
Opt and Vent: An Efficient Protocol for Byzantine Detection in Wireless

Ad Hoc Network Routing

Ioannis Avramopoulos, Hisashi Kobayashi,

Dept. of Electrical Engineering

Princeton University

Princeton, NJ 08544

{iavramop, hisashi}@princeton.edu

Arvind Krishnamurthy

Dept. of Computer Science

Yale University

New Haven, CT 06520

arvind@cs.yale.edu

Randolph Wang,

Dept. of Computer Science

Princeton University

Princeton, NJ 08544

rywang@cs.princeton.edu

Abstract

Deploying multi-hop wireless ad hoc networks in mis-
sion critical operations will potentially improve the ef-
fectiveness and reduce the cost of these operations. In
such environments, the availability of ad hoc networks
will be utmost important.

In this paper, we devise mechanisms that can
strengthen the resilience of an ad hoc network against
attacks, failures, accidents, and selfishness. The adver-
sary is an insider that controls an unknown subset of
the nodes or routers. Our objective is to prevent the
adversary from interfering with the “healthy” portion
of the network. In this direction, we advocate the use
of a tool, called Byzantine detection, to identify the ad-
versarial locations at a fine granularity so that these
locations can be subsequently bypassed. Our main con-
tribution is a Byzantine detection protocol that achieves
a significant reduction in the per-packet computational
and communication overhead.

1 Introduction

Multi-hop wireless ad hoc networks have been pro-
posed to, in part, replace fixed infrastructures in areas
where the infrastructure has been damaged, is too time
consuming or impossible to deploy, or if the (possibly
temporary) utility of the infrastructure does not jus-
tify its cost. Scenarios of deployment include disaster
response and recovery, health care provision, military
operations, community networks, and others. Protec-
tion of such networks from adversaries can, therefore,
be critical.

This paper addresses the problem of securing the
routing operation in order to ensure the availability of
the packet delivery service in the presence of an arbi-
trary adversary (also sometimes called a Byzantine ad-
versary) that controls an unknown subset of the routers
(and links). We, thus, assume that all such Byzantine
routers can deviate from the employed protocol arbitrar-
ily.

We consider the packet transfer process from source
to destination through intermediate hops. We assume
that the Byzantine routers will attempt to block the
transfer without being identified. Examples of attacks
that such routers can mount can be found in [1]. We pro-
vide protocols that if employed by a non-faulty source
and provided that the destination is non-faulty, ensure
either successful packet delivery, or detect the location of
the transfer failure (Byzantine detection). These proto-
cols advance prior art by improving the per-packet pro-
tection overhead and, thus, incur a large network-wide
benefit. As we argue in Section 2, overhead improve-
ments will, in general, come at the expense of increased
recovery time. We show that the delay in recovery in-
duced by our performance improvements is minimal.

From a survivability perspective the tools that we
provide can reinforce the network’s capability to con-
tinue to deliver packets in the presence of attacks, fail-
ures, and accidents [2]. In future ad hoc networks as,
for example, envisioned by the Terminodes project [3],
our tools can be used to protect the network against
selfishness.

Byzantine detection finds applications in Byzantine
robustness, which is defined in [4] as the capability of
the routing mechanism to deliver packets between source
and destination as long as at least one non-faulty path
exists between them. By identifying the locations of
packet delivery failures and by bypassing these loca-
tions, the objective of Byzantine robustness could be
achieved. However, the problem of achieving Byzantine
robustness in an ad hoc network is harder than the prob-
lem of achieving Byzantine detection in such a network.
The main reason is the frequent occurrence of innocu-
ous drops because of wireless interference, mobility, and
congestion. This topic is further discussed in Section 7.

Byzantine detection can also find applications as a
tool against selfishness [3, 5], as a wormhole detection
mechanism [6, 7], and in intrusion detection systems [8,
9].

1

Outline of the Paper: Our primary contribution is
the Opt and Vent Byzantine detection protocol, which
achieves a significant performance improvement over
previous protocols without loss of accuracy in identi-
fying malicious routers. We present the design of this
protocol in several steps, which we outline below.

In Section 3, we present a protocol that provides just
end-point protection, where the source can detect trans-
mission failures and the destination can authenticate the
source and verify the integrity of received data. This
protocol does not require intermediate nodes to perform
any cryptographic computations, thus aiding fast adop-
tion in ad hoc networks, but it does not necessarily aid
the endpoints in detecting malicious routers. This pro-
tocol is interesting as it avoids the use of message au-
thentication codes (MAC) for data packets, but instead
uses a more efficient mechanism (using hash chains) that
provides the same level of protection.

We then consider the Byzantine detection problem
(in Section 4) and present a simple protocol that requires
the source to send a Source Authentication Tag (SAT) [1]
along with every message and detect faults by using the
feedback mechanism proposed by Awerbuch et al. [10],
where the nodes that exhibit delivery failures are queried
as to whether they received the correct data packet. The
sat, however, comprises of a series of macs, one for
each router in the path, and therefore imposes a high
cryptographic overhead. Furthermore, when a packet is
dropped, it is retransmitted with a new sat, in order
to prevent malicious routers from replaying the fault
feedback messages, and the new sat incurs additional
overheads in order to generate it at the source and verify
it at each intermediate router.

In Section 5, we propose modifications to the Byzan-
tine detection protocol of Section 4 that allow a sat to
be reused in packet retransmissions along with an un-
protected message offset, a value that is unique to a
particular packet retransmission and is reflected back to
the source in fault feedback messages. We argue that the
protocol cannot be exploited by malicious routers even
though the retransmitted packets use the same sat as
the original packet.

Finally, in Section 6, we present our complete design
of the Byzantine detection protocol that combines the
ideas proposed in Sections 3 and 5. The resulting proto-
col employs a sat that does not require the computation
of macs, and it furthermore does not require the recom-
putation or reverification of the sat for retransmitted
packets.

2 Related Work

Data packet forwarding protection is based on au-
thentication of data and control packets and possibly
redundancy across multiple forwarding paths and, thus,

comes at the expense of computational and communi-
cation overhead. We will describe a whole spectrum of
such protection mechanisms with different properties re-
garding protection overhead and recovery time.

At the left end of the spectrum, there are protocols
in which packets and destination acks are routed on
a single path and are guarded against impersonation
and modification using a single message authentication
code (mac) between source and destination. The cryp-
tographic overhead of such protocols is minimal, but
they may never find a workable route to the destination
even if one exists.

