subsets of U , and a weight function w : S → Q+, find a minimum weight sub-collection of S

that includes all elements of U .

Definition 2.10 (Max coverage) Given 〈U ,S, k〉, with U and S as above, find a sub-collection

of k sets that includes the maximum number of elements of U .

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 18

2.3 Asymmetric k-center review

The O(log∗ n) algorithm of Panigrahy and Vishwanathan [66] has two phases, the halve

phase, sometimes called the reduce phase, and the augment phase. As described above,

the algorithm guesses ROPT and works in the bottleneck graph GROPT
. In the halve phase

we find a CCV v, include it in the set of centers, mark every vertex in Γ+
2 (v) as covered,

and repeat until no CCVs remain unmarked. The CCV property ensures that, as each

CCV is found and vertices are marked, the unmarked (active) portion of the graph can

be covered with one fewer center. Hence if k′′ CCVs are obtained, the active part of the

graph can be covered with k′ = k−k′′ centers. The authors then prove that this unmarked

portion, CCV-free, can be covered with only k′/2 centers if we use radius 5 instead of 1.

That is to say, k′/2 centers suffice in the graph G
(5)
ROPT

.

The k-center problem in the bottleneck graph is identical to the dominating set prob-

lem (a special case of set cover in which the sets are the Γ+ terms). In the augment phase,

the algorithm recursively uses the greedy set cover procedure. Since the optimal cover

uses at most k′/2 centers, the first cover has size at most k′

2 ln 2n
k′ .

The centers in this first cover are themselves covered, using the greedy set cover pro-

cedure, then the centers in the second cover are covered, and so forth. After O(log∗ n)

iterations the algorithm finds a set of at most k′ vertices that, together with the CCVs,

O(log∗ n)-covers the unmarked portion, since the optimal solution has k′/2 centers. Com-

bining these with the k′′ CCVs, we have k centers covering the whole graph within

O(log∗ n).

Archer [4] presents two O(log∗ k) algorithms, both building on the work of Panigrahy

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 19

and Vishwanathan [66]. The algorithm more directly connected with the earlier work

nevertheless has two fundamental differences. Firstly, in the reduce phase Archer shows

that the CCV-free portion of the graph can be covered with 2k′/3 centers within radius 3.

Secondly, he constructs a set cover-like integer program and solves the relaxation to get a

total of k′ fractional centers that cover the unmarked vertices. From these fractional cen-

ters, he obtains a 2-cover of the unmarked vertices with k′ ln k′ (integral) centers. These

are the seed for the augment phase, which thus produces a solution with a covering ra-

dius O(log∗ k′) greater than the optimum. We now know that all of these approximation

algorithms are asymptotically best possible [21, 42, 20].

2.4 Asymmetric weighted k-center

Recall the variant in which the costs of establishing a base or center varies according to is

location. In this situation, rather than having a restriction on the number of centers used,

each vertex has a weight and we have a budget W that restricts the total weight of centers

used.

Definition 2.11 (Weighted k-center) Given a weight function on the vertices, w : V → Q+,

and a bound W ∈ Q+, find a set S ⊆ V of total weight at most W , so that S covers V with

minimum radius.

Hochbaum and Shmoys [47] gave a 3-approximation algorithm for the symmetric

weighted version, applying their approach for bottleneck problems. We propose an

O(log∗ n) approximation for the asymmetric version that is based on Panigrahy and Vish-

wanathan’s technique for the unweighted problem. Note that in light of the complemen-

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 20

tary hardness result [21, 42, 20], this algorithm is asymptotically the best possible. There

is another variant that has both the k and the W restrictions, but we will not expand on

that here.

First, a brief sketch of the algorithm, which works with bottleneck graphs. In the

reduce phase, having found a CCV, v, we pick the lightest vertex u in Γ−(v) (which might

be v itself) as a center in our solution. We then mark everything in Γ+
3 (u) as covered, and

continue looking for CCVs. We can show that there exists a 49-cover of the unmarked

vertices with total weight less than a quarter of the optimum. Finally, we recursively

apply a greedy procedure for weighted sets and elements O(log∗ n) times, similar to the

one used for set cover. The total weight of centers in our solution set is at most W .

The following lemma concerning vertex-weighted digraphs is the key to our reduce

phase and is analogous to Lemma 4 in Panigrahy and Vishwanathan’s paper [66] and

Archer’s Lemma 16 [4].

Lemma 2.1 (Cover of half the graph’s weight) Let G = (V,E) be a digraph with weighted

vertices, but unit edge costs. Then there is a subset S ⊆ V , w(S) ≤ w(V)/2, such that every

vertex with positive indegree is reachable in at most 3 steps from some vertex in S.

Proof: To construct the set S repeat the following, to the extent possible: Select a vertex

v with positive outdegree and if possible select one with indegree zero (that is, Υ−(v) is

empty). Compare sets {v} and Υ+(v): add the lighter set to S and remove Γ+(v) from G.

It is clear that the weight of S is no more than half the weight of V . We must now

show that S 3-covers all non-orphan vertices. Since we call x a parent of y if x ∈ Υ−(y),

and thus y a child of x, y is an orphan if Υ−(y) is empty.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 21

The children of a selected vertex v, Υ+(v), are clearly 1-covered. Assume v is not in

S (trivial otherwise): if v was an orphan initially then ignore it. If v is an orphan when

selected, but not initially, then at some previous stage in the procedure some parent of

v must have been removed by the selection of a grandparent (a vertex in Υ−
2 (v)), so v is

2-covered. Note that if one of v’s parents had been selected then v would already have

been removed from G.

Hence v has at least one parent when it is selected. Consequently, at that stage in

the procedure, there are no vertices that have children, but are orphans, otherwise one of

them would have been selected instead of v. We conclude that the sets of parents of v,

S1 = Υ−(v), parents of S1, S2 = Υ−(S1), and parents of S2, S3 = Υ−(S2), are not empty.

Although these sets might not be pairwise disjoint, if they contained any of v’s children,

then v would be 3-covered.

After v is removed, there are three possibilities for S2: (i) Some vertex in S3 is selected,

removing part of S2; (ii) Some vertex in S2 is selected and removed; (iii) Some vertex in S1

is selected, possibly making some S2 vertices childless. One of these events must happen,

since S1 and S2 are non-empty. As a consequence, v is 3-covered.

Recall that active vertices are those that have not yet been covered/marked. Using

Lemma 2.1 we show that after removing the CCVs from the graph, we can cover the

active set with half the weight of an optimum 1-cover if we are allowed to use distance 7

instead of 1.

Lemma 2.2 (Cover of half optimal weight) Consider a subset A ⊆ V that has a cover con-

sisting of vertices of total weight W , but no CCVs. Assume there exists a set C1 that 3-covers

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 22

near

Γ (C3
+

1)

far

C1

z y
x

NO

A

Figure 2.1: A cover with half the weight: near and far centers.

exactly V \ A. Then there exists a set of vertices S of total weight W/2 that, together with C1,

7-covers A.

Proof: Let U be a subset that covers A of the optimal centers for V . We call u ∈ U a near

center if it can be reached in 4 steps from C1, and a far center otherwise (see Figure 2.1).

Since C1 5-covers all of the nodes covered by near centers, it suffices to choose S to 6-

cover the far centers, so that S will 7-cover all the nodes they cover.

Define an auxiliary graph H on the (optimal) centers U as follows. There is an edge

from x to y in H if and only if x 2-covers y in G (and x 6= y). The idea is to show that

any far center has positive indegree in H . As a result, Lemma 2.1 shows there exists a set

S ∈ U with |S| ≤ W/2 such that S 3-covers the far centers in H , and thus 6-covers them

in G.

Let x be any far center: note that x ∈ A. Since A contains no CCVs, there exists y such

that y covers x, but x does not cover y. Since x 6∈ Γ+
4 (C1), y 6∈ Γ+

3 (C1), and therefore y ∈ A

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 23

(everything not 3-covered by C1 is in A). Thus there exists a center z ∈ U , which is not x,

but could be y, that covers y and therefore 2-covers x. Hence x has positive indegree in

the graph H .

As we foreshadowed, we will use the greedy heuristic to complete the algorithm.

We now analyze the performance of this heuristic in the context of the dominating set

problem in node-weighted graphs. All vertices V are available as potential members

of the dominating set (centers), but we need only dominate the active vertices A. The

heuristic is to select the most efficient vertex: the one that maximizes w(A(v))/w(v), where

A(v) ≡ Γ+(v) ∩A.

Lemma 2.3 (Greedy algorithm in weighted dominating set) Let

〈

G = (V,E), w : V → Q+, A ⊆ V
〉

be an instance of the dominating set problem in which a set A is to be dominated. Let w∗ be the

weight of an optimum solution for this instance. The greedy algorithm gives an approximation

guarantee of 2 + ln(w(A)/w∗).

Proof: In every application of the greedy selection there must be some vertex v ∈ V for

which

w(A(v))

w(A)
≥ w(v)

w∗
(2.1)

otherwise no optimum solution of weight w∗ would exist. This is certainly true of the

most efficient vertex v, so make v a center and make all the vertices it covers inactive,

leaving A′ active. Now,

w(A′) = w(A) −w(A(v)) ≤ w(A)

(

1− w(v)

w∗

)

< w(A) exp

(

−w(v)

w∗

)

.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 24

After j steps of choosing the most efficient vertex, the remaining active vertices, Aj , sat-

isfy

w(Aj) < w(A0)

j
∏

i=1

exp

(

−w(vi)

w∗

)

, (2.2)

where vi is the ith center picked (greedily) and A0 is the original active set.

Assume that after some number of steps, say j, there are still some active elements,

but the upper bound in (2.2) has just dropped below w∗. That is to say,

j
∑

i=1

w(vi) > w∗ ln(w(A0)/w∗) .

Before we picked the vertex vj we had

j−1
∑

i=1

w(vi) ≤ w∗ ln(w(A0)/w∗) ,

and so,

j
∑

i=1

w(vi) ≤ w∗ + w∗ ln(w(A0)/w∗) ,

for (2.1) tells us that w(vj) is no greater than w∗. To cover the remainder, Aj , we just

use Aj itself, at a cost less than w∗. Hence the total weight of the solution is less than

w∗(2 + ln(w(A0)/w∗)).

On the other hand, if the upper bound on w(Aj) never drops below w∗ before Aj

becomes empty, then we have a solution of weight at most w∗ ln(w(A0)/w∗).

We now show that this tradeoff between covering radius and optimal cover size leads

to an O(log∗ n) approximation.

Lemma 2.4 (Recursive set cover) Given A ⊆ V , such that A has a cover of weight W , and a

set C1 ⊆ V that covers V \ A, we can find in polynomial time a set of vertices of total weight at

most 4W that, together with C1, covers A (and hence V) with a radius in O(log∗ n).

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 25

C 1

A

A

A

1

A

S

3

2

1

Figure 2.2: Recursive greedy set cover showing A3 3-covering an active element

Proof: We will be applying the greedy algorithm of Lemma 2.3. The approximation

guarantee is 2 + ln(w(A)/W), which is less than log1.5(w(A)/W) when w(A) ≥ 4W .

Our first attempt at a solution, S0, is all vertices of weight no more than W . Only

these vertices could be in the optimum center set and their total weight is at most nW .

Since C1 covers S0 \ A, consider A0 = S0 ∩ A, which has a cover of size W . Lemma 2.3

shows that the greedy algorithm results in a set S1 that covers A0 and has weight

w(S1) ≤W log1.5(
Wn

W
) = W log1.5 n ,

assuming n ≥ 4. As shown in Figure 2.2, the set C1 covers S1\A, so we need only consider

A1 = S1∩A. We continue this greedy procedure and note that at the ith iteration we have

w(Si) ≤ W log1.5(w(Ai−1)/W). By induction, after O(log∗ n) iterations the weight of our

solution set, Si, is at most 4W .

All the algorithmic tools can now be assembled to form an approximation algorithm.

Theorem 2.1 (Approximation of weighted k-center) We can approximate the weighted k-

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 26

center problem within factor O(log∗ n) in polynomial time.

Proof: Guess the optimum radius, ROPT, and work in the bottleneck graph GROPT
. Ini-

tially, the active set A is V . Repeat the following as many times as possible: Pick a CCV

v in A, add the lightest vertex u in Γ−(v) to our solution set of centers, and remove the

set Γ+
3 (u) from A. Since v is covered by an optimum center in Γ−(v), u is no heavier than

this optimum center. Moreover, since the optimum center lies in Γ+(v), Γ+
3 (u) includes

everything covered by it.

Let C1 be the centers chosen in this first phase. We know the remainder of the graph,

A, has a cover of total weight W ′ = W − w(C1), because of our choices based on CCV

and weight.

Lemma 2.2 shows that we can cover the remaining uncovered vertices with weight

no more than W ′/2 if we use covering radius 7. Applying the lemma again, we can cover

the remaining vertices with weight W ′/4 centers if we allow radius 49. So let the active

set A be V \ Γ+
49(C1), and recursively apply the greedy algorithm, as described in the

proof of Lemma 2.4, to the graph G
(49)
ROPT

. As a result, we have a set of size at most W ′ that

covers A within radius O(log∗ n). Together with C1, this forms an O(log∗ n)-cover of size

at most W .

2.5 Asymmetric p-neighbor k-center

Imagine that we wish to place k facilities so that the maximum distance of a demand

point from its pth-closest facility is minimized. For instance, if some of the anti-terror

bases were busy, or were themselves attacked, failures in p − 1 of them would not cause

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 27

severe blowout in response time.

Definition 2.12 (Asymmetric p-neighbor k-center) For every subset S and vertex v in V , let

dp(S, v) denote the distance from the pth closest vertex in S to v. The problem is to find a subset

S of at most k vertices that minimizes maxv∈V \S dp(S, v).

We show that, if we allow ourselves to use 2k centers, we can approximate the asym-

metric p-neighbor k-center problem within a factor of O(log∗ k). Our algorithm is re-

stricted to the case p ≤ n/k, but this is reasonable as p should not be too large [54].

We use the same techniques as before, including bottleneck graphs, but in the aug-

ment phase we use the greedy algorithm for the constrained set multicover problem [74],

instead of dominating set. That is, each element, e, needs to be covered re times, but each

covering set can be picked at most once. The p-neighbor k-center problem has re = p for

all e. We say that an element e is active if it occurs in fewer than p sets chosen so far. The

greedy heuristic is to pick the set that covers the most active elements. It can be shown

that this algorithm achieves an approximation factor of Hn = O(log n) [74, Section 13.2].

However the following result is more appropriate to our application.

Lemma 2.5 (Greedy constrained set multicover) Let k be the size of the optimum solution to

the constrained set multicover problem. The greedy algorithm gives an approximation guarantee

of log1.5(np/k).

Proof: The same kind of averaging argument used for standard set cover shows that

the greedy choice of a set reduces the total number of unmarked element copies by a

factor 1 − 1/k. So after i steps, the number of copies of elements yet to be covered is

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 28

minimize
∑

v∈V

yv

subject to
∑

u∈Γ−(v)

yu ≥ p v ∈ A

−yv ≥ −1 v ∈ V

yv ≥ 0 v ∈ V .

(2.3)

np(1− 1/k)i < np(e−1/k)i. Hence after k ln(np/k) steps the number of uncovered copies

of elements is less than k. A naive cover of these last k element copies leads the total

number of sets in the solution to be at most k + k ln(np/k). Since p ≥ 2, this greedy

algorithm has an approximation factor less than log1.5(np/k).

If p ≤ n/k, the approximation guarantee above is less than log1.2(n/k). Applying the

standard recursive approach [66], which works in the p-neighbor case, we can achieve an

O(log∗ n) approximation with 2k centers, a bicriteria result. We can lower the approxima-

tion guarantee to O(log∗ k), with 2k centers, using Archer’s LP-based priming [4], which

we describe now in detail.

We first solve the LP for the constrained set multicover problem (2.3), in which yv is

the (fractional) extent to which a vertex is a center. In the solution each vertex is covered

by an amount p of fractional center, out of a total of k. We can now use the greedy method

to obtain an initial set of k2 ln k centers that 2-covers every vertex in the active set with at

least p centers.

Let A be the active vertices (the vertices that are covered fewer than p times) and let

A(v) = Γ+(v) ∩ A. Let y′(v) = yv · av, where av is the number of times v still needs to be

covered, and let y′(S) =
∑

v∈S y′(v) for all subsets S. Note that v ∈ A⇔ av > 0 and thus

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 29

y′(A) = y′(V). The y′ function indicates the extent to which an optimal fractional center

is not yet covered. We will see that when the value of y′(V) is low, we can be sure that

we have found a reasonable cover of all the vertices.

Start with an empty set S and repeat the following until y′(V) < p: Choose the vertex

v from T = V − S maximizing y′(Γ+(v)), add it to S, and set au = au − 1 for all vertices

u ∈ A(v).

Lemma 2.6 Once y′(V) < p, the set S 2-covers every vertex with at least p centers.

Proof: For every v, let α(v) be the active vertices amongst v and its parents, α(v) = {u :

u ∈ Γ−(v), au > 0}, and let β(v) be the inactive vertices in Γ−(v). Since y′(V) < p we

have

∑

u∈α(v)

yu ≤
∑

u∈α(v)

y′u < p .

