
Operating System Support for

Generalized Packet Forwarding

Yitzchak M. Gottlieb

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

November 2004

© Copyright by Yitzchak M. Gottlieb, 2004. All rights reserved.

iii

Abstract

Computer networks provide communications services to applications. The most

well-known example of a computer network is the Internet—a network of computer

networks that provides a point-to-point, best-effort, packet-delivery service. Re-

cently, there has been an increased interest in expanding the set of services that the

Internet provides. However, as a given networking technology becomes entrenched,

it becomes exceedingly difficult to modify. Most new services are therefore imple-

mented in applications that create overlay networks—virtual networks overlaid on

the Internet.

Many overlay networks ignore the well-established networking principle of dis-

tinguishing bewteen control and data, thereby limiting their flexibility and perfor-

mance. The principle identifies two classes of traffic at a network host: data that

passes through the host and control that is received by the host. Control messages

may provoke expensive computation, while data should require only relatively sim-

ple forwarding. Router designers have leveraged the distinction between control and

data to make routers more flexible and faster by offloading control computations to

a separate processor and optimizing data forwarding in dedicated hardware. Over-

lay networks that ignore the distinction between control and data cannot derive

similar benefits.

Overlay networks are mostly application-specific. They are tailored to meet the

needs of a single service, making it difficult to use the network for another service.

This reality conflicts with the lesson learned from the Internet that a single network

can easily support many different applications.

This dissertation makes three contributions. First, it shows how network ser-

vices, especially overlay networks and their applications, can be decomposed into

control and data planes, and further decomposed into general and application-

specific parts. Second, it proposes an architecture, Plug Board, that provides a

suitable framework for building network services that make use of this decomposi-

tion. Third, it describes the potential benefits reaped by a network service written

for Plug Board.

iv

Acknowledgments

Before presenting the contents of this dissertation, I would like to spend a few

paragraphs thanking those who helped make it possible.

I would like to thank my adviser, Larry Peterson, and the other members of my

thesis committee: Brian Kernighan, Vivek Pai, David Walker, and Randy Wang.

As my adviser for the past few years, Larry has provided me with encouragement,

guidance, and advice. I would like to thank my primary readers, Brian and Vivek,

for helping me to hone the presentation of my thesis. Special thanks go to Melissa

Lawson, the department’s graduate coordinator, for magically resolving administra-

tive difficulties big and small.

I would also like to thank my colleagues and fellow students including Andy

Bavier, Scott Karlin, Björn Knutsson, Akihiro Nakao, Xiaohu Qie, Nadia Shalaby,

Tammo Spalink, Mike Wawrzoniak, Limin Wang, and Wen Xu. Andy and Mike

helped initiate me into the world of Scout and SILK and worked with me to maintain

it. Scott developed the Linux and StrongARM code for using the IXP1200, while

Tammo wrote the initial version of the microcode.

My family deserves special thanks. I would like to thank my parents for their

love and support throughout the years. Thanks to my sister, Sigal, who was always

there as a sounding board and to my brother-in-law, Lenny, for all his help. Thanks

to my brother, Adi, for allowing me to state the obvious. Thanks to my daughter,

Vered, without whom this dissertation would have been completed much sooner.

Last, but most certainly not least, I want to thank my wife Margalit. Without her

support, encouragement, and love none of this would have been possible.

This work has been supported in part by NSF grant ANI-9906704, DARPA

contract F30602–00–2–0561, and the Intel Corporation. Portions of this work were

originally published as Gottlieb and Peterson [24] and Spalink et al. [55].

v

To My Dearest Love

vi

Contents

Abstract . iii

1 Introduction 1

1.1 Network Services . 2

1.1.1 Forwarding Algorithms . 3

1.1.2 Network Monitoring and Filtering 5

1.1.3 Packet Tagging . 7

1.1.4 Payload Manipulation . 8

1.2 Deploying Novel Router Functionality 10

1.2.1 Programmable Networks . 10

1.2.2 Active Networks . 11

1.2.3 Overlay Networks . 13

1.3 Control and Data . 14

1.4 Thesis Statement . 15

1.5 Organization . 16

2 Background 17

2.1 Extensible Software Routers . 17

2.2 Terminology . 18

2.2.1 Components . 19

2.2.2 Extensibility . 22

2.2.3 Engineering Tradeoffs . 24

2.3 Example Systems . 26

2.3.1 Scout . 26

2.3.2 Click . 27

CONTENTS vii

2.3.3 Router Plugins . 29

2.4 Comparison . 30

2.4.1 Classification . 30

2.4.2 Extensible Forwarding . 32

3 Plug Board 33

3.1 Extensible Forwarders . 34

3.1.1 Forwarder Definitions . 34

3.1.2 Examples . 37

3.2 Classifier . 42

3.3 Computation Domains . 45

3.4 Implementation Issues . 46

3.4.1 Modularity . 46

3.4.2 Forwarding Functions . 47

3.4.3 Classification . 48

4 Decomposing Overlay Networks 49

4.1 Implementation Forms . 50

4.1.1 Form I: A Network Service 50

4.1.2 Form II: Control and Data 51

4.1.3 Form III: Optimizing Forwarding Performance 52

4.1.4 Form IV: Multiple-use Networks 53

4.1.5 Form V: Application-specific Forwarding 55

4.1.6 Summary . 56

4.2 Example Peer-to-peer Applications 56

4.2.1 Pastry . 57

4.2.2 Chord . 57

4.2.3 Gnutella . 58

4.3 Interfaces . 59

4.3.1 Overlay Daemon . 59

4.3.2 Overlay Forwarder . 59

4.3.3 Application . 60

4.3.4 Application Forwarder . 61

CONTENTS viii

5 Evaluation 64

5.1 Plug Board on a PC . 64

5.1.1 General Architecture . 64

5.1.2 Example Application: Extensible IP Forwarding 66

5.1.3 Example Application: Pastry 68

5.2 Plug Board on a Network Processor 71

5.3 Scenarios . 75

5.3.1 User Space and Kernel Space 75

5.3.2 User Space, Kernel Space, and a Network Processor 76

5.3.3 User’s Desktop and an Overlay Server 77

5.3.4 User’s Desktop and an ISP’s Overlay Server 78

6 Conclusions 80

6.1 Research Contribution . 80

6.2 Future Work . 82

A Code Listings 83

A.1 IP-- Forwarding . 83

A.2 Chord . 87

A.2.1 Algorithm . 88

A.2.2 Implementation . 91

A.3 Pastry . 95

A.4 TCP Splicing . 97

A.5 Wavelet Dropper . 101

A.6 ACK Monitor . 103

A.7 SYN Monitor . 105

A.8 Port Filter . 105

1

Chapter 1

Introduction

Computer networks have become ubiquitous over the last forty years; they are

found in businesses, schools, and homes. A computer network is predominantly

viewed as a communications medium. However, it would be more accurate to say

that a computer network is a medium that provides communications services to

applications. The Internet, for example, is a network of computer networks that

provides a packet-delivery service.

Recently, there has been an increased interest in expanding the set of services

that the Internet provides. However, as a given networking technology becomes en-

trenched, it becomes exceedingly difficult to modify. Most new services are therefore

implemented in applications that create a virtual network overlaid on the Internet.

This dissertation explores how the inherent structure of network services can be

leveraged to make services more flexible, easier to develop, and more efficient in

their use of network resources.

This chapter introduces the context of this disseratation’s thesis. Section 1.1 de-

scribes the Internet’s current services and some of the new services recently propsed.

Section 1.2 then discusses methods for deploying new functionality in the Internet.

Next, Section 1.3 explains the classic distinction between control and data and its

importance in maintaining high performance in the Internet. Finally, Section 1.4

presents the thesis that the distinction between control and data can be generalized

to apply to these new network services and their deployment methods.

1.1. NETWORK SERVICES 2

1.1 Network Services

The basic service that the Internet provides to applications is point-to-point, best-

effort, packet delivery. The Internet is a network of networks, with each network

possibly further divided into subnetworks, or subnets. To contact a remote host on

the Internet, an application executing on the local host specifies the remote host’s

address as the destination for the data it is transmitting. The local host’s operating

system breaks the data into individual packets and places a header on each packet.

The Internet attempts to deliver each packet to the remote host. If the two hosts are

on the same subnet, the packet is transmitted over the shared network. However,

the remote host may be on a different network than the local host. To contact a

remote host on a different network, the local host transmits the packet to a host

on the local subnet that acts as a gateway, or router, connecting networks together.

The packet is forwarded through a sequence of routers—the forwarding path—until

it reaches the subnet of the remote host, where it is delivered directly to that host.

It is these routers that implement the Internet’s provided service.

When a packet arrives at a router, the router examines the destination address

in the packet’s IP header and chooses a single destination for the packet. This

destination can be either the desired remote host or the next router in the sequence,

the next hop. The router then modifies two fields in the packet’s header. First, it

decrements the time-to-live (TTL) field, a counter that limits the number of hops

through which the packet should be forwarded. Second, it recomputes the checksum

that is used to detect corruption of the packet’s contents. It then sends the packet

to the selected destination. Throughout the process, the router makes an effort to

deliver the packet, but it makes no guarantees. If the router cannot choose a next

hop, it will drop the packet. If the router decrements the value of the TTL field to

0, it will drop the packet. If the router runs out of space to store packets, it will

drop the packet.

Several novel network services have been proposed in the past few years. The

new services can be categorized into four types by the operations that each performs

on a packet. First, there are services that offer new forwarding algorithms, such

as broadcast or multicast. Second, there are services that monitor the state of the

network and filter the traffic instead of blindly forwarding and forgetting it. Third,

1.1. NETWORK SERVICES 3

there are services that mark packets with application-specific tags, modifying more

of the packet’s header than just the TTL and checksum. Last, there are some

services that manipulate a packet’s payload, delivering a changed packet to its

destination. Some of these services are completely new while others are merely

slight modifications to the existing service.

1.1.1 Forwarding Algorithms

One method of extending the service that the Internet provides is to use a new

forwarding algorithm. The forwarding algorithm that a router uses is fairly simple.

It chooses a single destination for a packet based on the subnet to which the packet’s

destination address belongs. This subsection gives some examples of new forwarding

behaviors that have been proposed to supplement the Internet’s service. The first

two examples describe how a router can deliver a packet to more than one host.

The next two change how the router chooses a next hop for the packet. The last

example shows how applications can define their own, completely new, forwarding

algorithms.

Sometimes a point-to-point service is not enough. Some applications require

contacting many hosts throughout the Internet or all the hosts on the same network.

If each of these destinations were to be contacted individually with the same data,

the network would carry multiple copies of the packet on the same link, wasting

network capacity. The two subcases of this problem, broadcast and multicast, have

been addressed in slightly different ways.

The advantage of being able to broadcast an IP packet to an entire subnet was

recognized early in the design of the Internet. The broadcast scheme was designed

to work well within the Internet’s basic, point-to-point service and was deployed

concurrently with it. The Internet’s standard forwarding algorithm can broadcast

a packet to a particular subnet by forwarding the packet in the usual way until that

subnet’s router. If that subnet’s network supports a broadcasting mechanism, the

router uses that mechanism to deliver the packet to all the hosts on the subnet.

Otherwise, that router and all the routers in that subnet must transmit a single

copy of the data along each of the links that would have been used in transmitting

1.1. NETWORK SERVICES 4

the packet to each host on the subnet in the point-to-point scheme. In this way,

each host receives a copy of the data, and network use is minimized.

The second subcase, multicast, is more complicated. As defined in the Internet

Standard [16], “IP multicasting is the transmission of an IP datagram to a ‘host

group’, a set of zero or more hosts identified by a single IP destination address.”

These hosts need not all be on the same network, so multicast routers cannot use

the same forwarding algorithm as the broadcast scheme. Instead, routers forward

a packet with a multicast address only through those links that lead to hosts who

have subscribed to the group. To determine where the appropriate hosts are, routers

and hosts use the Internet Group Messaging Protocol (IGMP) to join a multicast

group. This process of joining a group lets the router record which interfaces should

be used for the multicast address. Once the router knows the appropriate interfaces

to use, it can forward multicast packets through all the appropriate links.

The previous examples extend IP’s forwarding algorithm by allowing a single

address to refer to many destinations. Another, much newer and mostly undeployed,

variant of the Internet’s point-to-point service allows a single address to refer not

to a specific host, but to any one of a set of hosts. An anycast [39] address is an

IP address that is shared by a group of hosts. When a client sends a packet to an

anycast address, routers are free to forward the packet to any member of the group

using the standard IP forwarding algorithm. This freedom allows sites to distribute

services more easily and to mirror data transparently.

In another example of a service that decouples an IP address from a specific

physical subnet, mobile IP [40] defines how an Internet host can physically move

from network to network yet still maintain the illusion that it is always connected to

the same IP address. One scheme for supporting mobile IP requires a “home agent”

to receive all traffic bound for the mobile host and to forward it to the mobile host’s

current physical location. In essence, the home agent is a router that forwards IP

packets using an algorithm different from the standard IP forwarding algorithm.

Instead of modifying the IP forwarding algorithm at the routers, applications

can also define new forwarding algorithms that operate at the hosts. Proxies are

application-specific gateways that seem to provide a service, but actually only me-

diate the service from a client to a server. Using a proxy enables certain benefits for

the user and administrator. For example, Web proxies can cache responses to page

1.1. NETWORK SERVICES 5

requests and serve subsequent requests locally, thereby reducing network use and

response times. To use a proxy, the client connects to the proxy and requests access

to a service. The proxy then contacts the server that provides the service on behalf

of the application. Stated somewhat differently, the proxy forwards the request for

service to the proper server using an application-specific forwarding algorithm.

Peer-to-peer applications are also examples of application-level services that de-

fine new forwarding functions. Peer-to-peer applications typically create an appli-

cation-level network in which each peer forwards other users’ requests based on an

application-specific protocol. The protocol can be as simple as sending a copy of

the message to all known peers or as complicated as computing a prefix matching

algorithm to find the next hop. Peer-to-peer applications and their networks are

discussed in more detail in Chapter 4.

1.1.2 Network Monitoring and Filtering

Routers are in a unique position to provide information about the instantaneous

status of the network from an internal perspective. While an individual router

cannot know the state of the entire network, or even of the network in the immediate

neighborhood, it alone has full knowledge of the traffic that flows through it. A

router can examine this traffic and, to some extent, control it to enhance the security

of the network and maintain its availability.

A router’s position in the network makes it the perfect platform from which

to gather data on the nature of the network traffic. The Internet Architecture

Board recommends that all routers keep track of certain statistics about the traffic

they forward [34]. This Management Information Base (MIB) contains basic traffic

data like the number of forwarded packets and the number of errors encountered.

More detailed traffic statistics, like the relative frequency of data from a particular

application or from a particular set of hosts, can allow network administrators to

engineer the network for its traffic.

Routers can also use their view of the network to react to abnormal network

conditions. For example, intrusion detection systems (IDS) for networks can dis-

cover whether a network has been compromised by an attacker [37]. By studying

the pattern of packets flowing through a specific point in the network, an IDS can

1.1. NETWORK SERVICES 6

identify hosts that are behaving suspiciously and can either notify a system security

officer or isolate traffic coming from the affected host.

A router’s ability to forward, or selectively not forward, packets makes it an ideal

candidate for acting as a firewall, permitting only certain traffic into a network. By

limiting the number and type of packets that can access the hosts on the network,

firewalls can mitigate the risk of unauthorized access to the protected hosts. They

therefore provide a safer packet delivery service.

Routers can also drop packets to maintain the network’s availability to more

users. One method for avoiding congestion in a network is to randomly drop pack-

ets even when the router is not congested. This method, called Random Early

Detection (RED) [22], and its variants [6, 7, 13] force the hosts transmitting data

through the router to behave as if the router is congested, thereby reducing the

amount of actual congestion at the router.

In the face of actual network congestion that requires packets to be dropped,

a router can either drop random packets from a stream or it can preferentially

drop less important ones. Application-specific filters can identify how important a

particular packet is to the data stream and instruct the router to preferentially drop

less important packets, allowing the application’s performance to degrade gracefully.

One example of this technique is encoding video streams using a wavelet encoding

scheme [20]. This scheme encodes a frame in many layers, each consisting of data

at a particular “frequency.” Higher frequency is correlated with finer details in an

image. A congested router could drop packets containing higher-frequency, detailed

features of the image instead of those containing lower-frequency, base features.

This approach allows a large number of packets from the video stream to be dropped

while maintaining a usable video stream.

Routers can also control the order in which they forward packets. Instead of

forwarding all packets in the order in which they arrived, routers can give preference

to traffic coming to or from particular hosts, enhancing the nominally equal, best-

effort delivery that characterizes Internet traffic. Specifically, flows that have been

registered for specific rates using the Resource Reservation Protocol (RSVP) [66]

could be guaranteed a particular bit rate or loss rate at the expense of other traffic.

1.1. NETWORK SERVICES 7

1.1.3 Packet Tagging

While many methods of monitoring network status require reporting the results to a

managing entity in a special, dedicated stream, routers can also communicate using

an in-band mechanism—packet tagging. Packet tagging refers to adding a small

message, or tag, to a packet’s header as it is forwarded through the router. The tag

can be as small as a single bit, but may be larger. Other routers and the receiving

hosts can use this message to alter their sending behavior or to determine the state

of the network. As the next two examples show, tagging packets as they enter an

administrative domain allows network administrators to add data that has meaning

only within that domain.

As noted above, one of the limitations of the Internet’s traditional best-effort

service is that all packets are treated equally. The Differentiated Services (Diff-

Serv) [38] architecture provides a method for providing different qualities of service

to packets. As defined by the IETF Differentiated Services Working Group, DiffServ

provides up to 64 different service levels or “per-hop behaviors.” For each packet,

the value of the type-of-service (TOS) field in the packet’s header specifies the per-

hop behavior that a router must give it. Given the importance of the value of this

field, network administrators must guarantee that the value is appropriate to the

packet. Therefore, routers at the boundaries of administrative domains decide the

appropriate service level for the packet and tag the packet with the corresponding

type of service.

Multiprotocol Label Switching (MPLS) [14] provides a standard way to add

a label to an IP packet. Once a Label Switching Router tags a packet, it can

be forwarded by other routers in the same administrative domain using a simple

lookup on the fixed size label instead of IP’s longest prefix matching algorithm.

This method is an arguably faster forwarding algorithm that eases administration

when that packet’s destination is not in the local administrative domain.

In the previous examples, the tags only had reliable meaning within a particular

administrative domain. The Internet’s Transport Control Protocol (TCP) [2] re-

quires that a host reduce the rate at which it sends when it detects that the network

is congested. The traditional method of discovering congestion is to assume that

a packet will be acknowledged within a particular amount of time and to conclude

1.1. NETWORK SERVICES 8

that the network is congested if it is not. Explicit Congestion Notification (ECN)

allows routers to tag packets explicitly to warn the sender and receiver that the

network is congested even if packets have not yet been lost. As a result, the sender

can reduce its sending rate without having to retransmit data. Since the entire path

between sender and receiver is congested even if only part of it is congested, the

ECN tag must cross administrative boundaries.

ECN provides a coarse-grained measure for congestion at a particular router—

the router is either congested or it is not. To provide more fine-grained congestion-

avoidance decisions, the eXplicit Congestion Protocol (XCP) [30] allows routers

to tag the packet with a measure of how much congestion it experienced during

forwarding. Applications can then reduce their sending rate in proportion to the

congestion at the routers, thereby reducing congestion in the network while main-

taining a high bit rate.

Packet tags can also reveal the forwarding history of a packet. One problem in

defending against denial of service (DoS) attacks against Internet hosts is finding

the source of the attacking traffic. While it is relatively simple to find the path

a packet would take to reach a destination, it is not easy to trace a packet back

to its source in the same way. Savage et al. [52] proposed a traceback technique

that relies on routers randomly tagging packets with an identifier. Given enough

packets, this identifier can be used at the receiver to recreate the packets’ path with

high probability. Once the packet’s source is found it is possible to block the attack

at a point before it affects the targeted host.

1.1.4 Payload Manipulation

While tagging packets with single bits or small values suffices for many tasks, some

new services alter a packet’s contents more dramatically. A router may rewrite any

part of a packet, including its header and any or all of its payload. These alterations

can be used to disguise a packet’s origin or to convert the data to a more efficient

form.

The current version of the Internet Protocol, version 4, uses 32-bit addresses.

While this means that there are as many as 4 billion addresses for hosts, the way that

IP addresses have been allocated has led to a perceived shortage of IP addresses,

1.1. NETWORK SERVICES 9

especially for the use of small networks. Many home and small office networks there-

fore use addresses in the range set aside for private use on networks not connected to

the rest of the Internet. A technique called Network Address Translation (NAT) [57]

provides general Internet connectivity to hosts on a private network.

Network address translation allows users to maintain the illusion that all the

hosts on the private network are a single host on the public Internet. To do this

the router connecting the private network to the public Internet must alter the

address and checksum fields in the IP, UDP, and TCP headers on incoming and

outgoing packets. This manipulation is sufficient for applications that do not make

assumptions about network addressing. However some applications, like the File

Transfer Protocol (FTP) [1], specify TCP port numbers in their communication.

The NAT router must support these applications directly in order for them to

operate properly.

A similar type of content rewriting is used in content distribution networks [3].

A content distribution network is a set of hosts on the Internet that cache popular

data. Companies publishing content on the Internet, typically using the World

Wide Web, can improve the observed response time of their servers by redirecting

requests to a cache near the user. One technique for redirecting a user to a cache

is to rewrite the Uniform Resource Identifiers (URI) recorded in the packet to refer

to cached copies of the data. Using this technique at a Web proxy is a powerful

method of increasing performance while bounding dedicated resources.

Some applications derive their benefit by rewriting the entire contents of the

packet. Consider a video stream that is being transmitted over the Internet to a

personal digital assistant (PDA) connected by a wireless link. If the video stream

was encoded for playback at a PC, some of the video stream will be wasted trans-

mitting useless data since the PDA’s video display capabilities are clearly inferior

to those available at a PC. If a router along the path decodes the video stream and

then reencodes it for the PDA, it may decrease network use with no adverse effect

on the user.

1.2. DEPLOYING NOVEL ROUTER FUNCTIONALITY 10

1.2 Deploying Novel Router Functionality

Deploying a new network service can be difficult. The primary problem is that since

the programming interfaces for most routers are closed, one must wait until a router

vendor implements a new service before it is available. A considerable amount of

time can elapse from when a new service is proposed until a vendor is convinced that

it should be supported, then develops, tests, and releases it. Services that require

universal router support can only be deployed after all, or most, routers have been

replaced or upgraded. Further, since new features are disabled by default, a service

may not be deployable until the new feature is widely accepted. However, if the

service is not available, there is not likely to be much demand for the new feature.

This vicious cycle has doomed many proposed features over the years.

The long time-to-market of new services prohibits researchers from experiment-

ing with new services to discover unforeseen weaknesses and to develop solutions.

Over the years, researchers, including those in the industrial research community,

have developed a series of approaches to this problem. However, as these solutions

are themselves subjects of active research, they too have yet to see widespread de-

ployment. Of the three approaches that presented here, only overlay networks are

becoming accepted as a solution to the problem.

