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Abstract

We present a new method HAPLOFREQ to estimate haplotype frequencies over a short genomic
region given the genotypes or haplotypes with missing data. Our approach incorporates a maximum
likelihood model based on a simple random generative model which assumes that the genotypes are
independently sampled from the population. We first show that if the phased haplotypes are given,
possibly with missing data, we can estimate the frequency of the haplotypes in the population by finding
the global optimum of the likelihood function in polynomial time. If the haplotypes are not phased,
finding the maximum value of the likelihood function is NP-hard. In this case we define an alternative
likelihood function which can be thought of as a relaxed likelihood function. We show that the maximum
relaxed likelihood can be found in polynomial time, and that the optimal solution of the relaxed likelihood
approaches asymptotically to the haplotype frequencies in the data.

In contrast to previous approaches, our algorithms are guaranteed to converge in polynomial time to
a global maximum of the different likelihood functions. Preliminary experiments on biological data show
that our estimates are about 10% more accurate than the popular program PHASE and about three to
ten times faster.

Our techniques involve new algorithms in convex optimization. These algorithms may be of indepen-
dent interest. Furthermore, the hardness proof involves a generalization of Turan’s theorem, which may
also be of independent interest.

1 Introduction

Most of the genetic variation among different people can be characterized by single nucleotide polymorphisms
(SNPs) which are mutations at a single nucleotide position that occurred once in human history and were
passed on through heredity. To understand the structure of this variation, we need to be able to determine
the haplotypes of individuals, or which nucleotide base occurs at each position for each chromosome. The
effort to characterize human variation, currently a major focus for the international community, will be a
tremendous undertaking requiring obtaining the haplotype information from a large collection of individuals
from diverse populations ([19]).

As opposed to haplotypes, the genotype gives the bases at each SNP for both copies of the chromosome,
but loses the information as to the chromosome on which each base appears. Unfortunately, many sequencing
techniques provide the genotypes and not the haplotypes. Haplotype analysis has become increasingly
common in genetic studies of human disease. However, many of these methods rely on phase information,
that is, the haplotype information vs. the genotype information. Phase can be inferred by genotyping family
members of each subject, but this has its downsides because of logistic and budget issues. Alternatively,
laboratory techniques such as long range PCR or chromosomal isolation have been also used [21, 18] but these
are often costly and are not suitable for large scale polymorphism screening obtains genotype information at
each SNP.

As an alternative to those technologies, many computational methods have been developed for phasing
the genotypes (e.g. [3, 10, 11, 16, 23, 20, 9, 12]). In many of the applications, it is crucial to estimate correctly
the haplotype frequencies in the population and not necessarily to phase the individual genotypes. There
are however a few EM-based (Expectation Maximization) algorithms that aim to estimate the haplotype
frequencies ([6, 7, 14, 17]). These methods use a likelihood function based on the underlying assumption that
the Hardy-Weinberg equilibrium holds (that the two haplotypes of an individual are independently drawn
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from the haplotype distribution in the population). In particular, those methods try to find a haplotype dis-
tribution which maximizes the probability of observing genotypes in the given sample, under the assumption
of Hardy-Weinberg equilibrium.

These methods try to cope both with the fact that the genotype phase is unknown and with additional
noise. In particular, every existing sequencing technique to date introduces some errors and/or missing data.
Some of these methods provide the phased haplotypes but with the cost of having a substantial amount of
missing data (see e.g. [21]). Therefore, coping with missing data for either phased or unphased genotypes is
of great interest.

One of the main drawbacks in all previous methods is that there is no guarantee that the algorithm
converges to a global maximum, or that the algorithm converges polynomial time. Both the convergence of
the EM algorithm to a global optimum and its running time are heavily affected by the starting point of the
algorithm which is usually a ’reasonable’ guess or a random point.

We present a method called HAPLOFREQ which aims in overcoming the above limitations of previous
approaches. Similarly to previous approaches, we use a likelihood function model. Our approach is different
from previous approaches in the following aspects. First, we use an algorithm which is provably guaranteed
to run efficiently and to find the haplotype distribution assuming that the number of samples is large enough
and assuming a uniform error model. Second, we consider two different likelihood functions, one that assumes
Hardy-Weinberg equilibrium and another that does not. The latter is used in order to find the genotype
distribution given missing data, or the haplotype distribution given phased haplotypes with missing data.

In the case where the Hardy-Weinberg equilibrium holds, the maximum likelihood function is a multino-
mial of very high degree. In order to find the maximum value of this multinomial we relax the problem by
allowing the variables to be n-dimensional vectors instead of real numbers. We then use convex programming
methods which involve linear constraints, multinomial functions and positive semidefinite constraints in or-
der to find the maximum value of the relaxed problem. This relaxed objective function can be thought of as
an alternative likelihood function since we show that the maximum value of the relaxed function approaches
asymptotically to the haplotypes frequencies in the population.

2 Estimating Haplotype Frequencies

We first consider the case where we have a set of partial haplotypes sampled from a set of unrelated individ-
uals. We assume that the haplotypes have a given frequency distribution in the population, and that we are
given a set of haplotypes which are independently sampled from this distribution. We further assume that
the set of sampled haplotypes also contain missing data.

In order to formalize the above scenario, we first need to set some formal notations and definitions. A
complete haplotype is a binary string of length m. The values 0 and 1 correspond to the mutation and the
wild type alleles. A partial haplotype is a string over {0, 1, ∗}m. The character ’*’ corresponds to an unknown
value.

