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Abstract
Routing overlays have become a viable approach to working
around slow BGP convergence and sub-optimal path selec-
tion. A common sub-component of a routing overlay is a
routing mesh: the route-selection algorithm considers only
virtual links in the mesh rather than all N 2 paths connect-
ing an N -node overlay, thereby reducing routing overhead
and improving the scalability of the overlay. This paper pro-
poses and evaluates an approach to building a topology-aware
routing mesh that eliminates virtual links that contain dupli-
cate physical segments in the underlying network. An evalu-
ation of our method on PlanetLab shows that a conservative
link pruning algorithm reduces routing overhead by a factor
of two without negatively impacting route selection, thereby
improving scalability. Additional analysis quantifies the im-
pact on route selection of more aggressively removing mesh
edges, documenting the cost/benefit tradeoff that is intrinsic
to routing.

1 Introduction
Routing overlays have recently been proposed as an approach
to improving the robustness and performance of packet deliv-
ery over the Internet [31, 6, 9, 10, 16, 17, 8]. To improve
robustness, overlays rapidly find an alternative path when the
current BGP-provided route fails [30, 18]. To improve perfor-
mance, overlays select the best of multiple alternative paths.
Routing overlays accomplish these two goals by monitoring
the available paths, resulting in a fundamental trade-off be-
tween how aggressively the overlay monitors the network
(i.e., how many alternatives it monitors and how frequently
it probes them), and the size to which the overlay is able to
scale.

Existing routing overlays typically treat the Internet as a
black box, relying on end-to-end performance measurements
(primarily latency probes) to select routes. In RON [6], for
example, each node actively monitors each of the other nodes,
watching for opportunities to use an indirect path through an
intermediate node should the direct path fail or suffer from
lesser performance. Evidence indicates that such an N 2 ap-

proach is able to scale to approximately 50 overlay nodes.
In general, one can view a routing overlay as constructing

a substrate for routing packets, often called a routing mesh,
and then monitoring the virtual links on this mesh to select
the best route between any pair of nodes. RON uses a fully
connected mesh, where each virtual link corresponds to the
default Internet path between a pair of nodes. An alterna-
tive is to first build a more sparse mesh—one with fewer than
N2 edges—and then actively monitor only the edges in this
mesh to select routes. If one could construct a sparse mesh
that eliminates virtual links (mesh edges) that are never se-
lected by the routing algorithm, then probing cost will go
down and scalability will improve, but without harming the
routing overlay’s ability to select good routes.

This raises the question of how to best select which vir-
tual links to keep in the routing mesh. An approach used by
several single-source application-level multicast overlays [9,
10, 16, 8] is to construct a self-organizing routing mesh. Like
RON, however, such systems also treat the Internet as a black
box, and depend on end-to-end performance metrics to deter-
mine which nodes should peer with each other in the mesh.

This paper puts forward another approach, which is to ex-
ploit static topology information about the Internet to build a
routing mesh that is representative of the underlying physical
network [22]. The resulting representative mesh attempts to
eliminate virtual links (mesh edges) that have duplicate phys-
ical segments in the underlying network. We can define a
representative mesh at different levels of granularity—e.g., at
the autonomous system (AS) level or at the router level—but
in general, selecting virtual links that share as few underlying
physical links as possible both reduces redundant traffic on
the physical links and eliminates fate sharing in the case of
link failure.

This paper describes and evaluates a system, called
PLUTO, that builds a representative mesh to be used by rout-
ing overlays. We introduce PLUTO in two stages. First, we
present a conservative heuristic to identify and remove mesh
edges that do not contribute to route selection; we call these
edges redundant since the routing algorithm is likely to select



other indirect paths. This heuristic uses only passive measure-
ments and seldom-changing topology information; it does not
itself add to monitoring overhead. Experiments on Planet-
Lab [28] show that using this heuristic, PLUTO is able to re-
duce monitoring costs with marginal negative impact on route
selection. In the second stage, we explore the cost/benefit
trade-off in more detail. Specifically, we evaluate the impact
of pruning the mesh constructed in the first stage even further,
but at the cost of impacting the overlays ability to select the
best possible paths.

2 PLUTO Architecture
This section describes PLUTO (PlanetLab Underlay Topol-
ogy services for Overlay Networks), which defines a two-
layer routing hierarchy [22]. The bottom layer supports a
topology discovery service that reports static topology in-
formation about the underlying network, typically extracted
from information that the Internet has already collected for
its own operation. The upper layer builds a representative
mesh using the topology discovery service.

2.1 Topology Discovery

PLUTO implements two topology discovery operations. The
first,

Path = GetASPath(src, dst)

returns the verified AS path traversed by packets sent from IP
address src to IP address dst. Note that this operation maps
a pair of network prefixes to the sequence of AS numbers
that connect them, much like a BGP routing table maps a
network prefix to an AS path. Also, this operation must limit
the src and dst to addresses of overlay nodes because PLUTO
needs a point-of-presence within an AS in order to resolve
this query. The second operation,

PG = GetASGraph()

returns the peering graph (PG) for the Internet. This graph
represents the coarse-grain (AS-level) connectivity of the In-
ternet, where each vertex in PG corresponds to an AS, and
each edge represents a peering relationship between ASes.
The Internet does not currently publish the complete PG, but
it is easy to construct an approximation of the PG by aggre-
gating BGP routing tables from multiple vantage points in the
network, as is currently done by sites like RouteViews [5] and
FixedOrbit [1]. That is, an edge exists between any two ver-
tices X and Y in PG if some BGP routing table contains a
path in which ASes X and Y are adjacent.

Figure 1 sketches the implementation of these two opera-
tions. We assume each AS that hosts one or more overlay
nodes has a BGP router that feeds BGP updates to a PLUTO
service. A given overlay node sends one of the above queries
to the local PLUTO service, which answers the query imme-
diately if it can, otherwise it redirects the query to an appro-
priate PLUTO service that can answer the query. The an-
swer to the query is then cached in the local PLUTO service.
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Figure 1: PLUTO topology discovery sub-services

For example, suppose the overlay node in the figure issues a
GetASPath query to learn the AS path between IPy and IPz.
The PLUTO service in AS X determines that IPy is located
in AS Y using the translation service described below, and
redirects this query to the PLUTO service in AS Y since this
instance of PLUTO should be able to answer the query about
AS path originating from AS Y .