1.2.1 Programmable Networks

The first approach that enables administrators to inject new code into routers and

switches is standardizing a programming interface to the routers, thereby creating

a network that is inherently programmable. Routers in a programmable network

provide a programming interface for operations such as adding and deleting routes,

changing queue sizes, and reading statistic-gathering counters. A standard interface

allows users to implement a new feature for the routers that would work on all

compliant hardware without waiting for router vendors to implement that feature.

The Nortel Networks Openet [33] project is one example of a standard, pro-

grammable layer available for deployment on Nortel’s Accelar routers. Their ap-

proach takes into consideration that routers have two types of processing hardware:

general purpose processors and application-specific integrated circuits (ASIC). The

ASIC permits forwarding at high bit rates but is not programmable. The general

1.2. DEPLOYING NOVEL ROUTER FUNCTIONALITY 11

purpose processor is programmable but cannot forward packets as quickly. Openet

allows an administrator to program the router’s general purpose processor with

any number of Oplets, Java objects that implement some new functionality. These

Oplets make use of the Oplet Runtime Environment and associated services to con-

trol the router. To maintain a high forwarding rate for packets that do not require

additional processing, the router hardware provides programmable filters that trap

certain packets but forward the remaining packets through the ASICs.

Intel’s Phoenix [65] architecture for programmable networks provides a method

of distributing code to network elements. Phoenix defines a Java-based proactive

environment that provides a programming interface to the device for use by proac-

tive services and mobile agents. Proactive services are Java objects that are resident

in the element and export an interface for use by mobile agents. Mobile agents are

Java objects that contain a script to be executed at each point along the agent’s

itinerary. Each script can program any of the network element’s devices through

a standard interface. While the interfaces are defined in Java, the environment,

services and device interfaces may be implemented in native code to enhance per-

formance.

1.2.2 Active Networks

Active Networks define a more flexible approach for distributing new code in a

network. In a programmable network, an administrator explicitly loads the code

into the network or network element under their control. In an active network the

packet is responsible for identifying the code that forwards it. Two of the major

issues in deploying active networks are code distribution and safety. The solution

to the latter issue is typically related to the solution of the former, as the next few

examples illustrate.

The Switchware architecture [5] uses an interpreter to solve both issues. Switch-

ware’s active messages, or switchlets, contain byte codes in the Caml [63] language.

The Caml runtime environment, which is resident on each active element, interprets

the byte codes and protects the host from certain security violations by enforcing

strong typing, managing memory automatically, and restricting suspicious activ-

ity like modifying files. While most code can be loaded from switchlets, certain

1.2. DEPLOYING NOVEL ROUTER FUNCTIONALITY 12

security-sensitive modules must be loaded from the local disk. A problem with this

approach is that in order to load a particular module, the interpreter must be con-

figured to load that module. Boot-strapping the interpreter and network service on

a node under different administrative control is challenging.

The Packet Language for Active Networks (PLAN) [25] takes a slightly differ-

ent approach to security. Instead of merely relying on the runtime environment

and limiting the supporting interfaces, PLAN restricts the language in which pro-

grams can be created. These restrictions, like the requirement that all programs

terminate, provide some protection against mistakes and unbounded resource con-

sumption. However, because of these restrictions, PLAN is primarily intended to

act as a glue between services resident on the active node. Installing those ser-

vices requires intervention by the node’s administrator and therefore detracts from

PLAN’s flexibility.

ANTS [64], an active network toolkit from MIT, also relies on interpreter based

protection. In this case the language is Java, but the idea that the interpreter

protects the host is mostly the same. ANTS solves the code distribution problem

by marking each ANTS packet, or capsule, with a hash of the Java object that

implements the necessary forwarding code. Each ANTS router can then download

the forwarding function from the upstream router that handed it the capsule. Using

extensive caching, this approach makes sure that the correct forwarding code is

always available for the capsule “just-in-time.”

By using one of these architectures, a new service can be deployed to routers em-

bedded in the flow of packets that requires it and without requiring special privileges

on the executing router. However, active networks have not been widely deployed

due to some unresolved technical issues and a lack of strong demand. The freedom

that active networks give to any user to execute code on any router needs to be

balanced by the power of an administrator to terminate ill-behaved processes. Part

of that oversight ability that many administrators want is the ability to control who

can load code into their routers. To date, no system has been developed that could

support the right mix of permissive and restrictive policies to make an active router

secure as well as usefully flexible. Also, no one has yet developed a “killer app,” a

popular application that required active routers, so none are widely available. This

is an example of the classic chicken-and-egg problem. There are currently no active

1.2. DEPLOYING NOVEL ROUTER FUNCTIONALITY 13

routers, so there are no popular active applications. Since there are no popular

active applications, there is no demand for active routers.

1.2.3 Overlay Networks

Overlay networks are another solution for deploying and testing new network ser-

vices that circumvent the limitations of the previous approaches. Overlay networks

are virtual networks that impose a new topology over the underlying network, or

underlay. They may be administered by a central authority or be completely de-

centralized. They may provide general connectivity or an ad hoc service.

Within an overlay, each host’s view of the network is restricted to include only

other participating hosts. An overlay typically defines an address space in which it

provides its own connectivity. Adjoining hosts in the overlay may be many network

hops away from each other in the underlay, while hosts on the same subnet in the

underlay may not be directly connected in the overlay. To overlay a network on the

Internet, adjoining hosts on the overlay encapsulate messages between one another

in standard Internet protocols. Using these tunnels, the overlay can make use of

the underlay’s connectivity without being entirely subjected to it.

To join an overlay network, a host must execute the software that implements the

network’s protocols. As with programmable routers and active networks, distribut-

ing this code properly is a challenge. In a centrally administered overlay network

with dedicated hosts, it is natural for the central authority to push the proper code

and connectivity information to each host. This approach provides users with a

managed set of hosts on which to execute the overlay as well as a central means of

administering all the nodes on the overlay.

The X-Bone [60] project provides a set of hosts for use in creating overlay net-

works. Using a simple Web interface, a user can create an overlay with the requested

number of nodes in one of a few topologies. Hosts on X-Bone overlays communicate

using IP within IP tunnels allowing the users to use the standard network tools to

administer the overlay. X-Bone also provides an experimental capability to push

software to the participating hosts.

PlanetLab [41] also allows its users to create overlays from a subset of a large

set of distributed hosts. Within these physical overlays, PlanetLab users can create

1.3. CONTROL AND DATA 14

virtual overlays, or slices, using only part of the resources of the physical overlay.

Again, users use a Web interface to set up a slice by choosing the number and types

of hosts to participate in the overlay. PlanetLab does not constrain the types of

overlays its users can run. While PlanetLab also allows users to push software to

their slice, it allows each slice to customize its own method of distributing programs.

Overlays that do not use hosts dedicated to running overlays are less likely to

be centrally managed. Decentralized overlays are typically a part of peer-to-peer

networks. These overlays form when users who wish to become part of a service

download the software for this overlay and execute the user-level program. The soft-

ware does not typically require privileged access to the overlay host and is therefore

more likely to tunnel their traffic using the User Datagram Protocol (UDP) [42]

than directly over IP. The advantage of this approach is that overlays can grow

very quickly—a few clicks of the mouse can increase the size of the overlay and its

user base.

1.3 Control and Data

The Internet’s packet delivery is a classical example of a service that distinguishes

between two classes of network traffic: control messages and data messages. Each

Internet router periodically shares its view of the structure of the network with

its peers in order to determine which of them is the next closest to a particular

destination address. The exchange, an explicit communication between two routers,

is conducted in a standardized way defined by a routing protocol, like the Border

Gateway Protocol (BGP) [48] or Open Shortest Path First (OSPF) [36]. Based on

the information discovered through the exchange of routing information, each router

modifies the tables it uses to forward packets. From a router’s point of view there

are two classes of messages on the Internet: control packets that contain routing

information, and data packets that contain other hosts’ communications.

Router designers have leveraged the distinction between control and data to

make routers more flexible and faster. In the common case, forwarding packets

is fairly simple since it only requires a table lookup and a few modifications to

the packet. Routing protocols are conceptually difficult to implement and are more

computationally expensive. However, routing messages are relatively rare compared

1.4. THESIS STATEMENT 15

to the many packets that a router may need to forward. Since forwarding and rout-

ing, that is control and data, are separable, data forwarding can be optimized and

implemented in hardware while routing can be implemented in software. This bal-

ance allows routers to achieve maximum forwarding performance while maintaining

the flexibility to use different routing protocols.

The services described in Section 1.1 share the characteristic that they have

separable control and data components. However, many services, especially those

created for overlay networks, ignore this well-established principle of separating

control and data. The designers of these overlays view the services they provide as

applications, without exploiting the fact that they are creating a new network. This

viewpoint leads them to combine control information, like routing and application-

specific searching, with data to be forwarded. This conflation of concerns limits

the services’ flexibility and performance. A major contribution of this dissertation

is a framework for constructing services that recognize and exploit the distinction

between control and data.

1.4 Thesis Statement

It seems likely that in the foreseeable future new network services will be developed

using overlay networks. In designing and implementing these services it is important

to remember the lessons learned from experience with the Internet. The develop-

ment of hardware routers demonstrates that control and data can and should be

distinct, so their differences can be leveraged separately. The success of the Internet

services like e-mail and the World Wide Web implies that a single network can and

should be usable for more than one application. History has shown that services

are likely to be extended, even if just slightly. Applying these lessons to creating

overlay networks and other network services can be very challenging.

In light of these observations, this dissertation makes three contributions. First,

it shows how network services, especially overlay networks and their applications,

can be decomposed into control and data planes and further decomposed into general

and application-specific parts. Second, it proposes an architecture, called Plug

Board, that provides a suitable framework for building network services that make

1.5. ORGANIZATION 16

use of this decomposition. Third, it describes the potential benefits reaped by a

network service written for Plug Board.

In the proposed architecture, a network service is comprised of a control com-

ponent and a data component that communicate via a well-defined interface. To

encourage service designers to use it, Plug Board provides two mechanisms for devel-

oping new network services: modularity and extensibility. A modular construction

permits replacement of one service by another. To allow minor modifications and

extensions, the data component of each service is extensible, meaning that it pro-

vides a hook to which data components from other services can be attached.

There are several benefits to writing network services in this way. Modular

services introduce the usual software engineering benefits of code reuse. Also, well-

defined interfaces allow the designer to place the two components in different com-

putation domains, potentially on different processors. Finally, the decomposition

and placement in separate domains allows optimization in the performance-critical

data component.

1.5 Organization

The next chapter surveys the existing work and analyzes the structure of software-

based, extensible routers. The analysis provides the terminology that will be used

to describe network services and the proposed supporting architecture. Chapter 3

discusses the proposed architecture, the Plug Board, in detail. Chapter 4 uses the

terminology and architecture discussed in the preceding chapters to show how to

decompose a network service into four components. Finally, Chapter 5 describes

two implementations of Plug Board and describes the benefits made possible by the

decomposition.

17

Chapter 2

Background

This chapter presents the terminology needed to describe a router. This terminol-

ogy provides a framework for reasoning about the nature and operation of routers

in an abstract way. Later chapters extend this terminology and use it to describe

a new extensible router architecture, called Plug Board. This chapter begins by

motivating the need for extensible software routers. Section 2.2 derives descriptive

terminology for routers from first principles. Section 2.3 relates the terminology to

current work by using it to describe three software-based, extensible-router archi-

tectures: Scout [35], Click [32], and Router Plugins [15]. This chapter concludes by

highlighting, for each of the three systems, the strengths and weaknesses that the

description exposes. This serves to motivate Plug Board’s design as presented in

the next chapter.

2.1 Extensible Software Routers

Routers connect networks together by forwarding packets from one network to an-

other. Most routers in the Internet today use special-purpose hardware that for-

wards packets at a high rate. However, the inflexibility of hardware impedes adding

new functionality. Researchers, therefore, turn to software-based routers to experi-

ment with new algorithms, protocols, and services. The effort required to create a

stable, operational router is tremendous. Similarly, modifying an existing software-

based router is fraught with difficulty.

2.2. TERMINOLOGY 18

The operating system community has had to deal with a similar problem. Mod-

ifying an operating system to support a new feature can be a challenging process

since changes in one part of the system may have unexpected consequences on a

different part altogether. Similarly, it is impractical to create a new operating sys-

tem just to test a single feature. The solution is to create an operating system that

is designed to be modified and extended. Extensible operating systems [11, 19, 35]

allow researchers to test new ideas on a stable operating system that is easy to

modify.

Using extensible operating systems as a template, and motivated by the demand

for routers with new capabilities, researchers have been building extensible routers

that aid in the design and development of network protocols and services. Similar to

extensible operating systems, extensible software-based routers have architectures

designed to ease the addition of new services into an existing router. Extensible

routers provide a platform for implementing programmable, active, and overlay

networks on a software router.

When considering different extensible router systems in the literature, it is ev-

ident that the designers addressed a common set of issues: what functions should

routers execute on packets, how to specify the function for a particular packet flow,

how to identify a packet as part of a flow, and so on. Different architectures address

these issues in different ways. It is instructive to compare these systems. To do so

in a meaningful way, it is useful to describe each in a way that highlights significant

differences and hides less important ones.

2.2 Terminology

This section describes extensible routers based on intuitive assumptions of how

routers in general, and extensible routers in particular, ought to work. The termi-

nology is derived by modeling the operation of an extensible router as a sequence of

connected software components and describing each component. It is important to

note that there are many details that could be added to the description to make it

more precise. However, only those details needed to make the terminology usefully

specific are included.

2.2. TERMINOLOGY 19

Output
Port

Input
Port

Output
Port

Output
Port

Figure 2.1: A simple, best effort IP router.

2.2.1 Components

In its simplest form, a router forwards packets from one of its input ports to one

of its output ports. This process involves reading the packet from an input port,

examining it to decide whether and whither to forward it, and writing the packet

to an output port. Because packets from multiple input ports may contend for

a common output port, packets are queued at the output port. The following

description assumes that all queues are serviced in first-in, first-out (FIFO) order.

In this simple scenario, the router’s primary task is to choose the packet’s output

port based on its destination address—a process called classification. To reflect

this behavior, the first component of the model is a classifier, which dequeues a

packet from a single input queue and places it on zero, one, or some subset of the

available output queues. The classifier places the packet on no queues if it elects

not to forward it (e.g., to implement a filter); on one queue in the common, single-

destination forwarding case; and on more than one queue to implement multicast

or broadcast. Figure 2.1 shows a simple configuration of a router with a classifier,

denoted by a circle, associated with a single input port. In general, a classifier is

bound to each input port.

While it is possible to associate a single FIFO queue with each output port, such

a configuration is not general enough to describe complicated queuing strategies de-

signed for preserving the quality of service guaranteed to a flow. In a router that

allows certain packets to receive a different level of service than others—e.g., lower

latency, a higher bit-rate, or more capacity—packets are not necessarily retrans-

mitted in the same order in which they arrive. To allow modeling more complex

types of queuing behavior, the model includes a second component that abstracts a

2.2. TERMINOLOGY 20

Figure 2.2: A packet scheduler.

router’s queuing discipline. The scheduler can then be reasoned about as a separate

component of the system. In this model, a scheduler, depicted in Figure 2.2, choses

a packet from one of its input queues and places it on its single output queue.

Simply connecting a set of classifiers (one per input port) to a set of schedulers

(one per output port) is sufficient to model a bridge or an Ethernet switch—network

elements that do no processing on the packet beyond classification. A router is dis-

tinguished in that it modifies the packet in some well-defined way; we say it applies a

forwarding function to the packet. A router may support more than one forwarding

function. For example, most commercial routers have at least two forwarding func-

tions: one that processes IP packets with options and one that handles option-free

packets. Extensible routers extend this practice by allowing arbitrary processing.

Thus, the last component in the model, a forwarder, encapsulates forwarding func-

tions.

A forwarder removes at most one packet from its input queue and places one

packet on its single output queue. The packet placed on the output queue need not

be identical to that removed from the input queue, although in general most of the

contents will be similar. Between reading and writing the packet, a forwarder may

engage in any amount of arbitrary computation.

Forwarders implement a wide range of functionality. For example, the standard

IP forwarder decrements the TTL field, recomputes the checksum, and replaces

the source and destination addresses in the link-layer header. However, as already

noted, routers are not limited to this base case. Applications like those described

in Chapter 1 result in far more complex forwarders. For example, a proxy may

modify the IP and TCP headers of a packet to reroute it to a different host, or the

2.2. TERMINOLOGY 21

proxy may rewrite the contents of the packet to request nearby cached versions of

data. Several processing steps may also be composed to produce new forwarding

behaviors. For example, a proxy forwarder that rewrites TCP headers may then

pass the new packet to an IP forwarder.

A rich combination of forwarders implies that classification may also need to

be complex. For example, a best-effort IP router connected via Ethernet uses the

Ethernet type field to determine the correct processing for the packet and prefix

matching of the IP destination address to choose the next hop for the packet. For

many applications, classification can be based on both IP addresses and TCP ports.

Other classifiers may require reading deep in the packet. For instance, a router being

used as a front end to a cluster of load-balanced servers can read the HTTP [21]

GET command from a packet and redirect it to an idle server. The classifier,

therefore, must choose not just an output port, but also the appropriate sequence

of forwarders.

Note that while many forwarders implement data plane functionality, others are

part of the control plane. Control forwarders manage other forwarders in the router.

They add and remove forwarders from the system, and they affect other forwarders

by accessing and modifying state variables associated with them. For example, a

control forwarder implementing the RSVP protocol may install a new forwarder with

a particular resource reservation, or it may remove one that is no longer needed. As

another example, a control forwarder that processes a routing protocol can install

a new forwarder in response to the discovery of a new route, or it may add entries

in the classifier to activate existing forwarders for a new class of packets. Control

forwarders may also interact with schedulers by changing scheduling parameters.

Control forwarders superficially resemble data forwarders in that both have an

input and an output queue, although the control forwarder’s output queue may or

may not be serviced by another component. The primary difference between control

and data forwarders is in the interpretation of the final destination of the arriving

packet. Control forwarders process packets that identify the local router as the

final destination. Data forwarders process packets whose destination address is not

interpreted as belonging to the local router.

It must be noted that merely the fact that the destination address of the packet

is different than any of the router’s addresses is not sufficient to render that packet

2.2. TERMINOLOGY 22

Input
Port

Output
Port

Figure 2.3: Modeling an extensible router.

subject to “non-local” processing. A router or host may decide to divert to a local

process packets that would, based on their destination address, have been forwarded.

Similarly, a host may forward a packet addressed to itself after suitably changing

its headers. While these actions may violate some notions of network consistency,

masquerading as another host can usually be tolerated. However, in circumstances

where confidentiality is necessary, this ability could become problematic. In those

cases, a host masquerading as another one can be treated as an attacker by the

many mechanisms that exist to authenticate hosts.

Figure 2.3 shows a complete model of an extensible router. As mentioned above,

this model is under-specified; for example, it does not specify how deep queues can

be, whether other components can query a queue’s properties and contents, nor how

to model input and output devices. These and other similar details are not required

to describe the general operation of routers, so the model leaves them unstated.

Further, this figure shows only one possible combination of classifiers, forwarders,

and schedulers; other combinations are possible. For example, a forwarder may

modify packets then re-insert them in the classifier’s queue. Also, sequences of

forwarders can be linked together to create a complex forwarder, and a hierarchy of

classifiers can be constructed by linking the output of one classifier to the input of

another.

2.2.2 Extensibility

Describing the operation of a router in this way allows us to define extensibility.

Extending a router means changing one of the primitive components. The details

of how this “change” is accomplished are system-specific. From a platform-neutral

2.2. TERMINOLOGY 23

viewpoint, it can be said that an extensible router provides the framework and inter-

faces that make it possible to modify an existing component, replace one component

with another, or insert additional components.

An administrator can modify a component either by giving it a new set of

parameters or extending its functionality with new code fragments. A component

may offer a programming interface that allows the administrator to set values on

particular parameters used in its operation. For example, a classifier may export

an interface to allow the administrator to add a forwarding table entry or modify

a forwarding path’s resource reservation. The ability to add code fragments to a

component implies that it must have some externally visible structure that can be

exploited.

If a component in an extensible router does not provide the desired functionality

and cannot be made to simulate the desired functionality, it may be replaced. That

is, the router might offer an interface that would allow exchanging the old component

with a new one, one that does meet the new requirement. Consider an extensible

router with a round-robin scheduler at one of its output ports. Assume that this

scheduler has no externally visible substructure and no programmable interfaces. An

administrator wishing to have a different kind of queue management, like Weighted

Fair Queuing [17] or Deficit Round Robin [54], would simply replace the existing

scheduler with a new one.

The power of extensible routers is that they offer the possibility of many com-

ponents, operating in parallel, offering different types of behavior. To accomplish

this, the router must allow the administrator to add components. For example, to

add support for IP options to an extensible router that already has an IP forwarder

that does not support them, the administrator would add a new forwarder capa-

ble of processing IP packets with options. The administrator would then change

the classifier to choose the new forwarder for packets with IP options while leaving

packets without options for the original forwarder.

While any component can potentially be extended in any way, some extensions

are more common for particular components than others. An extensible router gen-

erally facilitates inserting additional forwarders. In contrast, classifiers and sched-

ulers are typically either replaced or modified to support some new behavior.

2.2. TERMINOLOGY 24

Input
Port

Output
Port

Output
Port

Output
Port

(a) Simple Classifiers.

Input
Port

Output
Port

Output
Port

Output
Port

(b) Simple Forwarders.

Figure 2.4: Two designs for a minimal IP router.

2.2.3 Engineering Tradeoffs

There is a range of possibilities for the power of the classifier and consequently the

specificity of the forwarder. For a function of given complexity, a simpler classifier

tends to require a more complicated, or general, forwarder. Conversely, a classifier

with the ability to resolve fine distinctions between two substantially similar for-

warders can drive a simpler forwarder to accomplish the same task. To illustrate this

point, consider the pair of IP routers shown in Figure 2.4. Both routers implement

the same minimal IP forwarding functionality. In the first design, Figure 2.4(a),

the classifier always chooses the same forwarder for any IP packet. This forwarder,

the IP forwarder, chooses the packet’s output port and directs the second classifier

to move the packet to that port. Another valid design would require as many IP

forwarders as there are output ports. In the second design, Figure 2.4(b), the clas-

sifier chooses the IP forwarder associated with the proper output port. Since they

need not choose an output port, each of these forwarders could be simpler than the

one in the previous design. Simplifying the forwarder complicates the classifier and

vice versa.

In general, any conditional that a forwarder may evaluate during packet process-

ing could be implemented in the classifier. When choosing how much processing to

put into classifiers and how much decision making to put into forwarders, there are

two possible extremes. One extreme is to declare that all branches are classification

and must be chosen before any processing is done on the packet; the other extreme

2.2. TERMINOLOGY 25

is to decide that only the decision that chooses an output port is defined as classi-

fication and that forwarders may have an arbitrary number of internal branches.

It is, of course, impractical to treat all branches in a router as the responsibility

of the classifier and to associate a single forwarder with each combination of branch

decisions. This strategy, followed naively, leads to a number of forwarders expo-

nential in the number of branches in the router—in the number of “if” statements.

However, in certain cases, most notably for IP packets that have no options set,

having a specially optimized function could increase performance at a reasonable

programming cost.

