
Nicephorus: Striking a Balance between the Recovery Capability and
the Overhead of Byzantine Detection

Ioannis Avramopoulos
�

Arvind Krishnamurthy
�

Hisashi Kobayashi
�

Randolph Wang
�

Abstract

Perimeter security mechanisms, such as firewalls, do not provide adequate protection once the adver-
sary has penetrated the perimeter either because the firewall was bypassed or because the adversary is an
insider trusted party. By gaining presence inside a communication network, even at a few locations (routers
and links) of strategic importance, the adversary gains the advantage to disrupt the operation of the whole
network, in the absence of suitable protection mechanisms.

In this paper, we contribute to protocols (that are termed Byzantine detection protocols) that enable a
network to identify the (initially unknown) locations of the adversary inside the network, so that they can
be subsequently bypassed, by improving their capability for recovery as well as their overhead. The fault
detection state that is obtained by Byzantine detection pertains to triplets of a link and its two adjacent routers
without any implication on the faultiness of individual elements of the triplet. Our first contribution is an
algorithm that estimates the degree of penetration of the adversary inside the network given this ambiguous
fault detection state and its application to the problem of balancing the performance of the detection protocol
with its recovery time capability (two parameters that, as we show, can be at a trade-off). Our second and
third contributions are on the Byzantine detection mechanisms. We present a generic mechanism that a
source router can use to securely obtain arbitrary router-specific feedback and a data forwarding protocol
with Byzantine detection capability that significantly improves the performance of previous proposals.

1 Introduction

Networks in operation and their network protocols have adequate, although by no means perfect, resilience
to fail-stop failures. However, they enjoy little to no protection against arbitrary (Byzantine) failures that may
occur because of human error (software bugs and misconfigurations) or malicious attacks by an adversary.
Byzantine failures can severely affect the availability of the network service.

One way to protect networks against attackers is by a two-layer approach. In the first layer, a firewall [5] is
deployed that makes it hard for malicious outsiders to hack into the network’s hosts and routers. In the second
layer, an Intrusion Detection System (IDS) is deployed at key places in the network that statistically analyzes
snooped traffic and raises alarms when intrusions are detected. This approach that does not take the dispositions
of the security of routing into account is not well-suited for detecting compromised routers because, first, the
IDS itself may be compromised, second, compromised routers can avoid the traffic collection points because
of the rich connectivity of the network, and, third, compromised routers can masquerade as other (non-faulty)
routers while generating traffic that passes through the collection points. We note, however, that IDSs which
are particularly designed to maintain the network’s availability in the presence of Byzantine failures have been
recently proposed in [16, 17].

A second approach to protecting networks from insider attacks is to secure topology or route discovery.
Several protocols have been proposed in the literature in this regard [8, 10–13, 18, 20, 24]. However, even if
topology discovery is secured, the adversary may not be deprived of its capability to, in part, prevent discovery
of non-faulty routes, deprave discovered routes with non-existent links, or position its routers in discovered
routes with the purpose of attracting data traffic in order to block it. We, therefore, argue that the protection of
data packet forwarding is of equal importance to the protection of topology discovery.

Byzantine detection [3, 4, 9] is a promising approach to deal with insider attacks mounted from initially
trusted routers. It uses a combination of destination acknowledgements, timeouts, fault announcements, and
appropriate authentication mechanisms so that either the normal flow of packets is not obstructed or that the

�
Dept. of Electrical Engineering, Princeton University. Email: � iavramop, hisashi � @princeton.edu�
Dept. of Computer Science, Yale University. Email: arvind@cs.yale.edu�
Dept. of Computer Science, Princeton University. Email: rywang@cs.princeton.edu

1

faulty or adversarial locations are identified at the granularity of a “link”. Byzantine detection is the approach
that we adopt in this paper in order to counter the aforementioned malicious routers that exhibit arbitrary
behavior.

In this paper, we make three distinct contributions. First, we attempt to dynamically balance the overhead
of Byzantine detection and the recovery capability (i.e., the capability to converge to non-faulty paths after
the adversary has disrupted communication). In this regard, we begin by noting that a previously proposed
Byzantine detection protocol can provide improved recovery capability as compared to a more basic form of
Byzantine detection, at the expense, however, of additional overhead. We, therefore, propose to utilize the
former protocol under an adversary with a large degree of penetration and the latter protocol when the threat
that the adversary poses is low. However, the degree of penetration of the adversary in the network is not
readily available from the state that Byzantine detection offers, which contains an ambiguity on the faultiness
of individual routers and links. We, thus, propose a mechanism that can estimate the threat that the adversary
poses to the packet delivery service and can switch between the two types of protocols based on this estimate.

Second, we design a mechanism that could be used by a source router to query all of the routers along a path
for some router-specific information in a secure and efficient manner. The source router can use this mechanism
to gather arbitrary feedback from each one of the routers, while being assured that the query mechanism by itself
has the Byzantine detection properties of being able to identify misbehaving elements.

Finally, we propose an efficient data forwarding mechanism that exhibits Byzantine detection properties and
uses the secure query mechanism for bootstrapping purposes. Our resulting protocol is more efficient than what
we had proposed in [3] and the efficiency is achieved without loss of recovery capability.

In our work, we do not place any restrictions on the attacks that the adversary may mount from the routers and
links that it controls. Consequently, our approach is relevant to the various kinds of Byzantine failures that occur
in operational fixed infrastructure networks [15, 23]. Such failures can have adverse impacts and also be time-
consuming to fix, and tools that provide resilience to such failures are, therefore, highly desirable. The tools
that we provide in this paper are also applicable to other types of networks, namely, overlay and wireless ad hoc.
Byzantine detection has the potential to provide recovery in highly adverse environments containing multiple
compromised routers that maximize their impact by, for example, announcing false connectivity information so
as to increase the volume of traffic that they receive and subsequently drop the received traffic.

2 Byzantine Detection Background

In this section we give background information on Byzantine detection that is required in the sections up to
Section 5. At Section 5 we give additional background information on Byzantine detection that is required in
subsequent sections.

2.1 A Definition of Byzantine Detection

Before we define Byzantine detection we give two other useful definitions. Given a network that consists of
routers and links connecting those routers, we define a nexus of the network as a triplet of two adjacent routers
and the link that connects them. We also call a packet drop innocuous, if it is not instigated by the adversary.
Wireless interference and congestion are reasons for innocuous drops.

We say that a data packet forwarding mechanism has Byzantine detection capability, if a source can monitor
the status of delivery of its data packets using destination ACKs and in the event of a packet delivery failure
the source can pinpoint a nexus that will be ascribed with the failure. This nexus must also satisfy the property
that at least one of its elements innocuously dropped the corresponding packet or its ACK or that at least one of
the elements of the nexus is faulty or Byzantine. A basic form of Byzantine detection achieves this by a com-
bination of destination acknowledgements, timeouts (that are set at the source and intermediate routers), fault
announcements (FAs) (that are released and propagated toward the source on timeout expiration by intermediate
routers), and appropriate authentication mechanisms [3, 9].

