
Networking Going Postal

Nitin Garg∗ Sumeet Sobti∗ Junwen Lai∗ Fengzhou Zheng∗ Kai Li ∗

Arvind Krishnamurthy† Randolph Y. Wang∗

Abstract
Making high-bandwidth Internet access pervasively avail-

able to a large world-wide audience is a difficult challenge,
especially in many developing regions. As we wait for the
uncertain takeoff of technologies that promise to improve the
situation, we propose to explore an approach that is poten-
tially more easily realizable: the use of digital storage me-
dia transported by the postal system as a general digital com-
munication mechanism. We shall call such a system aPost-
manet. Compared to more conventional wide-area connectiv-
ity options, the Postmanet has several important advantages,
including wide global reach, great bandwidth potential, low
cost, and ease of incremental adoption. While the idea of
sending digital content via the postal system is not a new one,
none of the existing attempts have turned the postal system
into a genericand transparentcommunication channel that
not only can cater to a wide array of applications, but also
effectively manage the many idiosyncrasies associated with
using the postal system. In the proposed Postmanet, we see
two recurring themes at many different levels of the system.
One is the simultaneous exploitation of the Internet and the
postal system so we can combine their latency and bandwidth
advantages. The other is the exploitation of the abundant ca-
pacity and bandwidth of the Postmanet to improve its latency,
cost, and reliability.

1 Introduction
Making high-bandwidth wide-area Internet access perva-

sively available to a large world-wide audience is a daunting
challenge. This is especially true in the vast under-developed
regions of the world. Instead of waiting for the uncertain take-
off of a number of existing and proposed technologies, which
can be many years away, a recent position paper [15, 23, 24]
proposes to turn theexistingworld-wide postal systems into
a generic digital communication mechanism as digital stor-
age media is transported through the postal “network.” The
proposed system is dubbed thePostmanet.

1.1 Postmanet Advantages

Compared to more conventional wide-area connectivity
technologies, the Postmanet enjoys several important advan-
tages.
• Wide reach.The postal system is a truly global “network”
that reaches a far greater percentage of the world’s human
population. To leverage the postal system for digital commu-

∗Department of Computer Science, Princeton University,{nitin, sobti,
lai, zheng, li, rywang}@cs.princeton.edu.

†Department of Computer Science, Yale University, arvind@cs.yale.edu.

nication, one needs no significant new investment in exotic
equipment.

• Great bandwidth potential.While the bandwidth potential
of a “sneaker net” is well known, some may consider it to be
a temporary fluke stemming from the relatively poor capac-
ity of today’s Internet. We, however, believe that this is not
necessarily the case, if we examine some fundamental tech-
nology trends. Storage density of flash memory and magnetic
disks has been increasing at the annual rate between 60% and
100%, and it is likely to continue in the foreseeable future.
This tremendous rate of improvement is likely to be almost
directly translatable to the amount of bytes transportableby
the postal system for a fixed cost or in a fixed volume. Besides
flash memory and hard disks, the next generation Blu-Ray
DVDs can hold up to 27 GB per disc today. Hitachi Research
has recently announced multi-layer technologies that can pro-
duce 150 GB discs by 2007 and 1 TB discs shortly thereafter.
One can also ship multiple units of these storage devices. As
better storage devices become available, they can be instan-
taneously and incrementally translated into Postmanet band-
width improvements.

In contrast, the wide-area network bandwidth growth is
constrained by labor-intensive and costly factors such as how
quickly we can dig ditches to bury fibers in the ground, how
quickly we can furnish last-mile wiring to homes (an en-
deavor that can be prohibitively expensive), how quickly we
can launch satellites, or how quickly we can erect WiMax (the
longer-distance versions of WiFi) towers. These factors are
unlikely to improve faster than the exponential growth rateof
storage density. Satellite- and WiMax-based solutions may
face aggregate bandwidth limitations. And the future of some
of these alternatives (such as WiMax) is far from certain. Far
from being a temporary fluke, the bandwidth gap between
Postmanet and more conventional alternatives is likely here
to stay and, indeed, widen. We do not, however, necessar-
ily view Postmanet as a competitor to these other alterna-
tives. Before better alternatives become a widely deployed
reality, exploring the Postmanet, an alternative that can al-
ready deliver practically infinite bandwidth today, may foster
the development of and demand for sophisticated bandwidth-
intensive applications, which may one day readily migrate
onto alternative connectivity technologies.

• Low cost.The low cost advantage of the Postmanet should
be attractive to average households, content offerers, and
“power users” alike. The goal of providing citizens with af-
fordable access to postal service is typically an integral part
of most nations’ postal system charters. In the U.S., even
if each household sends (and receives) one DVD each day,

1

the monthly cost of about $10 compares favorably with ex-
isting ISP offerings, especially if we were to consider its vast
bandwidth potential. The relatively liberal use of the postal
system by AOL and Netflix highlights the low cost advantage
of this approach to content offerers. The availability of a pub-
lic transit system-like Postmanet infrastructure, which allows
each household to receive (per postman visit) a single disk
that contains customized content from multiple content offer-
ers, can further reduce the cost to all involved. In additionto
catering to “low end” users, the cost advantage of the postal
system relative to that of a high-speed wide-area network also
holds for corporate “power users” shipping large amounts of
data [8].
• Good scalability.The postal system appears to have tried
and tested experience dealing with “flash crowds” such as
those seen on tax days or certain holidays.
• Ease of incremental adoption.A single pair of Postmanet
users can already derive useful value from the system, with-
out having to wait for a massive-scale user community or
world-wide infrastructure to develop. From this modest start,
the system can grow gradually. This incremental deployment
may circumvent the classic “chicken-and-egg” problem asso-
ciated with the difficulty of simultaneously developing infras-
tructures, applications, and user populations.

1.2 Goals

The goal of exploring the Postmanet approach isnot to
compete against existing or future alternative network access
modes; instead, the goal is to extend, to complement, and to
even foster other alternatives.
• Extending the Internet.For those who have no access to
connectivity or high-bandwidth connectivity, the Postmanet
can provide an inexpensive connectivity alternative to en-
able certain networked applications, especially bandwidth-
intensive ones.
• Complementing the Internet.The Postmanet has long (but
reasonably predictable) latencies. We call such a channel
a High Latency High Bandwidth (HLHB) channel. Corre-
spondingly, we call a traditional Internet connection a Low
Latency Low Bandwidth (LLLB) channel. For places that
have access to both an HLHB channel and an LLLB chan-
nel, an interesting problem is how to exploit an integrated
and simultaneous use ofbothchannels to get the best of both
worlds. For example, small requests, acknowledgements,
“NAKs,” and control messages may be sent along the LLLB
Internet, while large messages are staged on mobile storage
devices for transmission by the HLHB postal system. An-
other example of the complementary nature of the Postmanet
is that it may increase the availability of the communication
subsystem: if the Internet is down for some reason, one still
has another alternative. In the rest of this paper, unless ex-
plicitly noted, we assume the simultaneous availability ofan
LLLB link and we examine ways of exploiting it.
• Foster application development.The Postmanet is likely
to be more quickly realizable compared to more ambitious
efforts of making high-bandwidth connectivity widely avail-
able. Bandwidth-intensive applications developed for the
Postmanet, users who become accustomed to its benefits, and

lessons learned can potentially be transferred to the alterna-
tives farther away on the horizon when they become real.

The remainder of the paper is organized as follows.
Section 2 discusses example applications, the potential pit-
falls of developing ad hoc application-specific solutions,and
the importance of general and transparent systems support.
Section 3 explores how data on movable storage media is
“routed” from its source to its destination. We examine op-
tions ranging from those that can provide a good level of ser-
vice quality by employing data re-copying centers embedded
inside the postal system, to “peer-to-peer” disk-forwarding
schemes that can be incrementally adopted by end users with-
out relying on an expensive infrastructure. We consider rout-
ing algorithms that must account for unconventional routing
metrics, such as minimizing the number of movable storage
media that any one site needs to handle. In Section 4, we turn
our attention to the communication end points. We examine
the challenges and opportunities that are unique in the Post-
manet environment, how a carefully designed API can ad-
dress these issues, and our prototype implementation of the
API and example applications. We shall see two recurring
themes at many different levels of the system. One is the
simultaneous exploitation of the Internet and the postal sys-
tem so we can combine their latency and bandwidth advan-
tages. The other is the exploitation of the abundant capacity
and bandwidth of the Postmanet to improve its latency, cost,
and reliability. In Section 5, we present simulation results of
the various Postmanet routing algorithms. In Section 6, we
present measurement results of our prototype. We describe
related work in Section 7, and our conclusions in Section 8.

2 Using a P-Router and Its Applications

2.1 Example Applications

Possible applications of the Postmanet include: email with
large attachments (such as home movies), web embedded
with rich multi-media objects, remote file system mirroring
for sharing and/or backup, peer-to-peer file sharing of large
multi-media files, publish/subscribe systems for content such
as music, TV and radio programs, newspapers, magazines,
store catalogs, softwares, and public lectures given at univer-
sities, and distance learning systems allowing two-way com-
munications [13, 22]. These applications share the common-
alities of their appetites for high bandwidth and their benefit-
ing from simultaneously exploiting the HLHB postal system
and an LLLB Internet connection (if one is available). More
details of these applications can be found in a position pa-
per [23,24].