One good illustration of the choice is decrementing an IP packet’s time-to-live

(TTL) field. As part of forwarding an IP packet, a router must decrement a counter

called the time-to-live, which is stored in a header field of the packet. IP routers

must discard packets whose TTL decrements to 0. The packet could be processed

and dropped by the forwarder, but since packets to be forwarded that arrive with

a TTL of 1 will be dropped by the router, the classifier could decide to drop the

packet by selecting no output queue for it.

A similar choice surrounds the option of permitting classifiers to modify packets.

The description above implicitly describes the classifier as not modifying the packets

flowing through it. Since forwarders can modify packets, there does not seem to be

any reason to allow classifiers to do so as well. However, some computations are

simple and universal enough to be included in a classifier.

Choosing the complexity of forwarders can also impact the number of forwarders

that process a packet serially. An operation that is logically a single step but has

many components can be in one complex forwarder or split across many forwarders.

Again, a prime example is the simplest IP processing. As described above, even the

simplest IP processing involved three steps: decrementing the TTL, recomputing the

checksum, and changing the link-layer header. These steps can be in one forwarder,

or they can be split across three different forwarders.

In the end, it is the system designer or programmer who must choose the com-

ponent in which to place a specific block of code. On real systems, in which com-

promises must be made for efficient operation, a middle ground is usually chosen

for pragmatic reasons. In the choice between complex classification and complex

forwarding, one possible criterion is maximum computation time. Classifiers and

2.3. EXAMPLE SYSTEMS 26

schedulers must complete in a short, bounded time in order to receive or send

packets at the highest speed supported by the hardware. Therefore, any difficult

classification decision should be left for a forwarder. Another criterion might be

an architecture’s inherent extensibility: if it is difficult to replace or modify the

classifier at run time, then the function is best encapsulated in a forwarder.

2.3 Example Systems

This section describes three extensible routers using the terminology developed pre-

viously. The three systems—Scout, Click, and Router Plugins—were developed

independently. Scout, developed at University of Arizona and, later, at Princeton

University, was designed as a stand-alone operating system for network appliances

but is also available as a Linux kernel module. Click, developed at MIT, uses a ker-

nel module to replace the Linux kernel’s networking subsystem. The Router Plugins

architecture, developed by ETH Zürich, Washington University, and Ascom under

the Crossbow project, extends the networking subsystem of a kernel based on BSD

Unix to provide hooks for new forwarding functions.

2.3.1 Scout

Scout is a modular, communication-oriented operating system. Its central abstrac-

tion is the path: a linear flow of data that starts at a source device and ends at a

destination device. Paths are composed of stages, which are instances of modules.

Each Scout module implements a well understood protocol, such as IP or TCP. A

module may contribute stages to many paths, but each stage is unique to a single

path. The system creates paths on demand at run time. Scout’s infrastructure

provides tools to create, modify, schedule, and control paths.

In addition to providing stages to paths, each module also implements a clas-

sification function. The programmer defines this function based on the module’s

intended capabilities and operation. As part of path creation, each module places

a reference to the path being created in a private data structure that it can access

during classification. If the module cannot uniquely identify the path, the module

stores a reference to another module’s classification function that might be able to

2.3. EXAMPLE SYSTEMS 27

Path Stage

Output
Port

Input
Port

Figure 2.5: Modeling Scout: Paths are forwarders. (Queues elided for readability.)

resolve the ambiguity and find a path for the incoming packet. Scout’s hierarchical,

extensible, packet classifier queries each module for a partial decision based on the

packet, then recurs to the next module. The recursion continues until either a path

is selected or it is determined that the packet belongs to no path.

Once a path has been selected, the packet is placed on that path’s input queue,

and the path is scheduled to run. When Scout’s thread scheduler decides that the

path’s thread is ready to execute, the thread dequeues the packet and hands it to

the first stage in the path. This stage processes the packet and invokes the next

stage where the process repeats. The stages process the packet in sequence, with

the last stage placing the packet on an output queue. Eventually, the scheduler

selects the packet from this queue and transmits it.

Figure 2.5 is a pictorial representation of Scout in terms of classifiers, schedulers,

and forwarders. For each input port, Scout has one classifier with an internal hier-

archical structure. For each output port, Scout has one replaceable scheduler. Each

of Scout’s paths implements a forwarder. Since each path is composed of stages,

each stage could be modeled as a separate forwarder. However, equating paths and

forwarders is more appropriate for two reasons. First, paths are distinct entities in

their own right; they are not just collections of stages. Second, identifying paths

with forwarders captures the important properties of Scout and allows Figure 2.5

to parallel Figure 2.3, the canonical representation of an extensible router.

2.3.2 Click

Like Scout, Click is a modular architecture for building routers. Its design is based

on composing many simple elements to produce a system that implements the

2.3. EXAMPLE SYSTEMS 28

Output
Port

Output
Port

Output
Port

Input
Port

Input
Port

Input
Port

Figure 2.6: Modeling a Click element. (Some queues elided for readability.)

desired behavior. Each element may have multiple ports to connect it to other

elements. Input and output ports may be either push-type (through which a packet

must be sent) or pull -type (from which a packet may be requested). Pull-type and

push-type output ports can connect only to pull-type and push-type input ports,

respectively. Packets may be stored only in a queue, an element that has a push-type

input port and a pull-type output port.

When a packet arrives at the router, the device driver pushes it through a series

of elements. Since elements may have more than one output port, each element

chooses the proper outgoing port as part of the packet processing. The packet is

pushed through elements until it hits a queue, where it waits until it is pulled.

When an output device is ready to transmit a packet, the output device driver pulls

a packet from one of its upstream neighbors. The neighbor chooses an input port

and pulls the data from the upstream neighbor on that port, and so on recursively

until some element queries a queue. The packet is then removed from the queue

and will traverse the same sequence of elements that selected it before reaching the

device driver and being transmitted.

Each Click element encapsulates one scheduler, one forwarder, and one classifier,

as illustrated in Figure 2.6. The scheduler is necessary because an element has

to select a packet from potentially many input ports. Similarly, the classifier is

necessary because the element may have multiple output ports. The forwarder

simply connects the scheduler to the classifier. By leaving any two of these three

components empty, a Click element can implement each of the primitive components

of the proposed model, making it a very general architecture. It is more common,

however, for a given element to define two of the three components, leaving only one

empty. For example, elements with only push-type interfaces have the input port

2.3. EXAMPLE SYSTEMS 29

IP Code

Gate Gate

Figure 2.7: Modeling Crossbow: Two gates shown. (Queues elided for readability.)

chosen for them, so their scheduler is effectively null. Elements with only pull-type

interfaces have their output selected for them, so they need not classify the packet

at all.

2.3.3 Router Plugins

The Router Plugins architecture, or Crossbow, is designed to allow limited exten-

sions to an IP router. Implemented in the NetBSD operating system, Crossbow

allows users to write extensions, called plugins, that can be placed at well known

points of the router’s IP execution. These points, called gates, were chosen to

suit a wide variety of applications, such as routing, packet scheduling, and security

processing. The user invokes command line tools to load plugins at run time.

Plugins may be associated with distinct flows. Since not every plugin is appro-

priate for each packet, Crossbow allows the user to specify a key with each plugin.

The key specifies IP address pairs, protocol number, ports, and incoming interface;

any part of the key can be defined so that all possible values match. At each gate,

Crossbow attempts to match the packet to the keys registered for that gate. If a key

matches, the packet is passed to the plugin instance that is registered for that key.

When the packet leaves the plugin, the next part of the IP processing path executes

until the next gate. This sequence of events repeats until there are no more gates

and the IP processing terminates.

As shown in Figure 2.7, Crossbow can also be modeled as a sequence of the basic

components. A plugin operates on a single packet then emits it into the processing

path, and is therefore a forwarder. Crossbow must choose a plugin at each gate, so

a gate is a classifier. Upon leaving the gate, the packet must transit the next part

2.4. COMPARISON 30

of the IP processing code, which is just another forwarder. Since all packets must

execute the same IP code after choosing only one forwarder, the proposed model

dictates that a scheduler must be present. Since Crossbow makes no scheduling

decision at this time, a FIFO scheduler comes before the next fragment of IP code.

Each defined gate in Crossbow is a classifier and a scheduler (FIFO), and each

plugin a forwarder. The scheduler’s output queue is connected to the input queue

of the the next classifier by the next piece of NetBSD’s IP infrastructure.

While this description of Crossbow is accurate, in some instances there is a

better one. Assuming that the packet’s IP and TCP headers are not modified by

any plugin, the packet need be classified only once. The entire sequence of plugins

executing on this packet is then known before the first one executes. The forwarding

function executing on this packet can then be defined as the concatenation of all

the plugins registered for that packet and all the IP infrastructure code. The FIFO

schedulers between gates are no longer necessary, and the only remaining scheduler

is the packet scheduler at the output port. Crossbow then looks like Scout, as

depicted in Figure 2.5, except plugins replace stages.

2.4 Comparison

This section uses the descriptions of Scout, Click, and Crossbow presented in the

previous section to compare them. The comparison focuses on two attributes com-

mon to all the systems: classification and extensible forwarding. The goal of the

comparison is to highlight the strengths and weaknesses of each system in these

areas.

2.4.1 Classification

A router’s classifier determines the set of packets on which a given forwarder oper-

ates, and consequently, fundamentally limits the granularity at which flows can be

distinguished. For a router to support a new network service, its classifier must be

modified to recognize the set of packets belonging to that service. Scout, Click, and

Crossbow all offer methods of extending classification. Crossbow and Scout both

2.4. COMPARISON 31

prescribe a classification infrastructure that can be leveraged for extension, while

Click defines its classifier for the task for which it is configured.

Crossbow’s classifier selects a plugin at each gate based only on the IP addresses,

TCP port numbers, and network input port. The classification algorithm allows fast

lookups even in the presence of full or partial wildcard values in any field. Even

with this flexibility, the function itself is fixed. Crossbow’s classifier can be extended

only by giving it new keys. The classifier will not act based on values in any other

fields and cannot be made to act so within Crossbow’s architecture.

In contrast to Crossbow’s fixed classifier, Scout’s single hierarchical classifier

can be extended by providing it with new code fragments to execute during classi-

fication. During path creation, each module that contributed a stage to the path

has the opportunity to add a function to the classifier to help identify the path.

Delegating classification to the modules allows packets to be readily identified on

the basis of any criteria the module programmer chooses. For example, packets

for applications using TCP are identified by their port numbers; IP packets to be

forwarded are identified by destination address; Ethernet frames are distinguished

by their type number, and so on. Although modifying the classification function

to recognize new types of packets requires writing new code, changing a specific

module’s classification function is easier than altering Crossbow’s classifier. Modifi-

cations to Scout’s classifier are confined to a single module, as opposed to affecting

the entire system.

Unlike the other two systems, Click has no global classification structure. In-

stead, each element acts as a classifier to one of its outputs during packet process-

ing. Inserting a new element into the element graph creates new paths through the

router and explicitly extends the available classification. Reprogramming a specific

element’s “routing” decision is fairly easy, but one must be careful that the module

still implements the function for which it was designed.

Both Scout and Click merge classification and processing. Click elements classify

while they process by choosing output ports for the packet. While Scout modules do

not classify as they process, they do define processing and classification together—

they create a processing stage and define the criteria for selecting the path that

owns that stage at the same time. Crossbow, however, neatly decouples the two.

Crossbow’s plugins do not implement any part of its classification. Instead, the

2.4. COMPARISON 32

administrator, or user, specifies a particular key when instantiating a plugin. This

separation makes plugins easier to implement and allows Crossbow’s classifier to

evolve without needing to reimplement plugins.

2.4.2 Extensible Forwarding

Since all three systems were designed for extensibility, it is not surprising that

inserting new forwarders in each is fairly straight-forward. In Scout and Click, the

administrator adds a new module or element to the configuration file. In Crossbow,

the administrator installs a kernel module and instantiates a plugin. In each case,

the new forwarder is inserted at the boundary between existing forwarders.

The number of available boundaries determines how much the router’s operation

can be extended by inserting new forwarders. Crossbow allows plugin insertions only

at gates. Therefore, Crossbow can only be extended in very limited ways. Scout

modules implement whole protocols, so adding entirely new protocols and layering

one protocol on top of another is easy. However, since one can add stages to a

path only between other stages, modules cannot modify the operation of existing

modules. Each Click element usually implements a very simple functionality, so

Click configurations require many forwarders to accomplish most tasks. However,

the many boundaries makes it easy to modify the router’s operation slightly just by

adding additional forwarders.

Note that none of these systems offer a method of extending an individual for-

warder beyond reimplementing it. Each system was designed to allow extensions

to a larger unit of operation than an individual forwarder. Crossbow was designed

to extend IP forwarding, so it has well-known points at which forwarding could be

extended. Scout was made to ease protocol design and development, so it allows

replacing and rearranging protocols. Click was designed so its elements would be

too small to extend.

33

Chapter 3

Plug Board

This chapter presents Plug Board, a framework for creating and extending network

services. Plug Board is an architecture for an extensible router that is a synthesis

of the systems presented in the previous chapter. A router that implements Plug

Board’s interfaces provides explicit support for extension, including adding new

network services and extending existing ones.

Plug Board’s model of operation is based on the simplest variant of a router

described in Chapter 2. That is, it has a single classifier, a set of forwarders, and a

scheduler for each port. When a packet arrives, Plug Board queries the classifier for

a forwarder to process the packet. Plug Board then invokes the returned forwarder,

and the packet is processed until it reaches the scheduler at the output port.

This chapter extends the terminology presented in the previous chapter to de-

scribe Plug Board’s interfaces for the forwarders and the classifier. Since schedulers

are well understood, this chapter does not discuss them or their interfaces further.

As an architecture, Plug Board permits more than one implementation, two of which

are presented in Chapter 5. Therefore, Plug Board’s interface specification pre-

sented in this chapter is somewhat abstract, highlighting the relationships between

the components. The chapter concludes by exploring some implementation concerns

and optimizations available to Plug Board-conforming routers.

3.1. EXTENSIBLE FORWARDERS 34

F

(a) Fixed forwarder

E→F

(b) Extensible forwarder

E

(c) Extension

(d) Extensible extension

I O

(e) Encapsulation operator

Figure 3.1: Forwarders, extensions, and encapsulation. Shaded regions indicated
places to insert a function of the appropriate type.

3.1 Extensible Forwarders

As described previously, forwarders in a router implement the router’s functionality.

Plug Board supports extensibility not just by hosting many forwarders but also by

hosting many kinds of forwarders. This section defines the kinds of forwarders

that Plug Board supports: fixed, extensible, and encapsulated. The definitions are

followed by examples that make use of all three kinds of forwarders.

3.1.1 Forwarder Definitions

Forwarders are functions that are designed to process packets. They can implement

either data-plane or control-plane functionality. The forwarders mentioned in the

previous chapter have all been fixed forwarders, that is, they provided no method

for extending the function they implement. Plug Board introduces extensible for-

warders, forwarders that provide an explicit means to extend their functionality.

Extensible forwarders call an extension function, or extension, at a well-known

point during their execution. The extension modifies the forwarder’s operation by

overriding parts of the forwarder’s behavior or supplementing it with additional

computation. If the type of a fixed forwarder is denoted by F, then an extensible

forwarder is a higher order function of type E→F. That is, the administrator can

construct a fixed forwarder by supplying the extensible forwarder an extension of

type E. Using different extensions with the same forwarder yields a whole family of

related forwarders.

3.1. EXTENSIBLE FORWARDERS 35

Similar to the way that forwarders can be extensible, Plug Board allows exten-

sions themselves to be extensible. An extensible extension permits nesting another

extension within its operation. This nesting allows the router administrator to build

complicated extension functions from smaller components. Extensible extensions,

whose type is E→E, can also be reused to create families of extensions that differ

only slightly from one another.

Encapsulating a protocol in a packet of another protocol is fundamentally dif-

ferent from extending the encapsulating protocol. Extensions operate during the

forwarder’s processing. That is, the forwarder keeps state relevant to the processing

of the current packet while calling the extension, so it can finish processing after

the call. In contrast, due to the principle of separating protocol layers, functions

that unpack a packet have finished their operation before the function for the next

layer is called. Additionally, viewing an encapsulated protocol as an extension to

an encapsulating protocol would require some additional forwarder that the out-

ermost encapsulating protocol extends. Further, this view restricts the creation

of gateways between two encapsulating protocols that both support a higher-level

forwarding protocol.

Viewing an encapsulating protocol as the extension of an encapsulated protocol

is similarly flawed. Packets encapsulated within packets of another protocol must

be unpacked before they are processed and repacked afterward. This requires two

distinct steps that must occur before and after the forwarding algorithm. Since an

extension to a forwarder executes only once during protocol processing, it cannot

both unpack the packet before processing and repack it afterward unless it imple-

ments the processing as well.

Fortunately, it is possible to leverage the internal structure of forwarders to

provide a method for extending the set of protocols that can encapsulate the packet

on which a forwarder operates. Forwarders, especially those whose packets are

nested in multiple layers of network protocols, have distinct input and output phases

that operate strictly before and strictly after the forwarding phase. These input

and output phases can be separated from the forwarder and made available as

distinct components. Although Plug Board does not provide a general capability for

concatenating forwarders, it provides the encapsulation operator for this restricted

purpose.

3.1. EXTENSIBLE FORWARDERS 36

Name Type Description

Encapsulate 〈F,I,O〉→F Encapsulates forwarder
Install Forwarder 〈P,F,D〉→() Installs forwarder with predicate in domain

Table 3.1: Supported functions in Plug Board.

Kind Type Use

Forwarder F Processes packets
Extensible Forwarder E→F
Extension E Extends extensible forwarder
Extensible Extension E→E
Input I Processes incoming packets
Output O Processes outgoing packets
Predicate P Evaluates condition over a packet

Table 3.2: Types and Use of Functions in Plug Board.

The encapsulation operator is a function of type 〈F,I,O〉→F and can be used

to create a forwarder from a forwarder, an input function, and an output function;

see Table 3.1. Input functions, functions of type I, process a packet in a manner

consistent with delivery to a local process. Usually input functions strip a header

from a packet, verify that there are no errors using the protocol’s error detection

and correction scheme, and handle protocol specific processing such as reassembly.

Output functions, of type O, process the packet in a manner appropriate to trans-

mission on a network, typically adding a header to the packet. Using this operator,

an administrator can extend a forwarder to operate in a new context.

The function types described above, which are shown in Figure 3.1 and sum-

marized in Table 3.2, naturally lead to a simple notation for describing forwarders.

Throughout the rest of the dissertation, named forwarders and extensions will ap-

pear as a pair of names, MODULE.name(). The first name is the name of the group,

or module, from which the function comes; see Subsection 3.4.1. The second is the

name of the function, which is unique within the module. The parentheses after the

function’s name contain the extension being applied. If the function is either not

extensible or not currently being extended, empty parentheses follow the name.

3.1. EXTENSIBLE FORWARDERS 37

B1 B2

Ethernet 1

Ethernet 2

Figure 3.2: Two Ethernets connected by two bridges.

3.1.2 Examples

Plug Board is an architecture for supporting network services, both new and ex-

isting. While emergent services are discussed in Chapter 4, the following examples

illustrate how to use forwarders and their related extension mechanisms to imple-

ment existing network services. Each of these examples is a well-understood network

service that is currently deployed and can be implemented using Plug Board’s for-

warders and extensions.

Ethernet Bridging

An Ethernet bridge is a network device that is connected to at least two separate

Ethernets. It connects the Ethernets by making copies of any frame received on one

of its ports and sending it to the Ethernets connected to all of its other ports. An

Ethernet bridge can be implemented by a simple Plug Board that has an Ethernet

forwarder, ETH.copy(), for each output port.

The presence of multiple bridges connected to the same Ethernet can lead to

frames being repeatedly echoed throughout all the connected Ethernets. Consider

two Ethernets connected to each other via two bridges, as in Figure 3.2. Each

bridge will echo all messages it receives on one Ethernet to the other. The other

bridge will note the presence of the first bridge’s message on the second Ethernet

and echo it back to the first Ethernet, causing an infinite loop. To avoid such

loops in Ethernet networks, Ethernet bridges compute the minimum spanning tree

of bridges connecting all Ethernets. The vertices in the tree represent bridges and

Ethernets while the edges represent ports that connect bridges to Ethernets. All

3.1. EXTENSIBLE FORWARDERS 38

Output
Port

Output
Port

Output
Port

Input
Port

ETH.MST()

ETH.learn()ETH.copy()

ETH.learn()ETH.copy()

ETH.learn()ETH.copy()

Figure 3.3: A learning Ethernet bridge: One control forwarder and many extensible
data forwarders, one of which (the middle one) is disabled.

ports on the tree remain active while those not on the tree are considered inactive

for the purposes of forwarding frames. Each Ethernet has only one bridge with an

active link associated with it at any given time. A Plug Board that implements this

behavior has a control forwarder, ETH.MST(), that inserts and removes Ethernet

forwarders based on the current status of the tree.

With a minimum spanning tree in place, a bridged Ethernet transmits the same

frame to all connected Ethernets only once. However, it sends the frame to all

Ethernets even if the destination host is not reachable through a particular Ethernet.

A learning bridge uses the flow of traffic to learn which hosts are available at a given

port. It examines each frame to discover the source address and assumes that the

source host is available on the Ethernet connected to the incoming port. To limit

unnecessary network traffic, the learning bridge will only send data to the port at

which the destination address can be found. Using extensible Ethernet forwarders,

an administrator can create a learning bridge from a dumb bridge by installing

an Ethernet forwarder extended with a learning extension, ETH.copy(ETH.learn()).

The extended Ethernet forwarders will drop any frames headed to Ethernets that

do not contain the destination. Figure 3.3 shows a learning Ethernet bridge with

three network connections of which two are active, as shown by the forwarders’

connection to the classifier.

Internet Protocol and Extensions

IP forwarding and routing provides another example of how to use Plug Board’s ex-

tensible forwarding. In a simple IP router, there would be a single control forwarder,

3.1. EXTENSIBLE FORWARDERS 39

IP.forward()ETH.input() ETH.output()

Figure 3.4: IP forwarder encapsulated in Ethernet input and output functions.

ETH.input() ETH.output()IP.forward() X.ext()

Figure 3.5: An extended IP forwarder for packets encapsulated in Ethernet frames.

IP.routing(), that implements a routing algorithm for determining proper forward-

ing. This control forwarder would add and remove IP data-forwarding forwarders,

IP.forward(), in response to the routing state. For routers that are connected to the

networks via Ethernet, the IP forwarders would be encapsulated within Ethernet

input and output functions, as shown in Figure 3.4, like so:

[IP.forward(), ETH.input(), ETH.output()].

Basic IP forwarding consists of finding the network address of either the desti-

nation host or the next router, decrementing the time-to-live field, recomputing the

checksum, and sending the packet out the chosen port. This minimum forwarding

is frequently extended to perform other tasks, yielding forwarders of the form

[IP.forward(X.ext), ETH.input(), ETH.output()],

shown in Figure 3.5. There are at least three classes of extensions: traffic monitor-

ing, data transformations, and rerouting.