The first constraint of LP (2.3) tells us that

∑

u∈α(v)

yu +
∑

u∈β(v)

yu =
∑

u∈Γ−(v)

yu ≥ p ,

and thus
∑

u∈β(v) yu > 0. We conclude that there must be at least one vertex in β(v); the

p vertices covering this vertex 2-cover v.

The following lemma corresponds to Archer’s Lemma 4 [4].

Lemma 2.7 There exists v ∈ T such that

y′(A(v)) ≥ y′(A)

y(T)
.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 30

Proof: We take a weighted average of y′(A(v)) over v ∈ T .

1

y(T)

∑

v∈T

yv · y′(A(v)) =
1

y(T)

∑

v∈T

∑

u∈A(v)

yv · y′(u)

=
1

y(T)

∑

u∈A

y′(u)
∑

v∈Γ−(u)∩T

yv

≥ 1

y(T)

∑

u∈A

y′(u)

The inequality follows from the fact that for all u ∈ A, y′(u) ≥ 0 and y(Γ−(u) ∩ T) ≥ 1

(otherwise there would be more than p − 1 members of Γ−(u) in S). Since some term is

at least as large as the weighted average, the lemma follows.

Lemma 2.8

|S |≤ k2 ln k .

Proof: Due to Lemma 2.7, the vertex v chosen in every application of the greedy method

has y′(Γ+(v)) = y′(A(v)) ≥ y′(A)/y(T). In this proof we focus on one iteration at a time

and let A′ stand for the active vertices after the iteration and A for those before. Now,

y′(A′) = y′(A)− y(A(v))

≤ y′(A)− y′(A(v))/p ,

as y(B) ≥ y′(B)/p for any set B. Since we chose greedily, this is less than or equal to

y′(A)− y′(A)

y(T) · p ≤ y′(A)− y′(A)

kp

= y′(V)(1 − 1

kp
)

< y′(V) exp(− 1

kp
) ,

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 31

as y(T) ≤ k. Initially, y′(V) = kp, so y′(V) will be less than p after at most kp ln(k)

iterations. By definition, p ≤ k, so we have |S| ≤ k2 ln k.

Repeatedly applying the greedy procedure for constrained set multicover, this time

for O(log∗ k) iterations, we get 2k centers that cover all active vertices within O(log∗ k).

2.6 Inapproximability results

In this section we provide inapproximability results for the asymmetric versions of the

k-center with outliers, priority k-center, and k-supplier problems. These problems all

admit constant factor approximation algorithms in the symmetric case (Table 2.1).

Asymmetric k-center with outliers

A disadvantage of the standard k-center problem is that a few distant clients can force

centers to be located in isolated places. This situation is averted in the following variant

problem, in which a small subset of clients may be denied service, and some points are

forbidden from being centers.

Definition 2.13 (k-center with outliers and forbidden centers) Find a set S ⊆ C , where C

is the set of vertices allowed to be centers, such that |S| ≤ k and S covers at least p nodes, with

minimum radius.

Theorem 2.2 For any function α(n), the asymmetric k-center problem with outliers (and forbid-

den centers) cannot be approximated within a factor of α(n) in polynomial time, unless P = NP.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 32

Proof: We reduce instance 〈U,S, k〉 of max coverage to our problem. Construct vertex

sets A and B so that for each set S ∈ S there is vS ∈ A, and for each element e ∈ U there

is ve ∈ B. From each vertex vS ∈ A, create an edge of unit length to vertex ve ∈ B if e ∈ S.

Let p = |B|+ k.

If the optimum value of the max coverage instance is |U|, then the k nodes in A that

correspond to some optimal sub-collection will cover p nodes within radius 1. An α(n)-

approximation algorithm will thus return k centers that cover p nodes in some finite dis-

tance. If the maximum coverage with k sets is less than |U|, then the optimum covering

radius for p nodes, using k centers, is infinite. Since our approximation algorithm can

distinguish between these two cases, the approximation problem must be NP-complete.

Note that the proof never relied on the fact that the B vertices were forbidden from

being centers—setting p to |B|+ k ensured this.

Asymmetric priority k-center

Perhaps some demand points need centers closer to them than other demand points. This

situation is captured by the priority k-center problem, in which the distance to a demand

vertex is effectively enlarged by its priority. Note that the triangle inequality still holds

for the original distances.

Definition 2.14 (Priority k-center) Given a priority function p : V → Q+ on the vertices, find

S ⊆ V , |S| ≤ k, that minimizes R so that for every v ∈ V there exists a center c ∈ S for which

pvdcv ≤ R.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 33

A

B

Figure 2.3: Reduction from max coverage to asymmetric priority k-center. Solid lines

have length 1, dotted lines length `.

Theorem 2.3 For any polynomial time computable function α(n), the asymmetric k-center prob-

lem with priorities cannot be approximated within a factor of α(n) in polynomial time, unless

P = NP.

Proof: The construction of the sets A and B is similar to the proof of Theorem 2.2.

Again, we have the unit length set-element edges from A to B, but this time we make

the subgraph on A a complete digraph, with every edge of length `, as in Figure 2.3. The

nodes in set A have priority 1 and the nodes in set B priority `.

If there exists a collection of k sets that cover all elements, then there exist k vertices in

A that cover every vertex in A and B within radius `. If there do not exist k such sets, then

the optimal covering radius using k centers is `2 + `: some vertex in B is at distance ` + 1

from its nearest center and has priority `. If we set ` to α(n), our algorithm can distinguish

between the two types of max coverage instance. Therefore the approximation problem

is NP-complete.

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 34

Asymmetric k-supplier

In the k-supplier problem the vertex set is segregated into suppliers and customers. Only

supplier vertices can be centers and only customer vertices need to be covered.

Definition 2.15 (k-supplier) Given a set of suppliers Σ and a set of customers C , with Σ and

C disjoint, find a subset S ⊆ Σ that minimizes R such that S covers C within R.

Theorem 2.4 For any function α(n), the asymmetric k-supplier problem cannot be approxi-

mated within a factor of α(n) in polynomial time, unless P = NP.

Proof: We use a reduction from max coverage similar to the proof of Theorem 2.2.

2.7 Pattern rotation

In this final section, we divert our attention somewhat to look at an elegant combinatorial

covering problem related to the asymmetric k-center problem.

Before the announcement of the Ω(log∗ n) hardness of approximation result [21, 42,

20], we considered a number of graph constructions that could have led to a proof of

a super-constant integrality gap for asymmetric k-center. In particular, we considered

graphs that were regular in the following way. Let the vertices be labeled 0, 1, . . . , n − 1

and denote the set of vertices that 0 covers by S; the vertex i has edges only to those

vertices of the form i + s mod n for s in S, except i itself. See Figure 2.4 for an example

of this type of regular graph.

Imagine a covering of these n vertices using fractional centers. It is easy to see that the

solution with yi = 1/|S| for all i is an optimal fractional covering. We were interested to

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 35

Figure 2.4: Simple pattern rotation instance

find the minimum covering radius so that n/|S| (integral) centers would be sufficient to

cover all the vertices. We had hoped to find a family of graphs (and subsets S) in which

these integral covering radiuses grew with n, thus showing a super-constant integrality

gap for the asymmetric k-center problem. Despite not making significant progress in this

direction, we did prove that a related problem has a logarithmic integrality gap.

In the asymmetric k-center problem, we fix the size of the cover and try to minimize

the covering radius. We could, as is generally the case with set cover-type problems,

insist on a unit radius and try to find the minimum size cover. We now describe an

abstraction of this problem, which we call pattern rotation.

Let S be a subset of Zn and call the set

S + a = {s + a mod n | s ∈ S}

a rotation of S In an abuse of notation we will sometimes refer to a as the rotation. We

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 36

consider the problem of covering Zn with rotations of (the pattern) S. The covering num-

ber of S is the size of the smallest set A such that S+A = Zn, where S+A =
⋃

a∈A(S+a).

We extend this idea to fractional coverings, in which each element i is given a weight yi

and the sum of the yi such that i covers j (j ∈ S + i), must be at least 1.

Not much seems to be known about the problem of finding the (integral) covering

number of a given set, or indeed a minimal set of rotations. For instance, it may not

be known whether the problem is NP-hard. Moreover, even if we had an oracle for the

decision problem, Is the covering number of S less than x?, it is not clear how we could use

this to produce an optimal family of rotations. That is to say, we assume without loss of

generality that 0 ∈ A, but if the oracle were to tell us that, say, 3 were in A, we would

not know what to ask the oracle next. Unlike set cover, in which removing a set and the

elements it covers results in another (smaller) set cover instance, removing S + 3 from

Zn would result in a new kind of problem instance, for which the oracle would not be of

use. Despite these uncertainties, we can be sure that an approximation algorithm based

on the canonical LP will not have a performance guarantee in o(log n)—the greedy set

cover heuristic provides a Θ(log n) approximation.

Lemma 2.9 There exists some collection of sets {Sn} for which the ratio between the (integral)

and fractional covering numbers is in Ω(log n).

Proof: For each n, create a set Sn by selecting each element of Zn independently with

probability 1/2. The Chernoff bound tells us that the probability that the size of Sn is less

than n/4, implying its fractional covering number is > 4, is at most e−n/32.

Consider a family of rotations A = {a0, a1, . . . , ak−1}, with a0 = 0. The probability

CHAPTER 2. ASYMMETRY IN K-CENTER VARIANTS 37

that a particular element x ∈ Zn is not covered by any rotation Sn +ai is exactly 1/2k . Let

us say that two elements x and y of Zn are independent if there is no pair i, j for which

x − ai = y − aj . That is to say, there is no other element of Zn whose (non)inclusion in

Sn implies the (non)inclusion of both x and y. For any x there are only k2 − k elements

of Zn that are not independent of it. Given a set of rotations A there is therefore a set XA

of n/k2 elements that are mutually independent. The probability that all elements of XA

are covered is
(

1− 1

2k

)n/k2

≤ exp
(

− n

2kk2

)

.

Now, for a fixed k there are
(n
k

)

≤ nk sets of k rotations, each of which has a corre-

sponding set XA of mutually independent elements. The probability that all these sets

XA are covered is at most

nk exp
(

− n

2kk2

)

,

which, if k ≤ (log n)/2, is less than 1/2 for n > 234. Therefore, with probability at least

1/2 no set of k rotations can cover all of Zn (since some XA) set is uncovered. That is

to say, there exists some pattern Sn for which this property holds, and thus has integral

covering number greater than (log n)/2, but fractional covering number at most 4.

Chapter 3

Correlation clustering

3.1 Introduction

Correlation clustering, introduced to the theoretical computer science community by

Bansal, Blum and Chawla [7], departs from the traditional distance paradigm of clus-

tering. All we have at our disposal is qualitative information from a judge: a labeling of

each pair of elements as either similar or dissimilar. These judgments could, for example,

be based on comparisons of records in a database. We are not provided with any quan-

titative distance information about the pairs. Our aim is to produce a partitioning into

clusters that puts similar objects in the same cluster and dissimilar objects in different

clusters, to the maximum extent possible. If there exists a clustering that is correct for

every edge, then the problem is trivially solved by identifying as clusters the connected

components in the graph of similar pairs. When the judge has made mistakes, inter-

esting and non-trivial questions arise: primarily, finding a clustering that differs from

the judge’s verdicts on the fewest possible pairs. Bansal et al. pointed out that correla-

38

CHAPTER 3. CORRELATION CLUSTERING 39

tion clustering corresponds to agnostic learning [52], when viewed as a machine learning

problem. The edge labels are the examples and we are only allowed to use partitionings

as hypotheses for the target function.

An obvious graph-theoretic formulation of the problem is the following: given a

graph G = (V,E) with each edge labeled either “+” (similar) or “−” (dissimilar), find

a partitioning of the vertices into clusters that agrees as much as possible with the edge

labels. If every pair of elements is labeled either + or−, then G will be a complete graph.

In order to capture situations where the judge might be unable to tell whether certain

pairs of elements are similar or dissimilar, we do not insist on the input being a complete

graph. One upshot of the clustering of an incomplete instance is the deduction of the

missing labels from the existing ones.

Bansal et al. proposed three specific correlation clustering problems that are equiva-

lent from an optimization point of view, but rather different in their approximation prop-

erties. An edge is an agreement if it is a + edge within a cluster, or a − edge across two

distinct clusters; a disagreement is a + edge between clusters or a − edge within a cluster.

The MAXAGREE problem seeks to maximize the number of agreements, the MINDIS-

AGREE problem seeks to minimize the number of disagreements, while the MAXCORR

problem asks us to maximize the correlation: the number of agreements minus the num-

ber of disagreements. Note that we do not need to specify the number of clusters k as

a parameter. We have only a single objective; whether the optimal solution uses few or

many clusters is automatically dictated by the edge labels.

In some instances, the judge might provide confidence information for each of the

labels. This is captured by assigning weights to the edges; one can then consider natural

CHAPTER 3. CORRELATION CLUSTERING 40

weighted versions of MAXAGREE, MINDISAGREE, and MAXCORR.

3.2 Previous and related work

Correlation clustering on complete graphs seems to have been first considered by Ben-

Dor et al. [10] motivated by some computational biology questions. Later, Shamir et

al. [71] studied the computational complexity of the problem and showed that MAX-

AGREE (and hence also MINDISAGREE and MAXCORR) is NP-hard for complete graphs.

Shamir et al. used the term Cluster editing to refer to this problem; recent algorithms for

fixed parameter versions are presented by Gramm et al. [39]. Independently, Chen et

al. [19] examined a very similar problem in the context of phylogeny trees, essentially

showing that MINDISAGREE is NP-hard.

As mentioned earlier, Bansal, Blum, and Chawla [7] considered this problem inde-

pendently. They initiated the study of approximate solutions to MINDISAGREE, MAX-

AGREE, and MAXCORR, focusing mainly on the case when G is complete. Bansal et

al. gave a polynomial time approximation scheme (PTAS) for MAXAGREE on complete

graphs. For the minimization version MINDISAGREE, they gave an approximation algo-

rithm with constant performance ratio. The constant is a rather large one, so it should be

viewed as a qualitative result, demonstrating that a constant factor approximation can

be achieved. In the full version of their work [8], Bansal et al. provide a simple algorithm

that is at most a factor three worse than the best partitioning into two clusters. The only

observation they made regarding MAXCORR is that the optimal solution has correlation

in Ω(n) for complete instances.

CHAPTER 3. CORRELATION CLUSTERING 41

Bansal et al. also posed several open questions including those of demonstrating hard-

ness of approximation results for complete graphs and understanding the problem on

general graphs. These questions motivated a number of groups to work on this problem

simultaneously.

Both Demaine and Immorlica [25], and Emanuel and Fiat [28], independently from

each other and from the research presented in the following chapters, announced results

on clustering with qualitative information. These two papers focus on MINDISAGREE

in general graphs. Demaine and Immorlica [25] present a factor O(log n) algorithm for

general graphs, based on region growing, and demonstrate an approximation preserving

reduction from (weighted) minimum multicut. They also provide an O(r3) approxima-

tion algorithm for MINDISAGREE in Kr,r-minor-free graphs. Emanuel and Fiat present

reductions both to and from minimum multicut; in particular, the authors show a re-

duction from unweighted multicut to unweighted MINDISAGREE. For MAXAGREE on

general graphs, Swamy [72], again independently from the research here, provided a fac-

tor 0.7666 approximation algorithm (very slightly better than the factor we present in

Chapter 5).

3.3 Our results

We have answered several questions left open by the work of Bansal et al. [7]. Table 3.1

indicates how our results provide a better overview of the approximability of the various

flavors of correlation clustering.

CHAPTER 3. CORRELATION CLUSTERING 42

Table 3.1: Compendium of principal correlation clustering approximation results, with

algorithmic factors above the lines and hardness bounds below. Results presented in this

dissertation are in boldface.

Minimizing disagreements

Complete General

4 [14] O(log n) [14, 28, 25]

17433 [7]

c > 1 [14] 29/28− ε [14]

min multicut [14, 28, 25]

c > 1 [8]

Maximizing agreements

Complete General

PTAS [7] 0.7666 [72]

0.7664 [14]

115/116 + ε [14]

Maximizing correlation

General

Ω(1/log n) [16]

43/44 + ε [16]

CHAPTER 3. CORRELATION CLUSTERING 43

Complete graphs

Our main algorithmic result is a factor 4 approximation algorithm ALGCOMPLETE for

MINDISAGREE on complete graphs. This significantly improves on the performance ra-

tio of Bansal et al.’s combinatorial algorithm [7]. Our algorithm is based on a natural

linear programming relaxation; it rounds the fractional solution (a semi-metric on the

vertices) using the region growing approach. The completeness of the graph allows us to

to achieve a constant approximation using region growing, instead of the usual logarith-

mic factor [35]. The integrality gap of our LP formulation is 2 and we also show that

beating factor 3 would require significant departure from our strategy. To complement

our algorithmic result, we also prove that MINDISAGREE on complete graphs is APX-

hard (that is, NP-hard to approximate within some constant factor greater than 1) via a

somewhat intricate reduction. The reduction that Bansal et al. use to prove NP-hardness

does not yield APX-hardness. In contrast, MAXAGREE does admit a PTAS on complete

graphs [7].