Moving to the right of the spectrum, the single mac

protection per packet is retained but the source makes
an effort to deliver its packets by multipath routing.
This is the approach taken in the SMT (Secure Message
Transmission) protocol that was proposed by Papadim-
itratos and Haas [11]. Performance measurements show
that SMT significantly improves the packet delivery ra-
tio, as well as other performance parameters, under a
capable adversary. In this protocol, the adversary is
able to decrease the throughput in certain paths, even
if none of its routers are positioned in those paths, by
mounting DoS attacks on the corresponding interme-
diate non-faulty routers. SMT, however, monitors the
packet delivery ratios and directs traffic to the more reli-
able paths, thus, increasing the effort that the adversary
must put in order to attack all paths.

At the expense of an initialization procedure, the pos-
sibility of a DoS attack at the intermediate routers of a
path is prevented in the multipath protocol proposed
by Perlman [4]. In this protocol the source first estab-
lishes paths to the destination using digitally signed con-
trol packets whose authenticity is verified at all down-
stream routers and, subsequently, the authenticator of
data packets is not verified at intermediate routers. The
adversary cannot prevent the delivery of such packets us-
ing routers that are not positioned in the selected paths
due to the use of allocated buffers that were reserved in
the initialization procedure.

In general, the cryptographic overhead of multipath
protection is small but the process of finding a workable
route to the destination may take a potentially large
amount of time for some sources that depends on the
degree of the penetration of the adversary.

Byzantine detection lies at the right end of the spec-
trum. It was first proposed by Herzberg and Kutten
in [12] using an abstract model. More concrete Byzan-
tine detection protocols are proposed in [10] by Awer-
buch et al. and in [1] by Avramopoulos et al. Byzantine
detection relies on a combination of destination acknowl-
edgements, timeouts (at the source and intermediate
routers), fault announcements (fas), and path-specific
authentication in order to pinpoint links to which blame
is ascribed for delivery failures. Byzantine detection

2

is the only solution that appears in the literature that
could achieve small worst-case recovery times, which we
define as the time that elapses from the moment that
communication is disrupted until the moment that it is
resumed. Byzantine detection comes at the expense of
increased computational and communication per-packet
overhead.

Awerbuch et al. had the interesting idea of com-
bining the performance advantage of a single mac pro-
tection in the good case that the path is not attacked
with the recovery time capability of Byzantine detec-
tion when faulty routers are present. In their scheme,
data packets are initially protected with a single mac

for the destination and in the event of failures, which
are detected by destination acks and source timeouts,
more macs are inserted in the packet, for intermedi-
ate routers that are called probes, using a binary search
procedure. The performance advantage of this proto-
col comes at the expense of increased recovery time (as
compared to a protocol where the probe list consists of
all downstream routers) since drops will go undetected
until the search procedure converges to the link level.
We believe that this idea will be important in the future
systems that will employ Byzantine detection.

In [1] we proposed the idea of using a source authenti-
cation tag (sat) in a Byzantine detection protocol that
does not ensure data integrity at intermediate routers
but ensures integrity at the destination, in combination
with a mechanism to detect the location of packet forg-
eries, should the destination determine that the received
packet has been forged. The computational advantage
that the efficient sat gives to this protocol comes at the
expense of delayed detection in case of a forgery. This
idea is similar to the Opt and Vent protocol of this pa-
per. The key differences are that in [1] the sat consists
of macs rather than the hash elements used in Opt and
Vent and, furthermore, that Opt and Vent utilizes a new
optimized retransmission procedure which is essential to
the performance of a hash-element-based authentication
tag.

2.1 Protection Overhead vs. Recovery
Time

The above discussion reveals a trade-off between
protection overhead and recovery time in data packet
forwarding protection mechanisms. Endpoint crypto-
graphic protection with the possible aid of multipath
routing has low communication and computational per-
packet overhead at the expense of a potentially (ex-
ponentially) large recovery delay. Byzantine detec-
tion adds both communication and computational per-
packet overhead with the benefit of faster recovery. Even
within Byzantine detection protocols extra computa-

tional overhead can buy recovery time and vice versa.1

We believe that this trade-off is fundamental, i.e., we do
not expect the development of protection mechanisms
that will be uniformly optimal in both overhead and re-
covery time.

2.2 Secure Route Discovery

Secure route discovery protocols such as [14–17] and
others are intended to work in conjunction with data
packet forwarding protection mechanisms to improve
the availability of the routing operation. A discussion of
secure route discovery protocols is not within the scope
of this paper.

3 Opt and Vent in Endpoint Protection

We begin by considering a cryptographic protection
protocol that requires modifications only to the end-
points. It is desirable for such a protocol to satisfy the
following requirements:

• The destination should be able to authenticate the
source and also guarantee that the integrity of the
data is not compromised.

• The source should be able to keep an accurate ac-
counting of transmission failures, so that it can de-
cide when to activate a Byzantine detection proto-
col or tear down the connection.

• Incurs low cryptographic and communication over-
heads.

A simple protocol that achieves some of the desired
goals works as follows. The source and destination share
a secret key, and they append to each data packet and
ack, respectively, a mac. The macs enable the source
to authenticate acks and the destination to authenti-
cate the source and check for data integrity. This is
the approach taken, for example, by Papadimitratos and
Haas [11].

We will propose a modification to this simple scheme
that we call Opt and Vent, which accomplishes the same
protection objectives, but does not require the compu-
tation of macs on data packets, thereby lowering the
cryptographic overheads. We note that, although the
main purpose of this section is to lay the ground for the
presentation of the Opt and Vent Byzantine detection

1Another example that confirms this ascertainment is the time

optimal protocol of Herzberg and Kutten that achieves faster de-
tection at the expense of increased communication overhead. Al-
though, as we showed in [13], this protocol has the same worst-case
fault detection time with the communication optimal protocol, we
have more recently observed that this protocol essentially maxi-
mizes the worst-case throughput during the recovery period. We
defer a detailed description of our observation in the interest of
space.

3

protocol, to the extent of our knowledge, the idea that
we present in this section has not been proposed before
for endpoint protection.

