
A Multi-Cursor ∗ X Window Manager
Supporting Control Room Collaboration

Grant Wallace, Peng Bi, Kai Li and Otto Anshus

Princeton Universtiy Computer Science
{gwallace,pbi,li,otto}@cs.princeton.edu

ABSTRACT
Existing window systems have been designed to support a
single user and they are not suitable for control room collab-
oration. This paper describes how to extend the X-window
system to support multiple simultaneous cursors. In a col-
laborative control room environment a multi-cursor X win-
dow system can allow multiple users to simultaneously drag,
control and input to windows on a shared display. This
paper discusses the design and implementation of a multi-
cursor X window manager. Our early experience at a fusion
control room show that our multi-cursor X window manager
is an effective approach to support control room collabora-
tion.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group
and Organization Interfaces—Synchronous interaction, Col-
laborative computing, Computer-supported cooperative work ;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Windowing systems, Input devices and strate-
gies, Graphical user interfaces (GUI); H.4.1 [Information
Systems Applications]: Office Automation—Groupware,
Workflow management ; D.4.4 [Operating Systems]: Com-
munications Management—Input/Output

Keywords
Multi-cursor, Multi-user, Simultaneous input, Synchronous
input, Window manager, Desktop, Shared display, Group
collaboration, X11, Xserver

1. INTRODUCTION
Ever since Douglas Engelbart’s ground breaking demonstra-
tion in 1968 of the mouse, the cursor and remote collabo-
ration [6], people have been inspired to create collaborative

∗We use the term cursor throughout the text to designate
a combined mouse and keyboard input channel and its as-
sociated arrow on the screen.

computing systems. The proliferation of computers, com-
modity software, and networks have provided an underly-
ing platform for computer supported cooperation and shar-
ing. However, in the advance of personal desktop computers,
system support for multi-user input and collaboration has
lagged behind. Today’s window systems are single cursor
based, assuming a single user per display. Although window
systems such as X windows [15] and Microsoft Windows al-
low remote clients to show windows on a shared display,
multiple clients have to time share the single cursor, each
taking her turn to control windows or enter inputs. The
serial input procedure is a barrier for control room collab-
oration where a large number of users need to show results
generated from multiple applications simultaneously in or-
der to make time-critical decisions.

As part of the Scientific Discovery through Advanced Com-
puting (SciDAC) FusionGrid [16] project, we have been work-
ing closely with Fusion scientists at several DOE Energy Re-
search labs investigating the requirements for technology to
improve collaboration within fusion control rooms. Fusion
control rooms are dynamic places where large amounts of
data must be periodically generated and analyzed and group
decisions made and carried out within short time intervals.
Since the fusion experiments are precious and costly, it is
crucial that fusion scientists make the best decisions pos-
sible when setting the parameters for the next experiment
(or shot). A combination of individual and group data must
generally be visible for exploration and comparison. This
setting lends itself to a combined set of displays, some pub-
lic and some private, on which people do their work. Since
there are tens of collaborators in such a control room, it
is highly desirable to support simultaneous navigation and
concurrent control within the shared display environment;
and, because users access a variety of existing software tools
to analyze the dataset, the collaborative framework must
support the simultaneous use of legacy applications.

In response to the needs of a collaborative control room,
we have developed a multi-cursor X window manager. This
window manager provides for multiple simultaneous cursors
at the desktop level and allows multiple users to concur-
rently interact with all components of a desktop environ-
ment including applications, window position and size, and
system menus. Our work differs from previous multi-user
collaborative software research in that we add the multi-
cursor support at the systems level rather than within spe-
cialized applications. This has the advantage of allowing si-

multaneous control of multiple legacy applications. This is
important to researchers in a control room who already have
a set of single user tools for data analysis. The multi-user
desktop allows them to simultaneously traverse the data set
in side by side windows and compare results.

We have designed, prototyped and deployed a collaborative
control room system. Our system is based around the multi-
cursor window manager and leverages several other exist-
ing tools to do application sharing and tiled display align-
ment. A large, shared tiled-display provides the resolution
necessary for simultaneous navigation and group viewing.
An application sharing mechanism allows users to quickly
move data views between personal and shared displays. The
multi-cursor X window manager allows users to concurrently
control and navigate independent windows created from mul-
tiple applications. Our early experience at the control room
of Princeton Plasma Physics Lab (PPPL) shows that the
multi-cursor window manager can indeed alleviate the single-
cursor user interface bottleneck in a control room and it is an
effective and scalable approach to supporting control room
collaboration.