General graphs

Bansal et al. did not give any algorithms for general graphs, but noted that MINDIS-

AGREE is APX-hard [8]. They provided evidence that MAXAGREE is unlikely to admit a

PTAS (unlike the complete graph case) by showing that a PTAS would imply a much bet-

ter algorithm for coloring 3-colorable graphs than is currently known. We give a factor

O(log n) approximation algorithm for MINDISAGREE—this follows from a straightfor-

ward modification of the Garg, Vazirani, Yannakakis (GVY) region growing algorithm

CHAPTER 3. CORRELATION CLUSTERING 44

for minimum multicut [35]. We also note that MINDISAGREE is at least as hard to ap-

proximate as multicut, so a constant factor approximation algorithm would be a major

breakthrough.

We prove that MAXAGREE is APX-hard and thereby provide a concrete hardness

result—in contrast to the above evidence of hardness based on a relation to graph col-

oring. Complementary hardness results follow for MINDISAGREE and MAXCORR. On

the algorithmic side, the naive 1/2-approximation algorithm, namely choosing the better

of placing all elements in a single cluster and placing each of them in a separate clus-

ter, was the best known for MAXAGREE. We note in passing that this implies that the

optimum value of MAXCORR is always nonnegative. We give a factor 0.7664 approxima-

tion algorithm Best(H2,H3) based on rounding a semidefinite programming relaxation.

Moreover, if there exists a clustering that correctly classifies most of the edges, then our

algorithm will also find one with a similar property (we defer the quantitative statement

to the relevant technical section). Our interest in the latter result is due in part to the

fact that it brings out some of the difficulty that must be overcome if one tries to prove

a super-constant factor inapproximability result for MINDISAGREE. Such a result would

have to focus on instances where an almost perfect clustering exists for both the yes and

no cases of the gap reduction.

We provide the first approximation algorithm ApproxMaxCorr for maximizing the cor-

relation. Intuitively, this problem seems harder than MAXAGREE, as the optimum value

may be very close to zero. The MAXCORR problem restricted to two clusters is a special

case of a type of quadratic program for which we have an SDP-based Ω(1/ log n) approx-

imation. We show that taking the better of the singleton-clusters solution and the best

CHAPTER 3. CORRELATION CLUSTERING 45

two-cluster solution provides a 1/3 approximation for the general MAXCORR problem.

Therefore, we obtain an Ω(1/ log n) approximation for MAXCORR.

The algorithms for MINDISAGREE, MAXAGREE, and MAXCORR are in Chapters 4,

5, and 6, respectively. All of the hardness of approximation proofs follow in Chapter 7.

Finally, in Chapter 8 we apply some well-known techniques to reduce the running time

of some of our approximation algorithms.

Chapter 4

Minimizing disagreements

4.1 General graphs

We describe a natural LP relaxation for MINDISAGREE. This is very similar to the LP

used in the GVY minimum multicut algorithm [35].

A partitioning into clusters can be represented with a set of binary variables, one for

each pair of vertices. If i and j are in the same cluster then xij is 0, if they are in different

clusters then xij is 1. Since each cluster is an equivalence class, we know that if xij = 0

and xjk = 0, then xik = 0. We can express this fact using the triangle inequality,

xik ≤ xij + xjk .

The objective is to minimize the number of mistakes: the number of positive edges for

which xij is one and the number of negative edges for which xij is zero. The integer

program (4.1) summarizes the situation: +(ij) indicates that the edge between i and j

has a positive label, while −(ij) indicates a negative label. The confidence that the judge

46

CHAPTER 4. MINIMIZING DISAGREEMENTS 47

minimize
∑

+(ij)

wij · xij +
∑

−(ij)

wij · (1− xij)

subject to xik ≤ xij + xjk for all i, j, k

xij ∈ {0, 1} for all i, j

(4.1)

places on the (dis)similarity label between i and j is represented by the weight wij . The

LP relaxation is obtained by replacing the integer constraints in (4.1) with 0 ≤ xij ≤ 1 for

all i, j.

Let the value of the optimal LP solution be denoted by OPTLP. A fairly straightfor-

ward application of the GVY region growing procedure yields a solution of cost at most

O(log n)OPTLP. We briefly describe this algorithm, ALGGENERAL, and outline its analy-

sis.

We will refer to xij as the distance between i and j, which is consistent with the fact

that xij is a semi-metric in the range [0, 1]. Intuitively, points that are close should be

placed in the same cluster and points that are far should be placed in different clusters.

Let Bx(i, r) denote the set of points whose distance from i is less than or equal to r. For a

set of vertices S, let δ(S) be the set of edges between S and S.

Theorem 4.1 ALGGENERAL achieves an O(log n) approximation for MINDISAGREE on gen-

eral graphs.

Proof: The GVY region growing procedure suggests the choice of radius r in step 2(a)

of the algorithm. Set V +
x (i, r) to be

OPTLP

n
+

∑

+(uv)∈Bx(i,r)

wuvxuv +
∑

+(uv)∈δ(Bx(i,r))

wuv(r − xiu) .

CHAPTER 4. MINIMIZING DISAGREEMENTS 48

ALGGENERAL

1. C ← ∅. /* Collection of clusters */

2. While there exist i, j in the graph such that xij > 2/3:

(a) Let S = Bx(i, r) for some r < 1/3. /* See proof for value of r */

(b) C ← C ∪ {S}.

(c) Remove S and δ(S) from the current graph.

3. Return C.

This is the contribution to the LP solution from positive edges that have at least one

endpoint in Bx(i, r), plus an additional amount OPTLP/n. Let W+
x (i, r) denote the sum of

weights of positive edges in δ(Bx(i, r)). We choose r < 1/3 so that the ratio of W+
x (i, r) to

V +
x (i, r) is minimized. The analysis technique in [35] can be used to show that there exists

a radius r < 1/3 such that W+
x (i, r) ≤ (3 log n)V +

x (i, r). This and the triangle inequality

imply that the total weight of positive edges with end points in different clusters is in

O(log n)OPTLP.

Now we account for the negative edges. Any negative edge ij that ends up inside a

cluster in our solution contributes wij · (1 − xij) to the LP, which is at least wij/3, since

xij ≤ 2/3. On the other hand, we pay wij for this edge. This implies that the total weight

of negative edges with end points in the same cluster is at most O(log n)OPTLP.

The O(log n) approximation ratio we obtain from our LP is asymptotically the best

possible. Our LP formulation has integrality gap Ω(log n), as shown by examples similar

CHAPTER 4. MINIMIZING DISAGREEMENTS 49

minimize
∑

+(ij)

xij +
∑

−(ij)

(1− xij)

subject to xik ≤ xij + xjk for all i, j, k

0 ≤ xij ≤ 1 for all i, j

(4.2)

to the expander gap examples for minimum multicut [35].

We expect that a procedure such as this one, which learns distances from similarity

judgment information, will have further applications in situations where no natural dis-

tance function exists.

4.2 Complete graphs

We present a factor four algorithm for minimizing disagreements in the complete graph.

In contrast to Bansal et al. [7], who devised a combinatorial algorithm with factor 17433,

our algorithm uses a linear programming formulation of the problem.

Our approach bears some similarity to ALGGENERAL in Section 4.1. Once the linear

relaxation (4.2) of the program for the is solved, in polynomial time, we are ready for our

factor four approximation algorithm.

We refer to xij not only as the distance between i and j, but also as the length of edge

ij. The procedure we present, ALGCOMPLETE, illustrated also in Figure 4.1, clearly de-

scribes a partitioning. We analyze its performance by comparing the number of mistakes

incurred to the LP costs of appropriate edges.

Let us reflect on the natural intuition behind the algorithm. Intuitively, the LP solu-

tion xui gives a handle on how different u and i are: the smaller the value of xui the more

CHAPTER 4. MINIMIZING DISAGREEMENTS 50

ALGCOMPLETE

1. Let S = V and repeat the following steps until S is empty.

2. Select a vertex u arbitrarily from S.

3. Let T be the set of vertices whose distance from u is no greater than 1/2,

except u itself: Bx(u, 1/2) − {u}.

4. If the average distance of the vertices in T from u is not less than 1/4,

then make C = {u} a singleton cluster and jump to step 6.

5. If the average distance is less than 1/4, then make C = {u} ∪ T a cluster.

6. Let S = S − C and jump to step 2 (the start of the loop).

S­T

0 0.5 1

u T S­T

u T

Figure 4.1: Illustration of the two main choices in ALGCOMPLETE: numerical annotations

are the distances from u

CHAPTER 4. MINIMIZING DISAGREEMENTS 51

incentive there is to place u and i in the same cluster. Therefore, it makes sense to cluster

the points close to u (in a ball Bx(u, r)) in one cluster, say C , together with u. If both i and

j are close to u, but are connected by a negative edge, we will cluster them together and

make a mistake, but the LP cost of that edge 1−xij will also be high since xij ≤ xiu + xju

must also be small. This basic strategy works well with negative edges. However, there

is a problem if most of the vertices in C are near its periphery, that is, at distance close

to r from u. In such a case, the LP might have very low cost xij for some +(ij) crossing

the cut, compared to the unit cost that the algorithm incurs on the same edge. A natu-

ral measure of whether this phenomenon could occur is the average distance from u of

points in C . If this is large, then there could be many points on the periphery, and the

above difficulty could occur, so we simply place u in its own cluster. It turns out, from

the analysis that follows, that the best criterion for choosing between the ball cluster and

a singleton cluster, is whether the average distance is greater or less than 1/4.

At each iteration of the loop, we relabel the vertices (other than u) so that i < j if

xui < xuj , breaking ties arbitrarily. The triangle inequality tells us that for i < j,

xuj ≤ xui + xij and xij ≤ xui + xuj .

Observation 4.1 The LP cost of a positive edge ij, xij , is at least xuj − xui. The LP cost of a

negative edge ij, 1− xij , is at least max{0, 1 − xui − xuj}.

Associated with the new cluster, C , are the edges within C and the edges between C and

S − C . We show that the mistakes in each iteration of ALGCOMPLETE can be charged

to the LP costs of the edges associated with the new cluster C . Let us now consider one

iteration at a time, starting with the case when a singleton cluster is formed.

CHAPTER 4. MINIMIZING DISAGREEMENTS 52

Singleton cluster

The edges associated with a singleton cluster are simply all the edges incident to u: the

positive ones are the mistakes. We know from our choice in step 4 that

∑

i∈T

xui ≥ |T |/4 .

For i ∈ T , 1 − xui ≥ xui, so the LP cost of all edges from u to T , is at least |T |/4. The

number of (positive) edge mistakes from u to T , which is at most |T |, is thus at most four

times the LP cost of edges from u to T .

The remaining edges associated with this cluster are between u and S − T . Each

positive mistake incident on u has distance, and thus LP cost, greater than 1/2; so the

number of mistakes is at most twice the LP cost of these edges.

Cluster with T

We now turn to the case in which C = {u} ∪ T . There are two kinds of mistakes in this

case: negative edges inside C and positive edges between C and S − C .

(i) Negative edge mistakes

If both i and j are within distance 3/8 of u, then the LP cost of negative edge ij is at least

1/4, by Observation 4.1. This accounts for the mistake within factor 4.

Each remaining negative edge mistake ij will be charged to vertex j, the vertex that

is further from u (see Figure 4.2). So fix j and assume xuj lies in the range (3/8, 1/2].

Observation 4.1 tells us that the total LP cost of all the edges within C , associated with j,

CHAPTER 4. MINIMIZING DISAGREEMENTS 53

ju

i

0.50.375

Figure 4.2: Charging mistakes and LP costs to the further (fixed) vertex j

is at least

∑

i:i<j,+(ij)

(xuj − xui) +
∑

i:i<j,−(ij)

(1− xui − xuj) .

We let xvv = 0 for all v so that this summation is well-defined. Denote by pj the number

of positive edges ij for which i < j, and let nj stand for the number of such negative

edges. The total cost is then

pjxuj + nj(1− xuj)−
∑

i:i<j

xui . (4.3)

Since we are including T in C , we know that the average value of xui is less than 1/4 for

i ∈ T . The summation above is over the set {i : i < j}, but since xui ≥ 3/8 for i > j,

the average value of the summation terms in (4.3) is less than 1/4. Hence the LP cost is

greater than

pjxuj + nj(1− xuj)−
pj + nj

4
. (4.4)

The number of mistakes associated with j is merely nj . The LP cost is bounded below

CHAPTER 4. MINIMIZING DISAGREEMENTS 54

by a linear function (4.4) that ranges from pj/8 + 3nj/8, when xuj = 3/8, to pj/4 + nj/4,

when xuj = 1/2. Therefore the LP cost is at least nj/4 and all the (negative) mistakes

are accounted for within factor four. Since this property holds for every j in the range

(3/8, 1/2], we conclude that the total number of negative edge mistakes is accounted for

by appropriate LP edge costs within factor four.

(ii) Positive edge mistakes

Consider positive edges ij that cross the distance 1/2 boundary: xui ≤ 1/2, but xuj > 1/2.

In particular, if xuj ≥ 3/4, then xuj − xui ≥ 1/4 and so each such positive edge pays for

itself within factor four.

Again, we associate each remaining edge with the vertex that is further from u. So fix

j and assume that xuj is in the range (1/2, 3/4). The LP cost of the edges associated with

j is

pjxuj + nj(1− xuj)−
∑

i∈T∪{u}

xui ,

which is strictly greater than (4.4). This time, the linear function lower bound ranges be-

tween pj/4 + nj/4, when xuj = 1/2, and pj/2, when xuj = 3/4. The number of (positive)

mistakes is pj so again we can pay for these within factor 4 of the LP cost. This argument

holds for all j and thus for all positive edge mistakes.

Summary

Each choice of cluster leads to a ratio of at most four between the number of mistakes

and the linear programming cost of associated edges. Since in past iterations we never

CHAPTER 4. MINIMIZING DISAGREEMENTS 55

charged to edges within S, and in future iterations we charge only to edges within S−C ,

we have a factor four approximation algorithm.

Theorem 4.2 ALGCOMPLETE achieves a factor 4 approximation for MINDISAGREE on com-

plete graphs.

As we remarked earlier, if we assume that all positive edges are correct, the problem

is trivial as it reduces to finding connected components. Shamir, Sharan, and Tsur [71]

studied the cluster deletion problem, in which all negative edges are deemed to be correct

and must be cut, and showed it to be APX-hard. In this case, the problem analogous to

MINDISAGREE is to find a clustering with the fewest possible positive edges crossing

cluster boundaries. Our algorithm for MINDISAGREE also achieves a 4 approximation

in this variant. The idea is to add the constraints xij = 1 in the linear program for each

−(ij), and then run ALGCOMPLETE on the LP solution. We make the minor amendment,

which does not affect the proof of Theorem 4.2 substantially, that T does not include the

vertices whose distance from u is exactly 1/2. Thus each cluster C has diameter less than

1 and the endpoints of a negative edge are never placed in the same cluster. The analysis

for the number of mistakes on positive edges remains identical. With this variant, as with

MINDISAGREE, it is an interesting question whether the factor 4 can be improved.

4.3 Approximation limitations

Integrality gap

Any approximation technique that is based on the linear program (4.2) is limited by its

integrality gap. The following star example, in Figure 4.3, shows this gap is at least two.

CHAPTER 4. MINIMIZING DISAGREEMENTS 56

1 1

0.5

0.5

Figure 4.3: MINDISAGREE instance with integrality gap almost 2, showing both the frac-

tional optimum (with distances) and integral optimum (with clusters). Some edges have

been omitted for clarity.

Place n vertices around a single center vertex so that the center is joined to the others

with positive edges, but the perimeter vertices have negative edges between them. In an

optimum fractional solution the positive edges have length 1/2 and the negative edges

have length 1, so OPTLP = n/2. An optimal clustering places all the perimeter vertices in

singleton clusters, except for one, which is in a cluster with the center, so OPT = n − 1.

The gap, 2(n − 1)/n, has limit 2 as n increases.

Limitations of region growing

The approximation technique we used, based on GVY region growing, cannot achieve

a factor better than three. Our algorithm cuts a cluster C out of the set S, where C is

CHAPTER 4. MINIMIZING DISAGREEMENTS 57

chosen according to the distance relation x. We allowed ourselves two options for C : the

singleton set {u} or Bx(u, 1/2). If we restrict ourselves to clusters of the form Bx(u, r),

or {u}, then we are confounded by the following star type example. Admittedly, this

example is not an optimal fractional solution to the linear program, but it is a feasible

solution and thus Observation 4.1, on which our technique is based, applies.

The positive and negative labels are identical to the previous star, but now every edge

has fractional length 1/3. If our cluster radius is less than 1/3 then we have a singleton

cluster {u}, in which case the gap ratio is 3. Alternatively, if the radius is at least 1/3 then

all the vertices are in one cluster and the number of mistakes is n(n − 1)/2. Since the

LP cost is n(n − 1)/6 + n/3, the gap is 3(n − 1)/(n + 1), which tends to 3 as n increases.

Therefore, no radius-based approximation algorithm can beat a factor of three.

Using fixed radii

Our factor four algorithm chose between a singleton cluster and a fixed cluster radius of

1/2. A more general algorithm might select the cluster radius based on the values of the

x distance relation. We saw that even if this option were available, we could not achieve

an approximation factor better than three. In the remainder of this section, let us restrict

our attention to algorithms in which the radius candidates—call them thresholds—for

cluster balls are specified in advance. We now show that, in some sense, our algorithm

ALGCOMPLETE is the best possible we are allowed only one (fixed) threshold.