The idea in Opt and Vent is that the source will
opt for a more efficient data packet protection mecha-
nism (hash chains) that ensures source authentication
(but not integrity), whenever possible. The source will,
then, wait for a (one-way) hash of the packet received by
the destination, which is protected by a mac, and will,
thus, be able to determine the integrity of the packet
at the destination. Should the source determine that
the packet received by the destination is not authen-
tic, it will instruct the destination, by means of a mac-
protected packet, to vent (or discard) the stored packet.
Note that the macs are used only for ack and vent

messages and not on the opt packets.
We will assume an arbitrary adversary that may dis-

card, replay, or modify the data packets and destination
acknowledgements, or may inject forged packets with
the purpose of forcing the destination to accept forged
data, deceive the source that data packets are flowing
properly to the destination, or prevent the delivery of
legitimate packets. The communication path could also
suffer from innocuous drops. These can be drops be-
cause of wireless interference, mobility, and congestion.
We will also assume innocuous modifications to be rare.
This assumption is justified by the use of error detecting
coding at the wireless links. Should innocuous modifi-
cations be common during packet storage and process-
ing at (non-faulty) routers, use of error detecting codes
at the internal stages of packet forwarding will prevent
these modifications as well.

3.1 Description of the Operation of Opt
and Vent

We will assume that the source and destination share
a secret key for the cryptographic protection of data
packets and acks. Data packets at a minimum con-
tain the source and destination ids (e.g., IPv4 addresses)
and a sequence number taken from a monotonically in-
creasing non-wrapping sequence (for replay protection).
Destination acks at a minimum contain the source and
destination ids and reflect the sequence number of the
corresponding data packet.

In our proposed scheme, the source will replace the
mac in certain packets with elements of a hash chain
R. R is precomputed by choosing a random element
R0 and repeatedly applying a one-way hash function h:
Ri = h(Ri−1), i = 1, . . . , k. If element Rk is securely
associated with a source specified sequence number, say
K, at the destination, then the source can authenticate
sequence number K + 1 by releasing Rk−1. The desti-
nation can verify the authenticity of the received ρ by
computing h(ρ) and comparing the outcome with Rk.
If they are equal, then ρ is authentic. Otherwise, ρ is

������������

� ���	��
 	�� ���	��
 	� � � ���
 	�� � ���
 	�

<nothing>send

ACK [hash accurate]recv

<nothing>send

ACK [hash accurate]recv

OPTsend

appl_recv

OPTsend

appl_recv OPTsend

timeout

OPTsend

timeout

VENTsend

timeout

VENTsend

timeout

<nothing>send

ACKrecv

<nothing>send

ACKrecv

���

���

���

���

���

���

VENTsend

ACK [hash not
accurate]

recv

VENTsend

ACK [hash not
accurate]

recv

Figure 1: The state transition diagram of a source run-
ning the Opt and Vent endpoint protection protocol.

discarded as a forgery. In general, the source can au-
thenticate sequence number K + i by releasing element
Rk−i, the authenticity of which is verified by hashing it
using h and comparing it with a previously released au-
thentic hash element. Notice that hash elements do not
protect the integrity of the corresponding data packet.

We will view all communication that is being carried
out between the source s and destination t as being part
of a connection. Specifying the layer that this connec-
tion should be implemented (e.g., network or transport)
is not within the scope of this paper. For clarity of
exposition, we will initially describe Opt and Vent us-
ing a stop-and-wait protocol according to which the
source waits for an ack before transmitting the next
data packet. The mechanism that allows the source to
maintain multiple outstanding packets will be presented
subsequently.

3.1.1 Connection Establishment

The source attempts to open the connection by send-
ing a mac protected packet which associates Rk with
sequence number K (and also reserves a sequence num-
ber space for use by the connection). In the absence of
an ack the connection establishment packet will be re-
transmitted unmodified. The destination acknowledges
each connection establishment packet by reflecting its
sequence number, which is protected by a mac.

3.1.2 Securing Data Transfer

During the data transfer the source will use two kinds of
packets denoted by opt and vent. opt packets are pro-
tected with elements of the hash chain, whereas vent

packets are protected with a mac. Both packets carry
data but also have control semantics. The state tran-
sition diagrams at the source and destination after the
connection establishment phase are shown in Figures 1
and 2.

4

���������� �� ������� �����

store [new seq no]

ACK [new seq no]send

OPTrecv

store [new seq no]

ACK [new seq no]send

OPTrecv

discard pr. packet

ACKsend

VENTrecv

discard pr. packet

ACKsend

VENTrecv

ACKsend

VENTrecv

ACKsend

VENTrecv

ACK [rep. seq no]send

OPTrecv

ACK [rep. seq no]send

OPTrecv

deliver pr. packet [new seq no]

store [new seq no]

ACK [new seq no]send

OPTrecv

deliver pr. packet [new seq no]

store [new seq no]

ACK [new seq no]send

OPTrecv ���

���

��� ���

���

Figure 2: The state transition diagram of a destination
running the Opt and Vent endpoint protection protocol.

The source can be in one of three states: ac-

cept opt, wait opt, and s vent. In accept opt it
is waiting for a packet from the higher layer. When
a packet arrives from the higher layer, it will transmit
the packet using the opt option and it will move to
wait opt state (transition labeled 1) and wait for a
destination ack. If a timeout fires in this state, then
the opt packet is retransmitted unmodified (2). When
it receives the destination ack, it compares the hash
attached in the ack with the hash of the correspond-
ing opt packet. If they are equal, the source moves to
accept opt state (3). If they are not equal (which im-
plies that the corresponding packet was corrupted), then
the source sends a vent packet and moves to s vent

state (4). If a timeout fires in this state, then the vent

packet is retransmitted (5). Finally, while the source
is in s vent state and it receives an ack it moves to
accept opt state (6).

The destination can be in one of two states: store

and interim. In the store state, the destination keeps
in memory a received packet whose integrity has not
yet been verified. While in store state, if the source re-
ceives an opt packet with a new sequence number (with
the appropriate hash chain element), the new packet
implicitly validates the integrity of the previous packet.
The destination will then deliver the stored packet to
the higher layer, store the received packet, hash the re-
ceived packet, attach the hash to the ack, and transmit
a mac protected ack (1). If the destination receives
an opt packet with the same sequence number as the
stored packet, it will attach the hash of the stored packet
to the ack, transmit the ack, and discard the received
packet (2). (Note that the newly received packet is not
stored, nor is its hash used in the ack.) However, if
the destination receives a vent packet, while in store

state, it will discard the stored packet, deliver the data
in the vent packet to the higher layer, send an ack

to the source, and move to interim state (3). The ack

should carry an indication that it corresponds to a vent

packet, as the same sequence number is used for both
opt and its corresponding vent packets.

The purpose of the interim state is to retransmit

acks of vent packets (4) so as to achieve synchroniza-
tion between source and destination after a forgery. The
action taken by the destination on receipt of a new opt

packet at interim state is similar to the corresponding
action taken by the destination at store state with an
additional transition to the store state (5).