We say that a partial haplotype h1 ∈ {0, 1, ∗}m is consistent with a complete haplotype h2 ∈ {0, 1}m if
they share the same values whenever h1(i) 6= ∗. Given a partial haplotype h, we define C(h) to be the set of
complete haplotypes that are consistent with h.

Let P be a distribution over the set of all possible complete haplotypes of length m. We denote by p(h)
the probability assigned to the haplotype h by P. Given the set of partial haplotypes H, the likelihood of P
is given by

L(H,P) =
∏

h∈H

∑

h′∈C(h)

p(h′).

Thus, finding the distribution of maximum likelihood can be done by solving the following mathematical
programming problem:

Maximize
∏

h∈H
∑

h′∈C(h) p(h′)

s.t.
∑

h∈{0,1}m p(h) = 1

p(h) ≥ 0 , h ∈ {0, 1}m
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We will use the following definition in order to simplify the notations.

Definition 1 Given a partial haplotype h ∈ {0, 1, ∗}m and a set of haplotypes S = {h1, ..., hn} ⊆ {0, 1}m,
define the compatibility vector of h with respect to S as a vector Ah ∈ {0, 1}n such that Ah(i) = 1 if
hi ∈ C(h) and Ah(i) = 0 otherwise. For our purposes, the set of haplotypes S is usually all possible haplotypes
of length m. In this case we shall drop the extra notation.

Using this definition, the maximum likelihood formulation above is equivalent to solving the following
problem:

Definition 2 (Frequency Estimation for Phased Genotypes) .
Input: A matrix A ∈ {0, 1}n×m consisting of n row vectors {A1, ..., An} ∈ {0, 1}m

Goal: Find a vector ~p ∈ <n
+, such that:

1.
∑m

i=1 pi = 1 ; ∀i pi ≥ 0

2. Let ~q
def= A · ~p. Then the following quantity is maximized: f(~p) =

∏n
i=1 qi

2.1 Algorithms for Frequency Estimation for Phased Genotypes

We first prove that the problem is solvable in polynomial time, and describe a polynomial time algorithm.
This is quite surprising given that the problem Frequency Estimation for Phased Genotypes is
essentially finding a maximum point of a polynomial of potentially high degree. In general, finding an
extremum of a polynomial is an intractable problem, see section 4 for further detail. However, in this special
case we prove the following:

Theorem 1 Frequency Estimation for Phased Genotypes is solvable in polynomial time.

Proof: We prove that the problem is in P by providing a separation oracle that can be used with Khachiyan’s
Ellipsoid algorithm [15] to provide a solution.

We now provide a separation oracle. Given some vector ~p ∈ <m
+ , let ~q = A · ~p ∈ <m

+ , define the following
function:

gp(~y) def= (A · ~y)1q2...qn + b

(
n∑

i=2

(A · ~y)i

qi

)

And the corresponding hyper-plane:

Hp
def= {~x ∈ <n

+|gp(~x) ≥ n · b}

Claim 1 Given a point ~x ∈ <m
+ for which f(~x) = a < b, the hyperplane Hp is a separating hyperplane with

respect to ~x. That is, it has ~x on one side, and all points ~z such that f(~z) ≥ b on the other side.

Proof: First, notice that:

gp(~p) = (A · ~p)1q2...qn + b

(
n∑

i=2

(A · ~p)i

qi

)

= q1q2...qn + b

(
n∑

i=2

qi

qi

)

= a + (n− 1)b < nb
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Now consider any point ~z ∈ <m
+ for which f(~z) ≥ b. This implies that

∏n
i=1(A~z)i ≥ b, which implies:

(A~z)1 ≥ b∏n
i=2(A~z)i

. Therefore:

gp(~z) = (A~z)1q2...qn + b

(
n∑

i=2

(A~z)i

qi

)

≥ b∏n
i=2(A~z)i

· q2...qn + b

(
n∑

i=2

(A~z)i

qi

)

= b ·
[

n∏

i=2

qi

(A~z)i
+

n∑

i=2

(A~z)i

qi

]

Denote ci = (A~z)i

qi
. Then we have gp(~z) ≥ b·

[∏n
i=2

1
ci

+
∑n

i=2 ci

]
. From symmetry, this function is minimized

when ∀i ci = c for some c > 0. So we get: gp(~z) ≥ b · [ 1
cn−1 + (n− 1)c

]
. This in turn is minimized for c = 1

(left as an exercise for the reader), and therefore:

gp(~z) ≥ b ·
[

1
cn−1

+ (n− 1)c
]

= nb

Hence all such vectors ~z for which f(~z) ≥ b are on the other side of the hyperplane Hp then ~p itself. 2

Given this separation oracle, the ellipsoid method can be used to find the optimal vector ~p by binary
search on the values of b, to within any needed precision. 2

Given theorem 1, we can deploy the ellipsoid algorithm with the separation oracle devised above to solve
Frequency Estimation for Phased Genotypes without assumption of Hardy-Weinberg equilibrium.

As the ellipsoid algorithm is slow in practice for many applications, we proceed to provide an efficient com-
binatorial algorithm that approximates the solution to Frequency Estimation for Phased Genotypes
to within any required (constant) precision parameter.