In this paper we describe our work on the collaborative
control-room software, focusing in particular on the multi-
cursor desktop. Section (2) describes related work. Section
(3) discusses system requirements and design considerations.
In section (4) we describe our implementation of a multi-
cursor window manager and relate some system experiences
in section (5). Finally, section (6) concludes and describes
future work.

2. RELATED WORK
Our work on collaborative control room software builds on
a collection of research from several areas. These include
research in control room systems, display walls, application-
sharing, multi-user applications and collaborative environ-
ments.

In the area of simultaneous multi-cursor collaboration there
have been many research projects. These include systems
such as MMM[4], Liveboard[5], Tivoli[12], KidPad[2], M-
Pad[13] and Pebbles[11]. These projects have experimented
with users simultaneously interacting with and controlling
specialized applications. The applications have been cus-
tom designed to support multiple simultaneous cursor inter-
action. We extend this work by adding multi-cursor sup-
port at the desktop level. This allows multiple people to
simultaneously interact with the desktop or any applica-
tions running on the desktop, including legacy single-user
applications. Within a multi-user desktop, users can work
independently on different applications or interleave their
input to the same application.

There is a collection of work on application-sharing. The
research can be generally divided into collaborative trans-
parent and collaborative aware sharing techniques. Systems
such as Xmove[17], SharedX[7], XTV[1], VNC[14] and Net-
Meeting[10] seek to transparently share views and user in-
teraction on existing applications. Alternatively, collabo-
ratively aware systems typically need to be developed or
configured for specific applications but can provide greater
flexibility such as independent navigation, simultaneous in-

put and heterogeneous platforms. Examples of these include
multi-user games, simulators and command and control sys-
tems [3]. We base our application-sharing method on the
collaborative transparent model, using Xmove[17], and ex-
tend it with a Java graphical user interface to ease use and
configuration.

Work has also been ongoing in the area of control room sys-
tems. One interesting example in this area is the Courtyard
system [18]. It interleaves private and shared displays in
a multi-cursor application. They implement a power plant
monitoring system. It uses a large shared display for group
data visualization and provides for multi-user input; when
an item is clicked by a user, detailed information is shown
on their personal display. Our work differs from this in that
while they develop a specialized application, we want to pro-
vide generic systems-level support for multi-user collabora-
tion at the desktop level to avoid specialized application
development or re-implementation.

Stanford Interactive Workspaces Project [8] creates a col-
laborative environment with several shared displays. It pro-
vides hardware support for moving personal displays to the
shared area and multiplexes cursor input, although there
is only one shared cursor. Our work adds system-level sup-
port for multiple cursors and integrates software support for
application sharing to environments such as these.

Our work also relates to two-handed input research such as
[9]. Multi-cursor support at the desktop level can facilitate
two-handed input even on current single-input applications
such as drawing and illustration packages. For example, one
cursor can be used to control brush size and palette selection
while the other draws lines or objects. This minimizes the
back and forth movement necessary with one cursor when
alternately selecting brushes or painting.

Several of the above research areas have been combined
into an emerging research community called Single Display
Groupware [2]. This area of research seeks to facilitate the
collaboration of multiple co-located users simultaneously in-
teracting with a shared display. It incorporates research
in multi-user interfaces, application sharing, access control,
shared displays and peer-to-peer networking. One of the
stated desires of this community is to encourage systems
developers to add true multi-cursor support at the OS level.
Our work on a multi-cursor window manager is a first step
in this direction. It can support simultaneous interaction in
different windows of existing single-user applications. It can
also support interleaved interaction within the same window.
Another desire stated in the SDG papers is for simultaneous
navigation by users. Multi-cursor desktops provide support
for this by allowing users to traverse a shared data set in
independent side-by-side applications.

3. SYSTEM DESIGN
3.1 Control Room Environment
Collaboration among engineers and scientists within a con-
trol room is critical to making sound decisions in a lim-
ited time period. Control rooms have historically had many
types of information displays, including analog and digital
readouts, individual computer displays and group visible
displays; however, the group displays have typically been

pre-programmed to show certain data and have not lent
themselves to dynamic use by collaborators.