Traffic monitoring typically involves gathering statistics about the traffic flow-

ing through the router and reporting it to a monitoring application. Performance

monitoring is a typical example [47]. In these services, the forwarding extension in-

crements one or more counters based on some property of the packet. The property

that triggers the counter can be the input or output port, the source or destina-

tion address, the packet’s protocol number, the TCP ACK or SYN flag, etc. The

monitor periodically aggregates these counters and sends summaries to a global co-

ordinator. Based on analysis of many sets of these traffic statistics, the coordinator

or the application then installs new forwarders. Intrusion detection often works

in a similar way: the extension to the data forwarder records events; the monitor

analyzes them and, in turn, installs filters in the router to block offending traffic.

3.1. EXTENSIBLE FORWARDERS 40

In these services, the extension neither directly modifies the packet nor affects the

operation of the forwarder.

Other services require that extensions modify the packet as it transits the for-

warder. Data transformations include data compression, data transcoding, and

packet elimination. For example, a pair of routers connected by a very low-capacity

link may compress the data in packets before transmitting to avoid stressing the

link. On these routers, the IP forwarding function would be extended with a com-

pressor. Clearly the preferable solution to the problem of limited capacity is to add

more parallel links or to replace the link with one with greater capacity. However,

links that cannot be easily replaced, but have end-points that can be upgraded to

support the memory and computation power necessary for compression, can benefit

from this approach. Examples of such links are radio-frequency or satellite links

between islands or ships.

Data transcoders are a generalization of compressors that leverage special knowl-

edge of the capabilities of the receiving host. Consider a set of images available at

a website. A PDA would likely not be able to display large images in many colors.

The user would therefore benefit by receiving scaled or color-reduced images. This

transformation would reduce capacity requirements on the PDA’s network link and

computation at the PDA. A signaling protocol that informs the router’s control

forwarder that a given destination is a PDA would allow that forwarder to install

an extended IP forwarder that would transform data transiting the router. This en-

hancement would be especially useful at the router directly connected to the server

since it would eliminate unnecessary data from the network. However, due to secu-

rity and management issues, it is likely that only the router directly connected to

the PDA would implement this type of extension.

A refinement of the transcoding technique can lead to removing the packet from

the network. Consider a video stream that is encoded via the wavelet encoding

scheme [20]. Stated briefly, in this scheme a video frame is encoded into several

packets. The first packet contains data about those parts of the images that do

not change frequently. Each subsequent packet contains more detailed information

about the frame. The loss of one of the later packets in a particular frame causes

some degradation of the details of the image, but not the loss of the entire, or large

sections of, the image. This property implies that in the presence of congestion or

3.1. EXTENSIBLE FORWARDERS 41

excessive delay on the network, specific parts of the video stream can be eliminated,

that is some packets can be dropped, without affecting video quality too much. An

IP forwarder with an extension that understands wavelet encoded video streams on

a congested router can selectively drop those less important packets. The network’s

users would then see a gradual degradation of video quality as congestion increases

instead of an immediate, sharp cut-off of the stream.

Some extensions change the fundamental behavior of the forwarder. Usually only

the destination of an IP packet determines the address of the next host to which

the packet is forwarded. This implies that the sending host has no control over

the sequence of routers that receive a packet before it reaches its final destination.

However, there exist two mechanisms, Loose Source Routing and Strict Source

Routing [43], that allow the sending host to require that a given sequence of routers

forward the packet. These mechanisms are activated as part of options field of an

IP packet. A source routing extension to the IP forwarder allows packets to be

rerouted from the most direct route to the source-specified route. This design is

flexible and modular, making it easy to enable or modify the source routing option

without directly affecting the design of the IP forwarder.

Proxies

Proxies are programs that run applications on behalf of their clients. From a user’s

perspective, a proxy is a server that provides access to data and services from the

network. However, instead of providing these services itself, the proxy forwards

requests to the server that can fulfill them. Proxies enhance network security by

allowing network administrators to expose only a single host to an unsecured net-

work like the Internet. They can also improve network efficiency by caching the

results of requests and responding to subsequent, similar requests from a cache.

Fundamentally, proxies transform and reroute data connections.

A classical proxy behaves as just described. The proxy is a forwarder that

executes on a host with an address known to the users. When clients connect to the

proxy, it forwards the packets containing the request to the proper host. The proxy

reads packets that are encapsulated in application-specific protocols and forwards

packets by rewriting them and encapsulating them in those same protocols. An

3.2. CLASSIFIER 42

ETH IP TCP ETHIPTCPHTTP.Proxy()

Figure 3.6: A classical HTTP proxy.

ETHETH IP.forward()

TCP.redirect()

Proxy.forward()

Figure 3.7: A transparent TCP proxy.

HTTP proxy’s traffic is encapsulated inside TCP/IP packets inside Ethernet frames,

so the forwarder (Figure 3.6) is represented as:

[[[HTTP.proxy(), TCP.input(), TCP.output()], IP.input(), IP.output()] ,

ETH.input(), ETH.output()]

A second class of proxy, called transparent proxies, modifies or reroutes packet

flows passing through them. The proxy itself is an extensible extension of IP that

redirects TCP traffic, as shown in Figure 3.7, and is represented as:

[IP.forward(TCP.redirect(Proxy.forward())), ETH.input(), ETH.output()].

The extension rewrites the TCP header, taking care of the necessary changes to the

checksum, sequence numbers and acknowledgment number. The extension can be

further extended to support specific applications.

Although the two types of proxies can operate in much the same manner, they

are different due to a quirk in their design: applications must be aware of classical

proxies and send data directly to them. Transparent proxies, as their name implies,

are completely transparent to the application. The difference is clearly visible in

the notation and in Figure 3.8.

3.2 Classifier

Plug Board has a single classifier that chooses a forwarder for arriving packets. As

in Scout, Plug Board’s classifier operates before any processing occurs. An ideal

3.2. CLASSIFIER 43

Input
Port

ETH IP TCP ETHIPTCPHTTP.Proxy()

ETH IP.forward() ETH

ETH.input() IP.forward() ETH.output()

ETH.output()X.ext()ETH.input() IP.forward

IP.route()

TCP.redirect() Proxy.forward()

Figure 3.8: An extended IP router containing (from top to bottom): a control
forwarder, an IP forwarder, an extended IP forwarder, a classical proxy, and a
transparent proxy.

classifier for an extensible router would be an oracle that always returns the proper

forwarder for a packet. Since any fixed set of classification rules fails to account

for all possibilities that a router may address, to approach the ideal, Plug Board’s

classifier is modifiable.

An administrator can modify the classifier by associating a forwarder with a

predicate defined over the full contents of a packet. For example, assuming the

IP forwarding function, IP.forward(), and an appropriate predicate for choosing IP

packets, PETH.IP, installing the pair 〈PETH.IP, IP.forward()〉 in the classifier creates

a simple IP router. Predicates can be satisfied by any computable function. Some

predicates are satisfied by single values, e.g., PETH.IP that recognizes IP packets

encapsulated in Ethernet frames using the Ethernet type field, P IP.IP that recog-

nizes IP packets encapsulated in IP using the encapsulating IP’s protocol field, and

P IP.TCP that recognizes TCP packets. A more ambitious predicate is PProxy.webA

that recognizes HTTP requests to a site webA.

When a packet arrives at the router, the classifier returns the forwarder whose

associated predicate is satisfied. Note that, as in Crossbow, classification and pro-

cessing are completely separated—the forwarder associated with a predicate need

not be functionally related to it. In the example above, the forwarder associated

with PETH.IP need not be an IP forwarder at all. It could be, for instance, a for-

3.2. CLASSIFIER 44

warder that encapsulates the IP packet, including its headers, in another protocol

like MPLS.

To make even more complex decisions possible, individual predicates can be com-

bined with the boolean logical conjunctive and disjunctive operators—“and” and

“or.” For example, given a pair of predicates satisfied by IP destination addresses

each to a particular network that is accessible from the same output port at the

router, P IP.netA and P IP.netB, a forwarder associated with the disjunctive predicate

P IP.netA∪P IP.netB

can forward packets to either of those networks. Having a mix of compound and

simple predicates makes it very likely that a given packet will satisfy more than one

predicate. To allow the administrator to install forwarders that will catch otherwise

unmatched packets as well as rules for narrowly defined flows, Plug Board resolves

multiple matches in favor of the longest chain of conjunctive predicates. If the

chains are of equal length, the packet could be given to all the forwarders, as in

the case of multicast, some subset of forwarders, or just one. Since each policy is

appropriate for some conditions, Plug Board allows the administrator to attach an

exclusivity tag to the predicate.

Plug Board’s exclusivity tag can specify that the predicate is exclusive, inclusive,

or inclusive only to a group of predicates. If all satisfied predicates involved in a

multiple match are inclusive, all the forwarders are given a copy of the packet. For

example, a predicate for a network sniffer looking for traffic to and from a known

host is satisfied by source or destination addresses to that host and is inclusive to

allow IP forwarding to continue. If one of the predicates is exclusive then only its

forwarder is returned. If more than one predicate is exclusive the predicate installed

first is preferred, so forwarding does not break when an incompatible forwarder is

installed. To support multicast behavior natively, a group of predicates may be

named together such that members of the group are inclusive to each other, but ex-

clusive to other predicates. Using group exclusivity, control forwarder implementing

IGMP can install multiple data forwarders for an IP multicast group address. A

multicast packet to that group will satisfy all those predicates and will be forwarded

by all the associated forwarders.

3.3. COMPUTATION DOMAINS 45

3.3 Computation Domains

Modern routers provide more than one computation domain for executing for-

warders. For example, Karlin [29] describes VERA, a router architecture with

multiple, physically separate, computation domains. In general a computation do-

main is an abstract description of “where” computation takes place. Computation

domains differ in their physical location, in the resources they provide forwarders,

and in the trust they grant forwarders executing in them. Forwarders should ex-

ecute in the domain that offers the best balance between the performance of the

forwarder and protection from it. Therefore, Plug Board must support multiple

computation domains.

Computation domains are separated by boundaries, which have a cost associated

with their crossing. The cost includes delays caused by moving to a new physical

location and those caused by changing the level of trust such as copying data to

different memory regions, switching execution threads, and trapping into the kernel.

Each domain in a router may have different resources available for processing pack-

ets. In some domains a forwarder’s “cycle budget,” the number of instructions a

forwarder may execute, is large—many thousands of cycles. In others, fewer cycles

are available. Since domains may be on different processors, the rate at which these

cycles are apportioned may also be different.

Forwarders executing in separate domains may be given different levels of trust.

In the most trusted domains, forwarders may execute any operations on any part of

memory. These domains, for example, kernel-space in an operating system, provide

the resources that allow maximum performance. However, they can only be used

for trusted code that is well understood since the domain allows the forwarder

to commit any action. Other, less trusting, domains restrict more and more of

the instructions a forwarder may execute and enforce stricter limits on accessing

regions of memory. The most restrictive domains may check each instruction before

execution and allow limited access only to very specific regions of memory.

3.4. IMPLEMENTATION ISSUES 46

3.4 Implementation Issues

As demonstrated in the examples above, a Plug Board is uniquely appropriate for

implementing network services. The rest of this chapter highlights some implemen-

tation concerns and some optimizations that the Plug Board makes possible.

3.4.1 Modularity

To fully reap the benefits made available by extensibility, a Plug Board must provide

methods of adding new functions not conceived by its implementer. Good software-

engineering practices dictate that logically related functions should be grouped to-

gether. Therefore, a Plug Board should support a modular extension architecture.

Each module is a factory to create the various functions—predicates, forwarders, ex-

tensions, etc.—for handling a particular protocol. Placing all the functions related

to a single protocol within the same module improves the functions’ maintainability

while maintaining the Plug Board’s flexibility.

A module encompasses all the functionality required for a single protocol. For

instance, the Ethernet module should provide functions for input and output pro-

cessing and should also be able to provide predicates for distinguishing an Ethernet

frame carrying an IP packet from one bearing an ARP query. Grouping closely

related functionality encourages programmers to write modules that are indepen-

dent of the implementation of other modules. Since all protocol-dependent code

is grouped together, changes to one part of the protocol processing code will be

unlikely to break code in another module.

A disadvantage of most modular systems is that the increased processing over-

head due to function calls between modules and duplicated error checking leads to

decreased performance. Since Plug Board uses modules only as a way of organiz-

ing related functions, it permits users to create optimized versions of forwarders

to operate in specific circumstances. For instance, there is no restriction in Plug

Board forbidding the creation of an IP forwarder that also handles all the necessary

Ethernet processing. This forwarder would operate quickly and is a candidate for

use in the fastest IP forwarding path in the router. The same factory module can

create this forwarder as well as more general IP forwarders, thus providing a balance

between modularity and performance.

3.4. IMPLEMENTATION ISSUES 47

3.4.2 Forwarding Functions

Plug Board’s modules support creating data forwarders from any protocol. For

protocols that purport to provide data forwarding behavior, like IP or peer-to-peer

networks, this requirement seems intuitive, indeed necessary. For protocols not

viewed as forwarding protocols, like Ethernet and TCP, this requirement seems very

strange. This feature originates in the need to keep module interfaces consistent,

but it can be used to ease implementation of bridges. For example, the Ethernet

module can define an Ethernet forwarding function that allows a router to act as

an Ethernet bridge, even a learning bridge, without modifying the hardware.

Allowing modules to create forwarders from protocols that do not usually define

forwarding components can also lead to optimized versions of protocols that splice

two connections. This optimization is known as the cut-through optimization from

the similarity to the cut-channels provided by the NodeOS, an active network stan-

dard [4]. In the NodeOS, a program can open two communication channels, one

for input and one for output. The application can then read data from the input

channel, process it, and write data to the output channel. If the application reverts

to a mode in which it retransmits the data it receives unchanged and unmonitored,

it can splice the two channels together. The data then no longer arrives at the

application, meaning that the cost of crossing into the application’s computation

domain can be eliminated.

One example of a protocol that can benefit from the cut-through optimization

is TCP [12, 56]. Two TCP connections, one from host A to host M and a second

from host M to host B, can be turned into a single connection from host A to host

B; see Figure 3.9. Host M is now no longer an active member in a TCP session, so

it would not need to guarantee reliable, ordered delivery—it need only try its best

to forward packets from A to B. Consequently, host M would save memory required

for buffering, computation used to track TCP state, and network capacity needed

to send acknowledgments. Also, since the single splicing function need only adjust a

few fields in the packet’s header, it is not complicated. As described in Appendix A,

it can be implemented in a few dozen instructions on a typical network processor.

3.4. IMPLEMENTATION ISSUES 48

M

BA Spliced Connection
From A to B

Connection to M Connection to B

Figure 3.9: Splicing two separate TCP connections into a single connection.

3.4.3 Classification

Evaluating all of the available predicates at each packet arrival can be inefficient.

While this effort might be necessary in the general case, usually a more efficient

method is available. Network protocols are layered; one protocol is completely

embedded in the payload section of another protocol’s packet. Thus a hierarchical

classifier is well-suited for classifying network packets. In a hierarchical classifier,

each level of the hierarchy deals only with the header of a single protocol. A packet

being classified would be shunted from node to node of a tree-like structure, each

node containing classification code from a different protocol. A leaf in the hierarchy

would contain the proper forwarder for the packet. Composite predicates over the

headers of the packet can be ordered in a canonical form to force similar entries to

have a similar prefix of predicates [8, 10], thereby allowing a hierarchical form and

improving efficiency. [23]

49

Chapter 4

Decomposing Overlay Networks

The last several years have seen the introduction and popularization of peer-to-peer

applications and their associated overlay networks. Overlay networks are virtual

networks that impose a new topology on the underlying network, or underlay. This

topology typically excludes routers in the underlay in favor of using hosts to forward

packets for the overlay. These application-level networks provide features and capa-

bilities that the Internet does not, like logarithmic routing and in-network caching,

without waiting for standardization and deployment by vendors.

Applications that use overlays to implement services blur the traditional dis-

tinction between the network and application programs by turning hosts executing

the application into routers as well as clients and servers. In addition to providing

their service, overlay applications must maintain the structure of the network in

the presence of dynamic membership, that is, hosts joining, leaving, or becoming

unavailable. Overlay applications must also forward packets for other hosts on the

overlay in a way that is consistent with the overlay’s semantics. Supporting these

tasks, in addition to providing the service they claim to provide, makes these ap-

plications complex and difficult to create. However, the application’s additional

complexity is offset by the flexibility that it has to define the overlay network’s

topology and the capabilities of the overlay’s forwarders to assist in providing its

service.

This chapter shows how to leverage Plug Board’s architecture to ease the cre-

ation of overlay networks. The chapter begins by presenting a decomposition of

network services in general, and specifically overlay networks, into four components.

4.1. IMPLEMENTATION FORMS 50

Input
Port

Service

Figure 4.1: A network service implemented as a single forwarder.

Each of these components has interfaces it must support and a role it must play.

By leveraging Plug Board’s architecture, this decomposition can be used to create

flexible and extensible overlay networks. Proceeding from the decomposition in the

abstract, the chapter then presents three concrete examples of decomposing peer-

to-peer networks. It concludes by discussing the interfaces between the decomposed

components.

4.1 Implementation Forms

The applications that implement overlay networks take one of five progressively

more complex forms. The forms differ in the performance they offer to clients, in

the safety they guarantee to the executing host, and in the maintainability they

claim to developers. The forms do not differ in their correctness or compatibility.

In fact, it is expected that an overlay network would appear in more than one of

the forms during its development lifetime. Thus, the implementation of a network

service can become increasingly optimized on one host while existing in other forms

elsewhere in the network.

4.1.1 Form I: A Network Service

In the first implementation form, a network service is a single functional block.

This block implements the offered service as well as any protocol that the service

requires, such as connectivity maintenance for an overlay network. In other words,

the network service is implemented as a single fixed forwarder in Plug Board. This

forwarder may be encapsulated in several pairs of input and output functions, typ-

ically those that implement standard transport protocols, such as TCP. Since this

4.1. IMPLEMENTATION FORMS 51

Input
Port

Data

Control

Figure 4.2: A network service differentiating between control and data.

forwarder processes all the service’s incoming network traffic, its associated predi-

cate is satisfied by any of the overlay’s packets addressed to the local host in the

underlay. The forwarder executes in its own computation domain, separate from

the classifier which executes in the domain in which all other computation domains

are embedded. Due to its simplicity, this form, shown in Figure 4.1, is a reasonable

choice for a first-generation implementation of a network service.

4.1.2 Form II: Control and Data

Applications that implement overlay networks act analogously to routers in tra-

ditional networks. That is, as described in Section 1.3, they forward part of the

incoming network traffic—the overlay’s data stream—to other hosts and process

the rest—the control stream. Recognizing that such applications act in two distinct

modes leads to the second implementation form. In this form, shown in Figure 4.2,

the network service is divided into two pieces. The first component, the control

forwarder, is a slightly modified version of the forwarder in the previous form. Al-

though the control forwarder handles most of the same tasks as in the previous form,

it no longer forwards messages destined for other hosts on the overlay. The latter

functionality is delegated to a second forwarder—the overlay forwarder. However,

the control forwarder responds to messages and generates network traffic, so it still

needs its own network connection.

The control forwarder installs one or more overlay forwarders to forward packets

to other hosts in the overlay. The number of overlay forwarders depends on the

service and its implementation. There may be one forwarder for all forwarded

4.1. IMPLEMENTATION FORMS 52

Input
Port

Data

Control

Figure 4.3: Optimizing forwarding in a network service using multiple computation
domains.

traffic, or there may be a forwarder for each destination. The predicate that the

control forwarder associates with each overlay forwarder is satisfied by packets that

are addressed to the local host in the underlay but should be sent to another host

in the overlay. When executed, an overlay forwarder modifies the arriving packet

using a service-specific forwarding function and sends it to the next overlay host

that should receive it.

4.1.3 Form III: Optimizing Forwarding Performance

In the second form, the control and overlay forwarders are distinct entities. As

described in Chapter 3, Plug Board allows for multiple computation domains, with

different costs associated with crossing into each one. Placing the overlay forwarder

in a high-performance computation domain with lower crossing costs improves for-

warding performance by reducing the time each packet spends at the host and

increases efficiency by limiting the resources the host spends on forwarding each

packet. However, for performance and safety reasons it may be undesirable to place

the complex control forwarder in such a domain. Therefore, in the third imple-

mentation form, shown in Figure 4.3, the overlay forwarder is placed in a domain

separate from that in which the control forwarder executes.

The resources available to forwarders in high-performance computation domains

are necessarily scarce since forwarders in these domains are expected to forward

many packets very quickly. Thus, even though the overlay forwarder can now begin

execution without having consumed as many resources, the balance of the resources

available for its execution may still be limited. However, just as IP forwarding is a

4.1. IMPLEMENTATION FORMS 53

fairly simple procedure from a complex protocol, one would intuitively expect that

other data forwarding functions would also be relatively simple. In fact, as shown

in Chapter 5, data forwarding functions tend to be simple enough that reasonable

limitations on the available execution time and memory consumption do not prove

a hindrance to applying this optimization.

As a network service becomes more popular, and thus executed on many hosts

and forwarding increasing amounts of data, the improved performance of this form

becomes attractive. However, as the option of placing the two forwarders in separate

computation domains is purely a performance consideration, it should be balanced

by other concerns. The considerations underlying the choice of placing some for-

warding code inside an operating system kernel, a possible computation domain,

illustrate this tension.

Placing the forwarder in the kernel would save the overhead required to switch

to the user-space forwarder and the cost of copying the data there. This potential

benefit must be balanced against security and trust issues. Executing arbitrary

application code in the kernel can be dangerous. The code may not be stable and

may cause the host to be unavailable frequently. Even if the code is stable, it may

interact badly with other applications, which can be dangerous given the additional

authority that the kernel possesses. Even if the code is stable and operates exactly

as designed, it may be actively malicious, compromising other applications and the

data available to the host. Certainly there are techniques to minimize these risks,

but the infrastructure required to protect against undesirable behavior may degrade

performance for the entire system. The decision to place a forwarder in a trusted,

but high-performance, domain must be carefully considered.

4.1.4 Form IV: Multiple-use Networks

A key flaw that services designed in the two previous forms inherit from the original

monolithic application is that the offered service is entwined with the overlay that

the service requires. This dependency makes it difficult to port the service to a

different overlay network, even one with features, such as automatic dynamic mem-

bership management, that would benefit the service. Conversely, other applications

that could use a similar overlay network would need to implement the network man-

4.1. IMPLEMENTATION FORMS 54

Input
Port

Data

Control

�����
�����
�����
�����Application

Figure 4.4: An application (shaded rectangle) using a separately defined overlay.

Input
Port

�����
�����
�����
�����

Control

���
���
���
���

Application

Figure 4.5: A network service with an application-specific forwarding extension.

agement functions independently. The solution is to decouple the task of providing

a service from the tasks of managing the overlay network.

The fourth form, shown in Figure 4.4, further refines the control forwarder by

dividing it into two distinct forwarders. The first forwarder, the overlay daemon,

manages the overlay by maintaining routing and connectivity information and pro-

cessing other network management messages; it also controls the overlay forwarders.

The second forwarder is the application. The application implements the offered

service, such as serving data, storing files, and answering database queries. The

predicate associated with the application is satisfied by packets that are addressed

to the current host in the underlay and contain application data. Packets containing

network state and configuration information satisfy the predicate associated with

the overlay daemon.

