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Abstract

The technique of metric space embeddings into Euclidean space has been used ex-

tensively to give powerful approximation algorithms for a variety of problems. Much

of the success of this technique has been due to the famous lemma of Johnson and Lin-

denstrauss which says that any n points in Euclidean space can be well approximated

by vectors of length roughly O(log n) via random projections.

Embeddings into Euclidean space, however, are known to be somewhat limited:

For example, there are planar graph metrics which require Ω(
√

log n) distortion in

Euclidean space. Finite metric spaces in Rd under the `1 norm arise in practice as

well, and it is known that for embedding this is a strictly richer class of metrics than

the finite Euclidean metrics. This has motivated an interest in `1 as a possible host

space for difficult metrics, particularly edit metrics and planar graph metrics.

We have developed an approach to the study of `1 embeddings based on mathe-

matical optimization. We show how these techniques, through duality, lead naturally

to both lower bounds and algorithms. We demonstrate this approach by proving that

no analogue of the Johnson-Lindenstrauss lemma exists for `1. This answers the open

question recently popularized by both Piotr Indyk and Nathan Linial.

This work is available online at http://www.derandomized.org/.
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Chapter 1

Foundations

The primary purpose of this chapter is to introduce and motivate our study of metric

space embeddings into `1. We will broadly define the types of problems we are

interested in and demonstrate some of the most common proof techniques used in

this area. At the same time we will also survey the most important and directly

related research results, both classical and recent, in order to provide the reader with

background and resources for further study. The chapter concludes by introducing

our main theorems and outlining the remainder of the work.

1.1 Proximity and geometric problems

Many of the most fundamental problems of computer science involve sets of data

points along with some measure of similarity or dissimilarity between them. Clus-

tering, nearest-neighbor searching, computing the diameter of a point set, and web

searching all fall into this general framework.

The efficient solution of these problems often depends critically on the properties

1



CHAPTER 1. FOUNDATIONS 2

of the space on which the problem is defined. For example, consider the problem of

searching a database of points for the nearest neighbor of a given query point x. We

are given the database of n points with oracle access to the distance function on the

points, and we may pre-process the points to aid our search. If the items are points

on a line, then the solution is simple. Sort the given n items in O(n log n) time and

store the result in an array. Given an item x, searching for its nearest neighbor using

binary search takes O(log n) time.

On the other hand, consider nearest-neighbor searching when the distance function

∆ : X ×X → {0, 1} is any arbitrary function. In this case each time we are given a

new x we must make n calls to the distance oracle because we do not yet have any

information about x’s relationship to the points in the database.

In solving these types of problems the goal is usually to exploit the special struc-

ture of our problem space to get an efficient algorithm.

1.2 Metric space embeddings

Most commonly studied distance functions are metrics.

Definition 1.2.1 (Metric). For a given set X, a metric is a function ∆ : X×X →

[0,∞) such that, for all u, v, w ∈ X:

1. ∆(u, v) = ∆(v, u) (Symmetry)

2. ∆(u, w) + ∆(w, v) ≥ ∆(u, v) (Triangle inequality)

3. ∆(u, v) = 0 if and only if u = v
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These restrictions on the distance function align very closely with our intuitive

ideas of distance. Most of our results will deal with finite metric spaces, which we will

denote M = (X, ∆), where X is a finite set and ∆ : X ×X → [0,∞) is a metric. In

some cases we will relax the last restriction and allow ∆(u, v) = 0 even when u 6= v.

In this case ∆ is called a semimetric.1

Next we will define a natural notion of reduction between metric spaces which can

be used to design algorithms.

Definition 1.2.2 (Isometric embedding of a metric space). Given two metric

spaces M1 = (X1, ∆1) and M2 = (X2, ∆2), an embedding of M1 into M2 is an injective

map f : X1 → X2 such that ∀u, v ∈ X1, ∆1(u, v) = ∆2(f(u), f(v)).

Consider a problem P which we want to solve on points taken from a metric

space M1. If we already have an algorithm that solves P in another metric space M2,

the simplest approach may be to try to find an algorithm that embeds M1 into M2

efficiently.

1.2.1 Motivation

As mentioned above, one main motivation for the technique of metric space embed-

dings has been the need to solve proximity problems on databases of points with a

defined similarity (or distance) measure. For example, many computational genomics

applications require searching or clustering a database of DNA or protein sequences.

Usually the similarity of two sequences is defined by some string edit metric. Another

1Various sources refer to these functions as pseudometrics. We have chosen to follow the termi-
nology of Deza and Laurent [20].
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common example is web searching, where one defines some measure of similarity be-

tween web pages. In this setting a web search is a nearest neighbor problem, while

services like Google’s “find similar pages” can be viewed as a web page clustering

problem. In digital libraries we would like to be able to search for images similar to

a given image or songs similar to a given sample of music, or to automatically group

media items into categories via clustering. All of these problems have a very similar

description, but the underlying metrics seem to be very different.

The key to solving these problems efficiently is to exploit some known structure in

the underlying metric. Unfortunately many interesting metrics are not well studied,

and so useful structural theorems may not be known. The study of metric space

embeddings can be viewed as one approach to studying the structure of a given

metric space: If one can find an embedding of a metric space M1 into a well studied

metric space M2, this allows one to immediately re-use the structural results that

have already been proved for M2.

Of course, from a more pragmatic point of view, one need not even directly un-

derstand the geometric implications of the relationship between M1 and M2. Often

it is sufficient to find the embedding into M2 and then simply use an algorithm that

is already known to work well in M2. This has led to the widespread use of the

technique of metric space embeddings for the design of algorithms.

One important special case of this approach is to use metric embeddings to suc-

cinctly represent problem data. For example, consider the problem of finding approx-

imate near neighbors in a high dimensional Euclidean space. Many nearest-neighbor

algorithms suffer from the “curse of dimensionality” in that they have an exponential

dependence on dimension. One way to circumvent this problem is to try to embed
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the high-dimensional Euclidean space into a low-dimensional one while only introduc-

ing a small error or failure probability. If the number of dimensions needed can be

significantly reduced then we may be able to give efficient approximation algorithms

with a much weaker dependence on dimension.

The technique of metric space embeddings has, however, had an impact far beyond

algorithms for proximity problems. To paraphrase R. Ravi [66], there are at least three

main ways that embeddings have been used to give approximation algorithms:

1. Metric data. Often we are given a problem with data that either comes

directly from a metric, or can be embedded into a metric in a pre-processing

step. The goal is to embed the data into an “easy” metric and use already

existing algorithms. Most of our discussion of proximity problems falls into this

area.

2. Metric relaxations. In some cases our problem can be formulated as an opti-

mization problem, and then relaxed so that the resulting problem is a problem

of finding good metric space embeddings. In fact, rounding algorithms for lin-

ear program and semidefinite program relaxations have resulted in some new

approximation algorithms (e.g. Charikar [14]).

3. Problems on metrics. There are some problems where the goal is to find a

metric with certain properties. For example, given an arbitrary set of DNA se-

quences, find a tree metric that closely matches the string edit metric over those

sequences. This type of problem arises in the context of trying to automatically

learn phylogenetic trees from experimental data.

We will see a number of results from each of these classes. For example, there is
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a strong relationship between embeddings and multi-commodity flow problems that

leads to approximation algorithms for the sparsest cut problem. We will also see some

interesting hardness of approximation results for a variety of problems on special case

metrics which may be proved by embedding a “hard” metric space into the metric

space being explored.

In Sections 1.5 and 1.7 we will survey results in these areas in more detail. Unfor-

tunately, however, it is often the case that no isometric embedding from one metric

space M1 into another space M2 exists. In the next section we will define the con-

cept of an approximate metric space embedding. This will lead to the meat of our

topic, a powerful and rich approach to approximation algorithms via metric space

embeddings.

1.2.2 Approximate embeddings

Consider embedding the two dimensional hypercube (under Hamming distance) into

the Euclidean plane as in Figure 1. Let ∆H be the Hamming distance function,

while ||x||2 denotes the Euclidean length of x. Then ∆H(u, w) = ∆H(v, x) = 2 while
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∆H(u, v) = ∆H(v, w) = ∆H(w, x) = ∆H(x, u) = 1. Under Euclidean distance we

should suspect that if ||u− v||2 = ||v − w||2 = ||w − x||2 = ||x− u||2 = 1, then either

||u− w||2 ≤
√

2 or ||v − x||2 ≤
√

2. In other words we expect that any embedding of

the two dimensional Hamming cube into a Euclidean space would have some distance

expanded or contracted by a factor at least
√

2.

In order to rigorously state and prove this fact (in Section 1.2.3), we introduce a

few more definitions. First we will define approximate metric space embeddings, in

which each pairwise distance between points is allowed to expand or contract by up

to some factor D called the distortion.

Definition 1.2.3 (Distortion of an approximate metric space embedding).

Consider two metric spaces M1 = (X1, ∆1) and M2 = (X2, ∆2) and an injective map

f : X1 → X2. The embedding f is said to have distortion D = inf D′ for which

∃r > 0, s.t. ∀u, v ∈ X1,
r

D′∆1(u, v) ≤ ∆2(f(u), f(v)) ≤ r∆1(u, v).

We will call any embedding with distortion at most D a D-embedding.

This definition (adapted from [56]) allows the embedding to scale distances ar-

bitrarily via r, so we need not make the distinction between distances that expand

versus those that contract. Many metrics, in particular the `p norms for p ≥ 1, allow

arbitrary scaling, so we will often ignore the r in later discussions of distortion.

Definition 1.2.4 (The `p norm of Rd). For a point x ∈ Rd and p ∈ [1,∞), the `p

norm is defined to be (where xi denotes the ith coordinate of x):

||x||p =

(
d∑

i=1

|xi|p
)1/p
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The `p distance between two vectors u and v is ||u− v||p, and defines a metric. The

metric space (`p, Rd) is often denoted `d
p.

The `p distance functions are well studied: `2 is just the Euclidean distance, while

the `∞-norm of a vector x is defined to be maxi(xi). The `1 norm, also known as

the Manhattan or “taxicab” metric, will be of particular interest in this work. We

will use `p to denote the `p distance itself or an arbitrary dimensional real vector

space equipped with the `p distance. The meaning should be clear from context. The

minimum distortion with which some metric M can be embedded into `p is denoted

cp(M).

1.2.3 Proving distortion lower bounds

Now let us return to the question of embedding the two dimensional hypercube into

`2. How can we, in general, give a lower bound on the distortion needed to embed a

metric M1 into another metric space M2? We present the method of [56]. In order

to make this idea more comprehensible to a general audience we also supply our own

elementary proof of the correctness of this technique.

Consider, for a particular metric M1, a ratio of two different linear combinations

of distances

RM1(p) =


∑

u,v∈X1

αuv∆1(u, v)p∑
u,v∈X1

βuv∆1(u, v)p


1/p

,

with αuv, βuv ≥ 0. We will choose the values of αuv and βuv, and then compare this to
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the same ratio (for the same p) under any embedding f into the target host metric:

RM2(p) =


∑

u,v∈X1

αuv∆2(f(u), f(v))p∑
u,v∈X1

βuv∆2(f(u), f(v))p


1/p

.

Theorem 1.2.5. If there exists p > 0, αuv, βuv ≥ 0 such that for any f : X1 → X2,

RM1(p) ≥ D′RM2(p), then any embedding of M1 into M2 requires distortion at least

D′.

Proof. Taking both sides to the power p and cross-multiplying, we see that

( ∑
u,v∈X1

αuv∆1(u, v)p

)( ∑
u,v∈X1

βuv∆2(f(u), f(v))p

)

≥ D′p

( ∑
u,v∈X1

αuv∆2(f(u), f(v))p

)( ∑
u,v∈X1

βuv∆1(u, v)p

)
.

Rewriting this as

∑
u,v∈X1

∑
w,x∈X1

αuvβwx∆1(u, v)p∆2(f(w), f(x))p

≥ D′p ∑
u,v∈X1

∑
w,x∈X1

αuvβwx∆2(f(u), f(v))p∆1(w, x)p,

we see that there exists some particular u, v, w, x such that

αuvβwx∆1(u, v)p∆2(f(w), f(x))p ≥ D′pαuvβwx∆2(f(u), f(v))p∆1(w, x)p.

This fact follows from the convexity of linear combinations. Simplification yields

1

D′
∆1(u, v)

∆2(f(u), f(v))
≥ ∆1(w, x)

∆2(f(w), f(x))
.
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Now consider any embedding with distortion D < D′ and scale factor r. Combined

with the definition of a distortion D embedding, we see that

1 ≥ r

D

∆1(u, v)

∆2(f(u), f(v))
>

r

D′
∆1(u, v)

∆2(f(u), f(v))
≥ r

∆1(w, x)

∆2(f(w), f(x))
≥ 1.

This is a contradiction, so the distortion of any embedding is at least D′.

Notice that Theorem 1.2.5 is symmetric with respect to RM1 and RM2 : If ∀f :

X1 → X2, RM1 ≥ DRM2 , then ∀f : X1 → X2, RM2 ≥ DRM1 . This can be proved by

switching the roles of αuv and βuv.

Also note that this technique is universal for embedding finite metric spaces into

`p spaces. As Matoušek [56] describes:

Claim 1.2.6. Let M1 be a finite metric space and let D ≥ 1 be the smallest number

such that M1 can be D-embedded into `p, p ∈ [1,∞). Then there are weights αuv, βuv ≥

0 such that RM1(p) ≥ DRM2(p) for any metric M2 resulting from an embedding of

M1 into `p.

The proof for the `2 case is given in [56], while the precise statement and proof for

the general `p case is left as an exercise. This means that there is always a “simple”

proof giving the exact lower bound for embedding a finite metric into an `p space,

though note that finding the right αuv and βuv can be NP-complete (for p = 1, for

example).

Now to complete our proof of distortion for embedding the 2-hypercube into `2
2

we need one more simple lemma from Matoušek [56].

Lemma 1.2.7 (Short diagonals lemma [56]). Let x, y, z, w be arbitrary points in
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a Euclidean space. Then:

||x− z||22 + ||y − w||22 ≤ ||x− y||22 + ||y − z||22 + ||z − w||22 + ||w − x||22.

Proof. We present Matoušek’s proof from [56] for completeness. Notice that

||x− y||22 =
d∑

i=0

(xi − yi)
2.

(The number of dimensions can be assumed to be 3 since we are in Euclidean space.)

Since the contributions of each dimension can be separated, simply proving the lemma

for a line will suffice: We can then add together one such inequality for each dimension.

Therefore we calculate

−(x− z)2− (y−w)2 +(x−y)2 +(y− z)2 +(z−w)2 +(w−x)2 = (x−y + z−w)2 ≥ 0.

Theorem 1.2.8. Any embedding of the two dimensional hypercube into `2 requires

distortion at least
√

2.

Proof. Consider

αuv =


1 iff (u, v) is a diagonal

0 otherwise

βuv =


0 iff (u, v) is a diagonal

1 otherwise
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If M1 is the two dimensional hypercube and M2 = `2, then it is easy to see that,

choosing p = 2,

RM1(2) =

√
22 + 22

12 + 12 + 12 + 12
=
√

2.

On the other hand, by the short diagonals lemma,

||u− w||22 + ||v − x||22 ≤ ||u− v||22 + ||v − w||22 + ||w − x||22 + ||x− u||22,

which implies that

RM2(2) =

√
||u− w||22 + ||v − x||22

||u− v||22 + ||v − w||22 + ||w − x||22 + ||x− u||22
≤ 1.

Hence RM1 ≥
√

2RM2 , and the distortion for embedding the two dimensional hyper-

cube into `2 is at least
√

2. The embedding given in Figure 1 is therefore optimal.

Note that this proof does not make use of the fact that we are embedding into

two dimensions, and indeed holds for any Euclidean space.

