
WYSIWYG NPR:

Interactive Stylization for

Stroke-Based Rendering of

3D Animation

Robert D. Kalnins

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

June 2004

c© Copyright by Robert D. Kalnins, 2004.

All Rights Reserved

Abstract

Artists and illustrators have developed a large repertoire of techniques to com-

municate information effectively using traditional media. Recent work in computer

graphics has begun to leverage these techniques in the form of non-photorealistic

rendering (NPR) algorithms for 3D, but, to date, little research has addressed flexi-

ble, interactive tools to make such algorithms accessible to content creators. In this

dissertation we demonstrate the importance of developing these tools for NPR. In

particular, we show that “hands-on” NPR systems can provide the designer with

new levels of æsthetic flexibility, and the means to achieve effects tedious or even

impossible to attain by traditional methods.

We approach this open problem for stroke-based NPR of animated 3D geometry.

Our system employs a tablet interface to provide the designer with an interactive

paradigm in which stroke effects are sketched directly into the scene. The artist

imparts his unique æsthetic by sketching strokes over the outlines of objects, and

drawing details and hatching effects onto their surfaces.

These tools raise new questions regarding how annotations drawn by the designer

in one view should appear when the scene is rendered from novel viewpoints. It is

unreasonable to expect the user to annotate geometry from all conceivable poses.

Rather, we develop rendering algorithms that can exhibit a range of behaviors which

the designer can tune to specific goals, either by adjusting parameters or directly

sketching the desired effects. But it is not sufficient for the stylization rendered

in each frame to maintain consistency only with the designer’s annotations. To be

suitable for animation, they must also exhibit coherence between consecutive frames.

We consider this for all effects in our system, but this is particularly challenging for

those stylizing view-dependent silhouettes. For these, we develop a flexible and robust

new framework that can provide coherence tailored to a particular æsthetic. These

tools make possible a new class of effects that would be daunting to animate by hand.

This research shares applications with those of traditional hand-generated tech-

niques, including architectural and product design, technical and medical illustration,

storytelling (e.g. children’s books), games, fine arts, and animation.

iii

Acknowledgments

This research would not have been possible without the generous support and

guidance of my advisor, Adam Finkelstein. I would also like to extend special thanks

to Lee Markosian for the multitude of insightful discussions that assisted, in no small

part, to conceive and shape this project. Many individuals deserve recognition for

their contributions to this work, including (but not limited to) Philip L. Davidson,

Matthew Webb, Michael A. Kowalski, Barbara J. Meier, Joe Lee, John F. Hughes,

Doug DeCarlo, Szymon Rusinkiewicz, Grady Klein, Matthew Hibbs, Salman Butt,

Dan Crosta, and David Bourginon. And kudos to Melissa Lawson for always going

the extra mile to ensure that her students’ affairs are in order. As any international

student will affirm, one is truly lost without such an excellent graduate coordinator.

I would like to extend deepest appreciation to my family for the limitless sup-

port they have provided me over the course of my endeavors. Many thanks also to

my friends (both at home and in Princeton), without whom my sanity would most

certainly have been unseated somewhere along the way. And finally, to Melanie, I

cannot fully express all my gratitude for your support, encouragement, patience, and

inspiration that made this journey possible.

Funding for this work was provided in part by Intel Labs, the Alfred P. Sloan

Foundation, and the National Science Foundation (CCR-9875562). Portions of this

dissertation have also been published as [46] and [47].

iv

For Melanie...

v

Contents

Abstract . iii

Acknowledgments . iv

List of Figures . ix

1 Introduction 1

1.1 Why NPR tools? . 1

1.2 Thesis . 3

1.3 Organization . 5

2 WYSIWYG NPR 7

2.1 Overview . 7

2.2 Example Session . 9

2.3 Parametric Controls . 11

2.4 Direct Controls . 13

2.4.1 Line Stylization Effects . 13

2.4.2 Surface Stylization Effects . 14

2.5 Design Considerations . 16

2.5.1 Annotation . 16

2.5.2 Dynamics . 18

2.5.3 Interactivity . 19

2.5.4 Mapping the Problem Space 20

vi

3 Stroke Primitive 21

3.1 Representation . 21

3.2 Visibility . 23

3.3 Media Simulation . 24

4 Line Effects 29

4.1 Introduction . 29

4.2 Static Feature Lines . 30

4.2.1 Over-Sketching Stylization . 31

4.2.2 Stylization Synthesis . 32

4.2.3 Level of Detail . 33

4.2.4 Parameterization . 35

4.2.5 Interactivity . 36

4.3 View-Dependent Contours . 36

4.3.1 Silhouette Contours . 37

4.3.2 Sketching Prototypes . 39

4.3.3 Level of Detail . 40

4.3.4 Parameterization . 42

4.3.5 Animated Stylization . 44

4.4 Generalized Coherence Framework 45

4.4.1 Overview . 46

4.4.2 Coherent Rendering Pipeline 47

4.4.3 Sample Propagation . 50

4.4.4 Brush Path Generation . 56

4.4.5 Brush Path Parameterization 60

4.4.6 Extensions . 66

4.5 Discussion . 69

vii

5 Surface Effects 73

5.1 Introduction . 73

5.2 Detail Marks . 75

5.2.1 Annotating Surfaces . 75

5.2.2 Dynamic Stroke Behavior . 76

5.2.3 Level of Detail . 80

5.2.4 Interactivity . 82

5.3 Tonal Marks . 83

5.3.1 Structured Hatching . 84

5.3.2 Free-Form Hatching . 86

5.3.3 Dynamic Lighting . 87

5.3.4 Interactivity . 91

5.4 Discussion . 91

6 Conclusions 94

6.1 Summary . 94

6.2 Future Work . 98

6.3 Jot . 102

A Media Simulation Details 103

A.1 Overview . 103

A.2 Design Considerations . 104

A.3 Vertex Program . 106

A.4 Fragment Program . 107

B Epipolar Silhouette Motion 108

Bibliography 111

viii

List of Figures

1.1 Jot: A WYSIWYG NPR system . 4

2.1 Example interactive session with Jot 10

3.1 Flexible stroke primitive . 22

3.2 Media simulation transfer functions 25

3.3 Media simulation applied to stroke primitives 26

3.4 Media simulation applied to mesh shaders 27

4.1 Stylization synthesis for static feature lines 32

4.2 Dynamic behavior of stylized static feature lines 34

4.3 Dynamic behavior of stylized silhouettes 41

4.4 Silhouette stylizations requiring different forms of coherence. 45

4.5 Overview of the coherent rendering pipeline 48

4.6 Sample propagation in the ID image 51

4.7 Propagation on the spinning sphere 52

4.8 The epipolar plane defines silhouette correspondences 54

4.9 Policies for generating brush paths 58

4.10 Fitting parameterization functions to a vote group 61

4.11 Coherence objectives depend upon stylization semantics 62

4.12 Coherently stylizing hidden lines. 66

4.13 Thorny stylization is maintained coherently in an animated sequence 70

ix

5.1 Strokes on surfaces produce various effects 74

5.2 Dynamic behavior of detail strokes 77

5.3 Surface strokes near the silhouette . 79

5.4 Level of detail effects for detail strokes 80

5.5 Tonal marks indicate surface shading from lighting effects 83

5.6 Level of detail for structured hatching 85

5.7 Level of detail with free-form hatching 87

5.8 Mobile hatching groups define a directional pseudo-light 88

5.9 Several hatching effects on simple geometry 90

6.1 WYSIWYG NPR tools lead significant æsthetic flexibility 95

6.2 Models re-annotated in different styles 97

6.3 Still life via WYSIWYG modeling and annotation tools 97

6.4 Silhouettes with animated stylization 99

6.5 Animation of rigid bodies . 99

6.6 Animation of deforming meshes . 99

6.7 “Boogie Cactus” . 99

x

Chapter 1

Introduction

1.1 Why NPR tools?

Research in 3D computer graphics has traditionally focused on systems that produce

photorealistic imagery. As a result, the adoption of these technologies by new users

has been limited to a small number of specific applications. One key reason is that

photorealistic content is extremely difficult and expensive to create. Such rendering

carries the burden of exhaustive simulation of the physical processes by which light

propagates through the scene, interacts with surfaces, and ultimately arrives at the

camera [32]. Even if some “black box” were available to easily perform this task,

Markosian [55] argues that the cost of modeling the underlying geometry with suffi-

cient detail is still prohibitive. While methods have been developed to scan existing

3D objects [15], and capture their motion [62, 70], the results ultimately offer minimal

creative control, and are certainly of little use if the target result exists only in the

designer’s imagination.

On the other hand, artists and illustrators working with traditional media have

developed a large array of techniques to convey visual information both efficiently and

effectively via non-photorealistic means. In fact, such approaches are often prefer-

1

able to photorealism when the primary purpose is to communicate, explain, inform

or entertain [55]. With the right tools, systems that produce stylized or abstract

rendering should be significantly easier for the content creator to employ – requir-

ing less underlying geometric detail, and relaxing the rendering demands of physical

realism. Accordingly, a growing branch of computer graphics research has focused

on producing non-photorealistic rendering (NPR) of 3D geometry by adapting these

traditional methods. Strong arguments for the usefulness of this line of inquiry are

made by many researchers (e.g., [23, 52, 61, 84, 92]).

To date, much of the research in NPR has targeted a particular style of imagery

and developed algorithms to produce it automatically when rendering 3D scenes.

Relatively little emphasis has been placed on the related problem of how to provide

direct, flexible interfaces that enable a designer to describe the stylistic appearance

of such renderings in the first place, much less specify how they behave dynamically.

Instead, the usual approach is to rely on pre-scripted behavior, or cumbersome pro-

grammatic descriptions. Meier [60] and Seims [78] argue that effective interfaces are

essential for these technologies to be accepted by content creators. Indeed, a key

reason is that NPR imagery often reflects a designer’s personal judgment regarding

what details to emphasize or omit. Thus, the challenge facing NPR researchers is to

develop systems that present a designer with interfaces offering such direct control

over rendering æsthetics.

Furthermore, while the last decade has seen a blossoming of work on NPR algo-

rithms in a variety of styles (see [30] for a survey), much of this work addresses the

production of still images. However, a particular strength of NPR is the possibility

to relieve the burden of painstakingly creating many frames by hand when construct-

ing animations. Some systems for rendering 3D scenes have explicitly addressed the

challenge of NPR rendering for animation (e.g. [21, 61]). But to date, the results lack

significant æsthetic flexibility or practical accessibility to the artist.

2

Additional challenges arise when rendering NPR the real-time interactive domain.

Maintaining frame-to-frame coherence of sequential renderings while under real-time

computational budgets, especially when the camera paths are unknown a priori, are

all issues that must be addressed in interactive NPR systems. These challenges are

common to such applications as visualization and design tools, video games, interac-

tive story books, etc. Some work in the literature has begun to address aspects of

rendering in a real-time settings (e.g. [31, 50, 51, 57, 68]), but the development of

interactive NPR design tools remains an open problem.

1.2 Thesis

In this work we seek to demonstrate the importance of developing flexible, interactive

design tools for animated NPR. Our goal – or thesis – is to show that these “hands-

on” systems can provide the designer with new levels of æsthetic flexibility, and the

means to achieve effects challenging or impossible to attain by traditional methods.