Note that the sequence number is only advanced at
the source on receipt of a new packet from the higher
(e.g., application) layer (vent packets carry the se-
quence number of the corresponding opt packet) and
that retransmitted packets and acks are not modified
in any way.

3.1.3 Multiple Outstanding Packets

Up to now we described Opt and Vent using a stop-

and-wait protocol. We now address the mechanism by
which the source can have multiple outstanding pack-
ets in the communication path. Inserting multiple out-
standing packets using hash elements from a single chain
introduces the complication that the verification of a
single hash element (at the destination) may require
computing multiple hashes because of possible out-of-
order delivery, drops, and retransmission. Furthermore,
if packet numbered i is dropped, then releasing packet
numbered i + 1 before the retransmission of i allows a
malicious router to fabricate packet i and instruct the
destination to accept the fabricated packet using the
hash chain value attached to packet i + 1.

One way to address this problem is to use multiple
hash chains, where the number of hash chains is equal to
the maximum number of outstanding packets w that the
source is willing to maintain. The source then authen-
ticates packet numbered i with a value from the hash
chain numbered i%w and uses a stop-and-wait protocol
on packets that use elements of the same hash chain.

An alternative approach requires the use of just one
hash chain by simply requiring the source to release
packet numbered i + w only after receiving acks for all
packets up to i and confirming that none of those packets
have been tampered. If the source receives the ack for
packet i, but it has not received ack for all packets num-
bered less than i, it simply waits for the missing acks
before it releases packet i + w. This ensures that mali-
cious routers cannot instruct the destination to accept
fabricate packets using the hash chain values associated
with later packets.

3.2 Discussion

As we previously mentioned, on receipt of an opt

packet with repeated sequence number, the destination
acknowledges the receipt of the first opt packet carry-
ing the corresponding hash and discards the repeated
packet. If the destination discarded, instead, the first
packet and stored and acknowledged the most recently

5

received one, then an adversary would gain the advan-
tage to force the destination to accept forged data by
performing the following attack: The adversary would
first normally forward the first instance of the packet but
it would store and drop the ack. On the second trans-
mission by the source it would forward a forged version
of the packet to the destination but replay the previ-
ously stored ack for the source. On its next opt packet
the source would instruct the destination to accept the
data of the previous packet as authentic and, thus, the
destination would accept the forged data. We will call
this the bolt attack, and we will see that it has an analog
in the Opt and Vent Byzantine detection protocol.

Malicious routers cannot deceive the source into be-
lieving that the destination received a dropped packet
as, on one hand, the destination ack is unforgeable and,
on the other, it reflects the sequence number of the cor-
responding data packet and, thus, cannot be replayed.
Notice also that by replaying acks for packets which are
being retransmitted, malicious routers can only signal to
the source the, accurate, event of the reception of the
corresponding data packet by the destination. Opt and
Vent therefore provides accurate accounting of trans-
mission failures at the source, which can decide when to
initiate a Byzantine detection procedure or tear down
the connection.

We will now explain the utility of the hash chain by
considering a hypothetical protocol that operates with-
out the chain (but retains vent packets) and showing
how the protocol can be attacked. In such a protocol,
if a malicious router is positioned in the communica-
tion path between source and destination, it can, first,
completely block the source after connection establish-
ment and, second, continuously mount forgeries to the
destination. In the destination, the absence of vent

packets is, therefore, ambiguous: it could be interpreted
as either that packets are normally delivered or that the
source is completely blocked. It, therefore, seems that,
in addition to the negative feedback (communicated by
vent packets), positive feedback (communicated by the
hash chain) is also necessary for the correctness of the
protocol.

3.3 Performance Comparison

The Opt and Vent protocol imposes the additional
memory requirement to the destination, as compared to
the standard protocol of mac protection, that a packet
must be stored for an additional round-trip-time upon
its reception.

The cryptographic communication overhead of opt

packets is equal to the size of a hash element, while the
corresponding overhead of their acks is equal to the sum
of the sizes of a mac and a hash. As compared to the
standard protocol the ack overhead is slightly larger
than the overhead of standard acks. The correspond-

OpenSSL 1500B 256B
Std 26.46 (µsec) 16.69 (µsec)

Opt and Vent 21.89 (µsec) 12.13 (µsec)
cryptlib 1500B 256B

Std 19.38 (µsec) 9.52 (µsec)
Opt and Vent 20.25 (µsec) 10.43 (µsec)

Table 1: Performance comparison between the standard
data packet protection mechanism (Std) and Opt and
Vent.

ing overhead in vent packets and their acks is equal
to the overhead of standard packets and acks. The
computational overhead of the standard protocol is the
computation of mac on data packets and acks at both
the source and the destination. The Opt and Vent pro-
tocol, during normal operation, requires the source and
the destination to perform a hash chain computation,
a hash computation on the data packet, and a mac on
the ack. This typically results in lower overheads as the
mac on data packets is replaced by a hash computation
on data packets and a hash chain computation.

In order to measure computational requirements
we used two cryptographic libraries: OpenSSL
0.9.7a (http://www.openssl.org/) and cryptlib 3.1
(http://www.cryptlib.orion.co.nz/). Measurements
were collected on an Intel Pentium M processor run-
ning at 1.5GHz. The cryptographic algorithms used are
the HMAC-SHA1 [18] (for macs) and SHA1 (for hashing
data packets). Table 1 shows the computational require-
ment for opt packets at the source (or destination) for
1500B and 256B packets assuming that acks are 20B
without the cryptographic overhead. In the, widely de-
ployed, OpenSSL library Opt and Vent achieves 17.3%
decrease in computation for 1500B packets and 27.3%
decrease for 256B packets. However, in the cryptlib li-
brary Opt and Vent is slower than the standard protocol
by 4.5% for 1500B packets and 9.6% for 256B packets.

We also performed measurements using the UHASH
and UMAC algorithms (http://www.cs.ucdavis.edu/ ro-
gaway/umac/) and found that with these algorithms
Opt and Vent also incurs a small increase in the com-
putational overhead. We are, therefore, investigating
the reasons that Opt and Vent performs differently
under different cryptographic libraries and MAC algo-
rithms. When applied to Byzantine detection Opt and
Vent achieves significant computational savings in all
the aforementioned libraries and algorithms.

4 Byzantine Detection Background

In this section, we first define Byzantine detection
and then present a Byzantine detection protocol that
will serve as a starting point in the development that
follows.