One of the applications that perhaps best illustrate the
Postmanet approaches is a hypothetical example called
“video almost on-demand.” Instead of passively respond-
ing to customer requests and forcing customers to wait for
their requested content to arrive in the postal system, a video
rental company could proactively push encrypted movies to
participating customers without having received explicitre-
quests. Large encrypted libraries can accumulate on partici-
pating customers’ home storage. To view a movie, a customer
would purchase a decryption key on-demand from the rental
company over the LLLB Internet and gain access to a locally

2

LAN

WAN

Figure 1: A Postmanet router.

stored and encrypted selection instantaneously. Emerging
DRM technologies (such as Microsoft’s Palladium [1]) may
be needed to prevent unauthorized dissemination or re-use of
decrypted content. Although we have called the Postmanet
a “high-latency” channel, in this example, by exploiting the
plentiful storage capacity and bandwidth of the Postmanet,
and by simultaneously using an LLLB channel, one may be
able to mask its high latency. This is a theme that will be
revisited.

2.2 Generality and Transparency of Postmanet

While specialized solutions (such as those employed by
AOL, Netflix, and some researchers working on astronomy
data [8]) have emerged, they lack two key desired properties:
generalityandtransparency: a general Postmanet should be
able to cater to a variety of applications; and a transparent
Postmanet should minimize manual handling of the storage
media being transported. One way of better understanding the
importance of these goals is to consider an imaginary Post-
manet router device (illustrated in Figure 1).

A Postmanet router (or aP-router) is similar to a home
DSL router. Instead of always forcing outgoing data through
a weak wide-area network, however, the P-router writes some
of the outgoing data to a mobile storage media (such as a
DVD). The types of storage media used may include read-
only or read-write DVDs, flash memory cards, or hard disks.
We shall generally refer to these storage devices asP-disks.
An outgoing P-disk, after being ejected from a P-router, is
picked up by a postman for delivery via the postal system.
The postman may also drop off an incoming P-disk, whose
data appears on a user computer as if it had arrived from a
conventional WAN. Therefore, unlike specialized solutions
such as those employed by AOL and Netflix, the Postmanet
should provide generic two-way communication, just as con-
ventional networks do.

The user of a P-router need not manually inspect or pro-
cess the content of a P-disk; the user need not manually stage
or copy data; and the user need not worry about issues such
as potential loss or damage of P-disks in the postal system.
Unlike an AOL or Netflix user, who must know what to do
manually with these application-specific disks, a Postmanet
user’s only direct manual interaction with the P-router is lim-
ited to the insertion/removal of P-disks into/from P-routers.
This is analogous to the fact that low-level details such as
packets and routers are minimally visible to a conventional
network user.

When a P-router user needs to send to multiple receivers,
or when multiple applications need to share the Postmanet,
ideally, it would be desirable if only a single outgoing P-disk
needs to be sent per postman visit. Similarly, if a P-router

user needs to receive from multiple senders, it would be desir-
able if there is only a single incoming P-disk that contains all
the incoming data. This is in contrast to ad hoc application-
specific solutions, which never allow, for example, AOL and
Netflix data to be placed on a single disk. The sharing of a
single Postmanet infrastructure by multiple applicationsand
multiple users is consistent with the multiplexing and de-
multiplexing jobs performed by conventional networks.

The provision of an application-neutral Postmanet “public
transit” system that is easily and cheaply exploitable by any
potential communicating parties is important. This is anal-
ogous to the fact that the existing Internet is such a generic
infrastructure. Without it, a potential innovator who is in-
terested in developing a Netflix-like application may need
to reinvent the whole infrastructure from scratch. The co-
existence of multiple Netflix-like infrastructures can lead to
various forms of inefficiency. Smaller players may not be
able to afford to put up their own infrastructure at all.

These generality and transparency goals lead us to believe
that system support at various levels is necessary if we were
to fully realize the potential of the Postmanet.

3 Routing
The Postmanet has some unique routing metrics. For ex-

ample, an important consideration is minimizing the num-
ber of P-disks received or sent per site per postman visit. In
the following discussion, when we say a site “handles”k P-
disks, we mean that the site may receive up tok P-disks and
send up tok P-disks per postman visit; and when we refer to
a “latency” metric, unless explicitly noted, it is in terms of
the number of postal system forwarding hops visible to Post-
manet participants.

3.1 Routing Strategies

We consider the routing strategies illustrated in Figure 2.
In the centralized alternative illustrated in Figure (a), an end
user always sends/receives P-disks directly to/from a single
data distribution center (called aP-center). Although any
centralized solutions have obvious disadvantages, an impor-
tant advantage of this approach is that each end user handles
only a single P-disk, regardless how many other sites he com-
municates with per postman visit: as the P-center copies data
from its incoming P-disks to its outgoing P-disks, it first de-
multiplexes incoming data and then re-multiplexes outgoing
data, minimizing the number of P-disks handled in both direc-
tions. (Inexpensive robotic arm-operated, multi-drive DVD
writers that can generate about 600 DVDs per day already
exist today and they can keep manual labor cost to a mini-
mum.)

In the direct peer-to-peer routing alternative illustrated in
Figure (b), each user may need to prepare multiple P-disks
for transmission, each of which destined for a different in-
tended receiver. This approach has potentially better latency
and lower infrastructure cost than that seen in Figure (a), but
it may result in each site having to handle many P-disks. In a
large scale peer-to-peer file sharing application, for example,
the large number of P-disks handled per site could become
a severe administrative and cost burden. This is an instance
where the answer of “leaving routing to the postal system” is

3

A B C

X Y Z

(a)

A B C

X Y Z

(b)

A B C

X Y Z

(c)

A B C

X Y Z

(d)

Figure 2: Routing strategies. A solid arrow denotes a singleP-disk carried
by the Postmanet on one postal hop. A dashed line between a pair of nodes
in (d) denotes that it is permissible for these two nodes to exchange P-disks
directly with each other. In all four panes,A sends different data items to
X andY , Y sends some other data toB, andZ sends different data items
to B andC. (a) Centralized data routing via a single data distribution cen-
ter. (b) Direct peer-to-peer data routing. (c) Data routingvia multiple data
distribution centers. (d) Indirect peer-to-peer routing.

insufficient.
In the multiple-P-center approach illustrated in Figure (c),

the geographically distributed P-centers allow some degree of
geographical awareness in routing decisions, thus achieving
latencies that are potentially better than those in (a), butworse
than those in (b). The number of P-disks handled per site is
limited by the number of P-centers. These advantages do not
come for free, however, as the P-centers may require a sub-
stantial infrastructure investment. It is also possible toallow
the coexistence of the alternatives illustrated in Figures(b)
and (c).

In the indirect peer-to-peer routing alternative illustrated
in Figure (d), a P-disk arriving at a site may contain data
destined for other sites so, in some sense, the data copying
tasks of a P-center is now distributed among the peer partic-
ipating sites. In (d), for example, a P-disk traveling on the
Z → Y → B → C route delivers data sent byY andZ
to B andC. Using an analogy, one may view the P-disks as
buses and messages as bus passengers: a passenger may need
to switch buses to get from its source to its destination. If bus
schedules are carefully planned and used, one may be able to
limit the number of P-disks handled per site while still achiev-
ing good message latencies. An important advantage of this
approach is that it does not require a P-center infrastructure.

A potential complication facing any peer-to-peer system
is coping with misbehaving participants: a Postmanet user,
for example, may fail to promptly forward data destined for
his peers, alter or damage data, or read data that he is not
supposed to. Routing protocols designed to deal with Byzan-
tine faults [2] use a combination of techniques, including
participant monitoring, destination acknowledgements, fault
announcements, checksumming and encryption of data, au-

thentication, fault knowledge sharing, and isolating faulty
nodes. These Byzantine-tolerant protocols are directly ap-
plicable here and they can be integrated with a (suitably mod-
ified) Netflix-like service model, in which customers stop re-
ceiving additional service if they do not return outstanding
discs already in their possession. Proactive data replication
on multiple outgoing P-disks along different routes can fur-
ther improve robustness and performance.

We summarize the desired Postmanet routing characteris-
tics: (1) it can accommodate a large number of simultaneous
Postmanet communicators without requiring a site to handle
many P-disks per postman visit; (2) it has end-to-end mes-
sage propagation latencies that are close to those provided
by the postal system; (3) it does not require an expensive in-
frastructure other than the existing postal system; (4) it does
not burden Postmanet nodes in an unbalanced manner with
data copying tasks that are beyond their own communication
needs; and (5) it is robust when faced with misbehaving Post-
manet end users. Some of these goals are unique to the Post-
manet; these goals often conflict with each other; and we need
to strike a proper balance among them.

Option (a) is a special case of option (c); and option (b)
can be seen as a special case of option (d). If we can afford it,
a properly provisioned infrastructure in terms of a number of
geographically distributed P-centers (option (c)) shouldgive
the best quality of service. Ideally, the P-centers should be
integrated into the existing postal system (or its rough equiv-
alent, such as UPS or FedEx) so that some or all of the post
offices themselves serve as P-centers, further minimizing de-
livery latency. Without relying on a P-center infrastructure,
the peer-to-peer model (option (d)) is the quickest way of de-
ploying a Postmanet. It is also possible to mix options (c) and
(d). Although it is not the only viable model, we believe that
the peer-to-peer Postmanet model is an important one if we
were to realize the incremental deployment benefit (explained
in Section 1.1). It is this model that we focus on first; and we
examine later how P-centers can be integrated into this model.