How did we choose the αuv and βuv? Recall that we want our inequality to show

that RM1 ≥ DRM2 . That means that, under the embedding, we want the items in the

numerator (those with αuv 6= 0) to increase relative to the items in the denominator,

so that RM2 is much smaller than RM1 . Intuitively, if we have some idea which

distances “want to shrink” under the embedding, these are the distances that should

have αuv > 0. Similarly, distances that we expect to expand should have large βuv

but αuv = 0. This is a very rough idea, however, and precisely choosing optimal αuv

and βuv is often the key to proving a good bound.
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1.3 Optimization

In this work we will make extensive use of optimization techniques. Very broadly,

an optimization problem is a problem in n variables where one tries to minimize

(or maximize) some objective function subject to some constraint functions. We

will introduce two types of optimization problems, linear programs and semidefinite

programs, that have intimate relationships with `1 and `2 embeddings.

1.3.1 Linear programming

A linear program is an optimization problem in which we minimize a linear objective

function subject to linear constraints. Formally, given an m × n matrix A, an m-

vector b and an n-vector c, we want to minimize cT x (See Table 1). In other words,

minimize: cT x
subject to:

Ax ≥ b
x ≥ 0

Table 1: Canonical form of a linear program

A and b together define a set of m linear constraints on n variables, while c gives the

linear objective function on n variables. The dual of this linear program is a related

maximization problem (See Table 2).

Theorem 1.3.1 (Gale, Kuhn and Tucker [27]). Let OPTP denote the solution

of the primal LP and OPTD denote the solution of the dual LP. Then if both the

original LP and its dual are feasible, OPTP = OPTD.
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maximize: bT y
subject to:

AT y ≤ c
y ≥ 0

Table 2: Canonical form of a dual linear program

This theorem is often referred to as the “Strong Duality” theorem for linear pro-

grams because it shows that there is no gap between the solutions of a linear program

and its dual. Also note that for any y′ which is a feasible solution to the dual lin-

ear program, OPTP ≥ bT y′. This fact can be used to prove lower bounds. If our

problem can be formulated as a linear program, providing any feasible solution to the

dual problem proves a lower bound. In addition to using this proof technique in Sec-

tion 3.1, we will also mention some other relationships between linear programming

and `1 in Section 1.5.3. Linear programs can be solved in polynomial time [44, 42],

while such a result is not known for many other natural optimization problems.

1.3.2 Semidefinite programming

We will also have some interest in another type of optimization problem called a

semidefinite program. Let S be the set of n × n real symmetric matrices. We say

that a matrix is positive semidefinite if ∀x, xT Sx ≥ 0, and this fact is denoted S � O

(where O is the zero matrix). Now given m constraint matrices A1, . . . , Am ∈ S, an

objective matrix A0 ∈ S and a length m constraint vector c (where • denotes the inner

product) we want to minimize A0•X (See Table 3). Again, semidefinite programs have

a natural dual (See Table 4). In this case the weak duality condition holds, namely

that for any feasible x and X, cT x ≤ A0•X. The conditions for a zero duality gap are
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minimize: A0 •X
subject to: Ai •X = ci, (1 ≤ i ≤ m)

X ∈ S, X � O

Table 3: Canonical form of a semidefinite program

maximize:
m∑

i=1

cixi

subject to: A0 =
m∑

i=1

Aixi + Y

Y ∈ S, Y � O

Table 4: Canonical semidefinite program dual

more technical (see Ramana et al. [64]), but for proving lower bounds we will find weak

duality to be the most useful. In Section 1.5.3 we will show how distortion-optimal

`2 embeddings may be found via SDPs. Again, it is a key point that the solution of

an SDP can be approximated up to an additive factor ε in polynomial time (with the

running time depending on ε). For more information about algorithms for solving

SDPs, see Alizadeh [2] and Grötschel et al. [31]. SDPs have found application in

both approximation algorithms and combinatorics: For example, see Goemans’ and

Williamson’s seminal paper [30] which used SDP relaxations to approximate MAX

CUT, and the work of Lovász and Schrijver [52, 53] on combinatorial optimization.

1.4 Graphs and graph metrics

Many metrics of interest arise from the shortest-path metrics of graphs, so we will

need a few graph theoretic ideas before we proceed. For a general reference on graph

theory, see the excellent book by Diestel [21].
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Series

Parallel

s1

s1 t1

t2s2

t2

s1
s2

t1
t2

t1
s2

s1 t1

t2s2

Figure 2: Series-parallel graph construction

Given an undirected graph G with non-negative edge lengths, we will consider the

metric of G, where V is the vertex set of G, to be ∆G(vi, vj) = the length of the

shortest path from vi to vj in G. We will say that a metric M = (X, ∆) is supported

on an undirected graph G if there exists some weighting of the edges of the graph

and f : X → V such that:

∀u, v ∈ X, ∆G(f(u), f(v)) = ∆(u, v).

1.4.1 Some key classes of graphs

We need to introduce or recall the definitions of some important classes of graphs.

Definition 1.4.1 (Tree). A graph with no cycles.

Definition 1.4.2 (Outerplanar graph). Any graph which may be embedded in the

plane such that no edges cross and all vertices lie on the outside face.

Definition 1.4.3 (Series-parallel graph). Define these recursively (See Figure 2):

• Base case: An edge (s, t) is a series-parallel graph with source s and target t.
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• Recursive case: Given two series-parallel graphs G1 and G2 the following two

graphs are also series-parallel:

– Series: Set s = s1, t = t2 and s2 = t1 (that is, merge t1 and s2 into a

single vertex).

– Parallel: Set s = s1 = s2 and t = t1 = t2.

Definition 1.4.4 (Planar graph). Any graph which may be embedded in the plane

such that no edges cross.

It is known that trees ⊂ outerplanar graphs ⊂ series-parallel graphs ⊂ planar

graphs. All of these containments are proper.2

Definition 1.4.5 (k-outerplanar graph (taken from [16])). An outerplanar

graph is 1-outerplanar. A graph is k-outerplanar if it can be embedded in the plane

so that no edges cross, and when the vertices on the outer face are deleted the result

is a (k − 1)-outerplanar graph.

This provides a nice class of graphs which interpolate between outerplanar graphs

and planar graphs. Notice that in a planar graph with more than 2 points the outside

face must contain at least 3 points, so k ≤ bn+2
3
c. Chekuri et al. [16] also point out

that the class of n-vertex k-outerplanar graphs contains the k × n
k

planar grid.

Definition 1.4.6 (Graph minor). Given two graphs H and G, G has an H-minor

if there is some sequence of edge deletions and edge contractions in G that result in

a graph G′ isomorphic to H.

2These facts are a simple exercise. Hint: K2,3 is series-parallel but not outerplanar; K4 is planar
but not series-parallel.
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We say that a graph is H-free if it contains no H-minor. It is known that the class

of K4-free graphs is exactly the class whose blocks are series-parallel [21, p. 185]. The

class of K2,3-free graphs is exactly the class whose blocks are either outerplanar or

isomorphic to K4 [21, p. 91].

1.5 Previous work

In defining approximate embeddings we demonstrated that there are settings in which

an exact embedding of a metric space into a particular normed space does not exist.

In order to develop approximation algorithms, however, we do not need isometric

embeddings, but only reasonable approximate embeddings. For this reason the prop-

erties of approximate embeddings of metric spaces into normed spaces, especially `2,

have been extensively studied. Here we present the key results regarding the distor-

tion of metric embeddings into normed spaces.

1.5.1 Distortion results for `∞

The case of `∞ is particularly straight-forward when the number of dimensions used

is not constrained.

Theorem 1.5.1 (Fréchet). Every finite metric M = (X, ∆) with |X| = n can be

isometrically embedded into `n
∞.

Proof. (adapted from [39]) Where X = {x1, . . . , xn}, define f : X → `n
∞ by f(xi)j =

∆(xi, xj). This works because f(xj)j = 0, so |f(xi)j − f(xj)j| = ∆(xi, xj). Further-

more, for all k, |f(xi)k− f(xj)k| ≤ |f(xi)j − f(xj)j| because |∆(xi, xk)−∆(xj, xk)| ≤

∆(xi, xj) as a result of the fact that ∆ obeys the triangle inequality.
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In this sense `∞ is the most powerful normed space.

1.5.2 Distortion results for `p, p < ∞

We begin with the classical result of Bourgain:

Theorem 1.5.2 (Bourgain [11]). Any finite metric (X, ∆) can be embedded into

`d
2 for some finite d with distortion O(log(|X|)).

Linial et al. observe [50] that, for any m, `m
2 may be embedded into `2m

p with

1 ≤ p ≤ 2 with constant distortion. This implies that Bourgain’s theorem actually

holds for all 1 ≤ p ≤ 2. Linial et al. [50] also proved that this bound on distortion is

asymptotically tight.

Theorem 1.5.3 ([50]). For all 1 ≤ p ≤ 2, embedding the shortest-path metric of an

n-vertex constant-degree expander graph into an `p space requires distortion Ω(log(n)).

Matoušek extended these results (See [56, p. 345] and [55]) to all `p:

Theorem 1.5.4. The minimum distortion required to embed all n-point metric spaces

into `p is Θ( log n
p

).

Another interesting lower bound is provided by Linial et al. [51]:

Theorem 1.5.5 ([51]). If G is any k-regular graph with k ≥ 3 and girth g, then

every embedding of G into `2 has distortion Ω(
√

g).

For many problems Ω(log(n)) distortion is actually far too much. For example,

consider a proximity problem defined on a given expander graph G with unit edge

weights. It is well known that the diameter of an expander graph with n vertices
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is O(log(n)). Theorem 1.5.3 implies that if we try to solve such a problem via D-

embeddings into `p, 1 ≤ p ≤ 2, we may simply map the vertices of G onto the vertices

of the n-point simplex. This still gives O(log(n)) distortion, which is optimal up to

constant factors, but at the same time we have removed all the distance information

from the metric. Simply embedding into `p and optimizing for worst-case distortion

will not always be useful.

On the other hand, there are numerous special classes of metrics which are of

interest and do not have expander properties or high girth. We will present two more

lower bounds for embedding commonly studied graphs into `2, and then move on to

some positive results. First, Theorem 1.2.8 can be extended to any m-dimensional

hypercube.

Theorem 1.5.6 (Enflo [22]). Any embedding of the m-dimensional hypercube into

`2 has distortion at least
√

m.

Proof and discussion can be found in [56], and is attributed to Enflo [22]. Now

let us observe that the hypercube on n points is an `1 metric. This implies a nice

corollary:

Corollary 1.5.7. There are sets of n points in `1 which require
√

log(n) distortion

to embed into `2.

It is also known that there are even series-parallel graph metrics which embed

poorly into `2.

Theorem 1.5.8 (Newman and Rabinovich [59]). There is an infinite family of

n-vertex series-parallel graphs that cannot be embedded into `2 with distortion smaller

than Ω(
√

log n).
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Recall that series-parallel graphs are a (strict) subset of the planar graphs. This

lower bound therefore matches the earlier upper bound given by Rao.

Theorem 1.5.9 (Rao [65]). Any metric supported on a planar graph with n vertices

can be embedded in `2 (and therefore into `1) with distortion at most O(
√

log(n)).

These results hold for any family of graphs which exclude a fixed minor.

Recall that we say a metric M is supported on a graph G if there is some non-

negative weighting of the edges of G for which the resulting shortest-path metric is

M .

Theorem 1.5.10 ([32, 20, 17]). The class of graphs G for which

max
M supp on G

c1(M) = 1

is exactly the class of graphs which exclude K2,3 as a minor.

Conjecture 1.5.11 ([32, 36]). Given a small fixed graph H, the class of H-minor

free graphs embeds into `1 with constant distortion.

This class of graphs contains the planar graphs. Any o(
√

log n) distortion embed-

ding for planar graphs into `1 would be an exciting result.

1.5.3 Finding optimal embeddings via optimization

Here we will consider the question of how to find an embedding into `1 or `2 with

optimal distortion.
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Definition 1.5.12 (Cut semimetric). A metric M = (X, ∆) is a cut semimetric

if there exist X1 ∪X2 = X such that X1 ∩X2 = ∅ and

∆(u, v) =


0 if u, v ∈ X1

0 if u, v ∈ X2

1 otherwise

.

In other words, each point is on one side or the other of some cut, and two points

have distance one iff they are on opposite sides of the cut. It is easy to see (see

[20]) that every `1 metric is a member of the cut cone: Every `1 metric is a linear

combination of cut semimetrics with non-negative coefficients. In fact, the other

direction is true as well:

Theorem 1.5.13 (Assouad [7]). A finite metric ∆ embeds in `1 iff it can be written

as a linear combination of cut semimetrics with non-negative coefficients. (In other

words, iff it belongs to the cone of cut semimetrics.)

It is possible to solve for this linear combination using a linear program, but since

there are n points, there are 2n−1 possible cuts. This leads to a linear program with

2n−1 variables. Solving such a problem in general is likely to be infeasible even for

relatively small n. In fact, deciding whether or not a given metric is isometrically

embeddable into `1 is known to be NP-complete [39, 43].

Open Problem 1.5.14 ([57]). Can the optimal distortion for embedding a given

metric into `1 be approximated up to a constant factor in polynomial time? Or,

alternatively, can it be shown that approximating the optimal distortion is NP-hard?

The case for `2 is a bit nicer:



CHAPTER 1. FOUNDATIONS 23

Theorem 1.5.15 (Linial et al. [50]). There is a deterministic polynomial-time

algorithm that for every constant ε embeds M = (X, ∆) in `2 with distortion at most

c2(M) + ε.

Proof. ([50]) Let the rows of a matrix B be the images of the points of M under a

distortion D embedding into `2. Let A = BBT . A is positive semidefinite, and for all

u 6= v:

1

D2
∆(u, v)2 ≤ auu − 2auv + avv ≤ ∆(u, v)2.

If we set minimizing D as our objective, then this defines a semidefinite program,

which can be ε-approximated in polynomial time by the ellipsoid method (see Sec-

tion 1.3.2). A matrix B corresponding to the embedding may then be obtained from

the Cholesky factorization of A.

This method is actually very appealing because finding an optimal embedding of

an n-point metric only requires O(n2) variables and O(n2) constraints. Semidefinite

program solvers, however, are much slower than linear program solvers.

1.5.4 Volume respecting embeddings

For `2, Feige has defined a useful generalization of D-embeddings called volume re-

specting embeddings [24]. For any set of points |P | = k in `2, let Evol(P ) denote

the volume of the (k − 1)-dimensional simplex corresponding to P . Note that if the

points lie completely in some (k − 2)-dimensional subspace of `2 then Evol(P ) = 0.

Definition 1.5.16 (V ol(X) of a metric M [24]). Given a metric M = (X, ∆),

|X| = k

V ol(X)
def
= max

f∈F
Evol(f(X)),
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where F is the set of all contractions f : X → `k−1
2 .

A contraction of M1 is an embedding f into a metric M2 such that

∀u, v ∈ X1, ∆2(f(u), f(v)) ≤ ∆1(u, v).

Note that the embeddings must be restricted to be contractions, otherwise V ol(X)

would be infinite in general.

Definition 1.5.17 (Distortion of a contraction [24]). Given a set X of k vertices

from a metric M , the distortion of the contraction f on X is defined to be

η(f, X) =

(
V ol(X)

Evol(f(X))

)1/(k−1)

.

Note that if Evol(X) = 0, we define η(f, X) = ∞.

Definition 1.5.18 ((k,D)-volume respecting embedding [24]). An embedding

f : X → `d
2 is (k,D)-volume respecting if it is a contraction and

D ≥ max
P∈X:|P |=k

η(f, P ).

Now we may give the main theorem of Feige [24].

Theorem 1.5.19 (Existence of volume respecting embeddings [24]). For any

connected graph G (equivalently, for any metric with all distances finite) and any

d > log2(n) there is a randomized embedding into `d
2 which with high probability is

(O(
√

d/ log(n)), O(log(n)d
1
4 ))-volume respecting.

