Safe Heterogeneous Applications: Curing the Java Native Interface *

Gang Tan*'
Anand Raghunathan®

Andrew Appel*
Srivaths Ravif

Srimat Chakradhar®
Daniel Wang*

* Department, of Computer Science, Princeton University
T NEC Laboratories America

Abstract

The Java Native Interface (JNI) allows type-safe Java code
to interact with unsafe C code. When a type-safe language
interacts with an unsafe language in the same address space,
the application becomes unsafe. We identify the loopholes
specific to using JNI that would permit C code to bypass the
type safety of the JVM. We have designed a solution based
on an extension of CCured [9] that makes calling native
methods in C as type-safe as pure Java code.

We have implemented a significant part of our solution
and measured its effect on performance. Porting a native C
library (Zlib) into our system requires only minimal changes
to the C source code. The performance of this library is
faster than a pure Java reimplementation of the library but
slower than the original unsafe C version. During our ex-
periments on Zlib, our system identified one type unsafety
in the interface code between Zlib and Java. This insecurity
can be exploited to crash, or gain extra privileges in a large
number of commercially deployed JVMs.

1 Introduction

Large software systems often contain components developed
using different programming languages. For software com-
ponents to interoperate, there must be a standard interface
between them. Heavyweight RPC based systems like COM
[10], SOAP [12], and CORBA [4] allow components to be
placed in different address spaces, which provides safe inter-
operation but with significant overheads per call. The per-
call costs limit the way software components can be struc-
tured, and require a mechanism for address space isolation.
We are interested in a more lightweight approach to hetero-
geneous component interoperation, using a foreign function
interface (FFI) rather than RPC based approaches.

Any FFI becomes an integral part of a programming lan-
guage. It enables the language to reuse legacy components
written in another language. It gives the language access
to features that may not fit into the programming model of
the language. For example, Java provides a standard Java
Native Interface (JNI) [8]. JNI is a native programming in-
terface that allows Java code running inside a Java Virtual
Machine to interoperate with components that are written in
C, C++, or assembly. JNI was designed to be a standard in-
terface for all JVM implementations, hence JNI-compatible

*This research was funded in part by ARDA grant NBCFC030106.
This information does not necessarily reflect the opinion or policy of
the federal government and no official endorsement should be inferred.

code should interoperate with many different JVM imple-
mentations.

Unsafe and insecure interoperation. An FFI usually ad-
dresses discrepancies between the representation of primi-
tive values, memory management, calling conventions, and
so on. However, being able to call components written in
a different language is only part of the story. For example,
when a component written in a safe language directly inter-
acts with a component written in an unsafe language, the
whole application becomes unsafe. Even rich systems like
Microsoft’s .NET CLR [5] have this problem. The .NET
CLR distinguishes between “managed” and “unmanaged”
code. linking unmanaged code with managed code nullifies
the safety guarantees of the managed code.

Java language and APIs provide type safety and certain
security. In practice, all safety and security guarantees must
be qualified by the native code in the implementations of
JVMs. For example, Sun’s JDK 1.4.2 contains over 600,000
lines of native C code. Any error in the native code base
could lead to a type-safety or security violation.

Existing approaches to safe interoperation. Previous work
shows that native machine code can be automatically trans-
lated to Java byte code [1]. This provides safety with no
extra-programming effort, but incurs a large performance
penalty of 3x to 10x. Another approach is to reimplement
C libraries in pure Java. This requires substantial program-
ming effort, and often results in a noticeable performance
penalty. Sometimes it is not even possible because C code
needs to access certain OS services which are not available
in Java.

Toward safe and secure interoperation. Ideally, we would
like the linking of C code to Java be as safe as the linking of
Java code to Java. To achieve this goal, we have examined
how C code, interacting via the JNI, may exploit loopholes
to violate Java’s type safety.

The most obvious problem is that C code is inherently
unsafe and may read and write addresses in the JVM. For-
tunately, there are systems such as CCured [9] and Cyclone
[7] which provide safety guarantees for legacy C code. We
have adopted the approach that requires the least program-
mer intervention, which is CCured by Necula et al. CCured
performs source-to-source translation to insert the smallest
number of run-time checks to make C code memory safe.

However, just providing internal safety for the C code is
not sufficient to guarantee safe interoperation between Java

and C. The JNI, if not used properly, exposes several loop-
holes, which we will enumerate in Section 2. One example
is that C code can read private members of a Java object
through JNI. Hence, to have safe native methods for Java,
more work needs to be done beyond ensuring type safety of
the C code alone.

Our solution to ensure the safety of JNI is composed of
three parts: we extend the type system of CCured to better
capture the implicit invariants of the JNI interface; we insert
certain dynamic checks before JNI API calls; and finally, we
formulate a scheme to achieve safe memory management in
JNI. We will describe our approach in detail in Section 3.
In Section 5, we will formalize a small type system so that
we can prove a safety claim for an interesting subset of C
and JNI.

We have implemented a prototype system that incor-
porates some of the proposed techniques, through a com-
bination of static analysis and source code modification to
implement dynamic checks. Although it does not close all
the loopholes, it serves as a reasonable platform to evaluate
the performance impact of the dynamic checking that our
techniques would introduce. We have conducted a prelim-
inary experiment using the Zlib library that is distributed
with Sun’s JDK. Our experiments indicate that the perfor-
mance overheads of the proposed techniques are reasonable.
For Zlib, the overhead is 57% with respect to the original
unsafe implementation, but 11% faster than an expert Java
reimplementation of Zlib.