The development of these systems will entail a range of challenges spanning from

the front-end interfaces upon which the design tools are built, to the back-end algo-

rithms that produce the final imagery. We are specifically interested in “hands-on”

tools – those providing the artist with particularly direct, interactive control over

æsthetic qualities. Often, such tools employ interfaces that function in a manner con-

sistent with the type of stylization implemented by the system. For example, painting

with a haptic brush device is well-suited for defining the stylizations in a paint-based

NPR system [2]. With these interfaces and appropriately designed tools, a user should

be able to apply any existing skills with traditional media (e.g., indication [92]) and

personal judgment to impart his unique æsthetic to the rendering. Such processes

are typically most challenging to emulate in the black-box engines common in the

literature (e.g. [16]).

3

(a) (b) (c)

(d) (e) (f)

Figure 1.1: By drawing stroke-based NPR effects directly into the 3D scene, the
artist annotates the teacup in (a) to produce various distinct styles. The stylization
in (c) is preserved coherently by the system as the camera changes to (f).

However, these systems would be of little interest if they sought only to emulate

traditional media. Their appeal derives from when the machine is exploited to ac-

complish the tedious aspects of content creation. For instance, if a designer draws

stylization into a 3D scene, a useful system might render the stylized geometry from

new camera poses automatically. This raises the question of how some stylization

created in one view should adapt when seen from another. Solutions will need to

investigate both the designer’s controls to describe these adaptations, and the ren-

dering algorithms that implement them. Furthermore, if a system can be made to

maintain frame-to-frame coherence between novel views, it becomes possible to pro-

duce animations automatically. Effective solutions can open the door to effects so

rich they would be virtually impossible to produce coherently by hand.

4

In short, effective NPR systems are those that provide hands-on tools that enable

artists to do what they are good at, and handy tools that offload tedious tasks the

CPU is good at. We explain in Chapter 2 why we use the term WYSIWYG NPR

for systems composed of such tools. However, as we outline in the previous section,

little work has yet been done to produce them. We address this open problem with

the development of Jot – a proof-of-concept WYSIWYG NPR system – with which

we advance our thesis. Using Jot, an artist can annotate 3D geometry like the mesh

in Figure 1.1a by drawing stroke-based effects directly into the scene. Hands-on tools

enable the designer to achieve a wide spectrum of æsthetics, a few examples of which

are given in Figures 1.1b-e. Additional controls provide means to describe how styl-

ization behaves under the dynamic conditions that arise rendering novel views, as in

Figure 1.1f. The system maintains the frame-to-frame coherence of these stylizations

during animation or real-time interaction, regardless of their visual complexity. It is

our aim with Jot to demonstrate that, even with a small set of stroke-based effects,

WYSIWYG NPR tools can offer designers a new degree of æsthetic flexibility, and

the means to produce dynamic imagery unattainable via traditional media.

1.3 Organization

We begin in Chapter 2 by fleshing out the design challenges presented by WYSIWYG

NPR tools, and then introduce the Jot test system used to investigate them in this

work. The chapter concludes by mapping out the design challenges posed by our

thesis in the context of the Jot platform.

In our test system, we chose to investigate the range of traditional media styles

available to stroke-based NPR. Jot implements several of these effects using a stroke

primitive, described in Chapter 3, that is designed to provide æsthetic flexibility,

while maintaining interactive performance rates.

5

The stroke-based effects we have chosen to address in this system fall into two

fundamental categories. The first of these are the line-based effects described in

Chapter 4. These involve the stylization of curves arising from the 3D geometry, such

as the static feature lines described in Section 4.2, or the view-dependent contours

explored in Section 4.3. Figure 1.1 provides several examples of silhouettes stylized

with these tools. The particularly challenging problem of maintaining the coherence

of these stylizations is reserved for Section 4.4.

The other class of annotations are the surface-based effects explored in Chapter 5.

We consider different types of surface markings delineated by the semantic informa-

tion they convey. First among them are the detail marks like the flower in Figure 1.1d,

which we discuss in Section 5.2. Strokes that impart surface tonal effects, such as

hatching on the cup in Figure 1.1c, comprise the final variety in Section 5.3.

We conclude discussions in Chapter 6 with a summary of our findings and recom-

mendations for avenues of future research.

6

Chapter 2

WYSIWYG NPR

2.1 Overview

The term “What You See Is What You Get,” or WYSIWYG, originated at Xerox

PARC in the late 1970’s to describe their text editor Bravo [91]. The first of its

kind, Bravo was designed to present the document being edited in a format identical

to the final printed page. In more contemporary times, WYSIWYG has come to

describe any interface that allows manipulation of output in its final form, without

requiring any knowledge of the underlying machinery. WYSIWYG webpage editors,

for instance, enable authors to directly layout their pages while the system automat-

ically generates the actual HTML code. Stated most broadly, WYSIWYG describes

content creation systems that enable the user to arrange the final design elements in

a hands-on environment while providing immediate visual feedback. This paradigm

describes the type of NPR design tools we propose in Section 1.2, thus we use the

term WYSIWYG NPR to describe systems that adhere to these design philosophies.

In this work, we develop a WYSIWYG NPR test-bed system called Jot. But

this is not the first example of WYSIWYG in the context of computer graphics

design tools. The WYSIWYG technique for creating texture maps was proposed by

7

Hanrahan and Haeberli [34] and is now available in various commercial modeling

systems. These tools let the designer paint texture maps directly onto 3D models

in real-time by projecting screen-space paint strokes onto the 3D surface and into

texture space where they are composited on the final map. Of course, the strokes

in these conventional texture maps simply remain fixed on the surface. They do not

adapt to dynamic conditions, such as changes in lighting model or viewpoint. In

contrast, the strokes in our NPR system can be tailored by the designer to respond

stylistically in dynamic 3D environments.

Our system also draws inspiration from others that provide direct drawing inter-

faces for creating stylized scenes. Arguably, the “Holy Grail” of NPR research is to

enable the artist to simply draw in the image plane and thereby express a complete,

stylized 3D world. The systems of Tolba et al. [86], Cohen et al. [12], and Bour-

guignon et al. [5], each pursue this goal by making simplifying assumptions about

the structure of the underlying geometry. To avoid making any such constraining

assumptions in our work, we assume that the underlying 3D geometry has already

been supplied in some way. NPR stylization effects will then be created by drawing

directly into the scene, and onto this geometry. Our goal is to eventually integrate

WYSIWYG NPR tools directly into a modeling system that also uses a drawing

interface for constructing the geometry, like SKETCH [95] or Teddy [42].

In pursuit of the goal of bringing WYSIWYG tools to bear on NPR, we cannot

hope to address all possible styles and effects. Instead, we focus upon NPR of stroke-

based styles, as they encompass a wide range of traditional media. Furthermore, we

concentrate our efforts on two fundamental effects: (1) stylization of individual lines

and contours that form the basis of simple line drawings, and (2) stylized patterns and

hatching that depict surface detail or tonal properties. While by no means complete,

we will show that this set of effects offer significant flexibility when implemented with

WYSIWYG NPR tools.

8

In the next section, we describe how the Jot system is organized with an example

from the user’s perspective. This is followed by a summary of the two primary modes

of the system – Section 2.3 briefly describes Jot’s parametric controls (e.g., sliders and

buttons), while Section 2.4 introduces the more hands-on direct controls that form

the focus of this WYSIWYG NPR system. Finally, we map out the challenges that

we must address to develop them in Section 2.5.

2.2 Example Session

The Jot system has three primary editing modes. The first mode employs conven-

tional interface elements (e.g. buttons, sliders) to offer various parametric controls as

described in Section 2.3. With these tools the user adjusts the more mundane system

settings like paper textures, background images, brush styles, lighting models, etc.

In contrast, the two remaining modes of the system leverage a tablet interface

to provide direct controls for stroke-based effects. When the artist sketches with the

pen and tablet interface, the gestural input defines stroke paths, while the pressure

information modulates stroke attributes like width or opacity. In the first of these

modes, line stylization (Chapter 4), the artist can stylize features like the crease

and silhouette contours typical to line drawings, while in surface stylization mode

(Chapter 5) strokes are sketched to create surface detail and shading effects.

As an illustration of how these tools work in concert, we summarize the steps

followed by a designer to create a stylized depiction of an apple sauce tin from a

cylindrical mesh (Figure 2.1):

a) A connected, polygonal mesh of a can was modeled using 3rd party software.

b) The stylization process begins when the artist imports this mesh into Jot. It

is initially displayed over top of the default background, in a generic outlining

style, and without any surface shaders.

9

'toon shader

decal

crease

hatching paper

silhouette

(a) (b) (c)

(d) (e) (f) (g)

Figure 2.1: Jot: (a) A mesh is, (b) loaded into Jot, (c) paper and shaders are chosen,
(d) strokes are drawn over outlines, (e) a label is sketched with decal strokes, and
(f) shading depicted with hatching strokes. These elements are labeled in (g).

c) First the artist engages parametric control mode, causing various menus, but-

tons, etc. to be presented. He selects a pre-generated paper texture and applies

it to a gray background color. Next, he picks a ‘toon shader for the model [51],

chooses its 1D texture from a set of profiles, and adjusts it to a blue color. And

finally, the lighting controls are manipulated so that the shader darkens the left

of the can.

d) Now the designer engages line stylization mode and picks a black pencil style

from amongst the presets. Using the tablet, he selects the silhouette contour

with a tap gesture, and draws a sketchy line prototype to stylize it. A second

tap gesture propagates the stylization to the remaining silhouette on the other

side of the can. To stylize the remaining feature lines, he selects the creases

along top and bottom lips and over-sketches them with a stylization similar to

the silhouettes.

10

e) Next surface stylization mode is engaged by the artist, and he indicates that his

coming gestures will depict detail. The apple label is then created by strokes

drawn directly onto the surface. During this process, he moves the viewpoint as

necessary, and changes the color, width and other brush parameters as shown.

f) Finally, the user indicates that the remaining gestures imply tone. Drawing

roughly parallel lines he produces hatching on the side of the can. A tap gesture

completes the stroke group, and is followed by another at angle to the first. A

final tap gesture completes the cross-hatching. The system infers a camera-

space lighting model that keeps the hatching on the left of the tin in new views.

2.3 Parametric Controls

The goal of this project is to bring the WYSIWYG paradigm to NPR design tools.

The hallmark of these systems are the hands-on direct control modes we outline in the

next section. These interfaces and supporting systems will compose the bulk of our

discussions (Chapters 4 and 5). Nevertheless, the more traditional parametric controls

common in existing off-line or black-box style NPR systems were found necessary to

bring the Jot tool set up to minimally functional levels. For the sake of completeness,

we take a moment to sketch out options available to the designer in this mode.

Environment

Various controls govern an array of environmental settings. These include such static

elements such as the background colors and images which the scene objects will be

composited over. Also, as part of a media simulation effect described in Section 3.3,

a paper texture map and associated tunable parameters can be assigned to the win-

dow plane. Other controls are associated with the lighting environment, which can

influence the rendering of some surface shaders described in the next section.

11

Basecoats

The designer can assign to each patch of surface a basecoat – a composite of shaders

that draw the patch triangles. Shaders include flat coloring, conventional Gouraud

shading and texture mapping, and ’toon shading (Figure 2.1).

Appropriate interfaces exist to configure each of these shaders, such as color slid-

ers, texture menus, and lighting controls. For ’toon shaders, as described by Lake

et al. [51], the designer can also create custom 1D texture maps describing the color

spectrum. Our 1D textures may also include an alpha component that is input for

our media simulation (Figure 3.4).

Media Simulation

To increase the range of NPR styles, a media simulation effect (Section 3.3) emulates

the deposition of pigment by shaders and strokes onto an underlying paper medium.