Theorem 4.3 Given a set of thresholds, of which k are greater than 1/4, then our analysis tech-

niques, which rely only on the solution being feasible, cannot be used to show an approximation

ratio better than 3 + 1/k.

CHAPTER 4. MINIMIZING DISAGREEMENTS 58

d1−DD d d1 2 3

u

n

n

n

n

n

n 2

Figure 4.4: Feasible solution example showing that with k thresholds our techniques

cannot give an approximation ratio better than 3 + 1/k. The instance is complete, but we

have chosen not to show edges that have little impact on the calculations.

Proof: Consider the analysis of the following feasible solution, shown in Figure 4.4, to

the MINDISAGREE LP, which could occur in a single iteration of region growing.

Imagine that there are n2 vertices at distance D = k/(3k + 1) − ε from u, and that

for each threshold di in the range (D, 1 − D] there are n vertices at distance di + ε. The

edges between the D-vertices and the all of the di + ε-vertices are positive. There are also

n vertices at distance di− ε for each di greater than D (including those thresholds greater

than 1 − D); they have negative edges to the D-vertices. Finally, every edge between u

and any other vertex is positive. We ignore all other edges as their costs are dominated

by the edges incident to the D-vertices.

For every threshold that lies in the range (1/4,D), the number of mistakes is domi-

nated by n2 and the LP cost is dominated by Dn2. Therefore the integrality gap is 1/D,

CHAPTER 4. MINIMIZING DISAGREEMENTS 59

which tends to→ 3 + 1/k as ε→ 0.

For every other threshold, the LP cost is dominated by the edges between the n2 D-

vertices and the vertices in the other sets. The LP cost of the edges to di − ε and di + ε

could be as low as

n3[(di + ε)−D] + n3[1− (di − ε)−D] = n3[1 + 2ε− 2D]

→ n3 · k + 1

3k + 1
as ε→ 0 .

The LP cost of the negative edges between the D-vertices and the di − ε-vertices, where

di > D, could be zero. For each threshold between D and 1−D, of which there are k′ ≤ k,

the number of mistakes is (k′ + 1)n3. Therefore the ratio of mistakes to LP cost could be

as high as

k′ + 1

k′
· 3k + 1

k + 1
,

which is 3 + 1/k when k′ = k, and greater otherwise. The total LP cost associated with

thresholds whose distance is greater than 1−D may be no greater than before. Since the

number of mistakes is at least (k′ + 1)n3, we cannot prove an approximation ratio any

better than 3 + 1/k.

Note then that our factor four algorithm, which has one threshold greater than 1/4, is the

best we could hope for with these techniques and just one threshold.

4.4 The connection to feedback edge sets

Using an alternative linear programming formulation, we demonstrate the link between

MINDISAGREE in complete graphs and a feedback edge set problem.

CHAPTER 4. MINIMIZING DISAGREEMENTS 60

minimize
∑

+(ij)

xij +
∑

−(ij)

(1− xij)

subject to
m−1
∑

j=1

xij ,ij+1
− xim,i1 ≥ 0 for all C(i1, . . . , im)

xij ≤ 1 for all −(ij)

xij ≥ 0 for all i, j

(4.5)

Polygon inequalities are generalizations of triangle inequalities: the length of one

edge in a polygon is at most the sum of the lengths of all the other edges in the polygon.

A full set of polygon inequalities is equivalent to a full set of triangle inequalities. Our

new formulation, however, contains only one type of polygon inequality: the length of

a negative edge is at most the sum of the lengths of edges in a positive path connecting

its endpoints. More precisely, for all i1, i2, . . . , im such that +(i1, i2), . . . ,+(im−1, im), but

−(i1, im),
m−1
∑

j=1

xij ,ij+1
− xi1,im ≥ 0 .

We call this type of polygon a negative edge with positive path cycle (NEPPC), and denote it

by C(i1, . . . , im). Elsewhere [28], NEPPCs have been called erroneous cycles.

We now show that the NEPPC constraints are a sufficiently large set that they imply

all the triangle (inequality) constraints for optimal solutions to the linear program (4.5).

The following simple observation, together with the consequent lemma, is the key.

Observation 4.2 In an optimal solution to the linear program (4.5), a positive edge either has

length zero, or it is part of some tight NEPPC constraint. Likewise, an optimal negative edge

either has length one or is part of some tight NEPPC constraint.

CHAPTER 4. MINIMIZING DISAGREEMENTS 61

Lemma 4.1 In an optimal solution to LP (4.5), the polygon inequalities apply to every cycle of

positive edges.

Proof: Consider a positive path p that is incident to both endpoints of positive edge e,

with xe > xp in an optimal solution (abusing notation). Since the length of e cannot be

zero, Observation 4.2 tells us that e lies in some tight NEPPC c. Assume for the moment

that c does not share any vertices with p except for the endpoints of e. Now consider the

NEPPC c′ that is formed by replacing e in c with p. Since c was tight, but p is shorter than

e, c′ must violate its NEPPC inequality.

It may be that p and c share some vertices other than the endpoints of e. If so, then

form a NEPPC c′ by building a positive path p′ in the following way, where ν refers to

the negative edge in c (see also Figure 4.5).

1. Start at one endpoint of ν and walk along c until it intersects p.

2. Now start at the other endpoint of ν and walk in the other direction

along c until it intersects p.

3. Complete the path p′ by walking along the subpath of p that joins

the intersection points, but does not include e.

Note that the intersection points above are well-defined, as p must meet c at the very least

at the endpoints of e. Clearly p′ and ν form an NEPPC c′, but the length of p′ is bounded

by the sum of the lengths of c− e− ν and of p. Since c was tight,

xν = xc−ν = xc−e−ν + xe > xc−e−ν + xp ≥ xp′ ,

hence the NEPPC inequality for c′ is breached.

CHAPTER 4. MINIMIZING DISAGREEMENTS 62

c

pe

ν

Figure 4.5: Construction of a new NEPPC: Positive edge e is part of a tight NEPPC c,

which has one negative edge ν; edge e is also in a cycle with positive path p.

Corollary 4.1 In every triangle of positive edges the triangle inequalities are satisfied in an opti-

mal solution to (4.5).

We are now able to prove our main result of this section.

Theorem 4.4 The linear program with only NEPPC polygon constraints (4.5) is equivalent to

the triangle inequality program (4.2), in the sense that their sets of optimal solutions are the same.

Proof: We first show that any optimal solution to (4.5) must satisfy the triangle inequal-

ities.

Although the corollary above deals with all-positive triangles, there are still a number

of different cases and configurations to consider. We therefore leave the details to the

reader, but note the following general principles of the proof technique.

Consider some triangle in the graph that is not covered by the corollary above: it

must have at least one negative edge. If a negative edge has length one, then some of the

triangle inequalities are trivially satisfied. Otherwise, the negative edge is contained in

a tight NEPPC. The combination of tight NEPPCs and positive triangle edges allows us

CHAPTER 4. MINIMIZING DISAGREEMENTS 63

minimize
∑

+(ij)

xij +
∑

−(ij)

x′
ij

subject to
m−1
∑

j=1

xij ,ij+1
+ x′

im,i1 ≥ 1 for all C(i1, . . . , im)

xij ≥ 0 for all +(ij)

x′
ij ≥ 0 for all −(ij)

(4.6)

to use either the NEPPC constraints or Lemma 4.1 to be sure that the triangle inequality

constraints are observed.

Finally, since the linear program (4.5) is a relaxation of the original (4.2), the two

formulations must have the same set of optimal solutions.

We note that one can also prove an integral equivalent to Theorem 4.4: any optimal

{0, 1} solution to the NEPPC constraint LP is an optimal solution to the MINDISAGREE

problem, in a complete graph.

If we replace each (1 − xij) term with x′
ij for each negative edge, we obtain an LP

with only positive coefficients (4.6), in which the x′
ij ≤ 1 constraints are unnecessary. In

any feasible solution to (4.6), the sum of the terms around any NEPPC is at least 1. If the

variables xij and x′
ij are binary, then we have the following interpretation: around any

cycle that contains exactly one negative edge we must select at least one edge. That is, we

need a feedback edge set for the set of cycles with exactly one negative edge. If the cycles

of interest were those with at least one negative edge, we would already have a factor

two approximation algorithm [29]. This feedback edge set interpretation might lead to

an algorithm with approximation ratio better than four.

As a final comment, we note that there is also some similarity to the notion of balance

CHAPTER 4. MINIMIZING DISAGREEMENTS 64

in signed graphs, as used in the social sciences [70]. Each person in some group is rep-

resented by a node in a graph; there is an edge between a pair of nodes if there is some

strong relationship between the people, with the sign of the edge reflecting the nature of

the relationship. A group, and therefore the graph, is called balanced if every cycle in the

graph contains an even number of negative edges. There exist linear time algorithms to

determine whether a signed graph is balanced. However, some graphs are neither com-

pletely balanced nor completely unbalanced and there is ongoing research to measure

the degree of balance in them.

Chapter 5

Maximizing agreements

As already mentioned, Bansal, Blum, and Chawla [7] present a PTAS for MAXAGREE on

complete graphs, so we focus on general graphs here. Obtaining a 1/2 approximation

for MAXAGREE is trivial, as observed by Bansal et al. [7] for the complete graph. If the

total weight of positive edges is greater than the total weight of negative edges, place all

vertices in one cluster; otherwise, put each of them in an individual cluster.

5.1 A linear program with poor integrality gap

Consider an LP relaxation for MAXAGREE similar to the LP used for MINDISAGREE in

Chapter 4. The constraints are exactly the same, but the objective is

maximize
∑

+(ij)

wij · (1− xij) +
∑

−(ij)

wij · xij

Theorem 5.1 The integrality gap of the LP relaxation for MAXAGREE is no better than 2/3 + ε

for any ε > 0.

65

CHAPTER 5. MAXIMIZING AGREEMENTS 66

Proof: Our gap instance consists of two sets A and B of n vertices each. The graph is in

fact complete, with every edge having a positive or negative label. The edges between A

and B are positive; those with end points within the same set are negative. Thus there are

n2 positive edges and n(n−1) negative edges. The optimal LP solution assigns xij = 1/2

for +(ij) and xij = 1 for −(ij), and so OPTLP is n(n− 1) + n2/2. On the other hand, the

value of OPT for this instance is n2: any instance with equal numbers of elements from

A and B in each cluster suffices—we leave the proof to the reader. Hence the integrality

gap is 2n/(3n − 2), which approaches 2/3 as n increases.

5.2 Rounding a semidefinite program

We next consider a semidefinite program (SDP) for MAXAGREE, as SDPs can be solved to

arbitrary precision in polynomial time. Lovasz [58] pioneered the application of semidef-

inite programming, when he used it to determine the value of the ϑ function, an up-

per bound on the size of the maximum independent set in a graph. Goemans and

Williamson [37] were the first to provide an SDP based approximation algorithm with

their 0.878-approximation for max cut. This was followed shortly afterwards by Karger,

Motwani, and Sudan [50] who used an SDP relaxation to obtain an O(n1−3/(k+1) log1/2 n)

coloring for k-colorable graphs.

To motivate the SDP, we associate a distinct basis vector with each cluster in a solu-

tion; for every vertex i in that cluster we set the unit vector vi to be that basis vector. The

agreement of the clustering solution can now be expressed in terms of the dot products

vi · vj . If vertices i and j are in the same cluster, then vi · vj = 1, if not, vi · vj = 0. With

CHAPTER 5. MAXIMIZING AGREEMENTS 67

this vector solution in mind, we consider the SDP relaxation for MAXAGREE (5.1).

maximize
∑

+(ij)

wij(vi · vj) +
∑

−(ij)

wij(1− vi · vj)

subject to vi · vi = 1 for all i

vi · vj ≥ 0 for all i, j

(5.1)

Consider the following general approach for rounding this SDP: Pick t random hy-

perplanes, dividing the set of vertices into 2t clusters. We refer to this scheme as Ht. Our

rounding scheme takes the better of the two solutions returned by H2 and H3, denoted

by Best(H2,H3).

Theorem 5.2 Best(H2,H3) returns a solution in which the expected number of agreements is at

least 0.7664 OPTSDP.

Proof: In order to analyze Best(H2,H3), we consider a slightly different scheme: pick

H2 with probability 1 − α and pick H3 with probability α, denoted by Comb(H2,H3).

Clearly the approximation ratio of Comb(H2,H3) is a lower bound on the approximation

ratio of Best(H2,H3).

We perform an edge-by-edge analysis: For each edge ij, we measure the expected

contribution to the solution produced relative to its SDP contribution. The (nonnegative)

edge weights are common to both the integral formulation and its SDP relaxation and so

can be ignored. Consider an edge ij such that the angle between vi and vj is θ ∈ [0, π/2].

The probability that vi and vj are not separated by Ht is (1− θ/π)t.

If ij is a positive edge, the contribution to the SDP solution is vi · vj = cos θ. On the

other hand, the expected contribution to the number of agreements in Comb(H2,H3) is

(1− α)(1 − θ/π)2 + α(1− θ/π)3.

CHAPTER 5. MAXIMIZING AGREEMENTS 68

If ij is a negative edge, the contribution to the SDP solution is 1− vi · vj = 1 − cos θ. On

the other hand, the expected contribution to the number of agreements in Comb(H2,H3)

is

1− (1− α)(1 − θ/π)2 − α(1− θ/π)3.

Thus the approximation ratio can be bounded by

min
θ∈[0,π/2]

{

(1− α)(1− θ
π)2 + α(1 − θ

π)3

cos θ
,
1− (1− α)(1 − θ

π)2 − α(1 − θ
π)3

1− cos θ

}

.

For α ≤ 0.1316, the minimum of the two expressions is 3/4+α/8. In fact the minimum

value of the second expression is 3/4+α/8 for all α ∈ [0, 1] and is achieved when θ = π/2.

The upper bound on α is obtained by minimizing the first expression. Setting α = 0.1316

yields a 0.7664 approximation.

The following simple example shows that the best approximation factor we can hope

to achieve using the SDP (5.1) is at most 0.828. Our example has three vertices, 1, 2, 3, in

which edges (1, 2) and (2, 3) are positive, but (1, 3) is negative. The optimal SDP solution

consists of the vectors v1 = (1, 0), v2 = (1/
√

2, 1/
√

2), v3 = (0, 1), with objective value

1 + 2/
√

2 = 1 +
√

2. On the other hand, OPT = 2, so the integrality gap is at most

2/(1 +
√

2) ≈ 0.828.

Our SDP formulation does not, however, respect the triangle inequalities on the val-

ues xij = 1 − vi · vj . Even with such constraints added, the example below shows that

significant improvements to the approximation ratio may not be possible. Consider an

instance on five vertices 0, 1, 2, 3, 4. Edges from 0 are positive, but all others are nega-

tive. With v0 = (0.5, 0.5, 0.5, 0.5), and vi equal to the ith basis vector ei, OPTSDP = 8.

However, OPT = 7, with clusters {0, 1}, {2}, {3}, {4}, showing that we can rule out an

CHAPTER 5. MAXIMIZING AGREEMENTS 69

SDP-based algorithm with approximation factor greater than least 7/8 that observes the

triangle inequalities.

An alternative approach is to use the rounding scheme used by Frieze and Jerrum [32]

for max-k-cut. The basic idea is to pick k random unit vectors (spokes) and assign each

vector to the closest spoke. The analysis of such a scheme is quite involved and the gap

example above suggests that pursuing this direction is unlikely to yield significant im-

provements. Nevertheless, Swamy [72] recently carried out an analysis of such a round-

ing procedure and reported a factor 0.7666 approximation algorithm for MAXAGREE.

5.3 Almost satisfiable instances

Consider an instance for which the optimal SDP solution is (1−ε)W , where W is the total

weight of all the edges. We show that in this case it is possible to obtain a clustering with

expected agreement in (1−O(
√

ε log(1/ε)))W . This strong result suggests there would

be difficulty in proving super-constant inapproximability for MINDISAGREE.

It is convenient at this point to define various parameters. Let P denote the total

weight of the positive edges and N the total weight of the negative edges. We define ρ

and ν as follows:

ρ =

∑

+(ij) wij(1− vi · vj)

P

ν =

∑

−(ij) wij(vi · vj)

N
.

Since OPTSDP = (1− ε)W , we observe that ε ·W = ρ · P + ν ·N .

Lemma 5.1 P
√

ρ ≤W
√

ε.

CHAPTER 5. MAXIMIZING AGREEMENTS 70

Proof: It is trivially true if ρ ≤ ε. Otherwise, by definition Pρ ≤ Wε, so P
√

ρ ≤

Wε/
√

ρ < W
√

ε.

We prove that the rounding scheme Ht with t = log(1/ε) satisfies the following two

lemmas and then conclude with the main result of this section.

Lemma 5.2 The expected contribution from the positive edges is at least P −O(
√

ε log(1/ε))W .

Proof: Define εij to be 1 − vi · vj , so the expected weight of positive edges that are not

cut in the solution is

∑

+(ij)

wij

[

1− cos−1(1− εij)/π)
]t

.

The function (1 − cos−1(x)/π)t is convex, so by applying Jensen’s inequality, we obtain

the lower bound

P
[

1− cos−1(1− ρ)/π
]t

.