4.1. IMPLEMENTATION FORMS 55

4.1.5 Form V: Application-specific Forwarding

Isolating the application from the overlay forwarder makes the overlay more general

and the application easier to port. However, this same isolation prohibits the appli-

cation from examining or modifying the data stream forwarded through the host.

Some applications that use peer-to-peer networks rely on the application executing

at each host having access to the forwarded data stream [18, 51]. Applications can

use this access to improve their performance, for example by caching responses to

network queries or diverting requests directly to the local host.

In the final implementation form, depicted in Figure 4.5, the fixed overlay for-

warder is replaced by an extensible forwarder. The overlay forwarder can then

be extended by an application-supplied extension—the application forwarder. The

application forwarder can modify the standard behavior of the overlay forwarder,

making it possible for the application to affect forwarding indirectly. In this way, a

general-use overlay network can be customized for a particular application.

The ability of an application forwarder to customize a general-use overlay pro-

vides a useful guideline for distinguishing between overlay forwarders and applica-

tion forwarders. An overlay forwarder provides the minimal mechanism necessary

for moving a packet from one host to another in the overlay. It modifies the packet’s

headers only to the extent necessary to forward it, and it maintains only that state

useful for forwarding other packets. An application forwarder, by contrast, modi-

fies an existing forwarding algorithm in special cases to benefit the application. It

accesses the packet’s payload, and maintains any state, not just forwarding state,

that is of benefit to the application.

Since application forwarders modify the overlay forwarder, it is reasonable to

fear that they may compromise the safety of the overlay forwarders. Three factors

combine to vouch for the safety of many application forwarders. First, as shown

in Chapter 5 even useful application forwarders are not necessarily complex and

are verifiably safe. Second, as discussed in Subsection 4.3.4, application forwarders

have specific classes of tasks. Reasonable safety assurances can be provided by

forcing access to the packet and these tasks to use a trusted implementation of an

application programming interface (API). Third, even if the application forwarder

does not implement its function correctly, the predicate that selects packets for the

4.2. EXAMPLE PEER-TO-PEER APPLICATIONS 56

extended overlay forwarder only selects packets from the application’s data stream,

so other applications do not suffer. Consequently, extending an overlay forwarder

can be considered safe much of the time.

4.1.6 Summary

This section shows how an application that provides a network service based on

an overlay network, such as a peer-to-peer application, can be decomposed into

four components: an overlay daemon, an extensible overlay forwarder, an applica-

tion, and an application forwarder. The overlay daemon maintains the application’s

network by managing routing and connectivity information, heartbeat signals, and

other network management messages. The overlay daemon also controls the over-

lay forwarders. The overlay forwarders move packets addressed to other hosts in

the overlay to the proper host. At the packet’s destination, it is processed by the

application at that host. In order to process messages that are still in transit, ap-

plications can extend the overlay forwarder with an application-specific forwarding

extension, or application forwarder.

Plug Board is uniquely capable of supporting decomposed network services.

The control forwarder, overlay forwarder, and application are each forwarders; Plug

Board supports installing multiple forwarders. Plug Board supports using extensible

forwarders to create families of applications that extend the same overlay network.

It supports a programmable classifier that can match packets with the correct for-

warder based on overlay-specific and application-specific criteria. It also supports

multiple computation domains so that the forwarders can be executed in a domain

with the right balance of trust and performance.

4.2 Example Peer-to-peer Applications

This section presents concrete examples of the decomposition presented in the pre-

vious section. This section decomposes three overlay networks and some of their

associated services and recasts them in the final decomposition form above. Since

any of the earlier forms can be reconstructed by merging components from the final

form, these examples demonstrate that the entire decomposition process is feasible.

4.2. EXAMPLE PEER-TO-PEER APPLICATIONS 57

4.2.1 Pastry

Pastry [49] is a toolkit for building peer-to-peer applications. Each host in a Pastry

network is assigned a 128-bit identifier, which is interpreted as a number in base

2b where b is a parameter of the network. At each host, messages are forwarded

to a host whose identifier shares at least one more base-2b digit with the requested

destination than the local host. Eventually, the message arrives at the node in

the network whose identifier is the closest available to the requested destination.

Pastry’s routing behavior implies that messages are forwarded O(log2b N) times in

an N -host network, leading to remarkable scalability. Pastry defines protocols and

procedures to maintain network connectivity and routing, and it has an algorithm

specifically for forwarding data through the network. Pastry applications can make

use of the network and are involved in the forwarding of each packet.

Each of the preceding qualities of Pastry can be implemented in a separate

component, as depicted in Figure 4.5. The overlay daemon processes Pastry traffic

that is addressed to the local node on the Pastry network but is not specific to

the application (e.g., requests to join the Pastry network) and maintains heartbeat

signals to the hosts in the leaf set (i.e., the hosts with identifiers numerically close to

that of the local host). The overlay forwarder handles those messages for which the

local host knows of another host that has a closer identifier, regardless of whether

the messages are standard across all Pastry applications or are application-specific.

The overlay forwarder finds that host and sends it the message.

PAST [50] is an example decomposable application that uses Pastry. PAST

provides a persistent storage service using a Pastry overlay. The overlay daemon

and forwarder were already described. The PAST application provides the persistent

storage service by processing file insertions, lookups, deletions, and so on. PAST’s

application forwarder caches responses it sees in the local host’s storage and redirects

requests that can be satisfied from the cache to the local host.

4.2.2 Chord

Chord [58] is a scalable, distributed lookup service. It allows hosts to be added

and removed efficiently while the system is running and is robust in the presence

of host failures. Chord’s lookup algorithm guarantees a search time logarithmic in

4.2. EXAMPLE PEER-TO-PEER APPLICATIONS 58

the number of hosts in the network. The algorithm can be either iterative, with the

originating host querying each successive host, or recursive with each host locating

the next host that might be able to respond to a query and forwarding the query

to it. In its recursive form, Chord forms an overlay network that forwards queries

for the location of the object corresponding to the requested identifier.

In Chord, the overlay daemon processes join and leave requests from other hosts.

It maintains the information that each host uses to forward packets (e.g., the fin-

ger table) and notifies the application of changes in the set of keys for which it

is responsible. In the algorithm’s recursive form, the overlay forwarder processes

incoming queries and forwards them to the next host in the overlay whose identifier

most closely matches the requested identifier. The application transmits the data

associated with the query key to the host that initiated the search. In the basic

recursive Chord algorithm, there is no application forwarder as in Figure 4.4.

4.2.3 Gnutella

Gnutella [31] is a peer-to-peer application for sharing files. The network it creates

is unstructured; there is no clear relation between a file’s contents or attributes and

its location in the network. There is no routing protocol; hosts are aware only of

the small number of peers connected directly to them. All queries are broadcast

to the network with a counter indicating the maximum number of allowable hops.

Successful responses to queries are returned via the same path the original query

took. To prevent duplicate messages and forwarding loops, each packet is tagged

with an identifier. A host seeing packets with the same identifier more than once

removes the duplicate messages from the network. The same mechanism can remove

responses that were not generated by any request.

The decomposition for Gnutella is depicted in Figure 4.5. The overlay daemon

for a Gnutella network processes pings, that is, it handles joins to the network by

adding hosts to the list of connected peers. The overlay forwarder forwards queries

to all its other connected peers and returns responses to the port through which the

associated query originated. The application replies to successful queries with the

appropriate file information. The application forwarder diverts successful queries

to the local application and stops their forwarding.

4.3. INTERFACES 59

4.3 Interfaces

Given the decomposition from the previous section, this section now describes the

types of interfaces that each component imports from the other components and

exports to them. The example interfaces will use the type packet t to refer to

packets. The host system should provide methods to access and modify the contents

of the packet.

4.3.1 Overlay Daemon

As explained previously, the overlay daemon is responsible for maintaining the host’s

connection to the overlay. It maintains the host’s routing information, that is,

the host’s perception of the state of the overlay. Using Plug Board’s interfaces

(Table 3.1) the overlay daemon installs and removes overlay forwarders in response

to routing changes. The overlay daemon may also modify the state that the overlay

forwarders use in their operation. Specifically, the overlay daemon may update

the overlay forwarder’s forwarding table by adding, removing, or replacing an entry.

More generally, the overlay daemon may modify any parameter, e.g., type of service,

that the overlay forwarder associates with the forwarding of a particular class of

packets by using the following interface to the overlay forwarder:

bool UpdateEntry(void ∗ key, const char ∗ parameter, void ∗ value)

The overlay daemon must maintain proper forwarding during the presence of

error conditions in the network. For those error conditions that only the overlay

forwarder can detect, like corrupted or misrouted data, the overlay daemon should

export an error-reporting interface to the overlay forwarder. The error reporting

interface should include the type of error encountered, which is overlay-specific, and

the contents of the packet, including all its headers, like so:

void ForwardingError(int ErrorType, packet t packet)

4.3.2 Overlay Forwarder

The purpose of an overlay forwarder is to transmit a packet to the next host on the

forwarding path in the overlay. The process of forwarding can be described generally

4.3. INTERFACES 60

as having four steps. When a packet arrives at the host, the overlay forwarder first

computes the address of the next host in the overlay that should receive the packet.

Second, the overlay forwarder finds that host’s address in the underlay. Third, it

modifies the packet in an overlay-specific way and, fourth, sends it to the next host.

In the process of forwarding the packet, the overlay forwarder accesses some internal

state, typically a forwarding table. As noted before, the overlay forwarder should

provide an interface to the overlay daemon for modifying this state since this state

is directly affected by routing changes.

The overlay forwarder is an extensible forwarder. That is, the overlay forwarder

should call an application-specific extension function, the application forwarder, at

some point during the execution of the forwarding algorithm. The exact point in

the algorithm where the extension is called is discussed in Subsection 4.3.4. Since

the extension may modify the packet, the overlay forwarder should be able to detect

changes to the packet data and modify the data-dependent header fields to reflect

those changes.

4.3.3 Application

In many peer-to-peer networks, the application can use knowledge of the current

network topology to improve performance, scalability, or security. It is easy to

disseminate this information in an application that features a traditional, monolithic

design. In a decomposed service, however, the application does not have ready access

to the state of the network since that state is maintained by the overlay daemon.

The overlay daemon should therefore publish changes in the routing and forwarding

tables and provide an interface for subscribing to those updates. The interface can

be common to all overlay daemons, but the format of the data returned depends on

the particular daemon.

void SubscribeUpdates(void (∗updatefunction)(void∗))

Since the overlay daemon installs the overlay forwarders and the application may

extend the overlay forwarder, the overlay daemon should also export an interface for

adding extensions to the overlay forwarders. This interface can be standard across

all overlay daemons to take the extension which is then used in all of the overlay

forwarders associated with the application, for example:

4.3. INTERFACES 61

void RegisterExtension(void ∗ (∗extension)(packet t, void∗))

Note that the concrete type of the extension depends on the local Plug Board

implementation, in this case taking the packet and the address of the next hop

as in Subsection 4.3.4. This interface allows the application to modify forwarding

and makes the application simpler since it does not need to know how to install an

extended overlay forwarder directly.

4.3.4 Application Forwarder

Application-specific forwarding extensions, or application forwarders, extend overlay

forwarding in any of several ways. First, they may divert a packet to the local

application for further processing, implementing behavior similar to Pronto [26].

Second, they may reroute the packet to a host other than the one chosen by the

forwarding algorithm. Last, they may modify the packet before it is transmitted to

the next host on the forwarding path.

The ability to divert a packet from the data plane to the control plane is neces-

sary for when the application must be notified that a given packet transited the host

or for when the application forwarder decides to reroute a packet to the application

for local processing. In the first case, the application requires only a copy of the

message, in many cases including all of the packet’s headers. In the second case the

application requires only the payload of the packet, but since it might respond to

the sending host, it would probably require some of the header information as well.

The application forwarder should be able to affect forwarding by rerouting a

packet to an intermediate hop other than the one the overlay forwarder chose. As

discussed in Subsection 4.3.2, the forwarding process has a specific form: the for-

warder computes the next hop, translates that value to an underlay address, modifies

the packet, and sends it. In order to easily override the forwarding decision made by

the overlay forwarder, the application forwarder should be invoked after computing

the next hop, but before determining its address in the underlay. The application

forwarder can override the forwarding decision by providing a new overlay address.

Functions of type E, as described in Chapter 3, should therefore take the packet

and the overlay forwarder’s choice for a destination as inputs and return a new

destination, like so:

4.3. INTERFACES 62

void ∗ CallExtension(packet t packet, void ∗ nexthop)

The application forwarder should use only the address space of the overlay.

For example, an application forwarder executing in an IP forwarder would know

nothing about the physical networks below IP. However, the address space that it

uses should be enough to identify the next hop. For instance, a proxy, which is

just an application forwarder executing within an TCP or UDP forwarder, knows

IP addresses as well as port numbers since TCP and UDP rely on IP forming part

of the address. That is, the port numbers are not global addresses, but local to the

host.

Since the application forwarder must make decisions based on the contents of the

packet, it must have access to them. In order to provide the application forwarder

with as much information as possible and to make it that much more effective, it is

granted read access to the entire packet. Specifically, it should see the entire packet,

including the headers of the physical layer network. To allow applications such as

compression, the application forwarder should also be able to modify the packet.

However, it should be restricted to modifying just the payload, that is, anything

after the overlay’s header.

The application and application forwarder should have a direct communication

channel. The functionality required of this interface is by definition application

specific, so the only sufficiently general interface which a system may provide is

a communication channel for sending blocks of data between the application and

the application forwarder. For instance, the application forwarder may export an

interface like:

void GetData(void ∗ dataout, int ∗ length)

void SetData(void ∗ data, int length).

Even with the existence of this communication channel, application forwarders

should be designed with the understanding that they will execute in a separate

domain from the application. If the application forwarder needs to cross the bound-

ary to the application’s computation domain for every message, the advantage of

having the overlay forwarder in a separate domain is lost.

Diverting packets for local processing through the direct channel between the

application and application forwarder leads to a more complex application. Specifi-

4.3. INTERFACES 63

Component Function Parameters

Application
Overlay Daemon SubscribeUpdates UpdateFunction

RegisterExtension Extension
ForwardingError ErrorType

Packet
Overlay Forwarder UpdateEntry Key

Parameter
Value

Application Forwarder CallExtension Packet
NextHop

GetData DataOut
LengthOut

SetData DataIn
Length

Table 4.1: Interfaces exported by components of decomposed services.

cally, the application is now required to do any protocol processing that an incoming

message would usually undergo. To avoid this eventuality, the application forwarder

is able to divert a packet to the application’s network connection. This avoids the

classifier, but still executes Plug Board’s protocol processing. Note that this re-

quirement entails writing protocol processing code that does not assume the packet

is addressed to the receiving host.

Table 4.1 summarizes the interfaces that each component of the decomposed

network service imports from Plug Board and the other components. These inter-

faces can be implemented as simple, local function calls or remote procedure calls,

so components can be placed in different computation domains.

64

Chapter 5

Evaluation

This chapter concludes the evaluation of the proposed decomposition of network ser-

vices and the Plug Board architecture. It first presents two point-implementations

of Plug Board-conforming systems, each supporting multiple computation domains.

The first implementation leverages the SILK [9] variant of Scout to implement a

Plug Board that supports extensible IP forwarding and decomposed services in user

space and kernel space. The second implementation uses the VERA [29] architecture

to implement extensible IP forwarding in the Intel IXP1200 Ethernet Evaluation

Board. The chapter then describes and quantifies the benefits that a decomposed

overlay-network application can expect in different scenarios.

5.1 Plug Board on a PC

This section describes an implementation of Plug Board on a PC-class computer.

It starts by describing the implementation in general and concludes by detailing

two example applications using the Plug Board. The first example highlights Plug

Board’s extensible forwarders while the second highlights Plug Board’s support for

multiple computation domains.

5.1.1 General Architecture

Plug Board defines three components: forwarders, a classifier, and schedulers; the

PC-based implementation supports all three. It also supports installing forwarders

5.1. PLUG BOARD ON A PC 65

at run time, associating them with predicates, and encapsulating them in input and

output functions. The PC-based Plug Board implementation leverages the facilities

made available by Scout, the software-based extensible-router architecture described

in Chapter 2.

In this Plug Board implementation, forwarders are based on Scout paths. For-

warders are installed directly by name, which causes the Plug Board to create the

associated Scout path. The PC-based Plug Board has a programmable, hierarchical

classifier that chooses forwarders based on programmer-defined criteria instead of a

completely general predicate evaluator. Predicates, or more accurately classification

functions, are associated with the forwarders implicitly. As part of path creation,

each path is stored in at least one of the leaves of hierarchical classifier, associating

the path (forwarder) with a classification function (predicate). This Plug Board

also has a configurable output scheduler associated with each port that is specified

at configuration time.

Plug Board’s forwarder encapsulation leverages two Scout mechanisms. First,

Scout paths can be specified as concatenations of arbitrary stages that implement

compatible interfaces. To encapsulate a forwarder, the names of the desired input

and output functions are added to the forwarder’s named template. As a result,

the stages that implement those functions are added to the ends of the path imple-

menting the forwarder. Second, for forwarders implemented as single stages that

are encapsulated in pairs of input and output functions from the same module, the

Plug Board creates a single stage per pair of input and output functions. The stage

implementing the outermost encapsulating protocol is the first stage in the path.

It is followed by the other stages implementing progressively more deeply nested

encapsulating protocols. The stage implementing the forwarder is at the end of

the path. Since Scout paths are bidirectional, the encapsulated forwarder can for-

ward the packet by sending it on the same path on which it arrived in the opposite

direction.

The Plug Board implementation extends the existing Scout implementation in

two important ways. First, even though forwarders are based on Scout paths, they

are not chosen implicitly from a predefined set of possible paths. Instead, forwarders

are named explicitly during path creation. The name corresponds to a path template

which is used to create the path that implements the forwarder’s function. Second,

5.1. PLUG BOARD ON A PC 66

Output
Port 1

Ouput
Port 2

Input
Port

Standard Forwarder

Extensible Raw Forwarder

Figure 5.1: IP forwarders in the PC-based Plug Board.

Plug Board provides a configurable packet scheduler associated with each output.

Scout provided a scheduler that was fixed at compile time.

5.1.2 Example Application: Extensible IP Forwarding

One of the features of the Plug Board architecture is its ability to support exten-

sible forwarders. A high-performance extensible IP forwarder created for this Plug

Board implementation demonstrates that support. The forwarder implements Plug

Board’s interface for communication between the application and the application

forwarder. Additionally, several implemented extensions of the IP forwarding algo-

rithm demonstrate the utility of the extensible forwarder.

The PC-based Plug Board’s has separate IP forwarders for each ordered pair

of network ports; see Figure 5.1. The forwarders are encapsulated in two sets of

input and output functions. The inner encapsulating pair implements the Ethernet

protocol but can be replaced by any protocol that supports IP as a networking

protocol. The outer pair converts the raw packet data to a Scout Message structure

on input and to a Linux socket buffer (sk buff) on output. Processing a packet

to be forwarded through these separate input and output steps makes sense ar-

chitecturally, but negatively affects performance, so this Plug Board also provides

an optimized IP forwarder called a “raw” forwarder [46]. The raw IP forwarder

operates directly on sk buffs, supports only Ethernet-encapsulated, option-free IP

packets, and provides only minimal IP forwarding for those packets. To maintain

the high-performance that this forwarder can provide, the optimized forwarder is

selected only for those packets that have a cached next-hop address.

5.1. PLUG BOARD ON A PC 67

Function name Return type Parameters

ProgIP Install u32 bool (*f)(void * packet, void * data)

u8 datasize

struct ProgIPPathSpec * demux

ProgIP Remove bool u32 filter id

ProgIP SetData void u32 filter id

void * data

ProgIP GetData bool u32 filter id

void * data

Table 5.1: Interfaces for extending Scout’s fast IP forwarding path.

We created an extensible version of the Plug Board’s raw IP forwarder. To

support the extensible forwarder, the hierarchical classifier was modified to query

a table for an extension function after the appropriate raw IP forwarder has been

chosen. If an extension function has been registered for the packet’s IP addresses

and TCP port numbers, it is called before the IP forwarding function. Since the

next-hop destination for the packet is already known, this point corresponds the

one identified in Subsection 4.3.4 as the one at which extensions should be called.

The extension has full read and write access to the packet. Instead of returning a

new next-hop address, the extension function returns a boolean value to indicate

whether packet processing should continue. Extensions can therefore drop or modify

the packets, but not reroute them.

Extensions are assigned regions of reserved memory that they can use to store

arbitrary state. Applications can communicate with the extensions using the ProgIP

interface—an implementation of Plug Board’s interface between applications and

application forwarders; see Table 5.1. Applications use the ProgIP interface to read

and write a portion of the extension’s reserved memory. This interface also allows

applications to register extensions to extend any raw IP forwarder as dictated by

Subsection 4.3.3.

We have implemented a number of extensions to the Plug Board’s raw IP for-

warding path. The first extension is a simple timed blocking filter. This filter drops

all the packets between a pair of IP addresses and TCP ports. The application

installs this filter and removes it after a short time. This trivial extension demon-

strates the ability to install and remove extensions dynamically. The next extension,

5.1. PLUG BOARD ON A PC 68

a SYN monitor with a conditional blocker, demonstrates an extension’s use of its

stored state. The monitor counts the number of TCP SYN packets that it sees in

a period of time. If the number is greater than a certain threshold, the extension

will drop any further TCP packets containing SYNs. This extension can act as a

very simple firewall to disrupt denial of service (DoS) attacks against a particular

host. The last implemented example is a TCP splicer—an extension that splices

two TCP connections as described in Chapter 1. For each of these extensions, a

test program, the application, installs, removes, and modifies the operation of the

extension.

5.1.3 Example Application: Pastry

Plug Board serves as a platform for executing decomposed overlay networks. A

decomposed version of the Pastry peer-to-peer application toolkit demonstrates how

the PC-based Plug Board can support forwarders in two computation domains: user

space and kernel space. This implementation has three elements:

1. A user-space application that uses the Pastry network,

2. A user-space library that provides applications access to a Pastry network and

maintains the host’s connection to the Pastry network,

3. A Scout kernel module that implements Pastry forwarding.

The following description begins with the kernel-space components, continues with

the user-space library, and concludes with the application.

SILK is a Linux kernel module that provides a method for replacing a Linux

kernel’s networking stack with a Scout kernel. Since Scout kernels are extensible,

this embedding is a way of extending the Linux networking stack. The Pastry mod-

ule for SILK provides the Pastry input and output functions, the Pastry overlay

forwarder for the PC-based Plug Board, and the classification code for identifying

Pastry packets. The Pastry output function attaches a header to data messages

from the local host creating a packet suitable for transmission and forwarding in a

Pastry network. The header, shown in Figure 5.2, includes the version of the for-

mat, the message type (to distinguish between control and data messages), and the

5.1. PLUG BOARD ON A PC 69

3 3 2
9 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 21 0

2 2 2 2 2 2 12 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 08 7

2 2

Source Address

Source Address

Source Address

Source Address

Destination Address

Destination Address

Destination Address

Destination Address

Version Type

Data

Figure 5.2: The packet format for the decomposed implementation of Pastry

message’s source and destination addresses. This packet can then be encapsulated

in a transport or other networking protocol for transmission over the underlay. The

input function simply strips the header off the packet.