This is governed by a height-field texture that is assigned to the window as part of

the environmental settings described above. Additional controls influence how paper

textures are assigned on a per basecoat, and per stroke effect basis, providing more

stylistic flexibility. Furthermore, these additional height fields need not remain fixed

in the view plane. To combat shower-door effects [61], these textures can be “pinned”

to geometry so that they move in screen-space (Section 3.3).

Brush Styles

When sketching stroke effects in the direct stylization modes, the designer can adjust

the current “brush style” that affects stroke properties. In practice, the artist will

carefully design combinations of parameters that together produce a desired look, then

save that brush into a collection of presets available in future sessions. Section 3.1

briefly describes the parameters that govern the rendering of the stroke primitives.

12

2.4 Direct Controls

At this point, we turn our attention to Jot’s direct controls. These comprise the tablet-

driven WYSIWYG NPR tools and supporting systems that are the primary focus of

this investigation. As revealed in the example session (Section 2.2), these controls

are separated into a mode for manipulating line stylization effects (Chapter 4), and

another for surface stylization effects (Chapter 5). Before we delve into the their

implementation details, we first summarize these effects to introduce concepts and

terminology useful when mapping out our approach to their development in the next

section.

2.4.1 Line Stylization Effects

Certain types of lines, such as silhouette contours, play a critical role in our visual

interpretation of 3D shape. Artists and designers therefore often emphasize them,

either by drawing them outright or by contrast enhancement across line boundaries.

In fact, the most minimal hand-drawn image of a given 3D scene will often consist of

little more than markings that depict these lines.

In this mode of the system, the goal is to provide tools enabling the artist to

directly describe the stylized appearance of these lines. The user will select one

of these curves in the 3D scene, and then specify stylization by directly sketching

strokes over it with a chosen brush style. The system’s task is then to maintain the

character imparted by the artist automatically under changing views, animation, or

other dynamic influences.

We sort our line stylization effects into two categories based upon whether they

remain static on the geometry, or arise dynamically as a function of the view. The

latter will present additional challenges because of their dynamic nature.

13

Static Feature Lines remain fixed on the 3D surface. These arise on the sur-

face to represent sharp creases, borders between different regions, and other salient

features. Some examples of these are rim on the sauce tin in Figure 2.1 and all the

lines depicted in Figure 4.1 (page 32).

View Dependent Contours arise dynamically as a function of surface orienta-

tion in the camera frame. The most familiar variety of these are silhouette contours

that separate front and back facing regions of surface, but our system also supports

the suggestive contours of Decarlo et al. [19]. All the outlines composing the images

in Figure 1.1 are examples of stylized silhouette contours.

2.4.2 Surface Stylization Effects

Another critical element of traditional illustration are the groups of strokes designers

use to elicit surface properties. With the appropriate marks, they can convey surface

shape through shading, reveal material properties, and impart other forms of detail.

We support some of these effects in this mode of the system. Here, surface styliza-

tion is generated by sketching groups of new strokes directly onto 3D surfaces. This

differs markedly from line stylization effects, which involve over-sketching to stylize

existing lines. Once defined, however, the system again manages these stylizations

automatically under changing views, animation, or other dynamic influences.

We examine two types of surface effects, categorized by the type information they

are intended to convey. This distinction will govern their dynamic behavior.

Detail Marks are groups of strokes used to depict surface details. Examples

include decals, such as the label on the tin in Figure 2.1, and suggestions of material

properties, like the hairs on the bust in Figure 5.1c (page 74).

Tonal Marks are strokes used to depict tone or lighting effects. The conventional

cross-hatching on the side of the tin in Figure 2.1 is an example this effect. A more

free-form variety of tonal marks indicate shading on objects in Figure 5.7 (page 87).

14

S t r o k e - B a s e d N P R E f f e c t s

L i n e S t y l i z a t i o n E f f e c t s
(i.e. sketching stylizes existing stroke paths)

S u r f a c e S t y l i z a t i o n E f f e c t s
(i.e. sketching creates new stroke paths)

Static Feature Lines
(e.g. sharp creases)

View-Dependent Contours
(e.g. silhouettes)

Detail Marks
(e.g. decals)

Tonal Marks
(e.g. hatching)

W
Y

S
I
W

Y
G

D
e

s
i
g

n
E

l
e

m
e

n
t

s

A
n
n
o
ta

ti
o
n

Stylization
Interfaces · over-sketch, §4.2.1 · prototype sketch, §4.3.2 · direct sketching, §5.2.1

· structured sketch, §5.3.1

· free-form sketch, §5.3.2

Stylization
Synthesis

· rubber-stamp, §4.2.2

· markov synth, §4.2.2

· rubber-stamp, §4.3.2

· proto. propagation, §4.4.6
· pattern synthesis, §5.4 · hatching synthesis, §5.4

D
y
n
a
m

ic
s

Scripted
Behavior

· level of detail, §4.2.3

· parameterization, §4.4

· level of detail, §4.3.3

· parameterization, §4.4
· dynamic strokes, §5.2.2

· structured hatching, §5.3.1

· lighting, §5.3.3

Customizable
Behavior · level of detail, §4.5

· anim. stylization, §4.3.5

· localized stylization, §4.5
· level of detail, §5.2.3 · free-form hatching, §5.3.2

In
te

ra
c
ti

v
it

y Temporal
Coherence

· intrinsic, §4.2.5

· coherence pipeline, §4.4

· simple approach, §4.3.4

· coherence pipeline, §4.4
· mostly intrinsic, §5.2.4 · mostly intrinsic, §5.3.4

Real-Time
Performance · visibility, §4.2.5 · fast extraction, §4.3.1 · visibility, §5.2.4 · uv issues, §5.2.4

Table 2.1: Mapping out the problem space: WYSIWYG Design Elements vs. Stroke-Based NPR Effects. Section references
point to discussions of each WYSIWYG design consideration in the context of tool development for a given NPR effect.
Items in italics typeface have not been investigated, but discussed as possible future avenues of research.

15

2.5 Design Considerations

The development of Jot’s direct controls will entail a range of challenges spanning

from their front-end interfaces, to their back-end rendering algorithms. We identify

these challenges in this section by examining key design elements fundamental to the

WYSIWYG NPR tools proposed in Chapter 1. These elements will organize our

approach to developing such tools for the stroke-based effects in our system.

We can map out the resulting problem space as shown in Table 2.4.2. Each cell

represents one of the key design issues described in this section, taken in the context

of tool development for one of our stroke-based effects. If that concern has been

addressed in the implementation of Jot, pertinent section references are given. Issues

that are only discussed in terms of their merit for future research are referenced in

italics typeface. This table forms the road map for the remaining chapters.

To identify these design issues, recall the summary from Section 1.2 – i.e., effec-

tive WYSIWYG NPR systems are those that provide hands-on tools enabling artists

to do what they are good at, and handy tools for offloading tedious tasks the CPU

is good at. We apply these principles to three fundamental aspects of the system:

(1) annotation interfaces and algorithms for describing the stylization of a scene,

(2) interfaces and algorithms that describe how animation or camera dynamics influ-

ence the stylization, and (3) constraints imposed by the interactivity of the system.

We examine each of these aspects of the system in turn, identifying the important

design considerations to address.

2.5.1 Annotation

Foremost, we seek hands-on tools enabling the user to annotate 3D scenes with their

desired æsthetic. This entails not only flexible and direct stylization interfaces, but

also algorithms that can automatically synthesize stylization from the original input.

16

With these tools the artist can impart the desired appearance to complex scenes,

without performing an exhaustive annotation of all constituent elements.

Stylization Interfaces

Appropriately designed tools should offer the artist a high degree of direct control,

even providing opportunity to apply existing skills with traditional media. One aspect

of this is choosing input devices that are matched to the task at hand. For instance,

a pen and tablet interface is well-suited to perform stylization tasks in a stroke-based

NPR system. Unlike a conventional mouse, the tablet provides high precision for

small strokes, additional pressure and tilt information, and a degree of similarity to

traditional tools.

Of course, the input device is just one aspect of interface design. Systems must

be built that employ them in an effective fashion. Hatching stylization, for exam-

ple, could be controlled by literally sketching it onto 3D surfaces. WYSIWYG NPR

systems should aspire to these direct style controls where possible, and avoid encum-

bering the designer unnecessarily with parametric controls such as sliders, buttons,

and the like.

Stylization Synthesis

The stylization interfaces described above imply a localized form of annotation, such

as sketching a label onto a surface (Figure 2.1d). However, it can be tedious to manu-

ally stylize all components of complex scenes in this way. A useful system should also

provide annotation tools that do not unreasonably burden the user, especially when

repetition can be exploited by the CPU. Stylization synthesis tools could replicate

the designer’s annotations, or even generate unique stylization similar in some way

to the original input. By sketching only a few bricks, for instance, the designer might

stylize an entire brick wall.

17

2.5.2 Dynamics

Arguably, the most attractive aspect of 3D NPR is the ability to automatically render

annotated geometry from novel viewpoints. However, this raises new questions con-

cerning how annotations made in one view should appear when rendered in another.

To facilitate this, stroke rendering algorithms should produce effects that respond to

such influences as changing level-of-detail under camera motion. This is something

that can occur automatically for common or predictable effects via scripted behavior.

But in WYSIWYG NPR systems, interfaces should also exist to enable a designer to

ascribe a desired customizable behavior for these dynamic responses.

Scripted Behavior

Certain dynamic effects lend themselves to familiar “pre-cooked” or scripted behavior.

As a camera zooms out from a scene, for instance, it is natural to shrink the widths

of the strokes that depict it. For some stroke-based effects, a given dynamic influence

may lead to a number of common behaviors. A flexible system could provide a

spectrum of these, along with any pertinent parametric controls to tweak them.

Customizable Behavior

While it is useful to provide default scripts, the dynamic responses of some stylizations

cannot be easily modeled by simple processes. For these cases, tools are required that

can employ the designer’s skills and judgment more directly to describe customizable

effects. The same tools are, of course, also useful whenever the designer simply wishes

to exercise additional æsthetic control over the results. Figure 5.7 (page 87) shows an

example of customizable level of detail (LOD) behavior as the camera zooms in. The

artist directly sketched the tonal marking from multiple camera distances, thereby

expressing the additional LODs. Simple parametric controls and scripted behavior

cannot offer this type of flexibility.

18

2.5.3 Interactivity

To provide the designer with a flexible, hands-on environment, we seek systems which

are fully interactive. This requirement will place constraints upon design choices

throughout the system, including the interfaces and algorithms developed to address

the two previously outlined design issues. Obviously, this implies real-time perfor-

mance, placing limited computational budgets upon rendering and other supporting

algorithms. But interactivity also means that each frame rendered by the system

cannot be considered independently. Because they are viewed in real-time sequential

animation, rendered imagery should also exhibit frame-to-frame coherence.

Real-time Performance

Achieving interactive frame rates will impact many elements of the system. Certain

challenges will require novel solutions, while others can employ more established ac-

celeration methods. For instance, frame-buffer tricks are a common way to trade off

speed vs. accuracy by exploiting the efficiency graphics hardware at the cost image

precision. Indeed, such tricks will be described in the coming chapters, but care must

be taken not to fundamentally compromise the fidelity of results should the designer

need to “crank up the quality dial” for final production output.

Coherence

The ability to render 3D scenes under dynamic conditions does not automatically

imply that the results are coherent under animation. There are many examples in

the literature that render stylized 3D geometry from novel view points (e.g. [40, 92]),

but do so by considering each frame in isolation. Such imagery is nearly always un-

suitable for animation because the rendering primitives depicting them (e.g. strokes)

have no correspondence between frames. The animations they produce exhibit noisy,

distracting visual artifacts.