Note that while PLUTO assumes that a BGP feed is avail-
able in every AS that hosts a node, actually achieving this
is difficult in practice. Thus, for the sake of evaluating
PLUTO, we developed an “AS Traceroute” service as a part
of the GetASPath operation. The implementation trans-
lates a traceroute result into an AS path using the translation
service, thereby emulating a BGP-based implementation of
GetASPath. Since AS paths have no cycles, we modified the
traceroute program so that it performs a binary search for AS
boundaries, sending multiple UDP probing packets in paral-
lel. Since AS hop count is much less than router hop count,
this method suppresses probe traffic significantly. PLUTO
also caches AS paths derived in this way.

In addition to these two topology-related operations,
PLUTO also provides three translation services. The first,

GeoInfo = IP2Geo(addr)

returns geographical information GeoInfo corresponding to
the given IP addr. This information includes the longi-
tude/latitude coordinates where the corresponding machine
is located. Currently, we assume the overlay nodes report
their own geographical locations with their IP addresses to
PLUTO. Another option is to implement a global mapping
from IP addresses to geographical locations; we discuss this
option in Section 5.3. In this paper, we often compute ge-
ographic distance between two points using longitude and
latitude. This distance D (along the great circle) is easily
derived as D = R· arccos[sin θ1 · sin θ2 + cos θ1 · cos θ2 ·
cos (φ1 − φ2)], where R is the radius of the Earth, (θ1, φ1),
(θ2, φ2) are (latitude,longitude) coordinates (in radian) of two
points.

The second operation,

ASN = IP2AS(addr)



returns the AS number ASN that the given IP addr belongs
to. This can be done by selecting the route in a BGP table that
matches a given IP address, and then inferring that the last AS
number on the path in that route is the AS that contains the
node with the given address. We take a simpler approach than
[20] and make this inference using a collection of BGP tables
to improve the accuracy. We also take the Internet Exchange
Points (IXP) addresses into account [4]: if a given IP address
corresponds to an IXP and if that IXP has an AS number,
report it; otherwise report that it is an IXP without an AS
number.

The last operation,

PoPInfo = AS2PoP(ASN)

returns point-of-presence (PoP) information PoPInfo for the
given AS number ASN. This information includes the list of
IP addresses and geographical locations of PoPs of the AS
of ASN. PLUTO currently registers PoP geographical loca-
tions of 68 large ASes obtained from Rocketfuel[33]. This
information is expected to be updated very infrequently.

2.2 Mesh Construction

We implement a mesh construction service, called PLUTO-
Mesh, on top of topology discovery operations just described.
The service constructs an AS-level representative mesh using
passive and static information. We currently assume every
node has a list of the other nodes in the overlay network at
the time the mesh is created, although it would be straight-
forward to periodically update the mesh to incrementally in-
corporate new nodes. However, the intent is that the mesh
not change frequently, but instead, the routing overlay run-
ning on top of the mesh run its own membership protocol to
determine which nodes and links in the mesh are currently
“up”. That is, rapidly adjusting to nodes joining and leaving
the mesh is more a part of the routing problem, than the mesh
construction problem.

2.2.1 AS-Level Pruning

PLUTO-Mesh identifies and removes topologically redun-
dant virtual links (at the AS-level) between overlay nodes,
or said another way, retains only those edges that we can
determine to be independent in the underlying AS-level net-
work. It does this in a distributed fashion. That is, an instance
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Figure 2: Black dots u, v, and w denote overlay nodes and the white dots
denote routers. Virtual link (u, v) is redundant and can be removed from the
mesh, since edges (u, w) and (w, v) connect u to v.

of PLUTO-Mesh runs on each overlay node, and determines
which other overlay nodes are neighbors in the mesh based on
calls to the GetASPath (and optionally GetASGraph) oper-
ations. The entire global mesh could be formed by aggre-
gating these neighbor sets, however, many routing overlays
maintain only immediate neighbor sets at each node and do
not need the global topology.

Our approach is limited to edges that can be removed with-
out building a global picture of the network. An alternative
strategy would be for a central authority to collect global
network information, build the entire mesh, and distribute it
throughout the overlay. We opt for a localized approach for
reasons of scalability and cost, although the resulting mesh
may not be as sparse as that produced by a centralized algo-
rithm.

Our algorithm prunes an edge from the local node u to re-
mote node v if the AS path from u to v includes AS W , such
that there is a node w ∈ N that is located within AS W . This
scenario is illustrated in Figure 2(a). Although each node u
runs this algorithm locally, it will not cause a resulting mesh
to be partitioned, since it prunes the edge (u, v) only when it
finds a physically similar alternate path to reach v.

In addition, we prune edge (u, v) should an intermediate
node w reside in an AS that is directly connected to the path
from u to v, as illustrated in Figure 2(b). PLUTO Mesh uses
GetASGraph to narrow the scope of candidate intermediate
nodes. When the links into and out of the AS that contains w
are poor, our algorithm may prune a better direct edge from
u to v. In order to avoid this situation, we optionally find out
more precise information. For example, we estimate latency
from u to w and from u to v by latency estimator discussed in
4.1, and do not prune the edge if the difference is greater than
some threshold. Note that this scenario of pruning requires
complex coordination between nodes so that the network may
not be partitioned. In this paper, we focus only on the scenario
show in Figure 2(a).

2.2.2 Geo-Based Pruning

Although our algorithm is very straight-forward, AS-level in-
formation may be too coarse-grain to produce a satisfactory
result, especially when we have large ASes spanning a conti-
nent. We have also implicitly assumed that there is only one
overlay node per AS and have not dealt with the case where
there are multiple nodes in (especially) large ASes. We need
to add extra steps to complete our mesh construction algo-
rithm, resolving the two problems that these simplifying as-
sumptions hid.

First, in Figure 2(a), if AS W is a cross-country AS, de-
fault path (u, v) and its indirection path (u, w, v) may not
have many duplicate route hops, hence, may not bear simi-
lar network property to (u, v). Second, our algorithm has not
clarified the case where we have multiple nodes in the same
AS. One simple solution is to let one of the nodes as a rep-
resentative of the nodes in its AS. However, since the AS in



(a) Simple PLUTO Mesh (N=6)
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Figure 3: Mesh Including Cross-Country Transit AS (Abilene AS 11537)

question can cover a large area, we need a more generic strat-
egy. If we have multiple nodes in a large AS, we need to
discriminate these multiple nodes further.