2 JNI and its loopholes

JNI is Java’s mechanism for interfacing to native code. It
enables native code to have essentially the same function-
ality as Java code. Through JNI, native code can inspect,
modify and create Java objects, invoke methods, catch and
throw exceptions, and so on. Figure 1 shows a simple but
complete example of using JNI: Java passes C an array of
integers and C returns back the sum of the array. The Java
code needs to declare a method to be a foreign method us-
ing the keyword “native”. Then Java can call the native
method just as it would call other Java methods.

The C code accepts a reference to the Java array as an
argument. Then, C can manipulate the array object through
JNI API functions, such as calling GetArrayLength to get
the length of the array and GetIntArrayElements to get a
pointer to the array elements. So the common idiom is that
Java code passes Java object references to C code, which
calls JNI API functions to manipulate Java objects.

When a JVM passes control to a native method, the JVM
will also pass an interface pointer to the native method (ar-
gument env in the example). This interface pointer points
to a location that contains a pointer to a function table.
Every JNI API function (such as GetArrayLength) is at a
predefined offset in the table. Through the interface pointer,
the native method can invoke JNI API functions.

Mapping of types. There are two kinds of types in Java:
primitive types such as int, float, and char, and reference
types such as objects and classes. JNI treats primitive types
and reference types differently. The mapping of primitive
types is direct. For example, the type int is mapped to C
type jint (defined as 32-bit integer in jni.h). On the other
hand, objects of reference types are passed to native meth-
ods as opaque references, which are C pointers to internal

data structures in the JVM. The exact layout of the internal
data structures, however, is hidden from the programmer.
All opaque references have type “_jobject *” in C, such as
the type of argument arr in Figure 1. The C code treats all
Java objects as being members of one type.

2.1 Loopholes in JNI

The JNI interface exposes loopholes that may cause unsafe
interoperation between Java and C. We enumerate them in
this section. We have tested all these loopholes using real
code, and most of them frequently cause a JVM crash. How-
ever, it is conceivable that, in some cases, these loopholes
may be exploited to achieve malicious effects such as leakage
of private data and execution of malicious code.

Out-of-bound array access. Sometimes, Java needs to pass
an array of data to a native method. For efficiency rea-
son, JNI functions such as GetIntArrayElements ' and
GetStringUTFChars allow the native method to directly ad-
dress the Java heap. It is easy to imagine a native method
accidentally reading or writing past the bounds of the actual
array.

Direct access through Java references. Opaque references
in C code are supposed to be manipulated only by JNI API
functions. However, there is no mechanism to prevent C
code from performing direct reads/writes via these refer-
ences.

Interface pointers. An interface pointer passed from JVM
points to a function table of JNI API functions. We must
prevent C code from overwriting entries in the function table
in the interface pointer. Otherwise, C code can replace a JNI
API function with its own version and bypass any check in
the function.

Data privacy. JNI does not enforce class, field, and method
access control that can be expressed in Java language
through the use of modifiers such as private. Therefore,
C code can read a private field of an object. As stated in
the specification [8, sect. 10.9], this was a conscious design
decision, since native methods in type unsafe languages can
access and modify any memory location in the heap anyway.
However, once type safety of native methods is assured, data
privacy also needs to be addressed in order to ensure type
safety of the overall heterogeneous application.

Manual memory management. JNI’s scheme of manag-
ing memory is similar to C’s malloc/free. For example,
when the native method is done with the integer array
buffer returned by GetIntArrayElements, it is supposed to
call ReleaseIntArrayElements to inform the JVM that the
buffer is no longer needed by the native method. This kind
of manual memory management has well-known problems
such as memory leaks, dangling pointers, and multiple re-
leases.

1Sometimes the JVM makes a copy of the Java array. In either
case, the function returns a direct pointer into the JVM heap.

class IntArray {
//declare a native method
private native int sumArray(int arr([]);

public static void main(String args[]) {
IntArray p = new IntArray();
int arr[] = new int [10];
for (int i = 0; i < 10; i++) arr[i] = i;
//call the native method
int sum = p.sumArray(arr);

#include <jni.h>
#include "IntArray.h"

JNIEXPORT jint JNICALL

Java_IntArray_sumArray

(JNIEnv *env, _jobject *self, _jobject *arr)
//env is an interface pointer through which
//a JNI API function can be called.

//self is the reference to the calling object.
//arr is the reference to the array.

{

System.out.println("sum = " + sum); jsize len = (*env)->GetArrayLength(env, arr);
¥ int i, sum = 0;
jint *body =
static { (*env)->GetIntArrayElements(env, arr, 0);
//load the DLL library that implements for (i=0; i<len; i++) {
//the native method sum += body[i];
System.loadLibrary("IntArray"); }
} (*env)->ReleaseIntArrayElements(env,arr,body,0) ;
} return sum;

}

Figure 1: A JNI example: Java passes C an array of integers and C returns back the sum of the array. On the left is the Java

code; on the right is the C code.

Arguments of wrong classes. Since native code treats
all references to Java objects having one single type
(_jobject *), an object of class A may be wrongly passed to
a JNI API function that actually requires class B. The JNI
specification states that the behavior of the JVM is unspec-
ified in such a case. In reality, it will usually cause a JVM
crash.