Note that if a nexus has been detected as culpable by Byzantine detection, there is no implication on the
culpability of the individual components of the nexus. We are not aware of any fault detection mechanism that
can, in general, ascribe failures to individuals routers or communication links given the presence of malicious
routers in the network. Thus, fault detection state obtained by Byzantine detection entails ambiguity regarding
faultiness of individual routers and links.

2

2.2 Balancing Performance and Recovery Time

Byzantine detection mitigates the damage that the adversary can inflict to source-destination pairs that are
connected by a non-faulty path; without any mechanism to identify and bypass locations controlled by the
adversary, even such pairs could be deprived of their ability to communicate. However, Byzantine detection
does not abate any damage that the adversary can inflict to those pairs. In particular, the adversary can try to
decelerate the convergence to non-faulty paths so as to prolong the service disruption. As a defense mechanism
against such attacks we will first present a protocol that offers faster recovery capability at the expense of
additional per-packet overhead. We will then propose a rule for deciding when this protocol should be enabled.

2.3 On the Time-Optimal Protocol of Herzberg and Kutten

In [9] Herzberg and Kutten presented a Byzantine detection protocol in which every downstream router
is required to acknowledge each packet upon reception (compare this with the single destination ACK of the
basic form of Byzantine detection of Section 2.1) and in which the source and intermediate routers set multiple
timeouts to receive the ACKs of all downstream routers. If any timeout fires, then an FA is propagated upstream.
This protocol was termed time-optimal as the progress of the packet is continuously monitored and, therefore,
if the packet is dropped at a router, then the ACKs of its downstream routers will not follow. In this paper, we
utilize this time-optimal protocol in order to improve the worst-case recovery time of Nicephorus.

In this regard, we observe that an adversarial router that normally forwards data packets but drops destination
ACKs can delay the detection of the corresponding drop by the source. This strategy would seem plausible in
order to delay recovery; however, by adopting this strategy, the adversary does not obstruct the flow of packets
to the destination. Assuming that the source will continue its effort to find a workable route to the destination, on
successful discovery of such route, it will be able to query the destination on which packets were successfully
delivered and, thus, it will not have to retransmit those packets. The time-optimal protocol of Herzberg and
Kutten, therefore, seems to be maximizing the worst-case throughput during the recovery period.

3 A Metric of the Threat of the Adversary

In this section, we propose a decision rule for enabling the aforementioned time-optimal Byzantine detection
protocol. We base the decision on an estimate of the number of faulty network elements (i.e., routers and
communication links). If the estimate is low, then the protocol that is outlined in Section 2.1 will be preferable,
whereas, if the estimate is high, then the time-optimal protocol of Section 2.3 will be preferable. Specifying an
exact threshold of the decision rule is not within the scope of this paper.

Without a-priori information on the faultiness of network elements, the fault detection state, i.e., the collec-
tion of detected faulty nexuses, is the only information to derive such an estimate from. The following three
choices seem natural to use as the estimate: a) the maximum number of elements that explain the fault detection
state, b) the number of detected faulty nexuses, or c) the minimum number of elements that explain the fault
detection state.

However, the number of faulty nexuses can be considerably larger than the number of faulty routers, since if
a router is faulty, then so are all of its incident nexuses. Thus, the first two approaches would tend to exaggerate
the adversary’s potential to inflict damage. Furthermore, if fault detection state is shared among sources, the
first two choices would give even to an adversary that controls a few routers the capability to coerce a high
overhead protection mechanism by spuriously announcing a large number of nexuses as faulty.

We, therefore, adopt the third measure and estimate the threat that the adversary poses by the minimum
number of elements that explain the fault detection state, which is obtained at any given router by including
the nexuses that this router has detected as faulty as well as the nexuses that other routers have announced as
faulty. Note that this measure does not give to adversarial routers the opportunity to manipulate their ability
to announce non-faulty nexuses as faulty so that the higher overhead protection mechanism would be activated
even if the threat is low. We will show in the next section that this minimum number of elements is equal to the
minimum number of routers that explain the fault detection state assuming that communication links are not
faulty.

The merits of estimating the number of faulty elements by the minimum number of routers that explains the
fault detection state for the purposes of enabling the time-optimal protocol are the following:

1. The minimum number of routers that explains the fault detection state is a lower bound on the number
of faulty elements in the network. An adversary that has already compromised a considerable number

3

of routers is a capable adversary that has the potential to increase the degree of its penetration. Under
such a sophisticated attack, non-faulty routers would prefer not to severely delay the establishment of
communication, at the expense of lower performance, from a high quality connection that would need a
large amount of time to be established.

2. Byzantine detection provides fault detection state one nexus at a time and, therefore, the fault detection
state will most of the time be partial (it will be complete only if all the nexuses of faulty routers have
been detected as faulty). An estimate of the faulty routers can, therefore, be used to project the potential
future damage.

3. Since faulty routers can misbehave selectively, by sharing fault detection states among different sources
and estimating the number of faulty routers from the cumulative state, sources can project potential
future damage. Note that this estimate protects non-faulty routers from spurious announcements made
by faulty routers that have the purpose of forcing non-faulty routers to adopt higher overhead protection
mechanisms under an attack with low impact. For example, if a faulty router announces a large number
of non-faulty nexuses as faulty, then with our estimation procedure it is more likely that the faulty router
will be estimated as faulty rather than the non-faulty routers in the spuriously announced nexuses.

4 Obtaining Bounds on the Number of Faulty Elements

The fault knowledge that is obtained by Byzantine detection contains a fundamental ambiguity: The detec-
tion of a faulty nexus implies that the corresponding upstream router, or link, or downstream router is faulty
without any implication about the faultiness of a specific element of the nexus. Thus, a given set of detected
faulty nexuses can be explained by many possible faulty configurations; in other words, a given set of faulty
routers and links can give rise to many possible collections of detected faulty nexuses.

Ideally, we would like to be able to identify precisely which elements are faulty in a faulty configuration.
Using currently known techniques this is impossible in the presence of Byzantine elements. Our approach in
this section is to estimate the number of faulty elements in a faulty configuration using the observations obtained
from Byzantine detection. More specifically, we present algorithms for obtaining lower bounds on the number
of faulty elements in the network. This information can be useful in estimating the degree of penetration of the
adversary and, thus, balancing performance with recovery time as pointed out in the previous section.

4.1 Definitions and Notation

We represent a communication network with a graph ���������
	 , where � is the set of vertices (routers) and
� is the set of edges (links). We assume that the edges of the graph are undirected. We define a faulty element
configuration � of � to be a function �������������������� . If ����� 	�!"� then � is assumed faulty and non-faulty
otherwise. We similarly define a faulty router configuration # of � to be a function #��$�"����������� . We define
the degree %'& of a faulty element configuration � by the following sum: %(&
) *+-,/.1032 ����� 	 . The degree %54 of a

faulty router configuration # is defined similarly.
We denote a nexus identified by source 6 as 67�98;:=<=)>�?63�@81���A81�@<B	 �@<C� . We call the collection D5E of

detected faulty nexuses by a source 6 the local fault detection state of that source: DFE9!G�?6H�I8J:K<ML nexus 8J:
< is detected as faulty by 6I� .