The implementation of the Pastry overlay forwarder is straightforward. The

Pastry algorithm chooses the host on the Pastry network whose identifier shares a

prefix with the packet’s destination identifier that is at least one digit longer than

the prefix the local host shares with it. In implementation, the Pastry forwarder

finds the length of prefix shared by the local host and the destination identifier. The

forwarder then uses that length and the value of the next digit in the destination

identifier as indexes into a table that contains Pastry identifiers. If an extension

function was configured, the forwarder then calls it with the value of this identifier.

When the extension function returns, the forwarder translates the returned Pastry

identifier into the address of a host on the underlay and sends the message to that

host.

The Pastry overlay forwarder is controlled by the Pastry overlay daemon, which

is implemented as a user-level library. The daemon uses SILK sockets [62] to com-

municate with the kernel-level Pastry components. SILK sockets are sockets of the

PF SILK protocol family that, when opened, create paths in the Scout Linux kernel

module. In the PC-based Plug Board, opening these sockets installs forwarders.

When an application activates the Pastry user-level library, the library installs

the overlay daemon into the Plug Board by opening a Pastry-specific SILK socket.

5.1. PLUG BOARD ON A PC 70

Computation Domain (Language) Forwarding Rate (packets/s)

User space (Java) 3 000
User space (C) 18 000
Kernel space (C) 25 000
Network Processor (IXP) 90 000

Table 5.2: Pastry forwarding performance.

The socket creation causes the configured SILK kernel to create a path containing

the Pastry input and output functions. The overlay daemon uses this socket to

send and receive control messages from the Pastry network. The overlay daemon

then installs the Pastry overlay forwarder by creating a second Pastry socket. The

overlay daemon uses the ioctl interface of the second socket to modify the overlay

forwarder’s forwarding table, leaf set (a set of nearby nodes), and address translation

table.

To create a connection to the Pastry network, applications invoke the Pastry

user-level library’s Pastry Init function. As a result of the initialization call, the

application receives a Pastry socket to use to communicate to other hosts in the

Pastry network. The socket implements a standard Unix recv and sendto inter-

face and encapsulates the data for transmission to Pastry hosts. If the application

needs network state information, it can register a callback function with the overlay

daemon to be invoked when the leaf set at the local node changes.

The advantage of having the Pastry forwarder in the kernel is the time gained by

avoiding a kernel-user crossing to bring a message to be forwarded up to user space.

In a SILK-based system passing a 100 B packet to user space and back from the

kernel can cost as much as 15 µs [53]. In testing using a PC based on a Pentium-II

processor operating at 450 MHz with a 100 Mbit/s Ethernet adapter, it was found

that a kernel-level overlay forwarder could forward about 25 000 Pastry messages

per second, spending 40 µs on each message. Just placing the overlay forwarder in

the kernel and removing the kernel-user crossing allows us to decrease forwarding

time by as much as 27%.

5.2. PLUG BOARD ON A NETWORK PROCESSOR 71

5.2 Plug Board on a Network Processor

Software-based routers have historically been built from PC-class machines with

conventional network interface cards (NICs) [32, 46]. However, the emergence of

network processors (NPs) [27, 28, 61] makes it possible to improve the performance

of software-based routers significantly at a modest increase in cost. Spalink et al. [55]

built a software-based router using the Intel IXP1200 Ethernet Evaluation Board,

a network interface card with an integrated StrongARM core and six network pro-

cessors called microengines. This router can forward minimum-sized, option-free

IP packets faster than the Ethernet ports on the IXP1200EEB can supply them,

leaving enough resources for extending the IP forwarding path. It can execute ex-

tensions that use up to 240 cycles, up to 24 memory accesses (each of 4 B), and

up to 10 registers per 64 B segment of a processed packet. Since this router has

the resources to permit extension, the network-processor-based Plug Board is based

on it. This Plug Board supports three computation domains, the host processor,

the StrongARM processor on the IXP1200, and the microengines. The following

discussion focuses on the microengine computation domain.

The NP-based Plug Board supports a single forwarder with many extensions

in the microengine computation domain. The base forwarder takes packets from

the input ports and places them on a queue for transmission to the IXP1200’s

StrongARM processor. The primary extension to this forwarder is IP forwarding.

The IP forwarding extension reroutes packets from the StrongARM’s queue to the

queues associated with the output ports. In a slight variation of the standard Plug

Board architecture, the NP-based Plug Board supports adding extensions to execute

before the existing extensions of the forwarder. It also supports creating a logical

copy of the extended forwarder to which a single extension can be added. Due to

resource limitations, this extended copy cannot be copied further. The classifier

chooses extended copies based on a packet’s IP addresses and TCP port numbers.

When a packet arrives at the host, the classifier selects an extended forwarder for it.

If there are no extended copies bound to the IP addresses and port numbers of the

packet, the classifier chooses the default extended forwarder. If there is an extension

bound to the packet’s flow, that extension executes before the others. After the last

5.2. PLUG BOARD ON A NETWORK PROCESSOR 72

extension terminates, the Plug Board places the packet on the queue indicated in

the result register.

Extensions to the base forwarder are code fragments written in the assembly lan-

guage of the IXP1200’s packet processing engines, the microengines. Each extension

has available to it the 64 B chunk of the packet that the microengine is processing,

a pointer to the extension’s reserved memory, and several registers containing the

microengine’s state and forwarding decision. An extension can modify the entire

contents of the available chunk. It can also reroute the packet to any of the IXP’s

output ports or divert the packet to the IXP’s StrongARM core.

The Plug Board forwarder in the microengine computation domain allows the

user to add extensions dynamically. The IXP compilation pipeline described by

Karlin is not sufficient for compiling IXP assembly suitable for dynamic loading.

The assembler for the IXP does not allow the user to assign some registers to named

variables manually and others automatically. Also, the IXP assembler provides no

method for learning the register assignments in the code that would call the exten-

sion. Thus, it is not possible to create a register-passing convention for extensions

unless the base code and all extensions use manual register assignment. Manually

assigning registers to variables is a demanding and error-prone task that is best

avoided.

To allow automatic register allocation with the ability to reserve some registers,

the compilation pipeline was extended by adding an additional register allocation

stage that operates between the preprocessor and the assembler. This allocator

keeps track of the values that are live at the point at which the forwarder calls

extensions. It then uses a simple, greedy graph coloring algorithm to assign physical

registers to the values. These registers are then reserved during the compilation of

extensions, and only the free registers are assigned for their execution.

We have created a command line tool to install extensions into the NP-based

Plug Board from the host processor. This tool communicates with a simple, special-

purpose operating system executing on the IXP1200’s StrongARM core. At system

initialization, the forwarder can only send packets to the host processor. Using the

command line tool, the user can install the IP forwarder and other extensions to

the IP forwarding function. Applications can communicate with extensions they

install using an interface nearly identical to the ProgIP interface described earlier.

5.2. PLUG BOARD ON A NETWORK PROCESSOR 73

All communication between the host processor and the IXP1200 is implemented

using the VERA device driver.

The advantage of the network-processor computation domain is that entering it

does not require crossing the PCI bus to the main processor on the PC. Karlin [29]

has measured the cost of crossing the PCI bus to and from the Intel IXP1200

Ethernet Evaluation Board. For a 100 B message, the total time to cross the PCI

bus in both directions is roughly 5 µs. Forwarding messages at the network card

allows the local node to forward at least 10 000 more packets each second. Our

implementation of the Pastry overlay forwarder for the IXP1200 (Appendix A) fits

within the cycle and memory budgets for processing at maximum line speeds. The

expected forwarding rate of the Pastry overlay forwarder in this context is therefore

90 000 Pastry messages per second as opposed to 25 000 through the host processor.

The additional gains above the minimally expected 10 000 are due to eliminating

the costs of handling the interrupt and finding the proper forwarder at the host

processor.

To prove that the cycle and memory budgets provided in the microengine com-

putation domain are sufficient for running a broad class of extensions, the exten-

sions described in the previous subsection were ported to operate in the NP-based

Plug Board. Additionally, minimal IP forwarding (denoted IP--) and the forward-

ing components of Chord and Pastry were also implemented. Table 5.3 lists the

computational resources required by the forwarders and extensions ported to the

NP-based Plug Board. It shows the number of bytes the forwarder accesses, the

number of operations it performs (including pipeline bubbles) and the number of

free registers it requires.

The forwarders and the extensions fit well within the cycle budget. IP-- forwards

IP packets without options whose next-hop address is cached in the forwarding table.

It requires only 43 cycles to recompute the TTL and the checksum and to locate

the forwarding table entry for the packet. It accesses 24 B of data of 14 B for the

new Ethernet addresses, 8 B to verify the cache entry, and 4 B for the address of

the output queue.

The Chord forwarder implements the recursive form of the Chord forwarding

algorithm for Chord packets encapsulated in IP packets. Chord forwarding takes

fewer than 135 cycles and accesses 56 B of memory. The relatively large memory

5.2. PLUG BOARD ON A NETWORK PROCESSOR 74

SRAM
Read/Write

(bytes)
Register Operations Registers Needed

IP-- 24 43 2
Chord 56 134 5
Pastry 20 50 3

TCP Splicer 24 49 7
Wavelet Dropper 4 34 5
ACK Monitor 24 26 6
SYN Monitor 8 13 3
Port Filter 20 51 5

Table 5.3: Memory use, instruction counts, and registers required for sample for-
warders and extensions for the NP-based Plug Board. Instruction counts include
exposed branch latencies.

requirements and large number of operations are due to Chord’s use of a 128-bit

address space. Since there are not enough free registers to hold the value during

the rest of the computation, the host’s own address must be loaded from memory

twice, accounting for 32 B of memory use. Any single arithmetic operation, such

as addition and subtraction, on each address takes four operations in hardware,

contributing to the higher operation count.

The Pastry forwarder implements the Pastry forwarding algorithm for Pastry

packets encapsulated in IP packets. The forwarder as implemented is for a Pastry

network with b = 8, but can be easily extended to any b that is a power of 2.

The forwarder uses an exclusive OR to find the first byte in which the destination

identifier and the local host’s address differ. The location and value of this byte are

then used to look up the address of the Pastry host that should receive the packet

next. Pastry forwarding requires only 50 cycles, mostly for finding the first byte in

which the 128-bit addresses differ.

Both the Chord and Pastry forwarders place the IP address of the next host to

receive the packet in the header of the encapsulating IP packet. The modified packet

is then processed by the IP-- forwarder, which forwards the packet to the proper

host. The instruction counts for the IP-- forwarder is not included in the individual

counts for Chord and Pastry. Never the less, even the sum of the computational

5.3. SCENARIOS 75

requirements of the Chord and IP forwarders is still less than budget imposed by

processing packets at line speeds.

The extensions also fit within the cycle budget; e.g. splicing TCP connections

takes fewer than 50 cycles while filtering access to any port in any one of five ranges

takes just 51 cycles. Appendix A contains additional details about the implementa-

tion of the forwarders and extensions. These examples demonstrate that it is feasible

to push extended forwarders to computation domains with limited resources.

5.3 Scenarios

This section examines the benefits made available by decomposing a network ser-

vice and placing the components in different computation domains. It considers

four scenarios for the placement of a network service. It describes each scenario

briefly, describes the benefits that the particular component placement provides,

and comments on the implementation of the interfaces between the components.

5.3.1 User Space and Kernel Space

A standard PC executing a modern operating system provides two computation

domains: user space and kernel space. Packets enter the kernel directly from the

network and may enter user space only by transiting through the kernel. In this

scenario, the overlay daemon and the application reside in user space while the

extended, application-specific, overlay forwarder can be loaded into the kernel.

This placement removes two domain crossings from the forwarding path of the

packets: to user space from kernel space and back to kernel space from user space.

The cost associated with these crossings, denoted tu, includes the time necessary to

copy the packet to user space, the time needed schedule the user space process to

run, the time until the process is actually run, and the time it takes the process to

call back into kernel space. Denote the time to forward the packet through user space

by T . Placing the overlay forwarder in kernel space reduces the forwarding latency

by tu and increases forwarding capacity by T−tu
T

percent. Further, the placement

frees C × tu processor cycles for the user where C is the processor’s clock speed.

5.3. SCENARIOS 76

Communication within a computation domain can be realized via direct func-

tion calls. Therefore, the application and the overlay daemon call each other di-

rectly, and the overlay forwarder calls the application forwarder directly. The kernel

must provide a mechanism to send to communicate across the kernel-user boundary.

Using this mechanism the two component pairs, the general components and the

application-specific ones, can implement the communication protocols outlined in

Chapter 4.

5.3.2 User Space, Kernel Space, and a Network Processor

Consider a PC whose network interface card contains a network processor. Packets

must transit the processor on the NIC to enter the kernel from the network. In

this scenario, the overlay and application forwarders can execute in the network

processor.

The placement removes the cost of crossing into the host processor from the

forwarding path of the packet. These costs, denoted th, include the time to copy

messages across the peripheral bus twice and the time the host requires to handle

the incoming data. Placing the overlay forwarder in the network processor reduces

forwarding latency further by th. Denote the host processor’s clock speed by C

and that of the network processor by Cn. Assuming the architectures of the two

processors can be accurately compared by processor speed, this placement increase

forwarding capacity by
T − tu − th

T

Cn

C
.

Additionally, the host processor now has C × T free cycles.

The interfaces between the component pairs in the previous subsection are the

same in this scenario. However, the implementation now requires that the data be

sent over the relatively slow peripheral bus to the network processor. If the kernel

supports communicating with the network processor directly, the interfaces can be

implemented by the control components. Otherwise the kernel must export the

same interfaces as in the previous scenario. The first choice means fewer changes in

the overlay daemon, the second choice provides for a more efficient implementation.

5.3. SCENARIOS 77

5.3.3 User’s Desktop and an Overlay Server

An overlay server is a computer that provides computation time and memory to

execute an overlay forwarder and associated application forwarders for users on the

same local-area network. It provides an additional computation domain in which to

place the overlay and application forwarders while the overlay daemon and applica-

tion remain on the user’s desktop PC. Consolidating all the LAN’s forwarders in one

reduces network traffic on the LAN and increases forwarding performance. Leaving

the application on the user’s desktop grants additional flexibility not available in

centrally managed software.

It is expected that an overlay server would possess a more powerful processor

and have better connectivity to the outside network than any of the users’ desktop

computers as it is a managed service not unlike a mail or web server. Denote the

difference in network latencies from the closest common router between the overlay

server and a user’s desktop by ∆t. If the overlay server’s processor speed is denoted

by Cs, the forwarding capacity increases by

T −∆t

T

Cs

C
.

In cases where forwarding capacity is bounded by the capacity of the network,

placing the overlay forwarder at the overlay server may increase forwarding capacity

by the difference of the capacities of the networks of the overlay server and user’s

desktop. The user’s desktop has C × T free cycles, and the network sees fewer

forwarded packets.

The communication interfaces among the component pairs are identical to those

in the previous scenario. However, since the components now reside on separate

machines, the interface would be implemented in a communication protocol like

RPC [59].

An alternative placement for the overlay daemon is at the overlay server. With

this placement overlay-specific traffic between overlay daemons would remain con-

fined to the overlay server, further reducing the traffic on the LAN. Communication

between the overlay daemons and the overlay forwarders, such as updates to the for-

warding tables, also remains within the overlay server. Only packets destined for the

5.3. SCENARIOS 78

application and communication between the overlay daemon and the application,

such changes to network topology, would be propagated to the user’s desktop.

This latter placement can be viewed as deriving from migration from the server

to the user’s desktop. Consider a large, public overlay network where users execute

applications. The overlay server would be part of this network, e.g. a PlanetLab

node, executing the overlay service. Decomposing the service allows offloading the

application to the user’s desktop thereby reducing the resources required on the

overlay server to support the service.

The crucial criterion is the identity of the scarce resource, network capacity or

computation at the server. In a department setting, it may be more important to

conserve the former. From the perspective of operating a network of overlay server,

the latter is more precious.

5.3.4 User’s Desktop and an ISP’s Overlay Server

Similar to the way single sites may offer an overlay server, ISPs may also offer overlay

servers to their clients. The ISP would likely not provide much additional storage

and execution time, so only the overlay forwarder, not the daemon, could exist at

the ISP’s overlay server. The interfaces between the components are identical to

those in previous scenario—even the implementation are similar.

Placing an overlay forwarder at the ISP reduces forwarding latency and increase

forwarding capacity. Denote the latency of the link between the ISP and its clients

as tc. Since forwarded traffic avoids the client’s site entirely, the forwarding latency

is reduced by 2tc. As before, a powerful overlay server increases forwarding capacity.

However, ISPs have significantly better connectivity than their clients. For example,

a client site with an internal 100 Mbit/s network may be connected to its ISP via a

T1 link with a capacity of 45 Mbit/s. If the overlay forwarder capacity was limited

by the network, executing the forwarder at the ISP can increase forwarding capacity

at low cost.

Two factors make this placement inappropriate for applications that require the

use of application forwarders. First, the ISP may be less willing than the user’s own

network administrators to operate an application forwarder. The ISP may require

more rigorous proof of a forwarder’s safety, or they may be unable to offer the mem-

5.3. SCENARIOS 79

ory and computation resource required for particular application forwarders. Sec-

ond, communication between the application forwarder at the ISP’s overlay server

and the application at the user’s desktop nearly negates the advantages of execut-

ing the overlay forwarder at the ISP. However, for applications that do not involve

executing an application forwarder, like those based on Chord, the ISP’s overlay

server would be effective.

80

Chapter 6

Conclusions

This dissertation shows how to create flexible and extensible network services. It

presents a terminology for describing routers in general and uses this terminology

to describe an architecture, Plug Board, that explicitly supports extensible network

services. It then shows how to decompose overlay services to best leverage the

extensibility of the Plug Board architecture, and finally describes and quantifies the

benefits available to a decomposed service.

6.1 Research Contribution

The main contribution of this dissertation is the identification of the underlying

similarities common to the great majority of network services and overlay networks.

To demonstrate that these similarities exist and are meaningful, the dissertation

(1) describes a simple architecture, Plug Board, that supports network services

in multiple computation domains, (2) shows how to decompose network services,

specifically overlay networks, to map onto this architecture, (3) demonstrates two

implementations of this architecture, and (4) describes the benefits made available

by leveraging the decomposition.

The Plug Board architecture is a synthesis of previous work in extensible router

architectures that supports extensible network services. Plug Board is an architec-

ture that permits more than one implementation and is therefore somewhat abstract.

The contribution of this architecture is to make clear the nature of components in

6.1. RESEARCH CONTRIBUTION 81

an extensible router and the relationships between them. In Plug Board, a powerful

classifier chooses a forwarder that operates on a packet and sends it to the classifier

associated with an output port. Forwarders can be fixed, extensible, or encapsu-

lated. These simple components are enough to support both existing and emergent

network services.

Decomposing an overlay network into component parts makes it more flexible,

easier to extend, and more amenable to optimization. This dissertation provides

guidelines for decomposing an overlay network into four components: an overlay

daemon to manage the overlay network, an application to offer the overlay’s ser-

vice, an extensible overlay forwarder to forward data through the overlay, and an

application-specific forwarding extension to tailor forwarding to the needs of the ap-

plication. Decomposing an application that uses an overlay network allows it to use

different overlays without major retooling. It allows the overlay and the application

to evolve independently. Placing individual components in separate computation

domains introduces optimizations by lowering the costs of processing packets that

are forwarded through the host.

Implementing Plug Board in two different hardware architectures, a PC-class

computer and a network processor, demonstrates the trade-offs inherent in choos-

ing a computation domain for a forwarder. On the PC-based Plug Board, the

additional performance gained by executing the forwarder in the kernel requires

trusting the forwarder to be safe. The additional benefits gained by executing the

forwarder in the network-processor-based Plug Board are balanced by requiring that

the forwarder be implemented in the assembly language of the network processor

and be small enough to fit a tight cycle budget. Several examples demonstrate

that the cycle budget available in the NP-based Plug Board is sufficient to allow

non-trivial forwarding at line speeds.

Placing components of an overlay network in physically separate computation

domains introduces many more potential optimizations. While this dissertation

does not describe and implement an example of this placement, it does demonstrate

the necessary interfaces that support such a placement. Further, it quantifies the

benefits made available and some of the limitations of placing components of an

overlay network in separate computation domains.

6.2. FUTURE WORK 82

6.2 Future Work

There are several directions in which the work presented here can be expanded.

First, the implementation of a Plug Board that supports many different computation

domains could be used to further validate decomposing networking services as a

method of improving efficiency. Specifically, the Plug Board implementations herein

described can be merged into a single Plug Board that supports extension in three

computation domains.

Second, Plug Board’s interfaces can be further refined. Plug Board’s interface

between an application and its forwarding extension is, by necessity, very general—it

provides for a simple bit pipe between the two. Cataloging a sufficiently useful sub-

set of interfaces would make decomposition guidelines more concrete which would

make decomposing services even easier. Plug Board’s interfaces for installing and

encapsulating packets could also be extended to provide some language-level guar-

antees that each input and output function has all the necessary data to complete

it operation. For example, the Ethernet output function must be supplied with the

correct destination address, the current interface does not enforce this requirement.

Finally, the classifier in the Plug Board implementations was implemented ei-

ther as a programmable hierarchical classifier or as a simple filter on IP addresses

and port numbers. Implementing an efficient, general-purpose predicate resolver

presents challenges in devising efficient algorithms. Merging the advances made

by packet classifiers into a general predicate resolver would allow greater flexibil-

ity in choosing packets, creating the opportunity for more finely defined network

extensions.

83

Appendix A

Code Listings

This appendix contains annotated code listings for the IXP1200 implementation of

example forwarders and extensions. All of the code fragments below use the packet

format shown in Figure A.1.

A.1 IP-- Forwarding

The following code fragment is an implementation of simple IP forwarding. This

forwarding does not operate in the presence of options and modifies the link-layer

header only if a valid value can be found in the forwarder’s cache. Each cache line

contains a pair of Ethernet addresses, a pair of IP addresses and a port number, as

shown in Figure A.2.

#include "libStd.uc"
#include "libVrp.uc"

;

;;; ipmm match

;;; IN: in cache ip2 --- The ip2 value in the cache

;;; IN: in cache d07 --- The d07 value in the cache

;;; IN: in d06 --- The d06 value in the packet

;;; IN: in d07 --- The d07 value in the packet

;;; IN: in d08 --- The d08 value in the packet

;;; Sets the condition code to 0 if the items in the packet match the

;;; items in the cache.

A.1. IP-- FORWARDING 84

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

D00 ETHDst0 ETHDst1 ETHDst2 ETHDst3
D01 ETHDst4 ETHDst5 ETHSrc0 ETHSrc1

D02 ETHSrc2 ETHSrc3 ETHSrc4 ETHSrc5

D03 ETHType0 ETHType1 Version Hdr Len TOS
D04 Length0 Length1 ID0 ID1

D05 Flags Offset0 Offset1 TTL Protocol
D06 Checksum0 Checksum1 IPSrc0 IPSrc1

D07 IPSrc2 IPSrc3 IPDst0 IPDst1
D08 IPDst2 IPDst3 TCPSrc0 TCPSrc1

D09 TCPDst0 TCPDst1 Seq0 Seq1

D10 Seq2 Seq3 Ack0 Ack1

D11 Ack2 Ack3 Hdr Len 0 0 U A P R S F
D12 Adver Win0 Adver Win1 Checksum0 Checksum1

D13 UrgPtr0 UrgPtr1

Figure A.1: Packet format for IXP1200 forwarders and extensions.