Feige’s embedding is essentially a variation on the embedding of Bourgain [11].

Rao [65] gave improved tradeoffs for some important special cases:
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Theorem 1.5.20 (Rao [65]). Metrics arising from shortest path metrics of planar

graphs have (k,O(
√

log(n)))-volume respecting embeddings.

Euclidean metrics have (k, O(
√

log(k) log(L))-volume respecting embeddings, where

L is the ratio of the largest distance to the smallest distance in the metric.

Very recently Krauthgamer et al. [46] have given a very nice improvement of these

results.

Theorem 1.5.21 (Krauthgamer et al. [46]). Any n-point metric space (X, ∆)

can be embedded in Hilbert space with distortion O(
√

log(λX) log(n)), where λX is

the doubling constant of X.

They also give (k, log(n))-volume respecting embeddings for general metrics for

every 1 ≤ k ≤ n, which is the best possible.

Feige developed these embeddings in order to give an approximation algorithm

for graph bandwidth. Detailed discussion of volume-respecting embeddings and their

applications is beyond the scope of this document, but readers may look to [24] and

[34] for more information.

1.5.5 Probabilistic embeddings into dominating trees

One very tempting approach to algorithmic problems on graphs is to try to embed

the metric of a graph H into another graph G. The goal is to pick the graph G from

some family of graphs which have nice properties in order to simplify algorithm design.

Unfortunately Rabinovich and Raz [63] showed that for many natural problems the

distortion incurred by such an embedding is high.

Lemma 1.5.22 (Rabinovich and Raz [63]). Even if H is a simple unweighted

connected graph, and G is allowed to be any arbitrary weighted graph with the same
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number of vertices but strictly less edges, then the distortion of embedding H into G

is at least g/3− 1, where g is the girth of H.

Consider embedding the n-cycle into any tree on n vertices. This lemma shows

that such an embedding incurs distortion Ω(n). Amazingly, however, this has not

been the end of the story for embeddings into trees.

We need two more definitions.

Definition 1.5.23 (Dominating metric). A metric M2 = (X2, ∆2) dominates a

metric M1 = (X1, ∆1) if there exists some mapping f : X1 → X2 such that:

∀u, v ∈ X1, ∆2(f(u), f(v)) ≥ ∆1(u, v).

Definition 1.5.24 (Probabilistic embedding). A probabilistic embedding of a

metric M = (X, ∆) is a probability distribution S over a set {(Mi, fi : X → Xi)} of

metric spaces Mi with an attached embedding fi from M to Mi. Such an embedding

is said to have distortion D if:

∃r > 0 s.t. ∀u, v ∈ X,
r

D
∆(u, v) ≤ E

(Mi,fi)∈S
[∆i(fi(u), fi(v))] ≤ r∆(u, v)

In other words we are willing to allow the distortion to be high in any particular

embedding M → Mi, but the expected distortion should be at most D.

Theorem 1.5.25 (Fakcharoenphol et al. [23, 9]). Any finite metric on n points

can be probabilistically embedded into a set of dominating tree metrics with expected

distortion D = Θ(log(n)).

This theorem is the result of a considerable amount of work, starting with Alon
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et al. [3] and their algorithm for the online k-server problem which used a distortion

2O(
√

log(n) log log(n)) embedding. In his highly influential paper [9] Bartal reduced this

distortion to O(log2(n)) and gave numerous applications, as well as the Ω(log(n))

lower bound which is achieved for expander graphs. Fakcharoenphol et al. [23] re-

cently reduced the distortion to O(log(n)), essentially closing the problem for general

metrics, and solving the second open question of Indyk [36]. Note that we have not

discussed why we require the tree metrics to dominate the original metric. This is a

useful property needed for a number of applications, see [9] for more details.

1.6 Dimension reduction

One of our main motivations for studying metric space embeddings has been to find

embeddings of difficult metrics into well-studied metrics, such as the `p-normed spaces.

We will now look at another use for embeddings when we are already working with

problems in an `p space.

Given any set X of n points in Rd under the `p norm, what is the smallest k

(depending on n, p, d and ε) such that any X can be embedded into `k
p with distortion

at most (1 + ε)? This is the fundamental question of dimension reduction in the `p

spaces.

One of the main motivations for studying dimension reduction is the “curse of

dimensionality.” Many of the computational geometry problems we are interested in,

such as nearest neighbor, diameter and many clustering problems, have efficient solu-

tions under the `p norms when the dimension is a fixed constant. Unfortunately these

algorithms seem to require either time or space exponential in the dimension d. If we

can reduce the dimensionality of our set of points significantly, at the cost of some
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distortion, we might be able to design approximation algorithms for geometric prob-

lems that do not suffer from the curse of dimensionality. For more information about

this technique, see Kushilevitz et al. [47] and the forthcoming chapter by Indyk [38].

1.6.1 Dimension reduction in `2

First we will introduce one of the most powerful tools for working with metric space

embeddings into `2, the lemma of Johnson and Lindenstrauss [41]. Let us start by

observing that, under `2, the n-point regular simplex requires n − 1 dimensions to

represent exactly. Approximate embeddings, however, have a very different behavior

in `2.

Lemma 1.6.1 (Johnson-Lindenstrauss lemma [41]). Any set X of n points from

`2 can be embedded into `d
2 with d = O(log(n)/ε2) for any ε > 0 with distortion at

most (1 + ε).

The proof of the original result of Johnson and Lindenstrauss was subsequently

simplified by a number of later works: Frankl and Maehara [26], Indyk and Mot-

wani [40], Dasgupta and Gupta [19], Arriaga and Vempala [6] and Achlioptas [1].

We will discuss many applications of this theorem in Section 1.7. Here let us focus

on a few other related questions. The reader who is unfamiliar with this work might

find this lemma somewhat surprising: For example, how can the n-point simplex with

unit edge lengths possibly be well approximated with a small number of dimensions?

We think it aids intuition to think about the embedding of Achlioptas [1] and see how

it applies to this case. Achlioptas suggests the following operation: Given n vectors

of length d represented as an n × d matrix A, pick a random d × k matrix R (with
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k = c log(n)/ε2):

rij =


−1/

√
2k with probability 1

2

+1/
√

2k with probability 1
2

.

Then, with positive probability, AR is an n × k matrix which corresponds to an

embedding of A into `k
2 with distortion at most (1 + ε). Now notice that we can

represent the n points of the simplex with the vectors

{x : 0i10n−i−1, 0 ≤ i < n}.

Under Achlioptas’ embedding this gives an independent random {−1/
√

2k, 1/
√

2k}

vector of length only k = c log(n)/ε2 for each point in the simplex. For any such pair

of vectors x, y, we expect |xi − yi| = 0 with probability 1
2

and |xi − yi| = 2√
2k

with

probability 1
2
. Therefore E[|xi−yi|2] = 1

k
, and E[

∑k
i=0 |xi−yi|2] = 1, so each distance

between a pair of points is expected to be 1. The key part of the proof in [1] that

this embedding works is to show that under such a random projection the distance

between any particular pair of points is tightly concentrated around its mean.

The main practical implication of the Johnson-Lindenstrauss lemma is that, if

one is working on approximation algorithms for points in `2, the size of the vectors

involved can be reduced to about O(log n). In these circumstances an exponential

dependence on dimension is not out of the question. The storage space needed for

n vectors is reduced to about n log(n) instead of n2. This has also made possible

a variety of very interesting sub-linear space algorithms, particularly in the area of

streaming algorithms. Again, we will return to these topics in Section 1.7.
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1.6.2 Dimension reduction in `∞

We have seen a randomized polynomial time dimension reduction algorithm for `2.

Is general dimension reduction possible under other `p norms? Surprisingly little is

known about this question.

For `∞, the work of Bourgain [11] and Matoušek [56, 54] implies that for distortion

D < 3, Ω(n) dimensions are required. On the other hand Matoušek also showed

closely related positive results:

Theorem 1.6.2 (Matoušek [56, 54]). Let D = 2q − 1 ≥ 3 be an odd integer and

let (X, ∆) be an n-point metric space. Then there is a distortion D embedding of X

into `d
∞ with

d = O(qn1/q ln n).

Krauthgamer et al. [46] have recently shown an embedding for metrics supported

on planar graphs into `
O(log(n))
∞ , which is optimal in terms of the number of dimensions.

1.6.3 Dimension reduction in `1

Previously very little was known about dimension reduction in `1. Talagrand [68],

following a breakthrough of Schechtman [67] and the refinements of Bourgain, Lin-

denstrauss and Milman [12] showed:

Theorem 1.6.3 (Talagrand [68]). Every n-point `1 metric can be embedded into

`d
1 with distortion (1 + ε) and d = Cn log(n)/ε2, where C is some universal constant.

In contrast to this result, the best lower bound known previously was Ω(log(n)),

which can be shown for the log2(n)-dimensional hypercube:
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Theorem 1.6.4. There exists some constant ε0 > 0 such that for 0 < ε ≤ ε0, the n

points {0, 1}log2(n) (the log2(n)-dimensional hypercube) require Ω(log2(n)) dimensions

to embed into `1 with distortion (1 + ε).

To prove this we will use a simple lemma:

Lemma 1.6.5. Consider any finite metric M1 = (X ∈ Rm, `1). Then M2 = (X, `2)

is an embedding of M1 into `m
2 with distortion at most

√
m.

Proof. Consider any vector x = (x1, . . . , xm).

√∑
m

|xi|2 ≤
∑
m

|xi| ≤
√

m

√∑
m

|xi|2.

The result of Enflo [22] (Theorem 1.5.6) that the hypercube requires distortion

Ω(
√

log2(n)) in `2 implies the theorem. For if we had a (1 + ε) distortion embedding

into `m
1 this would imply a (1 + ε)

√
m-distortion embedding into `2. Hence, a (1 + ε)

distortion embedding of the hypercube with dimension m = o(log2(n)) is not possible.

Note that the constant hidden by the Ω in Enflo’s result is at least 1.

There has been substantial interest in trying to prove an analogue of the Johnson-

Lindenstrauss lemma for `1 (for example, see Indyk [36], Linial [49] and the Haifa

open problems list [57] maintained by Matoušek). One line of attack has been to con-

sider the dimensionality needed for certain special case metrics when embedded into

`1. Chepoi and Fichet [17] have shown that all circular decomposable (Kalmanson)

metrics embed into `1 isometrically, implying that all metrics supported on outer-

planar graphs embed isometrically in `1. Gupta et al. [32] point out that this in turn
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Distortion, any d Distortion D, dim d

Trees 1 D = (1 + ε), d = O( 1
ε2

log3(n)) [15]
Circular decomposable 1 [17] D = (3 + ε), d = O( 1

ε2
log2(n)) [15]

K2,3 1 [17, 32] D = O(1), d = O(log2(n)) [15]
Series-parallel graphs O(1) [32]

Table 5: Distortion and dimension results for metrics on graphs

implies Theorem 1.5.10, because it is known that K2,3 (with all edges weighted one)

does not embed isometrically in `1 [20]. They then go on to study a slightly richer

class of graphs, the series-parallel graphs.

Theorem 1.6.6 (Gupta et al. [32]). Every metric supported on a series-parallel

graph (or on a graph with a constant number of non-tree edges |E(G)| − |V (G)|+ 1)

can be embedded into `1 with constant distortion.

Charikar and Sahai [15] initiated a study of the trade-off between distortion and

dimension for these graphs with constant distortion `1 embeddings. Table 1.6.3 lists

their results along with the results of Gupta et al. and Chepoi and Fichet.

Another direction has been to weaken the requirements of the embedding instead

of restricting the original metric. Indyk [35] has shown a “weak” dimension reduction

theorem for `p with 1 ≤ p ≤ 2.

Lemma 1.6.7 ([36, 35]). For any 1 ≤ p ≤ 2, 1 > ε, δ > 0 there is a randomized

embedding from `d
p into `d′

p with distortion (1 + ε) and d′ = (log(1/δ))O(1/ε) such that:

• The probability that a particular distance contracts by a factor worse than (1−ε)

is less than δ
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• The probability that a particular distance expands by a factor worse than (1+ ε)

is at most 1
1+ε

.

Indyk notes that this differs from the Johnson-Lindenstrauss lemma in two key

ways. One is that the dependence on (1/ε) is now exponential, not polynomial.

Secondly, the probability that some distance is expanded a large amount is only

bounded away from 1 by a tiny amount. He calls this an “asymmetric” embedding

because it prevents contraction, but allows distances to be expanded significantly. In

fact, for the `1 version of this embedding the expectation (over f) of ||f(u)− f(v)||1

for any pair of points u, v such that ||u− v||1 > 0 is unbounded. Fortunately, though

the mean is unbounded, the “left” tail of the distribution can be shown to be small,

and this property is sufficient for many applications.

On the other hand, let f()i denote the ith dimension of the embedded point under

Indyk’s embedding, and let the embedding have d′ = c log(1/δ)/ε2 dimensions (where

c is some constant we pick later). Define a new distance function ∆′(f(u), f(v)) =

mediani|f(u)i − f(v)i|. He shows that

(1− ε)||u− v||1 ≤ ∆′(f(u), f(v)) ≤ (1 + ε)||u− v||1

with probability at least 1 − δ. Unfortunately this does not give an embedding into

a metric space because the median operation does not give a metric. In particular

notice that the three vectors (0, 0, 0), (0, 0, c) and (0, c, c) break the triangle inequality

under this component-wise median function (for any c 6= 0).

The main technical tools of this work, the p-stable distributions, are of indepen-

dent interest, and Indyk [35] discusses many aspects of their use, both technical and

practical. Several works on small space algorithms have been able to make use of these
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techniques in spite of the fact that variables from the 1-stable Cauchy distribution

have unbounded mean (see [35, 36, 29]).

1.6.4 Dimension reduction in other `p norms

Charikar and Sahai [15] show the following lower bound for dimension reduction for

`p with 4 ≤ p ≤ c log(n) for some small constant c.

Theorem 1.6.8 ([15]). For 4 ≤ p ≤ c log(n), there exists a set of 2n points in `n
p

such that any (1 + ε) distortion embedding into `d
p requires the number of dimensions

d to be at least 
Ω
(

4p log(n)
p(1+ε)2p

)
ε ≥ 1

p

Ω
(

4p log(n)
ε2p2(p+log(1/ε))

)
ε ≤ 1

p

In other words, the number of dimensions needed to approximate a metric of n

points in `p goes up roughly exponentially in p.

1.6.5 Dimension reduction for Hamming metrics

Kushilevitz et al. [47] have also shown a dimension reduction of a different type that

maps a Hamming space into a low dimensional Hamming space. Indyk [36] defines

a randomized threshold (r1, r2, r
′
1, r

′
2)-embedding with failure probability p to be an

embedding f : X1 → X2 such that for any pair of points u, v ∈ X1 the two conditions

• if ∆1(u, v) ≤ r1 then ∆2(f(u), f(v)) ≤ r′1

• if ∆1(u, v) ≥ r2 then ∆2(f(u), f(v)) ≥ r′2

are satisfied with probability at least 1 − p. In this setting, Indyk formulates the

embedding of Kushilevitz et al. as follows:
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Lemma 1.6.9 (Kushilevitz et al. [47, 36]). For any r ∈ [1, d] and ε > 0 there

exists r′ ≥ 0 such that there is a randomized (r, (1 + ε)r, r′, r′ + 1)-embedding from a

d-dimensional Hamming metric into a d′-dimensional Hamming metric with failure

probability p and d′ = O(log(1/p)/ε2).

Essentially this algorithm can distinguish between distances that are less than

r and distances that are greater than (1 + ε)r − 1. This does not, a priori, give

an algorithm for calculating distances between points. It seems for this purpose you

would need to repeat the embedding for many different values of r. Further discussion

may be found in [47, 34, 36].