We allow sharing of the individual D collections between different sources. Assume that source 6 has
received the local fault detection states from a subset N of the sources in the network. We call the collective
information at 6 that results from this sharing the extended fault detection state DPOE of 6 : DQOE !RDSET�UDQV , where
DQVW!X�ZY , V5D[Y .

We say that a faulty element configuration � explains the local fault detection state D'E of source 6 , if 6�
8J:K<�\]DSE9^_���A8M	9!"� , or ���A8T�@<�	�!"� , or ���A<�	9!"� (where the or is inclusive).

We say that a faulty router configuration # explains the local fault detection state D'E of source 6 , if 6P�38`:a<�\
DQEb^c#'�A8M	9!"� , or #M�A<�	9!�� .

We say that a faulty element configuration � explains the extended fault detection state DdOE of source 6 , if

1. 6F�e8J:K<J\]DSE`^_���A8f	�!"� , or ���A8T�@<�	�!�� , or ���A<B	�!"� .
2. gh�I8�:h<i\]DQVW^j���kg1	�!"� , or ���A8f	�!"� , or ���A81�@<�	9!"� , or ���A<B	�!"� .

4

We say that a faulty router configuration # explains the extended fault detection state D O E of source 6 , if

1. 6F�e8J:K<J\]DSE`^c#'�A8f	9!"� , or #'�A<�	`!"� .
2. gh�I8�:h<i\]DQVW^>#'�kg1	�!"� , or #'�A8M	9!"� , or #'�A<�	`!"� .

4.2 A Pessimistic Estimate of the Number of Faulty Elements

From a pessimistic point of view, a source 6 can consider all elements that appear in its local fault detection
state DSE as faulty. This faulty configuration explains the local fault detection state and its degree is

%d&H!
����� � �

E�� ���	� ,�
	� 6F�I8�:;<���S6
�����

Assuming that all faulty routers and links appear in the local fault detection state of 6 , then %Z& is also an
upper bound on the number of faulty elements. Without making this assumption it is not possible to obtain an
upper bound on the number of faulty elements since faulty routers and links may have not yet exhibited any
misbehavior.

If 6 has obtained the detection states of other sources, then a pessimistic estimate of the number of faulty
elements can be obtained by considering all elements that appear in the extended fault detection state DHOE as
faulty. This faulty configuration explains the extended fault detection state and its degree is

%d&��f! ������ � �
E�� ���	� ,�
�� 6F�I8�:;<� � �� �

Y�� ���	� ,�
	� gh�I8J:K<�����Q6
������

Note that %'&�� %d& � with the equality holding when D V is empty. The disadvantage of estimating the number
of faulty elements with %f& � , rather than %M& , is that even a small number of faulty sources can announce a large
number of faulty nexuses and, therefore, the estimate will be unrealistic.

4.3 A Lower Bound from Local Fault Detection State

From an optimistic point of view, a source 6 can estimate the number of faulty elements by computing a
faulty configuration that explains the local (or extended fault detection state) and whose degree is minimal. We
will first describe how to obtain this estimate from the local fault detection state; the procedure for obtaining an
estimate from the extended fault detection state can be found in the next section. We are going to show that the
lower bound on the number of faulty elements, given local fault detection state, can be obtained by a solution of
the minimum vertex cover problem [6] in a reduced form of graph � . In this section we will state the theorems;
the proofs can be found in the Appendix.

We are given a graph representation ���������
	 of the network, a source/vertex 6 in the graph, and its local
fault detection state D E .
Theorem 1. It holds that

%d& � ! �! #"$ &�% &�&('()+* ,�-/.�0
���1 %d&F! �2 #"$ 4 % 4 &3'4)+* ,�-5.�0
���1 %C4 ! %C4 �

This theorem states that the minimum degree of a faulty router configuration is equal to the minimum degree
of a faulty element configuration and, thus, the latter can be computed by computing the former.

Definition 1 (Vertex Cover). A vertex cover for � is a subset �26 of � such that, for each edge �A81�@<B	S\]� , at
least one of 8 and < belongs to �76 .

The following theorem specifies the reduced form of graph � whose minimum vertex cover is a faulty router
configuration.

Theorem 2. Consider the graph �
�� that consists of all the edges, and their incident vertices, that belong to
nexuses in D E .

1. If a faulty router configuration # explains D E , then ��8]�/#'�A8f	9!"��� is a vertex cover of �
 � .
5

2. If � 6
 � is a vertex cover of �
�� , then the faulty configuration # in which #'�A8M	Q! �/�@8 \K� 6
 � and #'�A8M	Q!
���@8 �\]� 6
 � explains DSE .

Corollary 1. The minimum vertex cover of �
	� is a lower bound on the number of faulty elements in the
network.

The minimum vertex cover problem is an NP-hard problem that admits, however, efficient approximate
solutions. In particular, it can be approximated within �a:������	����� % . %

����� % . % [6].

4.4 A Lower Bound from Extended Fault Detection State

If extended fault detection state is available at the source, then it is not hard to show similar to the above
development that a faulty element configuration with minimal degree can be obtained by a solution of the
minimum set cover problem [1], which is described below.

Definition 2 (Set Cover). Given a collection � of subsets of a finite set � , a set cover of � is a subset ������
such that every element in � belongs to at least one member of �� .

The minimum set cover problem is approximable within �����9������� L�� L � � 	 [6, 26], where � is the maximum
number of occurrences of some element of � in the subsets belonging to the collection � .

Given the extended fault detection state D O E of 6 , one could reduce it to a minimum set cover problem.
Consider the set � which is constructed as follows: If 6P�e8P:�<J\]D E , then ��8T�@<C� \�� . Also if g;�e8P:�<�\]DSV ,
then ��gM�@81�@<5�W\ � . We then construct � in the following manner. For each router !J\;� , there is a subset �#"
that contains all nexuses containing ! and also those nexuses that were identified by ! as defective. Formally,
�$"S!G�%�&"IL !�\��&"����&" \��F� .

Corollary 2. The size of the minimum set cover of � using the elements of � is equal to the degree of a
minimum faulty configuration that explains the extended fault detection state.

Note that the number of occurrences of an element �'"H\(� in the collection � is at most three. Therefore,
the minimum set cover problem could be solved with a polynomial-time approximation algorithm that achieves
a factor of three approximation. Also,

Corollary 3. The degree of a minimum faulty configuration is approximable within a factor of three.

5 Byzantine Detection Background II

In this section we provide additional background information on Byzantine detection that is necessary in the
development that follows.

5.1 Elements of a Byzantine Detection Protocol

We now outline the mechanisms that are required to enable Byzantine detection. A protocol with Byzantine
detection properties should be capable of identifying a misbehaving nexus (comprising of a pair of adjacent
routers) when packets are tampered with or dropped. This basic requirement necessitates the following sec-
ondary requirements for protocols that guarantee Byzantine detection.