2.2 Combinatorial Approximation Algorithm for Frequency Estimation for
Phased Genotypes

Let the input be A ∈ {0, 1}n×m. Denote the solution vector (optimal probabilities assigned to the haplotypes)
by {o1, ..., on}. Denote ~q = A · ~p. Also define ~w = A ·~o as the “weights” vector of the optimum solution. Let
f be the objective function, that is f(~x) =

∏
i(Ai~x).

A trivial observation, is that we can always obtain the value of: f(~p) ≥ (
1
n

)n by picking from each row
one pi, and then assigning equal weights to all of those picked. Alternatively, we can obtain an initial value
of f(~p) ≥ (

1
m

)n by assigning all probabilities to be 1
m .

Let τ be a precision parameter to our algorithm. That is, all probabilities will be rounded to the nearest
value within τ distance. In particular, we assume that every non-zero pi or qi value is at least τ . We further
discuss precision in subsection 2.4.

Starting from the trivial solution above, our algorithm makes a series of improvements up to the required
performance guaranty is reached. In each ”improvement step” we amend the current vector of probabilities
~p to ~p′ = ~p + ~δ, such that to improve the overall value. The algorithm, called HaploFreq (when not
assuming Hardy-Weinberg equilibrium, further on we describe a version which does assume Hardy-Weinberg
equilibrium), which takes as an input a precision parameter ε, works as follows:

Procedure HaploFreq(ε)
~p ← ~1 · 1

m
∀i set qi ← Ai~p
~δ ← FindDelta(p, q, A)
while

∑
i

Ai
~δ

qi
≥ ln(ε) do

Update p to be: ~p ← ~p + τ2ε
2n

~δ
~δ ← FindDelta(p, q, A)

return ~p
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We proceed to prove correctness. A vector δ as used by the algorithm must satisfy various conditions to
be a valid amendment. We define the properties of such an ”amendment vector”:

Definition 3 Define a ε-good vector with respect to a current solution ~p as a vector ~δ that satisfies:

1.
∑m

i=1 δi = 0

2. 0 ≤ δi + pi ≤ 1

3.
∑n

i=1
Ai

~δ
qi
≥ ε

In subsequent discussion, we describe the procedure FindDelta used by HaploFreq to find a ε-good
vector if one exists. In the rest of this section we prove the following theorem:

Theorem 2 (Main) For any constant ε > 0, the algorithm HaploFreq(ε) finds a eε-approximate solution
in polynomial time.

To prove this theorem, we first prove that we can always find a ε-good vector if our current solution is not
a eε-approximate solution. We then show that using a ε-good vector we can improve our current solution,
and that polynomially many improvements suffice to obtain a ε-approximate solution. Finally, we show how
to efficiently implement the procedure FindDelta.

Lemma 1 If OPT
ALG = f(~o)

f(~p) ≥ eε, then there exists an ε-good vector ~δ.

Proof: The optimal solution gives rise to a natural vector δ := ~o − ~p. It obviously satisfies the first three
conditions above, and as for the last:

n∑

i=1

Ai
~δ

qi
=

∑n
i=1

wi−qi

qi

=
∑n

i=1
wi

qi
− n

≥ n · n

√∏n
i=1

wi

qi
− n by the AMGM inequality

≥ n · n
√

eε − n

= n · n
√

eε − n = n · (eε/n − 1)
≥ n · (1 + (ε/n)− 1) ≥ ε by Taylor series of ex

2

And indeed, suppose that we can find such a vector δ, we could get closer to the optimum, as shown by
the following lemma:

Lemma 2 Let ~δ be a ε-good vector with respect to ~p. Let τ be the smallest qi for this ~p. Define p′ := p + σδ

(for σ = τ2ε
2n ). Then the solution obtained by p′ is larger then the one obtained by p by at least:

f(~p′)
f(~p)

≥ e
τ2ε2
4n

Proof: Denote ci := Ai
~δ

qi
. We assume that qi ≥ τ . In addition, from the definition of ~δ it follows that
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|Ai
~δ| ≤ 1, and therefore: |ci| ≤ 1

τ . Hence:

log

(
f(~p′)
f(~p)

)
= log

(∏n
i=1

Ai(~p+σ~δ)
qi

)

=
∑n

i=1 log Ai(~p+σ~δ)
qi

=
∑n

i=1 log(1 + σci)

=
∑n

i=1

[∑∞
j=1

1
j (σci)j(−1)j+1

]
by Taylor series expansion

≥ ∑n
i=1

[
(σci)− (σci)2

]
assuming |σci| < 1

2 , see claim 6
≥ σε− σ2

∑n
i=1 c2

i

≥ σε− nσ2

τ2 ≥ τ2ε2

4n for σ = τ2ε
2n

2

This shows that an improvement has been made towards the optimal solution. The following lemma will
be proved in subsection 2.3.

Lemma 3 The procedure FindDelta, that finds a ε-good vector if one exists, can be implemented to run
in time O(nm + m log m).

We now have all the ingredients needed to prove theorem 2:

Proof:[Theorem 2]
We can obtain an initial solution with value at least m−n (see above). According to lemmas 1,2, as long

as we are eε-far from the optimum, we can find a ε-good vector.
Suppose we make r iterations, then the final value will be at least:

m−n · e τ2ε2
4n r ≥ e−n log me

τ2ε2
4n r

As the optimum is bounded by 1, there can be at most r = Ω(n2 log m
ε2τ2 ) iterations. 2

2.3 Implementing FindDelta

An ε-good vector can be found in polynomial time by solving the LP derived from definition 3. In this
subsection we describe how to find an ε-good vector combinatorially in O(nm + m log m) time.