Our user group consists of 20 to 30 fusion scientists in a
reactor control room. They analyze data from previous ex-
perimental reactor runs and adjust parameters for the next
experimental run. There is a 20-minute time period in which
to do analysis and make decisions. Researchers will typically
produce graphs and views of the data on their personal work-
stations. When they find an interesting result they want to
share it with the group so it can be incorporated into the
decision making process. Previously, this was accomplished
by scientists walking to each other’s computer displays to
see the results. Our goal was to intermingle the use of per-
sonal and shared displays to make their collaboration more
efficient.

3.2 Collaborative Components
We decided to focus our efforts in three areas: creating a
large shared display, making it easy for users to move their
application windows to the shared display, and providing for
simultaneous control on the shared display. The applications
used in the control room are primarily X11 based; however,
the workstations are typically Windows or Mac. So, we
could initially narrow our display environment to X11 with
user tools targeted toward Windows and Mac. We sought
to re-use or incorporate other tools as much as possible.

3.2.1 Multi-Cursor Window Manager
We wanted to support concurrent interaction on the shared
display since, in typical use, scientists would be modifying
data views in side-by-side application windows. We searched
for other projects that would allow multiple users simulta-
neous control of a desktop. All projects we found allow
shared control of a desktop via a single cursor that is shared
among multiple collaborators like VNC[14]. We found no X
extensions or other references on how to support multiple
cursors in X11. Although we did get some hints from the
XFree86 developer’s group into how we might time-slice the
X server’s single user paradigm to create a multi-user inter-
face, we still needed to start from scratch in the creation of
a simultaneous multi-user desktop.

3.2.2 Shared Display
We decided on a two-projector tiled display at the front of
the control room. The display is 6x16 feet and 7 feet off the
ground. It’s large enough to be easily visible from anywhere
in the room. We automatically align the projectors using
DeskAlign[19] and drive them from a single PC with a dual-
headed graphics card.

3.2.3 Shared Windowing Configuration
After searching and evaluating many application-sharing projects
and tools1 we decided to use Xmove [17]. Xmove has an
X11 pseudo-server which runs on a client computer. The
$DISPLAY environment variable can be set such that when
applications are started, the application window will then be
sent to the pseudo-server and looped back to the local dis-
play. At any subsequent time the application window can be

1Most application-sharing projects in the literature are ei-
ther proprietary or inactive without downloadable code.

redirected to a different X server by utilizing the xmovectrl
command line tool. We developed a Java GUI application
to help simplify the use of Xmove (figure 1). It starts the
pseudo-server, sets the $DISPLAY variable, and lists the ap-
plications displayed locally or on the shared display. Ap-
plications can be moved to or from the shared display by
selecting them from the list and clicking the appropriate ar-
row button.

Figure 1: Application-Sharing GUI

3.3 Multi-Cursor Desktop Design Choices
Starting from the paradigm of using a multi-cursor desktop
to support concurrent user interaction, and extending the
ideas upon which a single-user desktop is based we developed
the following assumptions.

Multi-Cursor Desktop Assumptions

• Multi-cursors operate concurrently and can control any
application including menus and items on the desktop.

• A cursor can only grab the focus of one window at a
time.

• If multiple cursors interact with the same single-user
application, the event stream is the subsequent inter-
leaving of cursor events.

• If multiple people control the same cursor, their inter-
actions will be combined and interleaved.

• Cursors must be easily distinguishable from one an-
other.

• Cursor-application focus associations must be easily
distinguishable.

• Legacy X11 application should run in the environment.

Based on these assumptions, we considered several layers
into which desktop multi-cursor support could be added.
Note first that adding multi-cursor support to individual
applications is not considered due to the requirements of in-
teracting with a desktop environment and supporting legacy
X applications. Essentially, there are three levels at which
multi-cursor support can be added: the display server layer,
the window manager layer, or a remote desktop layer.

Modifying the X11 display server is the most elegant solu-
tion. This would give not only a multi-user desktop with
support for legacy applications, but could also provide a
system library for future multi-user aware applications to

utilize when registering for user input channels. A less el-
egant but much easier approach is to implement a multi-
cursor window manager. This has the advantage of enabling
a multi-user desktop supporting legacy applications while re-
quiring only a small development effort with no system-level
modifications. Both the display server and window manager
implementation have the advantage of providing good per-
formance. The third choice is to add multi-cursor support
to a remote desktop server such as VNC[14]. This provides
utility similar to that at the window manager layer, with the
added potential for cross-platform support, but with poten-
tially decreased performance and a larger software develop-
ment effort.