R1: The destination node needs to acknowledge the successful reception of packets. Drops could be identified
by routers that are upstream from the drop location using timeouts. When a packet drop is detected, a fault
announcement (FA) needs to be transmitted back to the source in order to pinpoint the failure location.

R2: Locations where packets are modified need to be identified precisely. If a packet is modified, the router
that is immediately downstream needs to recognize the modification and drop the packet; the router that
is upstream to the point of modification could then suffer a timeout and transmit an FA. Note that routers
that are downstream from a Byzantine node cannot expect to reliably communicate FAs to the source due
to the presence of the intervening Byzantine node.

R3: Consider a packet whose integrity verifies at some non-faulty node. If the packet remains unmodified,
then it should pass the integrity checks at all other non-faulty downstream routers. In other words, a
Byzantine node should not be able to modify the packet (or its authentication tags) in a manner such that
it passes verification only at some subset of the non-faulty routers.

6

R4: ACKs and FA must be impractical to forge. ACK forgeries must be prevented so that malicious routers
cannot deceive the source that the destination is receiving dropped packets. FA forgeries must be pre-
vented so that malicious routers cannot deceive the source that faults are occurring in non-faulty nexuses.

R5: ACKs and FAs must be verified by every node that is upstream from the node generating it. Otherwise,
ACK and FA forgeries will be detected only at the source, thereby preventing the detection of Byzantine
nodes.

R6: If an ACK or FA verifies at one non-faulty router in the path, then it must verify at all other upstream non-
faulty routers in the path. Otherwise, the adversary would gain the opportunity to discredit non-faulty
nexuses by causing the FA to be deemed valid at a non-faulty router and invalid at its upstream router.

The above set of requirements imply the need for a mechanism that utilizes acknowledgments, timeouts, and
fault announcements. In addition, the data packets, ACKs, and FAs need to have authentication tags that are
carefully designed in order to satisfy the above-mentioned requirements. The Byzantine detection protocol of
Avramopoulos et al. [3] proposes authentication structures that satisfies all of the requirements.

5.2 The Byzantine Detection Protocol of Avramopoulos et al.

In [2, 3], the source 6 shares secret keys with all the routers ��� ������������� ������������� in the path that commu-
nication will be carried out. We denote

�	��
E the secret key shared between the source 6 and router ��� . The
mechanism also requires a one-way hash function T��� 	 . Given � and 1��� 	 it is impossible to derive any � such
that T���M	�!�� .

The source authentication tag (SAT) consists of message authentication codes (MACs), one for each down-
stream router. The MACs in the tag are computed sequentially from destination to first downstream router so
that the MAC for a given router depends on the MACs of all routers that are downstream to it. This structure
enables the mechanism to satisfy requirements R2 and R3.

For ACKs and FAs, the mechanism of [3] takes the following approach. Suppose that the sequence number of
a packet is � and its source route is �=63�����(�������?�����-�������?������� , where 6 is the source and ��� is the destination.
The source constructs � hash chains each of length three. The first element !��� ���C	 of the hash chain for node � ,
�b! �/�������?��� , is constructed by concatenating the sequence number � and the key

����
E . The second and third
elements ! �� ���C	 and !

� ���C	 are constructed by applying a one-way hash function 1��� 	 to the previous element.

We will call � the authenticator seed or seed, ! �� ���C	 the authenticator, and !

� ���C	 the authenticator anchor or

anchor.
Subsequently the source announces with the packet the anchors, i.e., elements !

� ���C	 , which are protected by

the SAT of the packet. Each recipient ��� is able to construct !��� ���C	 by concatenating the seed with the secret
key shared with the destination and then ! �� ���C	 by applying T��� 	 . The latter element is used as the authenticator
for the FA, if � � is an intermediate router, or by �!� for the ACK.

6 Providing Arbitrary Downstream Feedback to the Source

We now consider the following problem: How can a source obtain an arbitrary piece of information from
each of the routers along a path in a secure and efficient manner with Byzantine detection properties? Such a
mechanism could be gainfully applied in many settings. It can be used, for example, to provide information
of the delay that data packets experience in the routers of a path so as to mitigate the effects of maliciously
introduced delay by adversarial routers [3]. In this paper, we are primarily interested in such a mechanism
in order to develop an efficient data-forwarding protocol with Byzantine-detection properties (as discussed in
Section 7).

We begin by discussing some alternatives for the design of such a mechanism. One possibility is to have
the source first send along the path a query protected by the Byzantine detection protocol of Section 5.2 so that
locations where the query is dropped could be identified. However, the hash elements used as authenticators
for control messages (such as ACKs or FAs) are unsuitable for protecting the integrity of the query responses
from the routers.

To address this limitation, one could consider the following approach. On receipt of the query, the destination
appends to the ACK authenticator its unauthenticated response. On receipt of an ACK authenticator each router
upstream to the destination first stores the responses of the routers downstream to it, then appends its own

7

unauthenticated response, and forwards the ACK. On receipt of the responses the source creates and forwards
a new packet, called the assertion packet, that reflects the responses which are now protected by the SAT. On
its receipt, downstream routers compare the responses that are reflected in the packet with the stored responses.
If they agree, then the assertion packet is forwarded further. If they don’t agree, then the corresponding router
detects that either its immediate upstream nexus or the source are faulty and responds to this detection by
dropping all subsequent packets that may arrive from the source in this path, thereby enabling the detection of
the Byzantine behavior. Finally, the ACK from the destination could serve as the confirmation that the assertion
packet reached the destination.

This protocol is however vulnerable to an attack according to which two malicious routers that are present in
the path detour the packet and the ACK and append forged responses for the routers that have been intentionally
bypassed. For example, in the path �X63��������� �����@81�@<5� �
 ��������� � � , if ��� and �
 are malicious they can bypass
routers 8 and < . This vulnerability could be addressed by using the following approach, albeit with increased
computational overheads by using a cumulative ACK that comprises of hash value authenticators from each
intermediate router.

After the receipt of the unauthenticated responses, the source constructs � hash chains each of length three,
and then sends the third element of each hash chain along with the assertion packet. When an intermediate router
receives the assertion packet, it checks whether the attached information is accurate. If the router receives the
wrong information, it simply drops the packet, else it forwards the packet and waits for a partial cumulative
response from the next router. If it gets such a response, it will append the authenticator, which is the middle
element of its hash chain value, to the cumulative response. If there is a timeout, it starts with an empty
cumulative response and appends its authenticator to it. The source can then identify till what point verification
took place successfully.

Note however that the scheme described above requires a cumulative ACK, all of whose elements have
to be verified by the upstream routers in order to satisfy requirement R5. This imposes a high overhead on
intermediate routers, which we eliminate with the following novel design for packet authentication tags.

6.1 A Suitable Source Authentication Tag

In response to the aforementioned threat we create a source authentication tag that satisfies the following
additional requirement for the handling of assertion packets.

R7: If a packet is verifies at a non-faulty router, every non-faulty router upstream to it has received the packet.