Since cos−1(1− ρ) is in O(
√

ρ), the contribution of the positive edges is at least

P (1−O(
√

ρ))t ≥ P (1− tO(
√

ρ)) ≥ P −O(
√

ε log(1/ε))W ,

by Lemma 5.1.

Lemma 5.3 The expected contribution from the negative edges is at least N(1− ε− ν).

Proof: Now redefine εij to be vi · vj . The expected weight of negative edges that are cut

in the solution is

∑

−(ij)

wij

(

1−
[

1− cos−1(εij)/π
]t

)

.

CHAPTER 5. MAXIMIZING AGREEMENTS 71

Again, convexity tells us that

[

1− cos−1(εij)/π)
]t

is no greater than

εij

(

1− cos−1(1)/π
)t

+ (1− εij)
(

1− cos−1(0)/π
)t

.

This is bounded above by εij + 1/2t. Since Nν =
∑

−(ij) wijεij , the expected contribution

of the negative edges is at least N(1− ν − ε), for t = log(1/ε).

Theorem 5.3 The expected number of agreements as a result of rounding with Hlog(1/ε) is in

W (1−O(
√

ε log(1/ε))).

Proof: Lemmas 5.2 and 5.3 show that the expected number of agreements resulting

from the Hlog(1/ε) rounding scheme is at least

(P + N)−O(
√

ε log(1/ε))W − (ε + ν)N .

We note that (ε + ν)N ≤ 2εW and that ε is in O(
√

ε log(1/ε)) as ε → 0. Therefore the

expected number of agreements is at least W (1−O(
√

ε log(1/ε)).

Chapter 6

Maximizing correlation

Until now, no nontrivial approximation algorithm was known for MAXCORR; in this

chapter we demonstrate an Ω(1/ log n) approximation.We start by showing that we can

concentrate on the two cluster case. Next we make some remarks about the quadratic

program for two clusters and then describe the Ω(1/ log n) approximation it. We finish

with applications for max cut and correlated random variables.

6.1 Reduction to the two cluster case

Let corr(κ) stand for the correlation of clustering κ. There is only one way of placing each

item into a singleton cluster: call this clustering κn and let OPTn = corr(κn). In contrast,

there are several ways of splitting the items into two clusters, but we let κOPT
2 stand for

one of those with maximal correlation OPT2. Finally, κOPT is some partitioning that has

maximum correlation OPT.

72

CHAPTER 6. MAXIMIZING CORRELATION 73

1

2

3
4

5

6

2

3
4

5

6 11

2

3
4

5

6

Figure 6.1: Assigning costs in the optimal solution (center) to the singleton (left) and

two cluster (right) optimums. The two cluster diagram shows the type of supercluster

construction used in the proof.

Lemma 6.1

OPTn + 2OPT2 ≥ OPT .

Proof: Let the four quantities, w+, a+, w− and a−, stand for the numbers of positive

(negative) pairs within (across) clusters in our optimal solution κOPT. By definition,

OPT = w+ − a+ − w− + a− .

If we split everything up into singletons, see Figure 6.1 we see that

OPTn = −w+ − a+ + w− + a− .

Although we cannot calculate OPT2, we can at least provide a lower bound for it. Con-

sider constructing a partitioning by randomly assigning each cluster in κOPT to one of

two new superclusters. The expected correlation of the result of this random procedure

is a lower bound for OPT2. All within-cluster pairs remain within-cluster pairs. With

probability 1/2 each across-cluster pair becomes a within-cluster pair; consequently its

CHAPTER 6. MAXIMIZING CORRELATION 74

expected contribution to the correlation is zero, and so OPT2 ≥ w+ − w−. We now find

that

OPTn + 2OPT2 ≥ w+ − a+ − w− + a− = OPT .

Lemma 6.1 shows that a reasonable approximation to OPT2 will provide a reasonable

approximation algorithm for MAXCORR.

We now adopt a formulation for partitioning into two clusters that is somewhat re-

lated to the SDP for MAXAGREE. For each node in the graph we have a ±1 variable xi

indicating which of the two clusters it belongs to. If xixj > 0, then i and j are in the same

cluster, but if xixj < 0, then they are in different clusters. The contribution from edge

ij, with weight wij , to the correlation is aijxixj , where aij = wij for positive edges and

aij = −wij for negative edges. The obvious quadratic programming formulation to find

a κOPT
2 solution is thus

maximize
n

∑

i=1

n
∑

j=1

aijxixj

subject to xi ∈ {−1, 1} for all i ,

(6.1)

where aij = 0 if i ≥ j. It is easy to adjust the aij terms in the matrix A so that the matrix

is symmetric. Let us call the quadratic maximization problem in (6.1) MAXQP, allowing

A to be any matrix with null diagonal entries. In the next two sections we explain the

background to the quadratic programming problem and then describe an algorithm Ap-

proxMaxQP for MAXQP. For the moment, however, let us focus on the algorithm Approx-

MaxCorr for MAXCORR, whose construction follows directly from the discussion above.

CHAPTER 6. MAXIMIZING CORRELATION 75

ApproxMaxCorr

1. Construct the matrix A thus:

if i < j and pair ij is similar then aij = wij ,

if i < j and pair ij is dissimilar then aij = −wij ;

otherwise aij = 0.

2. Execute ApproxMaxQP on A and obtain solution x.

3. Form partitioning κ2 by assigning item i to cluster one if xi = −1,

or to cluster two if xi = 1.

4. Calculate OPTn and corr(κ2) and return the clustering with higher correlation.

Lemma 6.2 ApproxMaxCorr achieves an approximation of α/(2 + α), where α is the approxi-

mation factor of ApproxMaxQP.

Proof: It is easy to verify that the program (6.1) with the variables set in step 1 of the

algorithm is a formulation of MAXCORR restricted to just two clusters, both in terms of

feasible solutions and objective values. Clearly,

max{OPTn, corr(κ2)} ≥ t OPTn + (1− t) corr(κ2)

≥ t OPTn + (1− t)α OPT2 ,

for all t ∈ [0, 1]. If we let t = α/(2 + α), then

max{OPTn, corr(κ2)} ≥
α

2 + α
OPTn +

2α

2 + α
OPT2

≥ α

2 + α
OPT ,

by Lemma 6.1.

CHAPTER 6. MAXIMIZING CORRELATION 76

Theorem 6.2 below shows that the approximation factor of ApproxMaxQP is in Ω(1/ log n).

From Lemma 6.2 we therefore conclude:

Theorem 6.1 ApproxMaxCorr guarantees a solution for MAXCORR within Ω(1/ log n) factor

of the optimum.

6.2 Maximizing quadratic programs

Before outlining the approximation algorithm for MAXQP, let us consider this quadratic

program in more detail. We are given a matrix A, with null diagonal entries, and asked

to maximize
∑

i,j aijxixj , subject to |xi| = 1 for all i. We enforce the aii = 0 condition

because the terms aiixixi are equal to aii and so are just additive constants. Actually

it would not harm any of our arguments if we were to allow the aii values to be non-

negative, but the exposition is simpler if we just ignore these terms. It is important to

note that, for i 6= j, the aij terms are arbitrary real values and are not restricted to being

nonnegative. The goal is to return a solution that is at least some fraction α of the opti-

mum of (6.1), OPTQP. Our approximation problem is well defined, for OPTQP is strictly

positive unless A is the zero matrix (see Lemma 6.6).

We discovered only recently, after we had submitted our research for review [16], that

in fact approximation algorithms and integrality gap results similar to ours had already

existed for the MAXQP problem [61, 65, 64]. These Ω(1/ log n) results were not well

known in the theoretical computer science community. Our approximation algorithm in

Section 6.3 is an algorithmic version of Megretski’s integrality gap proof [61].

Prior to our exploration of MAXCORR, Alon and Naor [2] announced approxima-

CHAPTER 6. MAXIMIZING CORRELATION 77

tion algorithms for a problem similar to MAXQP. Specifically, they approximated the cut

norm by trying to maximize

m
∑

i=1

n
∑

j=1

aijxiyj, s.t. xi, yj ∈ {−1, 1} for all i, j . (6.2)

We can cast (6.2) as an instance of (6.1) by letting

z =









x

y









and Â =









0 A

0 0









, (6.3)

so (6.2) is now zTÂz. Seeing that MAXQP is an extension of Alon and Naor’s problem,

we spend some time detailing the similarities and differences between them.

A quadratic program may be used to model a graph optimization problem, such as

MAXCORR, in which aij represents some property of the edge between i and j. One

immediate observation from (6.3) is that if (6.2) represents the maximization of a function

on a bipartite graph, then (6.1) represents the maximization of the same function on a

complete graph.

Alon and Naor’s problem has two key properties that ours does not. Firstly, different

rounding techniques can be used for the {xi} and the {yj} in (6.2). Secondly, the mini-

mum and maximum values of (6.2) are equal in magnitude (simply replace y with −y in

one of the extreme solutions). It turns out that these facts are crucial to their analysis.

Both (6.1) and (6.2) have canonical semidefinite relaxations, respectively,

maximize
∑

i,j

aij vi · vj

subject to vi · vi = 1 for all i

vi ∈ Rn for all i ,

(6.4)

CHAPTER 6. MAXIMIZING CORRELATION 78

and

maximize
∑

i,j

aij ui · vj

subject to ui · ui = vj · vj = 1 for all i, j

ui, vj ∈ Rn for all i, j .

(6.5)

Unfortunately the term-by-term analysis that Goemans and Williamson [37] used in their

0.878 SDP-based approximation algorithm for max cut—which is, as we explore in Sec-

tion 6.4, a shifted special case of MAXQP—fails for both (6.4) and (6.5) because some of

the terms might be negative. Nevertheless, Grothendieck’s inequality [40], a key result in

functional analysis, states that the integrality gap between (6.5) and (6.2) is in fact a con-

stant. The exact value of this constant is not known, but Alon and Naor converted proofs

of the existence of the constant bound [69, 57] into approximation algorithms for (6.2).

Alon and Naor’s first algorithm is deterministic: an explicit set of fourwise indepen-

dent vectors in {−1, 1}n is constructed. They showed that there exists one such vector

whose projections onto the optimal SDP solution vectors, truncated to lie in [−1, 1], give

a fractional solution no less than 1/27 of optimum (the beginning of Section 6.3 shows

why a good fractional solution is sufficient). The second algorithm is simply the random

hyperplane split of Goemans and Williamson, but with a more involved analysis. This

technique treats the x and y variables identically, but the analysis cannot be applied to

our problem because it relies on the ratio of the absolute values of the maximum and

minimum of the quadratic program being at least some constant. The third algorithm

shows that there exist two new families of vectors, {u′
i} and {v′j}, so that the expected

value of every xiyj term obtained by splitting the u′ and v′ vectors with a random hyper-

plane is some common constant multiple of the corresponding ui · vj value. These u′ and

CHAPTER 6. MAXIMIZING CORRELATION 79

v′ vectors are found by maximizing a semidefinite program. None of these techniques

seems to apply directly to MAXQP, though we adapt some of the ideas.

6.3 Approximating MAXCORR: the two cluster case

We start by showing that the optimum value of MAXQP, modified so that the variables

are allowed to take any value in the range [−1, 1], is no larger than that of the original

problem (6.1). Consider the following randomized rounding technique for some frac-

tional solution y ∈ [−1, 1]n:

xi =























−1, with probability 1−yi

2

+1, with probability 1+yi

2

, (6.6)

where each xi is rounded independently of the others. A simple calculation shows that,

for i 6= j, E[xixj] = yiyj . Since the aii terms are zero, the expected objective value of the

integral solution equals that of the fractional solution.

So, to the approximation algorithm ApproxMaxQP. We first solve the semidefinite

relaxation (6.4) of the quadratic program in polynomial time, up to arbitrary precision.

We then round the SDP vector solution {vi} to a fractional solution y. It may be that some

yi values fall outside the range [−1, 1]; if so, we truncate them to ±1. We show that this

happens so rarely that the truncation does not alter the expected value of the solution

significantly. Finally, we use the rounding technique (6.6) in the previous paragraph to

obtain a {−1, 1} solution x.

The solution x is clearly in {−1, 1}n, and it was obtained in polynomial time. A se-

quence of lemmas in the remainder of this section will build up to the following result.

CHAPTER 6. MAXIMIZING CORRELATION 80

ApproxMaxQP

1. Obtain an optimal solution {vi} to the SDP (6.4).

2. Create vector r in which the ri are drawn independently from the unit Normal distribution.

3. Let zi = vi · r/T , where T > 0 will be specified later.

4. If |zi| > 1, then yi = zi/|zi|, otherwise yi = zi.

5. Obtain xi from yi using rounding procedure (6.6).

Theorem 6.2 The ratio of the expected value of the solution x returned by ApproxMaxQP to

the maximum value of the quadratic program (6.1) is in Ω(1/ log n), if T =
√

4 log n.

Lemma 6.3 The expected value of zizj is vi · vj/T
2.

Proof: Since the distribution of the r vector is spherically symmetric, we can assume that

vi = e1 and vj = ae1 + be2. Therefore Tzi = vi · r = r1 and Tzj = vj · r = ar1 + br2. Hence

T 2E[zizj] = aE[r2
1] + bE[r1r2]

= aVar[r1] + bE[r1]E[r2]

= a = vi · vj .

If we were lucky and every |zi| were at most 1, then we would have a 1/T 2 approxima-

tion, since the optimum value of (6.4) is at least the optimum of (6.1). Since this might not

happen, we need to analyze the truncated solution y. We show that the expected value

of ∆ij = zizj − yiyj is small in magnitude.

Lemma 6.4 |E[∆ij]| is less than 8e−T 2/2.

CHAPTER 6. MAXIMIZING CORRELATION 81

Proof: Let us consider the expected value of |∆ij | on various regions (of r). We assume

that n is sufficiently large that T ≥ 1. On the region S = {r : |zi| ≤ 1, |zj | ≤ 1}, yi = zi

and yj = zj , so ES [∆ij] = 0.

Now, due to rotational symmetry, we may again assume that vi = e1 and vj = ae1 +

be2. So the probability that r lies in the region B = {r : zi > 1} is Pr[r1 > T] = 1− Φ(T),

where Φ is the cdf for the Normal distribution. Therefore,

EB [|yiyj|] ≤ EB[1] = Pr[r ∈ B] = 1− Φ(T) . (6.7)

Furthermore,

EB[T 2|zizj |] =

∫ +∞

−∞

∫ +∞

T
|s(as + bt)| 1

2π
e−s2/2e−t2/2ds dt . (6.8)

Let us consider each term of (6.8) one at a time,

∫ ∞

T
s2e−s2/2ds = −se−s2/2

∣

∣

∣

∞

T
+

∫ ∞

T
e−s2/2ds

= Te−T 2/2 +
√

2π(1− Φ(T)) .

Also,
∫ ∞

T
|s|e−s2/2ds = e−T 2/2 and

∫ +∞

−∞
|t|e−t2/2dt = 2 .

Putting it all together, we see that

EB[T 2|zizj |] ≤
(|a|T√

2π
+
|b|
π

)

e−T 2/2 + |a|(1 − Φ(T))

< Te−T 2/2 + (1− Φ(T)),

(6.9)

as |a|, |b| ≤ 1. Since T ≥ 1, combining (6.7) and (6.9), we have

EB[|∆ij |] ≤ EB[|zizj |+ |yiyj|] <
e−T 2/2

T
+ 2(1− Φ(T)) ,

CHAPTER 6. MAXIMIZING CORRELATION 82

where the first inequality is merely the triangle inequality.

By symmetry, we will have the same result on the region {r : zi < −1}. As there was

nothing special about i, the same bound also applies for the regions {r : zj > 1} and

{r : zj < −1}. The union of these four regions is the complement of the set S. Since the

function |∆ij| is nonnegative, its expectation on S is less than

4

T
e−T 2/2 + 8(1 − Φ(T)) . (6.10)

But ES [∆ij] is 0, so (6.10) is a bound on E[|∆ij |], and hence on |E[∆ij]|. We can bound

the second term of (6.10) by

4

∫ ∞

T
te−t2/2dt = 4e−T 2/2 ,

as T ≥ 1. Therefore, |E[∆ij]| < 8e−T 2/2.

We are now close to obtaining an Ω(1/ log n) approximation for MAXQP. Let OPTSDP

stand for the optimum value of (6.4).

Lemma 6.5

E[
∑

i,j

aijyiyj] >
OPTSDP

T 2
− 8e−T 2/2

∑

i,j

|aij |

Proof:

E[
∑

i,j

aijyiyj] = E[
∑

i,j

aijzizj] + E[
∑

i,j

aij(−∆ij)]

From Lemma 6.3, we know that the first term of the right hand side is OPTSDP/T 2. The

CHAPTER 6. MAXIMIZING CORRELATION 83

second term is

−E[
∑

i,j

aij∆ij] = −
∑

i,j

aijE[∆ij]

≥ −

∣

∣

∣

∣

∣

∣

∑

i,j

aijE[∆ij]

∣

∣

∣

∣

∣

∣

≥ −
∑

i,j

|aij||E[∆ij]| ,

which Lemma 6.4 proves is greater than −8e−T 2/2
∑

i,j |aij |.

The obvious next step is to show that this error term is insignificant. Recall that OPTQP

stands for the optimum value of (6.1).