Weighing these three options, and keeping in mind that X11
was our target platform, we decided to prototype our system
in the simpler window manager layer in order to quickly gain
real-world use experience. We detail our window manager
implementation in the next section.

4. MULTI-CURSOR WINDOW MANAGER
IMPLEMENTATION

A multi-cursor window manager (MCWM) can provide a
convenient way to prototype a multi-cursor desktop. It al-
lows us to gain some experience with simultaneous application-
sharing and editing on a control-room shared display. There
are several constraints involved in implementing a MCWM.
These constraints derive from the fact that the Xserver in-
ternally supports only one cursor. This has ramifications
which include: only one cursor is drawn on the display, only
one window has focus, there is only one event queue, and
there are no data fields for differentiating cursors. These
were all challenges we needed to solve in order to success-
fully implement our MCWM.

Rather than start completely from scratch, we started with
the base code of an existing, but minimal, single cursor win-
dow manager called wm2.

4.1 Creating and Differentiating Events
from Multiple Cursors

We first needed to create a way to distinguish between events
generated from distinct input sources. We searched through
the XEvent structure for any unused fields or bits common
to all event types. We found that the state field only uses
bits 1-13. The state field is declared as unsigned int, but
we’ve observed the Xserver to send only 16 bits of data. This
leaves bits 14-16 available to specify a cursor number, allow-
ing eight distinct cursors. We differentiate between cursor 0
and cursors 1-7. Cursor 0 we call the system cursor, it has
zeros in bits 14-16 and therefore is the Xserver’s normal in-
put channel. Cursors 1-7 we call multi-cursors. They must
be generated through some other means.

To generate multiple input sources we modified the x2x pro-
gram. X2x is a client application that captures keyboard
and mouse input and sends the corresponding Xevents to
a remote Xserver. This essentially allows a user to attach
their keyboard/mouse to a remote display. We modified x2x
to pack the cursor number into the top 3 bits of the state

field before sending events. We also added a command line
option to specify the cursor number.

4.2 Displaying Multiple Cursors
Normally, cursor display is handled through the Xserver,
but there is only support to display one cursor. So to
physically display multiple cursors we constructed a sepa-
rate technique. For each cursor (1-7) that registers with
the window manager, we open a new X window sized 16x16
pixels. We then use the XShape extension to make this win-
dow look like a cursor. We color the window one of seven
pre-selected colors to distinguish cursors from one another.
Cursor motion events are then very easy to handle within
the window manager: we simply change the location of the
corresponding cursor-shaped window. Cursor 0 is drawn by
the Xserver as usual.

4.3 Creating Multiple Focused Windows
We keep a data structure of information for each cursor.
Among the information kept is the (x,y) location, focus win-
dow, and cursor color. When the event handler receives a
multi-cursor button click event, it uses XWarpPointer to
move the system cursor to that location and then XQuery-
Pointer to find what window occupies that position. That
window then becomes the focus of the corresponding multi-
cursor. Previous associations of that window with other
cursors are relinquished. We then change the border color
of this window to match the cursor color. This makes it easy
for the user to identify the focus of their cursor.

Event Handler

Window configuration &

Multi-mouse move events

handled internally

Cursor #0 button and

key events pass through

Cursor #1-7 button

and key events:

set input focus and

resend as cursor

#0 event

Multi-cusor Xevents

combine into single

event stream.

 Cursor 3:

x2x captures &

 sends input

 Cursor 2:

x2x captures &

 sends input

 Cursor 1:

x2x captures &

 sends input

Figure 2: Muli-Cursor Event Loop

4.4 Simulating Multiple Event Queues
The window manager event handler receives all window con-
figuration events, in addition, we register for button, key,
pointer and visibility events. We modified the event han-
dling routine of wm2 to create two distinct code paths; one
for the system cursor (cursor 0) and one for the multi-cursors
(1-7) (figure 2). The system cursor code path is mostly
unchanged from the original wm2 source code. The multi-
cursor path sets the input focus to the window associated
with the cursor and then resends the event through the sys-
tem cursor path. Normally a window manager will change
the shading or color of a window’s frame as the focus is
gained or lost. We suppress this and only change the color
of the window frame when associations between cursors are
established or relinquished. When the events are related
to window configurations such as moving, resizing or focus,

the window manager consumes the event without resending
it through cursor 0.