1.7 Applications of embeddings

Metric embeddings have provided a very nice framework in which to study a large

number of algorithmic questions, particularly in approximation algorithms. Here we

survey a number of the most interesting results. Much of this discussion is adapted

from Indyk’s tutorial [36], and we refer the reader to this work for a more broad

survey.

1.7.1 Sparsest cuts and multi-commodity flows

One of the first explicit uses of embeddings in the design of approximation algorithms

was by Linial et al. [50] and Aumann and Rabani [8].3 Both of these papers explored

the connection between multi-commodity maxflows, sparsest cuts, and `1 embeddings.

3We have chosen to follow the exposition of [50] because we already draw on this paper extensively
in this section.
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First let us define a multi-commodity maxflow. Let G be an undirected graph with

capacities Cij for each edge (i, j). There are k source-sink pairs (sl, tl) which want to

ship some quantity dl ≥ 0 (the demand) of a commodity from sl to tl. This is called

a multi-commodity flow because each source-sink pair has a different commodity, so

all k flows are independent of the others except for the fact that they must share the

capacities on the edges. The maxflow λ is the largest λ for which every flow may

send at least λdl.

Let Cap(S) be the total capacity of the edges crossing some cut S, and Dem(S)

be the total amount of demand from flows with the source and sink on opposite sides

of the cut. Then, for every cut S in the graph, λ ≤ Cap(S)
Dem(S)

. In fact, the optimal λ is

exactly

λ = min

∑
i6=j

Cij∆(i, j)

k∑
l=1

dl∆(sl, tl)

,

where the minimum is over all metrics ∆ supported on G.

The sparsest-cut problem is to find a set S which minimizes Cap(S)
Dem(S)

, and is known

to be NP-complete. The novel contribution of Linial et al. and Aumann and Rabani

was, using Bourgain’s result [11], to argue that one can embed the metric ∆ into `1

with distortion at most O(log k). They then use the embedding to find a cut which

can be proved to be at most a factor O(log(k)) worse than the sparsest cut. This

gives an O(log k)-approximation algorithm for the sparsest-cut problem.

In proving this they showed that the max-flow min-cut gap for a graph G is

bounded by the least distortion with which the related metric ∆ can be embedded

into `1. In the terminology of Theorem 1.5.10 from Gupta et al.:

Theorem 1.7.1 ([32, 50]). For any graph G, the worst possible min-cut max-flow
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gap γ attained by a multi-commodity max-flow problem on G is exactly

γ = max
M supp on G

c1(M).

One direction of this theorem appeared in [50] and the theorem was stated and

the other direction proved in [32]. The results of Gupta et al. [32] and Chepoi and

Fichet [17] (see Table 1.6.3) therefore imply O(1) approximations for sparsest-cut

problems on trees, circular decomposable metrics and series-parallel graphs. The

result of Rao [65] (Theorem 1.5.9) implies an O(
√

log(n)) approximation algorithm

for sparsest-cut problems on planar graphs.

A positive resolution to Conjecture 1.5.11 would also imply that planar graphs

embed into `1 with constant distortion, and therefore the min-cut max-flow gap for

planar graph metrics would be O(1). Also note that Klein et al. [45] have already

shown that the min-cut max-flow gap for the case of uniform demands on a planar

graph is O(1). Aside from [17] and [32], Chekuri et al. [16] have contributed to progress

toward this conjecture by showing that, for any fixed constant k, all k-outerplanar

graphs embed into `1 with constant distortion.

1.7.2 (1, 2)−B metrics and applications

Metric embeddings have even found applications in proving hardness of approxima-

tion. Here we consider one particular problem, MinTSP in an `
log(n)
p space.

A metric is called a (1, 2)−B metric if every distance in the metric is either 1 or 2,

and for any u the number of v for which ∆(u, v) = 1 is at most B. Papadimitriou and

Yannakakis [61] show that there is a constant B0 > 0 such that computing MinTSP

on (1, 2)−B0 metrics is Max−SNP hard. Trevisan [69] has used this result combined
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with metric space embeddings to show that MinTSP is Max − SNP hard even in

`
c log(n)
p .

Theorem 1.7.2 ((1, 2)−B0 metrics “embed” into Hamming space [69]). Any

(1, 2)−B0 metric can be embedded into an O(log(n))-dimensional Hamming space so

that if ∆(u, v) = 1 and ∆(s, t) = 2, ∆(u, v) ≈ B0

B0+1
∆(s, t). (The precise statement of

the theorem is somewhat technical, see [69].)

He then shows that such an embedding may be used to distinguish between TSP

tours of length n and length r0n for some r0 > 1. Since this second problem is

Max− SNP hard on (1, 2)−B0 metrics, MinTSP on Hamming spaces with log(n)

dimensions must also be Max− SNP hard. Finally, observe that for u, v ∈ {0, 1}k,

where ∆H is the Hamming metric, ||u− v||p = (∆H(u, v))1/p. Trevisan’s result there-

fore implies Max− SNP hardness for MinTSP in any `
log(n)
p space.

Guruswami and Indyk [33] recently showed that (1, 2) − B metrics may also be

isometrically embedded into `∞ with O(B log(n)) dimensions by a different technique.

They then use this embedding to show hardness of approximation results for TSP ,

k-median and min-sum k-clustering, even in low dimensional `p spaces. The reader

should refer to [33] for a precise statement of their results.

1.7.3 Probabilistic embeddings into dominating trees

Though the topic at hand is the study of embeddings into normed spaces, especially `1,

we should also briefly mention some of the applications of probabilistic embeddings

into trees (see Section 1.5.5). Often designing an optimal algorithm for a tree is

significantly easier than designing such an algorithm for a general metric. For that
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matter, there are many problems which, though NP-complete in general, are poly-

time solvable on trees.

The first use of these probabilistic embeddings into trees was by Alon et al. [3]

to give an online algorithm for the k-server problem. Recall that online algorithms

are often randomized, and are typically analyzed by comparing the expected value

of the algorithm’s solution A(P ) with the optimal (offline) solution OPT (P ). The

algorithm designer’s goal (for a minimization problem) is to minimize the worst case

(over problem instances P ) ratio of E[A(P )]
OPT (P )

. Since we are working with expected

values, we can often take our problem on metric M , choose a random embedding

(Mi, fi) according to a good probabilistic embedding into trees, and then solve the

problem on the tree Mi. After Bartal improved the embedding of Alon et al., he and

his co-authors [10] were able to show the first known polylog(n)-competitive online

algorithm for the metrical task system problem. These techniques have also led to

many new approximation algorithms. See [36] for a list and citations.

1.8 Applications of dimension reduction

The question of whether or not dimension reduction exists for `1 will be the focus of

much of this work. The technique of dimension reduction, particularly in `2, has been

an extremely fruitful tool for algorithm designers. In order to motivate our interest in

`1 dimension reduction we will survey some of the surprising and powerful algorithms

which result from the Johnson-Lindenstrauss lemma.
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1.8.1 Geometric proximity problems

We now return to the proximity problems which we mentioned as one of our main

motivations at the beginning of the chapter. Let us formally define a proximity

problem in the following way: A proximity problem is a problem on some set of points

X, the solution of which depends only on the distances between points, ∆(u, v), and

not on the actual “locations” of the points.

One of the most studied proximity problems has been the approximate near neigh-

bor problem.

Definition 1.8.1 (Approximate Near Neighbors, c−ANN). Given a set |P | = n

of points from some metric space M and an approximation factor c, create a data

structure that can answer the following type of query:

Given a new point x from M , if the distance from x to its nearest neighbor in P

is d, return any point in P which is within a distance cd of x.

The goal is to bound both the pre-processing time and the query time needed

for this procedure. Indyk and Motwani [40] and Kushilevitz et al. [47] showed the

first algorithms for (1 + ε) − ANN under `1 and `2 which achieved polynomial pre-

processing time along with query time that is polynomial in log(n) and d.4 Previous

algorithms had suffered from the “curse of dimensionality,” that either running time

or pre-processing time was exponential in d (in many cases, O(1/εd)). Both of these

papers use random projections to reduce dimension, and in particular use the Johnson-

Lindenstrauss lemma for the `2 case.

In [34] Indyk went on to give a variety of algorithms for other proximity problems.

4Note however that the pre-processing time depends exponentially on 1/ε, so this algorithm is
unlikely to be useful in practice.
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Theorem 1.8.2 (Indyk’s proximity problems [34]).

• There is a Las Vegas randomized algorithm for (1 + ε) near neighbors under `d
1

with storage and query time polynomial in log(n), d and 1/ε.

• There is a deterministic algorithm for (1 + ε) near neighbors for ε > 2 under `d
1

with similar bounds.

• Both of these results hold for `d
2 with an additional approximation factor of

√
3.

• There is an algorithm for (1 + ε) approximating the diameter of a set of points

in Hamming space with running time O(n2−O(ε)).

All of these algorithms rely on a dimension reduction algorithm for Hamming met-

rics which reduces dimension to O(log(n)) while preserving the gap between “long”

distances and “short” distances.

Indyk [37] has also given an asymmetric embedding of `2 into `∞ which results

in a (1 + ε) approximation for diameter in `2 in time Õ(n1+1/(1+ε)2). One interesting

result of this work is that he shows that any `2 metric can be embedded in `nα

∞

(1 > α > 0) with distortion
√

2/α + 1, which improves upon the result of Matoušek,

Theorem 1.6.2, for the special case of `2 metrics.

1.8.2 Learning

There are a number of geometric learning problems which have been solved using

dimension reduction. The first type are continuous clustering problems:

Definition 1.8.3 (Continuous clustering (see [36])). Given a set of points X ∈

Rd, find k points {c1, . . . , ck} ∈ Rd that minimize some objective function.



CHAPTER 1. FOUNDATIONS 42

• k-medians:
∑

x∈X

min
i
||x− ci||2

• k-center: max
x∈X

min
i
||x− ci||2

The key difficulty in this definition is that the points ci need not be points from

the set X, but may be any arbitrary point in the space Rd. Dasgupta [18] and

Arora and Kannan [5] have shown that, if the set of points X ∈ Rd is randomly

generated by some set of Gaussian distributions, then the original Gaussians can be

approximately learned in time polynomial in d and the number of different Gaussians

in the mixture, k. Several of the algorithms proposed by these authors first project

points into a random subspace of size polylog(k). Since a linear projection of a

Gaussian is still a Gaussian, the authors can identify candidate Gaussians efficiently

in the low dimensional space, and then try to lift these results back to Rd.

Ostrovsky and Rabani [60] gave a similar polynomial time approximation scheme

for the 2-center clustering problem under `1, `2, (`2)
2 and Hamming distance. They

first embed their set of points into the Hamming cube, and then they use the dimen-

sion reduction theorem for the Hamming cube from their paper with Kushilevitz [47].

The key idea is that in a Hamming cube with only O(log(n)) dimensions one can

actually test every possible pair of centers in time poly(n, d). This result has recently

been improved by Fernandez de la Vega et al. [25] using different techniques.

Arriaga and Vempala [6] have also used dimension reduction to improve the sample

complexity of the Perceptron Algorithm [58] when learning robust concepts. Roughly

speaking an l-robust concept is a concept where the probability of getting a sample

point that is within a distance l of the boundary is zero. Note here that we assume all

points lie within the n-dimensional unit ball, and that l ≤ 1. Arriaga and Vempala

showed that robust concepts can still be learned when projected into a small number
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of dimensions (usually poly(log(n), 1/l)). This leads to algorithms based on the Per-

ceptron Algorithm which use roughly poly(1/l) samples and run in time poly(n, 1/l).

They give algorithms for learning half-spaces, intersections of half-spaces and poly-

nomial surfaces. Learning a half-space in Rn via the Perceptron Algorithm uses a

number of samples linear in n, so this is a significant improvement.

1.8.3 Proximity-preserving labeling

Another very closely related topic is the problem of distance labeling or proximity-

preserving labeling in graphs. This problem, introduced by Peleg [62] asks the fol-

lowing:

Definition 1.8.4 ((D, d) proximity preserving labeling scheme). First, for a

given class of graphs G give a function f which for any graph G = (V, E) ∈ G maps

V into {0, 1}d. This provides a binary label for each vertex.

Second, give a function ∆ : {0, 1}d × {0, 1}d → [0,∞) which is poly-time com-

putable such that:

∃r > 0, s.t. ∀u, v ∈ V,
r

D
∆G(u, v) ≤ ∆(f(u), f(v)) ≤ r∆G(u, v).

∆G is defined to be the shortest path distance on G. The labeling has distortion at

most D. A labeling scheme with d bits per label and distortion at most D is called a

(D, d) proximity preserving labeling scheme for the graph class G.

The goal is to minimize d, the number of bits needed for each label. Notice that

this differs from our discussion of embeddings into normed spaces because here we

must count all our bits, not just the number of reals used. We will also allow the
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distance function ∆ to be any poly-time computable function. There is still a very

interesting relationship between these labelings and metric space embeddings.

Theorem 1.8.5 ([62, 36, 56]). There exists an (O(log(n)), O(log3(n))) labeling

scheme for general graphs and a (1, O(log2(n))) labeling scheme for trees.

The connection to low-dimensional `p embeddings here is that the first part of this

result may be derived from Matoušek’s Theorem 1.6.2. The second half of the theorem

can be proved using the proof of Linial et al. [50] that trees embed isometrically into

`
O(log(n))
∞ . It is interesting that Peleg’s [62] original proofs of these facts did not

explicitly use `∞ embeddings. In his subsequent work with Gavoille et al. [28] it was

showed that:

Theorem 1.8.6 (Gavoille at al. [28]). For (1, d) labeling schemes (that is, exact

labeling schemes):

• For general graphs d = O(n)

• For trees, d = Θ(log2 n)

• For planar graphs, d = O(
√

n log(n)) and d = Ω(n1/3)

For (D, d) labeling schemes:

• For general graphs and D < 2, d = Ω(n)

• For general graphs and D < 3 the total length of all labels is Ω(n2).

It is not clear whether the relationship between labelings and `∞ embeddings will

hold for more interesting examples. Krauthgamer et al. [46] have recently shown that

any metric supported on an n-vertex planar graph can be embedded into `
O(log(n))
∞
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with constant distortion. The above bound for labeling schemes for planar graphs,

however, only applies to isometric labelings. The proof proceeds by constructing a

large class of graphs which must have different sets of labels, and this gives a lower

bound on the number of bits needed to represent such a graph.

In general it is not clear whether these lower bounds can be applied to dimension

reduction questions. Since labelings are embeddings into a bounded number of bits,

they may not have the full power of `p at their disposal. Badoiu and Indyk [36]

indicate, however, that dimension lower bounds for labeling schemes on graphs with

integral distances hold for `∞.

1.9 Our results

We provide a major milestone in the study of the dimensionality of `1-embeddable

metrics.

Theorem 1.9.1 (Some finite `1 metrics require many dimensions [13]). There

exists an infinite family of n-point sets in `1 which require d = nΩ(1/D2) dimensions

for any embedding into `d
1 with distortion at most a constant D. When D = (1 + ε)

with ε close enough to zero, this bound is n
1
2
−O(ε log(1/ε)).

The key point is that for any constant distortion the number of dimensions re-

quired is polynomial in n, a stark contrast to the case of `2 (see above, Section 1.6.1).

In Section 3.2 we provide an explicit set of n points in `
O(
√

n)
1 which requires high

dimension. This answers the third open question of Indyk [36] in the negative.

Our point set is actually derived from the shortest-path metrics of a family of

series-parallel graphs. In order to prove Theorem 1.9.1, we will first prove that some
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families of series-parallel graphs require high dimension in `1.

Theorem 1.9.2 (Series-parallel graph metrics require high `1 dimension [13]).