6

4.1 A Definition of Byzantine Detection

Before we define Byzantine detection we will give two
other useful definitions:
Definition 1. Given a path in a network that consists
of routers and links connecting those routers, we define
a nexus in the path as a triplet of two adjacent routers
and the link that connects them.
Definition 2. We call a packet drop innocuous if it is
not instigated by the adversary. Examples of innocu-
ous drops can be drops caused by congestion or wireless
interference.

We will say that a data packet forwarding mechanism
has Byzantine detection capability, if it satisfies three
properties:
Property 1 (Monitor): The source can monitor the de-
livery status of its data packets using destination acks.
Property 2 (Location): In the event of a failure to deliver
a data packet, the source can pinpoint a nexus that will
be ascribed with the failure.
Property 3 (Detection): The identification of a culpa-
ble nexus by the source implies that at least one of the
elements of the nexus innocuously dropped the corre-
sponding packet or its ack or that at least one of the
elements of the nexus is faulty or Byzantine.

We chose to define Byzantine detection at the “gran-
ularity” of a nexus for two reasons. The first reason
is that the fault detection protocols of Herzberg and
Kutten [12], Awerbuch et al. [10], and Avramopoulos et
al. [1] detect faults at exactly this level of granularity,
and we are not aware of any Byzantine detection mecha-
nism that can operate at a finer granularity. The second
reason is that detection at a coarser granularity will, in
general, not be sufficient to allow efficient recovery ac-
tions at the source.

4.2 A Source Authentication Tag

In [1] we proposed a source authentication tag (sat)
to be used in a Byzantine detection protocol that con-
sists of message authentication codes, one for each down-
stream router. It uses a structure which ensures the
following property: If the tag verifies at one non-faulty
router in the path, then it verifies at all non-faulty down-
stream routers in the path, assuming that the source is
non-faulty and that the tag is not modified in transit.
This property is accomplished by computing each mac

in the tag sequentially from destination to source and
by requiring that the mac for a given router to depend
on the macs of all downstream routers, as illustrated by
Figure 3.

We should point out that on successful verification of
this tag by a non-faulty router, the router is not guar-
anteed that all all non-faulty upstream routers received
the corresponding packet. This sat is therefore weaker
than that proposed by Awerbuch et al. in [10]. In [1] we

tn1s n2 n3

MAC (t) MAC (n3) MAC (n2) MAC (n1)Packet

tn1s n2 n3 tn1s n2 n3

MAC (t)MAC (t) MAC (n3)MAC (n3) MAC (n2)MAC (n2) MAC (n1)MAC (n1)Packet

Figure 3: Computation of authentication tags. Source
s sends to destination t via the path 〈s, n1, n2, n3, t〉.
Each receiving node needs to verify the authenticity of
the packet. The computation of the MAC for ni receives
as input the secret key that s shares with ni, the packet
(or message), and the MACs for ni+1, . . . , t.

argued that this property is not required for the correct-
ness of Byzantine detection and, thus, our more efficient
tag is sufficient,2 but we also suggested an additional
protection step of computing macs between neighbor-
ing routers for some networks, including wireless ad hoc
ones. David Holmer and Herbert Rubens, in personal
communication with the first author of this paper, ob-
served that for wireless ad hoc networks, the additional
protection step that we proposed to employ between
neighboring routers, may not be necessary. Their sug-
gestion is a topic that we are investigating. We note
that this issue does not in any way affect the results
that follow.

4.3 A Mechanism for Fault Feedback

In the development that follows the fault feedback
mechanism of Awerbuch et al. [10] is essential. In this
mechanism, a probe list is associated with each message.
The probe list of a given path is defined as the sub-
set of routers in the path that participate in Byzantine
fault detection. Every node on the probe list is required
to send an acknowledgement to the source. Each ac-
knowledgement is protected with a MAC that is com-
puted using the secret key that the source and the probe
share and, thus, its authenticity can only be verified at
the source. Upon reception of the acknowledgements
the source can determine whether the packet reached
the destination and, in the event that the packet was
dropped, the source can also determine the location of
the failure at the granularity of a nexus (by observing
the point of disruption of the ack list). Notice that
probes can securely communicate arbitrary feedback to
the source by protecting it with the mac of their ack.
In order to save communication overhead and to prevent
the adversary from selectively dropping acks, down-
stream acks are accumulated in a single packet before
they are forwarded that is encrypted using the secret

2This observation is particularly useful when we incorporate
Opt and Vent messages into Byzantine detection since using a hash
element as the sat does not ensure the aforementioned property
either.

7

key that the probe shares with the source. Note that
the probe list need not contain all the nodes in the path.
Instead, the source could refine the probe list based on
responses to previous probes, thereby identifying Byzan-
tine nodes using O(log np) probe attempts, where np is
the number of nodes on path p [10].

We consider the Byzantine detection protocol that
combines the sat of [1] and the fault-feedback mecha-
nism of [10] a starting point in the development that
follows.

5 Reducing the Overhead of Retrans-

missions

In this section, we propose a performance optimiza-
tion that applies to the retransmission of undelivered
packets within the context of a Byzantine detection pro-
tocol. On detection of the failure to deliver a packet
(which is recognized by the absence of a destination
ack), the source has the options to either retransmit
the failed packet or transmit the next packet and let the
higher layer decide on an appropriate time to retrans-
mit the failed one as a logically different packet. The
performance optimization of this section makes the first
scenario a more efficient solution for the source.

5.1 Avoiding sat Recomputation

Note that a straightforward approach to handling im-
mediate retransmissions is to advance the sequence num-
ber and, thus, recompute the sat. The reason for ad-
vancing the sequence number is to prevent replay of fault
announcements by malicious intermediate routers. Since
fas carry the sequence number of the corresponding
data packet, a malicious router could store an fa that
was triggered by an innocuous drop in the first trans-
mission and replay it after the retransmission. Since this
fa would carry a legitimate sequence number, it would
be deemed valid at the source. The source would, thus,
associate a fault with a nexus that did not drop the
corresponding packet and, therefore, the Byzantine de-
tection property would have been violated.

The protocol that we will propose, on one hand, al-
lows the source to retransmit the failed packet without
recomputing the sat and, on the other, does not have
the aforementioned vulnerability regarding the replay
of fas. Our approach is to make fas differ in different
retransmissions by requiring the source to append an
unprotected offset to the retransmitted packet and the
downstream routers to reflect the received offset in their
acks.