4.5 Implementation Evaluations

4.5.1 Strengths
One of the main strengths of this implementation is its sim-
plicity. The implementation works within the unmodified
X11 framework. All aspects, from creating and sending cur-
sor events to receiving and handling the events, are done
using X11 function calls and data structures. This allows us
to do minimal changes to existing window managers without
making changes to the underlying X11 system.

4.5.2 Limitations
Using the existing X11 system also has limitations. We are
essentially time-sharing the system’s single cursor between
multiple clients, and this creates scalability issues and po-
tential race conditions. In particular, we already know that
the number of cursors is limited by the number of unused
bits in the XEvent structure. Also, performance may de-
crease faster than expected from a true multi-cursor display
server as concurrent cursors are added.

Because there is only one focus window at a time, race condi-
tions must be avoided by setting window focus and sending
window events atomically. Setting the focus and re-casting
the event to the system cursor takes two passes through
the event loop in our implementation. If events from other
cursors get interleaved during this transaction period, they
must be re-queued until the transaction is complete.

5. SYSTEM EXPERIENCES
Our main goal in this project has been to improve collab-
oration within control rooms by allowing users to simulta-
neously interact with and navigate data sets on a shared
display. Figure 3 shows a prototype of our system running
in the PPPL control room. In this section we would like to
evaluate some experiences from using the system.

Figure 3: A shared display running multi-cursor X
in fusion Control Room

5.1 Using concurrent cursors
We have had up to three users simultaneously interacting
with our multi-cursor desktop (see figure 4). The ability to
distinguish cursors and focused windows by color is quite
effective and we have not encountered problems with users
identifying their cursor or focused window. Simultaneous
typing is seamless. Users concurrently working in xterms or
other text-based applications will not notice any difference
from a single-user desktop. Controlling cursors, moving and
resizing windows is similarly transparent.

Figure 4: Example of 3 users interacting with shared
display: red user viewing toroidal data, blue user
making 2D plots, green user looking at fusion web
page

5.2 Interference from other users
One observation regarding the multi-cursor desktop is that
screen real estate becomes important. When several people
are working simultaneously on a personal-size display we’ve
found that they interfere with each other frequently. There
is no way to share the z-order, so at any given time some win-
dow is on top, obscuring the view of other windows. Multi-
cursor interaction on a small desktop is primarily effective
when users are working together on the same application
and so are not interfering with each other. To accommo-
date more users it is necessary to increase the screen size.
For a dual projector display, two users can easily work with-
out interference and three users is acceptable.

5.3 Setup and use
The control room has about 20 workstations running mostly
Mac OS and Microsoft Windows, but the data analysis ap-
plications are X11 based and run from an application server.
To accommodate our window sharing, we run the Xmove
pseudo-server on the application server and run our Java
GUI client on the workstations. The Java client can run on
Mac, Windows or Linux and can connect to the application
server to direct the window to the local or shared display.

To accommodate transferring the cursor to the shared dis-
play we run x2x with the -east setting on the user worksta-
tions. With this configuration, when a user drags the mouse

off the right hand edge of the workstation screen, the corre-
sponding color-coded cursor appears on the left edge of the
shared display. Dragging the cursor off the left edge of the
shared display brings it back. This makes it very easy to
switch between controlling the local desktop or the shared
display.

One limitation to implementing the multi-cursor support in
the window manager is that it defines other aspects of the
shared display user interface. Window managers effect how
the desktop will behave, including how windows look and are
controlled. It would be nice to be able to easily change the
interface to accommodate what users are most accustomed
to.

5.4 Multi-cursor benefits
We’ve found three classes of interaction that benefit from
a multi-cursor window manager. The first is multiple users
working independently side-by-side. For instance, they may
be looking at different views of the same data set by using
separate application instances. The second type is when
several users are working on the same task. This could be
interacting with the same application or pointing out details
on the same screen. In this case, the multiple cursors are
essentially used one at a time, but the fact that everyone has
one makes it more efficient to transition control. The system
essentially remembers where each cursor is and so there is
less dragging the mouse back and forth as users switch turns.
The third case is when a single user interacts using two mice.
This is particularly useful in drawing and illustration type
applications such as the GNU Image Manipulation Program
(gimp). A user normally has to move a cursor back and forth
between different windows when alternating between tool
selection and drawing. If the use has two mice, the left-hand
mouse can be stationed by the tool area while the right-hand
mouse is in the drawing area. This makes selecting different
brushes and palettes considerably faster.