To resolve these problems, we implement a discriminator
that: (1) preserves good direct links, and (2) selects among
multiple nodes in a single AS. The basic idea behind the
discriminator is to use geographical information provided
by the IP2Geo translation service. It uses the geographi-
cal location of the nodes and PoPs of cross-country ASes
from AS2PoP service, and leverages two assumptions: (1)
large ASes are well-connected, hence, geographical distance
within AS should be highly correlated with latency, and (2)
regional ASes are connected to the geographically nearest
PoPs of a large AS.

Preserving Good Links

Our strategy is to prune the default path (u, v) when we ex-
pect the path (u, w, v) has similar network properties, using
only AS-level information. Figure 3(a) shows a simple mesh
created using the algorithm defined up to this point. It con-
tains six nodes spanning six ASes: UW, Princeton, Duke,
UCDavis, Abilene, and UWisc. In this case, Abilene is a
large AS spanning the U.S.; we select an overlay node in the
middle of the country. This mesh forms a tree rooted at Abi-
lene, since every AS path between ASes other than Abilene
goes through Abilene, our algorithm has pruned a direct link
(u, v) and replaced it by the indirect path (u, w, v), where
in this case w is a node in Abilene. Figure 3(b) compares
the direct latency between (u, v) and the indirect latency of
(u, w, v), showing only the latency between pairs where we
prune the direct links. In other words, this figure compares
the latency before/after pruning (u, v). As can be seen, except
for a couple of anomalies, direct latency and indirect latency
are almost the same. We see anomalous cases for (Princeton,
Duke) and (UW, UCDavis) where indirect latency is much
higher than the direct latency.

The reason is that at the router level, packets travel through
the PoPs of Abilene that are closer to the end points. For ex-

ample, between UW and UCDavis, packets go through PoPs
at Seattle and Sunnyvale, while between Princeton and Duke,
they go through a PoP in Washington D.C. Therefore, if we
rely on only AS-level information, we might prune good di-
rect links, when we have a large cross country AS along the
route. It is necessary to avoid getting rid of these direct links.
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Figure 4: Mesh algorithm 1 (preserving good direct links)

Figure 4 illustrates how our discriminator works to pre-
serve good direct links. Suppose we consider removing direct
link (u, v) since we believe indirect link (u, w, v) has similar
network properties. In order to assess latency difference be-
tween (u, v) and (u, w, v), we first draw a voronoi diagram
using geographical locations of PoPs. The voronoi diagram
partitions the space such that each cell contains exactly one
PoP and every point in a given cell is closer to that cell’s PoP
than to any other PoP. We then identify the nearest PoPs in
W , Pu and Pv for the nodes u and v, respectively. We now
use the first assumption that says regional ASes are connected
to the nearest PoP of the cross-country AS they subscribe to.
We next compare the geographical distance D1 and D2, and
if D2 differs significantly from D1, we elect to keep the di-
rect edge (u, v). Here, we use the second assumption that
says a large AS should be well connected, so geographical
distance should reflect latency. More specifically, we define
packet traversal time difference ∆t = |D1 − D2|/v where v
is effective light speed in fiber discussed in more detail in the
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Figure 5: Mesh algorithm 2 (discriminating multiple nodes)

Section 4.1.2, and if ∆t > ∆t∗, we keep the direct edge. We
currently set ∆t∗ to 5 msec, which successfully removes the
anomalous points in Figure 3(b).

Discriminating Multiple Nodes

Another question is how we connect nodes when we have
multiple nodes in the same AS. Figure 5 shows how our dis-
criminator works for this problem in two steps. Note that
every node runs the same algorithm locally.

[Step1: Classifying Nodes] Suppose we have 4 nodes N1

to N4, 4 pops P1 to P4 in the AS X . First, we subdivide the
AS into voronoi cells by PoPs. PoP P1 and P2 each have 1
node, P3 has 2 nodes, and P4 has no node. We then classify
nodes as either active or inactive: the node closest to the PoP
in each voronoi cell is considered active and all others are in-
active. Similarly, we call a PoP active when it has at least one
node; PoPs with no overlay nodes in their cells are considered
inactive.

[Step2: Construct Virtual Edges] Once we identify ac-
tive and inactive nodes, we connect edges between all the ac-
tive nodes in the same AS, and also interconnect active nodes
and inactive nodes sharing the same PoP. In addition, we con-
struct an edge from an active node A to another active node B
(in a different AS), when A’s PoP has B’s PoP in its region.
At this point, we subdivide AS X into voronoi cells by active
PoPs. Figure 5(b) shows that active node N3 connect edge to
N5 since P3 has N5’s PoP P5 in its region.

PLUTO-Mesh uses AS2PoP to obtain PoP locations for a
given AS. If it determines that a particular AS is not among
the registered large ASes, PLUTO uses the node with the
smallest IP address among the nodes in the same AS as a
effective PoP location for that AS.

3 Evaluation

This section reports on experiments designed to evaluate how
much redundant traffic we can reduce with the mesh con-
structed by PLUTO, without sacrificing performance and re-
silience. Designing a mesh to support a routing overlay like
RON [6] is more challenging than supporting a single-source

multicast overlay like [9, 10, 16, 8], since it needs to opti-
mize all possible pairwise connections and an unnecessary
virtual link for one node could be a crucial one for the other.
Also, RON is so aggressive in monitoring link behavior that
one can view it as approximating the optimal route selection
strategy. Therefore, we use RON as an example of a rout-
ing overlay that runs on top of the mesh we construct. The
experiment shows that our mesh successfully removes redun-
dant virtual links and suppresses unnecessary traffic without
degrading the performance of the routing overlay.

3.1 Redundancy Metrics

Before presenting the results, we note that there are two types
of redundant virtual links. Undesirable virtual links contain
duplicate underlying physical links, while desirable virtual
links are (maximally) edge-disjoint in terms of underlying
physical links. For a given representative mesh, we define
two metrics: duplicate indicates how many duplicate links we
have in the underlying topology, and resilience corresponds to
how many disjoint minimum spanning trees (MSTs) we itera-
tively “extract” from the mesh. We further define two variants
of the duplicate metric: one counts the number of duplicate
router hops, and the other counts the number of duplicate AS
hops. For any two meshes with the same number of virtual
links, we prefer the one with the smaller duplicate metric.