We argue the correctness of this approach by exam-
ining the authentication properties of a sat. We first
make a useful observation regarding the extreme case of
completely removing the authentication tag: The sat

serves two purposes. The first purpose is to protect
against modification of the corresponding packet; the
packet that carries an attempted forgery will be dropped
at the next downstream router. The second purpose is to
allocate a reserved buffer to the intended source; with-
out source authentication, malicious routers can spoof
the address of the source in order to cause the source’s
packets to be dropped at non-faulty routers. If the sat

was removed, then we would create three vulnerabilities
in the protocol:

1. The destination would be unsure of the integrity of
the received packets and may, thus, accept forged
data.

2. The source would fail to detect where its packets
were tampered.

3. Malicious routers could cause non-faulty routers
to drop legitimate packets (by spoofing the corre-
sponding source).

The first vulnerability does not apply to retransmit-
ted packets because the destination can verify the in-
tegrity of the data by the authentication tag. Regarding
the second vulnerability, the modification of any part of
the packet besides the offset is equivalent to dropping
the corresponding packet since the authentication tag
will not verify at the next non-faulty downstream router.
Furthermore, the location of a modification of the offset
can be detected by requiring from downstream routers
to reflect their received offset in their ack. Regarding
the third vulnerability, downstream routers cannot ver-
ify the authenticity of the offset. However, by forging
an offset, malicious routers cannot consume resources
reserved for other packets, with different sequence num-
bers, generated by the same source.

Therefore, the attachment of an unprotected and un-
predictable offset to a retransmitted packet is the solu-
tion that we adopt for protection against replay of fas.
A random offset, for example, satisfies this requirement.
The unpredictability requirement prevents the adver-
sary from manipulating the offset mechanism in order to
receive FAs for yet unused offsets. The impact that such
an attack would have should the offset be predictable is
a topic of future work.

Note that the use of unprotected offsets along with
retransmissions gives malicious routers the ability to in-
sert a potentially large number of fake retransmissions
and increase the amount of message traffic in the system.
We, however, note that these retransmissions could be
suppressed by a properly functioning downstream router
who had received the earlier transmission, forwarded it,
but has not timed-out on the corresponding ack (or fa,
in the case of faults at routers further downstream).

8

5.2 Avoiding sat Re-verification

In the previous scheme, the computational savings
are for the source only. Downstream routers that had
already received the packet in a previous transmission
must reverify the authentication tag because of the fol-
lowing attack: In a first transmission of a packet a mali-
cious intermediate router would let it pass without mod-
ifying it. Assume now that this packet is innocuously
dropped at non-faulty downstream link e. In the sec-
ond transmission the malicious router would modify the
packet. The routers upstream to e would let the mod-
ified packet pass without verifying its authenticity. On
reception of this packet by the router downstream to e,
its authenticity would be verified and the packet would
be dropped at the non-faulty nexus of e violating Byzan-
tine detection.

We propose now a modification of the above scheme
that results in computational and communication sav-
ings at downstream routers (in addition to the compu-
tational savings at the source). In order to avoid re-
peated verifications of the authenticity of the retrans-
mitted packet by downstream routers, we require that
upon reception of an authentic packet each router keeps
it in memory (until reception of an authentic packet
from the same source that will instruct its disposal). On
subsequent reception of a retransmission of this packet,
routers that keep it in memory will forward to the down-
stream router the version of the packet that is in mem-
ory, whose authenticity has already been verified, rather
than the received packet, which may have been modified,
after setting the (unprotected) offset field to the value
of the current retransmission. In this way, each down-
stream router will verify the authenticity of a packet at
most once, irrespective of the number of retransmissions
by the source.

Note that this optimization saves not only crypto-
graphic but also communication overhead since each
router can tell whether its downstream router has al-
ready received the packet from the presence or absence
of a cumulative ack from that router. In the presence of
such an ack for a previous transmission, the only new
information that must be transmitted is the current off-
set.

Requiring downstream routers to keep packets in
memory may seem to increase the memory requirements
imposed on them. We argue to the contrary due to the
use of reserved buffers as suggested in [1]. By using re-
served buffers, the total number of congestion drops is
contained in an ad hoc network to congestion drops due
to contention of the wireless medium. Without buffer
reservations malicious routers could cause network-wide
disruptions by overwhelming the network with their own
packets and, thus, resources would be denied to the
packets of non-faulty sources.

6 The Opt and Vent Byzantine Detec-

tion Protocol

In this section we will use the Opt and Vent idea to
construct a Byzantine detection protocol on the basis of
the protocol of Section 4.

6.1 A First Step

We modify the Byzantine detection protocol that is
obtained by combining the use of sat of [1] and the
fault-feedback mechanism of [10]. In a straightforward
application of Opt and Vent to Byzantine detection, the
sat would be replaced with a single hash element and
each downstream router would append a hash of the re-
ceived packet to its ack. By receiving the hashes the
source would be able to detect whether the packet had
been modified and, if so, would also be able to pinpoint
the location of the modification. This is the protocol
that we will investigate in this section. In the next sec-
tion, we will propose a variation of this protocol that
improves performance.

The replacement of the sat with elements of a hash
chain requires addressing the following challenge: In
the event that a packet is dropped, its corresponding
hash element will not become available at all down-
stream routers. If the source transmitted the next
packet (which could be the lost packet or a new packet
in the data stream) with the next hash element, then
some downstream routers would need to compute two
hashes to verify its authenticity, which is not desirable
for performance reasons. In order to gain the compu-
tational advantage of the hash chain, dropped packets
must be retransmitted without changing the hash el-
ement. However, in the event that the retransmitted
packet that carries the reused hash element is dropped,
the source must still be able to detect the location of
the delivery failure.

Note that the Opt and Vent endpoint protection pro-
tocol had weaker requirements with regards to analyzing
transmission failures. It merely required the source to
identify that a packet was lost; it does not require the
source to pinpoint the location of the failure. It can
therefore reuse hash elements for retransmitted pack-
ets and also let the acknowledgements to retransmitted
packets be identical. (The destination acknowledges re-
ceipt of the first packet that carries a given sequence
number by including its hash value in the ack.) This
feature does not prevent the source from detecting trans-
mission failures because a possible replay of the retrans-
mitted packet’s ack by the adversary signals to the
source the accurate event of the reception of the first
packet by the destination. However, the Byzantine de-
tection protocol uses negative feedback (in the form of
fault announcements) in addition to acks, and these fas
require stronger protection, because malicious routers

9

can persistently replay fas and, inaccurately, associate
faults with a link that failed only once. Thus, fas for
retransmitted packets should differ.