3.2 Problem Definitions

• Static routing graphs.In Figure 2(d), suppose each user is
only allowed to directly exchange P-disks with “neighbors”
along the dashed lines. By constraining the number of such
neighbors for each node, we limit the number of P-disks han-
dled per site. A natural question is how such neighbors are
chosen. In graph theoretic terms, the problem of simultane-
ously limiting the number of P-disks handled per node and
maximum latency can be seen as that of constructing a di-
rected graph with a large number of nodes while keeping the
diameter and the maximum node degree small. The diame-
ter corresponds to the maximum latency, and the degree of
a node corresponds to the number of P-disks it handles. Al-
though the problem of constraining both graph degree and
diameter is applicable to general networks, we shall see that
the quantitative tradeoffs involved in the Postmanet (between
postal system delays and the number of P-disks handled),
and the need of generalizing the problem dynamically present
unique challenges.
• Dynamic routing. The problem posed above concerns a
static topology: a Postmanet node may directly exchange P-

4

100 110

010 101

001 011

111000

Figure 3: A 3-dimensional de Bruijn graph.

disks only with a small number of pre-determined neighbors.
These static constraints may be unnecessarily restrictive. For
example, in Figure 2(d), ifC desires to send data toA, its
data would normally be routed throughB. But, there is no
reason whyC should not be allowed to send a P-diskdirectly
to A if, on a given day, it does not overburden either of them.
The question concerning a more dynamic approach is how to
allow for such routing flexibilities without causing problems
such as too many P-disks being handled by any one node on
any given day. This is a routing optimization problem unique
to the Postmanet.
• Disseminating routing information and coordinating rout-
ing actions.The questions are: (1) how is the traffic informa-
tion (in terms of who is sending to whom) gathered? (2) who
computes the routes? and (3) how are the computed routes
disseminated?
• Geographic awareness.Obviously, not all postal hops are
equal in terms of their geographic distances and postal de-
lays. The question is how to construct routing graphs that can
account for these factors.
• Integrating P-centers.We would like to understand how
to best integrate P-centers into our routing mechanism, incre-
mentally if necessary, to improve service quality.

3.3 Solutions to the Routing Problems

We now answer each of the questions posed in the last
section.

3.3.1 Static Routing Graphs

Although dynamic routing should undoubtedly out-perform
the static approach, especially under light workloads, finding
good static topologies is important for two reasons: (1) a good
static routing graph may form the basis of a good dynamic
routing algorithm; and (2) a good static routing graph may
provide a performance upper-bound for a uniformly heavy
workload, which may present few exploitable optimization
opportunities for any dynamic approach. We examine two
types of static routing graphs for use in the Postmanet: de
Bruijn graphs [4] and random graphs.

An r-dimensional de Bruijn graph consists of2r nodes.
Each node is associated with a distinctr-bit binary string, and
a node identified by the binary stringb1b2 · · · br has directed
edges leading towards the nodes identified byb2 · · · br0 and
b2 · · · br1. (Figure 3 illustrates an 8-node de Bruijn graph.)
Each node has both an indegree and outdegree of two. To
route from a nodeu1u2u3 · · ·ur to a nodev1v2v3 · · · vr, one
simply routes through the intermediate nodesu2u3 · · ·urv1,
u3 · · ·urv1v2, . . . ,urv1v2 · · · vr−1, thereby resulting in a sys-
tem with diameter oflog N . (Recall that diameter corre-

A

B C D E F G

H

I J K L M N

Figure 4: A dynamic routing example. The dark arrows are the edges in the
underlying static routing graph. The dotted edges are the “short-cut” edges
thatA uses to directly forward messages toE andM .

sponds to maximum Postmanet latency expressed in postal
hops, and node degree corresponds to maximum P-disks han-
dled per site.)1

Although random graphs can also achieveO(log N) di-
ameter with constant node degree, unlike de Bruijn graphs,
the diameter bound is probabilistic. Furthermore, com-
pared to de Bruijn graphs, random graphs tend to require a
larger node degree constant to achieve a comparable diame-
ter bound.

3.3.2 Disseminating Traffic and Routing Information

In traditional networks, implicit routing, wherein routing de-
cisions are made locally without requiring elaborate knowl-
edge of the global topology, can be very useful. In con-
trast, implicit routing may be of lesser importance in a Post-
manet that has two “networks”—the LLLB Internet could be
used for dispersing topology information or topology repairs,
while bulk data traverses the HLHB channels.

In a similar vein, we can also use the LLLB channel to dis-
seminate traffic information (in terms of who desires to send
bulk data to whom). This makes the dynamic routing prob-
lem easier to solve. We may assume, for example, that traffic
information is continuously being gathered at a centralized
coordinator site over an LLLB channel. The coordinator uses
the gathered information to compute the best dynamic routes,
which the coordinator then disseminates to all the participat-
ing peer Postmanet sites, so by the time a postman arrives
at a site to pick up outgoing P-disks, appropriate next-hop
postal labels would have been generated at each site accord-
ing to a global schedule and affixed to these outgoing P-disks.
Furthermore, as much as 24 hours, for example, may elapse
between successive postman visits, so the coordinator may
have ample time computing the best dynamic routes. Multi-
ple coordinators can be employed to improve reliability and
performance.

3.3.3 Dynamic Routing

In Section 3.3.1, we have described a static routing strat-
egy, where a message from a nodes destined for a nodet
is always routed along the shortest path in the underlying de
Bruijn graph. As pointed out in Section 3.2, this can be overly
restrictive, especially when some nodes are lightly loaded.
Consider the example in Figure 4. The figure shows a por-
tion of the underlying static graph, where out- and in-degree
of each node is constrained to be at most two. (Not all graph
edges are shown here.) Assume that at some stage, nodeA
only has messages destined for nodesE, G, H , M andN . In

1When the number of nodes involved is not an exact power of 2, a static
routing graph can still be obtained by starting with a largerde Bruijn graph,
and “routing through” non-existent nodes. Also note, choosing k as a “base”
would result in a degree-k graph.

5

this case, instead of using the edges in the underlying graph,
A may use the “short-cut” edgesA → E andA → M , and
in a single step, send the messages destined forE, G andH
directly toE, and those destined forM andN directly toM .

A good “dynamic routing algorithm” for Postmanet would
make decisions of this kind in an optimal manner. Specifi-
cally, it would be an “on-line” algorithm that for each post-
man visit at each site, determines the next-hop destinations
for the out-going P-disks, and also selects the set of mes-
sages to put on those P-disks. The goal is to make progress
toward delivering messages to their respective destinations,
while respecting the degree constraints on the nodes per post-
man visit. One way to measure incremental “progress” made
by the system toward delivering a given message is to mea-
sure how close in the underlying static graph the message has
reached to its eventual destination. A greedy optimizational-
gorithm can then, at each step, try to choose the edges so as
to quickly make as much global progress as possible.

In our proposed dynamic routing approach, an algorithm
is run at the end of each step (or day) to determine the edges
along which to ship P-disks on the next day. Our algorithm
constructs a bipartite graph with vertex setP ∪Q, where each
node of the system appears exactly once in bothP andQ.
Edgep → q is assigned a weight proportional to the progress
that can be made by sending a P-disk from nodep to q di-
rectly. The problem then reduces to choosing a set of edges
so as to make as much total progress as possible. For this
purpose, a maximum-weight matching algorithm is repeat-
edly invoked to find a set of matchings along which to ship
P-disks. The weights on the edges can also take into account
other factors such as message priorities, delivery deadlines
and starvation. With a suitable choice of the progress met-
ric, the dynamic routing algorithm would degenerate to the
static routing algorithm under heavy message traffic. (Spe-
cific progress metrics will be discussed in a later section.)
Thus, in the worst case, the performance of the dynamic al-
gorithm would be no worse than that of the static algorithm,
while under lighter load conditions, the dynamic algorithm
would perform much better.

It is interesting to note that under this dynamic routing
approach, the dynamically chosen routes are by no means
obliged to follow any edges in the static underlying de Bruijn
(or random) graph. The static graph’s sole purpose is pro-
viding a means for the dynamic algorithms to gauge progress
when greedily choosing next hops. In some sense, the static
graph acts as a “traffic shaper,” whose influence should be the
strongest under extremely heavy workloads, which we con-
jecture would force the dynamically chosen routes to more
closely conform to the shortest paths in the static graph.

Although the role of a static graph is only a traffic shaper,
it is important for the static graph to have a node degree con-
straint that is identical to that of the dynamic routing graph,
which should reflect the real-life limitation of how many P-
disks a site handles. Had we chosen a static graph with a
higher node degree and enforced a lower node degree only
in the dynamic routing algorithm, the progress metric derived
from the static graph could be overly optimistic, potentially
resulting in too many messages being delivered to a site that
cannot drain them quickly due to a low dynamic degree limit.

It is possible to model dynamic routing as a more precise
optimization problem, and to try to achieve “theoretically-
optimal” solutions. However, there seems to be little hope
of finding such optimal solutions for two reasons. First, even
the off-line version of our problem (where all of the requests
are available at the beginning of the computation) appears to
be NP-hard because of its relationship with the well-studied
multi-commodity fixed-charge problems. Second, our real in-
terest lies in devising an on-line algorithm that executes con-
tinuously and handles a multitude of events occurring in the
system, and not all versions of our problem may be easily
amenable to theoretically optimal solutions. Hence we use a
greedy, heuristics-based approach.

3.3.4 Geographic Awareness

We use two techniques to make Postmanet routing
geography-aware. First, we embed the static routing graph
onto the set of participating nodes in a geography-aware fash-
ion. This is achieved by using a Dijkstra-style greedy algo-
rithm that tries to ensure that the postal system latencies along
the graph edges are not too large. (Details of the algorithm are
omitted due to space constraints.) Second, actual postal sys-
tem latencies are taken into account when assigning weights
to the edges in the bipartite graph used in the maximum-
matching computation. We study the effects of both of these
techniques in a later section.