Procedure FindDelta(p,q,A)
Let ~α such that ∀i . ~αi = (~1 ·A)i/qi

Suppose w.l.o.g that α1 ≤ α2 ≤ ... ≤ αm (o/w sort ~α)
Set δm = 1− pm

Set ∀i < m . δi = −pi

return ~δ

Claim 2 The procedure FindDelta above find an ε-good vector if one exists.

Proof: The vector returned by FindDelta obviously satisfies the second of the conditions of a ε-good
vector.

As for the first condition, note that:

m∑

i=1

δm = −
∑

i<m

pi + (1− pm) = 1−
m∑

i=1

pi = 0

In addition, we claim that the ~δ returned maximizes
∑n

i=1
Ai

~δ
qi

under the first two conditions. This follows

from the fact
∑n

i=1
Ai

~δ
qi

= ~αT · ~δ and the definition of ~δ. 2
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2.4 A note on precision

Notice that our analysis of the running time of HaploFreq so far had a polynomial dependence on the
precision parameter τ . In this subsection we prove that the parameter is indeed polynomial in the size of
the problem.

Lemma 4 For each solution ~p throughout the algorithm it holds that mini qi ≥ 1
m2 .

Proof: This is obviously true for the first solution chosen. Suppose that after some local improvement
there exists some q1 < 1

m2 . This implies the existence of a pi < 1
m2 , denote it p1. In addition, there is always

one pj > 1
m , denote it p2.

Suppose that p1 appears only in one qi, and p2 appears in all the rest of the qj ’s (otherwise our claim only
strengthens). Let p1 + p2 = c > 1

m . Let us optimize over the value of p1 with respect to p2. The expression
obtained is:

f(p1) = p1 ·
m−1∏

i=2

(c− p1 + δi)

Taking the derivative (and denoting x = p1):

f ′(x) =
m−1∏

i=2

(c− x + δi)− x ·
m−1∑

j=2

∏

i 6=j

(c− x + δi)

Finding where the derivative equals zero, and dividing by
∏m−1

i=2 (c− x + δi), we get:

1 = x ·
m−1∑

j=2

1
c− x + δi

≤ (m− 1) · x

c− x

Which implies:

x ≥ cm ≥ 1
m2

Therefore, assuming that we find the optimal ε-good vector at each iteration, the minimum qi must be larger
then this quantity. 2

3 Estimating Haplotype Frequencies from Unphased Genotypes

We now turn to the case where we have a set of genotypes and our goal is to find the frequencies of the
underlying haplotypes. We will first introduce some notations.

We denote a genotype by a string over {0, 1, 2, ∗}m, where 0,1 correspond to homozygous sites (i.e. the
bases of the mother’s chromosome and the father’s chromosomes are the same), the value ’2’ corresponds to
a heterozygous position, that is a position where the mother chromosome carries a different base than the
father chromosome and ’*’ corresponds to unknown values for both haplotypes. For a given genotype g or
haplotype h, we denote by g(i) (h(i) respectively) its value in the i-th coordinate.

We say that a genotype g ∈ {0, 1, 2, ∗}m, and a pair of complete haplotypes h1, h2 ∈ {0, 1}m are com-
patible if for every position i, if g(i) ∈ {0, 1} then h1(i) = h2(i) = g(i) and if g(i) = 2 then h1(i) 6= h2(i).

For a genotype g, we define C(g) to be the set of pairs of haplotypes that are compatible with g. We
assume that the genotypes admit a Hardy-Weinberg equilibrium, that is, we assume that the two haplotypes
of each individual are independently picked from the distribution of haplotypes in the population. Under
Hardy Weinberg equilibrium, the likelihood function of a set of genotypes G and a distribution P is given by

L(G,P) =
∏

g∈G

∑

(h1,h2)∈C(g)

p(h1)p(h2).

Thus, finding the haplotype distribution with the maximum likelihood can be done by solving the fol-
lowing mathematical programming problem:
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Maximize
∏

g∈G
∑

(h1,h2)∈C(g) p(h1)p(h2)

s.t.
∑

h∈{0,1}m p(h) = 1

p(h) ≥ 0 , h ∈ {0, 1}m

This problem can be formalized in a more general way. We first need to introduce another definition.

Definition 4 Given a genotype g ∈ {0, 1, 2, ∗}m and a set of haplotypes S = {h1, ..., hk} ⊆ {0, 1}m, define
the (symmetric) compatibility matrix of g with respect to S as a matrix Ag ∈ {0, 1}k×k such that Ag

ij = 1
if (hi, hj) ∈ C(g) and Ag

ij = 0 otherwise.