19

To avoid these effects, interactive WYSIWYG NPR systems must employ coherent

rendering algorithms. Furthermore, as we will show in Section 4.4, the coherence

mechanism itself is subject to various æsthetic considerations. So, it is also necessary

to consider design controls that govern this aspect of stylization.

Of course, frame-to-frame coherence is not unique to real-time rendering. It is

desirable even if the annotated scenes are rendered to depict scripted animated se-

quences that are viewed off-line. However, in interactive settings, achieving coherence

poses an additional complication. When enforcing frame-to-frame correspondence of

rendering elements in any frame, the system can only draw upon information in past

frames – the future frames are as yet unknown.

2.5.4 Mapping the Problem Space

As stated at the beginning of this section, these design issues can be mapped out in a

table versus each of the stroke-based effects we support in Jot. The resulting problem

space (Table 2.4.2) organizes our approach to the development of these tools in the

remainder of this dissertation. By addressing the majority of these challenges, we will

demonstrate that WYSIWYG systems lead to a new level of æsthetic flexibility for

NPR, and rich dynamic effects unavailable to traditional methods.

20

Chapter 3

Stroke Primitive

This chapter touches upon several aspects of the rendering primitive that forms the

foundation of Jot’s stroke-based effects. In Sections 3.1 and 3.2, we describe various

design choices and implementation details geared toward providing stylistic flexibility,

while achieving real-time performance rates. The æsthetic range of the system is

further extended by an efficient media simulation effect presented in Section 3.3.

3.1 Representation

Our stroke primitive is based upon that of Northrup and Markosian [64]. Their

approach is motivated by a similar goal of rendering silhouettes in real-time using

strokes that resemble natural media. The main difference in our implementation is

that vertices describing a stroke path are control points to a Catmull-Rom spline [27]

rather than polyline vertices. This vastly improves the robustness and quality of

rendering since we can always tessellate the spline smoothly in screen space.

Each stroke is represented by a list of control points {q i} called the base path,

and a set of style parameters describing the appearance of the stroke rendered along

it. These parameters include a screen-space width, color, and alpha value. Two

additional parameters describe how sharply the width and alpha value taper off at

the ends of the stroke. Optionally, pressure information from the tablet interface can

modulate the width and/or alpha profile along the stroke.

21

w

q
w
2

(b) solid triangle strip (e) 1D texture map

(c) width tapering (f) media simulation

(a) building triangle strips (d) alpha fading (g) 2D texture map

Figure 3.1: Various parameters control the triangle-strip-based stroke primtitive.

Because they convey stylistic features that are inherently 2D in nature, each stroke

is ultimately rendered as a triangle strip that lies in the image plane. These primitives

can also be rendered efficiently on modern graphics processing units (GPUs). The

triangle strip is constructed by stepping along the spline at a desired screen-space

resolution. At each point q, we generate a pair a vertices separated in the transverse

directions ±ŵ by the appropriate screen-space width w , as dictated by the style

parameters. The color and alpha values of each vertex pair are also set accordingly.

Additional flexibility is available through the use of alpha texture maps. An

optional 1D texture map can modulate alpha along the “cross-section” of the stroke,

or a 2D texture map can be used to modulate alpha in both the transverse and

longitudinal directions. For instance, a 1D texture could be used to diminish alpha

toward the perimeter of a stroke as in Figure 3.1e, or cause it to saturate abruptly as

in Figure 3.3a. On the other hand, 2D texture maps might be used to produce effects

like arrows heads, or broken lines as in Figure 3.1g.

Another dimension of expressiveness is achieved through the use of offset lists

that introduce screen-space displacements to the base path [56]. Each offset records

a parametric position along the base path and a screen-space displacement perpen-

dicular from that point. To render strokes with offset lists, we first map the list out

22

along the base path spline, perturbing the path appropriately in the normal direction.

This will define new stroke splines that can then be rendered as described above.

Offset lists can be used to achieve a myriad of effects, and are leveraged extensively

in Chapter 4. For instance, they can impart wiggles about the base path, such as the

stylized creases on the gear in Figure 4.1b (page 32). They can also introduce breaks,

as demonstrated by the thorny stylization of the cactus silhouettes in Figure 4.4a

(page 45). Offset lists can even progress forward and backward along the base path

to produce effects like the scribbled silhouettes in Figure 1.1e (page 4).

3.2 Visibility

The triangles composing both our strokes and 3D meshes (Section 2.3) can be rendered

efficiently by the modern GPU. Unfortunately, the visibility of these elements cannot

be resolved by the standard z-buffer. Even though the base path of a stroke may

fall upon a mesh surface, there is no guarantee that the triangle strips constructed

to depict it will not interpenetrate the surface. This is so because the triangle strips

possess a non-zero width and lie parallel to the view plane. The problem cannot even

be resolved by carefully constructing the triangle strips in the surface’s tangent plane

at all points – it would still interpenetrate in non-convex regions.

Instead, we adapt the method of Northrup and Markosian [64], that resolves

visibility using an item-buffer called the ID reference image. Into this off-screen

region, we render all mesh surfaces as triangles and any feature lines as polylines,

taking care to encode each element in a unique ID color. The conventional z-buffer

algorithm will ensure the frame-buffer receives the ID color belonging to the visible

element at each pixel (Figure 4.6, page 51). We can read back this buffer at 60Hz on

modern graphics hardware. Now, stroke visibility is resolved at interactive rates by

querying the ID image appropriately for the expected ID values in O(1) time. With

this mechanism, the stages to render a single frame in Jot appear as in Table 3.1.

23

Pass Action Comments Ref z-Rd z-Wrt

1. draw mesh tris in ID colors §3.2, 4.4.6
√ √

2. draw feature lines in ID colors §3.2, 4.4.6
√

X

–read back ID image–

3. draw bkgd. image via media shader §2.3, 3.3
√ √

4. composite mesh tris via surf. shaders §2.3, 3.3
√ √

5. composite stroke effects vis. w/ ID image §3, 4, 5 X X

Table 3.1: The ID image is rendered prior to the stylized scene in each frame.

In Sections 4.3.1 and 4.4 we present additional techniques for using the ID reference

image to compute visibility for silhouettes and hidden lines effects, as well as achieve

coherence for stylized features and contours.

3.3 Media Simulation

We would like to expand the æsthetic range of the system to encompass strokes styles

that resemble traditional media. This is accomplished by subjecting the strokes de-

scribed in Section 3.1 to a media simulation effect. When a stroke primitive is com-

posited into the frame buffer, a shader models the effect of a brush stroke depositing

pigment onto an uneven paper surface. By choosing the appropriate stroke properties

and paper texture, a diverse variety of effects can be achieved (Figure 3.3).

Like Curtis et al. [16] and Durand et al. [24], we begin by representing the paper

surface with a height field texture. To model deposition of pigment onto it by a brush

stroke, we interpret the incoming primitive’s color as the brush pigment, and the

alpha component as the brush pressure. As usual, the amount of pigment deposited

at a given point will be proportional to the pressure. But to account for the uneven

surface, this pressure will first be modified by the local height of the paper texture.

24

p (α)

α

0 .5 1
0

.5

1
v (α)

α

0 .5 1
0

.5

1
t (h,α)

α

0 .5 1
0

.5

1

(a) (b) (c)

Figure 3.2: Plots of media simulation transfer functions: (a) the canonical peak,
(b) the canonical valley, and (c) an intermediate height function, shown for h = 0.7.

In formal terms, the paper texture encodes a height field h ∈ [0, 1]. At peaks

(h = 1) the paper easily catches pigment, whereas in valleys (h = 0) it resists pigment.

We model this process by applying a transfer function to the α component of the

incoming primitive. For peaks, we use the transfer function p(α), and, for valleys, we

use v(α), each shown below. At intermediate height h, we employ transfer function

t(h, α) that reflects the relative peak-like or valley-like character of the point:

p(α) = clamp(2α) (3.1)

v(α) = clamp(2α − 1) (3.2)

t(h, α) = h · p(α) + (1 − h) · v(α) (3.3)

Figures 3.2a and b contain plots of the canonical peak and valley transfer functions,

p(α), and v(α). Clearly, peaks will accrue additional pigment, while valleys will

resist it. The general transfer function, t(h, α), is plotted in Figure 3.2c for the case

of h = 0.7, but any arbitrary h will yield similar functions within the dashed envelope

of p(α) and v(α). One can show that, as long as h is evenly distributed about h = 0.5,

the average tone over a region will not be changed by the transfer function.

25

(a) (b) (c)

Figure 3.3: Adjusting stroke and media parameters can yield a wide variety of effects.

The final effect is achieved by implementing t(h, α) as a pixel shader. For each

incoming stroke pixel (r, g, b, α) the shader determines h of the underlying paper,

and remaps α through t(h, α). The final pigment (r, g, b) is composited with additive

α-blending. Additional implementation details are found in Appendix A.

This transfer function was chosen because it is natively available in 1st generation

programmable graphics hardware. As such, the effect can be implemented on any

modern GPU without incurring additional performance cost. Despite the apparent

simplicity of the transfer functions, we find that with appropriate parameters and

textures, a wide range of effects can be achieved. In fact, we create a library of

brush presets for the designer that resemble such traditional effects as ball-point pen

(Figure 1.1e, page 4), oil paint on rough canvas (Figure 3.3b), lead pencil on paper

(Figure 3.3c), watercolor (Figure 4.4c, page 45), crayon (Figure 5.9, page 90), etc.

The media effect is not limited to strokes. Any primitive that possesses an

α-component can be composited with the t(h, α) shader. In Figure 3.4, the silhouettes

of a statue are rendered using stylization resembling a chalk on rough paper effect, but

the same media shader is also applied to the triangles of the mesh. The α-component

of the surface comes from a ‘toon shader with a narrow α-band at grazing angles,

leading to a subtle effect near silhouette boundaries.

26

Figure 3.4: Wide silhouette strokes are rendered on a coarse paper texture. A narrow
‘toon shader in the alpha channel achieves a subtle effect via the media simulation.

Pursuing the analogy that the viewport represents a physical surface, it is natural

to fix the paper texture to the view plane. However, as described by Meier [61],

rendering dynamic 3D scenes with static screen-space effects can produce an unde-

sirable “shower door effect”. We combat this effect by giving the user an option to

“pin” the coordinate frame of a paper texture to the bounding box of an object. If

each primitive depicting an object uses a paper texture so defined, we find that the

shower door effect can be mitigated. In fact, the user is free to assign an entirely

different paper texture to each stroke and surface effect in the scene, even multiple

paper textures for a single object.

27

When textures are pinned to moving objects, the shower door effect is not generally

apparent under object translation and some rotations. However, when an object is

magnified by relative camera motion or zoom, the shower door effect returns because

the paper texture is not simultaneously magnified in screen-space. A possible avenue

of future work could investigate multi-resolution paper textures. Cunzi et al. [14]

have investigated this using turbulence functions [65] in a framework that can both

track object motion and support magnification.

Our general approach is similar to a strategy described by Durand et al. [24].

They use a transfer function to re-map tones to produce bi-level (halftone) output,

and a modification to blur this bi-level output for better results on color displays.

In contrast, our transfer functions were designed to reproduce patterns we observed

in scanned images of real crayon and pencil on paper. They are simpler and better

suited to implementation on current pixel-shading hardware. And, because we re-

map alpha instead of tone, our method handles arbitrary colors more flexibly in both

source and destination pixels.