3.3.5 Integrating P-Centers

We next consider how to integrate P-centers into our peer-
to-peer routing infrastructure. P-centers, with their ability
to provide two-hop connectivity between any pair of nodes,
could be used to either service only some high-priority mes-
sages, possibly generated by paying customers who require
predictable quality of service, or improve the latency of all
messages by providing short-cuts in the routing infrastruc-
ture. The optimization problem, in either case, is to compute
a set of source nodes and a possibly overlapping set of desti-
nation nodes for which a given P-center would serve as a hub
on a given day in order to maximize the progress of the mes-
sages in the system. Each node is constrained to send to (or
receive from) the P-centers at most one disk on any given day.
A given P-center would not be statically bound to a fixed set
of nodes, thereby allowing it to adapt to varying traffic con-
ditions. Once again, theoretically optimal solutions for this
problem are intractable even for the special case of augment-
ing the infrastructure with just one P-center, and we therefore
resort to the following heuristic.

We determine the routing connectivity for one P-center at
a time during each routing step. We begin by greedily pick-
ing a source node that would attain the greatest benefit from
using the P-center to communicate its messages to at most
dpc destinations, wheredpc is the out-degree constraint on
the P-center. We then pick the next source node based on a
metric that takes into account both the amount of message
traffic to some set ofdpc destinations and the amount of mes-
sage traffic to only those destinations that are favored by the
first selected node. We repeat this process, and at each step,
we keep track of the most popular destinations corresponding
to the current set of selected source nodes and pick the next

6

source node based on this information. Once we have picked
all the source nodes, the most populardpc destinations are se-
lected as the target nodes to which the P-center will send a
disk. Based on the final selection of the target nodes, each
source node will then compute what messages it will send to
the P-center node, including on the P-disk any message that
would make faster progress through the P-center than through
the peer-to-peer infrastructure.

4 End Point Support
We have considered how P-disks are routed in the last sec-

tion. We now consider support at the communication end
points.

4.1 Postmanet Characteristics and Implications

The Postmanet has several unique characteristics, which
require treatment different from that in conventional net-
works.
• Datagram limitations.The postal system represents a clas-
sic analogy of a datagram service: individual P-disks may
be damaged, lost, delayed, or delivered out of order. Human
users or individual applications should not have to cope with
these complications if they desire better guarantees and ab-
stractions.
• Bursty arrival of large amounts of data.A single Postmanet
sender could have spent many hours writing to a P-disk, and
data from multiple sources can arrive at a receiver per post-
man visit. Gigabytes or even terabytes of data could be in-
volved. A (human or application) receiver would naturally
desire to gain access to the newly arriving data as quickly as
possible. A naive approach of forcing the receiver to wait un-
til the system completes copying from incoming P-disks to
local storage could add substantial delay. Instead, it is impor-
tant to allow receiver applications quick access to summary
or metadata information so that they can make flexible deci-
sions before a large amount of data needs to be copied. This
is an issue that does not arise in conventional networks that
allow gradual and continuous data arrival.
• Two networks. The aid of an LLLB Internet connection
makes the Postmanet more powerful and interesting. In addi-
tion to using the LLLB channel to carry small control mes-
sages such as acknowledgements, the sender system may
choose between the LLLB Internet and an HLHB P-disk
based on factors such as the amount of data to be sent and the
desired arrival time. One may even choose to use both chan-
nels in parallel. For example, a Postmanet application may
prepare multiple versions of an object (at different resolu-
tions) for simultaneous transmission in the LLLB and HLHB
channels.
• Delayed action. Conventional networks typically do not
support, for example, an “unsend” operation, that allows a
user to change his mind after a “send” operation is executed,
because there is typically little time before actions are ef-
fected. In the Postmanet, however, there is ample opportunity
for mind-changing: before the postman picks up the outgoing
P-disk at the sender, as the P-disk is in transit in a P-centeror
in a peer’s P-router, or even after the P-disk arrives at the des-
tination but before the data is consumed by the receiver appli-
cation. Even in absence of a mind-changing sender, a receiver

1.Entry.getName()
name of this Entry .

2.Entry.getFullName()
full path of this Entry .

3.Entry.create(name, type)
create subentry. type : File or Dir .

4.Entry.delete(name)
delete a subentry.

5.Entry.deleteAll(name)
delete a subentry recursively.

6.Entry.get(name)
returns the specified subentry.

7.Entry.list()
list names of subentries of this Entry .

8.Entry.listEntries()
returns list of subentries in this Entry .

9.Entry.search(filter)
list subentries that match filter .

10.Entry.isFile()
test whether this Entry is a file .

11.Entry.isDirectory()
test whether this Entry is a Dir .

12.Entry.size()
returns size of this Entry .

13.Entry.getFD()
gets the "file descriptor" for this Entry .

(a)Entry interface (partial).

1.FD.lseek(offset, whence)
set this pointer to specified offset .

2.FD.getOffset()
returns current offset.

3.FD.length()
returns size of this File .

4.FD.sync()
flush changes to disk.

5.FD.read(bytes)
returns next bytes of data.

6.FD.read(count,prefetch)
similar. prefetch : this is low priority.

7.FD.write(data)
write given data to this File .

8.FD.write(srcFD, offset, bytes)
write bytes starting from given source
srcFD ’s given offset .

(b) FD interface.

1.Entry.getAttributes()
returns all attributes of an this Entry .

2.Entry.getAttributes(nameSet)
returns only specified attributes.

3.Entry.getAttribute(key)
returns specified attribute.

4.Entry.modifyAttribute(key,value)
modify/add specified attribute.

(c) Entry attribute interface.

Figure 5: Local storage interfaces (available to applications).

application may discover that some of the newly arriving data
is no longer needed due to application-specific reasons. In
any case, the LLLB channel can be used to “shoot down” a
message in any stage of transmission between the sender and
the receiver end-points.
• P-disk communication media.Large-capacity P-disks play
the role of wires. A P-disk may hold many messages, which
require the data to be organized in a more structured fashion
than that typically employed on a wire. A natural question is
what type of structure we should use: for example, a database,
a file system, or some other customized data structure? The
physical organization of storage management is also a rele-
vant issue. For example, a log-structured approach [16] may
allow small message “sends” and certain types of receiver
copying to execute efficiently.

4.2 API Overview

The most important means of addressing the unique Post-
manet characteristics discussed above is well-defined APIs.
Properly defined APIs should (1) abstract away unpleasant
details (such as the datagram limitations of the postal ser-
vices), (2) expose new capabilities (such as ways of using
two networks), and (3) allow applications to circumvent per-
formance difficulties (such as the problems associated with
bursty arrival of large amounts of data). We give an overview
of the interfaces, before we later explain how they address the
Postmanet-specific characteristics.

There are three key sets of interfaces: (1) an interface that
allows applications to manipulate data on P-disks (Figure 5),
(2) an interface that controls sending and receiving of data
(Figure 6), and (3) an internal interface used by P-routers that
communicate with each other (but not visible to applications)
(Figure 7).

An Entry is a basic P-disk-resident object that roughly
corresponds to a Unix file or a directory (5(a)). Unlike con-
ventional files, however, additional Postmanet-specific se-
mantics and operations are built on top ofEntries . FDs,
similar (but not identical) to file descriptors, mainly allow
data to be read/written to P-disks (5(b)). Beyond the file

7

1.Msg.getSender()
returns EndPoint of sender.

2.Msg.dateSent()
returns date when message was sent.

3.Msg.getType()
query whether message is an Ack ,
TrackingUpdate , FailureNotice etc.

4.Msg.getID()
returns a MessageID .

5.Msg.discard()
delete this message.

1.EP.getZip()
2. EP.setZip(pzip)
3. EP.getMailbox()
4. EP.setMailbox(mailbox)
5. EP.getIP()
6. EP.setIP(ip)
7. EP.getAddress()

get postal address for this EndPoint .
(a)EndPointinterface.

1.Msg.newMessage()
start a new message.

2.Msg.newMessage(path)
start a new message with an Entry of
a given path.

3.Msg.newMessage(entry)
used by a receiver to treat a received
entry as a message.

4.Msg.add(sourcePath, destPath)
add sourcePath as destPath .

5.Msg.add(entry,destPath)
add entry as destpath .

6.Msg.setRecipients(endPointList)
set message destinations.

7.Msg.setReturnAddress(endPoint)
set return address for Acks etc.

8.Msg.setTracking(level)
set message tracking to given level .

9.Msg.setDeliveryDeadline(date)
allows application to set a hint.

10.Msg.setReplicaID(id)
for identifying application-level replicas.

11.Msg.setInternetDelivery()
hint: delivered over the LLB Internet.

12.Msg.setResolution(level)
set resolution level of the message.

(b) Message interface (partial).

1.Pnet.send(msg, callback)
asynchronous send. callback is invoked
when msg has been copied to local spool
(or an error occurs). returns a MessageID .

2. Pnet.send(msgID, msg, callback)
similar. sends with specific msgID . Useful
for sending “same messages” at multiple
resolutions.

(c) Postmanet send calls.

1.Pnet.delete(msgID)
delete a message.

2.Pnet.delete(msgID, filter)
delete parts of message matching filter .

(d) Postmanet delete calls.

1.Pnet.getRootEntry()
returns root Entry .

2.Pnet.setCallback(mailbox,
callback, filter)

set callback for a given mailbox .
callback is invoked everytime a
message matching filter is received.

3.Pnet.removeCallback(mailbox,
callback)

remove a previously set callback.
4.Pnet.getCallbacks(mailbox)
lists all callback s in effect for this
mailbox.

5.Pnet.getNext(mailbox, flag)
returns next new message in mailbox .

(e)Postmanet: receiver setup.

(f) Message: calls available to a receiver.