There exists an infinite family of series-parallel graphs Gn on n vertices such that any

embedding of Gn into `1 with distortion at most a constant D requires d = nΩ(1/D2) di-

mensions. Again, when D = (1+ ε) with ε close enough to zero, this is asymptotically

n
1
2
−O(ε log(1/ε)).

1.10 Organization

In Chapter 2 we will introduce the notion of the stretch of an embedding, and discuss

how it may be used to prove upper and lower bounds on `1 dimension. In Section 3.1

we will prove Theorem 1.9.2. Then in Section 3.2 we prove Theorem 1.9.1 by giving

an explicit infinite family of `
O(
√

n)
1 metrics which require high dimension in `1. In

Chapter 4 we will discuss in detail the use of optimization techniques in proving our

bounds, and show some connections to other problems.



Chapter 2

Stretch-limited Embeddings

We wish to prove, in Section 3.1, that there are some classes of `1-embeddable metrics

which require a high number of dimensions if the incurred distortion is to be small.

How can we try to prove such a result? Consider the technique given in Section 1.2.3.

In this approach we consider two ratios of the form

RM1(p) =

(∑
u,v∈X1

αuv∆1(u, v)p∑
u,v∈X1

βuv∆1(u, v)p

)1/p

.

Consider the `1 distance in d dimensions,
∑d

i=1 |ui − vi|. Increasing the number of

dimensions to d+1 corresponds to adding a new variable ud+1 for each point u in the

metric.

In fact, we may think of an embedding of M into `d
1 as a sum of d embeddings of

M into the real line. Adding a new dimension corresponds to allowing ourselves an

extra line embedding in this sum.

Essentially we want to optimize the αuv and βuv to show a large gap between RM1

and RM2 , in terms of d, the number of variables allowed per point u. We do not
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know of any way to reason about this type of problem directly.

We need to find some property of `1 metrics which can stand in as a proxy for

dimensionality. For this purpose Charikar and Sahai [15] introduced the notion of a

stretch-limited embedding. We will first give our definition of a stretch-limited embed-

ding, and then prove that it is a good proxy for `1 dimensionality. Our presentation

is somewhat different from that of [15].

Definition 2.0.1 (Stretch-limited embedding). A stretch-limited embedding σ =

(fσ, ∆σ) of a metric M = (X, ∆) consists of a mapping fσ : X → Rt along with a

distance function ∆σ. We will denote the ith dimension of u under fσ as fσ(u)i, and

we can view each fσ(·)i as a mapping onto the real line. Weights {w1, w2, . . . , wt} are

assigned to each line embedding fσ(·)i such that
∑t

i=1 wi = 1, and ∆σ is defined to be

the weighted average of distances under the fσ(·)i:

∆σ(fσ(u), fσ(v))
def
=

t∑
i=1

wi|fσ(u)i − fσ(v)i|.

The distortion of this embedding is defined to be D = inf D′ such that:

∃r > 0, ∀u, v ∈ X,
r

D′∆(u, v) ≤ ∆σ(fσ(u), fσ(v)) ≤ r∆(u, v).

If for all points u and v in the original metric, and ∀i ∈ {1, . . . , t},

|fσ(u)i − fσ(v)i| ≤ rs ·∆(u, v),

the embedding is said to be stretch s limited.

In other words, a stretch-s embedding is a convex combination of line metrics
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where distances in any line metric can not be more than a factor s larger than distances

in the original metric. We will assume, without loss of generality, that r = 1, implying

that a stretch-limited embedding is always a contraction. Scaling a stretch-limited

embedding affects neither the distortion nor the stretch incurred.

Note that we may alternately define stretch (call it stretch-2) by replacing the

stretch condition by: |fσ(u)i − fσ(v)i| ≤ rs ·∆σ(f(u), f(v)). This alternate definition

makes the notion of stretch-2 a function of the resulting metric independent of the

original metric. The difference between these two notions of stretch is exactly a factor

D, the distortion of the embedding. The original definition of stretch seems easier to

work with for proving lower bounds; any lower bounds we prove also hold for stretch-2

up to the factor D.

2.1 Stretch as a proxy for `1 dimension

Claim 2.1.1. The existence of a D-distortion embedding of a metric M = (X, ∆)

into `s
1 implies the existence of a D-distortion stretch-limited embedding of M with

stretch s.

Proof. Consider a mapping g of M into `s
1. Let g(·)i denote the ith dimension under

g, which we think of as an embedding into a line. Let σ = (fσ, ∆σ) be the stretch

limited embedding defined by fσ(u)i = sg(u)i, and wi = 1
s
. Then:

∆σ(fσ(u), fσ(v)) =
s∑

i=1

1

s
|fσ(u)i − fσ(v)i|

=
s∑

i=1

1

s
(s|g(u)i − g(v)i|)

= ||g(u)− g(v)||1.
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Since distances are identical under σ and g, their distortions must be equal.

Claim 2.1.2. The existence of a D-distortion stretch-limited embedding of a metric

M = (X, ∆) with stretch s implies the existence of a D(1 + ε)-distortion embedding

of M into `
O(sD log(n)/ε2)
1 .

Proof. Consider a stretch-s embedding σ = (fσ, ∆σ) as a probability distribution on

line metrics, where each line metric fσ(·)i has probability wi. For each of the m

dimensions we will take a random line metric fσ(·)l from this distribution, and let the

value of x in this dimension be fσ(x)l/m.

Consider the distance of a particular pair of points u and v in a random fσ(·)i

where i is picked with probability wi. For convenience of notation we will call this

distribution I, and I denotes a random index chosen from this distribution. The

expected distance is exactly the distance between u and v in the stretch-limited

embedding which in turn is in the range [∆(u, v)/D, ∆(u, v)]. The stretch condition

imposes a bound on the value of |fσ(u)i − fσ(v)i|, namely that

∀i : |fσ(u)i − fσ(v)i| ≤ s∆(u, v).

Now we can use standard Chernoff-Hoeffding bounds:

Pr

[(
m∑

j=1

|fσ(u)Ij
− fσ(v)Ij

|

)
1

s∆(u, v)
≥ (1 + ε)

m

s∆(u, v)
EI∈I [|fσ(u)I − fσ(v)I |]

]

<

(
eε

(1 + ε)(1+ε)

)m∆σ(u,v)
s∆(u,v)
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and

Pr

[(
m∑

j=1

|fσ(u)Ij
− fσ(v)Ij

|

)
1

s∆(u, v)
≤ (1− ε)

m

s∆(u, v)
EI∈I [|fσ(u)I − fσ(v)I |]

]

<

(
e−ε

(1− ε)(1−ε)

)m∆σ(u,v)
s∆(u,v)

,

where the Ij are i.i.d. random variables chosen from I. Noticing that ∆σ(u,v)
∆(u,v)

≥
1
D

, we set m = 8sD log(n)/ε2. For this choice of m the probability that, for a

particular pairwise distance, the average over m samples is not within (1 ± ε) of

its expectation is at most 1/n2 (for ε > 0 small enough). Since there are
(

n
2

)
pairs of

points, P [relative error is at most ε] ≥ 1/2. Hence there exists an embedding in `m
1

with m = 8sD log(n)/ε2 and distortion at most D(1 + ε).1

Note that stretch-s embeddings are more general than `1 embeddings with s di-

mensions: Not only will we allow them to have arbitrary dimension, but we allow

them to use any convex combination of line metrics, not simply an average. By the

results above, stretch is a good proxy for dimension in `1 embeddings.

2.2 Applications and questions

Limited-stretch embeddings were developed by Charikar and Sahai [15] to prove both

positive and negative dimension reduction results.

Theorem 2.2.1 (No `1 dimension reduction by linear embeddings [15]). We

call an embedding f = {f(·)1, f(·)2, . . . , f(·)d} of `n
1 into `d

1 linear if each f(·)i is a

1 Note that if we used the stretch-2 definition discussed earlier, the claim can be strengthened to
guarantee an embedding into `

O(s log n/ε2)
1 .
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linear function on the components of the input point:

f(x)i =
n∑

j=1

λijxj.

For every sufficiently large n there exists a set of O(n) points in `n
1 which for any

linear embedding into `d
1 incurs distortion Ω(

√
n/d).

Bourgain’s Theorem 1.5.2, along with the Johnson-Lindenstrauss Lemma 1.6.1,

implies an O(log(n)) dimension O(log(n)) distortion embedding of any n point metric

into `1. Bourgain’s embedding seems to be inherently non-linear, and the application

of Theorem 2.2.1 to Bourgain’s embedding confirms this fact. This also brings to

light the fact that linear embeddings are a highly restricted class of embeddings, and

that this theorem does not disprove the existence of exponential dimension reduction

for `1.

It is also possible to use the concept of stretch-limited embeddings to construct

low dimensional embeddings into `1, incurring only about a factor D log(n) extra

dimensions. In fact, this is the idea that is implicit behind Charikar and Sahai’s

cycle flattenings that are used in embedding K2,3-free graphs into low dimensional

`1. They used an embedding of K2,3-free graphs into a convex combination of two

trees, but observed that traditional Bartal-like [9, 23] probabilistic embeddings into

trees cannot be used. Bartal’s construction uses edge deletions, an intrinsically high-

stretch operation. The explicit link between stretch and dimension should greatly

simplify the design of low-dimensional `1 embeddings, though we do not yet know of

any other results in this direction.



Chapter 3

Some metrics require high

dimension in `1

In this chapter we will prove that there are some `1 metric spaces which require

polynomially many dimensions if only constant distortion is allowed.

3.1 Series-parallel graphs require high dimension

in `1

We will first prove Theorem 1.9.2, that there are families of series-parallel graphs that

require nΩ(1/D2) dimensions to embed in `1 with distortion at most D.

3.1.1 Proof overview

In Section 1.2.3 we showed a general approach for proving distortion lower bounds. In

order to prove lower bounds for dimension reduction in `1, we adapt this technique.

53
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As we observed in the previous chapter, low dimensional embeddings seem tricky to

reason about. Instead we focus on low-stretch embeddings, exploiting the connection

between stretch-limited embeddings and embeddings in low dimensions. Our goal

will be to prove a lower bound on the stretch s needed to achieve a given distortion

D.

Reducing stretch-limited embeddings to stretch-limited line embeddings

Recall from Section 2 that a stretch-limited embedding can be assumed to be non-

expansive without loss of generality. As a result, a stretch-limited embedding with

distortion D must satisfy the property that no distance expands and also no distance

contracts by more than a factor D. Let us write down these constraints as we would

give them for an optimization problem:

∀u, v ∈ X, ∆σ(fσ(u), fσ(v)) ≤ ||u− v||1 (Non-expansion constraint NEuv)

and

∀u, v ∈ X,
1

D
||u− v||1 ≤ ∆σ(fσ(u), fσ(v)) (Low distortion constraint LDuv).

Now consider linear combination of these constraints of the form

∀γuv, λuv ≥ 0,
∑

u,v∈X

(γuvNEuv + λuvLDuv) .

This is a class of linear constraints, and if all of the NEuv and LDuv are satisfied, so

is any linear inequality L of this form. Recall that a stretch-limited embedding is a
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convex combination of line metrics. From the convexity of stretch-limited embeddings

we can see that:

Observation 3.1.1. If L is satisfied by some stretch-limited embedding σ, then L

must be satisfied by at least one of the line embeddings fσ(·)i.

Our task now is to, given some family of series-parallel graph metrics, derive a

single inequality L by finding values for the the γuv and λuv. The intuition is that

this L should be hard to satisfy, and we pick the γuv and λuv to get the best bound

possible. We will then show that any dimension which satisfies L incurs high stretch,

and therefore that no stretch-limited embedding with low stretch exists.

Charikar and Sahai [15] used this technique to prove Theorem 2.2.1, as stated

in the previous chapter. In that case, the restriction to linear embeddings and a

careful choice of the inequality on pairwise distances made it possible to prove a

lower bound on the stretch s required. How can one prove lower bounds on the

stretch for arbitrary (i.e. non-linear) line embeddings? Our innovation is to express

the problem of minimizing stretch so as to satisfy the inequality L as a linear program.

In general, finding such an LP formulation might be very difficult. However, we are

able to obtain an LP that minimizes stretch for a carefully chosen family of points in

`1 and a particular set of linear inequalities on pairwise distances. Having obtained

the LP formulation, we consider the dual LP and exhibit a dual feasible solution.

This establishes a lower bound on the stretch.

Our dual solution was in fact extrapolated from embeddings generated by the

CPLEX LP solver for large instances of our LP. This allowed us to discover combina-

torial structure in our problem that we could leverage for our proof. We will ignore

the details of this process in giving the proof, saving a more detailed exposition for



CHAPTER 3. SOME METRICS REQUIRE HIGH DIMENSION IN `1 56

Order 2
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Figure 3: Recursive diamond graphs of different orders

Section 4.1. We will also temporarily ignore the problem of how to derive the “cor-

rect” values of γuv and λuv. This is, however, crucial to obtaining a good lower bound

on stretch, and we will discuss our solution to this problem in Section 4.2. Again,

optimization techniques and LP duality come to the rescue. For now we will present

our proof by directly obtaining the single “hard” constraint L.

3.1.2 The recursive diamond graph

In order to prove our results, we will focus on one particular family of series-parallel

graphs which we call the recursive diamond graphs. These are the graphs that New-

man and Rabinovich [59] previously used to establish an Ω(
√

log n) lower bound for

embedding planar graphs into `2 (Theorem 1.5.8). The order 0 recursive diamond

graph is a single edge, with length one. In order to make the order k graph from

the order k − 1 graph, replace each edge of length 1/2k−1 with a four-edge diamond,

with edges of length 1/2k (See Figure 3). This is a family of series-parallel graphs

with 4k edges and 2
3
4k + 4

3
vertices. Furthermore, Theorem 1.6.6 of Gupta et al. [32]

shows that this graph can be embedded into `1 with constant distortion1 (with many

1The recursive diamond graph is in fact a series-parallel “bundle.” Gupta et al., in the full
version of [32] (to appear in Combinatorica), show that such graphs can be embedded into `1 with
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Figure 4: Diamond graph terminology and labels for edges

dimensions).

We will need some terminology in order to talk about the graph (see Figure 4).

We will use n to refer to the number of vertices in a given diamond graph, and k to

refer to the order (number of levels) of the graph. Each vertex has some k such that

it is present in the order k graph, but not in the order k − 1 graph. We will refer to

any vertex as a level k vertex if it first appears in the order k graph. When an edge is

replaced with a diamond, the two new vertices that are created will be called siblings,

and we will refer to the pair of siblings as the diagonal2 of this diamond. We will

say that it is a level k diagonal if the vertices concerned are level k vertices. Finally,

there is a natural parent-child relationship between diamonds of different levels: A

diamond is a child of the diamond whose edge it replaces. An ancestor of a diamond

is defined in the obvious way, and the ancestors of an edge are the diamonds of each

order in which the edge participates.

distortion 2. We present an elementary distortion 2 embedding of the recursive diamond graph in
Section 3.2.1.

2These are called anti-edges in [59].
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Every edge in the graph is labeled by a string in {0, 1, 2, 3}k. A particular diamond

has four edges, which we will number 0, 1, 2 and 3 (again, see Figure 4). The label

for the ith edge of a diamond is obtained by concatenating i to the label of its parent

edge. We label diamonds with the label of the parent edge. Also, we use this same

label to label the diagonal edge. For a label x, edge(x) denotes the edge labeled by

x and diag(x) denotes the diagonal whose label is x. This leaves the original edge of

the graph unlabeled. We will treat it as being “diagonal like” and refer to it as diag∗.

We will return to the matter of exactly specifying the labeling in a later section: For

now it is sufficient to notice that the 0 edge is always opposite the 2 edge and the 1

edge is always opposite the 3 edge.

3.1.3 The recursive diamond graph requires high `1 dimen-

sion

We may now state our first result.

Theorem 3.1.2. A recursive diamond graph on n vertices requires nΩ(1/D2) dimen-

sions to embed in `1 with distortion at most D.