We address this challenge by making use of the
retransmission procedure of Section 5 that associates
a random unprotected offset with the retransmitted
packet. The difference with Section 5 is that the sat

is replaced with hash elements and that downstream
routers include in acks a hash of the received packets.
This difference does not in any way affect both the off-
set mechanism and the optimization regarding avoiding
repeated verifications of retransmitted packets. In fact,
the latter method, furthermore, effectively counters the
bolt attack of Section 3 that has a direct analog in the
Byzantine detection protocol.

6.2 A Performance Optimization

As a final step, notice that the data transmitted by
the source is intended to be consumed at the destina-
tion alone. In the previous section, the hashes that the
source receives from intermediate routers serve the sole
purpose of detecting the location where the packet was
modified. Without these hashes, the source is still able
to tell whether the data was received by the destina-
tion and whether the received data is untampered. We
now design a protocol that does not require intermedi-
ate routers to perform a hash on the received packets.
In the event though of the detection of a modification,
from the comparison of the source and the destination
hash, the protocol must be able to offer the source the
capability to pinpoint the location of the modification.

The idea of a mechanism that offers such capability
is the following: If we require from intermediate routers
to store received packets until the next authentic hash
element arrives, then on detection that the destination
received a forged packet, the source can query interme-
diate routers for hashes of their received packets. By
comparing these hashes with the hash of the original
packet, the source can, thus, determine the location of
the modification of the packet.

Realizing this idea requires an appropriate handling
of retransmissions. Since failed packets are retransmit-
ted without a new sat, which version of the packet
should intermediate routers store? The retransmission
mechanism of Section 5, according to which routers keep
in memory the first received packet with an authen-
tic tag and retransmit this packet on request from the
source, suffices. The reason is that once a malicious
router modifies a packet, state of the modification will
be kept at the first non-faulty downstream router (and
beyond) and, furthermore, this state cannot be later nul-
lified by the malicious router.

It is informative to show how the protocol would
fail if downstream routers kept in memory the first re-
ceived packet with a new authentic tag but retransmit-

ted the currently received packet instead of the one that
is stored in memory. A malicious intermediate router
would let the first packet sent by the source pass un-
modified. Lets assume that this packet got dropped
at non-faulty link e. When the retransmitted packet
would arrive at the malicious router, it would modify it
and forward the modified packet. Upon reception of the
destination ack the source would detect the modifica-
tion and send a query packet. The answer to the query
of the router upstream to e is the hash of the original
packet whereas the answer of the router downstream to
e is the hash of the modified packet. The source would
then account a modification to the non-faulty nexus of
e.

6.3 Overview of Opt and Vent

The Opt and Vent Byzantine detection protocol op-
erates in three phases. The purpose of the first phase is
to bootstrap the hash chain whose elements will be sub-
sequently used for the sat of data packets. In this phase,
a second hash chain is also set up whose elements will
be used as the sat of the query packets, which are dis-
patched in the event of the detection of a modification.
The sat used in the first phase is per Section 4 and re-
transmissions are handled per Section 5. On completion
of the first phase, we follow the protocol of Section 6.2
to transmit data. Packets transmitted during this phase
are called opt packets (as in Section 3). On detection of
a modification of an opt packet, a vent-query packet
is dispatched to query downstream routers of hashes of
their received packets in order to pinpoint the location
of the modification and also inform the destination to
ignore the corrupted packet. vent-query packets are
handled per Section 6.1.

After the detection of the nexus that modified the
packet, the action taken by the source can be the dele-
tion of the corresponding link from its topological map
(assuming that modifications are rarely innocuous), if
the nexus corresponds to a physical link, or an increase
in the number of probes, if the link in the nexus corre-
sponds to a path in the physical topology. Note that,
in order to avoid detection, malicious routers can per-
sistently drop vent-query packets, which will induce,
however, a large penalty on their corresponding incident
links, thereby resulting in their eventual deletion from
the topological map.

6.4 Performance Comparison

The cryptographic communication overhead of opt

packets and their acks is the hash element (that serves
as the sat), the macs in the cumulative ack, and a des-
tination hash. As compared to the protocol of Section
4 the overhead of the sat is reduced m times, where
m is the number of downstream routers, and the over-
head of the cumulative ack is increased approximately

10

OpenSSL two-hop ten-hop
Std (µsec) 107.69 634.54

OPT (µsec) 64.03 309.30
VENT (µsec) 77.14 469.02

cryptlib two-hop ten-hop
Std (µsec) 83.66 551.68

OPT (µsec) 59.05 311.05
VENT (µsec) 73.07 491.59

Table 2: Comparison of the computational overhead of
Opt and Vent packets.

OpenSSL total src interm dest
Std (µsec) 634.54 317.27 290.87 26.42

OPT (µsec) 309.30 148.47 138.97 21.88
VENT (µsec) 469.02 169.28 277.82 21.88

cryptlib total src interm dest
Std (µsec) 551.68 275.84 265.04 19.32

OPT (µsec) 311.05 145.14 145.42 20.15
VENT (µsec) 491.59 172.11 298.30 20.17

Table 3: Breakdown of the computational overhead of
Opt and Vent packets for a path of ten hops.

by one hash. The exact change depends on the encryp-
tion algorithm; assuming that the algorithm is AES in
CBC mode, then, as the acks are accumulated, padding
is necessary to ensure that the encrypted quantity is a
multiple of the block size. In vent packets the reduction
of the size of the authentication tag is counterbalanced
by the hashes that intermediate routers append in their
acks.

We measured computational requirements using the
OpenSSL and cryptlib libraries, an Intel Pentium M pro-
cessor running at 1.5GHz, and the HMAC-SHA1 and
SHA1 algorithms, as in Section 3. Table 2 shows the to-
tal cryptographic computational overhead incurred by
all the nodes in the path, which includes computations
for data packets as well as their acks, assuming that
the size of data packets is 1500B.

The total computational overhead for opt packets is
significantly less than that of the protocol messages of
the Std protocol (of Section 4). The savings vary from
29.4% (for a two-hop path using the cryptlib library)
to 51.3% (for a ten-hop path using the OpenSSL li-
brary). The computational savings for the vent packets
is a bit smaller since it requires hashes from all down-
stream routers, and they vary from 10.9% (for a ten-
hop path using cryptlib) to 28.4% (for a two-hop path
using OpenSSL). Note however that vent packets are
dispatched only after the detection of a forgery, and the
protocol is therefore likely to enjoy the performance sav-
ings of opt packets for the common case. In fact, the
performance savings would be even higher when the sys-
tem experiences innocuous drops, as the Opt and Vent
protocol employs the efficient retransmission protocol of

Section 6.1, while the Std protocol would incur repeated
overheads for generating and verifying the sat.