Lemma 6.6

OPTQP ≥
1

n
·
∑

i,j

|aij |

Proof: Consider constructing a random matching on an n-vertex complete graph in the

following way. Select an edge uniformly at random, remove the endpoints from the

graph, and repeat. It is easy to show that the probability of an edge being included in

the matching is 1/(n − 1) if n is even and 1/n if n is odd. Now, if we assign to each edge

the weight |aij|, then there exists some matching on the n vertices of total weight at least

∑

i,j |aij |/n (the expected value under this random construction).

Given a matching, we randomly construct a vector x ∈ {−1, 1}n whose expected QP

objective value is the same as the matching weight. For each edge ij in the matching,

we independently set xi to ±1 uniformly at random; we let xj equal xi if and only if aij

is nonnegative. The unmatched vertex, if n is odd, is assigned a value uniformly and

CHAPTER 6. MAXIMIZING CORRELATION 84

independently. For each matched pair ij we score |aij|, for every other pair the expected

score is 0, hence the same total as the matching. Therefore OPTQP is at least
∑

i,j |aij |/n.

We can now prove Theorem 6.2.

Proof: Substituting Lemma 6.6 into the statement of Lemma 6.5, with T =
√

4 log n, we

see that

E[
∑

i,j

aijyiyj] > OPTQP[
1

4 log n
− 8n−2 · n] ,

which is in Ω(OPTQP/ log n). Finally, note that

E[
∑

i,j

aijxixj] = E[E[
∑

i,j

aijxixj | y]] = E[
∑

i,j

aijyiyj].

6.4 The relationship with max cut

A random assignment of items in a max cut instance will on average result in a cut of 1/2

of the total weight of edges. We say that a cut has gain δ if a 1/2 + δ fraction of the total

weight of edges lie across the cut. The gain is analogous to the idea of the advantage over

a random assignment [44].

Maximizing the gain in the max cut problem can easily be formulated as a quadratic

program. Let w stand for the total weight of edges in a max cut instance and δ∗ stand

for the gain of the optimal cut—the optimal cut is of size w(1/2 + δ∗). The Goemans-

Williamson algorithm guarantees only that its solution will have a cut of at least w(0.439+

0.878δ∗), which may have no gain at all. Zwick’s outward rotations method [80] or Feige

CHAPTER 6. MAXIMIZING CORRELATION 85

and Langberg’s RPR2 algorithm for LIGHTMAXCUT [30] might approximate the gain

well. In fact, our algorithm is an instantiation of Feige and Langberg’s rounding scheme,

using an s-linear function. These authors do not, however, present any theoretical analy-

sis that applies to our setting.

We can express max cut as a special case of quadratic programming by setting A as

follows. For all pairs i < j for which there exists an edge of weight wij , let aij = −wij ;

for all other values of i and j, let aij = 0. For a given solution x ∈ {−1, 1}n, the value

of the quadratic program q(x), the value of the cut k(x) and the value of its gain g(x),

satisfy q(x) = 2k(x) − w = 2w g(x). With this formulation, we can now provide an

approximation algorithm for the gain of max cut; the related hardness of approximation

result for MAXQP is deferred to Chapter 7.

Theorem 6.3 If δ∗ is the optimum gain of a max cut instance, ApproxMaxQP returns a solution

whose gain is in

Ω

(

δ∗

log(1/δ∗)

)

.

Proof: Lemma 6.5 says that ApproxMaxQP will return a solution x for which q(x) is at

least

OPTQP

T 2
− 8e−T 2/2w , (6.11)

as w is the sum of the |aij | terms. By definition, OPTQP = 2wδ∗, so if we set T =

√

32 log(1/δ∗) then it is not hard to show that (6.11) is greater than

OPTQP

64 log(1/δ∗)
, for all δ∗ ≤ 1/2 .

Since the gain, g(x), is a positive constant multiple of q(x), the result follows.

CHAPTER 6. MAXIMIZING CORRELATION 86

6.5 Correlated random variables and distributions on cuts

We make some general observations about rounding solutions to the MAXQP SDP re-

laxation (6.4) and point out some interesting connections to generating {−1, 1} random

variables with given correlations. The value of the SDP solution is
∑

i,j aij vi ·vj . Suppose

we could generate {−1, 1} random variables Xi such that E[XiXj] = Cvi·vj for all i, j and

some constant C ; this would immediately lead to a C-approximation algorithm. In fact,

Alon and Naor’s third algorithm, based on Krivine’s proof, is exactly of this form: they

transform the vectors ui, vj into new vectors u′
i, v′j , apply random hyperplane rounding

to these new vectors, and obtain a distribution on {−1, 1} random variables with the de-

sired property. We reiterate that, in doing this, they crucially use the fact that they can

apply one transformation for the {ui} and a another one for the {vj}; hence this technique

does not apply to rounding for MAXQP.

One might wonder whether the existence of an appropriate distribution on {−1, 1}

random variables is a lucky coincidence. We now demonstrate (the possibly surprising

fact) that such a distribution always exists.

In order to do this, we write an LP formulation for the maximum gap of the SDP for

a fixed vector solution. Given a set of vectors vi produced by an optimal SDP solution,

consider the problem of finding the A matrix that maximizes the gap between OPTSDP

CHAPTER 6. MAXIMIZING CORRELATION 87

and OPTQP. We can represent this with the following LP, in which the aij are variables

minimize c

subject to
∑

ij

aij vi · vj = 1

∑

ij

aij xixj ≤ c for all x ∈ {−1, 1}n

(6.12)

The accompanying dual program (6.13) has one px variable for every possible setting of

x ∈ {−1, 1}n.

maximize b

subject to
∑

x

px = 1

∑

x

px xixj = b vi · vj for all i, j

(6.13)

These px values specify a probability distribution on the xis. We know that the primal

LP (6.12) has optimal value no lower than the gap of the SDP for MAXQP. By duality,

there exists a distribution on {−1, 1} random variables such that E[xixj] = b vi ·vj , where

b, which could be a function of n, is at least the worst case gap of the SDP for MAXQP.

Our analysis in Section 6.3 shows that the gap of the MAXQP SDP is in Ω(1/ log n),

which has the following interesting interpretation. Given a positive semidefinite ma-

trix K, it is well known that there exist correlated Normal random variables Xi such

that E[XiXj] = kij . What if you wanted {−1, 1} random variables instead? Our results

show that if we scale the (off-diagonal) entries of the correlation matrix by some factor

in O(1/ log n), then we can guarantee the existence of {−1, 1} random variables with the

appropriate correlations.

Chapter 7

Hardness of approximation

In this chapter we present some hardness of approximation results to accompany the pre-

vious approximation algorithms. These are summarized at the lower parts of Table 3.1.

The proofs in this chapter are essentially in increasing order of intricacy.

7.1 MINDISAGREE in general graphs

We first show that minimum multicut reduces in an approximation preserving way to

MINDISAGREE. Note that Bansal et al. [7] make a similar observation, though they use

the all-pairs version of multicut, usually called multiway cut, for the reduction. Reduc-

ing from the more general multicut problem, as other groups have also done indepen-

dently [25, 28], provides us with evidence of the difficulty of approximating MINDIS-

AGREE within any constant factor. In contrast, multiway cut has approximation algo-

rithms with performance ratio a very small constant, 1.3438 being the current best [13,

49].

88

CHAPTER 7. HARDNESS OF APPROXIMATION 89

Theorem 7.1 Minimum multicut reduces in an approximation preserving way to MINDIS-

AGREE.

Proof: Given a graph G with k pairs (si, ti), in which each si must be separated from

each ti, form an instance H of MINDISAGREE. The edges of G become positive edges

in H with unit weight. For each i, 1 ≤ i ≤ k, we add a (negative) edge between si and

ti with weight −W for some large positive integer W , say W = n2. We can make the

instance unweighted by replacing a negative edge of weight −W by W parallel length

two paths; each path has a fresh intermediate vertex, with one edge of weight 1 and the

other of weight −1. Clearly, the minimum cost clustering must have si and ti in different

clusters for every i. The cost of the solution is simply the number of positive edges that

lie between clusters, which is the same as the cost of the multicut.

Since minimum multicut is known to be APX-hard [36], we conclude that MINDIS-

AGREE is also APX-hard. Furthermore, an improvement over the O(log n) approximation

ratio, which we matched in Section 4.1, would solve one of the major open problems in

the area of approximation algorithms: Can minimum multicut be approximately solved

within a factor in o(log n)?

We also note the following fact concerning the perceived difficulty of multicut which

does not seem to have been explicitly pointed out in the literature. It is well known that

minimum edge deletion graph bipartization (also known as min uncut) reduces to min-

imum multicut in an approximation preserving way. The factor O(log n) approximation

for min uncut works by reducing it to a multicut instance on which the GVY algorithm

is run [35]. It is implicit in Khot’s work [53] that a certain conjecture about Unique games

CHAPTER 7. HARDNESS OF APPROXIMATION 90

would result in min uncut being NP-hard to approximate within any constant factor.

Therefore, under the same conjecture, it is NP-hard to approximate minimum multicut,

and therefore also MINDISAGREE, within any constant factor.

Emanuel and Fiat [28] also present an approximation preserving reduction in the re-

verse direction to Theorem 7.1, from MINDISAGREE to minimum multicut. This shows

that the approximability of MINDISAGREE is identical to that of the fundamental mini-

mum multicut problem.

In the next section, we study the maximization version. As a corollary of our hard-

ness result for MAXAGREE, we will also record an explicit constant factor hardness for

MINDISAGREE (Theorem 7.3).

7.2 MAXAGREE in general graphs

Bansal et al. [7] provided evidence for the APX-hardness of MAXAGREE by showing that

a PTAS for MAXAGREE would lead to a polynomial time algorithm for O(nε) coloring a

3-colorable graph for every ε > 0. However, the issue of a concrete NP-hardness result

for approximating MAXAGREE remained open and is resolved here.

Theorem 7.2 For every ε > 0, it is NP-hard to approximate the weighted version of MAXA-

GREE within a factor of 79/80 + ε. Furthermore, it is NP-hard to approximate the unweighted

version of MAXAGREE within a factor of 115/116 + ε.

Proof: We reduce from MAX 3SAT, which is NP-hard to approximate within a factor

of 7/8 + ε, even on satisfiable instances [43]. Let φ be an instance of MAX 3SAT with

variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. We also assume that for each i, xi

CHAPTER 7. HARDNESS OF APPROXIMATION 91

and x̄i each appear in the same number of clauses; this is a minor restriction and the

inapproximability result for MAX 3SAT stands.

Construct a graph G with integer edge weights from the instance φ as follows. The

vertices of G are a root vertex r, variable vertices xi, x̄i for 1 ≤ i ≤ n, and clause vertices

c1j , c2j , c3j for each clause Cj , 1 ≤ j ≤ m. The edges and their weights are defined as

follows (see also Figure 7.1):

• The root r is connected to each cpj , p = 1, 2, 3, by a weight 1 edge, and is connected

to xi and x̄i by a weight Bi edge, where Bi is the number of clauses in which xi

(and x̄i) appears.

• A weight −Bi edge connects xi and x̄i for each i = 1, 2, . . . , n.

• The vertices c1j , c2j , c3j corresponding to each clause form a triangle with weight

−1 edges.

• Finally, if the pth variable in clause Cj is xi, for p = 1, 2, 3 (assuming some fixed

ordering of variables in each clause), then a weight −1 edge connects cpj with xi.

We now prove that the optimum value of G as an instance of MAXAGREE is 9m +

OPTφ, where OPTφ is the maximum number of clauses of φ that can be simultaneously

satisfied.

To that end, we show that any clustering can be modified to a specific format, still

maximizing the number of agreements. Since the only positive edges incident to xi and

x̄i are the edges joining them to r, each of xi and x̄i can be assumed to be either a singleton

cluster or part of the cluster containing r. If both xi and x̄i are in the cluster with r, then

CHAPTER 7. HARDNESS OF APPROXIMATION 92

r

c
c

x

x

2j

1j

3j

i

ic

Figure 7.1: Reduction from a MAX 3SAT to a MAXAGREE instance. The jth clause has

three vertices c1j , c2j , c3j . The ith variable has two vertices xi, x̄i. Solid lines represent

positive edges, dashed negative edges; thick lines represent edges of weight Bi.

we can make one of them, say xi, a singleton and the number of agreements will not

decrease, since we will lose Bi for the edge (r, xi), but will gain Bi for the edge (xi, x̄i).

Similarly, if both xi and x̄i are singletons, we can place xi in the cluster containing r —

we will gain a value of Bi for the edge (r, xi) and might lose at most a value of Bi for the

edges connecting xi to the appropriate cpjs.

Once in this format, a clustering corresponds to a truth assignment to the variables

of φ in a natural way: variable xi is true if it is in a singleton cluster, but false if it is in

the root-cluster. Now for each clause Cj , we can cluster the vertices cpj , p = 1, 2, 3, in the

following way without decreasing the number of agreements. If Cj is not satisfied by the

above assignment, which means all its literals are in the r-cluster, we place each cpj in a

singleton cluster for p = 1, 2, 3. If Cj is satisfied, say because its first literal is set true,

then we place c1j in the r-cluster, but c2j and c3j in singleton clusters. Consequently, we

have four agreements: the negative edges between the cpjs and the positive edge (c1j , r).

CHAPTER 7. HARDNESS OF APPROXIMATION 93

The negative weight edges between c1j , c2j , and c3j ensure that, regardless of how many

of Cj ’s literals are true, we always achieve the same number of agreements whenever Cj

is satisfied.

It is easily seen that the total weight of correctly clustered edges equals

(

n
∑

i=1

2Bi

)

+ 6m + m∗ = 9m + m∗ ,

where m∗ is the number of clauses satisfied by the above assignment. Therefore the opti-

mum value of this instance of MAXAGREE is 9m+OPTφ. The claimed result follows since

distinguishing between the cases OPTφ = m and OPTφ ≤ (7/8 + ε)m is NP-hard [43].

In order to obtain a result for unweighted (±1)-labeled graphs, we replace each pos-

itive (resp. negative) edge of weight Bi (resp. −Bi) by Bi length-two paths whose edges

have weights 1, 1 (resp. 1,−1), as in the proof of Theorem 7.1. Now, if a weight Bi (pos-

itive or negative) edge is correctly clustered, then all the 2Bi newly constructed edges

agree with the labeling; otherwise we get only Bi agreements. Using this gadget, we

conclude that there is a 115/116 + ε inapproximability factor for the unweighted version

of MAXAGREE; we omit the straightforward calculations.

Since the number of disagreements in an optimum clustering is simply the sum of the

weights of edges minus the number of agreements, the above reduction also establishes

the following two theorems.

Theorem 7.3 For every ε > 0, it is NP-hard to approximate both the weighted and un-

weighted versions MINDISAGREE within a factor of 29/28 − ε.

Theorem 7.4 For every ε > 0, it is NP-hard to approximate the weighted version of MAX-

CORR within a factor of 25/26 + ε, and the unweighted version within a factor of 43/44 + ε.

CHAPTER 7. HARDNESS OF APPROXIMATION 94

At this point we digress to consider the difficulty of approximating the related prob-

lem MAXQP. The reduction we used to obtain an approximation algorithm for maximiz-

ing the gain of a cut also leads to a hardness result for MAXQP.

Lemma 7.1 For all ε > 0, it is NP-hard to approximate MAXQP within factor 11/13 + ε.

Proof: Let α stand for the hardness factor for max cut. Since OPTQP = 2OPTCUT −

w, distinguishing between the cases OPTCUT ≥ k and OPTCUT < αk is equivalent to

distinguishing between OPTQP ≥ 2k − w and OPTQP < 2αk − w. The ratio of these two

bounds on OPTQP is

2αk − w

2k −w
.

The lemma follows from the 16/17 + ε hardness result for max cut [43, 73], which holds

for k = 17w/21.

7.3 MINDISAGREE in complete graphs

In addition to their constant factor approximation algorithm, Bansal et al. [7] proved the

NP-completeness of MINDISAGREE on complete graphs. Their reduction does not yield

any hardness of approximation result, but they do show that the maximization version

admits a PTAS on complete graphs. Theorem 7.5, nicely completes the picture of the

complexity of the problem on complete graphs, complementing our factor four approxi-

mation algorithm.

Theorem 7.5 There exists some constant c > 1 for which it is NP-hard to approximate MINDIS-

AGREE on complete graphs within a factor of c.

CHAPTER 7. HARDNESS OF APPROXIMATION 95

Proof: We give a reduction from the max 2-colorable subgraph problem on bounded de-

gree 3-uniform hypergraphs. Here the input is a 3-uniform hypergraph H = (V, S) where

each hyperedge in S = {e1, e2, . . . , em} consists of three elements of V = {v1, . . . , vn}

with the added restriction that each element of V occurs in at most B hyperedges, for

some absolute constant B (so that m ≤ Bn/3). The goal is to find a 2-coloring of V that

maximizes the number of hyperedges that are split by the coloring, that is, are bichro-

matic. It is known that for some absolute constants γ > 0 and B (integer), given such a

3-uniform hypergraph it is NP-hard to distinguish between the following two cases: (i)

H is 2-colorable, i.e., there exists a 2-coloring of its vertices under which no hyperedge

is monochromatic, and (ii) every 2-coloring of V leaves at least a fraction γ of hyper-

edges in S monochromatic. This follows for example from the reduction used to show

the hardness of max 3-set splitting [41]. The starting point for that reduction is a con-

straint satisfaction problem called MAXSNE4 [41], that Håstad has shown to be hard to

approximate [43]. This hardness result also holds under a bounded occurrence restric-

tion; therefore the 3-uniform hypergraph constructed by the reduction from MAXSNE4

can also be assumed to have degree bounded by an absolute constant B.