The SAT that we propose in order to satisfy the desired requirements is computed with a combination of
MACs and hashes. Let ��� � � � ���M	 denote a MAC computed on message � with key

�
, let 1���M	 denote a

one-way hash computed on message � , and let �ZL � denote the concatenation of strings � and � . Assume that
communication is carried out in the path 63��� � ������������� ������������� , where 6 is the source and ��� is the destination.

The source initially computes one MAC for each downstream router: ��� �
	 � ���F)��� � � � ��
E ���M	 ���J!
�/����������� , where � is the packet minus the SAT. Subsequently the source hashes the computed MACs and
creates the destination’s part of the SAT:

� 	 �����f!�1����� ��	 ����� L �����/L ��� ��	 �����A	
The intermediate routers’ parts of the SAT are computed next:

������ 	 ����� ! 1����� ��	 ����� L �����IL ��� �
	 ����� L � 	 �����!��� L ������L � 	 �����A	
������ 	 ����� ! 1����� ��	 ����� L � 	 �
 � L �����/L � 	 �����A	

A graphic representation of the computation of the SAT for the case that � !�� is shown in Figure 1(a).
As the packet is propagated in the path, each router ��� ���H!c�/����������� :R� after verifying the authenticity

of
� 	 ����� replaces

� 	 � ��� with ��� ��	 ����� . This allows the SAT to be verifiable at downstream routers. The
modifications in the SAT as the packet is propagated in a path where � !�� are shown in Figure 1(b).

Requirement R3 is satisfied by the requirement from each
� 	 � ��������! �$����������� to depend on all

� 	 ������� � � � .
R7 is satisfied by the fact that

� 	 � ��������! �$�������?��� is not verifiable unless ��� �
	 �!�"��� � � � has been disclosed.
The modification of the authentication tag of [3] in order to create this structure was inspired by the use of

Merkle’s hash tree in the protocol by Hu et al. in [12].

8

(a) (b)

MAC[n1] MAC[n2] MAC[n3] MAC[n4]

T[n2] T[n3] T[n4]

Output of a MAC function.

Output of a hash function.

x y y depends on x.

(2)(1) (3) (4)

(5)
(6)(7)(8)

T[n1] s n1 n2 n3 n4

s � n1: {T[n1] | T[n2] | T[n3] | T[n4]}

n1 � n2: {MAC[n1] | T[n2] | T[n3] | T[n4]}

n2 � n3: {MAC[n1] | MAC[n2] | T[n3] | T[n4]}

n3 � n4: {MAC[n1] | MAC[n2] | MAC[n3] | T[n4]}

(a) (b)
Figure 1: The left of the figure contains a graphic representation of the computation of the SAT of Section 6.1
and the right of figure contains instances of the SAT as a packet is propagated in a path, for the case that � !�� .

7 The Nicephorus Byzantine Detection Protocol

In this section, we present the Nicephorus Byzantine detection protocol that achieves a significant perfor-
mance improvement over previously proposed protocols without loss of detection accuracy.

In the Avramopoulos et al. protocol the source computes a hash chain of length three for each data packet
and for each downstream router and announces the third element of each hash chain, i.e., the anchor, along with
the source authentication tag. Each downstream router must, furthermore, recompute the second element of the
chain (that will serve as the authenticator for the ACK or FA).

In contrast, a source in the Nicephorus protocol neither computes the aforementioned hash chains nor an-
nounces anchors for each data packet, which saves communication and computation overhead. Instead, down-
stream routers authenticate ACKs and FAs with elements of hash chains (of arbitrary length) that they have
pre-computed. The Nicephorus Byzantine detection protocol therefore operates in two phases: an initialization
phase for gathering anchors for hash chains and a data forwarding phase.

7.1 The Initialization Phase

For each path through which packets are going to be forwarded there is an initialization phase whose purpose
is to build up state that will be subsequently used in a more efficient data packet forwarding phase. In the
initialization phase, each downstream router is required to determine a hash chain whose elements are going
to be used as authenticators for ACKs or FAs in the data packet forwarding phase and whose anchor must be
securely announced to all of its upstream routers. As a first step, the source uses the mechanism of Section 6 to
securely obtain the hash chain anchors from downstream routers. In particular, the source propagates through
the path a query for hash chain anchors. All packets in the initialization phase, including this query packet, are
protected as in Section 5.2 so that the locations of drops (or modifications) of these packets are detected.

As in Section 6, downstream routers append to the authenticator of the destination ACK for the query packet
their unauthenticated responses and store the responses from downstream routers. On reception of the ACK,
the source creates the protected (using the SAT of Section 6.1) assertion packet that reflects the unauthenticated
responses. On approval of these responses, downstream routers further forward the assertion packet. However,
if a router detects a discrepancy between the stored query responses and the query responses that the assertion
packet carries, it will drop all subsequent packets that arrive in this path. This will cause the source to impose
a large penalty on the corresponding faulty nexus upstream to this router, which will eventually be avoided.

On reception of an ACK to the assertion packet, the source is ensured of the authenticity of the received hash
chain anchors. As a second step, the source announces the received anchors in a packet that is protected by the
SAT of Section 6.1 and, on reception of an ACK for this packet, initiates the data packet forwarding phase.1

7.2 The Data Packet Forwarding Phase

In this section, we are going to use the elements of the hash chains that were precomputed in the initialization
phase as the authenticators for ACKs and FAs. The efficient use of these elements requires addressing the

1Note that the name “data packet forwarding phase” is conventional. Data can be forwarded in the initialization phase as well.

9

following challenge: In order to gain the computational advantage of the hash chain, the authenticity of each
hash element must be verified by computing exactly one hash. However, authenticators might be lost because
of an innocuous or malicious drop and, therefore, subsequently released authenticators may require multiple
hashes to verify. Furthermore, authenticators can be subject to replay. Naive handling of repeated authenticators
might give malicious routers the advantage to discredit non-faulty elements by persistently causing the source
to re-associate old innocuous faults with non-faulty elements using authenticator replay attacks.

The idea to address the aforementioned challenge is for downstream routers to retransmit authenticators for
ACKs and FAs until the source has acknowledged their receipt. Such source acknowledgedments (SAs) are
protected by the SAT of data packets (where the SAT is according to Section 5.2). After the reception of a
source acknowledgement for an authenticator, the corresponding router will discard the old authenticator and
release a new, yet undisclosed, authenticator in the next timeout expiration. Notice, however, that data packets
that carry SAs might themselves be dropped before they reach the corresponding intended recipient of the SA.
SAs are, thus, retransmitted until the source is ensured of their reception by the corresponding downstream
routers.

The exact algorithm that Nicephorus uses is as follows: Each data packet contains a field, which we call the
SA field, that consists of one bit for each downstream router. In the first packet after the initialization phase
each bit is arbitrarily set. On receipt of an FA or an ACK, the source switches in the SA field the bit of the
corresponding router from zero to one or from one to zero depending on its previous value. On receipt of a new
SA, downstream routers take action depending on whether there is a transition in their corresponding bit of the
SA:

� If there is a transition, the corresponding router discards the current authenticator and in the next timeout
releases a new authenticator. Similarly, its upstream routers, expect a new authenticator for subsequent
packets and will discard further use of the current authenticator as a replay.