We focus on the n-vertex diamond graph (which has k levels). Consider E , the

set of all edges in the graph, and D, the set of all diagonals. We will bound D by

showing that the edges tend to expand while the diagonals tend to contract (refer

back to Sections 1.2.3 and 3.1.1).

The D-distortion constraint

We first develop our key constraint on edge and diagonal lengths imposed by D. Recall

that we have labeled the edges and diagonals. We refer to the length of edge(x) as



CHAPTER 3. SOME METRICS REQUIRE HIGH DIMENSION IN `1 59

e′x and the length of diag(y) as dy.
3

We assumed w.l.o.g. that our embedding σ is non-expansive and has distortion

at most D. The non-expansive property of σ implies that

−
∑

x∈{0,1,2,3}k

e′x/2
k ≥ −1.

There are 4k edges of length 1
2k , so this says that the average length of an edge must

be at most 1
2k . The D-distortion property implies that

D

d∗ +
k−1∑
i=0

∑
y∈{0,1,2,3}i

dy/2
i

 ≥ k + 1.

At a level i there are 4i diagonals of length 2i. This bound gives a weighted average

of the diagonal lengths such that the total contribution of each level to the average is

the same, and says that this weighted average cannot be more than a factor D smaller

in the embedding than for the original metric. We combine these constraints to get

a single constraint (referred to as the distortion constraint) that should be hard to

satisfy:

∀γ ≥ 0, D

d∗ +
k−1∑
i=0

∑
y∈{0,1,2,3}i

dy/2
i

− γ
∑

x∈{0,1,2,3}k

e′x/2
k ≥ k + 1− γ.

We will eventually optimize γ in order to make this bound as strong as possible.

If this is true for a convex combination of line metrics, then it must be true for at

least one of those line metrics. We will show a lower bound on the stretch s which

3We use e′x here because we later define a variable ex which is the signed length of an edge. The
reader may safely ignore this distinction for now.
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must be incurred by a line metric which satisfies this constraint given values of n, k

and D.

Let ρ be a line metric from σ which might satisfy this constraint. In order to

simplify notation, let us re-interpret the meaning of e′x to be the length of edge(x) in

ρ and dx to be the length of diag(x) in ρ. From this point on we will work only in

the candidate line ρ, and all distances are in ρ unless otherwise noted.

Constraints on edges and diagonals

Before we can write down our LP we will need a few more constraints. There is a very

strong relationship between the length of an edge and the lengths of the diagonals of

the edge’s ancestor diamonds, and this will give us a second set of constraints.

We first precisely specify the labeling scheme for the edges of the recursive dia-

mond graph. The labeling scheme we choose will depend on the particular ρ we are

considering, but we will describe how to choose a labeling which satisfies our needs

for any given ρ.

For each edge(x), we will designate one end point as the head and the other as

the tail (denoted by head(edge(x)) and tail(edge(x)) respectively). Similarly, the end

points of diag(x) are labeled as the top end point (denoted by top(diag(x))) and

the bottom end point (denoted by bot(diag(x))). This labeling is done such that

ρ(top(diag(x))) ≥ ρ(bot(diag(x))) (ties are broken arbitrarily).4 We will now derive,

for every edge(x) in the graph, an expression for ρ(head(edge(x)))− ρ(tail(edge(x)))

in terms of the lengths of edge(x)’s parent diagonals.

The edges of the diamond connect the end points of the parent edge(x) to the end

points of diag(x) (see Figure 5). The edge connecting head(edge(x)) to top(diag(x))

4This choice is what causes the labeling to be dependent on ρ.
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3

top(diag(x))
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ex ≤ 0

1

0

3
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2
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2

Figure 5: Single dimension of embedded diamond

is called the 0-edge. The edge connecting top(diag(x)) to tail(edge(x)) is called the 1-

edge. The edge connecting bot(diag(x)) to tail(edge(x)) is called the 2-edge. The edge

connecting head(edge(x)) to bot(diag(x)) is called the 3-edge. Further, head(edge(x))

is considered the head for the 0-edge and the 3-edge; for each of these edges, the end

point of diag(x) incident on it is considered the tail. tail(edge(x)) is considered the

tail for the 1-edge and the 2-edge; for each of these edges, the end point of diag(x)

incident on it is considered the head.

We define the following:

ex = ρ(head(edge(x)))− ρ(tail(edge(x)))

dx = ρ(top(diag(x)))− ρ(bot(diag(x)))

ox =
ρ(top(diag(x))) + ρ(bot(diag(x)))

2
− ρ(head(edge(x))) + ρ(tail(edge(x)))

2

Note that these definitions correspond exactly to our earlier definitions: |ex| = e′x is
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the length of edge(x) (we allow ex to be negative when head(edge(x)) < tail(edge(x)))

in ρ and dx is the length of diag(x) in ρ. We refer to ox as the offset of the diamond

labeled x in ρ.

Now, we can calculate ex0, ex1, ex2 and ex3 in terms of ex, dx and ox as follows:

Lemma 3.1.3.

ex0 =
ex

2
− dx

2
− ox ex1 =

ex

2
+

dx

2
+ ox

ex2 =
ex

2
− dx

2
+ ox ex3 =

ex

2
+

dx

2
− ox

Proof. We will show the calculation for ex0 only.

ex0 = ρ(head(edge(x0)))− ρ(tail(edge(x0)))

= ρ(head(edge(x)))− ρ(top(diag(x)))

=
ρ(head(edge(x)))− ρ(tail(edge(x)))

2
+

ρ(head(edge(x))) + ρ(tail(edge(x)))

2

−ρ(top(diag(x)))− ρ(bot(diag(x)))

2
− ρ(top(diag(x))) + ρ(bot(diag(x)))

2

=
ex

2
− dx

2

−ρ(top(diag(x))) + ρ(bot(diag(x)))

2
+

ρ(head(edge(x))) + ρ(tail(edge(x)))

2

=
ex

2
− dx

2
− ox

The proofs for ex1, ex2 and ex3 are similar.

Using this, one can obtain an expression for ex in terms of the diagonal lengths
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and the offsets of the diamonds which are ancestors of edge(x). We use y < x to

denote that y is a prefix of x, and the empty string is a prefix of every string. We

also use |x| to denote the length of the string x.

Lemma 3.1.4.

ex =
d∗
2|x|

+
∑
y<x

S(x|y|+1)
dy

2|x|−|y|
+
∑
y<x

T (x|y|+1)
oy

2|x|−|y|−1

where S(0) = S(2) = −1, S(1) = S(3) = +1 and T (0) = T (3) = −1, T (1) = T (2) =

+1.

Proof. We prove this by induction on |x|.

Base Case: Consider |x| = 0. In this case, ex = d∗ and the statement is true.

Inductive Step: Suppose the statement is true for all x such that |x| = i. Now

consider ex0, where |x| = i. From Lemma 3.1.3, ex0 = ex

2
− dx

2
− ox. Using the

expression we have for ex from the inductive hypothesis, we get:

ex0 =
1

2

(
d∗
2i

+
∑
y<x

S(x|y|+1)dy

2i−|y| +
∑
y<x

T (x|y|+1)oy

2i−|y|−1

)
− dx

2
− ox

=

(
d∗

2i+1
+
∑
y<x

S(x|y|+1)dy

2i+1−|y| +
∑
y<x

T (x|y|+1)oy

2i+1−|y|−1

)
− dx

2
− ox

=
d∗

2i+1
+
∑
y<x0

S(x|y|+1)dy

2i+1−|y| +
∑
y<x0

T (x|y|+1)oy

2i+1−|y|−1

Thus the statement holds for ex0 as well. Similarly, we can show that the statement

holds for ex1, ex2 and ex3. By induction, the statement of the lemma is true.
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Grouping edges and diagonals

Before we continue, we would like to remove the dependence on oy. We noticed

in experiments that optimal embeddings had all the oy set to zero, so we expect

removing the oy should not hurt our bounds much. In fact, we will place our edges

and diagonals into groups, and write our constraints in terms of the average distances

in these groups. The careful choice of our labeling will cause the oy terms to cancel

out.

In particular, we group edges into 2k groups of 2k edges each. Groups are identified

with labels in {0, 1}k. For a group labeled by z ∈ {0, 1}k, edge(x) belongs to the

group z if x(mod 2) = z. Here x(mod 2) refers to the label obtained by performing

a coordinate-wise mod 2 operation. Similarly, diagonals of level i are grouped into 2i

groups, identified with labels in {0, 1}i.

ez =
1

2k

∑
{x:x(mod 2)=z}

|ex|

dz =
1

2i

∑
{x:x(mod 2)=z}

dx

In other words, ez and dz are the average lengths of their constituent edges and

diagonals.

We can immediately rewrite our distortion constraint in terms of ez and dz without

changing anything.

D

d∗ +
k−1∑
i=0

∑
y∈{0,1}i

dy

− γ
∑

x∈{0,1}k

ex ≥ k + 1− γ
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Claim 3.1.5. For a group label z ∈ {0, 1}k,

1

2k

∑
{x:x(mod 2)=z}

ex =
d∗
2k

+
∑
y<z

S(z|y|+1)
dy

2k−|y|

Proof. Using Lemma 3.1.4, the value of the LHS is as follows:

LHS =
1

2k

∑
{x:x(mod 2)=z}

(
d∗
2k

+
∑
y<x

S(x|y|+1)dy

2k−|y| +
∑
y<x

T (x|y|+1)oy

2k−|y|−1

)

=
d∗
2k

+ E1(z) + E2(z)

where

E1(z) =
1

2k

∑
{x:x(mod 2)=z}

∑
y<x

S(x|y|+1)dy

2k−|y|

E2(z) =
1

2k

∑
{x:x(mod 2)=z}

∑
y<x

T (x|y|+1)oy

2k−|y|−1

We now simplify the two expressions E1(z) and E2(z). Note that x, y ∈ {0, 1, 2, 3}j

for some j while y′, z ∈ {0, 1}j.

E1(z) =
1

2k

∑
{x:x(mod 2)=z}

∑
y<x

S(x|y|+1)dy

2k−|y|

=
∑
y′<z

1

2|y′|

∑
{y:y(mod 2)=y′}

S(z|y|+1)dy

2k−|y|

=
∑
y′<z

S(z|y′|+1)dy′

2k−|y′|
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E2(z) =
1

2k

∑
{x:x(mod 2)=z}

∑
y<x

T (x|y|+1)oy

2k−|y|−1

=
∑
y′<z

1

2|y′|+1

∑
{y:y(mod 2)=y′}

(T (z|y|+1) + T (2 + z|y|+1))oy

2k−|y|−1

= 0

The last equality follows from the fact that T (i) + T (2 + i) = 0 for i ∈ {0, 1}.

Substituting the values of E1(z) and E2(z) in the expression we derived earlier proves

the claim.

Lemma 3.1.6. For a group label z ∈ {0, 1}k,

ez ≥ d∗
2k

+
∑
y<z

S(z|y|+1)
dy

2k−|y|

ez ≥ −d∗
2k
−
∑
y<x

S(z|y|+1)
dy

2k−|y|

Proof.

ez =
1

2k

∑
{x:x(mod 2)=z}

|ex|

≥ 1

2k

∑
{x:x(mod 2)=z}

ex

Using Claim 3.1.5, we get the first inequality we need to prove. Also,

ez =
1

2k

∑
{x:x(mod 2)=z}

|ex|

≥ − 1

2k

∑
{x:x(mod 2)=z}

ex
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Table 6: The main linear program
min s

D

(
d∗ +

k−1∑
i=0

∑
y∈{0,1}i

dy

)
− γ

∑
z∈{0,1}k

ez ≥ k + 1− γ [µ]

∀z ∈ {0, 1}k s
2k − ez ≥ 0 [pz]

∀z ∈ {0, 1}k ez +

(
d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [αz]

∀z ∈ {0, 1}k ez −
(

d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [βz]

Again, using Claim 3.1.5 gives the second inequality.

These inequalities result when we replace the ex in Claim 3.1.5 with the |ex| from

the definition of ez.

Linear program for minimizing stretch

We have already derived three of the four constraints that we will use in our linear

program. All that remains is to provide a lower bound for stretch.

Consider the stretch incurred by edge(x) in the line ρ. For every edge(x) = (u, v),

s ≥ |ex|/∆(u, v) ≥ 2k|ex|, where ∆ is understood to be the distance function for

the original metric space. Since max{x:x(mod 2)=z} |ex| ≥ ez, we conclude that ∀z ∈

{0, 1}k s ≥ 2kez.

Now we are ready to give our linear program (see Table 6). Note that we will

optimize γ later, but that it is constant with respect to the variables of the LP. We

provide the names of the dual variables in brackets for reference. We have carefully

derived our constraints so that we can see that the solution to our LP is no larger

than the minimum stretch needed to embed the recursive diamond graph into `1.
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Table 7: The main dual linear program
max (k + 1− γ)µ
∀z ∈ {0, 1}k −γµ− pz + αz + βz ≤ 0 [ez]∑

z∈{0,1}k

pz ≤ 2k [s]

∀y ∈
⋃

i∈[0,k−1]

{0, 1}i Dµ +
∑

v∈{0,1}k−|y|

S((yv)|y|+1)(αyv−βyv)

2k−|y| ≤ 0 [dy]

Dµ +
∑

z∈{0,1}k

αz−βz

2k ≤ 0 [d∗]

Table 8: The dual with µ factored out
max (k + 1− γ)µ
∀z ∈ {0, 1}k µ (−γ − p∗z + α∗

z + β∗z ) ≤ 0 [ez]

µ

( ∑
z∈{0,1}k

p∗z

)
≤ 2k [s]

∀y ∈
⋃

i∈[0,k−1]

{0, 1}i µ

(
D +

∑
v∈{0,1}k−|y|

S((yv)|y|+1)(α∗
yv−β∗

yv)

2k−|y|

)
≤ 0 [dy]

µ

(
D +

∑
z∈{0,1}k

α∗
z−β∗

z

2k

)
≤ 0 [d∗]

Dual linear program for the lower bound on stretch

We have formulated an LP minimization problem whose optimum value is a lower

bound on the minimum stretch for a D-distortion embedding. In order to prove our

lower bound we give the dual of this LP and a feasible solution. We construct the

dual in the normal way (see Table 7).

Next we give our solution for this LP. In fact, our solution is very simple. Every

variable is just a constant multiple of µ: px = p∗xµ, αx = α∗
xµ and βx = β∗xµ. We will

specify the values of these constants, and then maximize µ subject to the constraints

of the dual in order to get our bound. For these purposes, we can rewrite the dual

LP (see Table 8).
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Table 9: The dual solution
γ = k −D

α∗
x =

{
D(k − 1− 2‖x‖1) if ‖x‖1 ≤ k/2− 1

0 otherwise

β∗x =

{
D(2‖x‖1 − k + 1) if ‖x‖1 ≥ k/2

0 otherwise

p∗x =


2D(k/2− k/2D − ‖x‖1) if ‖x‖1 ≤ k/2− k/2D − 1

2D(‖x‖1 − k/2− k/2D + 1) if ‖x‖1 ≥ k/2 + k/2D

0 otherwise

The dual solution

We now give our solution to the dual in Table 9. We use ‖x‖1 to denote the number

of 1s in the 0-1 string x.

Claim 3.1.7. The values of γ, α∗
z, β∗z and p∗z in Table 9 give a feasible solution for

our dual LP.

Proof. First check the ez constraint, that (−γ− p∗z +α∗
z +β∗z ) ≤ 0 for all z. We break

this into three cases.