Figure 6: Communication interfaces (available to applications).

1.Peer.msgOk(messageID)
acknowledges the receipt of a message.

2.Peer.msgError(messageID, cause)
error receiving a message due to cause .

3.Peer.PdiskOk(PdiskID)
acknowledges the receipt of a P-disk.

4.Peer.PdiskError(PdiskID, cause)
error receiving a P-disk due to cause .

5.Peer.stashedCopy(messageID)
reports a copy of a message is stashed.

6.Peer.discardedCopy(messageID)
reports a previously stashed copy is
discarded.

7.Peer.resend(messageID)
requests peer to resend a message.
returns error if copy is no longer available.

8.Peer.receiveEntry(Entry)
receives an Entry over the Internet.

9.Peer.delete(messageID, filter)
delete parts of message matching filter .

10.Peer.trackingUpdate(messageID,
trackingInfo)
reports tracking information.

11.Peer.expectReplica(messageID,
replicaID, expiryDate)
informs that a replica is on the way.

Figure 7: Peer interfaces (hidden from applications).

system-like operations, anEntry also has associated “at-
tributes,” or(Key, Value) pairs, which are used by both
the system and applications (5(c)). (As examples, the in-
tended recipient identity would be a system attribute of the
outgoing data; and the URL of a web-based publication
would be an application-specific attribute.)

A Mailbox is a directoryEntry under which an appli-
cation finds incoming data. To send data, one needs to specify
a destinationEndPoint (6(a)), which contains aPzip that
identifies the receiver machine, aMailbox , and optionally,
the IP address of the destination machine. (Such address-
ing information can be provided by a separate lookup service
analogous to the DNS service of today. Lookups can lever-
age the LLLB Internet. We are using a simple local file in the
current prototype.)

Messages are Entries . A sender manufactures
Messages using the interface of 6(b). These calls es-

sentially allow one to set a variety of attributes, which
specify various delivery options. Of all these calls, only
setRecipients() is necessary. BecauseMessages are
Entries , all supported calls ofEntries (5(a)) are also
available forMessages . Once a message is created, it can
be sent using the calls of 6(c), or “unsent” using those of 6(d)
(if one were to change his mind). Postmanet provides “reli-
able” messaging but it currently does not guarantee in-order
delivery. It allows one-to-many communication.

To receive messages, an application setsCallbacks on
its Mailbox (6(e)). When aCallback is invoked, the
Entry that resulted in its invocation is passed as an argu-
ment to the callback function. Note that the callback function
would need to explicitly perform read operations using the
interfaces given in Figures 5 and 6(f). The data being read,
however, may or may not have been moved from an incom-
ing P-disk to other local storage at the receiver by the system.
This allows both good performance, for applications that de-
sire to control their own data movement from a P-disk into
application-specific local store, and convenience, for appli-
cations that do not want to be bothered with such low-level
details.

The peer interfaces shown in Figure 7 allow peer P-routers
to communicate with each other, mainly over the LLLB Inter-
net channel. These interfaces are not visible to applications.
They allow P-routers to manage control information such as
acknowledgements, failure notifications, retransmissionre-
quests, message shoot-downs, replica management, and mes-
sage tracking. Small data messages are also transmitted over
the LLLB Internet using this interface.

4.3 Managing Postmanet-Specific Characteristics

We now discuss how the unique characteristics of the
Postmanet (Section 4.1) are managed by (and behind) the
interfaces given above (Section 4.2). These characteristics
interact in interesting ways: the problems caused by some
of these characteristics can be addressed by opportunitiesof-
fered by other characteristics. For example, the datagram lim-
itations and poor latencies can be improved if we judiciously
exploit the availability of two networks and the excess capac-
ity on P-disks.
• P-disk organization.The “messages” are organized in a hi-
erarchal file system, with additional attributes and supported
operations added to the file system-like objects. This arrange-
ment makes the system easy to use for applications, many of
which would find a file system-like interface natural. A send-
ing application can prepare the outgoing data in a format that
its receiving counterpart can readily integrate into its own per-
sistent data structures. Minimum packing, unpacking, or con-
version should be necessary. What we are seeing is a form of
blurring the boundary between storage and networks. (The is-
sues being explored here, however, as we explain in Section 7,
are quite different from those seen in distributed storage and
file systems.)
• Two networks.The LLLB Internet is made available for
use to both the system and applications. The peer interfaces
(Figure 7) allow peer P-routers to exchange various types of
small control information. TheMessage interface allows
applications to provide explicit or implicit hints (including

8

delivery deadlines, and whether a message is a low resolution
version of a bigger P-disk-resident message) on whether and
when to use the LLLB Internet channel. (See calls 9, 11, 12
of Figure 6(b).)
• Bursty arrival of large amounts of data.We have several
potentially conflicting goals: (1) copying all the data out of an
incoming P-disk to receiver local storage as quickly as possi-
ble; (2) allowing applications to make progress without hav-
ing to wait for extensive copying to complete; and (3) mini-
mizing application interference with each other, which could
result from competing data copying activities.

The callback interface (Figure 6(c)) allows applications
to read a minimum amount of summary information to get
started, and then to read data strictly on a need-driven basis.
Behind the callback interface, a key P-router component is a
generic system-levelbackground copierthat copies data from
an incoming P-disk to local storage. If an application chooses
to discard some incoming data (for any application-specific
reasons) before it is reached by the background copier, this
data does not need to be copied at all. As the background
copier proceeds, the system ensures that theEntry passed
to the application callback function points to the correct stor-
age location, which could be either the P-disk or the local
storage. The background copier may be able to aggressively
exploit sequentiality of the underlying storage organization.
The background copier, however, needs to exercise care not
to compete with applications for P-disk bandwidth. The back-
ground copier also provides a means for applications to avoid
interfering with each other: a “well-behaved” application
should always read only what is necessary and leave the rest
to the background copier. (This is based on the assumption
that the receiver applications fed by the same P-router are
willing to be cooperative, in terms of performance.)
• Datagram limitations.The handling of damaged, lost, de-
layed, or system-replicated Postmanet messages is not visi-
ble to the application-visible interfaces of Figures 5 and 6.
The peer P-router interface of Figure 7 allows the system to
quickly deal with these anomalies using the LLLB Internet.
Furthermore, as multiple P-disks are sent between a sender-
receiver pair on successive days, the system may liberally
replicate outgoing data of earlier days on outgoing P-disks
sent on later days. In cases where a single P-disk is de-
layed or lost due to accidents in the postal system or unco-
operative peers who were supposed to forward it but did not,
the replicated data on a subsequently arriving P-disk is just
a day away, so we can avoid unnecessary long end-to-end
retransmission delays. This is another example of the con-
sistent Postmanet theme of liberally “wasting” plentiful re-
sources (storage capacity) to optimize for more difficult met-
rics (lower latency or better reliability).
• Delayed action.A message can be canceled at any point
after it is sent and before it is consumed at a receiver. Such
a cancel message may need to be buffered at a destination.
Shoot downs can be useful for functionality or performance
reasons. Applications use the interface in Figure 6(d) to ini-
tiate a shoot down, which is handled locally if the message
has not left the sender, or generates one or more peer shoot
down messages (call 9 of Figure 7) if the P-disk containing
the message has departed. Shoot downs can also be initiated

at the system level without application initiation. For exam-
ple, extra system-level replicas, such as those described in the
last paragraph, should be shot down, when it becomes appar-
ent that the outstanding replicas are no longer needed.

Security concerns can be largely addressed using existing
mechanisms. (We omit detailed discussions due to space con-
straints.) In summary, the Postmanet has a number of charac-
teristics not seen in conventional networks. We believe that
careful interface design is an important way of addressing
these issues. We do not, however, claim that we have arrived
at the ideal interfaces, and we are continuing to evolve and
refine these interfaces.

4.4 Implementation

We have implemented a prototype P-router in Java. All
communication between applications and a P-router, and be-
tween P-routers is done via Java’s Remote Method Invocation
(RMI). The implementation contains three main modules: the
sender part, which handles send and delete requests, the re-
ceiver part, which handles integration of data on incoming
P-disks (or over the Internet) with the rest of the system, and
a local store, which provides theEntry abstraction. The
attributes of entries, and the message tracking and manage-
ment information used by the above modules, is stored by an
LDAP [14] server, running over a BDB [20] back end, ac-
cessed via JNDI. On the DVD P-disks, data is written as an
ISO file system with attributes stored in separate files. The
ISO images are staged on a local disk but partial images can
be incrementally appended to DVD+RW discs that we use in
our prototype. The entire implementation is based on JDK
v1.4.204 and is about 10,200 lines of java code.

4.5 Sample Applications

We briefly describe aspects of three simple Postmanet ap-
plications that we have developed. The first one is Pwe-
bCache, a web proxy that receives subscribed data from a
Postmanet-aware web publisher. The publisher creates data
in an entry hierarchy to correspond to the on-disk structure
used by the cache. The URL of the page, and cache vali-
dation and control headers of the HTTP protocol, are stored
as attributes of entries and thedeliveryDeadline() of
the message is set to the cache expiration date of the data, if
any. When a P-disk arrives, the receiver cache program only
needs to record the URL attributes of the top level entries to
be able to start servicing client requests immediately, while
leaving the general system background copier with the task
of moving data out of the P-disk.

The second application is Pnapster, a Napster-like applica-
tion. The file lookup and request issuing parts are performed
over the Internet and are no different from existing Napster-
like applications. Multiple peers who have copies of the re-
quested content may receive requests, so the requester may
enjoy the quickest reply. A peer request receiver sets the
replicaID to a “request ID,” which allows Postmanet to
manage (and shoot down, when necessary) these application-
level replicas. When a “preview” request is received, a peer
that has the desired data generates small (low-resolution)ver-
sions of the bulk data, invokessetResolution() , and
setInternetDelivery() to hint it be sent over the In-

9

ternet. A data requester may invokedelete() at any time
to cancel a request.