Exception handling. A native method can call an ordinary
Java method. When the Java method returns, the native
method should call certain JNI functions to check, handle
and clear pending exceptions. Calling arbitrary JNI func-
tions with a pending exception may lead to unexpected re-
sults.

Security. Java’s security model confines the capabilities of
untrusted Java code. JVM will consult a security manager
before it performs potentially dangerous operations such as
writing to a file. Once a native method is called, however,
the JVM can no longer verify, catch, or prevent the program
from violating the security of the environment in which the
JVM is running. In this work, we only address type safety,
not security.

3 Achieving type safety in JNI: Overall approach

Our approach to achieving type safety of heterogeneous ap-
plications that use JNI consists of three steps:

e We propose a pointer type system to model JNI specific
pointers in native C code, such as JNI opaque refer-
ences and read-only interface pointers. We use the new
type system to statically enforce JNI related invariants,
which avoids direct accesses to opaque references and
overwriting function entries in an interface pointer. In
this work, we have augmented CCured’s type system
for our purpose. To prevent the out-of-bound array
accesses, we model Java array pointers as CCured se-
quence pointers so that CCured can dynamically check

out-of-bound access violation. We present details of
our extension to CCured in Section 4.

e Some of the loopholes can be fixed by inserting dynamic
checks before a JNI API is called, such as checking if
a field is private before the field is read. We describe
those dynamic checks we insert into the JNI interface
in Section 3.1.

e Finally, in Section 3.2, we propose a solution to solve
the manual memory management problem in JNI.

3.1 Insert dynamic checks to JNI APIs

Data privacy checking. We insert runtime checks to en-
force access-control rules of Java fields/methods, such as
checking that a native method is not accessing a private
field. This is possible to check dynamically since all Java
objects keep a runtime representation of permissions.

JNI factors out the cost of locating a field by using a
two-step process: first get the field ID; then use the ID to
access the value of the field. Our checks need to be done
only in the first step. Thus, the performance overhead for
this check is not significant.

Class checking. As we have discussed, if C passes Java
an object of a wrong class, the JVM’s behavior is unspec-
ified. One example is when the C code in Figure 1 calls
GetArrayLength function with a non-array object.

Since Java keeps all class information at runtime, we
dynamically check that every object passed back from C is
an instance of the correct class. This is a simple but effective
solution when performance is not critical.

An alternative and more efficient way would be to make
our system be aware of Java class signatures and statically
track classes of objects in C. This strategy would reduce the
number of dynamic checks performed.

Pending exception checking. We insert code to check if an
exception is pending before calling a JNI API function.

Java Heap C Heap
Java
GC objects C GC
O pointer 1
el
pointer 2
T

Figure 2: Memory management in JNI

Java Heap C Heap

Java P
GC | objects tag G GC

O

- — — —

register a finalizer

Figure 3: Safe memory management

3.2 Safe memory management

CCured ignores explicit deallocation in C and uses the
Boehm conservative garbage collector [2] to reclaim storage.
Assuming there is a C garbage collector in place, we present
our solution to get safe memory management in JNI.

In Figure 2, we show how JNI manage memory.
Suppose that C initiates a GetIntArrayElements and
ReleaseIntArrayElements sequence, we list the steps of
what happens:

1. C calls GetIntArrayElements and gets a pointer to the
buffer used by the array (pointer 1 in Figure 2).

2. In GetIntArrayElements, the JVM also pins the buffer
so that Java’s GC will not garbage collect it. The own-
ership of the buffer has been transferred to C.

3. When C is done with the buffer, it calls
ReleaseIntArrayElements on “pointer 1”.

4. JVM unpins the buffer and now the buffer is back to
Java.

The above scheme is fine except when C makes a copy of
“pointer 1” (get “pointer 2” in Figure 2). Then, after step 4,
“pointer 2” becomes dangling when Java’s GC decides to
garbage collect the buffer.

Our solution (Figure 3) can be stated in two steps. In the
first step, we create a validity tag for the buffer, and change
the representation of pointers to be a structure that also has
metadata pointing to the validity tag. With this change, we

have created the case that there are pointers pointing to
the buffer if and only if there are pointers pointing to the
validity tag.

In the second step, we register a function that calls
ReleaseIntArrayElements as the finalizer for the validity
tag in the Boehm garbage collector, and also makes user’s
call to ReleaseIntArrayElements be a nop. This way, when
the C program has no live pointers to the buffer, GC’s final-
izer will call ReleaseIntArrayElements to release the buffer.

Our solution has a space cost for each pointer pointing to
the buffer. Pointer dereferencing has no time cost, however,
because the tag pointer need not be dereferenced during
normal use.

4 A type system for type-safe JNI

CCured [9] is a tool that adds memory safety to C. It ana-
lyzes the C program to identify places where memory safety
might be violated and does a source-to-source translation to
insert runtime checks to ensure safety.

During the analysis phase, CCured classifies pointers ac-
cording to their usage. Pointers in C programs that are
used without pointer arithmetic or type casts are classified
as SAFE pointers, and they are either null or valid refer-
ences. Pointers that are used with pointer arithmetic but
not type casts are classified as SEQ (“sequence”) pointers.
CCured enhances sequence pointers to carry bounds of the
array so that all dereferences can be dynamically checked to
be within bounds. Pointers that involve bad type casts (such
as from integer to pointer) are classified as WILD pointers.
CCured enhances WILD pointers to carry information to
distinguish a pointer from an integer, and dynamically pre-
vents the dereferencing of arbitrary integers.