28

Chapter 4

Line Effects

4.1 Introduction

Certain lines, such as silhouettes and sharp creases, factor critically into the percep-

tion of 3D shape from drawings. Accordingly, graphics researchers have developed a

number of algorithms to find and render these lines from 3D models. In fact, a major

branch of NPR work addresses the depiction of these lines with strokes that wiggle,

vary in width and texture, or resemble in other ways strokes drawn by hand with

natural media. General arguments for the value of these stylizations have already

been made [23, 30, 85]. They can, for example, suggest surface texture (Figure 4.4a,

page 45), depict rich hand-drawn stylization (Figure 4.4c, page 45), or simply call out

special features such as hidden lines (Figure 4.4b, page 45).

Many researchers have approached the goal of rendering silhouettes at interactive

rates. Several techniques have been developed to accomplish this entirely on the

GPU by carefully tuning the conventional rendering pipeline [31, 71, 72]. However,

the results do not offer any significant æsthetic flexibility. Other techniques achieve

slightly more stylistic range by first extracting the feature lines from the geometry,

and then rendering stylized elements that resolve visibility in the z-buffer [51, 73, 95].

29

More expressive stylization is possible with techniques that, prior to rendering,

first extract feature lines from the geometry, determine visibility, and produce smooth

stroke paths [40, 58, 92]. More recent work has explored how to achieve this in

real-time by exploiting the z-buffer and rendering hardware [7, 44, 56, 64]. But, to

date, virtually no work has addressed the issue of frame-to-frame coherence for these

stylizations, even in off-line systems. Furthermore, these systems offer only limited

parametric control over the look and behavior of æsthetics.

In this chapter, we describe the development of a set of WYSIWYG tools that

provide the designer with very direct control over these stylizations. Using a drawing

interface, the artist can literally sketch into the 3D scene to describe line stylization

with a flexible stroke-based primitive. The system will ensure that the artist’s styl-

izations retain frame-to-frame coherence, even during real-time interactive rendering.

We consider first in Section 4.2 the stylization of static feature lines that remain

stationary on the 3D surface, while we reserve the more challenging problem of dy-

namic contours for Section 4.3. Finally, we develop a general framework for ensuring

the frame-to-frame coherence of these stylizations in Section 4.4.

4.2 Static Feature Lines

In Jot, static feature lines are represented as chains of edges or polylines that lay

on 3D meshes. They can arise on surfaces at sharp creases (Figure 4.1a), boundaries

between distinct patches of surface, borders of non-manifold surfaces, and other salient

features at the designer’s discretion. These lines are typically loaded as part of a 3D

model’s description, but we also provide controls for automatic crease generation via

dihedral angle testing. A bending threshold controls heuristics that chain the sharp

edge networks into static feature lines.

30

4.2.1 Over-Sketching Stylization

To develop WYSIWYG NPR tools for static features lines, we first consider the

stylization interfaces with which the designer annotates them. As described in Sec-

tions 2.3 and 3.1, we provide various parametric controls to customize the brush styles

available with our stroke primitive. Although means exist to adjust many different

stroke qualities, they do not result in a particularly hands-on degree of control.

However, an additional dimension of stylization lends itself to more a WYSIWYG

style interface. The offset lists described at the end of Section 3.1 enable our stroke

to exhibit a wide spectrum of effects by deviating about the base path. By exposing

this flexibility through an over-sketching interface (Section 2.2), we allow the artist

to more directly impart a personalized æsthetic.

When a user over-sketches a selected feature line with a brush stroke, the result is

recorded into an offset list. We accomplish this by treating the selected feature line

as the base path associated with the sketched out stroke. For each point along the

stroke, a perpendicular screen-space offset is recorded, as measured from the nearest

parameterized point along the base path. If necessary, the end-tangents are extended

to accommodate offsets that overshoot the path.

The artist is free to sketch over a given feature line any number of times, even

using a unique brush style if desired. Each stroke will result in an additional set of

style parameters (i.e. brush style and offset list) that are associated with the selected

feature line. It is then straightforward to maintain these stylizations in novel views.

Because static feature lines remain fixed on the mesh, they are easily matched with

their respective style parameters. In a given frame, the system simply projects each

feature line into screen-space, and renders the visible portion using a primitive with

the corresponding parameters.

31

(a) (b) (c)

Figure 4.1: Stylization synthesis: The gear in (a) is stylized via (b) rubber stamping
a single example stroke, and (c) markov synthesis using three example strokes.

4.2.2 Stylization Synthesis

Via over-sketching, the designer is free to stylize each static feature line individually.

While offering a high degree of direct control, this approach can be tedious when

annotating arbitrarily complex scenes. Ideally, we would enable the designer to auto-

matically stylize many lines at once, while still retaining hands-on æsthetic control.

This is accomplished by providing tools to synthesize stylization from the designer’s

own annotations. With these tools, the designer selects multiple feature lines and

stylizes them all at once by sketching only a few examples.

Jot provides two such schemes. The first of these, rubber-stamping, copies the

style parameters from a chosen feature line to all others targeted for synthesis. The

crease lines of the gear in Figure 4.1b were stylized with this method. A single

crease was annotated with a wavy line shown highlighted in red, the remaining lines

are synthesized by rubber-stamping it. Though limited, this scheme is useful for

intrinsically repetitive stylizations like dashed lines.

Another useful synthesis method might provide unique results that exhibit similar-

ity to the example annotations. Freeman et al. [28] describe a method of transferring

stylization from a set of example strokes to a new line drawing. Unfortunately, their

methods require a large set of examples (e.g. > 100) which does not meet our cri-

teria for reducing the annotation burden. We describe a method, Markov synthesis,

32

that can work well with just a few example strokes. To synthesize new annotations,

we perform one-dimensional texture synthesis on the offset list using Markov random

fields. We can then create variety by synthesizing a new offset list for each feature line

requiring stylization. Figure 4.1c shows the gear model with three creases annotated

by the designer and highlighted in red, while the remaining creases were synthesized

from the example set. Markov random fields have been recently used in graphics in

other data-synthesis applications [6, 26, 89]. Our algorithm closely follows the “video

textures” algorithm presented in Schödl et al. [76]; rather than generating new video

sequences from a set of example clips, we synthesize new sequences of offsets from a

set of example strokes. The synthesis algorithm constructs a Markov random field

where each state corresponds to an offset in an example list; the transition probability

between two states is a function of the local similarity between the two points. With

this method, we can generate many offset lists containing features from a small ex-

ample set. Additional details are given in Kalnins et al. [47]. The scheme works best

with stochastic stylizations (i.e., non-periodic), but more recent work handles struc-

tured stylizations more effectively [38]. A more complete WYSIWYG NPR system

could offer stylization synthesis via a range of such algorithms.

4.2.3 Level of Detail

As mentioned in Section 4.2.1, it is straightforward to maintain annotations on the

static feature lines in novel views. In a given frame, the system simply projects each

feature line into screen-space, and renders the visible portion as a stroke base path

using the corresponding style parameters. Even if the surface of the mesh deforms

via some animation, the locations of the static feature lines still remain well-defined.

We have, however, glossed over precisely how offset lists are mapped out along these

new base paths. It is these details that largely define how the stylizations behave in

response to dynamic influences.

33

σl = 1/4 1/2 1 2 4

(a) (b) (c) (d) (e)

Figure 4.2: A cube with annotated creases. The magnitude of the stylization offsets
are modulated by min(σl, 1).

One such detail concerns how offset magnitudes respond to changes in level of

detail. This effect arises when the screen-space projection of a feature line varies in

length due to foreshortening or changing magnification. It can result from camera

motion, animation in the scene, are some combination of both.

When base paths shorten in new views, offsets maintaining their original mag-

nitude will cause an ever increasing amount of apparent detail to “pile up” along a

vanishing length. We find this policy to be unnatural and distracting for most con-

ceivable annotations. In these situations, it is necessary to reduce the level of detail

imparted by the offset list by shrinking the magnitude of the displacements.

Conversely, when changing views cause base paths to lengthen, we find multiple

policies that are reasonable. If the displacements grow in proportion with their base

paths, the stylization can appear to describe geometric perturbations to the under-

lying 3D feature lines. However, if the offsets maintain their original magnitude,

this invites a 2D screen-space interpretation of the stylization. In some sense, the

designer’s annotations continue to live in screen-space, even though they depict an

underlying dynamic 3D scene.

In Jot, we choose to implement a default scripted behavior based upon the later

policy. For each offset list, we define σl as the ratio of the current 2D length of

the feature line, to its original 2D length when annotated by the designer. In novel

34

views, the offset magnitudes are modulated by min(σl, 1), causing displacements to

scale down when the base path minifies, but remain unchanged during magnification.

Stated another way, the relative level of detail of an annotation diminishes as it

deviates from the context in which it was made. Figure 4.2 provides an example

of this behavior. The creases of the cube were originally annotated in Figure 4.2c

(σl = 1). As the cube recedes in the image (σl < 1), the offsets are diminished; while

as the cube grows (σl > 1), the displacements remain constant.

While this scripted behavior is suitable for a wide class of stylizations, a more

complete system might enable the designer to choose from amongst a collection of

such scripts – presumably assigning one deemed suitable for each given stylization.

4.2.4 Parameterization

When offset lists are generated by annotations, each displacement is associated with

a parameterized position along its underlying feature line. Before the offsets can be

remapped in a new view, the feature lines must again be parameterized. Under dy-

namic viewing conditions, the chosen parameterization scheme will have a significant

impact upon semantic aspects of the final æsthetic.

Arc-length parameterizations are the most natural to consider. For instance, if

feature lines are parameterized using 3D arc-length, their annotations can invite a

geometric interpretation under dynamic conditions. This is because elements of the

stylization “stick” to the 3D line, often causing the displacements to appear like per-

turbation in the actual geometry. On the other hand, 2D arc-length parameterization

does not exhibit 3D cues, such as perspective foreshortening, lending itself to more

of a screen-space interpretation.

We choose to implement 2D arc-length parameterization as the default scripted

behavior in Jot. This is consistent with our default policies governing offset mag-

nitudes that also imply 2D character by their dynamic behavior. The system could

35

offer the designer a variety of scripted behaviors to chose from, but we will revisit

this policy again after considering the coherence of view-dependent contours. With

the framework developed in Section 4.4, it will become possible for the designer to

tailor the parameterization to strike a particular balance between 2D and 3D behav-

ior. However, for applications in which this framework is too laborious to implement,

the simple schemes above may be useful.

4.2.5 Interactivity

The systems described for stylizing static feature lines do not present any additional

hurdles to interactive performance rates. Visibility of static feature lines is readily

determined in real-time using the ID image described in Section 3.2. Rendering

then proceeds via a stroke primitive that is designed for efficient implementation

on the GPU. Furthermore, frame-to-frame coherence is inherent for the stylizations

we have described. Because they are static on the geometry, the feature lines are

trivially associated with their respective stylizations in each frame and their arc-

length parameterization is intrinsically coherent.

4.3 View-Dependent Contours

The view-dependent contours supported in our system take the form of polylines on

the 3D mesh. In general, they arise dynamically from a surface as some function of its

orientation in the camera frame. The most familiar variety are silhouette contours that

form the boundary between front-facing and back-facing regions of surface; however,

Jot also enables the annotation of suggestive contours [19]. From a stylization stand-

point, though, these contours do not differ appreciably from silhouettes. In this

section, we confine our discussions to silhouette contours with the understanding

that, unless otherwise noted, the results apply equally to suggestive contours.