The third application is Pemail, an email application. It
usessetTracking() to acquire delivery status of outgo-
ing messages. Pemail also generates small previews of bulk
messages so the previews can be delivered over the Inter-
net. A Pemail receiver may issuedelete() calls with spe-
cific filter arguments to delete parts of messages before
they are copied out of an incoming P-disk by the background
copier.

5 Routing Simulation

5.1 Simulation Methodology

We have developed an event-driven simulator to study the
various routing strategies described in Section 3. Our sim-
ulator allows us to systematically evaluate the performance
and scaling properties of the various algorithms under differ-
ent workloads, study the effects of using different kinds of
static graphs, examine ways of mapping abstract graphs to
real-life Postmanet configurations, and evaluate the benefit of
integrating P-centers into the routing infrastructure.

The nodes used by our simulator correspond to randomly
chosen USPS zip codes, located at real-life geographic co-
ordinates. The simulator uses a latency matrix, enumerating
latencies between all pairs of nodes. We examine two types
of latency matrices. In one type, all latencies are equal to
one day. This “uniform latency matrix” corresponds to a fast
delivery service (such as FedEx). In another type, the laten-
cies are set to be proportional to the geographical distances
between nodes. At one day per 500 miles, with a maximum
latency of eight days in the lower 48 states and a minimum
of one day, and with the inclusion of nodes in Hawaii and
Alaska, this second type of matrix represents a pessimistic
assumption of the delivery service speed, a speed that is in
fact worse than that experienced by DVDs delivered as first
class USPS mails. We shall refer to this as the “USPS latency
matrix.” By choosing to use these two very different types of
latency matrices, we hope to get some idea on the range of
Postmanet latencies one might see in real-life.

For the experiments in this section, we use a param-
eterized, random workload, where each node generatesλ
new unit-sized messages each day destined forλ distinct,
randomly-selected other nodes. The parameterλ is referred
to as the “Average Message Load” of the workload, or sim-
ply as the “load.” All workloads in our study contain 60 days
worth of message traffic. To account for our conjecture that
people either do not communicate or communicate with more
than an average number of other parties, we have introduced
“burstiness” into the workload.

5.2 Comparison of Routing Algorithms

We now compare static and dynamic routing algorithms,
and also study the impact of using different progress metrics
for the dynamic algorithms.

In theStaticalgorithm, each node only sends P-disks to its
neighbors in the underlying static graph each day. ThePre-
fix algorithm is a dynamic algorithm that chooses “short-cut”
edges that correspond to multiple hops in the underlying static

graph, as discussed in Section 3.3.3 and illustrated by Fig-
ure 4. The chosen short-cut edges are, however, constrained
so that no message ever overshoots its destination. For ex-
ample, in the topology of Figure 4, supposeA has 1 message
each forE andM , and 1,000 messages each forG andN . Al-
though edgesA → G andA → N make greater incremental
progress in terms of delivering messages, thePrefixalgorithm
is constrained not to overshootE andM , thus choosing edges
A → E andA → M . TheMatch-Hopsalgorithm is a dy-
namic algorithm that is not hobbled by the above constraint,
but instead uses a maximum-weight matching technique to
maximize the sum progress of all the messages through the
network. (See Section 3.3.3.) The progress metric associ-
ated with transmitting a message over an edge is simply how
much closer the message is to its eventual destination in terms
of number of hops in the static graph. TheMatch-Latalgo-
rithm uses a different progress metric that takes into account
the postal system latencies (and not just hop-counts) in deter-
mining how much closer the message is to its final destination
in the static graph. Our implementation of these algorithms
uses Goldberg’s Network Optimization Library [7].

Figure 8(a) shows the performance of three routing algo-
rithms for a network comprising of 1,024 nodes. A de Bruijn
graph of degree two (referred to as “DB-2”) is used as the un-
derlying static graph, and the uniform latency-matrix is used
to specify inter-node latencies.2 We vary the “load,” which
is the average number of messages generated at each node
on each day in the workload, and measure the average mes-
sage latency (in days). (The latency in the figure is greater
than one even when load is no greater than one because of
the workload burstiness: the instantaneous load tends to be
higher than average when a node communicates.) The fol-
lowing observations can be made from this graph. (1)Static
uses only the edges in the static graph, and yields an average
latency that is precisely the average distance between a pair
of nodes in the underlying static graph, a value that does not
vary with the load. (2) The two dynamic algorithms perform
much better thanStaticwhen the network is lightly loaded.
As the load increases, their performance gracefully degrades
and approaches that ofStatic. (3) Prefixdegenerates toStatic
as soon as the average load approaches the number of P-disks
each node handles (two in this case), whereasMatch-Hops
out-performsStaticfor a much wider range of load values.

Figures 8(b) and 8(c) present results from similar exe-
cutions, except that here the USPS latency-matrix is used
instead of the uniform one. In Figure (b), ageography-
unaware,random embedding is used to assign the physical
nodes to the de Bruijn graph nodes, whereas in Figure (c)
a geography-awaremapping generated via a Dijkstra-style
greedy algorithm is used. Figure 8(d) plots theMatch-Hops
and Match-Lat curves from Figures 8(b) and 8(c) on the
same scale to aid us in the task of comparing the different
schemes. We begin by observing thatStaticperforms much
better in Figure (c) than in Figure (b), which is evidence that
our geography-aware greedy algorithm produces a mapping
that has significantly smaller postal latencies along the graph

2For the uniform latency-matrix,Match-Lat has the same behavior as
Match-Hops,and is therefore omitted from the figure.

10

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Avg. Message Load

Static
Prefix

Match-Hops

(a)

0

5

10

15

20

25

30

0 1 2 3 4 5 6

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Avg. Message Load

Static
Prefix

Match-Hops
Match-Lat

(b)

0

5

10

15

20

25

30

0 1 2 3 4 5 6

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Avg. Message Load

Static
Prefix

Match-Hops
Match-Lat

(c)

0

5

10

15

20

25

30

0 1 2 3 4 5 6

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Avg. Message Load

Hops-Random
Lat-Random
Hops-Aware

Lat-Aware

(d)

Figure 8: Comparison of different routing algorithms and geography-awareness techniques. The runs in (a) use the uniform latency-matrix, whereas those
in (b) and (c) use the USPS latency-matrix. A random mapping of physical nodes to de Bruijn graph nodes is used in (b), while(c) uses a geography-aware
mapping. (d) plots some curves from (b) and (c) on the same scale for comparison.

0
2
4
6
8

10
12
14
16
18
20

0 2 4 6 8 10

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Avg. Message Load

de Bruijn Graph
Random Graph

Figure 10: Comparing a degree 2 de Bruijn graph with a degree 2random
graph as the underlying static graph for the Match-Lat algorithm. We use
the USPS latency matrix for this experiment.

edges than a random mapping. We also observe thatMatch-
Lat significantly outperformsMatch-Hops, mainly because
the latter algorithm uses a progress metric that is oblivious
to the non-uniform nature of the postal latencies. This, com-
bined with its greedy nature, makesMatch-Hops’s perfor-
mance even worse than that ofPrefix, which benefits from
its conservative approach of not overshooting its destinations
and simply degrades to using the static graph edges in the
worst case.

In Section 3.3.3, we conjectured that the use of a static
underlying graph acts as a “traffic shaper” for the dynamic
algorithms, especially under heavy load conditions. Figure 9
presents evidence to support this. Consider Figure 9(a) first.
It describes executions of the geography-awareMatch-Latal-
gorithm on four workloads of different average loads. In each
execution, we count the number of times the algorithm picks
a short-cut edge that spansk de Bruijn edges, and the curve is
a cumulative frequency distributionof these counts. In other
words, a data point(x, y) on a curve signifies thaty% of the
short-cut edges selected by the algorithm spanx or fewer de
Bruijn edges. For example, when100% of the chosen edges
span only one de Bruijn edge, we effectively have a traffic
that entirely flows along the de Bruijn graph. Looking at
the four curves, we observe that as load increases, a higher
fraction of the chosen edges span only a small number of
de Bruijn edges; that is, under high loads, the dynamic traf-
fic more closely conforms to the underlying de Bruijn graph.
Figures (a)-(d) show results from different de Bruijn graphs
and different latency matrices, and they all support the same
conclusion.

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Number of Distribution Centers

Degree=100
Degree=200
Degree=400

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

A
vg

. D
el

iv
er

y
La

te
nc

y
(d

ay
s)

Number of Distribution Centers

Degree=25,p2p
Degree=75,p2p

Degree=150,p2p

Figure 11: Impact of distribution centers on routing performance.

5.3 Comparing de Bruijn and Random Graphs

Figure 10 shows a comparison between using a de Bruijn
graph or a random graph as the underlying static graph. The
curves show the performance of the geography-awareMatch-
Lat algorithm where each of the 1,024 nodes has degree 2. As
the graph shows, de Bruijn graph-based execution performs
better than that based on a random graph under high message
loads. Here we omit results that show that the difference be-
tween the two graphs is less pronounced when each node has
degree 4 or more, or when the uniform latency matrix is used.
The degree 2 case shown in the figure is realistic enough to
make our use of the de Bruijn graph worth-while.