We extend CCured by adding two new pointer kinds to
model pointers passed from Java to C.

Bounds for Java arrays. Functions such as
GetIntArrayElements return a pointer to an array.
We model an array pointer as a CCured SEQ pointer, since
C needs to do arithmetic on this pointer to walk through
the array.

The only complexity is that a SEQ pointer needs to
carry bounds information to verify that any use of the
pointer is within bounds. Therefore, we need to set up the
bounds when the GetIntArrayElements function is called.
In this case, we can easily get the bounds by calling the
GetArrayLength function.

Java handle pointers. As we have stated, all references to
Java objects in C code should not be directly accessed; they
are opaque to C code. To enforce this abstraction, we clas-
sify such pointers as HNDL (“handle”) pointers — pointers
that can be neither read nor written. Handle pointers are
passed as arguments to JNI API functions.

CCured allows casts between certain kinds of pointers.
One case is to cast a SEQ pointer to a SAFE pointer, since
a SEQ pointers carry more privileges than SAFE point-
ers. However, casts to HNDL pointers are not allowed since
otherwise C could forge a Java reference through a SAFE
pointer, for example. We maintain the invariant that the
only way to get a handle pointer is by calling a JNI API
function.

Pointer Kind Description Capability

t *HNDL Java handle pointers as arguments to JNI API functions

t *RO read-only pointers read

t *SAFE safe pointers read /write

t *SEQ sequence pointers pointer arithmetic; read/write

t *WILD wild pointers type casts; pointer arithmetic; read/write

Table 1: Pointer kinds and their capability

Types T int | _jobject

T *SAFE | 7 *SEQ | 7 «xHNDL
x| n| e +e2

le | (1)e

e | si;s2 | e1:=e2
GetArrayLength(e)
GetIntArrayElements(e)
GetObjectArrayElement(e,)
SetObjectArrayElement(e, e,)

Expr's e

Stmt's s

Values v ::= mn | Hndl(?) | Safe(n) | Seq(n,b,e)

Figure 4: Language Syntax

Read-only pointers. Read-only pointers are pointers that
can be read, but not written. We model a Java interface
pointer as a read-only pointer to prevent C code from re-
placing a function entry in the table pointed by the interface
pointer.

Our read-only pointers are related to the C const qual-
ifier. For example, C type “const int *” is the same as our
“int *RO”. We do not use the const qualifier since CCured’s
convention for a pointer kind is to associate attributes with
pointer types, instead of the underlying types.

In Table 1, we list all pointer kinds used in our type
system, including the ones in CCured.

5 Formalization and Soundness Proof

To have a formal claim of our safety guarantee, we have
extended CCured’s formalization [9] to include the handle
pointer kind and a representative subset of JNI API func-
tions. Based on this formalization, We have proved a safety
theorem: well-typed C programs will not access Java’s mem-
ory. We do not model read-only pointers, although this is
straightforward. We also do not model memory manage-
ment.

Figure 4 gives the syntax we use for C. As in CCured’s
formalization, our syntax is a great simplification of real C
syntax for the purpose of presenting key ideas. For example,
control-flow statements are ignored since our approach is
control-flow insensitive.

In the type category, we have type _jobject for the type of
all Java objects. In addition to safe pointers (7 *SAFE) and
sequence pointers (7 * SEQ), we also have handle pointers.
(r = HNDL).

We distinguish between expressions, which have no side
effects, and statements, which may have side effects. For
expressions, we have x for variables; n for integer literals;
e1 + ez for pointer arithmetic; le for the result of reading
from the memory location pointed by e (like xe in C); we
also have (7)e for type casts.

For statements, we have s1; s2 for sequential statements;
e1 := ez for assignments (like xe; = e2 in C), and a
subset of JNI API functions. These functions are de-
scribed in Table 2. Note that JNI treats primitive-type
arrays and object arrays differently: for integer arrays,
function GetIntArrayElements returns a direct pointer to
the array; for object arrays, GetObjectArrayElement and
SetObjectArrayElement are the getter and setter of the ar-
ray.
Finally, we define values. Values of handle pointer types
are of the form Hndl(?). Since handle pointers are opaque
to C programs, its exact values do not matter; so we use
Hndl(?) to represent all Java handle pointers. Values of
safe pointer types are of the form Safe(n), where n is the
pointer value. Values of sequence pointer types are of the
form Seq(n,b,e), where b and e are metadata and are the
beginning and the end of the array, respectively.

5.1 Operational semantics

In Figure 5, we present a big-step operational semantics for
our language. The operational semantics are expressed by
means of two judgments:

expression evaluation: X, M Fe.el v

statement evaluation: X, M kel v, M’

In these judgments, ¥ is a mapping from variables to val-
ues and memory M is a mapping from addresses to values.
Statements may have side effects, so its evaluation judgment
has a new memory M’ in addition to the value.

One important aspect of our semantics is that M is the
memory that can be accessed by C and does not include the
Java memory. So if a C program tries to read a location
outside of M (possibly in Java memory), then the abstract
machine will get stuck.