3.2 Experimental Setup

To evaluate the mesh constructed by PLUTO, we run one in-
stance of RON (ron1) on a fully connected mesh, and at
the same time on the same set of nodes, a second instance of
RON (ron2) on top of PLUTO-Mesh. We run both instances
of RON for 40 minutes across 60 PlanetLab nodes geograph-
ically distributed throughout the U.S. We then compare rout-
ing tables and the amount of traffic both RON instances have
generated.

To conduct this experiment, we modified RON slightly.
The original implementation calculates only single-hop indi-
rection routes as alternate routes (although it exchanges link-
state information among participating nodes) based on the ob-
servation that single hop indirection gives us the best alternate
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Figure 6: Ping traffic comparison (full-mesh/sparse-mesh)
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Figure 7: Routing update traffic comparison (full-mesh/sparse-mesh)
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Figure 8: Total traffic comparison (full-mesh/sparse-mesh)

path most of the time. Our modified RON calculates the opti-
mal multi-hop indirection route, since in PLUTO-Mesh, each
node has a limited number of virtual neighbors, meaning that
we cannot strictly rely on single hop indirection.

3.3 Mesh Sparseness

For the example set of 60 PlanetLab nodes, PLUTO-Mesh
calculates a representative mesh with 1968 directed virtual
links, as opposed to 3540 (=60x59) in the fully connected
virtual topology. This 55.3% reduction in the number of vir-
tual links greatly suppresses the traffic of probes and route
dissemination. Figures 6, 7, and 8 compare the various traf-
fic (ping, route dissemination, and total traffic respectively)
that both RON instances generate per node. Note that total
traffic does not represent only the sum of ping and route dis-
semination traffic, but also includes the traffic for forwarding
routes, since we use our routing mechanism itself to dissem-
inate routes in order to get over disconnectivity between the
Internet1 and Internet2. According to these graphs, we reduce
about 50% on average (over nodes) of the traffic in ron2
comparing to ron1. Some nodes (especially those on cross-
road) have significantly less traffic since these nodes do not
have many virtual links.

3.4 Mesh Quality

Next, we examine how much performance we have sacrificed
by reducing the number of virtual links. Taking a snapshot of

routing tables of RON, we have examined difference in op-
timal latency and bandwidth between every pair of nodes on
fully connected topology and on our representative mesh. The
bandwidth of each virtual link is calculated using TCP con-
gestion control equations [25, 13] and the measured latency
and loss rate. This is the same as in the original RON, and
although it may not represent real throughput, it is a reason-
able comparison point. We use modified Dijkstra algorithm
to calculate bandwidth-optimized paths [32, 12].

As Figures 9(a) and 9(b) show, the performance degra-
dation is minimal. Note that sometimes, PLUTO-Mesh can
achieve better performance than the complete mesh. We be-
lieve this is partly because there exists some fluctuation in
route convergence, and also because of the high-bandwidth
usage incurred from running two instances of RON, a denser
mesh has a higher chances of losing route updates.

3.5 Mesh Redundancy

We evaluate the mesh resilience by extracting MSTs from
both graphs. Our off-line analysis shows that the fully con-
nected mesh contains 20 MSTs (i.e., resilience=20), while
our mesh includes 5 MSTs (resilience=5). Although this met-
ric may not show the actual resilience of the mesh, it implies
that our mesh still leaves us the ample possibility of finding
alternate routes in case some of the links go down. How-
ever, it is not fair to compare the duplicate metric between the
complete mesh and PLUTO-Mesh since the number of virtual
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links in both graphs are significantly different. We will look
into the validity of PLUTO-Mesh in this regard in the next
section.

4 Cost/Benefit Trade-off

This section evaluates the cost and benefit of further pruning
the PLUTO mesh to form an even more sparse graph. A more
sparse mesh obviously reduces the traffic for both active prob-
ing and route dissemination, but at the cost of impacting the
overlay’s ability to select the best possible paths. To make
the overlay topology even more sparse, we need to rely on
further information than AS topology and geographical in-
formation. The problem is that this information needs to be
inexpensively obtained, otherwise we have traded one set of
expensive probes for another. Toward this end, we develop
the PLUTO Minimum Latency Estimator (MLE) to predict
the packet round trip times between arbitrary pair of nodes
using only passive and infrequently updated information.

Using PLUTO MLE, we then construct more sparse
meshes from the PLUTO Mesh, and evaluate the sparseness,
quality and redundancy of the resulting meshes. We show
that pruning a representative mesh into a sparse mesh grace-
fully degrades an overlay’s ability to select the best possible
paths. We also show that even though we could build sparse
mesh starting from fully connected virtual topology, building
sparse meshes on top of the PLUTO Mesh has even better
properties.

4.1 Minimum Latency Estimator

The PLUTO Minimum Latency Estimator (MLE) estimates
the latency between an arbitrary pair of nodes using the ge-
ographical locations of both end-points and PoPs in large
ASes, along with existing BGP feeds from various vantage
points. Previous research [26] has shown that estimating la-
tency using only geographical locations of end-points is not
very accurate, especially when the end points are far away.
We believe that this inaccuracy is mainly caused by the fact

that a packet trajectory between two end nodes is not geo-
graphically a straight line between them, but rather a zig-zag
curve deflected by ASes it traverses. The basic idea is to first
infer the AS Path between arbitrary pair of end nodes, and
then to add PoP-to-PoP geographical distance along the AS
path to infer the end-to-end latency. If we obtained BGP feed
at every single AS in the world, we would not have to perform
the first part of the strategy.

However, even when we had all the BGP information, it
would be useful to have a service that can infer arbitrary AS
path using only a limited number of BGP feeds. In this sec-
tion, we propose a method to infer AS paths using existing
BGP feed from various vantage points.

4.1.1 AS Path Inference

We discuss inferring AS paths using only a handful of BGP
feeds. A simple method one might come up with is to con-
struct a connectivity graph (via the GetASGraph operation),
in which nodes are ASes and edges are BGP neighbors, and
then to infer an AS path by calculating the shortest path on
this connectivity graph. However, there is a shortcoming in
this approach. Since the connectivity graph represents only
possible communication channels, the shortest AS hop count
path on this graph does not necessarily reflect the BGP policy
even though the shortest AS hop count path would be selected
as the best one without the BGP artifacts.