� If there is no transition, the corresponding router retransmits the old authenticator after the next and
subsequent timeouts (until instructed by the source to discard it). Similarly, its upstream routers, do not
expect a new authenticator for the next control message and will accept the current authenticator as valid.

Note that in Nicephorus ACKs and FAs are no longer associated with any specific packet and they do not
carry any sequence numbers; the expected authenticator for an ACK or FA is unambiguous at both the source
and intermediate routers. Packet ordering and retransmission is the responsibility of Layer 4. Handling multiple
outstanding packets is straightforward by, for example, partitioning the sequence number space to parts equal
in number to the maximum number of packets that can be outstanding in the path and devoting one hash chain
at each downstream router to each part.

As a final note, special care must be taken at the Nicephorus protocol when calculating the timeout values
because of an attack that is made possible due to absence of sequence numbers in the ACKs and FAs. This
attack as well as the corresponding countermeasure is the subject of Appendix B.

Security

After an authenticator is disclosed, it could be replayed by any malicious router to the router’s upstream. How-
ever, by replaying such authenticator, a malicious router can only signal to the source the actual event of a drop
at the downstream nexus of the intermediate router that the replayed authenticator belongs to or the actual event
of a reception of a packet by the destination. Authenticators that have already reached the source should not be
subject to replay, and this provision is made by the SA field in the SAT, which signals to downstream routers to
discard old authenticators and release new ones. should a timeout fire.

As we previously mentioned, the SAT used for data packets allows detours of data packets by malicious
routers. Therefore, SAs (that are carried in data packets) are subject to detour as well. Consider the following
path:
�_6e��������� � ���@81�@<d� �
 ��������� � � , where routers �!� and �
 are malicious, and routers 8 and < are not faulty.
Any packet transmitted by 6 and source-routed in the aforementioned path can be detoured from ��� to �
 and
not forwarded from �!� to 8 as it is required. Now suppose that 6 acknowledges receipt of an authenticator
by 8 but ��� detours the packet. Since the corresponding bit of the SA field is retransmitted by 6 until a new
authenticator is received by 6 , router ��� cannot forward a new packet to 8 without also forwarding the SA.

10

Computation Overhead Nicephorus 1 Nicephorus 2 Avramopoulos et al. Awerbuch et al.
Source Authentication Tag � � � � � ��� � � � � � � � � � � � �U�
Fault Feedback Mechanism � ��� ��� � ��� � � � � �B� � : ��	 �
Communication Overhead Nicephorus 1 Nicephorus 2 Avramopoulos et al. Awerbuch et al.
Source Authentication Tag �

 N �

 N ��� �

 N �

 N

Fault Feedback Mechanism �7� � � ��	@N �]N �7� � � ��	@N �
 �7� � � ��	@N
Table 1: Comparison of the computation and communication overheads of Byzantine detection protocols.

Therefore, detouring packets in order to deprive routers from source acknowledgements does not pose a threat
to the protocol.

7.3 Comparison with other Byzantine Detection Protocols

Table 1 compares the computation and communication overheads of Byzantine detection protocols. Nicepho-
rus 1 and 2 are respectively the protocols in the initialization and data forwarding phase of Nicephorus,
Avramopoulos et al. is the Byzantine detection protocol of [2, 3] and Awerbuch et al. is the Byzantine de-
tection protocol of [4]. The “fault feedback mechanism” corresponds to the costs associated with ACK and
FA generation, verification, and transmission. We denote by � the number of hops in a path, by � a MAC
computation, by � an encryption or decryption, by � a hash computation, by N the size of the output of a
MAC or hash computation, and by

�
the size of the source acknowledgement of the Nicephorus protocol. The

computation and communication overheads are the total corresponding overheads in the path. We count the
computation of the hash chains that are used for the authenticators for ACKs and FAs in the data forward-
ing phase in Nicephorus 2. The table shows a clear performance advantage of the data forwarding phase of
Nicephorus (Nicephorus 2) over the other proposals.

8 Related Work

In a significant contribution, Byzantine detection was first proposed by Herzberg and Kutten [9] using an
abstract model. In this model, it is prescribed that upon reception of a packet by an intermediate router or the
destination, all upstream routers must have received the packet, and the paper notes that this property can be
satisfied with cryptographic techniques. Nicephorus proposes one such technique that is utilized in an initial-
ization phase. However, Nicephorus does not require this property to hold for normal packets, which results in
more efficient cryptographic protection. Herzberg and Kutten proposed a communication optimal and a time op-
timal protocol as well as protocols that trade off communication and time optimality. The Nicephorus protocol
makes use of both abstract protocols and employs a novel mechanism that switches between the communication
optimal and the time optimal protocols based on an estimate of the degree of penetration of the adversary in the
network.

In [2, 3], we proposed Byzantine detection protocols that are based on efficient symmetric cryptographic
primitives and addressed issues such as replay and denial-of-service protection. Nicephorus is based on these
Byzantine detection protocols, but improves their performance and, furthermore, contributes a novel mechanism
to balance the per-packet performance with the recovery time capability of Byzantine detection protocols.

In [4], Awerbuch et al. propose Byzantine detection protocols that rely on MACs and encryption rather than
the MACs and hashes that are utilized in Nicephorus. Awerbuch et al. also propose a cryptographic technique
in the source authentication tag of data packets that requires these packets to take an intended route. As shown
in Table 1, the initialization phase of Nicephorus is of comparable overhead to the protocol of Awerbuch et al.,
however, the data forwarding phase of Nicephorus incurs less overhead since it utilizes a more efficient source
authentication tag and a more efficient technique to receive feedback on faults.

In [19], Padmanabhan and Simon propose a secure traceroute tool for the purpose of detecting locations of
malicious failures in the forwarding of data packets. Secure traceroute verifies the correct behavior of a route
incrementally. At each step the behavior of a new router is verified. Secure traceroute bears some similarity
with Byzantine detection; the objective is to detect faulty links using feedback from downstream routers and
authentication. There are some important differences however. First, secure traceroute packets must look indis-
tinguishable from normal traffic for routers whose behavior has not yet been verified as non-faulty. Byzantine
detection protocols, on the other hand, do not require concealment of packets. Second, secure traceroute is de-
signed to work with hop-by-hop routing whereas Byzantine detection proposals involve source routing. Third,

11

secure traceroute is intended for environments with a relatively limited number of adversarial routers, whereas
Byzantine detection can potentially provide recovery in environments where the adversary has achieved signif-
icant penetration.

Bradley et al. [7] propose a protocol for detecting and avoiding routers that are dropping or mis-routing
packets. The basic idea of this protocol is for routers to test for “the conservation of flow” principle by mea-
suring the volume of flows that enter and leave their incident links and comparing the measured flows in a
global coordination phase. A limitation of this approach is that protection against packet modifications is not
addressed.