Thus, it is easy to verify that the maximum likelihood formulation given above can be solved if the
following problem can be solved:

Definition 5 (Frequency Estimation for Unphased Genotypes) .
Input: A set of matrices {A1, ..., An} ∈ {0, 1}m×m

Goal: Let P ⊆ [0, 1]m be the polytope of all probability distribution vectors over m elements ~p ∈ <m (that is,
the set of all vectors ~p such that ∀i pi ≥ 0 and

∑
i pi = 1). Find the vector in P that maximizes the product∏

i
~pT Ai~p. Formally:

max
~p∈P

f(~p) = max
~p∈P

n∏

i=1

~pT Ai~p

Unfortunately, the above mathematical program is NP-hard (as we explain later in section 4). However,
consider the following relaxation of the problem:

Definition 6 (Relaxed Frequency Estimation) .
Input: A set of matrices {A1, ..., An} ∈ {0, 1}m×m

Goal: Let Q be the cone of all positive-semi-definite matrices P ∈ <m×m that satisfy
∑

i,j Pij = 1 , ∀i, j .Pij ≥
0. Find the PSD matrix in P ∈ Q that maximizes the product

∏
i Ai • P (where • stands for the Frobenius

inner product). Formally:

max
~p∈Q

f(P ) = max
P∈Q

n∏

i=1

Ai • P

3.1 Asymptotic Behavior of the Likelihood Function.

Given this relaxation, it is natural to ask what is the relation between the optimal value of the relaxation and
the true frequencies of the haplotypes. We now show that under Hardy-Weinberg equilibrium, and under the
assumption that there is no missing data, if the sample size is large enough, the optimal relaxed likelihood
is attained for a distribution which is very close to the actual frequencies in the population.

Formally, we prove that the solution of Relaxed Frequency Estimation converges to the under-
lying frequencies as the number of samples increases, n 7→ ∞ (note that this is obvious for Frequency
Estimation for Unphased Genotypes).

Lemma 5 Denote by n the number of genotypes sampled as input to Relaxed Frequency Estimation.
Under the Hardy-Weinberg generation model, the solution to Relaxed Frequency Estimation converges
to the underlying haplotype frequencies.

Proof: Let the genotype set sampled be G. Under the SDP formulation, the maximization function is (for
a PSD matrix Q º 0; Qij ≥ 0;

∑
Qij = 1):

∏

g∈G

∑

i,j∈C(g)

Qij
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Denote by p(g) the probability to sample a genotype g ∈ G. Then disregarding normalization, the maxi-
mization function is:

∏

g∈G


 ∑

i,j∈C(g)

Qij




pg

It is easy to see that this objective is maximized when:

∀g∈G
∑

i,j∈C(g)

Qij = pg

As n 7→ ∞, we know that pg =
∑

i,j∈C(g) pipj . Therefore, one optimal solution to this equation system
is the rank 1 PSD matrix Qij = pipj . Observe that equations above contain, in particular, the equation
pgii

= p2
i = Qii. These restrictions, together with the rest of the constraints, determine Q uniquely. 2

3.2 A Polynomial Time Approximation Algorithm for the SDP Genotype Es-
timation Problem

For all problems defined hereby, our notion of an approximate solution uses the logarithm of the objective
function in order to avoid numerical instabilities in practice. A formal definition is as follows:

Definition 7 An ε-approximate solution to one of the Probability Estimation Problems defined above is a
probability vector ~p ∈ <m (or PSD matrix P ) such that:

log(OPT )− log f(~p) ≤ ε

We proceed to provide a polynomial time algorithm for the Positive-Semi-Definite Probability Estimation
Problem.

An initial solution of value f(~p) ≥ (
1

m2

)n can easily obtained by assigning all probabilities to be 1
m (that

is, a PSD matrix P where pij = 1
m2 ).

Same as for the linear case, we denote by τ the precision parameter to our algorithm. Precision issues
are handled similarly.

The general framework for our algorithm is identical to the algorithm for the linear case. Starting from
the trivial solution above, the algorithm makes a series of local improvements up to the required performance
guaranty is reached. However, for each ”improvement step” we amend the current PSD matrix into another
PSD matrix such that to improve the overall value of the solution. The algorithm, called HaploFreq2 is
as follows:

Procedure HaploFreq2(ε)
P ← J ·m−2

set qi ← Ai • P
∆ ← FindPsdDelta(P, q, {Ai})
while

∑
i

Ai•∆
qi

≥ ln(ε) do

Update P to be: P ← P + τ2ε
2m ∆

∆ ← FindPsdDelta(P, q, {Ai})
return P

The procedure FindPsdDelta is similar to the procedure FindDelta used in the linear variant.

Theorem 3 For any constant ε > 0, the algorithm HaploFreq2(ε) finds a ε-approximate solution in
polynomial time.

Proof: The proof is similar in nature to the linear variant proof, with several technical points that need
attention.

One technically concerns the amendment matrix ∆. Unfortunately, this matrix is not necessarily a PSD
matrix, as the PSD cone is not closed under substraction.
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Definition 8 Define a (ε, σ)-good matrix with respect to a current solution P as a matrix ∆ that satisfies:

1. W := P + ∆ º 0

2.
∑

i,j Wij = 1 ; Wij ≥ 0

3. ∀i
∣∣∣Ai∆

qi

∣∣∣ ≤ σ

4.
∑n

i=1
Ai∆
qi

≥ ε

Lemma 6 If OPT
ALG = f(O)

f(P ) ≥ eε, then there exists a (εσ, σ
τ )-good matrix for every σ ≥ 1.

Proof: We assume that the current solution P is a PSD matrix, and satisfies
∑

ij pij = 1. The optimal
solution vectors give rise to a natural scaled improvement matrix ∆σ. Define an intermediate PSD matrix
to be a convex combination of P and O as W := (1− σ)P + σO. Then:

∆σ := W − P = σ(O − P )

Notice that ∆σ is not necessarily PSD. Also notice that ∆σ satisfies the easy conditions of being (εσ, σ
τ )-good,

that is the first few conditions above, from the fact that Y is a matrix that is a convex combination of two
matrices that satisfy these constraints. In addition:

n∑

i=1

Ai∆σ

qi
= σ ·∑n

i=1
AiO−AiP

qi

= σ ·∑n
i=1

wi−qi

qi

= σ · (∑n
i=1

wi

qi
− n)

≥ σn · ( n

√∏n
i=1

wi

qi
− 1) by the AMGM inequality

≥ σn( n
√

eε − 1)
= σn( n

√
eε − 1) = σn · (eε/n − 1)

≥ σn · (1 + ε
n − 1) ≥ σ · ε by Taylor series of ex

Since ∀iA(O − P ) ≤ 1, we have
∣∣∣Ai∆l

qi

∣∣∣ ≤ σ
τ .