Some rules in Figure 5 are the same as CCured. The
pointer-arithmetic rule ARITH requires the pointer to be
a SEQ pointer. The read and write rules (SAFERD and
SAFEWR) require the pointer to be at least a SAFE pointer;
these two rules also come with null-pointer checks (boxed
premises). Certain casts are allowed (rule C1-C4) such as
from SEQ pointers to SAFE pointers.

In our modeling of JNI API functions, we use two aux-
iliary functions: arrlen returns the length of an array and
startloc returns the starting location of where an array is
stored. The rule for GetArrayLength returns the array
length directly. In the rule for GetIntArrayElements, since
this function returns an array pointer, we need to set up its
metadata (bounds of the array) appropriately. Our seman-
tics for GetIntArrayElements also expand the C memory
by including the array buffer so that program can access the
region. We assume that every time GetIntArrayElements
is called, a new memory region is returned; this function
behaves like a memory allocation function in our semantics.
Function SetObjectArrayElement have side effects on Java

Function

Description

GetArrayLength(arr)

Return the length of the array

GetIntArrayElements(arr)

Return the body of the integer array

GetObjectArrayElement(arr,n)

Return the nth element in the object array

SetObjectArrayElement(arr,n,obj)

Set the nth element of array arr to obj

Table 2: Explanation

of some JNI API functions

Expressions:
S(z)=wv A
SMrzlo R Saraga N
¥, Mt erd Seq(n,b,e)
S, M Fe en | na %, M b e | Safe(n) M(n) = v
¥, M e e1 + ez | Seq(n +n2, b, e) ARITH S M le o SAFERD
Casts: o .
%, Mt (7 SEQ)0 |} Seq(0,0,0) %, M b, (1 *SAFE)0 |} Safe(0)
MV ey Seqln.b.e) S, M o e} Safe(n)
S, M . (- *SAFE)e | Safe(n) 0 S.MF. (ntjeln OF
Statements:
Y Mbeelw S Mbgsi v, M S, M g sy |l v, M
EXP SEQ

Y. MbEsel v,M

Z,M }—s 815 82 ~U ’Ug,M"

%, M b e1 | Safe(n) S, M Fo ez | va

Z,M}—s €1 ::ezl)

Y, M b e |} Hndl(?)

0 M] SAFEWR

Y, Mteel Hndl(?) n = startloc(HndI(?))
end = n + arrlen(Hndl(?))
dom(M;) = [n,end) [n,end) Ndom(M) =0

¥, M s GetArrayLength(e) | arrlen(Hndl(?)), M

S, Mbeer | Hndl(?) S, Mbeezdn

¥, M s GetIntArrayElements(e) | Seg(n,n,end), M U M;

Y, Mbeer | Hndl(?) S,MbFeesln
¥, M b es | Hndl(?)

¥, M s GetObjectArrayElement(e1, e2) {4 Hndl(?), M

¥, M k5 SetObjectArrayElement (e, e2,e3) | 0, M

Figure 5: Operational semantics. The boxed premises are runtime checks.

memory, but not on C memory; this is why memory M does
not change in the rule for SetObjectArrayElement.

5.2 Type system
Our type system is expressed by the following judgments:

expression typing: I['Fee: T
statement typing: IT'Fse: T
convertibility: T <r
In these judgments, I' is a mapping from variables to

types.
Figure 6 presents our type system. Rules for SAFE and

SEQ pointers are completely the same as those in CCured.

There are several points worth mentioning about our
type system. First, since we want to maintain the invariant
that the only way to get a handle pointer is by calling a JNI
API function, so we do not have casts for handle pointers
such as from safe pointers to handle pointers or from literal
0 to handle pointers. Second, any place that expects a refer-

ence to a Java object is given a type “_jobject *HNDL”, such
as the argument type of GetArrayLength. Last, the return
type of GetIntArrayElements is modeled as CCured’s SEQ
pointer, or an array pointer.

5.3 Type safety

In this section we discuss a formal safety guarantee we obtain
for a C program when it interacts with Java: the C program
will only access its own memory M, but not Java memory.
Note that our modeling deliberately models only C memory.
This enables us to avoid modeling Java memory and Java
states altogether. 2

To get the safety theorem, we first introduce a store typ-
ing A. A store typing maps locations to types and captures
the invariant of a C memory. Then, we define for type 7 a set
of valid values [7], belong to that type. This set depends on

2To formalize memory management in JNI, we believe the model-
ing of Java states and Java memory is needed.

Expressions:
(z)=r71
I'tex: 7

I'temn:int

T'hteer:7 *SEQ T Feeq:int I'tee: 7 *SAFE

I'keer+ex:7 *SEQ Threle:t
Casts:
k = SEQ or SAFE Thee: 7 7 <71
Tke(r % k)O: (T % k) ke (r)e: T
7 *SEQ < 7 % SAFE 7 x SAFE <int
Statements:
Thee:T IPhss1:mm Thssoim
I'kse:r ks 51582 72

I'Feer:7™ *SAFE T'hFeex: 7
I'Fser:=eo:int

I'Fee:_jobject * HNDL
I' F. GetArrayLength(e) : int

I'Fee:_jobject * HNDL
I' ks GetIntArrayElements(e) : int * SEQ

I'teer:_jobject * HNDL T k. ez :int
I' s GetObjectArrayElement(e1, e2) : _jobject * HNDL

I'te e1: _jobject * HNDL I'Fe ez :int
I' e e3: _jobject * HNDL

I' ks SetObjectArrayElement(e1, ez, e3) : int

Figure 6: Typing rules

the store typing A in general, but the case for “r * HNDL”
does not, since Java objects are outside of C memory.