The first step in the reduction is to construct a graph G from the hypergraph H . This

step is analogous to the reduction from MAX 3SAT to 3-dimensional matching in Section

9.4 of Papadimitriou’s text [67] and is sketched in Figure 7.2. Specifically, for each vi ∈ V ,

we construct a flower structure Fi with 4si vertices Ui, where si ≤ B is the number of hy-

peredges in which vi occurs. The set Ui consists of 2si vertices that form an induced cycle,

together with 2si petal vertices each of which is adjacent to the two endpoints of one of

the 2si cycle edges. Let Oi (resp. Ei) be the petal vertices with odd (resp. even) indices

CHAPTER 7. HARDNESS OF APPROXIMATION 96

β

α i

i

Figure 7.2: Part of the graph G constructed from the hypergraph H , showing a flower, its

petals, and an α, β edge pair.

according to an arbitrary cyclic ordering of the vertices as 1, 2, . . . , 2si. One can then pick

two distinct collections of si vertex-disjoint triangles in the graph Fi by picking either all

the triangles containing the petal vertices in Oi or all those containing the petal vertices

in Ei — these collections are accordingly called odd and even collections respectively. The

choice of one of these collections will capture which one of the two colors given to the

vertex vi—this is the crux of the approach guiding the reduction. Now, corresponding to

each hyperedge ej = (vj1, vj2 , vj3), we create two independent edges αj , βj in G. We add

an edge from each endpoint of one of them, say αj , to the vertex in Oj1 that corresponds

to the occurrence of vj1 in ej . Recall that there are sj1 vertices in Oj1 so a different one

of them will be used for each connection corresponding to each of the sj1 different hy-

peredges containing vj1 . We make similar connections between the endpoints of αj and

CHAPTER 7. HARDNESS OF APPROXIMATION 97

appropriate vertices of Oj2 and Oj3 . The endpoints of the second edge βj are similarly

connected to appropriate vertices in the even petal sets Ej1 , Ej2 , and Ej3 .

Denote by N the total number of vertices in G: clearly N =
∑n

i=1 4si + 4m = 16m.

By construction, G is 4-regular and therefore the number of edges in G, denoted by M ,

is 2N—the crucial point is that G is sparse and M = O(N). Finally, we construct an

instance of MINDISAGREE on a complete graph on N vertices by labeling all edges in

G as positive and the remaining edges as negative — let us denote by I the resulting

±1-weighted copy of KN . This completes our reduction, and clearly the transformation

from the 3-uniform hypergraph H to I can be computed in polynomial time.

Consider any clustering, call it C, of the vertices of I , or equivalently of G. Let the

value of a cluster be the number of edges of G within the cluster minus the number of

non-edges of G within the cluster—that is, the correlation associated with edges inside

the cluster. Define the value of the clustering C, denoted value(C), to be the sum of the

values of all the clusters in C. It is easy to verify that the number of disagreements (or

mistakes) in the clustering C, denote it DisAg(C), satisfies DisAg(C) = M − value(C).

We now define the value valC(v) of a vertex v, with respect to the clustering C, to be the

value of the cluster containing v divided by the number of vertices in that cluster. This

way the value of a cluster is equally divided among its constituent vertices. For example,

if a vertex is in a singleton cluster, its value is 0, if it is in an edge cluster, its value is 1/2, if

it belongs to a triangle cluster, its value is 1, and so on. Note that value(C) equals the sum

of the values (under C) of all the vertices.

CHAPTER 7. HARDNESS OF APPROXIMATION 98

(i) H is 2-colorable

We first claim that if H is 2-colorable, then there is a clustering C∗ of G in which every

vertex has value 1, and therefore value(C∗) = N . In what follows, a diamond refers to the

complete graph K4 on four vertices minus one edge. Let f : V → {Red,Blue} be a 2-

coloring under which every hyperedge of H is bichromatic. First, we pick the following

clusters. For each flower structure Fi, we pick the si triangles of the odd collection (those

containing the vertices in Oi) if f(vi) = Red, and those belonging to the even collection

(the ones containing the vertices in Ei) if f(vi) = Blue. We know each hyperedge ej is

bichromatic, so assume for definiteness that two of its vertices vj1 , vj2 are colored Red and

the third one vj3 is colored Blue. Then, for this j, we pick two clusters, one a triangle con-

taining the edge αj together with its neighbor in Oj3 , and the other a diamond containing

the edge βj together with its neighbors in Ej1 and Ej2 .

It is easy to check that the clustering C∗ defined above covers all the vertices of G.

Since each vertex of G is in either a triangle or a diamond cluster, it has a value of 1 and

value(C∗) = N , as claimed.

(ii) H has at least γ fraction of edges monochromatic

We now wish to argue that if every 2-coloring of H leaves γm hyperedges monochro-

matic, then every clustering C′ of G must have value at most (1 − δ)N for some δ > 0.

The following claim is crucial to understanding how good clusterings (those with large

value) of G must appear.

Claim: In any clustering of C of G, the value of every vertex is at most 1, and if valC(v) = 1,

CHAPTER 7. HARDNESS OF APPROXIMATION 99

then v must belong to a cluster which is either a triangle or a diamond. Moreover, the supremum

(1− ρ) of the non-triangle and non-diamond vertex values is strictly less than 1.

The claim can be proved by straightforward inspection of the structure of the graph

G since it is so sparsely connected—we omit the details. The claim asserts that ρ > 0; in

fact one can show that ρ = 0.2, but all we require is that ρ is a strictly positive constant.

Now suppose there exists a clustering C′ with value(C′) = (1−δ)N . A simple counting

argument shows that we must have at least

n− δN/ρ = n− 16δm/ρ

values of i for which every vertex in the flower structure Fi has value equal to 1. Call

the vertex vi ∈ V for each such i good. Also call an hyperedge of H good if all three of

its vertices are good. Since there are at most 16δm/ρ bad vertices in V , there are at most

16δmB/ρ bad hyperedges.

Suppose we could prove that there is a 2-coloring of H under which every good hy-

peredge is bichromatic, then, since every 2-coloring of H leaves at least γm monochro-

matic hyperedges, we would have 16δB/ρ ≥ γ. As a consequence,

value(C′) = (1− δ)N ≤ (1− ζ)N ,

where ζ = ργ/(16B), and there would be a gap of N versus (1− ζ)N for the value of the

best clustering in the two cases. Recalling that

DisAg(C) = M − value(C) = 2N − value(C) ,

we would get a gap of N versus (1 + ζ)N for the number of disagreements in the best

clustering. Since ζ > 0 this will prove the theorem.

CHAPTER 7. HARDNESS OF APPROXIMATION 100

Therefore it only remains to prove that there is a 2-coloring g of H under which every

good hyperedge is bichromatic. Consider a good vertex vi: we know all internal cycle

vertices in the flower structure Fi have value 1. Since there is no diamond structure

containing any of these vertices, the claim tells us they must all be covered by vertex-

disjoint triangles. There are only two ways to achieve this: either the triangles containing

the odd petals Oi are picked, or those containing the even petals Ei are picked. We set

g(vi) = Red in the former case and g(vi) = Blue in the latter case (the colors given to the

bad vertices are of no concern). We now prove that every good hyperedge is bichromatic

under this coloring. Indeed, let ej be a hyperedge on three good vertices vj1 , vj2, vj3 , and

suppose all of them are colored Red under g. Let w1 ∈ Ej1 be the vertex that is adjacent

to the endpoints of βj . Since valC′(w1) = 1, w1 must be clustered together with the edge

βj . The same holds for the analogous vertices w2, w3 from Ej2 and Ej3 respectively. But

now w1 belongs to a cluster that contains at least five elements (namely the endpoints of

βj and w1, w2, w3) and therefore w1 cannot have value 1, a contradiction. We conclude

that all good hyperedges are bichromatic under g and the proof is complete.

Chapter 8

Efficient approximation algorithms

Throughout this dissertation we have been considering approximation algorithms that

run in polynomial time. As we mentioned in Chapter 1, the number of data items in a

clustering problem could be very large. For this reason, we not only seek algorithms that

run in polynomial time, but those that are efficient on large data sets. To that end, we

open up some of the black boxes—the linear and semidefinite program solvers—that we

used in our algorithms, to see if their running times can be improved.

8.1 The MAXCORR SDP

We first consider the process of finding an optimal solution to (6.4), which can be ex-

pressed as

maximize A •X

subject to xii = 1 for all i

X � 0 ,

(8.1)

101

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 102

where A •X =
∑

ij aijxij , the trace of AX.

It will be more convenient to deal with the following program, which we show is

equivalent to (8.1). For reasons that will become clear later, we use matrix B instead of

A, where B = A + bI for some b > 0 to be specified later.

minimize z

subject to yii ≤ z for all i

B • Y = 1

Y � 0 ,

(8.2)

Given a feasible solution X to (8.1), for which B • X > 0, we construct a solution Y

to (8.2) by letting Y = X/(B •X). Similarly, we may assume that any feasible solution

(Y, z) to (8.2) has yii = z, as B’s diagonal terms are nonnegative; hence X = Y/z.

We can express this optimization problem as a type of game for which Freund and

Schapire [31] provided an efficient algorithm. Arora, Hazan, and Kale [5] used this game

framework to implement efficiently an O(
√

log n)-approximation algorithm for sparsest

cut.

The learner (player) has a choice of n pure strategies labeled 1 through n. The en-

vironment (player) chooses a strategy Y ∈ Y = {B • Y = 1, Y � 0}. The payoff that

the learner gains (and thus the loss that the environment incurs) with pure strategy i,

when the environment chooses Y , is yii. If we let P stand for a family of probability

distributions on the set {1, 2, . . . , n}, then the value of the game is

min
Y ∈Y

max
p∈P

n
∑

i=1

piyii ≤ min
Y ∈Y

max
i

yii = z∗ , (8.3)

where z∗ is the optimum of (8.2).

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 103

The Freund-Schapire game assumes that the environment can choose a mixed strat-

egy Y that is maximally adversarial. This best choice is achieved by solving

min
Y ∈Y

n
∑

i=1

piyii , (8.4)

where p is the learner’s chosen mixed strategy. Klein and Lu [55] claim that there is

an optimal solution to (8.4) that is a rank one matrix (that is, of the form vvT for some

appropriate vector v). They describe the power method [55, Section 4.3], which finds

a vector whose rank one matrix is a factor (1 + ε) worse than the optimal (rank one)

solution. The initial claim is not, however, fully justified in Klein and Lu’s text, so we

provide the details here.

Lemma 8.1 There exists a rank one optimal solution to program (8.4).

Proof: Since the matrix Y is positive semidefinite, it may be written as the weighted

sum of matrices formed by orthonormal vectors: the weights are the nonnegative eigen-

values of Y . So consider an optimal solution Y ∗ of the form

n
∑

j=1

λjw
(j)w(j)T ,

whose objective value (8.4) is
∑

j λjsj , where sj =
∑

i piw
(j)2
i . If we let tj = w(j)TBw(j),

then
∑

j λjtj = 1, as B • Y ∗ = 1.

Imagine that for some value k, tk were negative in the optimal solution Y ∗. The matrix

Y ′ =
Y − λkw

(k)w(k)T

1− λktk

is clearly in Y . Moreover, its objective value

∑

i

piy
′
ii =

(
∑n

j=1 λjsj)− λksk

1− λktk

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 104

is strictly less than
∑n

j=1 λjsj , as tk < 0 and the other terms are all nonnegative. Conse-

quently Y ∗ would not have been the optimal solution to (8.4).

The rank-one matrices formed from the vectors w(j)/
√

tj are also in Y and have ob-

jective values sj/tj . Since all the tj are positive (we can ignore j for which sj = tj = 0), it

is easy to show that the largest value of sj/tj must be at least
∑

j λjsj and therefore some

rank-one solution is optimal.

The Freund-Schapire game assumes that all of the yii values lie in the range [0, 1]. The

upperbound for the (observed) payoffs to the environment is called the width (w). Had

we just used the matrix A it might not have been easy to place a bound on the width, as

we do below.

Lemma 8.2 The width of the game is at most 1/b.

Proof: Since Y ∈ Y ,

A • Y + b
∑

i

yii = B • Y = 1 .

Now, we claim that for the actual matrices Y that the maximally adversarial environment

would choose, A • Y ≥ 0. If not, then the environment might instead have chosen

Y ′ =
diag(y11, . . . , ynn)

1−A • Y
,

which has B•Y ′ = 1, but whose objective value (8.4) would be a fraction 1/(1−A•Y) < 1

of Y ’s. Therefore we can assume that A•Y ≥ 0 and thus
∑

i yii ≤ 1/b, implying that each

(nonnegative) yii is at most 1/b.

The key point now is to connect the approximation behavior of the two programs.

Consider a (1 + ε)-approximate solution (Y, z) to (8.2), with accompanying X, and an

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 105

optimal solution (Y ∗, z∗) with accompanying optimal X∗. Let L denote a lower bound

for A •X∗. The two solutions for (8.1) are related thus:

A •X = B •X − bn

≥ 1

z
− bn

≥ 1

(1 + ε)z∗
− bn

=
1

1 + ε
(

1

z∗
− bn(1 + ε))

=
1

1 + ε
(A •X∗ − bnε) ,

and if we set b = L/n,

≥ 1− ε

1 + ε
A •X∗

≥ (1− 2ε)A •X∗

This tells us that a (1 + ε)-approximate solution to the second program (8.2) will result in

a (1 − 2ε)-approximate solution to the SDP (6.4). So we now concentrate on an efficient

solution to (8.2).

Now that we know we can use Klein and Lu’s power method [55], we analyze the

running time of the Freund-Schapire algorithm. The algorithm consists of a sequence

of rounds in which the learner and the environment take turns. After T rounds we can

guarantee that the average of the environment strategies Ȳ has

max
p∈P

∑

i

piȳii ≤ (1 + δ)z∗ +
w ln n

δT
,

where 1 + δ is the rescaling factor in the multiplicative weights algorithm of Freund and

Schapire [31]. We pause to mention that we can easily obtain a vector v (to be used in

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 106

ApproxMaxQP) that satisfies vvT = Ȳ from the the individual vector solutions to the (8.4)

programs [55]. We let δ = ε/4 and

T =
16w ln n

ε2z∗
, (8.5)

and note that

1

z∗
= A •X∗ + bn ≤ 2A •X∗ .

Imagine for the moment that we had a lower bound L that was at least half the optimum

SDP value A • X∗. Then, substituting all these values into (8.5), we would know that

after 64n ln n/ε2 rounds of the game we would have a (1− ε) approximate solution to the

SDP. We do not have such a lower bound, but Lemma 6.6 tells us that A •X∗ is at least

` =
∑

ij |aij |/n. So we run the game for the prescribed number of rounds, first assuming

L = `, then 2`, then 4`, and so forth, until we reach the obvious upper bound of
∑

ij |aij |.

We then have log n potential solutions and we simply return the best of these. Note that

we are sure that one of these values of L lies between A •X∗/2 and A •X∗ and thus are

sure to obtain a 1− ε approximate solution.

Since we are running log n games, each for Õ(n) iterations, and each execution of the

power method costs O(m log n/ε) [55], the total time taken is at most Õ(mn). This is

clearly better than the Õ(n3.5) guarantee of interior point methods, especially when the

matrix A is sparse.

8.2 MINDISAGREE in complete instances

Recall the NEPPC formulation of MINDISAGREE in complete instances (4.6). It bears

some resemblance to the dual of the maximum multicommodity flow problem, in which

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 107

each negative edge corresponds to a source-sink pair. Both the xij values for positive

edges and the x′
ij values for negative edges now represent the lengths of these edges.

We therefore wish to minimize the total length of all the edges subject to the constraint

that the shortest NEPPC through each negative edge has length at least one. Garg and

Könemann [34] have a family of efficient algorithms for multicommodity flow problems

that make use of this dual length-minimization (fractional multicut) problem. We now

show that our MINDISAGREE LP (4.6) can be made to fit into their framework.

They key issue with our formulation is that the source and sink vertices are identical

and that the paths under scrutiny are actually cycles. We work around this by adding

new nodes to the graph. We label the two endpoints of the ith negative edge si (source)

and ti (sink), where the numbering and orientation is arbitrary. For each pair (si, ti) we

create a new vertex ri and make a new edge (ri, ti); there are no other edges to the new

sink ri. We then remove all of the negative edges and replace each NEPPC constraint

with a path constraint from si to ri of the same form. Since all paths from si to ri must

include (ti, ri) it performs the same role as the negative edge (si, ti) in the constraints.

Moreover, no sj to rj path for j 6= i would use the (ti, ri) edge as it is a dead end.