2

Lemma 7 Let ∆ be a (εσ, σ
τ )-good PSD matrix with respect to ~p. Let τ be the smallest qi for this ~p. Define

P ′ := P + ∆σ (for σ = τ2ε
8n ). Then the solution obtained by P ′ is larger then the one obtained by P by at

least:
f(P ′)
f(P )

≥ e
τ2ε2
8n

Proof: Denote
ci :=

Ai ·∆
qi

The new solution P ′ = P + ∆ satisfies the properties needed of a valid solution, according to the
definition of a good matrix. In addition, according to the definition of a (εσ, σ

τ )-good matrix, we have

10



|ci| ≤ σ
τ . Therefore:

log

(
f(~p′)
f(~p)

)
= log

(∏n
i=1

Ai(P+∆)
qi

)

=
∑n

i=1 log qi+Ai∆
qi

=
∑n

i=1 log(1 + ci)

=
∑n

i=1

[∑∞
j=1

1
j (ci)j(−1)j+1

]
by Taylor series expansion

≥ ∑n
i=1

[
ci − (ci)2

]
as |ci| < 1

2 , see claim 6
≥ ∑n

i=1 ci −
∑n

i=1(ci)2

≥ σε− nσ2

τ2

≥ τ2ε2

4n pick σ = τ2ε
8n

2

It remains to show how to find a (εσ, σ
τ )-good matrix efficiently.

Claim 3 Suppose that there exists a (εσ, σ
τ )-good matrix for every σ ≥ 1. Then we can find a (εσ, σ

τ )-good
matrix for every σ ≥ 1 in polynomial time.

Proof: Let W = P + ∆. We need ∆ to satisfy the following semi-definite program:

1. W := P + ∆ º 0

2.
∑

ij Wij = 1 and |Wii| ≤ 1

3. |∆ij | ≤ σ
n2 (this implies: ∀i

∣∣∣Ai∆
qi

∣∣∣ ≤ σ
τ )

4. maximize
∑n

i=1
Ai∆
qi

And we are guarantied that the objective value is at least εσ if we are eε from the optimum. Notice that
we can change the objective function to the simpler term:

5. maximize
∑n

i=1
Ai∆
qi

= B •∆

And the semi-definite program above can be solved in polynomial time. In fact, it can be solved for σ = 1,
and obtaining W we can create a (εσ, σ

τ )-good matrix for every σ ≤ 1 by defining:

Wσ = σW + (1− σ)P

2

The preceding lemmas conclude the proof of theorem 3 in the same manner as the proof of theorem 2.
2

4 Lower Bounds

Strong hardness results for optimizing over polynomials are know, see [2]. We prove hardness for a more
closely-related polynomial optimization problem.

Claim 4 For every constant k, it is NP hard to approximate the maximum of a polynomial in n variables
with {0, 1} coefficients of total degree k up to a factor Ω(k), under the restriction 0 ≤ xi ≤ 1.

11



Proof: We reduce from Hyper-graph Vertex Cover. As shown in [5], it is NP-hard to decide if a k-uniform
hyper graph has a vertex cover of size (1 + ε)T or if it’s minimal VC is of size at least (k − 1− ε)T .

Let H = (V,E) , V = {v1, ..., vn} be an instance of k-HGVC. We construct a corresponding polynomial
pH(x1, ..., xn), as:

pH(x1, ..., xn) =
n∑

i=1

xi +
∑

e∈E

∏

i∈e

(1− xi)

The degree of pH(x1, ..., xn) is obviously k. In addition, if H has a VC of size T , then the assignment:

xi =





1 i ∈ V C

0 o/w

Assigns the polynomial a value of exactly T . On the other hand, suppose that there exists a vector ~x such
that pH(~x) = l. Then we claim that there exists a VC of size at most 20l.

To see this, define a set S ⊆ V according to the vector ~x, such that:

Pr[vi ∈ S] = xi

Then the expected size of S is E[S] =
∑

i xi ≤ p(~x) = l. Therefore, according to Markov we have that:
Pr[S > 10l] ≤ 1

l .
In addition, for a certain edge e ∈ E, notice that the probability that it is not covered by S is Pr[e ∩ S =
φ] =

∏
i∈e(1 − xi). Therefore, the expected number of edges NOT covered by S (which is denoted by

NC = |{e|e ∩ S = φ}|) is
E[NC] =

∑
e

∏

i∈e

(1− xi) ≤ p(~x) = l

Again, according to Markov, we get that Pr[NC > 10l] ≤ 1
10 .

Therefore, the probability that both events happen is at least:

Pr[(S < 10l) ∧ (NS < 10l)] >
4
5

This gives rise to a VC of size at most 20l (by picking a vertex from each uncovered edge). 2

We also show directly that the Quadratic Probability Estimation Problem is NP-hard:

Theorem 4 The Frequency Estimation for Unphased Genotypes Problem is NP-hard.