5.4 Integrating P-Centers

We next study the impact of integrating data distribu-
tion centers (or P-centers) into the peer-to-peer infrastruc-
ture. Figure 11 shows the performance of a dynamic rout-
ing algorithm (Match-Lat) on a 1,024-node network that uses
a de Bruijn graph of degree two as the static underlying
graph. The workload under consideration generates on av-
erage five messages per node each day. We vary the num-
ber and the degree capacity of the P-centers and evaluate the
routing performance under the two following settings: (1) the
P-centers serve all of the message load in the system (with the
peer-to-peer infrastructure remaining unused), and (2) the P-
centers share the routing load with the peer-to-peer infrastruc-
ture. (For instance, the curve with the legend “degree=150,
p2p” corresponds to augmenting peer-to-peer routing with P-
centers that can handle 150 incoming P-disks and generate
150 P-disks every day, while the top three curves in the fig-
ure correspond to using just P-centers for routing.) We note
that a modest start of augmenting the peer-to-peer infrastruc-
ture with just one P-center causes a modest improvement on
performance, but the marginal benefit of either increasing the

11

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

C
um

m
ul

at
iv

e
F

re
qu

en
cy

Number of DB edges spanned

Load = 1
Load = 3
Load = 5
Load = 7

(a)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

C
um

m
ul

at
iv

e
F

re
qu

en
cy

Number of DB edges spanned

Load = 1
Load = 3
Load = 5
Load = 7

(b)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

C
um

m
ul

at
iv

e
F

re
qu

en
cy

Number of DB edges spanned

Load = 1
Load = 3
Load = 5
Load = 7

(c)

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

C
um

m
ul

at
iv

e
F

re
qu

en
cy

Number of DB edges spanned

Load = 1
Load = 3
Load = 5
Load = 7

(d)

Figure 9: Analyzing the traffic generated by the geography-aware Match-Lat algorithm (a) on a DB-2 graph with the uniformlatency matrix, (b) on a DB-4
graph with the uniform latency matrix, (c) on a DB-2 graph with the USPS latency matrix, (d) on a DB-4 graph with the USPS latency matrix.

DVD Writer NEC ND2500A, 4× DVD-RW/+RW,
8× DVD-R/+R

DVD Media Memorex 4× DVD+RW, 4.7 GB
OS Linux 2.4.22 (Fedora Core 1)
Java JDK 1.4.204
CPU Pentium 3 800 MHz
Memory 128 MB
HDD Maxtor 40 GB

Table 1: P-router machine characteristics.

number of P-centers or their degree capacity is small. We
also note that a single P-center with a large degree capacity
appears to perform better than having many P-centers with a
smaller degree capacity. We also observe that the peer-to-peer
infrastructure, with no additional P-centers, appears to out-
perform many stand-alone P-centers of degree capacity 400.
This behavior could, however, be an artifact of our heuristic
algorithm for routing through P-centers, and more detailed
analysis of P-centers is left for future work. The real valueof
well-run P-centers may lie in the predictability and stability
of their service.

6 Measuring the P-Router Prototype
We set up an old desktop machine (see Table 1) to function

as a P-router. Performance-wise, perhaps the most interesting
aspects are about how we handle the bursty arrival of a large
amount of data (as discussed in Section 4.3), and we mainly
focus on these aspects in this section.

We experiment with the three applications that we have
described in Section 4.5. The sending applications create an
outgoing DVD P-disk that contains the following data. A
Pemail mailbox contains 100 messages, varying in size be-
tween 10-20 MB. The messages contain high-resolution im-
ages, home videos, and movie trailers. The PwebCache mail-
box contains three messages. (Recall a message or an entry
can be of a directory type that includes more sub-entries.)
One message contains 85 MB of CNN.com news data; one
contains 9 MB of data from news.yahoo.com; and one con-
tains a travelogue and a photo gallery that totals 139 MB.
There are eight Pnapster mailboxes, which contain a total of
48 messages, including mp3 files (which average 4 MB each)
and one 500 MB avi movie. In all, the P-disk contains 152
messages, for a total size of 2.35 GB.
• Basic operations.Our P-router appends bulk ISO image
data to DVD+RW P-disks at 4.7 MB/s, and reads bulk data
from them at 3.17 MB/s. Sending a small entry, which is
only written to the local staging disk, takes about 3ms on

Num. Mailboxes 8 10 10 10
Num. Messages 20 60 100 152
Data Size (MB) 80 366 966 2358
Case 1 34 s 172s 458s 1111s

Case 2 134ms 205ms 253ms 321ms

Case 3 101ms 103ms 103ms 103ms

Table 2: Comparing startup times.

news.yahoo.com www.cnn.com
Naive 14.5s 1047.9s

Intelligent 6.6s 256.3s

Table 3: Exploiting knowledge of physical storage organization.

average, while reading a small entry from a DVD+RW P-disk
costs about 40ms.
• Quick startup.When a P-disk arrives, it is important that the
receiver applications (which are all interactive, in the case of
our three example applications) can quickly access summary
information so they can make their application-specific deci-
sions about what to do with the incoming data, without being
forced to wait for time-consuming mandatory system-level
data copying to complete. Table 2 compares three cases. In
“Case 1,” the applications are given access to the data only af-
ter a P-router copier copies all the data from the incoming P-
disk to a local disk. In “Case 2,” the P-router iterates through
all the entry attributes, passing each attribute to a null applica-
tion callback function. In “Case 3,” the P-router only iterates
through all the mailboxes, passing only the per-mailbox sum-
mary information to a null application callback function. This
experiment shows the importance of structuring the P-router
and its applications in a way that can avoid mandatory copy-
ing or scanning of large-capacity P-disks upon their arrival.
• Exploiting knowledge of physical storage organization by
the background copier.Although it is important to allow ap-
plications to flexibly read from an incoming P-disk, a generic
system-level P-disk copier may be able to function more ef-
ficiently by (1) exploiting knowledge of the physical storage
organization (such as data locality) that applications areei-
ther unaware of or are unwilling to exploit due to complexity;
and/or (2) performing more efficient scheduling across multi-
ple applications. As applications dedicate the data movement
tasks to such an efficient system-level background copier
when possible, we may be able to drain data from incom-
ing P-disks more quickly. In our prototype, the system back-
ground copier is able to exploit its knowledge of the ISO

12

Pemail BW Copier BW DVD BW
(MB/s) (MB/s) (MB/s)

Pemail alone 2.97 2.97
Pemail & dumb copier 0.17 0.17 0.34
Pemail & smart copier 2.73 2.34 2.66

Table 4: Potential impact of copier interference.

Applications Time (s)
Pnapster 4.3
PwebCache1 6.6
PwebCache2 1.4
Pnapster & PwebCache1 100.3
Pnapster & PwebCache2 26.0

Table 5: Inter-application interference.

file system format, which clusters metadata in such a way
that causes a naive recursive copier to suffer significant per-
formance penalty. Table 3 shows an experiment of draining
the PwebCache data from an incoming P-disk: the intelligent
system-level P-router copier performs much more efficiently
than a naive application-level recursive copier.
• Cooperation between applications and the system-level
copier. We have argued above that both application-driven
reads and system-level copiers are useful for efficiently drain-
ing incoming P-disks. Their co-existence requires their coop-
eration; and this cooperation takes two forms. First, when an
application decides to discard incoming data without reading
it, the system copier should (obviously) avoid copying it. An
application that proactively “helps” the system in this way
ends up improving the P-disk draining time of the entire sys-
tem. Second, the system-level copier must exercise care not
to compete against application-initiated reads. In the exam-
ple of Table 4, as an email application retrieves a large attach-
ment, the nature of the DVD media is such that an overzeal-
ous competing system copier ends up reducing the aggregate
bandwidth by a factor of nearly 10.
• Cooperation among applications.We have discussed the
interaction between an application and the system copier
when processing an incoming P-disk. We now examine in-
teractions among applications. Although the applicationsare
given complete control of their reads from P-disks, as ob-
served in Section 4.3, it is important that they read what is
minimally necessary and leave the rest to the system copier.
Overzealous applications that “prefetch” a large amount of
data from a P-disk on their own, for example, may end up
harming all applications, including themselves. We consider
a simple example in Table 5. “Pnapster” retrieves a movie
trailer (13 MB) from a DVD P-disk; “PwebCache1” retrieves
the entire business subsection of CNN (321 entries, 8.8 MB);
and “PwebCache2” recursively retrieves all the attributesun-
der news.yahoo.com (341 entries). When multiple of these
applications are active simultaneously, we consider the time
it takes all of them to finish. Again, the nature of the DVD
media is such that significant interference among applications
may result if they are too eager reading P-disks. Each of these
applications would have been better off only satisfying an in-
teractive user’s immediate needs and letting the system back-

ground copier move data out of the P-disk.
While the results in this section are based on DVDs, we

believe they are generally important for two reasons. First,
practically, DVD media is a very attractive P-disk candidate,
and some of its fundamental characteristics (such as latency)
are likely to be with us for some time. Second, even if we
were to consider other types of movable media, such as IBM
Microdrive-type disks, due to energy, noise, and size con-
siderations, these storage devices are likely to share similar
issues as DVDs, so the lessons that we have learned about
getting the most of DVD P-disks may be more generally ap-
plicable.

7 Related Work
Gray and his colleagues have shipped via the postal sys-

tem entire NFS servers filled with terabytes of astronomy
data [8]. NFS servers are chosen as mobile storage devices
to minimize the amount of manual configuration a data re-
cipient would need to perform. This is a goal that we share.
Our interest is in generalizing these tailor-made solutions for
specialized applications into a generic communication mech-
anism that can benefit many applications. By itself, a local file
system interface that grants application access to the mobile
storage devices may be inadequate: for example, tasks such
as recipients’ sending back acknowledgements over the In-
ternet should be automated away by a transport-level system.
We also note that the applicability of the Postmanet approach
is by no means limited to data-intensive scientific applica-
tions: we have discussed a variety of applications that can
be useful for average users, especially those who fall on the
wrong side of the digital divide.