We now have a (dual) maximum multicommodity flow problem in exactly the right

form for Garg and Könemann’s algorithm [34]. The running time is O(S m log m), where

S is the amount of time needed to solve the appropriate shortest path problem, assuming

that we would like a (1+ε) approximate algorithm, for fixed ε. Their procedure alternates

between finding the shortest source-sink path, and increasing the lengths of every each

on this path. In our instance there might be Ω(m) such source-sink pairs to consider and

Ω(n) edge updates between each query. Note however, that we do not need to include

CHAPTER 8. EFFICIENT APPROXIMATION ALGORITHMS 108

the (ti, ri) edges directly in any shortest path procedure, as there is only one edge to each

ri.

At first glance, it seems that some sort of dynamic shortest path algorithm [26, 27]

should help. However, the fact that we are making up to n updates to the edge lengths

between each shortest path calculation makes these methods less efficient than the static

all pairs Fibonacci heap method, which has S in O(mn + n2 log n). Therefore our best

bound on the running time for solving the NEPPC LP (4.6) is Õ(n5), since our instance is

complete.

As a quick comparison, the running time of interior point LP methods is O(N3L),

where N is the number of variables and L is a parameter that reflects the size of the linear

program [79]. For our purposes N is O(n2), as there is one variable for each edge, and L

is O(n3), reflecting the large number of triangle inequality constraints in (4.2). So it seems

that transforming the problem to the NEPPC formulation achieves a significant gain in

running time over the O(n8) standard technique. We should keep in mind, however, that

n5 is still an impractical bound for large data sets.

Chapter 9

What’s next

9.1 Improving the algorithms

The obvious first extension to this dissertation would be to close some of the gaps be-

tween the best-known approximation and hardness factors. Given the lack of progress

on the minimum multicut problem, it seems that improving on the O(log n) region grow-

ing for MINDISAGREE in general graphs would be difficult. It might be more appropriate

to look at the complete graph version, for which we currently have a factor 4 algorithm,

but an integrality gap of only 2. The similarity to a feedback edge set problem that al-

ready has a 2-approximation is a promising sign. We should keep in mind, however, that

solving the linear program (4.6) is inefficient, so perhaps a combinatorial algorithm, more

similar to that of Bansal et al. [7], might be a more practical idea.

For MAXAGREE, complete instances are settled, but for general instances it might

be worthwhile looking for an approach that does not involve a linear or semidefinite

program. An SDP that involves the triangle inequalities does not have such a poor inte-

109

CHAPTER 9. WHAT’S NEXT 110

grality gap, but the fact remains that Swamy’s SDP-based algorithm [72] is hardly better

than ours. Since the MAXAGREE SDP (5.1) is similar to the MAXQP SDP (6.4), it would

be good to know that an efficient implementation is available. The obvious upper and

lower bounds for (5.1) differ by a factor of 2, removing a factor of log n from the running

time. Nevertheless, we must check whether the X ≥ 0 constraint, representing vi ·vj ≥ 0,

is compatible with the proof technique we used in Chapter 8.

Preliminary investigation suggests that ALGCOMPLETE does not yield anything for

MAXCORR on complete instances. If we restrict ourselves to general instances, we would

like to know whether a constant factor approximation for MAXQP is possible. Certainly,

it will not involve the SDP (6.4), as Alon et al. [1] have recently shown that the integrality

gap is in O(1/ log n). In proving this fact, they work with a variant of the dual character-

ization discussed in Section 6.5.

Since the hardness results of Håstad and Venkatesh [44] do not apply, we would like

to prove hardness results for the problem of maximizing the gain of max cut (the advan-

tage over a random assignment). In light of our Ω(log(1/δ)) approximation, obtaining an

o(1) hardness of approximation result would be quite challenging.

Our combinatorial algorithm for the asymmetric weighted k-center problem is essen-

tially the best possible and it runs in Õ(n2) time, so further effort does not seem war-

ranted.

Little is known about the pattern rotation problem. Expert opinion is that it is likely

to be NP-hard, but also that proving this would be very tricky. With its special structure,

we hope that an o(log n) approximation algorithm can be found, better than the greedy

approach.

CHAPTER 9. WHAT’S NEXT 111

9.2 Consensus clustering

Robustness is a desirable feature of any clustering procedure. We would like to feel that

the partitioning we obtain is not dependent on the specific procedure we use and that

the clusters will not change much even if there are small errors in the data collection.

Alternatively, we might wish to compensate for the variation in experimental conditions

of some biological procedure, even if the clustering algorithm that is used is the same.

To this end, we would like to find a single clustering that is a mixture or average of

the individual partitionings. Essentially, we want a 1-center or 1-median on the space of

clusterings. The consensus clustering model assumes that we have a function to com-

pare two clusterings. Meilă [62] has an excellent summary of the various comparison

functions, including an elegant information theoretic metric. It is easy to show that for

any metric comparison function the best of the original individual partitionings is a 2-

approximate solution to the 1-center consensus, and a 2(1 − 1/k)-approximate solution

to the 1-median consensus, where k is the number of input partitionings. However, it

seems that for the purpose of developing more sophisticated approximation algorithms,

functions such as Meilă’s are too complicated to be useful.

The most commonly used comparison function, the Rand distance (or Mirkin metric),

counts the number of pairs of items that are in the same cluster in one of the partitionings,

but not in the other. The trivial 2(1 − 1/k)-approximation (above) is still the best known

algorithm; beating this seems an obvious starting point. A more difficult variant is to

do this without knowing what the original partitions are: we are only told in how many

partitionings i and j are clustered together, for every pair ij [18].

CHAPTER 9. WHAT’S NEXT 112

Finally, a note of warning about the 1-center criterion. The optimum 1-center consen-

sus might not place two items in the same cluster even if they are together in each of the

input clusterings, surely an undesirable property.

9.3 Epilogue

One should keep in mind that there might be some gain in keeping on hand several differ-

ent views of how to cluster various objects: the consensus might hide some informative

individual opinions. Moreover, not every data set is ripe for clustering, and clustering

has some inherent inconsistencies [56]. Stereotyping has its limits.

Bibliography

[1] N. Alon, K. Makarychev, Y. Makarychev, and A. Naor. Quadratic forms on graphs.

Preprint.

[2] N. Alon and A. Naor. Approximating the cut-norm via Grothendieck’s inequality.

In Proc. of 36th STOC, pages 72–80, 2004.

[3] A. Archer. Inapproximability of the asymmetric facility location and k-median

problems. Unpublished manuscript available at www.orie.cornell.edu/

˜aarcher/Research , 2000.

[4] A. Archer. Two O(log∗ k)-approximation algorithms for the asymmetric k-center

problem. In Proc. of 8th IPCO, pages 1–14, 2001.

[5] S. Arora, E. Hazan, and S. Kale. O(
√

log n) approximation to SPARSEST CUT can be

found in Õ(n2) time. In Proc. of 45th FOCS, 2004. To appear.

[6] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mungala, and V. Pandit. Local

search heurisitcs for k-median and facility location problems. In Proc. of 33rd STOC,

pages 21–9, 2001.

113

BIBLIOGRAPHY 114

[7] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proc. of 43rd FOCS,

pages 238–47, 2002.

[8] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56:89–

113, 2004.

[9] S. Becker, S. Thrun, and K. Obermayer, editors. Advances in Neural Information Pro-

cessing Systems 15. MIT, 2003.

[10] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. J. Comp.

Biol., 6:281–97, 1999.

[11] R. Bhatia, S. Guha, S. Khuller, and Y. Sussmann. Facility location with dynamic

distance function. In Proc. of 6th Scand. Workshop on Alg. Th. (SWAT), pages 23–34,

1998.

[12] M. Bilenko and R. Mooney. Learning to combine trained distance metrics for dupli-

cate detection in databases. Technical Report AI 02-296, UT Austin, 2002.

[13] G. Calinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for

multiway cut. JCSS, 60:564–74, 2000.

[14] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information.

In Proc. of 44th FOCS, pages 524–33, 2003.

[15] M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for facility loca-

tion problems with outliers. In Proc. of 12th SODA, pages 642–51, 2001.

BIBLIOGRAPHY 115

[16] M. Charikar and A. Wirth. Maximizing quadratic programs: Extending

Grothendieck’s inequality. In Proc. of 45th FOCS, 2004. To appear.

[17] S. Chaudhuri, N. Garg, and R. Ravi. The p-neighbor k-center problem. Info. Proc.

Lett., 65:131–4, 1998.

[18] S. Chawla. Personal Communication, 2004.

[19] Z. Chen, T. Jiang, and G. Lin. Computing phylogenetic roots with bounded degrees

and errors. SIAM J. Comp., 32:864–79, 2003.

[20] J. Chuzhoy, S. Guha, E. Halperin, G. Kortsarz, S. Khanna, and S. Naor. Asymmetric

k-center is log∗ n-hard to approximate. In Proc. of 36th STOC, pages 21–7, 2004.

[21] J. Chuzhoy, S. Guha, S. Khanna, and S. Naor. Asymmetric k-center is log∗ n-hard to

approximate. Technical Report 03-038, Elec. Coll. Comp. Complexity, 2003.

[22] W. Cohen and J. Richman. Learning to match and cluster entity names. In SIGIR

Workshop on Math./Formal Methods in IR, 2001.

[23] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. MIT and

McGraw-Hill, 2001.

[24] S. Dasgupta. Performance guarantees for hierarchical clustering. In Proc. of 15th

COLT, pages 351–63, 2002.

[25] E. Demaine and N. Immorlica. Correlation clustering with partial information. In

Proc. of 6th APPROX, pages 1–13, 2003.

BIBLIOGRAPHY 116

[26] C. Demetrescu and F. Italiano. Fully dynamic all pairs shortest paths with real edge

weights. In Proc. of 42nd FOCS, pages 260–7, 2001.

[27] C. Demetrescu and F. Italiano. A new approach to dynamic all pairs shortest paths.

In Proc. of 35th STOC, pages 159–66, 2003.

[28] D. Emanuel and A. Fiat. Correlation clustering—minimizing disagreements on ar-

bitrary weighted graphs. In Proc. of 11th ESA, pages 208–20, 2003.

[29] G. Even, J. Naor, B. Schieber, and L. Zosin. Approximating minimum subset feed-

back sets in undirected graphs with applications. SIAM J. Disc. Math., 25:255–67,

2000.

[30] U. Feige and M. Langberg. The RPR2 rounding technique for semidefinite pro-

grams. In Proc. of 28th ICALP, pages 213–24, 2001.

[31] Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights.

Games and Economic Behavior, 29:79–103, 1999.

[32] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT and

MAX BISECTION. In Proc. of 4th IPCO, pages 1–13, 1995.

[33] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman, 1979.

[34] N. Garg and J. Könemann. Faster and simpler algorithms for multicommodity flow

and other fractional packing problems. In Proc. of 39th FOCS, pages 300–9, 1998.

BIBLIOGRAPHY 117

[35] N. Garg, V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)cut

theorems and their applications. SIAM J. Comp., 25:235–51, 1996.

[36] N. Garg, V. Vazirani, and M. Yannakakis. Primal-dual approximation algorithms for

integral flow and multicut in trees. Algorithmica, 18:3–20, 1997.

[37] M. Goemans and D. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite progamming. JACM, 42:1115–45,

1995.

[38] I. Gørtz and A. Wirth. Asymmetry in k-center variants. In Proc. of 6th APPROX,

pages 59–70, 2003.

[39] J. Gramm, J. Guo, F. Hüffner, and R. Niedermeier. Graph-modeled data clustering:

Fixed-parameter algorithms for clique generation. In Proc. of 5th CIAC, pages 108–19,

2003.

[40] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels

topologiques. Bol. Soc. Mat. Sao Paulo, 8:1–79, 1953.

[41] V. Guruswami. Inapproximability results for set splitting and satisfiability problems

with no mixed clauses. Algorithmica, 38:451–69, 2003.

[42] E. Halperin, G. Kortsarz, and R. Krauthgamer. Tight lower bounds for the asym-

metric k-center problem. Technical Report 03-035, Elec. Coll. Comp. Complexity,

2003.

[43] J. Håstad. Some optimal inapproximability results. JACM, 48:798–859, 2001.

BIBLIOGRAPHY 118

[44] J. Håstad and S. Venkatesh. On the advantage over a random assignment. In Proc. of

34th STOC, pages 43–52, 2002.

[45] D. Hochbaum, editor. Approximation Algorithms for NP-Hard Problems. PWS, 1997.

[46] D. Hochbaum and D. Shmoys. A best possible approximation algorithm for the

k-center problem. Math. Oper. Res., 10:180–4, 1985.

[47] D. Hochbaum and D. Shmoys. A unified approach to approximation algorithms for

bottleneck problems. JACM, 33:533–50, 1986.

[48] W. Hsu and G. Nemhauser. Easy and hard bottelneck location problems. Disc. Appl.

Math., 1:209–16, 1979.

[49] D. Karger, P. Klein, C. Stein, M. Thorup, and N. Young. Rounding algorithms for

a geometric embedding of minimum multiway cut. In Proc. of 31st STOC, pages

668–78, 1999.

[50] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite

programming. JACM, 45:246–65, 1998.

[51] O. Kariv and S. Hakimi. An algorithmic approach to network location problems. I.

The p-centers. SIAM J. Appl. Math., 37:513–38, 1979.

[52] M. Kearns, R. Schapire, and L. Sellie. Toward efficient agnostic learning. Machine

Learning, 17:115–42, 1994.

[53] S. Khot. On the power of unique 2-prover 1-round games. In Proc. of 34th STOC,

pages 767–75, 2002.

BIBLIOGRAPHY 119

[54] S. Khuller, R. Pless, and Y. Sussmann. Fault tolerant k-center problems. Theor. Comp.

Sci., 242:237–45, 2000.

[55] P. Klein and H. Lu. Efficient approximation algorithms for semidefinite programs

arising from MAX CUT and COLORING. In Proc. of 28th STOC, pages 338–47, 1996.

[56] J. Kleinberg. An impossibility theorem for clustering. In Becker et al. [9], pages

446–53.

[57] J. Krivine. Sur la constante de Grothendieck. C. R. Acad. Sci. Paris Ser. A-B, 284:445–6,

1977.

[58] L. Lovasz. On the Shannon capacity of a graph. IEEE Tr. Info. Theory, IT-25:1–7, 1979.

[59] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation algorithms for metric

facility location problems. In Proc. of 5th APPROX, pages 229–42, 2002.

[60] A. McCallum and B. Wellner. Toward conditional models of identity uncertainty

with application to proper noun coreference. In IJCAI Workshop on Info. Integration

on the Web, 2003.

[61] A. Megretski. Relaxation of quadratic programs in operator theory and system anal-

ysis. In Systems, Approximation, Singular Integral Operators, and Related Topics (Bor-

deaux, 2000), pages 365–92. Birkhäuser, Basel, 2001.

[62] M. Meilă. Comparing clusterings by the variation of information. In Proc. of 16th

COLT, pages 173–87, 2003.

BIBLIOGRAPHY 120

[63] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-

based method for class discovery and visualization of gene expression microarray

data. Machine Learning, 52:91–118, 2003.

[64] A. Nemirovski, C. Roos, and T. Terlaky. On maximization of quadratic form over

intersection of ellipsoids with common center. Math. Prog. Ser. A, 86:463–73, 1999.

[65] Y. Nesterov. Global quadratic optimization via conic relaxation. Technical Report

DP-9860, Center Op. Res. Econometrics, Univ. Cath. Louvain, 1998.

[66] R. Panigrahy and S. Vishwanathan. An O(log∗ n) approximation algorithm for the

asymmetric p-center problem. J. Algorithms, 27:259–68, 1998.

[67] C. Papadimitriou. Computational Complexity. Addison Wesley Longman, 1994.

[68] J. Plesnik. A heuristic for the p-center problem in graphs. Disc. Appl. Math., 17:263–

268, 1987.

[69] E. Rietz. A proof of the Grothendieck inequality. Israel J. Math., 19:271–6, 1974.

[70] F. Roberts. Discrete mathematics. In International Encyclopedia of the Social and Behav-

ioral Sciences, pages 3743–6. Elsevier, 2001.

[71] R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. In Proc. of

28th Workshop on Graph Theory (WG), pages 379–90, 2002.

[72] C. Swamy. Correlation Clustering: Maximizing agreements via semidefinite pro-

gramming. In Proc. of 15th SODA, pages 519–20, 2004.

BIBLIOGRAPHY 121

[73] L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation, and

linear programming. SIAM J. Comp., 29:2074–97, 2000.

[74] V. Vazirani. Approximation Algorithms. Springer, 2001.

[75] S. Vishwanathan. An O(log∗ n) approximation algorithm for the asymmetric p-

center problem. In Proc. of 7th SODA, pages 1–5, 1996.

[76] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained k-means clustering

with background knowledge. In Proc. of 18th Int. Conf. Machine Learning, pages 577–

84, 2001.

[77] D. Williamson. Lecture notes on approximation algorithms. Technical Report RC

21273, IBM Research, 1999.

[78] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning with application

to clustering with side-information. In Becker et al. [9], pages 505–12.

[79] Y. Ye. An O(n3L) potential reduction algorithm for linear programming. Mathemat-

ical Programming, 50:239–58, 1991.

[80] U. Zwick. Outward rotations: A tool for rounding solutions of semidefinite pro-

gramming relaxations, with applications to max cut and other problems. In Proc. of

31st STOC, pages 679–87, 1999.