Table 3 provides the breakdown of the total process-
ing overhead. It presents the overhead experienced by
the source (src), the total overhead incurred by the nine
intermediate routers (interm), and the destination over-
head (dest). The processing overhead of opt packets at
the destination and of vent packets at all downstream
routers may decrease or increase (as compared to Std
packets) depending on the library. However, the total
overhead of opt packets is less in both libraries because
of the significant savings at both the source and the
intermediate routers. Similarly, the total overhead of
vent packets is less in both libraries because of the sig-
nificant savings at the source.

It is informative to compare the performance of Opt
and Vent with the basic protocol of Section 4 in a sce-
nario where a malicious intermediate router decides to
create a disruption in the communication of the corre-
sponding path. Under the protocol of Section 4, the
strategy that the adversary should follow is to drop
packets. Under Opt and Vent, because of the efficient
handling of retransmissions and the good performance
of opt packets, it is better for the adversary to first
modify a packet and then drop the vent packets that
follow. Thus Opt and Vent incurs a delay in recovery of
one transmission, which is minimal.

7 Future Work

In Section 1 we mentioned that innocuous drops com-
plicate the problem of achieving Byzantine robustness,
despite the existence of efficient Byzantine detection al-
gorithms. The most challenging type of innocuous drops
to cope with are congestion ones. The reason is that if
routing decisions depend on congestion (and, thus, de-
lay), then the routing mechanism may become unstable
(in the absence of an adversary) [19]. Notice that the
occurence of congestion drops is unavoidable in ad hoc
networks because of the contention-based wireless chan-
nel. In the absence of congestion drops, a simple path
calculation mechanism that penalized each link with the
−log of its success probability could have been sufficient
for routing purposes.

Furthermore, driven by our observation of the trade-
off between protection overhead and recovery time in
data packet forwarding protection mechanisms, we are
investigating algorithms that will balance the protection
overhead and the recovery time capability of the protec-
tion mechanism based on an estimate of the threat that
the adversary poses to the packet delivery service.

Acknowledgements

We would like to thank Qiang Huang for asking a
question that stimulated our thinking.

11

References

[1] I. Avramopoulos, H. Kobayashi, R. Wang, and
A. Krishnamurthy, “Highly secure and efficient
routing,” in Proc. IEEE Infocom 2004, Hong Kong,
Mar. 2004.

[2] R. Ellison et al., “Survivability: Protecting your
critical systems,” IEEE Internet Computing, pp.
55–63, Nov.-Dec. 1999.

[3] J.-P. Hubaux, T. Gross, J.-Y. Le Boudec, and
M. Vetterli, “Towards self-organized mobile ad hoc
networks: The terminodes project,” IEEE Com-
munications Magazine, pp. 118–124, Jan. 2001.

[4] R. Perlman, Network Layer Protocols with Byzan-
tine Robustness, Ph.D. thesis, Massachusetts Insti-
tute of Technology, Aug. 1988.

[5] L. Buttyan and J.-P. Hubaux, “Stimulating coop-
eration in self-organizing mobile ad hoc networks,”
ACM/Kluwer Mobile Networks and Applications,
vol. 8, no. 5, pp. 579–592, 2003.

[6] Y.-C. Hu, A. Perrig, and D. Johnson, “Rushing at-
tacks and defense in wireless ad hoc network rout-
ing protocols,” in Proc. 2003 ACM Workshop on
Wireless Security, San Diego, CA, Sept. 2003.

[7] Y.-C. Hu, A. Perrig, and D. Johnson, “Packet
leashes: A defense against wormhole attacks in
wireless networks,” in Proc. IEEE Infocom 2003,
San Fransisco, CA, Mar. 2003.

[8] A. Mishra, K. Nadkarni, and A. Patcha, “Intrusion
detection in wireless ad hoc networks,” IEEE Wire-
less Communications Magazine, pp. 48–60, Feb.
2004.

[9] Y. Zhang, W. Lee, and Y.-A. Huang, “Intrusion
detection techniques for mobile wireless networks,”
ACM/Kluwer Wireless Networks, vol. 9, no. 5, pp.
545–556, 2003.

[10] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and
H. Rubens, “An on-demand secure routing pro-
tocol resilient to byzantine failures,” in Proc. 2002
ACM Workshop on Wireless Security, Atlanta, GA,
Sept. 2002.

[11] P. Papadimitratos and Z. Haas, “Secure data trans-
mission in mobile ad hoc networks,” in Proc. 2003
ACM Workshop on Wireless Security, San Diego,
CA, Sept. 2003.

[12] A. Herzberg and S. Kutten, “Early detection of
message forwarding faults,” SIAM J. Comput., vol.
30, no. 4, pp. 1169–1196, 2000.

[13] I. Avramopoulos, H. Kobayashi, and R. Wang, “A
routing protocol with byzantine robustness,” in
Proc. 2003 IEEE Sarnoff Symposium, Princeton,
NJ, Mar. 2003.

[14] Y.-C. Hu, A. Perrig, and D. Johnson, “Efficient se-
curity mechanisms for routing protocols,” in Proc.
Network and Distributed System Security Sympo-
sium, NDSS ’03, San Diego, CA, Feb. 2003.

[15] Y.-C. Hu, A. Perrig, and D. Johnson, “Ariadne:
A secure on-demand routing protocol for ad hoc
networks,” in Proc. 8th Annual International Con-
ference on Mobile Computing and Networking, At-
lanta, GA, Sept. 2002.

[16] K. Sanzgiri, B. Dahill, B. Levine, C. Shields, and
E. Belding-Royer, “A secure routing protocol for
ad hoc networks,” in Proc. 2002 IEEE Interna-
tional Conference on Network Protocols (ICNP),
Paris, France, Nov. 2002.

[17] P. Papadimitratos and Z. Haas, “Secure routing
for mobile ad hoc networks,” in Proc. Communi-
cation Networks and Distributed Systems Modeling
and Simulation Conference, San Antonio, TX, Jan.
2002.

[18] H. Krawczyk, M. Bellare, and R. Canetti, “Hmac:
Keyed-hashing for message authentication,” in In-
ternet RFC 2104, Feb. 1997.

[19] J. Wang, L. Li, S. Low, and J. Doyle, “Can shortest
path routing and tcp maximize utility,” in Proc.
IEEE Infocom 2003, San Frascisco, CA, Mar. 2003.

12