[int] = {n|neN}
[r *HNDL], = {Hndl(?)}
[«SAFE], =
{ Safe(n) | n € dom(A) A A(n) =7} U{Safe(0)}
[r «SEQ], =

{ Seq(n,b,e) | [b,e) Cdom(A) A Vb<i<e A(i))=T7}

We extend this relation element-wise to type environment
Y e I,:

Yell], = dom(Z)=dom(l) A
Vo € dom(X). X(z) € [I'(z)],

Store typing is the invariant that is respected by memory
M throughout the computation. We formalize this invariant
by:

WEA(M) = dom(M)=dom(A) A
Vo € dom(M). M(z) € [A(z)],

Our abstract machine will stop either because memory
safety is violated (access to an address outside of M) or
because one of the runtime checks fails (boxed premises in
Figure 5). We actually consider the second case to be safe.

To distinguish these two cases, we introduce a new value
failsafe. When a runtime check fails, the expression eval-
uates to a failsafe value: X, M F. e | failsafe. Similarly
for statements, we have ¥, M 5 e || failsafe, M'. We also
add evaluation rules that initiate the failsafe result when
one of the runtime checks fails and the rules that propagate
the failsafe result from the subexpressions to the enclosing
expressions.

Now, we give type safety theorems for both expressions
and statements.

Theorem 1 (Type Safety for expressions)
If T ke e : 7, and the initial state ¥ and M respects some
store typing A, i.e., WEA(M) and ¥ € [I'],, then

1) either X, M Fe e |} failsafe
2)orJv. (E,MFeelv) A (ve][r],)

Theorem 2 (Type Safety for statements)
If ' b5 s : 7, and the initial state X and M respects some
store typing A, i.e., WEA(M) and ¥ € [I'],, then

1) either X, M +5 s |} failsafe, M’
2) or v, M AN'. (S, Mbtsslv,M) AN (ACA)
A (WFA/(M/)) A (’UG II’T]]A/)

The proofs of these two theorems are by induction over
typing derivations. They give the result that well-typed pro-
grams will not get stuck and thus will not violate memory
safety. The other result from the theorem is the abstraction
for handle pointer types: throughout the computation, all
values of type “7 * HNDL” are of the form Hndi(?) and thus
are pointers to Java objects.

6 Prototype System and Experiments

We have developed a prototype system on top of CCured.
Our system extends CCured’s type system with handle
pointer kind and read-only pointer kind. Using the new
system, we have hand annotated all the JNI API function
prototypes in the JNI header file (jni.h). For example, the
old prototype for JNI’ NewIntArray is

_jobject * NewIntArray (JNIEnv * env, jint len);
The new prototype for JNI’ NewIntArray is:

_jobject *HNDL __jni_NewIntArray
(JNIEnv *RO env, jint len);

There are two differences between the old prototype and
the new one. The first is that we annotate the argument
and return types of NewIntArray with pointer kinds. The
second change is that our system replaces every JNI API
function call with a corresponding API wrapper call. The
wrapper for NewIntArray is __jni NewIntArray. The wrap-
per function does additional checks in addition to calling the
corresponding JNI API function.

Then we enhanced CCured’s type checker to reject C
programs that perform reads/writes through handle point-
ers and writes through read-only pointers. We also changed
CCured to allow certain casts such as a safe pointer to
a read-only pointer and a read-only pointer to a handle
pointer. We do not perform automatic pointer inference

//metadata: begining and end of the array
struct meta_seq {

void *_b ;

void *_e ;

};

struct seq_jint {
jint * _p ;
struct meta_seq _ms ;

};

struct seq_jint __jni_GetIntArrayElements
(JNIEnv * env , jobject array , jboolean * isCopy)
{
seq_jint f;
f. p=
(*env)->GetIntArrayElements (env,array,isCopy) ;
f. ms. b =1=f._p;
f. ms._e =
f._p + (xenv)->GetArrayLength(env,array);
return f;

}

Figure 7: Wrapper function for GetIntArrayElements

of handle and read-only kinds, since those two kinds are
created only to enforce correct usage of the JNI interface.

Since we need to set up the array bounds for arrays re-
turned by functions such as GetIntArrayElements, its wrap-
per function (__jni_GetIntArrayElements, in Figure 7) re-
turns metadata for the array in addition to the array pointer.
The metadata are the beginning and end of the array. Us-
ing these metadata, any use of the array can be dynamically
checked to make sure no out-of-bound array access.

Wrapper functions are also good places to insert dynamic
checks. For example, to achieve data privacy, we dynami-
cally check that the member is not private in the wrappers
for functions such as GetFieldID, which gets the field ID
of a field in a Java class. We have not implemented class
checking and pending exception checking in our prototype
system, although adding them should be straightforward.
We have also not implemented our scheme for safe memory
management and this requires some work.

6.1 Experiments

We have tested our system on many small examples that
exploit JNI loopholes. Our system is able to catch unsafeties
inside those examples either statically or dynamically.

To fully evaluate our system’s impact on performance, we
carried out one experiment on the Zlib compression library
(nearly 9000 lines of C code) distributed with JDK 1.4.2.
Z1ib is a general-purpose data compression C library that is
meant to be called C programs. On top of the Zlib library,
JDK provides an extra 262 lines of interface code that link
Java code with Zlib through JNI. JDK also provides Java
classes (java.util.zip) that can be used by programmers to
perform compression and decompression; these classes con-
tains native methods that are implemented by those inter-
face code.