Our previous work [22] shows that only 50% of 5500 ex-
amined paths are predicted by this shortest path method. One
must note that in reality, prediction is much worse than 50%,
since the connectivity graph is so dense that there are multi-
ple shortest paths with the same AS hop count. Our matching
scheme is to check if the actual AS path is in the set of multi-
ple shortest paths calculated from the BGP routes.

In our experiment, we sometimes encounter a pair of nodes
having over several hundreds of shortest paths of the same
length. If we had to infer the actual path using this method,
we would have to guess which is the actual path selected



from many candidates. Considering a single policy factor AS
peer relationship using the method in [15] and attempting to
exclude illegal prediction (such as a customer AS is carry-
ing traffic for a provider AS), the prediction accuracy is only
slightly better than by the naive approach. We believe the low
accuracy of this method results from the fact that policies are
so deeply embedded in BGP routing.

For this reason, we take a different approach to inferring
AS paths. Our new approach is based on the following two
observations and tries to capture the idea of BGP policies as
much as possible. First, about 70% of the AS paths observed
in RouteViews BGP tables are symmetric. Second, although
we do not have any quantitative examination of this, we as-
sume that AS paths are transitive, meaning that if we observe
an AS path like (A, B, C), then the paths from A to B and
from B to C are likely to be (A, B) and (B, C), respectively.
Of course, this is not necessarily true, because AS paths are
determined by network prefixes, rather than AS numbers.

Suppose we are trying to infer an AS path between a source
node s and a destination node d, using k vantage points
vi(i = 0. . .k − 1) where we can access BGP tables. For
each vantage point v, we first get the AS path P1 from v to
s, P1 = (V, X, M, Y, S) and the AS path P2 from v to d,
P2 = (V, X, M, Z, D), where s, d and v reside in AS S, AS
D and AS V , respectively, and AS paths P1 and P2 share the
AS hops till they reach AS M . After finding AS M , we infer
the AS path from s to d to be Pv = (S, Y, M, Z, D) as shown
in Figure 10. We repeat this process for all of k vantage points
vi(i = 0. . .k − 1) to obtain AS paths Pvi(i = 0. . .k − 1).
We then rank them into a set P [r](r = 0. . .l≤k − 1) in the
increasing order of AS hop counts, consolidating the same
paths.

V

X

M

Y

S

Z

D

Pv=(S, Y, M, Z, D)

P1=(V, X, M, Y, S) P2=(V, X, M, Z, D)

Figure 10: AS Path Inference

To evaluate this strategy, we have examined BGP tables
from 100 vantage points from RouteViews and PlanetLab
BGP feeds. For each BGP table of AS X , we use only the
vantage points that do not belong to AS X and infer the AS
path from AS X to every single network prefix (there are typ-
ically 150,000 such prefixes). Figure 11 shows that how many
of 150,000 AS paths in each BGP table can be successfully
inferred (y-axis) when we use the first r rank of path infer-
ence P [r] (x-axis). As shown in Figure 11(a), for most AS

paths, we can achieve 60% accuracy within rank 5, except for
a few cases that fall behind less than 50%. We have found
that these low-accuracy curves belong to ASes located in Eu-
rope or Asia, where we do not have concentration of vantage
points. However, for the most BGP tables from the vantage
points located in U.S., we can achieve higher accuracy of in-
ferring AS paths.

In addition, we have modified our matching method from
perfect matching, where a predicted AS path must be hop-
by-hop identical to the actual path, into ambiguous matching,
where only one AS in the inferred path is different from the
actual path. Figure 11(b) shows that this ambiguous match-
ing achieves over 90% within rank 5 for most vantage points.
The reason we conducted this experiment is because we ex-
pect that the one AS difference is not very important for our
strategy of estimating latency.

4.1.2 Minimum Latency Estimation

Using AS path inference and the geographical location of ma-
jor PoP locations, we have implemented a minimum latency
estimator. We have obtained PoP locations of 68 major ASes
at the city level from Rocketfuel [33] and translated the city
name into longitude/latitude coordinate. For a given pair of
nodes, we first infer the AS path between these two nodes,
and then connect PoPs along the AS path to infer the packet
trajectory between them. More specifically, when we find an
AS path (S, X, A, Y, B, Z, D) between nodes s and d, where
A and B are ASes whose PoP locations are known, we first
construct a graph such that s connects an edge to the geo-
graphically nearest PoP in AS A, then each A’s PoP connects
an edge to the nearest PoP in AS B, then B’s nearest PoP to
d connects an edge to d, and all PoPs in the same AS inter-
connect their edges themselves.

We next find the shortest path from s to d in this graph
and calculate the geographical distance along the shortest
path and divide it by the effective light speed v = α·c to
get the estimated latency between the nodes, where c is the
light speed in vacuum and α < 1 denotes the light speed fac-
tor. Usually α needs to be determined using some training
set of data. However, as long as we use the estimated la-
tency for comparison purpose as in getting a set of k-nearest
neighbors for a given node, the absolute value of α does not
matter. Since we infer several multiple AS paths ranked by
the number of AS hops for a given pair of nodes, and Fig-
ure 11 empirically shows that the probability of P [r] be-
ing an actual AS Path decreases exponentially as rank r, we
take exponentially weighted sum of the contribution from
each AS path. Thus, the estimated latency is calculated as
rtte = Σn

i=0k·e−(i+1)/λ·ri where ri is round-trip-time (RTT)
estimate from i-th rank path P [i], n is the maximum num-
ber of ranks, λ is damping factor (currently set to 1), and
k = (e1/λ − 1)/(1 − e−(n+1)/λ) is normalization factor.

Since we have geographical coordinates of all the Planet-
Lab sites, we have examined ping RTT and estimated RTT
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Figure 12: Minimum Latency Estimation

calculated by our estimator between 8192 pairs of 107 Plan-
etLab sites. Figure 12(a) compares the estimated rtte and
the actual RTT rtta where estimated latency is adjusted by
the light speed factor α = 0.42 using a linear fitting to best
fit with the actual data sets. The plot shows that there ex-
ists a strong correlation between rtte and rtta. Figure 12(b)
shows the cumulative distribution of a Relative Delay Penalty
(RDP) defined as (rtte − rtta)/rtta and its absolute variant
|rtte − rtta|/rtta. This plot shows that about 90% of pairs
have less than 50% absolute errors. There are points on the
plot that are off the Y = X line (perfect estimate), indicating
when our AS path inference or latency estimation algorithm
gives faulty results.