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 Ethernet Source
1 Ethernet Source Ethernet Destination
2 Ethernet Destination
3 IP Source (high bits) IP Destination (low bits)
4 IP Source (low bits) IP Destination (high bits)
5 Port Reserved
6 Reserved
7 Reserved

Figure A.2: Cache line layout for the IP-- forwarder.

A.1. IP-- FORWARDING 85

#macro ipmm_match [in_cache_ip2, in_cache_d07, in_d06, in_d07, in_d08]
.local match temp
; Get the values to cache format

combine_from_2[temp, in_d06, in_d08]
alu [temp, temp, XOR, in_cache_ip2] ; Compare 1

sa_debug_msg [temp]
alu [match, in_cache_d07, XOR, in_d07] ; Compare 2

sa_debug_msg [match]
; Set the condition code if both values matched

alu [--, match, OR, temp]
.endlocal ; temp match

#endm

;;; debug xfer

;;; IN: in num --- The number of transfer registers.

;;; Prints out the contents of in num sequentially numbered transfer

;;; registers.

#macro debug_xfer [in_num]
#define_eval count 0
#while count < in_num
sa_debug_msg [$xfer/**/count]
#define_eval count count + 1

#endloop
#undef count

#endm

;

;;; ipmm dec ttl

;;; IN/OUT: io ttl --- Long word 5 in the IP packet, contains TTL

;;; IN/OUT: io cksum --- Long word 6 in the IP Packet, contain checksum

;;; Decrement the TTL in the given register, assuming the register is long word

;;; 5 of the packet.

#macro ipmm_dec_ttl [io_ttl, io_cksum]
; Decrement TTL in place

alu_shf [io_ttl, io_ttl, -, 1, <<IP_TTL_OFFSET]
.local lsum
ntohl [lsum, io_cksum] ; Move the little endian

alu_shf [lsum, lsum, +, 1, <<24]
.if cout() ; If the cksum overflowed, Only for big endian

alu_shf [lsum, lsum, +, 1, <<16]; Add the overflow.

.endif
ntohl [io_cksum, lsum]

.endlocal
#endm

;;; ipmm link layer

;;; OUT: out d0 --- Longword 0 of the packet

A.1. IP-- FORWARDING 86

;;; OUT: out d1 --- Longword 1 of the packet

;;; OUT: out d2 --- Longword 2 of the packet

;;; IN: in ethsrc0 --- The new contents of longword 0

;;; IN: in ethsrc1 --- The new contents of longword 1

;;; IN: in ethsrc2 --- The new contents of longword 2

;;; Rewrite the link layer header of the IP packet from the contents of

;;; in ethsrc[012].

#macro ipmm_link_layer [out_d0, out_d1, out_d2, in_ethsrc0, in_ethsrc1,
in_ethsrc2]

alu [out_d0, --, B, in_ethsrc0]
alu [out_d1, --, B, in_ethsrc1]
alu [out_d2, --, B, in_ethsrc2]

#endm

;;;

;;; This is the IP-- function which will get loaded into the VRP

;;; See vrp.uc for most of the parameters.

;;; IN: IPhashValue --- The hashed value of the IP source and

;;; destination addresses.

;;; IN: funcAndData --- Contains the base address of the route cache.

;;;

#macro ipmm [vrpResult, srcPid, pfState, d00, d01, d02, d03, d04, d05, d06, d07
, d08, d09, d10, d11, d12, d13, d14, d15, IPhashValue, funcAndData]

sa_debug_msg [0x0000EEEA]

; Only forward for the first part of the packet.

br_bclr [pfState, 0, end_ipmm#], defer[3]

.local iptype
;; ETHType(IP) = 0x0800, IPv4, Hdrlen = 5 (long words == 20 bytes)

#if BIG_ENDIAN
set [iptype, 0x08004500]
#else
set [iptype, 0x450008]
#endif
alu [--, iptype, XOR, d03]

.endlocal ; iptype

;; Condition code 0 set IFF the packet is an IPv4 packet with no

;; options.

br!=0 [end_ipmm#]

;;

;; Look up the address in the route cache.

.local $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5
.xfer_order $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5
.local base offset
sa_debug_msg [IPhashValue]

A.2. CHORD 87

; Convert the hash value into an offset into the table.

ld_field_w_clr [offset, 0011, IPhashValue, <<3]
alu_shf [offset, offset, AND~, 1, <<15]
; Get the base address

get_field [funcAndData, 10, 19, base]
; Read the cache entry from SRAM[base + offset].

sram [read, $xfer0, base, offset, 6], ctx_swap
.endlocal ; base offset

debug_xfer [6]

; Make sure the cache entry matches

ipmm_match [$xfer3, $xfer4, d06, d07, d08]

br!=0 [end_ipmm#]
ld_field [vrpResult, 1000, $xfer5] ; Load the port

ipmm_dec_ttl [d05, d06] ; Decrement the TTL

; Copy the link layer

ipmm_link_layer [d00, d01, d02, $xfer0, $xfer1, $xfer2]

; Drop the packet if the TTL==0

br!=byte [d05, IP_TTL_BYTE, 0, end_ipmm#]

.endlocal ; $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5

ipmm_drop#:
vrp_packet_drop [vrpResult]

end_ipmm#:
sa_debug_msg [vrpResult]
sa_debug_msg [0xAEEE0000]
nop

#endm

A.2 Chord

Nodes on the Chord network maintain forwarding information in a table called the

finger table. Table A.1 defines the names and values for variables in the finger table.

For every key in a Chord network, the key’s successor node is responsible for it, so

packets in a Chord network are forwarded to the node that is the successor of the

identifier in the packet. Figure A.3, reproduced from [58], shows the iterative Chord

lookup algorithm. The recursive form of the algorithm forwards the packet every

A.2. CHORD 88

Notation Definition

finger [k].start (n + 2k−1) mod 2m for 1 ≤ k ≤ m
finger [k].interval [finger [k].start ,finger [k + 1].start)
finger [k].node first node ≥ n.finger [k].start
successor finger [1].node
predecessor the previous node on the identifier circle

Table A.1: Definitions of variables for node n, using m-bit identifiers.

time information is required from a node other than n, that is after each iteration

in find predecessor.

The Chord forwarding algorithm is not suitable for implementation within the

cycle budget of the NP-based Plug Board because of the large number of 128-bit

comparisons. Specifically, in the worst case the function closest preceding finger

requires 128 interval comparisons. Since the IXP1200’s registers are 32 bits wide,

each interval comparison requires four simple comparisons in hardware. Together,

these facts imply that the algorithm potentially requires 1024 comparisons, which

is beyond the budget of 240 instructions. This section presents an alternative for-

mulation of the algorithm and its implementation in IXP1200 assembly.

A.2.1 Algorithm

To properly formulate an alternative algorithm for Chord forwarding it is necessary

to examine the steps taken by a node executing the recursive form of Chord for-

warding. In the recursive form, any reference to a variable stored in another node

causes the packet to be forwarded to that node. The algorithm executed at each

node is:

Require: The local node n, and requested identifier nr

1: if nr ∈ (n,n.successor] then

2: forward to n.successor

3: else

4: n′ ← n

5: for i← 1 to m do

6: if finger [i].node ∈ (n,nr) then

A.2. CHORD 89

//ask node n to find id’s successor
n.find successor(id)

n′ = find predecessor(id);
return n′.successor;

//ask node n to find id’s predecessor
n.find predecessor(id)

n′ = n
while (id 6∈ (n ′,n ′.successor])

n′ = n′.closest preceding finger(id);
return n′;

//return closest finger preceding id
n.closest preceding finger(id)

for i = m downto 1
if finger [i].node ∈ (n, id)

return finger [i].node;
return n;

Figure A.3: The pseudocode to find the successor node of an identifier id. Remote
procedure calls and variable lookups are preceded by the remote node.

7: n′ ← finger [i].node

8: forward to n′

Note that the direction of the loop in line 5 has been reversed from the original to

simplify the algorithm’s presentation.

In the algorithm, there are at most 129 interval comparisons, one in line 1 and

up to 128 in the loop on line 5. Since all these comparisons have the local node

as the start of the interval, the interval comparisons can be converted to simple

comparisons by subtracting the local node’s identifier from the identifier in the

packet and from all the identifiers in the finger table. Renormalizing the identifiers

in this way reduces the number of comparisons by half.

Renormalizing the identifier space has the effect of rotating the local node’s view

of the identifier circle so that the local node has the identifier 0. This means that

the node identifiers that define the start of the intervals in the finger table take the

simplified form 2k−1. The binary representation of these node identifiers contain a

single one in position k, for 1 ≤ k ≤ m. Therefore, finding the interval on which

the requested identifier lies reduces to finding the index of the most significant bit

A.2. CHORD 90

set in the renormalized identifier. If the identifier of the node associated with this

interval is less than the requested identifier, that node is the closest preceding finger

and should receive the packet next.

Assuming the entire finger table has been appropriately renormalized, the refor-

mulated algorithm takes the following form:

Require: The local node, n, and requested identifier nr

nr′ ← nr − n

if nr < n.successor then

forward to n.successor

else

n′ ← n

k ← index of MSB(nr′)

for i← 1 to k do

if finger [i].node < nr′ then

n′ ← finger [i].node

forward to n′ + n

This algorithm has no interval comparisons, but it still potentially has 129 sim-

ple comparisons. The number of comparisons can be reduced further by intro-

ducing another entry in the finger table—the last pointer. Define finger [k].last

as finger [j].node for the largest j such that j < k and that finger [j].node 6=
finger [k].node. Intuitively, this node is the node in the finger table that directly

precedes finger [k].node. The value of the last node can be derived strictly from

information already in the finger table, so adding it does not change Chord’s pro-

tocols. To eliminate the last loop in the algorithm note that for k = MSB(nr′), if

finger [k].node ≥ nr′ then finger [k].last < nr since nr is on the interval k while

finger [k].last is on a preceding interval by definition. The final algorithm be-

comes:

Require: The local node, n, and requested identifier nr

nr′ ← nr − n

if nr′ < n.successor then

forward to n.successor

else

A.2. CHORD 91

n′ ← n

k ← index of MSB(nr′)

if finger [k].node < nr′ then

n′ ← finger [k].node

else

n′ ← finger [k].last

forward to n′ + n

The final algorithm has only two simple comparisons which should fit within the

NP-based Plug Board’s cycle budget. The only complication is the complexity

of finding the index of the most significant bit. A binary search would find the

index in roughly seven steps. Fortunately, the IXP1200 has a hardware instruction

specifically for this purpose which can be leveraged to improve performance even

further.

A.2.2 Implementation

This section contains an annotated code listing of the implementation of the Chord

forwarding algorithm for the IXP1200. The following are assumed

1. The forwarding algorithm will only be applied to packets that are not destined

to the local node.

2. The Chord protocol is encapsulated directly by IP and that the addresses are

readily available in the beginning of the packet.

3. The finger table contains the current node’s identifier and its additive inverse,

followed by 128 pairs of IP addresses.

; Include files containing useful macros

#include "libRegs.h"
#include "libVrp.uc"
#include "libStd.uc"

; Load the values of the predefined registers

regs_packet
regs_state

A.2. CHORD 92

#macro bit_swizzle [out_dst, in_src]
;; This code is from Microcode Programmer’s Reference Manual,

;; pg. 305. It reverses the order of the bits within each byte of

;; the register in src

.local temp mask

immed_w1 [mask, 0x0101]
immed_w0 [mask, 0x0101]

alu [temp, in_src, AND, mask]
alu_shf [out_dst, out_dst, OR, temp, <<rot7]
alu_shf [temp, in_src, AND, mask, <<rot1]
alu_shf [out_dst, out_dst, OR, temp, <<rot5]
alu_shf [temp, in_src, AND, mask, <<rot2]
alu_shf [out_dst, out_dst, OR, temp, <<rot3]
alu_shf [temp, in_src, AND, mask, <<rot3]
alu_shf [out_dst, out_dst, OR, temp, <<rot1]
alu_shf [temp, in_src, AND, mask, <<rot4]
alu_shf [out_dst, out_dst, OR, temp, >>rot1]
alu_shf [temp, in_src, AND, mask, <<rot5]
alu_shf [out_dst, out_dst, OR, temp, >>rot3]
alu_shf [temp, in_src, AND, mask, <<rot6]
alu_shf [out_dst, out_dst, OR, temp, >>rot5]
alu_shf [temp, in_src, AND, mask, <<rot7]
alu_shf [out_dst, out_dst, OR, temp, >>rot7]

.endlocal ; temp mask

#endm

;; The chord forwarding code begins here.

.local $xfer0 $xfer1 $xfer2 $xfer3
.xfer_order_rd $xfer0 $xfer1 $xfer2 $xfer3

; Load the additive inverse of the local node’s 128-bit id.

.local data_addr
alu_shf [data_addr, --, B, funcAndData, >>10]
sram [read, $xfer0, data_addr, 4, 4], ctx_swap

.endlocal

;; Assume the packet lists the destination id aligned properly

;; in d09, d10, d11, and d12. Convert to host representation.

ntohl [d12, d12]
ntohl [d11, d11]
ntohl [d10, d10]
ntohl [d09, d08]

;; Renormalize the address in the packet

alu [d12, d12, +, $xfer3]
alu [d11, d11, +carry, $xfer2]

A.2. CHORD 93

alu [d10, d10, +carry, $xfer1]
alu [d09, d09, +carry, $xfer0]

.endlocal ; $xfer0 $xfer1 $xfer2 $xfer3

.local bit_index
;; Find the index of the first bit in the address

.local difference
;; First find the correct 32-bit word

alu [difference, --, B, d09]
br!=0 [found_word#], defer[1]
set [bit_index, 0]

alu [difference, --, B, d10]
br!=0 [found_word#], defer[1]
alu_shf [bit_index, bit_index, +, 1, <<5]

alu [difference, --, B, d11]
br!=0 [found_word#], defer[1]
alu_shf [bit_index, bit_index, +, 1, <<5]

;; This word must contain the difference, otherwise the

;; packet would not be forwarded by this code

alu [difference, --, B, d12]
alu_shf [bit_index, bit_index, +, 1, <<5]

found_word#:
;; Now find the bit in the word. First make the packet

;; little endian byte order

#if BIG_ENDIAN
byte_swap [difference, difference]

#endif

;; Next put the bits within each byte in little endian order

.local altered_difference
bit_swizzle [altered_difference, difference]
alu [difference, --, B, altered_difference]

.endlocal

;; Use the hardware bit-set finder to find the first bit,

;; from the little end that is set.

find_bset [difference]
find_bset [difference, >>16]

.endlocal ; difference

nop
nop
nop
.local bit_index_lower
load_bset_result1 [bit_index_lower], clr_results

A.2. CHORD 94

;; Mask away the valid bit that, by assumption, must be

;; true.

alu [bit_index_lower, bit_index_lower, +8, 0]
alu [bit_index, bit_index, +, bit_index_lower]

.endlocal

;; Convert the index of the first bit into an offset into

;; memory

alu_shf [bit_index, 8, +, bit_index, <<3]

; Load the node ID and the IP addreses

.local $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5
.xfer_order_rd $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5

.local data_addr
alu_shf [data_addr, --, B, funcAndData, >>10]
sram [read, $xfer0, data_addr, bit_index, 6], ctx_swap

.endlocal

;; If finger [k].node < nr

alu [--, $xfer0, -, d09]
br<0 [use_ip_dst#]
br>0 [use_ip_alt#]

alu [--, $xfer1, -, d10]
br<0 [use_ip_dst#]
br>0 [use_ip_alt#]

alu [--, $xfer2, -, d11]
br<0 [use_ip_dst#]
br>0 [use_ip_alt#]

alu [--, $xfer3, -, d12]
br<0 [use_ip_dst#]
br [use_ip_alt#]

use_ip_dst#:
;; ...then use finger [k].node
replace_ip_address [d07, d08, d06, $xfer4]
br [chord_done#]

use_ip_alt#:
;; ...else use nr

replace_ip_address [d07, d08, d06, $xfer5]

.endlocal ; $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5
.endlocal

chord_done#:
;; Undo the rescaling. Load the local node’s id

A.3. PASTRY 95

.local $xfer0 $xfer1 $xfer2 $xfer3
.xfer_order_rd $xfer0 $xfer1 $xfer2 $xfer3

.local data_addr
alu_shf [data_addr, --, B, funcAndData, >>10]
sram [read, $xfer0, data_addr, 0, 4], ctx_swap

.endlocal

;; Add the 128-bit values.

alu [d12, d12, +, $xfer3]
alu [d11, d11, +carry, $xfer2]
alu [d10, d10, +carry, $xfer1]
alu [d09, d09, +carry, $xfer0]

ntohl [d12, d12]
ntohl [d11, d11]
ntohl [d10, d10]
ntohl [d09, d09]

.endlocal ; $xfer0 $xfer1 $xfer2 $xfer3

A.3 Pastry

The forwarder for the Pastry network is easy to implement within the cycle budget of

the NP-based Plug Board. The code in the listing makes the following assumptions:

1. On this Pastry network b = 8. That is, the Pastry addresses are interpreted

as 16-digit numbers in base 256.

2. The code will only be applied to packets that are not destined to the local node.

This restriction is enforceable by the classifier via two interval comparisons.

3. The Pastry protocol is encapsulated directly by IP and the addresses are read-

ily available in the beginning of the packet. Unlike the Pastry implementation

described before, the destination address appears before the source address.

#include "libRegs.h"
#include "libStd.uc"
#include "libVrp.uc"

#macro shift_column_index [io_columnidx]

A.3. PASTRY 96

#if BIG_ENDIAN
alu_shf [io_columnidx, --, B, io_columnidx, <<8]
#else
alu_shf [io_columnidx, --, B, io_columnidx, >>8]
#endif
#endm

regs_packet
regs_state

.local value
.local test_register byteCount
.local $xfer0 $xfer1 $xfer2 $xfer3
.xfer_order_rd $xfer0 $xfer1 $xfer2 $xfer3

; Read the node’s ID from memory.

.local data_addr
alu_shf [data_addr, --, B, funcAndData, >>10]
sram [read, $xfer0, data_addr, 0, 4], ctx_swap

.endlocal

;; Assume pastry packet lists destination first aligned

;; properly in d09, d10, d11, and d12.

;; Find the first bit in which the node’s ID differs from

;; the packet’s ID.

alu [test_register, d09, XOR, $xfer0]
br!=0 [found_first_set_bit#], defer[1]
alu [value, --, B, $xfer0]

alu [test_register, d10, XOR, $xfer1]
br!=0 [found_first_set_bit#], defer[2]
alu [byteCount, byteCount, +, 4]
alu [value, --, B, $xfer1]

alu [test_register, d11, XOR, $xfer2]
br!=0 [found_first_set_bit#], defer[2]
alu [byteCount, byteCount, +, 4]
alu [value, --, B, $xfer2]

alu [test_register, d12, XOR, $xfer3]
br=0 [pastry_done#], defer[2]
alu [byteCount, byteCount, +, 4]
alu [value, --, B, $xfer3]

.endlocal ; $xfer0--3

found_first_set_bit#:
; Find the byte in which this bit is set.

ld_field_w_clr [--, BYTEZERO, test_register], load_cc

A.4. TCP SPLICING 97

br!=0 [found_first_set_byte#]

ld_field_w_clr [--, BYTEONE, test_register], load_cc
br!=0 [found_first_set_byte#], defer[2]
shift_column_index [value]
alu [byteCount, byteCount, +, 1]

ld_field_w_clr [--, BYTETWO, test_register], load_cc
br!=0 [found_first_set_byte#], defer[2]
shift_column_index [value]
alu [byteCount, byteCount, +, 1]

shift_column_index [value]
alu [byteCount, byteCount, +, 1]

found_first_set_byte#:
;; Each entry in the table has only one value: the

;; destination address.

#if BIG_ENDIAN
alu_shf [value, 4, +, value, >>24]

#else
alu [value, 4, +8, value]

#endif

alu_shf [value, value, +, byteCount, <<8]
.endlocal ; test register byteCount

.local $xfer0
.local data_addr
alu_shf [data_addr, --, B, funcAndData, >>10]
sram [read, $xfer0, data_addr, value, 1]

.endlocal ; data addr

replace_ip_address [d07, d08, d06, $xfer0]

.endlocal ; $xfer0

.endlocal ; value

pastry_done#:

A.4 TCP Splicing

Splicing two TCP connections together requires replacing the IP addresses and TCP

port numbers of a packet, adjusting the sequence and acknowledgment numbers by

A.4. TCP SPLICING 98

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0

0 Difference of IP checksum IP source address (high bits)
1 IP source address (low bits) IP destination address (high bits)
2 IP destination address (low bits) TCP source port
3 TCP destination port Difference of TCP checksum
4 Sequence number difference
5 Acknowledgment number difference

Figure A.4: Data format for TCP splicer.

a known difference and recomputing the IP and TCP checksums to match the other

changes. The TCP splicer keeps a set of values for this purpose whose format is

given in Figure A.4.

#include "libRegs.h"
#include "libStd.uc"
#include "libVrp.uc"

;;;

; Recomputes the IP checksum for spliced packets. Must be called

; before changing the IP addresses in the packets. Uses incremental

; update and a precomuputed value.

#macro tcp_splice_ipcksum [d06, xfer0]
.local cksum diff
; Get the IP Checksum of the packet

load_upper_half [cksum, d06]

; The precomputed difference between the new and old check sums

load_upper_half [diff, xfer0]

; Recompute the checksum

alu [cksum, --, ~B, cksum]
alu [cksum, cksum, +, diff]
alu [cksum, cksum, +carry, 0]

; Place the checksum in the packet. This will overwrite half

; the IP address in the packet, but that will be overwritten

; anyway, and using alu or alu shf saves a cycle for the

; inversion.

#if BIG_ENDIAN
alu_shf [d06, --, ~B, cksum, <<16]

#else
alu [d06, --, ~B, cksum]

A.4. TCP SPLICING 99

#endif
.endlocal
#endm

; out = in + diff. Increment in and place the result in out. In is in host

; byte order, diff is in network byte order.

#macro tcp_splice_ninc [out, in, diff]
.local rev
ntohl [rev, in]
alu [rev, rev, +, diff]
ntohl [out, rev]

.endlocal
#endm

; Increment the ACK and SEQ fields of the TCP header.

#macro tcp_splice_seqack [seqout, seqin, seqdiff, ackout, ackin, ackdiff]
tcp_splice_ninc [seqout, seqin, seqdiff]
tcp_splice_ninc [ackout, ackin, ackdiff]
#endm

; Subtract in num from inout cksum using two’s complement subtraction

#macro tcp_splice_add_inv [inout_cksum, in_num]
.local inv
alu [inv, --, ~B, in_num]
alu [cksum, cksum, +, inv]
alu [inout_cksum, inout_cksum, +carry, 0]

.endlocal
#endm

; Recompute the TCP checksum

#macro tcp_splice_tcpcksum [d12, seq, newseq, ack, newack, xfer3]
.local cksum

tcp_splice_add_inv [cksum, seq]
tcp_splice_add_inv [cksum, ack]

load_lower_half [cksum, d12] ; Get the original checksum

.local diff
load_lower_half [diff, xfer3] ; Get the precomputed diffenence

;

; Replace the old bits with the new ones.