Rover is a toolkit for constructing applications targeting
weak and intermittent wireless networks [10]. A key element
of the system is an asynchronous communication mechanism
that allows applications running on mobile wireless clients to
continue to function as communication with a remote server
occurs in the background. The need of an asynchronous
communication mechanism applies to the high-latency Post-
manet. The characteristics of the postal system, however, are
different from those of a weak wireless network: the postal
system provides a high-latency high-bandwidth datagram-
like service. By simultaneously exploiting an available low-
latency low-bandwidth Internet connection and the excess
capacity of movable storage media, we can provide better
higher-level services.

Recent efforts on “Delay-Tolerant Networks” (DTNs) [6,
9,11,18] have started to examine the use of WiFi-enabled mo-
bile elements (such as buses equipped with storage devices)to
simulate “delayed” connectivity to places that have accessto
none today. While “postal classes of service” have been men-
tioned, to the best of our knowledge, the postal system has
so far only been mentioned as ananalogy—no existing DTN
that we are aware of literally uses the postal system. There
are several important differences between existing DTNs and
the Postmanet. First, while existing DTNs are largely con-
fined to relatively small regions or specialized environments,
the postal system is a trulyglobal “network” that reaches a
far greater percentage of the world’shumanpopulation with-
out needing investment in exotic equipment. Ad hoc routing,

13

frequently a central focus of some DTNs, is not necessarily a
top focus of the Postmanet. Instead, we are more concerned
with somewhat less conventional routing metrics, such as the
number of storage devices handled per site per postman visit.

Second, most existing DTNs are also frequently referred
to as “challenged networks:” they may be limited by low
bandwidth among mobile ad hoc elements, brief and/or in-
termittent contacts among these elements, small amounts of
storage space on these nodes, and power consumption con-
straints. In contrast, the P-disks in the Postmanet are “dumb”
and “dormant” during transit in the postal system. When they
reach their destinations, they are “plugged in,” quite possi-
bly with high-bandwidth wired alternatives (such as USB2 or
Firewire). Once such “contacts” are established, they may re-
main connected for extended periods of time. Instead of care-
fully conserving resources such as storage space and band-
width, we may in fact strive to “waste” some of these abun-
dant resources in order to gain other advantages. Another
unique aspect of the Postmanet is the possible availability
of a complimentary low-latency low-bandwidth Internet con-
nection: the techniques involved in theparallel exploitation
of multiple connectivity technologies are different from those
involved in thesequentialforwarding of data from one con-
nectivity technology to another.

The PersonalRAID system leverages a single mobile stor-
age device that always accompanies its owner to transport
storage system differences across multiple computers for a
single user [21]. The goal of these distributed mobile stor-
age systems is to provide the illusion of a coherentdisk or
file system, while the goal of the Postmanet is to provide the
illusion of anetworkconnection—these are very different ab-
stractions. The network abstraction is at a sufficiently low
level that may allow potentially greater degree of application
flexibility, while an important goal of typical distributedstor-
age systems is to entirely abstract away device or machine
identities. The question of how to build a distributed storage
system on top of the Postmanet, however, is still an interest-
ing one.

The de Bruijn interconnection topology has been used in
parallel applications [3, 5, 17, 19] and distributed hash tables
(DHTs) [12]. These DHT-based systems employ implicit
routing wherein routing decisions are made locally without
requiring elaborate knowledge of the global topology. We
note, however, that implicit routing may be of limited valuein
Postmanet, where the control and data traffic can be conveyed
on different networks—the LLLB Internet could be used for
dispersing topology information or topology repairs, while
bulk data is communicated over the HLHB channels. In ab-
sence of an LLLB channel, however, implicit routing may
again become important. A problem that has not been con-
sidered by both the parallel computing and the DHT commu-
nities is how to construct a de Bruijn graph in a geography-
aware fashion for systems where communication between
different pairs of nodes incurs different amount of latencies.
We have devised geography-aware de Bruijn topologies for
use in the Postmanet.

8 Conclusion
In this paper, we have described how to turn stor-

age media transported by the postal system into a generic
high-bandwidth digital communication mechanism. We be-
lieve that this approach can enable a variety of interesting
bandwidth-intensive applications; and it presents an uncon-
ventional but promising approach to addressing the digitaldi-
vide.

References
[1] A NDERSON, R. ‘Trusted Computing’ Frequently Asked Questions. http://-

www.cl.cam.ac.uk/̃rja14/tcpa-faq.html, August 2003.

[2] AVRAMOPOULOS, I., KOBAYASHI , H., WANG, R., AND KRISHNAMURTHY, A.
Highly secure and efficient routing.Proc. IEEE INFOCOM(March 2004).

[3] BERMOND, J.-C., AND FRAIGNIAUD , P. Broadcasting and Gossiping in de
Bruijn Networks.SIAM Journal on Computing 23, 1 (1994), 212–225.

[4] DE BRUIJN, N. A Combinatorial Problem. InProc. Koninklijke Nederlandse
Akademie van Wetenschappen(1946), vol. 49, pp. 758–764.

[5] ESFAHANIAN , A., AND HAKIMI , S. Fault–Tolerant Routing in de Bruijn Com-
munication Networks.IEEE Trans on. Computers 34, 9 (1985), 777–788.

[6] FALL , K. A delay tolerant networking architecture for challenged internets. In
Proc. of ACM SIGCOMM 2003(August 2003).

[7] GOLDBERG, A. Network Optimization Library.
http://www.avglab.com/andrew/soft.html.

[8] GRAY, J., AND PATTERSON, D. A Conversation with Jim Gray.ACM Queue 1,
4 (June 2003).

[9] HASSON, A. A., FLETCHER, R., AND PENTLAND , A. DakNet: A Road
To Universal Broadband Connectivity. http://courses.media.mit.edu/2003fall/de/-
DakNet-Case.pdf, 2003.

[10] JOSEPH, A. D., DELESPINASSE, A. F., TAUBER, J. A., GIFFORD, D. K., AND
KAASHOEK, M. F. Rover: A Toolkit for Mobile Information Access. InProc.
the 15th ACM Symposium on Operating Systems Principles(December 1995),
pp. 156–171.

[11] JUANG, P., OKI , H., WANG, Y., MARTONOSI, M., PEH, L.-S., AND RUBEN-
STEIN, D. Energy-Efficient Computing for Wildlife Tracking: Design Tradeoffs
and Early Experiences with ZebraNet. InThe Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems(Oc-
tober 2002).

[12] KAASHOEK, M. F., AND KARGER, D. R. Koorde: A simple degree-optimal
distributed hash table. InProc. of Intl. Workshop on Peer-to-Peer Systems(2003).

[13] LAI , J., ZISKIND , E., ZHENG, F., SHAO, Y., ZHANG, C., ZHANG, M., GARG,
N., SOBTI, S., WANG, R., AND KRISHNAMURTHY, A. Distance learning tech-
nologies for basic education in disadvantaged areas.The Eighth Global Chinese
Conference on Computers in Education(June 2004).

[14] OPENLDAP FOUNDATION. Openldap 2.1. http://www.openldap.org.

[15] The Postman Always Rings Twice. http://www.cs.princeton.edu/̃ rywang/-
distance, 2004.

[16] ROSENBLUM, M., AND OUSTERHOUT, J. The Design and Implementation of
a Log-Structured File System. InProc. of the 13th Symposium on Operating
Systems Principles(Oct. 1991), pp. 1–15.

[17] SAMATHAM , M., AND PRADHAN , D. The de Bruijn Multiprocessor Network:
A Versatile Parallel Processing and Sorting Network for VLSI. IEEE Trans on.
Computers 38, 4 (1989), 567–581.

[18] SHAH , R., ROY, S., JAIN , S., AND BRUNETTE, W. Data mules: Modeling a
three-tier architecture for sparse sensor networks. InIEEE SNPA Workshop(May
2003).

[19] SIVARAJAN , K., AND RAMASWAMI , R. Multihop Lightwave Networks based
on de Bruijn Graphs. InProc. INFOCOMM(1992), pp. 1001–1011.

[20] SLEEPYCAT SOFTWARE. Berkeley db 4.2. http://www.sleepycat.com.

[21] SOBTI, S., GARG, N., ZHANG, C., YU, X., KRISHNAMURTHY, A., AND
WANG, R. Y. PersonalRAID: Mobile Storage for Distributed and Disconnected
Computers. InProc. First Conference on File and Storage Technologies(January
2002).

[22] WANG, R., LI, K., MARTONOSI, M., AND KRISHNAMURTHY, A. Distance
Learning Technologies for Basic Education in Disadvantaged Areas. Tech.
Rep. TR-685-03, Computer Science Department, Princeton University, Novem-
ber 2003.

[23] WANG, R. Y., GARG, N., SOBTI, S., LAI , J., ZISKIND , E., ZHENG, F.,
NAKAO , A., AND KRISHNAMURTHY, A. Postmanet: Turning the Postal System
into a Generic Digital Communication Mechanism. InProc. ACM SIGCOMM
2004(August 2004).

[24] WANG, R. Y., GARG, N., SOBTI, S., LAI , J., ZISKIND , E., ZHENG, F.,
NAKAO , A., AND KRISHNAMURTHY, A. Postmanet: Turning the Postal Sys-
tem into a Generic Digital Communication Mechanism. Tech. Rep. TR-691-04,
Computer Science Department, Princeton University, February 2004.

14