6. CONCLUSION AND FUTURE WORK
A multi-cursor window manager provides for efficient con-
trol room collaboration by alleviating the user input bottle-
neck that occurs from traditional single cursor systems. The
multi-cursor environment scales to allow many users simul-
taneous control of applications on a shared display. This
is important when users must traverse and compare data
results that are time critical in nature.

X windows, which is designed for a single cursor and user,
can be extended to support multiple concurrent cursors by
modifications to a window manager. The window manager
event loop must be modified to recognize multi-cursor events
and render multiple cursor arrows on the screen.

We have designed, prototyped and deployed a multi-user
collaborative system for control room collaboration. The
multi-cursor window manager is used in conjunction with a
large shared display and an application-sharing mechanism.
This system has had initial deployment at the Princeton
Plasma Physics Lab, and feedback from the control room
users has been positive. They have come to rely on the
shared display for their daily work activity.

In future work, we plan to move support for simultaneous

cursors into the Xserver layer. In addition to supporting
concurrent control of legacy applications, it will provide for
more configurability as well as system libraries that future
multi-user applications can utilize to access concurrent input
channels. We will also continue to improve the application
sharing tools, supporting heterogeneous system platforms.

7. REFERENCES
[1] H. Abdel-Wahab and M. Feit. Xtv: A framework for

sharing x window clients in remote synchronous
collaboration. IEEE Tricomm, 1991.

[2] B. Bederson, J. Stewart, and A. Druin. Single display
groupware. Sig CHI, 1999.

[3] R. Bentley, T. Rodden, P. Sawyer, and I. Sommerville.
An architecture for tailoring cooperative multi-user
displays. CSCW, 1992.

[4] E. A. Bier, S. Freeman, and K. Pier. Mmm: The
multi-device multi-user multi-editor. SIGCHI, 1992.

[5] S. Elrod, R. Bruce, R. Gold, D. Goldberg, F. Halasz,
W. Janssen, D. Lee, K. McCall, E. Pedersen, K. Pier,
J. Tang, and B. Welch. Liveboard: a large interactive
display supporting group meetings, presentations, and
remote collaboration. SIGCHI, 1992.

[6] D. C. Engelbart. A research center for augmenting
human intellect. Proceedings of FJCC, 33(1):395–410,
1968.

[7] D. Garfinkel, P. Gust, M. Lemon, and S. Lowder. The
sharedx multi-user interface user’s guide, version 2.0.
HP Research report, no. STL-TM-8907, 1989.

[8] B. Johanson, A. Fox, and T. Winograd. The
interactive workspaces project: Experiences with
ubiquitous computing rooms. IEEE Pervasive
Computing Magazine, 1(2), Apr/Jun 2002.

[9] P. Kabbash, W. Buxton, and A. Sellen. Two-handed
input in a compound task. SIGCHI, 1994.

[10] Microsoft. Netmeeting.
http://www.microsoft.com/windows/netmeeting/.

[11] B. Myers and H. Stiel. An implementation
architecture to support single-display groupware.
CMU Technical Report, CMU-CS-99-139, 1999.

[12] E. R. Pedersen, K. McCall, T. P. Moran, and F. G.
Halasz. Tivoli: an electronic whiteboard for informal
workgroup meetings. SIGCHI, 1993.

[13] J. Rekimoto. A multiple device approach for
supporting whiteboard-based interactions. SIGCHI,
1998.

[14] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and
A. Hopper. Virtual network computing. IEEE Internet
Computing, 2(1), JAN/FEB 1998.

[15] R. Scheiffler and J. Gettys. The x window system.
ACM Transaction on Graphics, 5(2):79–109, 1986.

[16] SciDAC. Fusiongrid. http://www.fusiongrid.org/.

[17] E. Solomita, J. Kempf, and D. Duchamp. Xmove: A
pseudoserver for x window movement. The X
Resource, 1(11):143–170, JULY 1994.

[18] H. Tani, M. Horita, K. Yamaashi, K. Tanikoshi, and
M. Futakawa. Courtyard: Integrating shared overview
on a large screen and per-user detail on individual
screens. SIGCHI, 1994.

[19] G. Wallace, H. Chen, and K. Li. Deskalign:
Automatically aligning a windows desktop.
PROCAMS, 2003.