Since our system is built on top of CCured, the perfor-
mance overhead includes the cost for CCured to ensure the
internal safety of C code, and the cost for our system to

C main + Zlib | C main + CCured Zlib

1.38s 2.02s (1.46x)
JNI + Zlib | Safe JNI + CCured Zlib
1.80s 2.82s (1.57x)
Pure Java
3.13s

Table 3: Performance measurement on Zlib (seconds). All
experiments are to gzip a 13MB file on a Linux cycle server
with 4 CPUs and 1GB memory; buffer size is 16KB; results
reported are the average of five tests.

total lines | lines changed
Zlib library 8933 155
Interface code 262 84

Table 4: Lines changed in the curing process for Zlib.

ensure safe interoperation. Thus our first experiment is to
test the overhead added by CCured to the Zlib library. The
result is shown in the top table of Table 3: the first column
shows the running time in the case of a C main function
calling the Zlib library; the second column is the case after
applying the CCured tool. The result show that CCured
adds 46% overhead to Zlib.

In the second experiment, through JNI, Java passes a
buffer of data to the Zlib library to perform compression.
The result is shown in the second table of Table 3. Com-
pared to the unsafe case (the first column), our system (in-
cluding CCured) adds a total of 57% overhead.

Finally, we also tested the performance of a pure Java
implementation of the Zlib library (jzlib-1.0.5). The result
show that it is 11% slower than the case of using our system.

Although we have only done one set of experiments, the
result showed our tool adds an acceptable performance over-
head to achieve safety. Also, our system has a slight perfor-
mance advantage over a pure Java implementation, let alone
the fact that people use JNI because they do not want to
spend time and energy to port everything into Java. One
thing worth mentioning is that we have not done any opti-
mization to our system, such as inlining JNI API wrapper
function calls.

One limitation of our approach is that programmers oc-
casionally need to modify the source code. One case is to
add type annotations so that CCured has a better under-
standing of the code to insert less dynamic checks. Another
case is to change C code so that it uses JNI properly to
pass our static type checker. We report the number of lines
changed during the curing process of Zlib (Table 4). We
need to change 155 lines out of 8933 lines to let CCured
to cure C code; this is a small portion. For the interface
code that uses JNI to communicate between Java and Zlib,
we changed 84 lines out of 262 lines. The reason for this
change is that we identified a vulnerability in the original
implementation; we describe the bug and our change next.

6.2 Uncovering a vulnerability in JDK

In the java.util.zip of JDK 1.4.2, the class Deflater has
native methods which serve as wrappers to call functions in
the underlying Zlib C library to do compression. The Zlib

/* Bug.java */
import java.lang.reflect.x*;
import java.util.zip.Deflater;
public class Bug {
public static void main(String args([]) {
Deflater deflate = new Deflater();
byte[] buf = new byte[0];
Class deflate_class = deflate.getClass();
try {
Field strm =
deflate_class.getDeclaredField("strm");
strm.setAccessible(true);
strm.setLong(deflate,1L);
} catch (Throwable e) {

e.printStackTrace() ;
}
deflate.deflate(buf);
}
}
/* Policy file needed to execute Bug.java in a secure
environment */
grant {
permission java.lang.RuntimePermission
"accessDeclaredMembers";
permission java.lang.reflect.ReflectPermission
"suppressAccessChecks";

};

Figure 8: An exploitable bug in the JVM.

C library maintains a structure (z_stream) to store informa-
tion related to a compression data stream. Java objects of
class Deflater need to store a pointer to a z_stream struc-
ture, so that when the object calls Zlib the second time, all
the state information is still available. However, the prob-
lem is that z_stream is a C structure, and it is difficult for
Java to define a pointer to a C structure.

JDK avoids this problem by storing the pointer into a
private field as a Java long. Other native methods cast this
Java long field back into a z_stream pointer and use it to
call functions in Zlib.

If we assume that the native methods are only called by
the JVM, the definition of Deflater never changes the long
field, and Java’s data privacy guarantees are respected, we
would conclude that the cast is in fact safe. Our system,
on the other hand, thinks it is a bad cast and rejects the C
code. Initial we assumed our system was being too conser-
vative because, under reasonable assumptions, it seems like
the code should be safe. So, it seems that for this code be
accepted by our system, we must also analyze Java code to
avoid being too conservative. However, it turns out that
one of our “reasonable assumptions” is wrong. The code is
actually unsafe.

Java reflection considered harmful. Java provides a reflec-
tion API to aid in the debugging and dynamic loading of
unknown Java code at runtime. It turns out that a Java
program given the appropriate permissions can at runtime
bypass the data privacy constraints of any object. Figure 8
demonstrates the bug as well as the minimum set of security
permissions need to exploit the bug when the Java security
manager is active. The code sets a private long field in
Deflater to an arbitrary illegal value. If this were a nor-
mal Java class, doing so would perhaps break the Deflater
class but not violate type safety of the JVM. However, since

this private long happens to be a C pointer that is passed
to a native method, the results are devastating. This is a
pervasive problem for many JVM implementations. In fact,
the relatively simple Java program in Figure 8 crashes the
latest versions of Sun’s Java VM on three platforms, as well
as the latest JVM for MacOS X and IBM’s VM. This same
problem also appears in the Kaffe JVM.