4.2 k-MST on PLUTO Mesh

We now prune our representative mesh to make it more sparse
by extracting k-minimum spanning tree (k-MST) [35], using
the PLUTO MLE just described. We also show that even
though we could build a k-MST mesh starting from fully
connected virtual topology, one constructed on top of the

PLUTO-Mesh has better properties.
Note that although we pick k-MST as an example method

for constructing a more sparse mesh, there could be many
other alternatives. However, since our definition of resilience
is based on the number of MSTs that can be iteratively ex-
tracted from a given representative mesh, it is natural to in-
vestigate k-MST as an example mesh. Such k-MST can be
constructed in a distributed fashion [35]. Also note that MST
is well-defined for undirected graphs and our PLUTO-Mesh
generates a directed (asymmetric) representative mesh. For
this reason, we symmetrize a PLUTO-Mesh such that if the
direct edge (u, v) is replaced with the indirect edge (u, w, v),
we make sure (v, u) is also replaced with (v, w, u). From
now on, we assume that the mesh we discuss is a symmetric
directed graph, or simply an undirected graph.

4.2.1 Mesh Sparseness

The benefit from using k-MST mesh in terms of reduction
in the number of virtual links is obvious. Since each MST
is disjoint with respect to the others, the total number of vir-
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Figure 14: Performance comparison between complete mesh and k-MST mesh on PLUTO Mesh

tual links in the k-MST mesh is k(N − 1). Using 55 Planet-
Lab nodes located in U.S., we have built PLUTO-Mesh and
tried to construct k-MST on top. It turns out that this par-
ticular PLUTO mesh happens to include maximally 3-MSTs
(resilience=3). However, by running RON on these k-MST
(k <= 3) meshes, we also found that end-to-end overlay hop
count becomes too large, exceeding RON’s default maximum
of 8. In order to avoid such unreasonable setting and to ex-
amine the quality of denser meshes, we extend the definition
of k-MST for (k > k∗ = 3) as follows.

Intuitively, after extracting the maximum number of k-
MST out of a given graph, we try to further extract MST’s
from the residual connected subgraphs to add locally efficient
redundant mesh edges. The pseudo code below calculates ex-
tended k-MST, Gk, as follows:

1: R0 = G
2: for i = 0, . . ., k − 1 do
3: (R0

i ,. . .,Rm
i )=subgraphs(Ri)

4: Fi = ∪j=0...mMST(Rj
i )

5: G(i+1) = Gi∪Fi

6: R(i+1) = Ri − Fi

7: done

where MST(R) represents the minimum weight spanning tree
of graph R, and subgraphs(R) returns a vector of connected
sub-graphs in R. In the i-th iteration of the loop (lines:2-
7), we compute the MST Fi of the residual graph Ri from
the previous step. If the residual graph R i is disconnected,
we compute the MST of connected sub-graphs R j

i and union
them together into Fi (line:4). The (i + 1)-th residual graph
R(i+1) is defined as a difference between Ri and Fi. (line:6).
Note that Gk is a composite of MST’s, that is, the union of
MST’s from each step (line:5). Table 1 shows the number of
virtual links in the extended k-MST from our experiment.

k 1 2 3 4 5 6 7 PLUTO Mesh

edge count 54 108 162 215 268 318 365 1364

k(N-1) 54 108 162 216 270 324 378 N/A

Table 1: Edge count in k-MST

Figure 13(a) compares three types of traffic statistics that
we have examined for PLUTO Mesh in Section3.3: ping,
route-updates, and total (including ping, route updates, and
route-updates forwarding), with different k-MST meshes.
Each plot shows the ratio of traffic generated on the k-MST



−2500

−2000

−1500

−1000

−500

 0

 500

 1000

 1500

 0  1  2  3  4  5

O
cc

ur
re

nc
e

The Number of Overlapping AS Hops

1−MST
2−MST
3−MST
4−MST
5−MST

(a) AS Level Redundancy

−400

−300

−200

−100

 0

 100

 200

 300

 400

 0  2  4  6  8  10  12  14

O
cc

ur
re

nc
e

The Number of Overlapping Router Hops

1−MST
2−MST
3−MST
4−MST
5−MST

(b) Router Level Redundancy
Figure 15: Mesh redundancy (occurrence of duplicate hops in every pair of paths)

meshes averaged across overlay nodes, to the traffic on the
fully-connected mesh. As the plot shows, the amount of traf-
fic decreases in proportional to k, hence, the number of virtual
links in the mesh.

4.2.2 Mesh Quality

Using the same set of 55 PlanetLab nodes as in the previous
experiment, we have compared the optimal latency and band-
width of the fully connected mesh and the k-MST meshes
built on top of the PLUTO Mesh. Each experiment runs about
60 minutes. For each k-MST mesh (k = 4, . . . , 7), we run
two instances of RON at the same time using the same set of
nodes, one on the fully-connected mesh (ron1) and the other
on k-MST mesh (ron2).

Figure 14(a) shows cumulative distribution of the Relative
Delay Penalty (RDP) of end-to-end latency. RDP is calcu-
lated as a ratio of the latency difference (ron2-ron1) to the
reference latency (ron1). While 90% of paths on PLUTO
mesh have RDP of less than 50%, only 80% of paths on 4-
MST mesh achieve an RDP of less than 50%. We see that we
sacrifice more performance as k decreases. We also observe
that about 3% of paths on sparser graphs have 50% better op-
timal paths than on complete graph. We conjecture this is
caused by the same reason described in 3.4.

Figure 13(b) shows the cumulative distribution of Hop
Count Penalty (HCP). HCP is defined as the difference be-
tween overlay node hop count per latency optimized path on
k-MST meshes on top of the PLUTO Mesh (plus the PLUTO
Mesh itself) and on the complete mesh. The plot shows that
k-MST meshes (and the PLUTO Mesh) incurs HCP and the
k-MST with greater k suffers from larger HCP. Only 5% of
paths on the PLUTO mesh add more than 2 extra hops, while
about 30% of paths on 4-MST mesh observe the same extra
overhead, compared to the paths on complete mesh.