36

4.3.1 Silhouette Contours

Before silhouettes can be annotated or rendered with strokes, they must be extracted

from the underlying geometry for the given view. In the case of polygonal meshes,

the most common definition of the “silhouette” is the set of silhouette edges – i.e.,

edges of the mesh that share a front- and back-facing polygon. It is straightforward

to check each edge of a mesh in brute force fashion to extract the silhouettes for a

given frame. As scene complexity increases, however, this approach can become too

expensive for real-time applications.

Recently, several techniques have been proposed for detecting silhouettes without

traversing the entire mesh [1, 11, 40, 43, 66, 75]. These methods employ hierarchical

data structures to accelerate the search for silhouettes, yielding significant perfor-

mance improvements for finely tessellated models. Unfortunately, these methods

are not well-suited to real-time animation because the data structures must be re-

built whenever the geometry deforms. Instead, we employ the stochastic methods of

Markosian et al. [56] that query the geometry directly without need for an interme-

diate data structure. This approach can locate all of the silhouette edges to within a

chosen level of confidence by testing an appropriate random subset of the mesh.

Once located, the silhouette edges cannot be rendered directly using stylized

strokes. It is first necessary to process them into smooth screen-space paths. This

problem may not be visually evident if the edges are rendered as a collection of simple

line segments as this will yield an apparently smooth result in screen-space. How-

ever, the chains of edges actually zig-zag in 3D and bifurcate into arbitrarily complex

networks that can backtrack in the image plane. Northrup and Markosian [64] pro-

pose a set of heuristics that attempt to clean up the silhouette edges and produce

paths suitable for strokes. In practice, however, we find it more effective to pursue

an alternate definition of the silhouette that avoids these difficulties altogether.

37

We will use the stochastic approach of Markosian, but instead of finding silhouette

edges, we adapt it to find the silhouette contours defined by Hertzmann and Zorin [40].

For a given vertex p with normal n̂, they define camera vector v and scalar field g:

v = c − p (4.1)

g = n̂ · v (4.2)

and extend g to triangle interiors by linear interpolation. The silhouette contour

is then given by the zero-set of g. This takes the form of clean polylines whose

segments traverse the faces of the mesh, forming loops or terminating on feature

lines. We call these the silhouette loops. To find them at run-time, we sample a

small pool of randomly selected faces in the mesh. For each face, we determine g

at the vertices and test its sign. If the signs differ within a given triangle, then

the silhouette contour must cross it, exiting from two of three sides into neighboring

triangles. When a loop is found, we trace it out until returning to the starting triangle

or intersecting a feature line. As described by Markosian [55], we can locate the entire

family of silhouette loops up to a desired level of confidence by testing a pool of O(
√

n)

random triangles. This performance improves even further by populating the pool

with triangles containing the contour from the previous frame.

The final step is to separate the silhouette loops into contiguous visible silhouette

paths suitable for stroke rendering. As described by Hertzmann and Zorin, the silhou-

ette contour will be occluded by the surface it borders in regions where ∇g · v < 0.

Therefore, we break silhouette loops at the cusps (∇g · v = 0) and discard the “back-

facing” regions. However, the remaining silhouette paths may still suffer occlusion,

either by distant regions of the same surface, or by another object in the scene. We

compute the remaining visibility efficiently using the ID reference image described in

Section 3.2. As shown in Figure 4.6 (page 51), silhouette polylines and mesh triangles

38

are rendered with unique ID colors into an off-screen buffer, and the z-buffer resolves

visibility. Each loop is assigned a unique 24-bit ID using three color components.

The remaining 8-bit component is varied along the length of each loop. We test this

image along the remaining polylines, culling away portions that yield incorrect colors.

By using the zero contour of g instead of the set of silhouette edges, we easily

produce smooth paths amenable to rendering with our stroke primitive. However

these contours lie on the interior of triangles, and, therefore, do not describe the true

silhouette of the polygonal model. In fact, they correspond to the silhouette contours

of a smooth surface to which the polygonal mesh is only an approximation. This

becomes apparent if mesh is viewed under magnification so that the triangles become

large in screen-space. Under these conditions, the screen-space disparity between

the edges of the polygonal mesh and the contours can become visually significant.

This will also interfere with visibility of the contours where they lie on back-facing

triangles. To combat this, we render the ID image using GL
-
POLYGON

-
OFFSET [81] to

push the mesh triangles back relative to the contours.

Even though this solution still breaks down under high magnification, given the

quality of the stroke paths we can achieve in real-time versus edge methods, we find

this limitation to be an acceptable trade-off. Furthermore, we find that via subdivision

meshes [41, 54], we can tessellate most models sufficiently to avoid the edge-contour

disparity under typical interactive viewing conditions. And, of course, this is easily

guaranteed for scripted animations. Nevertheless, a more complete solution could

implement an adaptive subdivision scheme. By locally tessellating the surface near

the contour, the disparity might be maintained at sub-pixel levels.

4.3.2 Sketching Prototypes

Once dynamic contours have been extracted from the geometry, we can present the

designer with WYSIWYG tools to annotate them. As described for static feature

39

lines, simple brush style adjustments do not offer a sufficient degree of hands-on

control. We augment this with an interface for directly sketching over the contours

using a tablet, enabling the artist to more directly impart a particular æsthetic.

However, we cannot implement the same solution presented in Section 4.2.1.

There, each annotation produces an offset list associated with the chosen static fea-

ture line. This type of one-to-one correspondence cannot be defined for contours

which are dynamic on the geometry. To resolve this ambiguity, we rubber-stamp all

silhouette contours of the selected surface using the prototype defined by the artist’s

annotation. In the event that some contour exceeds the length of the given prototype,

it can be replicated periodically.

While the designer may impart this prototype by sketching over a particular con-

tour, in practice we find it more effective to sketch against a horizontal baseline. Any

number of constituent strokes can be sketched along such a line, and the final result is

encoded into an offset list. In novel views, the system simply renders all the silhouette

contours of the given surface with the style parameters of the prototype.

Each type of dynamic contour need not share the same stylization. The silhouettes

and suggestive contours of a given mesh, for instance, can each be annotated with

different prototypes. To extend the flexibility further, the surface of a mesh can be

divided into multiple patches. The contours that arise from each individual patch

may be assigned their own individual prototypes. The system easily associates the

appropriate prototype with the contours extracted in each frame.

4.3.3 Level of Detail

Once again, we have glossed over the precise details of how offset lists are mapped

out along their respective base paths. These particular details will govern how the

stylizations behave in response to dynamic influences. While these issues are explored

in Sections 4.2.3 and 4.2.4 for static feature lines, they must be re-examined in the

context of dynamic contours.

40

σm = 1/4 1/2 1 2 4

(a) (b) (c) (d) (e)

Figure 4.3: A sphere with annotated silhouettes. The period and magnitude of the
stylization offsets are modulated by σm and min(σm, 1), respecively.

The first of these details concerns how offset magnitudes respond to changes in

level of detail. The importance of this becomes clear with an example. Consider a

mesh shrinking in the image plane as it recedes from the camera. If the annotations

maintain their original magnitude, an increasing amount of detail will “pile up” along

silhouettes, ultimately overwhelming the mesh. We find this policy generally distract-

ing for most conceivable annotations. In these situations, it is preferable to reduce

the level of detail imparted by the stylization by shrinking the offset displacements.

In views that cause the model to grow beyond its original annotation size, there

are multiple policies that may be viable. For instance, if the displacements grow in

proportion with the mesh, silhouette deviations may suggest geometric perturbations

to the underlying surface. If the offsets maintain their original magnitude, on the

other hand, the stylizations instead appear to inhabit the image plane.

We choose to implement a default scripted behavior that exhibits the image-space

character of the later policy. This is consistent with the choice made for stylizations

on static features lines. However, we cannot implement this with the same ratio, σl,

that measures the changing screen-size of the 3D feature line. Because the silhouette

contours can arise from any arbitrary region of the mesh, they cannot be associated

with any one single 3D path. Instead, we must find a metric that reflects the changing

size of the mesh itself.

41

Accordingly, we define σm as the ratio of the current 2D radius of the bound-

ing sphere of the mesh to its original 2D radius when the annotation was made by

the designer (Figure 4.3c). In novel views, the offset magnitudes are modulated by

min(σm, 1). With this scheme, displacements scale down when the mesh shrinks on

screen (Figures 4.3a,b), but remain unchanged when it is magnified (Figures 4.3d,e).

In some sense, the annotations diminish in detail as their mesh deviates from the

context in which they were made.

We find that this scripted behavior is suitable for a wide class of stylizations.

Nevertheless, a more complete system should enable the designer to choose from

amongst a collection of such scripts, so as to assign one deemed suitable to a given

stylization. Furthermore, σm is not well-suited to all meshes. For those with large

depth extent (e.g., landscapes) it will be necessary to find a more local metric of scale.

4.3.4 Parameterization

Before the prototype offset list can be mapped out along the silhouettes, the visible

silhouette paths must be parameterized. Under dynamic viewing conditions, the

chosen parameterization scheme will have a significant impact upon the frame-to-

frame coherence of the stylization, as well as semantic aspects of the final æsthetic.

The problem of coherence is particularly challenging for silhouette contours. Al-

though the silhouettes exhibit a natural coherence in the image plane, their evolution

on the underlying geometry can be arbitrarily complex between successive frames.

The frame-to-frame correspondence of screen-space silhouettes cannot be directly

established from their 3D representation. For this reason, solutions based on 3D

arc-length described for static feature lines (Section 4.2.4) are unsuitable. Neverthe-

less, we have already reduced the burden of achieving these correspondences. By

rubber-stamping a single prototype stylization along all silhouette paths, the param-

eterization at any point remains unique only up to the period of the offset list.

42

We now examine the remaining natural parameterization; namely, 2D arc-length

along the visible silhouettes. To assign such a parameterization to a given silhouette

path, we simply choose a starting parameter and the remaining parameterization is

defined by screen-space arc-length. Because the starting parameter is only unique up

to the period of the prototype, we call it a phase. This is the only degree of freedom

for parameterizations assigned with this scheme.

However, as described, this parameterization is of limited value. Consider the

sphere in Figure 4.3c annotated with a prototype that repeats eight times around the

silhouette. If the sphere doubles in image size, our parameterization scheme would

produce sixteen periods of the stylization. Between these two states, the additional

periods would “swim” into position along the silhouette. We find this dynamic be-

havior unnatural and distracting for the vast majority of conceivable annotations. To

combat this, we observe that, as the size of the mesh increases in the image plane, the

lengths of its silhouettes grow in approximate proportion with its perimeter. If we

scale the parameterization with σm, which measures the changing circumference of

the 2D bounding sphere (Section 4.3.3), we can diminish the swimming considerably.

Figure 4.3 demonstrates this for a sphere as it changes over four size scales while

maintaining eight periods of the prototype.

It still remains to determine the phase of the parameterization assigned to each

silhouette path. If we arbitrarily set this to zero in all cases, a limited degree of

coherence can be achieved over some view changes. But, in general, as silhouette

paths break or join, phase mis-matches will lead to distracting “pops”. We have in-

vestigated means to set phases more intelligently using information from the previous

frame, but the results have limited value. As we explain in Section 4.4, parameteri-

zations using 2D arc-length alone are too rigid to describe the dynamic behavior of

many stylizations. Instead, we develop a framework that enables the designer to tailor

a coherent parameterization with a particular dynamic to each annotation. Never-

43

theless, for applications in which the machinery of Section 4.4 is too elaborate, the

simple parameterization scheme described above may be an effective solution.