Fortunately, the default security policy when running un-
trusted Java code does not allow our exploit to work. How-
ever, when given the right security privileges, code using our
attack can gain access to all privileges. The ability for un-
trusted code to escalate the set of security privileges given
to it is clearly a violation of the intended security policy
provided by the Java security model.

Since it seems many programmers of the JNI code did not
take into consideration the possibility of the Java reflection
API violating data privacy guarantees, code that seems safe
is in fact not. So, although our system at first seemed too
conservative, it in fact helped us discover a real source of
unsoundness in many commercially deployed JVMs.

Our fix. Our change is to introduce an indirection table of
z_stream pointers, very much in the spirit of an OS file de-
scriptor table. We store table IDs, not pointers, into objects
of Deflater. Native methods using z_stream pointers do a
table lookup by a table ID and verify that the ID returned
is in fact a valid ID. A more systematic fix will likely require
changes to either the JNI or Java Reflection API standards.

7 Related Work

NestedVM [1] is another approach for JVMs to link with un-
safe native code. It translates MIPS machine code (compiled
from source native code) into Java code which implements a
virtual machine on top of JVM. NestedVM achieves safety
and security by putting native code into a separate vir-
tual machine and allowing only controlled interaction with
JVMs. This approach is similar to COM and CORBA model
in the sense that they all achieve safety by separation. How-
ever, they all suffer efficiency problem. NestedVM incurs
200% to 900% overheads, compared to our 57%.

Janet [3] is a Java language extension. It provides a
more clear interface than JNI for programmers to write a
combination of Java and C code in the same file. Janet’s
translator translates the source file into separate Java and
C files that conform to the JNI interface. By having an
easy-to-use interface for programmers to access Java features
from C, Janet makes JNI programming less error-prone, but
it does not guarantee a safe interoperation. For example, C
code can still do out-of-bound array access.

Java 2 SDK supports a “-Xcheck:jni” option that op-
tionally turns on additional checks for JNI API functions.
IBM’s JVM [6] does a more extensive checking. Some of
these checks are similar to what we do. The problem is that
each JVM does its own set of checks, which are usually not
documented. Also, we have shown that only checking across
the interface is not enough to achieve type-safe JNI, such as
when enforcing array bounds.

Our paper addresses the interoperation problem between
safe Java and unsafe C, Trifonoc and Shao [11] addresses the
problem of interoperation between two safe languages when
they have different systems of computation effects such as
exceptions.

8 Conclusion

We have shown how different programming languages can
safely interoperate. In particular, we study the case of in-
teroperation between safe Java and unsafe C through JNI.
As a conclusion, we summarize two main contributions in
this work:

e We have identified a series of loopholes in the standard
Java Native Interface implemented in all JVMs. Any
solution has to address these issues.

e We have designed a solution that makes calling native
methods in C as type-safe as pure Java code.

e We have proved, implemented and tested a prototype
system that includes a significant part of our design.
This simple system has already helped us to identify
one vulnerability in JDK.

Acknowledgment

We thank Matthew Harren and George Necula for providing
us a CCured version of the Zlib library and for helping us
to set up our experiments.

References

[1] Brian Alliet and Adam Megacz. Complete translation
of unsafe native code to safe bytecode. In ACM 200/
Workshop on Interpreters, Virtual Machines and Em-
ulators (IVME’04), 2004.

[2] Hans-Juergen Boehm and Mark Weiser. Garbage col-
lection in an uncooperative environment. Software—
Practice and Ezperience, 18(9):807-820, 1988.

[3] M. Bubak, D. Kurzyniec, and P. Luszczek. Creating
java to native code interfaces with janet extension. In
Proceedings of the First Worldwide SGI Users’ Confer-
ence, pages 283-294, 2000.

[4] Object Mangagement Group(OMG). Common object
request broker architecture: Core specification, version
3.0.3. http://www.omg.org/docs/formal/04-03-01.
pdf, 2004.

[5

Jennifer Hamilton. Language integration in the com-
mon language runtime. SIGPLAN Not., 38(2):19-28,
2003.

[6] IBM. IBM developer kit and runtime environment,
Java 2 technology edition, version 1.4.2, diagnostic
guide., 2004.

[7] Trevor Jim, J. Greg Morrisett, Dan Grossman,
Michael W. Hicks, James Cheney, and Yanling Wang.
Cyclone: A safe dialect of ¢. In Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Confer-
ence, pages 275-288. USENIX Association, 2002.

[8] Sheng Liang. Java Native Interface: Programmer’s
Guide and Reference. Addison-Wesley Longman Pub-
lishing Co., Inc., 1999.

10

[9] George C. Necula, Scott McPeak, and Westley Weimer.
Ccured: type-safe retrofitting of legacy code. In Pro-
ceedings of the 29th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages
128-139, 2002.

Dale Rogerson. Inside COM: Microsoft’s Component
Object Model. Microsoft Press, 1997.

Valery Trifonov and Zhong Shao. Safe and principled
language interoperation. In Proceedings of the 8th Euro-
pean Symposium on Programming Languages and Sys-
tems, pages 128-146, 1999.

[12] W3C. SOAP version 1.2 sepcification. http://www.w3.
org/TR/soapl2-partl/, 2003.