Figure 14(b) shows the cumulative distribution of Relative
Bandwidth Penalty (RBP) of the bandwidth optimal paths.
RBP is calculated as a ratio of the bandwidth difference
(ron1-ron2) to the reference bandwidth (ron1), which
represents how much (relative) bandwidth is sacrificed when

we reduce the number of virtual links. The plot shows 10%
of paths on PLUTO mesh and 20% of paths on 4-MST mesh
have lost more than 50% of the possible bandwidth.

4.2.3 Mesh Redundancy

We now examine the redundancy metrics defined in Sec-
tion 3.1. Obviously, the resilience metric of k-MST mesh
is k, since by its definition, it includes k edge-disjoint MSTs
in the graph.

To evaluate the duplicate metric, we compare two k-MST
meshes among 60 nodes, one constructed on top of the fully
connected virtual topology (kmst1), and the other on top of
the PLUTO Mesh (kmst2), using PLUTO MLE for latency
values. These two meshes have resilience metric of 5. Fig-
ure 15 shows the duplicate metric at both AS granularity and
router granularity. We have conducted all-pairs traceroutes to
obtain a router sequence and an AS sequence for every pair
of nodes in the meshes. Figure 15(a) shows the difference
(kmst1-kmst2) in the occurrence of duplicate AS hops of
a given length between all pairs of routes. For instance, com-
pared to kmst2, kmst1 has about 1000 more pairs of routes
that have duplicate AS hops of length 1. As this graph shows,
kmst2 achieves less duplicate AS hops of all the lengths.
An interesting observation with this graph is that there are
more pairs of routes in kmst2 that have duplicate AS hops
of length 0. This means that kmst2 has over 2000 more
edge-disjoint pairs of routes than kmst1.

Finally, Figure 15(b) shows a similar plot for the difference
(kmst1-kmst2) in the occurrence of duplicate router hops
of a given length between all pairs of routes. As can be seen in
the graph, kmst1 has more long duplicate router hops, while
kmst2 has more of short duplicate router hops. This implies
that kmst2 has reduced the number of duplicate router hops
as a whole. Although we do not have a clear reason why we
have increased the number of shorter duplicate router hops in
kmst2, we believe that it may have resulted from the fact that
our method uses only static and passive information, namely
AS paths and geographical information. We should also note
that kmst2 has more edge-disjoint pairs of routes at router



granularity as well.

5 Discussion
This section discusses several issues raised by this work.

5.1 Scalability

The efficacy of any topology-aware mesh construction algo-
rithm depends on the underlying topology of a given overlay
network. PLUTO-Mesh is no exception. This paper has eval-
uated our mesh construction algorithm in PlanetLab, using
about 60 nodes geographically distributed in the U.S. This
set includes both nodes at the edge of the network, as well as
at cross-roads inside the network (e.g., nodes co-located with
Internet2 PoPs). Generally speaking, our approach works bet-
ter the more overlay nodes there are close to PoPs inside the
underlying network. This should not come as a surprise since
more interior nodes results in more redundant edges that can
be removed.

It is also the case that the more overlay nodes there are, the
greater the opportunity to prune edges. Of course, it matters
how widely the nodes are distributed over the network. If we
assume overlays are formed from a randomly distributed par-
ticipants, we expect the chances of having nodes at network
cross-roads will increase, as the number of ASes where over-
lay participants resides grows. Using a peering graph with
15,396 ASes and 69,496 peering edges extracted from Route-
Views and PlanetLab BGP feeds, we have evaluated reduction
of virtual links when there are 1,000 overlay nodes (each node
resides in a distinct AS) sampled randomly [22]. We found
that the pruning algorithm in Figure 2(a) can reduce the num-
ber of virtual links by 70%, and the one in Figure 2(b) can
reduce it by 90%. This implies that assuming a random disti-
bution of the overlay participants, our scheme is expected to
achieve 70% of routing overhead reduction.

There is yet another way to interpret the results presented in
this paper. If our mission is to strategically pick a set of nodes
to construct a routing overlay, we need to consider not only
scalability but also node placement. Our results implies that
it is obviously beneficial to include “inside” nodes rather than
“edge” nodes, and to run our mesh algorithm to significantly
reduce the overhead of routing.

Finally, as a aside, although we used PlanetLab nodes
where node distribution is biased toward GREN (Global Re-
search and Educational Network) [7], our mesh algorithm is
independent of which kind of network the overlay belongs
to. That is, the advantages of running a routing overlay may
vary, but the value of our edge reduction strategy is more de-
pendent on how broadly the overlay covers that network than
the specific link characteristics.

5.2 Routing Optimization

One of the main challenges in routing using end-systems is to
overcome the extra latency overhead in routing and forward-
ing packets, since the computation for routing and forward-
ing takes place at application level. In our experiments on

PlanetLab, we did observe such undesirable extra overhead
especially when the computational and network resources on
the node responsible for forwarding packets become scarce,
since PlanetLab is a shared test-bed. This is especially true if
we use multiple-hop indirection as in our experiments using
modified RON. Since one of the goals of routing overlay is
to achieve better performance than the BGP-provided route,
this may become a critical issue. However, here is an op-
timization to compensate for this problem. For instance, in
RON, each node calculates its route using link-state informa-
tion disseminated among participants. If the best route that a
node calculate to a destination at AS level is identical to the
actual AS path, then we do not need to forward the packets
through end-systems, but simply let the Internet deliver them.

5.3 IP2Geo

Although it is not unreasonable to have each overlay
node report its geographical location (e.g., city/state, longi-
tude/latitude), it is desirable to have a service to translate an
IP address into geographical location. Although there are
both academic efforts [26] and various commercial products
attempting to provide this mapping service [2, 3], to the best
of our knowledge, there is no satisfactory open IP2Geo map-
ping service available to date. Here is a short report on our
feasibility study toward IP2Geo service.

As pointed out in [26], it is important to cluster IP ad-
dresses that are supposedly located in close vicinity. It is
also important to identify IP addresses in use, since there is
no value in trying to identify the location of unused IP ad-
dresses. First, we cluster routable IP addresses using BGP
tables into smaller networks than /24’s. Using BGP tables
from RouteViews and PlanetLab nodes, we identified a little
over 7 million such networks. Note that usually BGP tables
includes larger networks like /8’s and /16’s, so we divided
those network into /24’s since these large networks simply do
not advertise smaller networks to outside.