In [16,17], Mizrak et al. propose an approach for the protection of routing that is based on a traffic validation
component that monitors traffic characteristics and looks for anomalous behavior, a distributed detection com-
ponent that coordinates the traffic monitors and detects faulty routers or groups that contain faulty routers, and
a response component that takes countermeasures against detected faulty routers (or groups). Two important
characteristics of the proposed detection components [16] that are not found in Byzantine detection protocols
are time synchronization that facilitates the comparison of collected traffic, and Byzantine consensus [14] which
ensures uniform decisions on detected faulty network paths.

One approach taken in the literature for data packet forwarding protection against malicious routers is mul-
tipath routing, as in the work by Perlman [22] and Papadimitratos and Haas [21]. Multipath protection can
provide detection at the granularity of a path and incurs less overheads than Byzantine detection, but it does not
provide sufficient information by itself to enable fast recovery procedures as the paths between source and des-
tination can be exponentially many. We would like to note here that Perlman also proposed in [22] an approach
to fault diagnosis that can be seen as a precursor to Byzantine detection protocols.

Listen and Whisper is proposed in [25] as a BGP (Border Gateway Protocol) protection mechanism that
combines use of cryptographic techniques that are incorporated in the BGP protocol (Whisper) and data-packet-
flow monitors that verify whether the routes obtained by Whisper are operational (Listen). Listen and Whisper
introduces the interesting concept of detection and containment of faulty ASs that attack the routing protocol.
Such attacks are not within the scope of this paper. Listen signals the occurrence of problems in the data plane
but does not pinpoint these problems (in contrast with the goal of Byzantine detection).

Secure topology and route discovery protocols such as [8, 10–13, 18, 20, 24] and others are complementary
to data packet forwarding protection mechanisms in order to improve the resilience of the routing function.

9 Conclusion

Routing attacks can create severe service disruptions. These attacks can be targeted at both the routing pro-
tocol and the data forwarding mechanism. Protecting data forwarding is of equal importance to the protection
of the routing protocol. A secured routing protocol does not, for example, prevent the adversary from announc-
ing fictitious links between distant routers that it controls and subsequently dropping the increased volume of
traffic that it receives. Byzantine detection is a promising tool to counter such an adversary by identifying the
adversarial locations at the granularity of a link (or nexus) so that these locations can be subsequently bypassed.

Byzantine detection protocols allow trade-offs between the recovery capability that they offer and the over-
head that they incur. Based on this observation, we proposed a mechanism that can dynamically balance these
parameters. This mechanism estimates the threat that the adversary poses to the packet delivery service by
computing the minimum number of adversarial elements that explains the fault detection state and activates
protocols with different properties regarding recovery capability and overhead based on this estimate. We are
investigating algorithms to compute faulty configurations that minimize cost functions more general than the
cardinality of the set of adversarial elements, which we presented in this paper.

We also made two primary contributions to Byzantine detection protocols. The first contribution is a mech-
anism that can be used to query the routers of a path for router-specific information. This mechanism has
Byzantine detection capabilities so that the locations where the query or its responses might be modified or
dropped can be detected. Our second contribution is an efficient data forwarding protocol with Byzantine de-
tection capability that makes use of the query mechanism in order to bootstrap an efficient data forwarding
phase.

12

References

[1] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex optimization
problems. J. Comput. System Sci., 21:136–153, 1980.

[2] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Amendment to Highly Secure and
Efficient Routing, Feb. 2004. Addendum to [3].

[3] I. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly secure and efficient routing. In
Proc. IEEE Infocom 2004, Hong Kong, Mar. 2004.

[4] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. An on-demand secure routing protocol resilient
to byzantine failures. In Proc. 2002 ACM Workshop on Wireless Security, Atlanta, GA, Sept. 2002.

[5] W. Cheswick, S. Bellovin, and A. Rubin. Firewalls and Internet Security: Repelling the Wily Hacker.
Addison Wesley, second edition, 2003.

[6] P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems.
http://www.nada.kth.se/˜ viggo/problemlist/compendium.html.

[7] K. Bradley et al. Detecting disruptive routers: A distributed network monitoring approach. IEEE Network
Magazine, Sept./Oct. 1998.

[8] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and A. Rubin. Working around bgp: An
incremental approach to improving security and accuracy of interdomain routing. In Proc. Network and
Distributed System Security Symposium, NDSS ’03, San Diego, CA, Feb. 2003.

[9] A. Herzberg and S. Kutten. Early detection of message forwarding faults. SIAM J. Comput., 30(4):1169–
1196, 2000.

[10] Y.-C. Hu and A. Perrig. Spv: A secure path vector routing scheme for securing bgp. In Proc. ACM
SIGCOMM 2004, Portland, Oregon, Sep. 2004.

[11] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc networks.
In Proc. 8th Annual International Conference on Mobile Computing and Networking, Atlanta, GA, Sept.
2002.

[12] Y.-C. Hu, A. Perrig, and D. Johnson. Efficient security mechanisms for routing protocols. In Proc.
Network and Distributed System Security Symposium, NDSS ’03, San Diego, CA, Feb. 2003.

[13] Stephen Kent, Charles Lynn, and Karen Seo. Secure border gateway protocol (secure-bgp). IEEE Journal
on Selected Areas in Communications, 18(4):582–592, Apr. 2000.

[14] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[15] B. Leighton. Personal communication, Dec. 2003.

[16] A. Mizrak, K. Marzullo, and S. Savage. Detecting malicious routers. Technical Report CS2004-0789,
University of California at San Diego, Department of Computer Science, May 2004.

[17] A. Mizrak, K. Marzullo, and S. Savage. Fault-tolerant forwarding in the face of malicious routers. In Proc.
2nd Bertinoro Workshop on Future Directions in Distributed Computing, Bertinoro, Italy, Jun. 2004.

[18] S. Murphy and M. Badger. Digital signature protection of the ospf routing protocol. In Proc. Symposium
on Network and Distributed System Security, NDSS ’96, San Diego, CA, 1996.

[19] V. Padmanabhan and D. Simon. Secure traceroute to detect faulty or malicious routing. In Proc. ACM
SIGCOMM First Workshop on Hot Topics in Networks (HotNets-I), Princeton, NJ, Oct. 2002.

13

[20] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In Proc. Communication
Networks and Distributed Systems Modeling and Simulation Conference, San Antonio, TX, Jan. 2002.

[21] P. Papadimitratos and Z. Haas. Secure data transmission in mobile ad hoc networks. In Proc. 2003 ACM
Workshop on Wireless Security, San Diego, CA, Sept. 2003.

[22] R. Perlman. Network Layer Protocols with Byzantine Robustness. PhD thesis, Massachusetts Institute of
Technology, Aug. 1988.

[23] J. Rexford. Personal communication, Apr. 2004.

[24] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and E. Belding-Royer. A secure routing protocol for ad
hoc networks. In Proc. 2002 IEEE International Conference on Network Protocols (ICNP), Paris, France,
Nov. 2002.