To prove this theorem we describe a reduction from the Clique problem. Given a graph G = (V, E), we
create an input for the Quadratic Probability Estimation Problem as follows:

We assign a variable xi for each node vi in G. Then the set of matrices will consist only of a single
matrix, which is the adjacency matrix of G.

The following claim implies the theorem:

Claim 5 The solution to the instance of QPE created has value 1
2 (1− 1

r ) if and only if the maximal clique
size of G was r.

Proof: If the graph contains a clique of size r, then by assigning 1
r to all vertices corresponding to this

clique, we obtain a value of 1
2 (1− 1

r ).
We proceed to prove even a stronger statement, which is a generalization of Turán’s theorem. The

statement is that the objective function value for a graph without Kr+1 is maximized for the Turán graph
T r(n), in which it is precisely 1

2 (1− 1
r ).

As a first step, we explore the properties of an optimal solution to the reduced instance. Consider any
two vertices vi, vj and their corresponding variables xi, xj . If xi, xj are non-zero, then changing them by ε
(say xi 7→ xi + ε and xj 7→ xj − ε) will have the following effect on the objective function (where Γi denotes
set of neighbors of vi):

∆(i, j, ε) = ±Θ(ε2) + ε
∑

t∈Γi4Γj

xt

12



This implies that for all xi, xj that are non-zero, the optimal solution satisfies Ni = Nj , where Ni is the sum
of all weights of the vertices in Γ(i).

We now prove the claim using this observation. Let G be a graph with objective function value > 1
2 (1− 1

r ).
It suffices to show that the maximal clique size in G is ω(G) > r. Notice that we can assume that Ni > 1− 1

r .
This is because the optimum is bounded by 1

2

∑
i xiN = 1

2N , and if N ≤ 1− 1
r , we get that the optimum is

bounded by 1
2 (1− 1

r ) in contradiction to our initial assumption.
Observe the subgraph of all non-zero vertices, and the largest clique amongst them. Suppose its size is k,

and let the participating vertices have variables x1, ..., xk. Then the set of neighbors of these vertices satisfy:

k∑

i=1

Ni =
k∑

i=1

∑

j∈Ni

xj ≤ (k − 1)
∑

j

xj ≤ k − 1

Where the first inequality follows since each variable can be a neighbor of only k − 1 vertices of the clique
(as otherwise we would have a clique of larger size). In addition, we know that

∑k
i=1 Ni = k ·N > k(1− 1

r ).
Taking both facts into account we have:

k(1− 1
r
) < k − 1 ⇒ k > r

Hence we conclude that the largest clique is of size strictly larger then r. 2

Corollary 1 It is NP-hard to approximate Frequency Estimation for Unphased Genotypes to within
2n1−ε

for every constant ε > 0.

Proof: The above theorem holds for a very degenerate instance of Frequency Estimation for Un-
phased Genotypes, namely with only one input matrix. Looking closely, and using previous hardness of
approximation results for the Clique, it follows that Frequency Estimation for Unphased Genotypes
is hard to approximate to within:

(1− n−1+ε)
(1− n−δ)

= 1 +
n−δ − n−1+ε

1− n−δ
≥ 1 +

1√
n

(ε, δ are small constants)
Now amplify this construction by repeating the same matrix of the input graph M times. The size of the
instance built is Mn, and the hardness of approximation becomes:

(
1 +

1√
n

)M

≥ e−M/
√

n

Taking M to be a large polynomial, and rephrasing in terms of input size yields the result. 2

5 Experimental Results

We implemented the algorithms HaploFreq and HaploFreq2 (described in Sections 2.2 and 3.2 respec-
tively) and compared them to the widely used software PHASE [23].

Implementation details. Both HaploFreq and HaploFreq2 assume that the number of possible
haplotypes is limited - and usually small. This is usually the case, but when we consider a region spanning
more than twenty SNPs the number of possible haplotypes may affect the running time of the algorithms
considerably. We therefore use a preprocessing mechanism which filters out unreasonable haplotypes. The
preprocessing mechanism is based on a greedy procedure, similar to the one given in [13]. After the pre-
processing we are typically left with about 50 possible haplotypes. We then run our algorithms on those 50
haplotypes.

Another crucial issue which one has to overcome is the use of semidefinite programming in HaploFreq2.
Recall that in each iteration of HaploFreq2 we have to solve a semidefinite program. Even though semidef-
inite programs can be solved in polynomial time, in practice they are very slow. We therefore implemented
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a semidefinite programming solver which is specifically tailored for our needs. This semidefinite solver
runs faster on the instance given by the HaploFreq2 than other semidefinite programming solvers such
as SDPPack [1]. The details of the algorithm of the SDP solver can be found in [?]. Furthermore, since
HaploFreq2 only uses the solution of the semidefinite program in order to find an improved solution, it
is sufficient to efficiently find a sub-optimal solution to the semidefinite program, as long as the solution
gives an improvement over the current point. such an improvement can be found using our SDP solver very
efficiently.