Although there are 7 million routable small networks, it
is not necessarily true that all of these networks are in use.
For this reason, we tried reverse DNS lookups for almost all
the IP addresses. Since PTR records [21] are managed hi-
erarchically by the in-addr.arpa domain, we have done
hierarchical lookups where only when upper-octet network
x.in-addr.arpa exists, we further perform lookups for
lower-octet networks y.x.in-addr.arpa. 1 We have
used PlanetLab nodes to distribute the load of reverse DNS
lookups and identified about 1.85 million /24’s, 265.88 mil-
lion individual IP addresses in use. Although this is a con-
servative estimate of the number of networks in use, since
there are existing hosts that do not have PTR records in DNS,
we believe this is a good start for bootstrapping open IP2Geo

1A few networks whose lookups timeout (not returning non-existing do-
main error, NXDOMAIN (RCODE=3) [21] but simply timeouts) sometimes
include lower-octet networks that do exist. For instance, lookups for 214/8,
215/8 (DoD) always timeout, but several /16’s under this /8’s do exist.



service.
Second, after clustering and identifying networks in

use, we still need to locate their geographical location for
about 1.85 million networks. Figure 16 shows /24 networks
bitmap showing which network has valid IP addresses in
it. We are currently using the traditional technique of using
traceroute to obtain DNS name of router nearby the target,
and from DNS name, we can often infer its geographical
location [26, 33]. We have also found that the results from
reverse DNS lookups we performed give us clue as to where
the particular IP addresses is located. For example, most
IP addresses assigned to DSL, PPP and cable modems
in major ISPs do have geographical locations, such as
lsanca1-ar3-008-034.biz.dsl.gtei.net (Los
Angels, CA). Since these addresses are not necessarily
responsive to ping or traceroute, this is viable method to
identify the location of those IP addresses. Also, geograph-
ical locations of IP addresses in educational institutions and
large companies tend to be easily identifiable by looking at
their DNS name.

Finally, we combine this DNS approach with BGP infor-
mation. If the BGP table shows an AS has relatively small
number of peers, then we infer that this is a regional ISP, so
we can cluster /24’s networks obtained from our DNS record
method even further and thus we will be able to greatly sup-
press the amount of active probing such as traceroute.

Figure 16: Networks that have at least one valid PTR records. Each dot
in this 4096×4096 pixel image represents a /24 network. Y-axis, x-axis
represent upper and lower 12bits of /24’s network addresses, respectively.
The darkness (8-bit gray-scale) of each dot represents how many IP addresses
have PTR records in the /24 network.

5.4 Divert

We have designed another orthogonal idea called divert [23]
to make the routing overlay scalable. In our design, we made
a clear distinction between desktop and overlay nodes. A

desktop is a user’s machine that subscribes to a routing over-
lay network. Desktops are usually under full control of the
user. All privileged operations, such as loading kernel mod-
ules and setting up firewall rules, are allowed on desktop ma-
chines. On the other hand, overlay nodes are shared, pro-
tected, and restricted, intermediate resources, where privi-
leged operations are prohibited, or modified to be restricted
or protected in some way. Our approach moves route cal-
culation to dedicated overlay nodes, where and each desktop
(end-system) associates itself with a nearby overlay node, for
instance, within the same AS. This effectively allows rout-
ing overlay networks to aggregate traffic on behalf of a larger
collection of end-systems, hence make overall system much
more scalable. It also means routing overlay networks can
support thinner end-systems, for example mobile nodes that
cannot afford the measurement burden routing overlay net-
works impose. We have implemented divert using RON in
PlanetLab and demonstrated it works with several applica-
tions such as ssh.

6 Related Work

It is not uncommon that an overlay network maintains a sub-
graph of the complete graph as a routing mesh. As opposed
to RON [6]’s complete routing mesh scheme, several single-
source application-level multicast overlays ESM [9, 10],
YOID [27], Overcast [16], Bullet [17], SplitStream [8] de-
fine more sparse routing meshes and sometimes build mul-
ticast trees on top of them. Interleaved Spanning Tree [35]
proposed an distributed algorithm to define sparser mesh for
generic overlay networks, and this is probably the most re-
lated to our approach. However, these mesh building strate-
gies are still treating the Internet as a black box and rely
on expensive performance measurements before construct-
ing a routing mesh, and does not capture the idea of dupli-
cate segments in the underlying network. To the best of our
knowledge, our work is the first to attempt defining an in-
frastructure to construct topology-aware representative mesh
in a cost-effective manner. As for estimating latency, there
were similar research efforts to inexpensively predict the end-
to-end distance for a given pair of nodes. IDMaps [14] ex-
plored the feasibility of a public infrastructure to provide end-
to-end distance information. GNP [24], Lighthouses [29],
ICS [19], Virtual Landmarks [34], and PIC [11] proposed a
coordinate-based strategy to predict distance treating the In-
ternet as a high-dimensional geometric space. Our PLUTO
MLE is novel in that it uses only passive (BGP tables) and
fairly static (geographical location of PoPs of major ASes)
and achieves reasonably good latency estimation.

7 Conclusions

This paper describes a distributed service that constructs a
topologically-representative mesh using only passive mea-
surements and static topology information. By eliminating
mesh edges that are not likely to be selected by a high-level



routing overlay, we are able to reduce the impact of unnec-
essarily probing the network to find good routes, and in the
process, improve the scalability of routing overlays. Exper-
iments show that when redundant edges are conservatively
removed, route selection does not suffer but the overhead of
probing the network and disseminating routing information
is reduced by a factor of two. Additional analysis quantifies
the impact on route selection of more aggressively removing
mesh edges, documenting the cost/benefit trade-off that is in-
trinsic to routing.

Another contribution is that we have developed sub-
services such as PLUTO MLE to infer minimum latency us-
ing only passive and static information, and AS Traceroute
server to efficiently obtain and cache AS paths, between an
arbitrary pair of nodes. Although these services are devel-
oped as a supplemental service or for evaluation purpose only,
these services potentially evolve into stand-alone generic ser-
vice by themselves.

One of the main insights of this work is that while treat-
ing the underlying Internet as a black-box is appealing in
many ways, information about the Internet’s topology is read-
ily available, either for free or at very low cost, and that us-
ing this information can have a dramatic effect on building
a routing overlay that is both cost-conscience (scalable) and
effective.
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