Case 1: ‖z‖1 ≤ k/2− k/2D − 1

−p∗z + α∗
z + β∗z = D(k − 1− 2‖z‖1)− 2D(k/2− k/2D − ‖z‖1)

= γ

Case 2: ‖z‖1 ≥ k/2 + k/2D

−p∗z + α∗
z + β∗z = D(2‖z‖1 − k + 1)− 2D(‖z‖1 − k/2− k/2D + 1)

= γ
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Case 3: k/2− k/2D − 1 < ‖z‖1 < k/2 + k/2D

p∗z = 0

α∗
z ≤ D(k − 1− 2(k/2− k/2D)) = k −D = γ

β∗z ≤ D(2(k/2 + k/2D − 1)− k + 1) = k −D = γ

Since the ranges where α∗
x and β∗x are positive do not overlap, this proves that the ez

constraint is satisfied.

Now let us skip to the dy constraint. In order to prove this, we will use the

following lemma:

Lemma 3.1.8.

∀i ∈ [0, k − 1], y ∈ {0, 1}i, v ∈ {0, 1}k−i−1

S((y0v)|y|+1)(α
∗
y0v − β∗y0v) + S((y1v)|y|+1)(α

∗
y1v − β∗y1v) = −2D

Proof. S((y0v)|y|+1) = −1 and S((y1v)|y|+1) = +1, so

S((y0v)|y|+1)(α
∗
y0v − β∗y0v) +

S((y1v)|y|+1)(α
∗
y1v − β∗y1v) = −α∗

y0v + β∗y0v + α∗
y1v − β∗y1v.

Since ‖y0v‖1 + 1 = ‖y1v‖1, there are three cases. Case 1: ‖y0v‖1, ‖y1v‖1 ≤ k/2− 1

−α∗
y0v + β∗y0v + α∗

y1v − β∗y1v =

−α∗
i + α∗

i+1 =

−D(k − 1− 2i) + D(k − 1− 2(i + 1)) = −2D
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Case 2: ‖y0v‖1, ‖y1v‖1 ≥ k/2

−α∗
y0v + β∗y0v + α∗

y1v − β∗y1v =

β∗i − β∗i+1 =

D(2i− k + 1)−D(2(i + 1)− k + 1) = −2D

Case 3: ‖y0v‖1 = k/2− 1, ‖y1v‖1 = k/2

−α∗
y0v + β∗y0v + α∗

y1v − β∗y1v =

−α∗
i − β∗i+1 =

−D −D = −2D

Applying lemma 3.1.8, we conclude that

D +
∑

v∈{0,1}k−|y|

S((yv)|y|+1)(α
∗
yv − β∗yv)

2k−|y| =

D −
∑

v′∈{0,1}k−|y|−1

2D

2k−|y| =

D − (2k−|y|−1)(2D)

2k−|y| = 0

Hence the dy constraints are all satisfied: In fact, they are all tight.

The case for the d∗ constraint is even simpler because the sign for α∗
z is always
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positive and the sign for β∗z is always negative. For every x with

‖x‖1 = l ≤ k/2− 1,

pair x with y such that (x xor y) = 111 . . . 1 (in other words, y is the bitwise NOT of

x). Note that

‖y‖1 = k − l ≥ k/2 + 1,

and that

α∗
l − β∗k−l = D(k − 1− 2l)−D(2(k − l)− k + 1) = −2D.

This accounts for all x except where ‖x‖1 = k/2. In this case α∗ is 0, so we see that

the d∗ constraint is satisfied.

Finally, we return to the s constraint. Recall that our lower bound will be (1+D)µ.

This constraint is the only one which limits µ, and we will try to make µ as big as

we can. Hence, µ = 2k/
∑

z p∗z. Let us now bound p∗z:

∑
p∗z = 2D

 k
2
− k

2D
−1∑

i=0

(
k

2
− k

2D
− i

)(
k

i

)
+

k∑
i= k

2
+ k

2D

(
i− k

2
− k

2D
+ 1

)(
k

i

)
= 2D

 k∑
i= k

2
+ k

2D
+1

(
i− k

2
− k

2D

)(
k

i

)
+

k∑
i= k

2
+ k

2D

(
i− k

2
− k

2D
+ 1

)(
k

i

)
= 2D

 k∑
i= k

2
+ k

2D

(
2

(
i− k

2
− k

2D

)
+ 1

)(
k

i

)
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Now observe that

(
k

i + 1

)
=

k − i

i + 1

(
k

i

)
≤ k/2− k/2D

k/2 + k/2D

(
k

i

)
=

D − 1

D + 1

(
k

i

)
,

which implies that (
k

i + t

)
≤
(

D − 1

D + 1

)t(
k

i

)
.

It is simple to check that

∞∑
t=0

(2t + 1)rt = 2
∞∑

t=0

(t + 1)rt −
∞∑

t=0

rt

=
2

(1− r)2
− 1

1− r
=

1 + r

(1− r)2
.

Substituting r =
(

D−1
D+1

)
, we can see that

∑
p∗z ≤ 2D

(
k

k
2

+ k
2D

) k/2−k/2D∑
t=0

(2t + 1)

(
D − 1

D + 1

)t

≤ 2D

(
k

k/2 + k/2D

)
D(D + 1)

2

= D2(1 + D)

(
k

k/2 + k/2D

)

Hence, µ =
2k∑

z

p∗z
≥ 2k

D2(1 + D)
(

k
k/2+k/2D

)
LPdual = (1 + D)µ ≥ 2k

D2
(

k
k/2+k/2D

)
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Using Stirling’s approximation, we get a lower bound of Ω

(
1

D2
2k(1−H( 1

2
(1+ 1

D
)))

)
.

Note that the number of points n = Θ(22k). For large constant D, this bound becomes

nΩ(1/D2). For D = (1 + ε) where ε is small, the bound becomes n
1
2
−O(ε log(1/ε)). This

concludes the proof of Theorem 3.1.2.

We should note that our bounds are presented to make clear that constant dis-

tortion embeddings require polynomial dimension. Once D ≈
√

log(n) our bound

does not say anything interesting. On the other hand, our estimate for
(

k
k/2+k/2D

)
is

a strict overestimate, so our bound does indeed hold for any D. We can deduce a few

simple corollaries from this.

Corollary 3.1.9. For any distortion D = O((log(n))c/2) where c < 1, at least

2Ω(log(n)1−c) dimensions are required for the recursive diamond graph.

In other words, super-logarithmic dimension is needed even when almost
√

log(n)

distortion is allowed.

On the other hand, the result of Rao (Theorem 1.5.9, [65]) implies a distortion

D = O(
√

log(n)) embedding with dimension O(log(n)) for any planar graph. This in

turn implies that the dependence on 1/D2 in the exponent cannot be improved (say

to 1/D) for planar graphs.

Corollary 3.1.10. The lower bound on dimension in terms of distortion cannot be

improved to nΩ(1/D2−δ) for any δ > 0 for any family of planar metrics.

This is easy to see because any bound of this form would imply that embedding

planar graphs with distortion
√

log(n) would require 2Ω(log(n)δ/2) dimensions, which is

super-logarithmic for any constant δ > 0.
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Figure 6: Using the diamond graph to generate our point set

3.2 Some `1 metrics require high dimension

So far we have proved that some series-parallel graphs do not admit low distortion,

low dimension embeddings, while Theorem 1.6.6 of Gupta et al. [32] proves that

series-parallel graphs can be embedded into `1 with constant distortion (with high

dimension). This immediately implies the existence of `1 metrics which require high

dimension. We can go one step further and provide an explicit family of point sets

native to `1 which have the same properties as the recursive diamond graph. This

gives our final theorem:

Theorem 3.2.1. There are n point metrics in `
O(
√

n)
1 which require nΩ(1/D2) dimen-

sions if only D distortion is allowed.

Proof. We build our point set with a construction analogous to the construction of

the recursive diamond graph (see Figure 6). Let the original edge have end points at 0

and 1. Our “vertices” will be points in {0, 1}i (that is, vertices of the hamming-cube).

To go from level i to level i + 1, first double the number of dimensions. The vertices

of the parent edge are at the points u and v. Replace them with the points uu (u

concatenated with u) and vv. The children will be the points uv and vu. The level-k
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recursive diamond graph corresponds to a set of Θ(4k) points in 2k dimensions.

Claim 3.2.2. Every “edge” in a level k point set has length 1.

Proof. We prove this by induction on the level of the point set.

Base case: The original edge in the point set is between 0 and 1.

Inductive step: By the inductive hypothesis, the end points u and v of an edge at

level i has length 1. The four child edges at level i + 1 are (uu, uv), (uu, vu), (vv, uv)

and (vv, vu). Since ||u − u||1 = ||v − v||1 = 0 and ||u − v||1 = 1, ||uu − uv||1 =

||uu− vu||1 = ||vv − uv||1 = ||vv − vu||1 = 1.

Claim 3.2.3. Each diagonal at level i has length 2k−i in the level k point set.

Proof. Again, we proceed by induction on the level of the point set.

Base case: The level 0 diagonal in the level 1 point set is from 01 to 10, which has

length 2.

Inductive step: In the level j graph a level i < j diagonal between points u and v

has length 2j−i. In the level j + 1 graph these points are replaced with uu and vv.

||uu− vv||1 = 2||u− v||1 = 2j+1−i. The new diagonals in the level j + 1 graph are at

level j. A given new diagonal with parents u and v has end points uv and vu, and

||uv − vu||1 = 2||u− v||1 = 2 = 2j+1−j by claim 3.2.2.

If we divide all distances by 2k this point set has exactly the same “edge lengths”

and “diagonal lengths” as the recursive diamond graph. Since our constraints only

depend on these distances, our lower bound for the recursive diamond graph imme-

diately applies to this point set.
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As we noted at the end of Section 3.1, any distortion D = (1 + ε) (for ε small

enough) requires n
1
2
−O(ε log(1/ε)). This is in stark contrast to the case of the Johnson-

Lindenstrauss Lemma 1.6.1, where the dependence on ε is only O(1/ε2).

3.2.1 The point set as an embedding of the diamond graph

As a brief aside, we would like to observe that the point set above is in fact an

embedding of the diamond graph into `1 with distortion at most 2 and dimension

Θ(
√

n). We implicitly defined a mapping from points of the diamond graph into

points of the Hamming cube by defining the construction of our `1 point set in analogy

to the construction of the diamond graph.

Claim 3.2.4. If two points u and v lie on a shortest path from the original top vertex

to the original bottom vertex, then the distance between u and v is preserved exactly

in this embedding.

Proof. Consider every shortest path from the original top vertex (corresponding to

(0, 0, . . . , 0)) to the original bottom vertex (now (1, 1, . . . , 1)). By Claim 3.2.2 we

see that at each step exactly one coordinate switches from 0 to 1 (or vice versa).

Since there are k dimensions and each shortest path from the top to bottom is length

exactly k, this implies that at each step along the path exactly one “0” is switched

to a “1,” and then it is never switched back. This means the length of any path

which lies wholly on a single shortest path from the top to the bottom is preserved

exactly.

Let ♦x denote the diamond with label x. If u and v do not lie on the same shortest

path, there must be some diamond ♦x such that u descends (w.l.o.g.) from the left

side of ♦x and v from the right.
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Claim 3.2.5. If u and v descend from opposite sides of a diamond ♦x but lie on the

same side of diag(x) (the diagonal of ♦x), then their distance is preserved exactly in

the embedding.

Proof. Refer to the top vertex of ♦x as top(♦x), and similarly bot(♦x) is the bottom

vertex, left(♦x) the left vertex and right(♦x) the right vertex. The vectors for top(♦x)

and bot(♦x) differ at exactly p positions, where top(♦x) has 0s and bot(♦x) has 1s.

left(♦x) and right(♦x) differ from top(♦x) and bot(♦x) in exactly p
2

positions, and

from each other in p positions by Claim 3.2.3 and Claim 3.2.4. Assume (w.l.o.g.)

that u and v are both on the top(♦x) side of diag(x). Consider any shortest path

from left(♦x) to right(♦x) that passes through both u and v. Then at each step from

left(♦x) to top(♦x) we switch a 1 to a 0, and at each step from top(♦x) to right(♦x)

we switch a 0 to a 1. But the positions where the 1 to 0 switches occur must be

disjoint from the 0 to 1 switches, otherwise there would be a path from left(♦x) to

right(♦x) shorter than p. Therefore, ||u− v||1 = ||u− top(♦x)||1 + ||top(♦x)− v||1 =

∆G(u, top(♦x)) + ∆G(top(♦x), v) (where ∆G is the distance in the graph), showing

that the distance is preserved exactly.

There is only one remaining case.

Claim 3.2.6. If u and v descend from opposite sides of a diamond ♦x, and they also

lie on opposite sides of diag(x), their distance is preserved up to a factor 2.

Proof. In this case,
∆G(top(♦x),bot(♦x))

2
≤ ∆G(u, v) ≤ ∆G(top(♦x), bot(♦x)). Now

assume (w.l.o.g.) that u is below left(♦x) and v is above right(♦x). u must have 1s at

any position where left(♦x) has 1s, and v must have 0s at any position where right(♦x)

has 0s (by Claim 3.2.4). Also note that left(♦x) and right(♦x) have the same number
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of 1s and 0s. This means there are p
2

=
∆G(left(♦x),right(♦x))

2
=

∆G(top(♦x),bot(♦x))

2

positions where left(♦x) has 1s and right(♦x) has 0s. Since these positions cannot

change for u and v, ||u− v||1 ≥ ∆G(top(♦x),bot(♦x))

2
≥ ∆G(u,v)

2
.

We conclude that this is indeed a distortion 2 embedding for the recursive diamond

graph of k levels with dimension d = 2k ≈
√

3
2
n where n is the number of vertices.



Chapter 4

Optimization techniques for

embeddings

We have proved that there are some classes of `1 embeddable metrics which require

polynomially many dimensions for any constant distortion. We now wish to look at

how the result was actually proved. In the terms of Section 3.1.1, how did we derive

the γuv and λuv to arrive at the final main inequality? Why did we decide to group

the edges and diagonals? How did we arrive at the scheme for labeling edges and

diagonals that made this possible? In this chapter we will explore these questions.

The reasons for doing this are two-fold. Firstly, our proof in its final form has

many parts, and this chapter should aid the reader in making sense of them. More

importantly, we believe that these techniques can be used in the future on difficult

embedding questions. We have used linear program optimization and duality through-

out. As we will see, this actually helped us to discover the combinatorial structure of

the recursive diamond graph, and was a large reason for the success of our research.

After we discuss our problem in specific we will discuss some general approaches to

80
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min s

D

(
d∗ +

k−1∑
i=0

∑
y∈{0,1,2,3}i

dy/2
i

)
− γ

∑
x∈{0,1,2,3}k

e′x/2
k ≥ k + 1− γ (1)

∀x ∈ {0, 1, 2, 3}k ex ≥ d∗
2|x|

+
∑
y<x

S(x|y|+1)
dy

2|x|−|y| +
∑
y<x

T (x|y|+1)
oy

2|x|−|y|−1 (2a)

∀x ∈ {0, 1, 2, 3}k ex ≥ − d∗
2|x|

−
∑
y<x

S(x|y|+1)
dy

2|x|−|y| −
∑
y<x

T (x|y|+1)
oy

2|x|−|y|−1 (2b)

∀x ∈ {0, 1, 2, 3}k −ex ≥ − s
2k (3)

Table 10: Original linear program (no grouping)

using optimization in exploring `1, `2 and (`2)
2 embeddings, and in Chapter 5 list

some open problems that might be approached in this manner.

4.1 Discovering combinatorial structure via exper-

iments

Recall that we derived a single linear constraint involving the distortion D. Let us

call this constraint L, and leave the problem of finding the appropriate γuv and λuv

for Section 4.2. Given the linear inequality L, we have written down the initial linear

program we derived to minimize stretch (see Table 4.1). We can see in this linear

program that inequality (1) is simply the D-distortion constraint L. Similarly, (3) is

trivial, and simply comes from the definition of stretch. Equations (2a) and (2b) give

the bound on the length of edge(x) in terms of x’s ancestor diagonals and offsets.