;

alu [cksum, cksum, +carry, diff]
.endlocal

alu [cksum, cksum, +carry, newseq]
alu [cksum, cksum, +carry, newack]

A.4. TCP SPLICING 100

; Add the upper half of cksum to the lower half.

.local upper
ld_field_w_clr [upper, 0011, cksum]
alu_shf [upper, upper, +carry, cksum, >>16]
; We need to get the top bit of upper

ld_field_w_clr [cksum, 0011, upper]
alu_shf [cksum, cksum, +16, upper, >>16]

.endlocal

store_lower_half [d12, cksum]; Store the checksum where it belongs

.endlocal
#endm

;; The splicing Code begins here

regs_state
regs_packet

.local $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5
.xfer_order $xfer0 $xfer1 $xfer2 $xfer3 $xfer4 $xfer5

.local addr
alu_shf [addr, --, B, funcAndData, >>10]
;; Defer the first instruction of ipcksum, it doesn’t rely on xfer

sram [read, $xfer0, addr, 0, 6], ctx_swap, defer[1]
.endlocal

;; First Recompute the IP checksum

tcp_splice_ipcksum [d06, $xfer0]

;; Next overwrite the values we need to change

ld_field [d06, LOWER_HALF, $xfer0]
ld_field [d07, ALL_BITS, $xfer1]
ld_field [d08, ALL_BITS, $xfer2]
ld_field [d09, UPPER_HALF, $xfer3]

;; Now the TCP checksum

.local seq ack newseq newack

combine_from_2 [seq, d09, d10]
combine_from_2_same_bank [ack, d10, d11]

tcp_splice_seqack [newseq, seq, $xfer4, newack, ack, $xfer5]
tcp_splice_tcpcksum [d12, seq, newseq, ack, newack, $xfer3]

; Use temporary register to permit automatic allocation

.local tmp
set [tmp, newseq]
ld_field [d09, UPPER_HALF, tmp, <<rot16]
ld_field [d10, LOWER_HALF, newseq, <<rot16]

A.5. WAVELET DROPPER 101

.endlocal

split_across_2 [d10, d11, newack]
.endlocal

.endlocal

A.5 Wavelet Dropper

The following extension implements part of the WaveVideo [20] system for dropping

video packets. It transforms the tag in the packet and uses the transformed tag as

an index to a table that contains boolean values indicating whether the packet

should be dropped. It is assumed that the packets are encapsulated in UDP and

that the tag is available immediately after the UDP header. The listing is based on

a September 2000 version of the WaveVideo system.

#include "libRegs.h"
#include "libVrp.uc"
#include "libStd.uc"

regs_packet
regs_state

;;; Places drop/no drop in the state variable then jumps to return addr.

.local tag tag8bit

; Load the value of the tag in the packet

;

load_lower_half[tag, d10]
store_upper_half[tag, d11]
ntohl [tag, tag]

;; The next 3 instructions execute regardless of the branch. This

;; causes no harm and improves performance.

; Branch if no scaling to be done.

br_bclr [tag, 23, end_wavelet_dropper#], defer[3]
;; Otherwise, transform the tag into an 8-bit tag (see Tag.c in

;; WaveVideo release.

; tag & SEQUENCENUMBER

ld_field [tag8bit, 0001, tag]

A.5. WAVELET DROPPER 102

; tag8bit |= ((tag & IFRAME) >> 16)

.local tmp
alu_shf [tmp, tag, AND, 1, <<31]
alu_shf [tag8bit, tag8bit, OR, tmp, >>16]

.endlocal ; tmp

; tag8bit |= ((tag & COLORMASK) << 13);

.local tmp
alu_shf [tmp, tag, AND, 3, <<8]
alu_shf [tag8bit, tag, OR, tmp, <<13]

.endlocal ; tmp

; tag8bit |= (((tag & DEPTH) >> 9) - ((tag & SIZE) >> 6));

.local tmp1 tmp2
alu_shf [tmp1, tag, AND, 7, <<27]
alu_shf [tmp1, --, B, tmp1, >>9]

alu_shf [tmp2, tag, AND, 7, <<24]

alu_shf [tmp2, tmp1, -, tmp2, >>6]
alu [tag8bit, tag8bit, OR, tmp2]

.endlocal ; tmp1 tmp2

; tag8bit |= ((((tag >> (((tag & DEPTH) >> 27) << 1))

; >> 8)

; & DIRECTION)

; << 16)

.local tmp
alu_shf [tmp, 0xE, AND, tag, >>26]
alu [--, tmp, B, 0]
alu_shf [tmp, --, B, tmp, >>indirect]
alu_shf [tmp, 0x3, AND, tmp, >>8]
alu_shf [tag8bit, tag8bit, OR, tmp, <<16]

.endlocal ; tmp

; tag8bit = (tag8bit >> 16) & 0x7f;

.local tmp
alu_shf [tmp, --, B, tag8bit, <<9]
alu_shf [tag8bit, --, B, tmp, >>25]

.endlocal ; tmp

;; Now that the tag has been transformed. Use the upper 6 bits

;; of the 8-bit tag as an index into a table.

.local $xfer tmp addr
alu_shf [tmp, --, B, tag8bit, >>2]
alu_shf [addr, --, B, funcAndData, >>10]
sram [read, $xfer, addr, tmp, 1], ctx_swap, defer[1]

A.6. ACK MONITOR 103

;; Use the last two bits of the 8 bit tag as an index into the

;; long word. The long word has 4, 8-bit fields. If the drop

;; if the field is 1.

alu_shf [tmp, 0x1F, AND, tag8bit, <<3]
alu [--, tmp, B, 0]
alu_shf [--, 0xF, AND, $xfer, >>indirect]

br=0 [end_wavelet_dropper#]
vrp_packet_drop [vrpResult]

.endlocal ; $xfer tmp

.endlocal ; tag tag8bit

end_wavelet_dropper#:
nop

A.6 ACK Monitor

The ACK Monitor counts repeated TCP acknowledgments seen on a connection. It

keeps a list of the last sixteen unique acknowledgment numbers and a count of how

many times each was seen.

#include "libRegs.h"
#include "libStd.uc"
#include "libVrp.uc"

regs_packet
regs_state

; The position of the ACK flag depends on byte order.

#if LITTLE_ENDIAN
#define TCP_ACK_OFFSET 28
#else
#define TCP_ACK_OFFSET 4
#endif

;; Skip processing if the packet is not a TCP packet or doesn’t

;; contain an acknowledgment

br!=byte [d5, IP_PROTO_BYTE, 6, end_ack_monitor#]
br_bclr [d11, TCP_ACK_OFFSET, end_ack_monitor#]

.local index acknum count tmp addr
.local $xfer0 $xfer1

A.6. ACK MONITOR 104

.xfer_order $xfer0 $xfer1
alu_shf [addr, --, B, funcAndData, >>10]
sram [read, $xfer0, addr, 0, 1], ctx_swap, defer[1]

; Load half the current ACK number into tmp during the branch

; shadow

load_lower_half [tmp, d10]

alu [index, --, B, $xfer0]

sram [read, $xfer0, addr, index, 2], ctx_swap, defer[1]

; Load the second half of the ACK number during another branch

; shadow.

store_lower_half [tmp, d11]; Do useful work

alu [acknum, --, B, $xfer0]
alu [count, --, B, $xfer1]

.endlocal

;; tmp now contains the ack number in the packet.

;; If ACK is repeated, branch to update

alu [acknum, tmp, XOR, acknum]
br=0 [ack_mon_update#], defer[1]

; set acknum to tmp during branch shadow

alu [acknum, --, B, tmp]
; update the index to count repeats of different ACK

alu [index, index, +4, 2]
alu [count, --, B, 0]

ack_mon_update#:

.local $xfer0 $xfer1
.xfer_order $xfer0 $xfer1
; Increment ACK count

alu [$xfer1, count, +, 1]
alu [$xfer0, --, B, acknum]
sram [write, $xfer0, addr, index, 2], ctx_swap

; Increment index of current ACK

alu [$xfer0, --, B, index]
sram [write, $xfer0, addr, 0, 1], ctx_swap

.endlocal

.endlocal
end_ack_monitor#:
nop

A.7. SYN MONITOR 105

A.7 SYN Monitor

The SYN counter counts the number of TCP packets with the SYN bit set.

#include "libRegs.h"
#include "libVrp.uc"

regs_packet
regs_state

;;; A SYN packet is identified by the SYN bit set in a TCP packet.

#if BIG_ENDIAN
#define TCP_SYN_OFFSET 1
#else
#define TCP_SYN_OFFSET 25
#endif

; Check the protocol number field in the IP packet

br!=byte [d5, IP_PROTO_BYTE, 6, end_syn_monitor#]

; Check for the SYN bit

br_bclr [d11, TCP_SYN_OFFSET, end_syn_monitor#]

; Read the counter from the memory. Increment it. Write the new

; value to the same location.

.local $count addr
alu_shf [addr, --, B, funcAndData, >>10]
sram [read, $count, state, 0, 1], ctx_swap
alu [$count, $count, + , 1]
sram [write, $count, funcAndData, 0, 1], ctx_swap

.endlocal

end_syn_monitor#:
nop

A.8 Port Filter

The port filter drops packets bound for a port in one of the five ranges indicated.

Note that the loop in the code is unrolled by the preprocessor so the compiled code

contains no backward branches.

#include "libRegs.h"
#include "libVrp.uc"

A.8. PORT FILTER 106

#include "libStd.uc"

regs_packet
regs_state

; Filter packets bound to the ports in the ranges indicated.

.local packet large tmp1 tmp2
.local $xfer0 $xfer1 $xfer2 $xfer3 $xfer4
.xfer_order $xfer0 $xfer1 $xfer2 $xfer3 $xfer4

; Load the restricted ranges.

alu_shf [tmp1, --, B, funcAndData, >>10]
sram [read, $xfer0, tmp1, 0, 5], ctx_swap, defer[1]

; Load the destination port in host order

load_upper_half_ntoh [packet, d09]

immed [large, 0xFFFF]

; For each of the 5 port ranges...

#define_eval __pair_num 0
#while (__pair_num < 5)
; If port > lower bound...

alu [tmp1, large, -, packet]
alu_shf [tmp1, tmp1, + , $xfer/**/__pair_num, >>16]

br_bclr [tmp1, 16, port_filter_drop#], defer[3]

; and port < upper bound. Use a local temporary variable to

; allowautomatic register allocation.

.local tmp
ld_field_w_clr [tmp2, 0011, $xfer/**/__pair_num]
alu [tmp, large, -, tmp2]
alu [tmp2, tmp, +, packet]

.endlocal
br_bclr [tmp2, 16, port_filter_drop#], defer[2]

#define_eval __pair_num __pair_num + 1
#endloop
#undef __pair_num

.endlocal
.endlocal
; For the last two defered instructions

nop
nop
br [port_filter_end#]

port_filter_drop#:
vrp_packet_drop [vrpResult]

A.8. PORT FILTER 107

port_filter_end#:
nop

108

Bibliography

[1] Internet Architecture Board. Internet Standard 9. File Transfer Protocol. Is
also RFC0959 [45].

[2] Internet Architecture Board. Internet Standard 7. Transmission Control
Protocol. Is also RFC0793 [44].

[3] Akamai Home Page. <URL:http://www.akamai.com/>, 2004.

[4] Active Network NodeOS Working Group. NodeOS Interface Specification.
Available as
<URL:http://www.cs.princeton.edu/nsg/papers/nodeos.ps>, Jan. 2000.

[5] D. S. Alexander, W. A. Arbaugh, M. W. Hicks, P. Kakkar, A. D. Keromytis,
J. T. Moore, C. A. Gunter, S. M. Nettles, and J. M. Smith. The SwitchWare
Active Network Architecture. IEEE Network, 12(3):29–36, May/June 1998.

[6] S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin. REM: Active Queue
Management. IEEE Network, May/June 2001.

[7] J. Aweya, M. Ouellette, D. Y. Montuno, and A. Chapman. A Control
Theoretic Approach to Active Queue Management. Computer Networks, 36,
2001.

[8] M. L. Bailey, B. Gopal, M. A. Pagels, L. L. Peterson, and P. Sarkar.
PATHFINDER: A Pattern-Based Packet Classifier. In Proceedings of the
First USENIX Symposium on Operating System Design and Implementation
(OSDI), pages 115–123, Monterey, CA USA, Nov. 1994. USENIX Association.

[9] A. Bavier, T. Voigt, M. Wawrzoniak, L. Peterson, and P. Gunningberg.
SILK: Scout Paths in the Linux Kernel. Technical Report 2002-009, Uppsala
University, Feb. 2002.

[10] A. Begel, S. McCanne, and S. L. Graham. BPF+: Exploiting Global
Data-flow Optimization in a Generalized Packet Filter Architecture. In
Proceedings of the Conference on Applications, Technologies, Architectures,

BIBLIOGRAPHY 109

and Protocols for Computer Communication, Cambridge, MA USA, Aug.
1999. ACM SIGCOMM.

[11] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczynski,
C. Chambers, and S. Eggers. Extensibility, Safety, and Performance in the
SPIN Operating System. In Proceedings of the Fifteenth ACM Symposium on
Operating System Principles, pages 267–284, Copper Mountain, CO USA,
Dec. 1995.

[12] P. Bhagwat, D. A. Maltz, and A. Segall. MSOCKS+: An Architecture for
Transport Layer Mobility. Computer Networks, 39(4):385–403, July 2002.

[13] D. D. Clark and W. Fang. Explicit Allocation of Best Effort Packet Delivery
Service. IEEE/ACM Transactions on Networking, Aug. 1998.

[14] B. Davie and Y. Rekhter. MPLS: Technology and Applications. Morgan
Kaufmann Publishers, Inc., 2000.

[15] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A
Software Architecture for Next Generation Routers. IEEE/ACM
Transactions on Networking, 8(1):2–15, Feb. 2000.

[16] S. Deering. Host extensions for IP multicasting. Request for Comments 1112,
Network Working Group, Aug. 1989.

[17] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. Journal of Internetworking Research and Experience,
1(1):3–26, Jan. 1990.

[18] P. Druschel and A. Rowstron. PAST: A Persistent and Anonymous Store. In
Proceedings of the Eighth Workshop on Hot Topics in Operating Systems
(HotOS–VIII). USENIX Association, May 2001.

[19] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An Operating
System Architecture for Application-Level Resource Management. In
Proceedings of the Fifteenth ACM Symposium on Operating System
Principles, pages 251–266, Copper Mountain, CO USA, Dec. 1995.

[20] G. Fankhauser, M. Dasen, N. Weiler, B. Plattner, and B. Stiller. The
WaveVideo System and Network Architecture: Design and Implementation.
Technical Report 44, Institute TIK, Gloriastrasse 35, 8092 Zürich,
Switzerland, June 1998.

BIBLIOGRAPHY 110

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol—HTTP/1.1. Request for
Comments 2616, Network Working Group, June 1999.

[22] S. Floyd and V. Jacobson. Random Early Detection Gateways for Congestion
Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, Aug.
1993.

[23] S. J. Friedman and K. J. Supowit. Finding the Optimal Variable Ordering for
Binary Decision Diagrams. In 24th ACM/IEEE Conference Proceedings on
Design Automation Conference, pages 348–356, Miami Beach, FL USA, June
1987.

[24] Y. Gottlieb and L. Peterson. A Comparative Study of Extensible Routers. In
2002 IEEE Open Architectures and Network Programming Proceedings, pages
51–62, New York, NY USA, June 2002.

[25] M. Hicks, P. Kakkar, J. T. Moore, C. A. Gunter, and S. Nettles. PLAN: A
Packet Language for Active Networks. In Proceedings of the Third
International Conference on Functional Programming Languages, pages
86–93, San Diego, CA USA, Sept. 1998. ACM SIGPLAN.

[26] G. Hjálmtýsson. The Pronto Platform: A Flexible Toolkit for Programming
Networks using a Commodity Operating System. In 2000 IEEE Third
Conference on Open Architectures and Network Programming Proceedings,
pages 98–107, Tel Aviv, Israel, Mar. 2000. IEEE Communications Society.

[27] IBM Microelectronics Division. IBM PowerNP NP4GS3 Network Processor
Solutions Product Overview, Apr. 2001.

[28] Intel Corporation. IXP1200 Network Processor Datasheet, Sept. 2000.

[29] S. C. Karlin. Embedded Computational Elements in Extensible Routers. PhD
thesis, Princeton University, Princeton, NJ USA, Jan. 2003.

[30] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In Proceedings of the ACM SIGCOMM
2002 Conference Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 89–102, Pittsburgh, PA USA, Aug. 2002.

[31] T. Klingberg and R. Manfredi. Gnutella 0.6.
<URL:http://groups.yahoo.com/group/the_gdf/files/Development/

GnutellaProtoco%l-v0.6-200206draft.txt>.

BIBLIOGRAPHY 111

[32] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems, 18(3):263–297,
Aug. 2000.

[33] T. Lavian and P. Y. Wang. Active Networking on a Programmable Network
Platform. In Hot Interconnects 7: A Symposium on High Performance
Interconnects, Stanford, CA USA, Aug. 1999. IEEE Computer Society.

[34] K. McCloghrie and M. Rose. Management Information Base for network
management of TCP/IP-based internets. Request for Comments 1156,
Network Working Group, May 1990.

[35] D. Mosberger and L. L. Peterson. Making Paths Explicit in the Scout
Operating System. In Proceedings of the Second USENIX Symposium
on Operating System Design and Implementation (OSDI), pages 153–167,
Oct. 1996.

[36] J. Moy. OSPF Version 2. Request for Comments 2328, Network Working
Group, Apr. 1998.

[37] B. Mukherjee, L. T. Heberlein, and K. N. Levitt. Network Intrusion
Detection. IEEE Network, 8(3):26–41, May/June 1994.

[38] K. Nichols and B. Carpenter. Definition of Differentiated Services Per
Domain Behaviors and Rules for their Specification. Request for Comments
3086, Network Working Group, Apr. 2001.

[39] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service. Request
for Comments 1546, Network Working Group, Nov. 1993.

[40] C. Perkins. IP Mobility Support. Request for Comments 2002, Network
Working Group, Oct. 1996.

[41] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet. In Proceedings of the
First ACM Workshop on Hot Topics in Networks (HotNets-I), pages 59–64,
Oct. 2002.

[42] J. Postel. User Datagram Protocol. Request for Comments 768, Network
Working Group, Aug. 1980.

[43] J. Postel. Internet Protocol. Request for Comments 791, Network Working
Group, Sept. 1981.

BIBLIOGRAPHY 112

[44] J. Postel. Transmission Control Protocol. Request for Comments 793,
Network Working Group, Sept. 1981.

[45] J. Postel and J. Reynolds. File Transfer Protocol. Request for Comments
959, Network Working Group, Oct. 1985.

[46] X. Qie, A. Bavier, L. Peterson, and S. Karlin. Scheduling Computations on a
Software-Based Router. In Proceedings of the ACM SIGMETRICS 2001
Conference, pages 13–24, June 2001.

[47] M. J. Ranum, K. Landfield, M. Stolarchuk, M. Sienkiewicz, A. Lambeth, and
E. Wall. Implementing a Generalized Tool For Network Monitoring. In
Proceedings of the Eleventh Systems Administration Conference (LISA ’97),
pages 1–8, San Diego, CA, Oct. 1997. USENIX Association.

[48] Y. Rekhter and T. Li. A Border Gateway Protocol 4 (BGP-4). Request for
Comments 1771, Network Working Group, Mar. 1995.

[49] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location
and Routing for Large-scale Peer-to-peer Systems. In IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware),
pages 329–350, Nov. 2001.

[50] A. Rowstron and P. Druschel. Storage Management and Caching in PAST, a
Large-scale, Persistent Peer-to-Peer Storage Utility. In Proceedings of the
Eighteenth ACM Symposium on Operating System Principles, pages 188–201,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

[51] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel. Scribe: The
Design of a Large-scale Event Notification Infrastructure. In J. Crowcroft and
M. Hofmann, editors, Networked Group Communication, Third International
COST264 Workshop (NGC’2001), volume 2233 of Lecture Notes in Computer
Science, pages 30–43, Nov. 2001.

[52] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical Network
Support for IP Traceback. In Proceedings of the ACM SIGCOMM 2000
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication, pages 295–306, Stockholm, Sweden, Aug. 2000.

[53] N. Shalaby, Y. Gottlieb, L. Peterson, and M. Wawrzoniak. Snow on Silk: A
NodeOS in the Linux Kernel. In Active Networks: IFIP-TC6 4th
International Working Conference, IWAN 2002, Zurich, Switzerland,
December 4–6, 2002, Proceedings, Lecture Notes in Computer Science, pages
1–19, Zürich, Switzerland, Dec. 2002. Springer.

BIBLIOGRAPHY 113

[54] M. Shreedar and G. Varghese. Efficient Fair Queueing Using Deficit
Round-Robin. IEEE/ACM Transactions on Networking, 4(3):375–385, June
1996.

[55] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a Robust
Software-Based Router Using Network Processors. In Proceedings of the
Eighteenth ACM Symposium on Operating System Principles, pages 216–229,
Chateau Lake Louise, Banff, Alberta, Canada, Oct. 2001.

[56] O. Spatscheck, J. Hansen, J. Hartman, and L. Peterson. Optimizing TCP
Forwarder Performance. Technical Report 89-6, Department of Computer
Science, University of Arizona, Feb. 1998.

[57] P. Srisuresh and M. Holdrege. IP Network Address Translator (NAT)
Terminology and Considerations. Request for Comments 2663, Network
Working Group, Aug. 1999.

[58] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In
Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 149–160,
San Diego, CA USA, Aug. 2001. ACM SIGCOMM.

[59] Sun Microsystems. RPC: Remote Procedure Call Protocol specification:
Version 2. Request for Comments 1057, Network Working Group, June 1988.

[60] J. Touch. Dynamic Internet Overlay Deployment and Management Using the
X-Bone. Computer Networks, 36(2):117–135, July 2001.

[61] Vitesse Semiconductor Corporation. IQ2000 Network Processor Product
Brief, 2000.

[62] M. Wawrzoniak, N. Shalaby, and L. Peterson. Intelligent Devices as
Symmetric Partners for End-to-end Data Flows. Technical Report
TR–642–02, Department of Computer Science, Princeton University, July
2002.

[63] P. Weis and X. Leroy. Le langage Caml. Dunod, 1999.

[64] D. Wetherall, J. Guttag, and D. Tennenhouse. ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols. In 1998 IEEE Open
Architectures and Network Programming, pages 117–129, San Francisco, CA
USA, Apr. 1998.

BIBLIOGRAPHY 114

[65] S. Yadav, S. Bakshi, D. Putzolu, and R. Yavatkar. The Phoenix Framework:
A Practical Architecture for Programmable Networks. Intel Technology
Journal, 3(3):1–7, Q3 1999.

[66] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New
Resource ReSerVation Protocol. IEEE Network, 7(5):8–18, Sept. 1993.