4.3.5 Animated Stylization

We provide the designer with tools to describe a customizable dynamic inspired by

Tom Snyder’s Squigglevision
TM

technique. This effect was popularized in the cartoon

television programme ‘Dr. Katz’. Snyder developed a technique to provide a low cost

method for turning still illustrations into apparent animations. By tracing over the

outlines of the characters several times with wobbly lines and looping the result in

random order, the scenes appear dynamic, even though the characters never actually

move. To implement this in Jot, we enable the designer to annotate the silhouettes

multiple times. The result is a set of prototypes that will be randomly looped as

with the original effect. Additional parameters control the speed of the loop and the

degree of randomness in the order and timing of the cycle.

Unlike the hand generated case, we can easily extend the effect to moving objects.

This is possible because we have an underlying coherent parameterization. Consecu-

tive frames of the stylization may appear to be changing randomly due to randomness

in the cycle’s order and timing, but the loop comes back into correspondence every

couple of frames. We find that if the underlying parameterization changes randomly,

the resulting æsthetic is wholly different.

An unexpected side benefit of this effect is the opportunity to employ simpler

parameterization schemes. While we do find that a lack of coherence can destroy

Squigglevision
TM

, the effect can function satisfactorily with parameterizations that

exhibit only marginal coherence. It can, for instance, mask the shortcomings de-

scribed for the 2D arc-length scheme in Section 4.3.4. If a particular application

renders contours with animated stylization only, it may not be necessary to imple-

ment the full coherence apparatus described in the next section.

44

(a) (b) (c)

Figure 4.4: Different stylizations require different forms of coherence to (a) maintain
correspondences between features on the 3D shape, (b) maintain the uniform 2D
arc-length parameterization, or (c) strike some balance between (a) and (b).

4.4 Generalized Coherence Framework

As discussed in Sections 4.2 and 4.3, the frame-to-frame coherence of our stylizations

is fundamentally tied to that of the underlying parameterization. But, thus far,

we have limited our investigation to parameterizations that arise naturally from the

elements being stylized – i.e., 2D and 3D arc-length parameterizations. These schemes

are straightforward to compute, but yield significant coherence only on static feature

lines. Furthermore, they exhibit either a rigid 2D or 3D dynamic that is suitable only

for certain types of annotations.

In this section, we develop a more general framework to coherently parameterize

static or view-dependent lines by leveraging information from the previous frame.

This approach will enable the designer to tailor the dynamic behavior of the coherence

appropriately for a wide range of different stylizations (Figure 4.4).

45

4.4.1 Overview

In general, stylized lines possess two properties that influence their coherence: the

path in the image plane over which the stroke primitive is applied, and the parameter-

ization that defines how stylization is mapped along that path. The first issue poses

no particular challenge for static features lines. They remain fixed on the geometry,

so their image-space paths enjoy intrinsic coherence. On the other hand, dynamic

contours can evolve in an arbitrarily complex fashion in the 3D domain. Silhouette

paths, in particular, tend to break and re-join in screen-space in response to these

changes. Since their 2D paths pose the greater challenge to coherence, we will focus

on silhouettes in this section – the results will extend naturally to creases, etc. To

address the second issue, parameterization, we must answer two separate questions:

first, what is the unit of stylization to be parameterized? and second, how do we

assign coherent parameterization to those units?

There is a seemingly-obvious answer to the first question: one can parameterize

individual silhouette paths. Both Bourdev [4] and Masuch et al. [59] investigated this

approach independently. This strategy can work well for some sequences of frames;

however, coherence will be broken whenever two silhouette paths in one frame merge

into a single path in the next frame. There will be a visual “pop” if single parameter-

ization is assigned, unless by chance the two paths have matching parameterizations.

To avoid this, Masuch et al. caused the two abutting paths to match in limited cases

by enforcing coherence along the underlying silhouette loop. While this strategy pre-

vents some popping, in general, it exacerbates a problem arising whenever a single

parameterization is maintained for long silhouette paths. Changes in foreshortening

on one area of the model can influence other more distant areas, leading to “swim-

ming” artifacts wherein the stylization appears to slide along the visible silhouette

path.

46

To address these popping artifacts, we do not require a single parameterization

to be assigned per silhouette path. Instead, we enforce coherence for separate por-

tions of the silhouette path that we call brush paths. These paths will also help to

ameliorate the swimming problem because stylization becomes more localized. In-

tuitively, a brush path may be thought of as the path of a single stroke, though,

in practice, many strokes may be applied in concert to a single brush path (e.g. for

dashed lines). Section 4.4.4 provides a detailed description of how silhouette paths

are divided into brush paths using parameterization information propagated from the

previous frame (Section 4.4.3).

Having identified brush paths as the unit of coherence, we now address the second

question above: how do we parameterize them? We demonstrate shortly that there

are competing aims: correspondence on the 3D shape (Figure 4.4a) versus uniform 2D

arc-length parameterization (Figure 4.4b). The semantics of a particular stylization

govern the relative priority of these two goals, generally falling somewhere between

these extremes (Figure 4.4c). In Section 4.4.5 we describe a parameterization scheme

that can balance these behaviors at the discretion of the designer.

4.4.2 Coherent Rendering Pipeline

We now recap the stages of Jot’s rendering pipeline to include those implementing the

coherence framework. The pipeline is demonstrated in Figure 4.5, where silhouettes in

frame f ′ are stylized coherently using information propagated from previous frame f .

Silhouette Loop Extraction

The first stage extracts the silhouette loops from the underlying mesh (Figures 4.5a

and b). We describe a stochastic approach to efficiently locate the zero set of g = n̂ ·v

in Section 4.3.1.

47

(a) mesh in frame f (f) samples on (d)

(b) silhouette loops (g) new view in f ′

(c) silhouette paths (h) propagation

(d) brush paths (i) new brush paths

(e) strokes in f (j) new strokes in f ′

Figure 4.5: Overview of the rendering pipeline for coherent stylized silhouettes.
Left column: stylizing silhouettes in frame f . Right column: propagation to frame f ′.

48

Visible Path Generation

The silhouette loops are then tested for visibility and converted into smooth silhouette

paths suitable for stroke rendering (Figure 4.5c). As explained in Sections 3.2 and

4.3.1, we achieve this in real-time via an ID reference image.

Sample Propagation

To assign stylization coherently in frame f ′, we leverage parameterization samples

propagated from the previous frame f (Figure 4.5f) via a two-step process described

in Section 4.4.3. First, the samples are transformed to their new 3D locations in f ′

(Figure 4.5g), then a search through the image plane registers their votes along the

new silhouette paths (Figure 4.5h).

Brush Path Generation

Brush paths are then generated along the new silhouette paths in correspondence

with the votes from the previous frame. The color coding in Figure 4.5i illustrates

how the old brush paths in f give rise to the new brush paths in f ′, as explained in

Section 4.4.4

Brush Path Parameterization

The new brush paths are then assigned parameterization derived from their respective

votes. In Section 4.4.5 we describe a process to achieve correspondence with the votes,

while balancing different coherence objectives appropriately for a given stylization.

Stroke Rendering

Finally, each brush path is rendered using the stroke primitive described in Chapter 3

(Figure 4.4j). The parameterization can be used to map out an offset list to describe

one or more wobbly strokes (Figures 4.4a and c), or define the longitudinal texture

coordinate for a single triangle strip (Figure 4.4b).

49

4.4.3 Sample Propagation

During rendering, stylization is mapped onto brush paths via the parameter t. To

achieve temporal coherence, we propagate this parameterization between frames in

the form of discrete samples. In a given frame f we create a set of samples evenly

spaced along the brush paths. Each sample (p , b , t) contains its location on the

3D surface p, the ID of its brush path b (as color-coded in Figure 4.5f), and the

stylization parameter t . We store p as a barycentric location on a mesh triangle so

that samples can track the changing surface during animation. The brush path ID

will help to coherently define the new brush paths in f ′ (Section 4.4.4), while the

associated t samples will be leveraged to parameterize them (Section 4.4.5).

In subsequent frame f ′, we seek to propagate parameterization by registering the

samples from f against the new silhouette paths in f ′. For each sample, this entails

determining the 3D correspondence p → p′, where p′ is the location on a silhouette

loop in f ′ receiving the sample. For static feature lines the obvious choice is p′ = p,

since the paths remain fixed on the 3D surface. Unfortunately, it is not clear how to

establish meaningful 3D correspondences for silhouettes (and other view-dependent

contours) because their evolution on the 3D surface is arbitrary between f and f ′.

However, the successive frames of a coherent animation will typically exhibit only

moderate camera motion and mesh deformation. Under these conditions, silhouettes

(and suggestive contours [18]) enjoy a coherent evolution in screen-space. If we define

proj f ′(p) as the projection of p into the f ′ image plane, we can exploit this screen-

space coherence to find reasonable 2D correspondences proj f ′(p) → proj f ′(p′). This

is accomplished efficiently using the ID reference image described in Sections 3.2 and

4.3.1. Each sample projects to a location in the ID image of f ′ as shown in Figure 4.6.

If frame-to-frame animation is coherent, the samples will generally appear near the

new silhouette paths. The correspondence for a given sample can then be found by

searching nearby proj f ′(p) for silhouette pixels, and determining a suitable p′.

50

ppp'p'

Figure 4.6: An example of sample propagation in the ID reference image of a torus,
shown in successive enlargements. Silhouette path IDs appear in green shades, while
mesh faces are shown in shades of red. Search locations are represented in white, with
successful termination indicated by blue pixels. (Note: The striping is an artifact of
the order in which ID colors are assigned to triangle strips on subdivision meshes.)

It still remains to define precisely how these 2D correspondences are determined.

A natural choice is closest-point correspondence – for each p the corresponding p′ is

taken as the location on a visible silhouette path in f ′ that minimizes distance in the

image plane:

‖ projf ′(p′) − projf ′(p) ‖ (4.3)

By using the ID image, we avoid the cost of an exhaustive search for p′. For each

sample, the ID image is queried in a one pixel radius about proj f ′(p) and any sil-

houette IDs are recorded. The radius is incremented and the search is repeated until

at least one silhouette ID is found, or the radius exceeds some threshold. Once the

search terminates, p′ is computed by minimizing the closest-point criteria (4.3) on

the subset of silhouette loops located within the search radius.

51

p' p p' p

(a) (b)

Figure 4.7: Propagating the samples from frame f to f ′ for a spinning sphere. In
(a) closest-point correspondence propagates samples toward the nearest silhouette,
and in (b) epipolar correspondence propagates samples according to camera motion.

We have also investigated a variant of this algorithm, accelerated closest-point

correspondence. As before, we search a one pixel radius about proj f ′(p) and record

any silhouette IDs. If none are found, we then continue the search along a single

direction only, terminating when a silhouette pixel is found or a search distance

threshold is exceeded. This is the scheme depicted in Figure 4.6. The idea is to

choose a direction that will lead quickly to silhouette pixels. If proj f ′(p) is near the

silhouette then searching along the screen-space projection of ∇g at p will generally

lead to a nearby silhouette where g = 0. In fact, if the surface is smooth near p,

we can even search along the screen-space projection of the normal, as we presented

in [46]. In any case, p′ is again computed by minimizing (4.3) on the silhouette loops

found prior to search termination. The 8-bit length encoding component of the 32-bit

ID color (Section 4.3.1) is used to accelerate the closest-point test on the loop.