Deriving (2a) and (2b) takes a bit of work, which we did in Chapter 3.1. This linear

program will then minimize the stretch needed to embed the recursive diamond graph

into a single line, as described above.
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Our next goal is to find a good feasible dual solution for this linear program. If we

do not already have a good idea what the correct dual solution should be, how can

we find it? In this case we actually generated explicit instances of this linear program

for various sizes of graphs and various fixed D and solved them using the CPLEX

solver. This approach has been considered in the past (e.g., in Andoni et al. [4] as

discussed below), but it is often the case that the resulting optimization problem

is infeasible. Consider our case: The level k graph has Θ(4k) vertices, so both our

number of variables and our number of constraints grows exponentially in k. We

benefit from the fact that we have reduced our problem to a problem of embeddings

into lines, but is it enough?

With the given linear program we were not able to derive the feasible dual solution

we needed. The results that we got from small k actually did not seem to indicate

polynomial dependence on n. Fortunately, however, the solutions to these small

problems brought to light several combinatorial properties of optimal embeddings of

our graph.

Property 1: oz = 0. We discovered that in every case the oz were always set

to zero. Could we prove that the offsets were immaterial? We could not remove

them without proof because, a priori, removing variables (or fixing them = 0) could

actually raise the optimal s artificially.

Property 2: If x ≡ y(mod 2), then ex = ey and dx = dy. In other words, any

two edges or diagonals whose labels were component-wise equivalent modulo 2 always
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got assigned the same length. This means that if we define

ez =
1

2k

∑
{x:x(mod 2)=z}

|ex|

dz =
1

2i

∑
{x:x(mod 2)=z}

dx

as we did in Section 3.1.3 and re-write our linear program in terms of ez and dz we

should expect that the optimum is not changed.

Making this combination also causes the offsets to drop out of the linear program,

and the result is our main linear program (see Table 6). Now by taking advantage

of these two properties we have greatly simplified our linear program: Our number

of variables has dropped from roughly 5
3
4k to roughly 2k+1. This means that if the

largest graphs we could embed before were on n vertices, we can now embed graphs

on n2 vertices. This allowed us to solve large enough LPs that the dual solutions

could be used to derive our theorem.

Property 3: Given two labels x, y ∈ {0, 1}i (that is, the same length), then if

||x||1 = ||y||1, ex = ey or dx = dy (whichever is appropriate).

In other words, in the solutions provided by the CPLEX the average length of an

edge or diagonal group depended only on the number of 1s in the label. This was the

key insight that allowed us to derive our feasible dual solution given in Table 9.

In general, we may use mathematical optimization to generate optimal embed-

dings, and thereby discover combinatorial properties of the problem. We may then

try to prove hypotheses based on these observations, and simplify our embedding

task. We might also use our observations to simplify our linear program so that it

provably can only give a weaker bound, but with the belief based on our observations
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that it will not actually weaken the resulting bound. By iterating this process of

exploration and simplification we can take a problem that is poorly understood and

perform experiments that help us develop an intuition. As we saw in Chapter 3.1 this

process was very successful in resolving the `1 dimension reduction question.

4.2 Finding the distortion constraint

Recall that we wish to find a single linear inequality L of the form

∑
u,v∈X

(γuvNEuv + λuvLDuv) ,

with γuv, λuv ≥ 0. It may be helpful for the reader to refer back to Section 3.1.1

at this point. How did we actually discover the weighting of γuv and λuv to arrive

at our main distortion constraint? Is there any reason to believe that the γ and λ

we selected are optimal? We will explore these issues now. We noticed one other

property from our embedding experiments of the previous section:

Property 4: Edges only expanded, diagonals only contracted.

This means that γuv will be 0 for all diagonals (u, v), because the diagonals never

run into the non-expansion constraint, and similarly λuv will be 0 for all edges (u, v).

Now let us re-write our main linear program so that we make the use of the weights

γ and λ explicit (see Table 11). Notice that for simplicity we have re-indexed the γ

and λ to match the rest of the notation. In our main linear program (see Table 6)

we set all the λi = λ = 1, and then optimized γ. In fact we derived the “correct”

values of λ using another linear program. Consider what would happen if we were to

break the main linear constraint into separate distortion constraints for the diagonals
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Table 11: LPA: The linear program with undetermined weights
min s

D

(
λd∗ +

k−1∑
i=0

∑
y∈{0,1}i

λidy

)
− γ

∑
z∈{0,1}k

ez ≥ λ +
∑k−1

i=0 λi − γ [µ]

∀z ∈ {0, 1}k s
2k − ez ≥ 0 [pz]

∀z ∈ {0, 1}k ez +

(
d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [αz]

∀z ∈ {0, 1}k ez −
(

d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [βz]

Table 12: LPB: The linear program with separate constraints for each level
min s ∑

z∈{0,1}k

ez ≤ 1 [γ]

Dd∗ ≥ 1 [λ]

∀i ∈ [0, k − 1] D
∑

y∈{0,1}i

dy ≥ 1 [λi]

∀z ∈ {0, 1}k s
2k − ez ≥ 0 [pz]

∀z ∈ {0, 1}k ez +

(
d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [αz]

∀z ∈ {0, 1}k ez −
(

d∗
2k +

∑
y<z

S(z|y|+1)dy

2k−|y|

)
≥ 0 [βz]

on each level of the graph (see Table 12). As we will see, the choice of the names for

the dual variables of LPB to match the constants in LPA is deliberate.

Consider the value of s optimized by LPB. This will be the minimum stretch

incurred by any embedding of the recursive diamond graph into a line under some

distortion constraints, but a priori this does not seem to give a lower bound on the

stretch needed for a general stretch-limited embedding. Recall that in Section 3.1.1 we

argued that, because we had a single inequality relating D to the lengths of the edges

and diagonals, we could focus on a single line embedding. In LPB we do not have a

single inequality involving D, but several inequalities, and so our convexity argument
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Table 13: DUALB: γ,λ and the λi are variables

max λ +
∑k−1

i=0 λi − γ
∀z ∈ {0, 1}k −γ − pz + αz + βz ≤ 0 [ez]∑

z∈{0,1}k

pz ≤ 2k [s]

∀y ∈
⋃

i∈[0,k−1]

{0, 1}i Dλi +
∑

v∈{0,1}k−|y|

S((yv)|y|+1)(αyv−βyv)

2k−|y| ≤ 0 [dy]

Dλ +
∑

z∈{0,1}k

αz−βz

2k ≤ 0 [d∗]

Table 14: DUALA: γ,λ and the λi are constants, µ is a variable

max
(
λ +

∑k−1
i=0 λi − γ

)
µ

∀z ∈ {0, 1}k −γµ− pz + αz + βz ≤ 0 [ez]∑
z∈{0,1}k

pz ≤ 2k [s]

∀y ∈
⋃

i∈[0,k−1]

{0, 1}i Dλiµ +
∑

v∈{0,1}k−|y|

S((yv)|y|+1)(αyv−βyv)

2k−|y| ≤ 0 [dy]

Dλµ +
∑

z∈{0,1}k

αz−βz

2k ≤ 0 [d∗]

does not work. Nonetheless we will show that any feasible solution to DUALB will

give a feasible solution to DUALA when the γ and λ are set to be the values given

by the DUALB (see Tables 14, 13).

In order to see this, simply set µ = 1 and γ, λ and the λi to be the values of

the corresponding variables in DUALB. It is very easy to check that the feasibility

conditions are still met, and that the two programs have the same optimal value.

This means that any feasible solution to DUALB gives a lower bound on LPA, and

it provides us with the “correct” values of γ, λ and the λi in the process. This is in

fact how we derived the main distortion constraint.
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4.3 Lower bound techniques through semidefinite

programming

One difficulty with our approach is that, in general, finding an optimal `1 embedding

of n points via linear programming takes time exponential in n (see Section 1.5.3). In

our case we worked around this problem by studying a counter-example that was very

special, and had a high degree of symmetry. This allowed us to write a very efficient

linear program for minimizing stretch, but finding such linear programs in general

might be difficult. We now introduce an alternative lower bound technique that uses

polynomially sized (in n) semidefinite programs. This results in programs that can be

solved in polynomial time. It seems reasonable to expect that this technique should

give weaker bounds than the LP approach because finding an optimal `1 embedding is

known to be NP-hard [39, 43]. On the other hand, it may suffice for many applications.

It is not hard to see that any `1 metric can be embedded into a Hamming cube

with arbitrary accuracy. Recall that in Section 1.5.3 it was claimed that any `1 metric

is a linear combination of cut semi-metrics. For each cut C think of the coefficient of

C, λC , as specifying the number of copies of that cut metric to use. This immediately

gives an embedding into a Hamming cube (of arbitrary dimension), but it can have

some error because the coefficients need not be whole numbers. We can get arbitrary

accuracy by scaling the `1 metric up, thereby getting more precision at the cost of

higher dimensionality.

Now consider the distance measure given by the square of the `2 norm, which

we call (`2)
2. In general this is not a metric, but on the set {0, 1}d, (`2)

2 ≡ `1,

which implies that any finite `1 metric can be embedded into (`2)
2 with arbitrarily
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low distortion. Any lower bound for the distortion of embedding a metric into (`2)
2

therefore immediately implies a lower bound for embedding into `1. Though (`2)
2 is

not even a metric, optimal embeddings into (`2)
2 may be (1 + ε)-approximated by

semi-definite programming as in Theorem 1.5.15 in polynomial time. This approach

to `1 lower bounds was mentioned by Andoni et al. [4], but was rejected for their

purposes.



Chapter 5

Conclusions and research

directions

The study of metric space embeddings is a very active research field, and many

interesting questions remain open. In Chapter 1 we mentioned two popular open

questions:

• Conjecture 1.5.11: Given a small fixed graph H, graphs from the class of

H-minor free graphs embed into `1 with constant distortion.

• Open Problem 1.5.14: Can the optimal distortion for embedding a finite

metric into `1 be approximated in polynomial time?

We refer the reader back to Chapter 1 for more discussion of these two problems.

We would also like to direct the reader to the list of open problems from the Haifa

Workshop on Discrete Metrics and Their Applications, [57]. This list, maintained

by Jiri Matoušek, contains quite a large list of interesting problems about metric

embeddings, and includes breaking news about new related results.

89
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Our work suggests some new problems and has tantalizing connections to other

well known questions, and we would like to conclude with a brief discussion of these

issues.

5.1 Lower bounds

Following our work, Lee and Naor [48] have provided a very nice geometric proof

of our result. In place of our linear program, they show that low dimensional `1 is

isomorphic (up to a small constant factor) to low dimensional `1+δ for δ small, and

then prove that the recursive diamond graph requires high distortion in such `1+δ.

They use a convexity inequality that generalizes the Short Diagonals Lemma 1.2.7

for `p with 1 < p ≤ 2.

The main question left open by our work is the following:

Open Problem 5.1.1 (Improved lower bound). Can our lower bound trade-off

for embedding `n
1 → `d

1 with distortion D be improved to d = nΩ(1/D)?

As we noted in Corollary 3.1.10, an affirmative answer to this question cannot be

proved using any family of planar metrics. On the other hand we do not know of any

good candidate examples to improve the lower bound. We know that every metric

can be embedded in `d
1 with d = O(log(n)) and D = O(log(n)) by Bourgain [11] and

Linial et al. [50] (see Theorem 1.5.2). This implies that any dependence on D better

than nΩ(1/D) cannot hold, though nothing is implied when D = o(log(n)).

This question seems to be closely related to another question:

Open Problem 5.1.2. What is the maximum, over all M = (X, `1), of c2(M) with

|X| = n?
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This question was proposed by Linial [49] among others. In other words, what is the

maximum distortion needed to embed any finite `1 metric into `2? Linial notes that

the answer is known to be Ω(
√

log(n)) and O(log(n)). This is related to Problem 5.1.1

because we may use it to reduce dimension in `1:

• Embed M into `2 (with distortion c2(M))

• Reduce dimension to O(log(n)/ε2) in `2

• Embed back into `1 (See the discussion of Theorem 1.5.2)

This gives a technique to reduce `1 dimensionality to O(log(n)/ε2) while incurring dis-

tortion (1+ε)c2(M). If one could show that for all M = (X, `1), c2(M) = O(
√

log(n)),

then this would imply that the nΩ(1/D2) dependence on D is the strongest possible for

general finite metrics and arbitrary D.

5.2 Positive results for low-dimensional `1 embed-

dings

As we hinted in Section 2.2, it is in fact possible to use our techniques to give low-

dimensional embeddings into `1 as well as to prove lower bounds. Recall that stretch

characterizes `1 dimension up to a factor D log(n): We implicitly gave a sampling

algorithm for creating a low dimensional `1 embedding from a low stretch embedding

in the proof of Claim 2.1.2. In order to get a polynomial time algorithm for embedding

a metric into low-dimensional `1 we now simply need an algorithm which generates a

random line metric fσ(X)i with probability wi in polynomial time. The cost of taking

O(D log(n)) samples will increase the running time by only an O(D log(n)) factor.
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Now consider the specific case of our research on embedding series-parallel graphs

into `1. Recall that we used CPLEX to generate stretch-optimal line embeddings

of the recursive diamond graph. We used the dual solutions to our LPs extensively,

but we have not yet examined the primal solutions. It is possible that by analyzing

the primal solutions we will actually find an embedding that can be generalized to

work for all series-parallel graphs. This would immediately give us embeddings of

series-parallel graphs into `1 with ideal dimension/distortion trade-offs (up to log(n)

factors), interpolating between the results of Rao [65] and Gupta et al. [32].

Open Problem 5.2.1. Give a polynomial time algorithm which achieves a distortion

D, dimension nO(1/D2) trade-off for all metrics supported on series-parallel graphs

when D is at least some universal constant c.

Another interesting direction is to study the exact relationship between `1 em-

beddings and (`2)
2 embeddings. Though there is a very nice duality theory for semi-

definite programs which provides lower bounds (as noted in the previous chapter), it

is not clear whether good embeddings into (`2)
2 are of use in designing `1 embeddings.

A number of authors (see [57]) have asked the following:

Open Problem 5.2.2. Can any set of points under (`2)
2 for which the triangle

inequality is satisfied be embedded into `1 with constant distortion?

Notice the connection with Open Problem 1.5.14. The question there was whether

or not the optimal distortion for `1 embeddings could be well approximated. If the

optimal distortion for embedding a metric into `1 cannot be approximated up to

a constant factor in polynomial time, this would imply that (`2)
2 with the trian-

gle inequality must in fact be far from `1. This follows from the fact that optimal
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(`2)
2 embeddings with the triangle inequality can be found efficiently: The triangle

inequality for each set of three points can be introduced as an extra constraint result-

ing in a polynomial (in n) number of new constraints, and this SDP can be solved in

polynomial time.

If all finite (`2)
2 metrics can be embedded into `1 with distortion at most a fixed

universal constant, then this would give a polynomial time constant factor approxi-

mation for c1(M). Note that in this algorithm one never needs to actually embed (`2)
2

metrics into `1, so the complexity of actually finding the embedding is not significant

when approximating c1(M).

5.3 Conclusions

We have presented an approach to studying metric space embeddings into `1 that

relies heavily on mathematical optimization techniques and duality. While these

relationships were already well known, we were able to exploit them in a new way to

demonstrate that some `1 metrics require a high number of dimensions. In order to

accomplish this we refined Charikar and Sahai’s [15] concept of the stretch of an `1

embedding and proved that there is a very close relationship between `1 dimension

and stretch.

We have also tried to communicate the main elements of our “experimental”

approach to working with embeddings. Not only did we give our lower bound via

LP duality, but we were actually able to discover the “correct” form for the main

distortion constraint through the use of LPs.

We hope and believe that our techniques may be used to discover other facts about

`1 embeddings. In particular, a solution to Open Problem 5.2.1 might direct us to
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some new approaches to resolving Conjecture 1.5.11.
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