[25] L. Subramanian, V. Roth, I. Stoica, S. Shenker, and R. Katz. Listen and whisper: Security mechanisms
for bgp. In Proc. First Symposium on Networked Systems Design and Implementation (NSDI’04), San
Francisco, CA, Mar. 2004.

[26] V. V. Vazirani. Approximation Algorithms. Springer Verlag, 2001.

A Proofs of the Theorems in Section 4

Lemma 1. Given any D E , there is always an � that explains it.

Proof. The faulty element configuration that considers all elements in the set

�
�

E�� ���	� ,�
�� 6P�I8i:;<� �56 as faulty

explains DSE .
Lemma 2. Given any D E , there is always a # that explains it.

Proof. The faulty router configuration that considers all routers in the set

�
�

E�� ���	� ,�
 � ��6F�e8�:h< �a�A8T�@<�	@	 � 6
as faulty explains D E .
Theorem 1. It holds that

%d& � ! �! #"$ &�% &�&('()+* ,�-/.�0
���1 %d&F! �2 #"$ 4 % 4 &3'4)+* ,�-5.�0
���1 %C4 ! %C4 �

Proof. Since � #ML #��������
	�����eD E � ���?��L ���������
	������DQE � it holds that %M& � � %54 � . We will next show that %d4 � � %d& � .
Consider a nexus 6
�$8�:7<i\hD E . We will show that if � � �A81�@<B	[! � , then we can construct a configuration�

� that explains DSE and in which
�
� �A8T�@<�	`!�� and %d& � ! %��& . Assume initially that

�
�U! � �

.

1. Assume that � � �A8M	Q! � , � � �A8T�@<�	Q! � , and � � �A<�	Q!G� . If
�
�Z�A8M	Q! � ,

�
���A81�@<B	Q!X� , and

�
�Z�A<�	Q! � , then

�
�

explains D E and %d& � ! %��& .

2. Assume that � � �A8f	�!�� , � � �A81�@<B	9!"� , and � � �A<�	9!"� . Symmetrical to the above.

3. Assume that � � �A8M	Q!G� , � � �A8T�@<�	Q! � , and � � �A<�	Q!G� . If
�
�Z�A8M	Q! � ,

�
���A81�@<B	Q!X� , and

�
�Z�A<�	Q!G� , then

�
�

explains DSE and %d& � ! %��& .

By repetitively applying these steps we end up with a faulty router configuration
�
� . Therefore, %54 � � %��& !

%d& � , which proves the theorem.

Definition 1 (Vertex Cover). A vertex cover for � is a subset �26 of � such that, for each edge �A81�@<B	S\]� , at
least one of 8 and < belongs to �76 .

14

1000

n2

n1

s

m

n4

n3 n2

n1

s

m

n4

n3 n2

n1

s

m

n4

n3

1000

1000

2000

2000

2000

2000

2000

2000

2000

FA

Figure 2: An example of a faulty intermediate router (�) causing a non-faulty router (���) to reveal its FA
authenticator about non-faulty nexus (��� :����) assuming that the source calculates timeout values per reference
[3]. Router � stores and drops the packet with sequence number � �I�I� and reinserts it in the network, when the
source inserts the packet with sequence number �/�I�I� . Router ��� will drop the packet with sequence number
� �I�I� as a replay and the timeout at ��� will fire. Thus, ��� will disclose its FA authenticator without any
innocuous fault having occurred at nexus ���[: ��� .
Theorem 2. Consider the graph �
�� that consists of all the edges, and their incident vertices, that belong to
nexuses in D E .

1. If a faulty router configuration # explains D E , then ��8]�/#'�A8f	9!"��� is a vertex cover of �
�� .
2. If � 6
 � is a vertex cover of �
�� , then the faulty configuration # in which #'�A8M	Q! �/�@8 \K� 6
 � and #'�A8M	Q!

���@8 �\]� 6
 � explains DSE .
Proof. Regarding (1): If # explains D E , then 6 �f8 : < \ DQE implies that #'�A8f	P! � or #'�A<B	F! � . Since this
holds for all 6F�I8�:K<J\]D E , then for every �A8T�@<�	S\U�
�� (the set of edges of �
��) 8]\�
	� or <�\]�
�� .

Regarding (2): If � 6
 � is a vertex cover, then 6 �M8 : < \=D E implies that 8 \=� 6
 � or < \=� 6
 � and, thus,
#'�A8f	9!"� or #'�A<B	9!"� respectively. Since this holds for all 6P�I8�:h<i\]D E , # explains DSE .
Corollary 1. The minimum vertex cover of �
	� is a lower bound on the number of faulty elements in the
network.

Proof. By Theorem 1 the degree of a minimum faulty element configuration that explains D'E is equal to the
degree of a minimum faulty router configuration that explains D5E . By Theorem 2 a faulty router configuration
explains DSE if and only if it is a vertex cover of �
�� . Therefore, the minimum vertex cover of �
�� is the
minimum faulty router configuration that explains DCE and, thus, a minimum faulty element configuration that
explains DSE .

B Setting Timeout Values in the Nicephorus Byzantine Detection Protocol

On transmission of a packet, the corresponding router (either a source or an intermediate router in a path)
must set a timeout to receive an ACK or an FA. The timeout value is set as the worst-case round-trip-time
from the corresponding router to the destination. As [3] points out, it is only safe to make the round-trip-time
calculation at the source. The reason is that information about overlap between simultaneously used paths,
which affects the timeout value because of queuing delays, is not readily available at intermediate routers.
In [3] the worst-case round-trip-time is calculated by taking into account all packets that have been transmitted
by the corresponding source and whose timeout is still pending.

In Nicephorus, the setting of timeout values must take into consideration a potential attack that does not
apply to [3] according to which a non-faulty router is forced to reveal its authenticator about a non-faulty nexus
without a prior innocuous drop at that nexus, by an exploitation of the timeout calculation mechanism. An
example of this attack in shown in Fig. 2. In the example, malicious router � forces router ��� to reveal its
authenticator without a prior innocuous drop at nexus ���Q: ��� by first dropping and then replaying the packet
with sequence number � �I�I� after the source has inserted the packet with a higher sequence number (�/�I�I� in
the example).

15

This attack is successful in the example because router ��� deems the packet with sequence number � �I�I�
valid whereas router � � deems that packet invalid. In [3] the FA would carry the sequence number of the packet
that it pertains to but in Nicephorus FAs do not carry sequence numbers. Therefore, if the source attempts to
insert new packets to the path on the right, then � can replay the FA and inaccurately associate a fault with
non-faulty nexus � �[: ��� .

This attack can be prevented if, in the timeout calculations, the source considers pending all unacknowledged
packets in the reserved parts of the sequence number space that may be considered valid at the routers of the
corresponding paths. This information is readily available at the source based on the destination ACKs that it
receives. In the example of Figure 2 the attack will not be successful if the source considers the packet with
sequence number � �I�I� pending when calculating the timeout values for the packet with sequence number �/�I�I� .

16