Due to these implementation optimization, our programs are very efficient. In particular, HaploFreq
(on haplotypes) typically runs 15 to 25 times faster than PHASE and HaploFreq2 (on genotypes) typically
runs 3 to 10 times faster. Figure 1 gives a concise comparison of measured running times of PHASE,
HaploFreq and HaploFreq2.
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Figure 1: Running times comparison

The data sets. We applied our algorithms to to the data set of Daly et al. [4, 22] and to population D
of Gabriel et al. [8]. The first data set is a 500 kilobase region of chromosome 5q31, spanning 103 SNPs
collected from 129 mother, father, child trios from a European-derived population in an attempt to identify
a genetic risk factor for Crohn’s disease. A significant portion of the genotype data (about 10%) is missing
with an average of 10 SNPs per individual’s genotype missing. This data set was partitioned in [4, 22] into
eleven blocks of high correlation. Since this set consists of trios, we can infer each individual’s haplotypes
in all positions except for the positions where all three individuals are heterozygous or missing. We use
populations D from the [8] data which has pedigree information. The data consists of genotypes of SNPs
from 62 regions. Population D consists of 90 individuals from 30 trios from Yoruba.

Distance measures. We use two measures for the distance between two distributions. The first measure
is the l1 norm of the difference between the two distributions. Given two distributions, {p1, . . . , pk} and
{q1, . . . , qk}, the l1 norm of their difference is defined as

∑k
i=1 |pi−qi|. We also used the chi-square difference,

that is,
∑k

i=1
(pi−qi)

2

qi
. The chi-squared distance is particularly interesting since when an association study is

performed, one uses the chi-squared test in order to test the hypothesis that the two underlying distributions
are the same. In both cases we take the sum only over the probabilities qi that are greater than 0.05.

Simulating distributions. In order to evaluate the performance of HaploFreq we need to know what
the underlying distribution in the population is. We therefore partitioned the data into regions containing
5, 12 and 19 SNPs. For each of those regions we used the trios to infer the haplotypes and used the resulting
haplotype distribution to generate more data sets by picking haplotypes randomly and independently from
that distribution. We then added randomly scattered missing data and random scattered sequencing errors.
Note that these simulations implicitly assume that the underlying genotype distribution in the population
has no departures from the Hardy-Weinberg Equilibrium. On the other hand, when we sample from that
distribution, the sampling deviations result in departures from Hardy-Weinberg.
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Accuracy of estimations. We compared the accuracy of the frequency estimations of our HaploFreq
to PHASE [23]. We considered all possible regions spanning 5, 12 and 19 SNPs. For each of those regions
we used the trios information to deduce the haplotypes whenever possible, and used the distribution of the
deduced parents haplotypes as the underlying distribution. We then ran both PHASE and HaploFreq over
the data containing the parents deduced haplotypes (with missing data whenever there was an ambiguity).
We find that HaploFreq is typically 10− 50% more accurate than PHASE on both data sets.

Additionally, we compared our algorithms over the simulated data sets described above. In this case, the
underlying distribution is known, and therefore we can compare the methods both to the sampled distribution
and to the distribution of haplotypes in the population. We compared HaploFreq to PHASE over these
data sets, and we found again that HaploFreq is typically 10− 50% more accurate than PHASE. We note
that both PHASE and HaploFreq are much closer to the sampled distribution than to the underlying
population distribution. A complete summary of the comparison can be found in figures 2,3,4.
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Figure 2: Average l1 distance from the actual distribution on the Daly data sets (both blocks and simulated)

15



Daly simulations (chi^2 distance)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4 5 6 7 8 9 10 11 12

Scenario

c
h

i^
2
 d

is
ta

n
c
e
 f

ro
m

 d
is

tr
ib

u
ti

o
n



HaploFreq

PHASE

Daly simulations (l_1 distance)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12

Scenario

l_
1
 d

is
ta

n
c
e
 f

ro
m

 d
is

tr
ib

u
ti

o
n



HaploFreq

PHASE

Figure 3: Average chi2 and l1 distances from the actual distribution on the simulated Daly data, with various
simulation parameters

The scenarios depicted above are:

Scenario simulation parameters
1 all parameters

2,3,4 sets of 25,50,75 genotypes respectively
5,6 10%,20% missing data respectively
7,8 sets of 25 genotypes with 10%,20% missing data respectively
9,10 sets of 50 genotypes with 10%,20% missing data respectively
11,12 sets of 75 genotypes with 10%,20% missing data respectively

Table 1: simulation parameters for the simulated Daly data set
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Figure 4: Average chi2 and l1 distances from the actual distribution on the Daly blocks data, with various
simulation parameters

Scenario simulation parameters
1 all parameters

2,3,4 sets of 20,40,60 genotypes respectively
5,6 10%,20% missing data respectively
7,8 sets of 20 genotypes with 10%,20% missing data respectively
9,10 sets of 40 genotypes with 10%,20% missing data respectively
11,12 sets of 60 genotypes with 10%,20% missing data respectively

Table 2: simulation parameters for the Daly blocks data set
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A Useful facts

Claim 6 If |x| ≤ 3
5 then:

∞∑

j=1

1
j
xj(−1)j+1 ≥ x− x2

Proof: For x > 0 it suffices to show that:

1
2
x2 ≥ −1

3
x3 +

1
4
x4 − 1

5
x5 + ...

And this is obviously true since the RHS is negative as long as |x| < 1. If x < 0, denote x = −y for
y = |x| > 0, then we need to show that 1

2y2 − 1
3y3 − 1

4y4 − 1
5y5 − ... ≥ 0, and indeed:

1
3
y3 +

1
4
y4 +

1
5
y5 + ... ≤ 1

3y3
[
1 + y + y2 + y3 + ...

]

= 1
3y3 1

1−y

= 1
2y2 as long as y ≤ 3

5

2
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