While the closest-point correspondence algorithm will produce seemingly reason-

able results, it suffers from a critical flaw. This is revealed by considering the sphere

spinning about its vertical axis in Figure 4.7a, or an equivalent stationary sphere

52

with camera orbiting in the equatorial plane. Samples along the silhouette in f will

project to points along the elliptical paths shown in f ′. The closest-point criteria

will then propagate each sample to the nearest silhouette location p′ along the radial

direction. Even though the silhouette appears stationary in the image plane, over

time this propagation scheme will cause parameterization to “pile up” at the poles

of the sphere. This result runs counter to the expectation that parameterization will

remain fixed on the apparently stationary silhouettes – a consequence of ignoring the

effects of camera motion while determining 2D correspondences. Ideally, the features

of a coherent stylization will track the visual flow of the annotated geometry from f

to f ′. Accordingly, the underlying parameterization should propagate in a fashion

sympathetic with the associated camera motion from c to c ′:

∆c = c′ − c (4.4)

The desired result of such a scheme is depicted in Figure 4.7b. Here, correspondences

produce the anticipated stationary result, rather than the artifacts introduced by the

arbitrary closest-point strategy.

We can implement this by adapting the solution to a related problem in computer

vision – the reconstruction of unknown 3D surfaces from the motion of silhouette

contours in the image plane [10]. In this context, the 3D position p of a point on

the silhouette in f is known only in terms of its direction v̂ relative to the camera.

From (4.1), we express its unknown depth as the magnitude of the camera vector:

p = c − ‖v‖ v̂ (4.5)

As shown in Figure 4.8, this point on the silhouette is associated with a correspond-

ing silhouette location v̂ ′ in the next frame by searching the image plane along its

intersection with the epipolar plane defined by v̂ and the moving camera c, ∆c. The

correspondence v̂→ v̂ ′ can be used to determine the depth ‖v‖ of point p.

53

f
f '

c

c'

∆c

p
p'

f '

∆p

n

v

∆pα -(n

.∆c) v

v'
p

p'

v

pp'

Figure 4.8: The epipolar plane containing p, c, and ∆c defines corresponding points
on the silhouette in nearby frames f and f ′ (after [8]). Inset: The direction ∆p
describes the appropriate search direction in the f ′ image plane.

The epipolar plane is a natural choice for establishing the correspondences because

their velocity in the image will describe the position and curvature of the underlying

geometry via simple expressions [9]. This is a direct consequence of defining the

correspondences to lie in the same plane as the moving camera. Because of this

consistency with ∆c, the same epipolar correspondences will produce the propagation

scheme we seek in Figure 4.7b.

To adapt this approach to our correspondence problem proj f ′(p)→ proj f ′(p′),

we simply modify the closest-point correspondence scheme by constraining the result

to lie on the epipolar plane. This defines epipolar correspondence – for each p the

corresponding p′ is taken as the location on a visible silhouette path in f ′ that lies

on the epipolar plane (p , c , ∆c) and minimizes the closest-point criterion (4.3).

Instead of brute force, we again exploit the ID image to determine this efficiently.

We call this procedure accelerated epipolar correspondence, as it bears similarity to

the accelerated closest-point correspondence scheme described previously. Each sam-

ple p is first projected to its location in the ID image of f ′ as shown in the inset of

54

Figure 4.8. The intersection of the epipolar plane with the image plane will yield an

epipolar line through proj f ′(p). As before, we search within a one pixel radius about

this projection and record any silhouette IDs. If none are found, this time we continue

the search along the epipolar line, terminating when a silhouette pixel is found, or a

search distance threshold is exceeded. Finally, p′ is chosen as the particular intersec-

tion of the epipolar plane amongst the encountered silhouette loops that minimizes

(4.3). It remains only to determine which direction to search along the epipolar line.

For an infinitesimal camera displacement δc, one can show (Appendix B) that a point

p on the silhouette in frame f will “slip” along the surface in the epipolar plane by:

δp = − n̂ · δc
κr ‖v‖2 v (4.6)

where κr is the radial curvature [19, 48] of the surface at p. This result is consis-

tent with our expectations for propagation on the spinning sphere in Figure 4.7b –

the velocity of samples is maximum at the equator and diminishes to zero at the

poles (or frontier points) where δc lies in the tangent plane. Because the velocity

is inversely proportional to curvature, it will also tend to zero for the limiting case

of sharp creases – consistent with our assertion that p′ = p for static feature lines.

Finally, we observe that κr > 0 for all points on visible silhouettes (equivalent to the

∇g · v > 0 requirement described in Section 4.3.1). Therefore, for some camera mo-

tion ∆c equation (4.6) can be reduced to a simpler form that preserves its direction:

∆p ∝ − (n̂ · ∆c) v (4.7)

This disambiguates the direction from proj f ′(p) along which to search the epipolar

line, as shown in the inset of Figure 4.8. In practice, we evaluate this in object space

to account for rigid body animation. See equation (B.12) in Appendix B for a version

of (4.6) which also accounts for mesh deformation under animation.

55

While there is no “correct” way to propagate parameterization, we prefer the

more principled epipolar approach – it yields the expected result for test cases, and

reflects visual flow – over the more ad-hoc closest-point method. We find that a search

threshold of 1% of image size (e.g. ∼6 pixels at 640×480) is generous enough for most

samples to successfully propagate in typical animations. Once mesh deformation or

camera motion become too exteme to propagate samples with this threshold, we have

observed that any coherence, or lack thereof, is imperceptible anyway.

Finally, for each sample that successfully finds a correspondence p′ along some

silhouette path P , we determine the arc-length parameter s of this location along the

path. The sample is now recorded as a parameterization vote (s , b , t) on P . The

next two sections describe how these votes are used to generate and then parameterize

brush paths along the new silhouette paths of f ′.

4.4.4 Brush Path Generation

We generate one or more brush paths along each silhouette path P by taking into

account the votes it receives. This is accomplished by sorting the votes registered

with P into vote groups {(si, ti)}b based on their brush path ID. Each vote group will

potentially lead us to create a corresponding brush path along its silhouette path.

Under reasonable animation, most of the votes from a given brush path will reach

a single silhouette path P en masse – evenly spaced, and in the original order they

were generated. We call these coherent vote groups. Whenever such a group is found,

we may confidently generate a new brush path in its corresponding region on P . But,

in general, the votes from a given brush path may propagate to multiple silhouette

paths, land in regions already populated by votes from other brush paths, and even

arrive with anomalous ordering or spacing. First, we will describe a procedure that

can “clean up” these anomalies to yield a collection of coherent vote groups. We

then present several strategies for generating brush paths when multiple coherent

vote groups arrive on P .

56

To test the coherence of a vote group, we sort the votes by increasing arc-length

position s along P . A coherent vote group {(si, ti)}b can now be defined as a sequence

of votes along P that (1) are evenly spaced similar to the sampling distance, and

(2) correspond 1-to-1 with a sub-sequence of samples from b. We generally find that

few vote groups actually meet this strict criteria, even under coherent animation.

For instance, the sudden appearance or disappearance of a silhouette path, or some

other occlusion can cause gaps to appear in vote groups. Another common artifact

involves locations where the end-point of one silhouette path lies along the length

of another. Often, small fragmentary vote groups and corresponding gaps will be

produced at these points when samples are traded between them. And, if the same

effect occurs where a silhouette loops back upon itself, the same interchange of samples

can cause votes within a group to arrive out of order. Nevertheless, we find that

these artifacts generally comprise only a few votes amongst otherwise coherent vote

groups. Therefore, we present a strategy for extracting the coherent sequences from

these “mostly” coherent vote groups.

Rather than seek to eliminate outliers (which we have found to be difficult to

achieve robustly), we employ an aggressive procedure that simply splits each vote

group between pairs of votes that violate (1) or (2) above, and then chooses the

coherent vote groups from the resulting candidates. To meet property (1), each vote

group is split wherever vote spacing si+1−si deviates significantly from its mean, and

resulting groups are retained if their mean spacing is similar to the sampling distance.

To meet (2), we split each remaining vote group wherever samples appear out of order,

i.e. ti+1 < ti (since parameterization increases monotonically, as described in the next

section). While the remaining vote groups all conform to our strict coherence criteria,

many of them will consist of only one or two spurious votes excised by the splitting

procedures. To retain only the meaningful groups, we discard those that contain

fewer than 3 votes.

57

(a) mixed (b) majority (c) 1-to-1 (d) trimmed

Figure 4.9: Four different policies for generating brush paths on a silhouette path
given the same two vote groups.

This procedure will err on the side of discarding useful votes that might otherwise

be recovered by more rigorous data mining efforts. But, in practice, we find that

the sheer number of samples (see Figure 4.6) makes this unnecessary. In regions

where propagation artifacts lead us to discard votes, the parameterization schemes in

the next section will extrapolate the missing information from the ample remainder.

Furthermore, the aggressive splitting of vote groups will be repaired by a “healing”

process also described in Section 4.4.5.

With only coherent vote groups remaining, we now assign their corresponding

brush paths. If fewer than two vote groups survive on P , we simply assign a single

brush path. However, when there are two or more surviving vote groups, we consider

several policies for covering P with brush paths (Figure 4.9):

Mixed. We generate a single brush path along P and parameterize it by mix-

ing information from all the votes. This is similar to the the policy described by

Bourdev [4] that parameterizes the silhouette paths directly. One problem with this

policy is that it averages together data from different sources in a way that is not

meaningful, in effect throwing away coherence information. It also exhibits “popping”

artifacts whenever it assigns a single parameterization to disagreeing vote groups as

we describe for the next policy.

58

Majority. This method still assigns a single parameterized brush path to P , but

avoids mixing together votes from disparate sources. Each vote group is assigned a

confidence based on its size. The vote group with the highest confidence is then used

to parameterize the entire brush path, while the remaining votes are discarded. This

will exhibit coherent behavior across a majority of P , but still yields poor temporal

coherence. For example, in Figure 4.9b, all of P is parameterized consistently with the

“red” vote group. The parameterization in the “blue” region is extrapolated from the

red votes, and, unless both vote groups chance to describe a similar parameterization,

a visual “pop” will occur wherever the red parameterization replaces the blue.

1-to-1. We can overcome this drawback by generating one brush path for each

vote group. If any part of P remains uncovered, the nearest brush paths are extended

to cover the gap. This approach retains all of the coherence information, and also

avoids averaging together any unrelated data. While coherent, this approach can

lead to cumulative fragmentation over time. A profusion of short brush paths cov-

ering P can overlap arbitrarily, leading to an accumulation of visual “clutter.” This

will impact upon the final æsthetic of the stylization in an uncontrollable fashion.

In practice, we find it more effective to prohibit brush paths from overlapping, as

described in the next policy. This way, the artist can control any overlapping effects

by describing them intentionally in the stylization prototype (Section 4.3.2).

Trimmed 1-to-1. We favor this policy which eliminates the overlaps of 1-to-1.

Once again, each vote group is assigned a confidence based on its size. We then gen-

erate brush paths as in 1-to-1 coverage, but trim away overlapping portions, leaving

only those of highest confidence. While this does avoid visual clutter, the approach

still suffers from cumulative fragmentation over time. However, we can counteract this

effect by merging abutting brush paths with similar parameterizations. We promote

this via the “healing” process described at the end of the next section.

59

4.4.5 Brush Path Parameterization

Once the brush paths are generated, it remains only to parameterize them. Each

new brush path b ′ will have an associated vote group {(si, ti)}b that describes a series

of parameterization samples ti at their respective arc-length positions si along P . If

these are plotted as in Figure 4.10, the task of assigning coherent parameterization

in f ′ clearly boils down to fitting some function T (s) to the samples from f . It now

remains only to determine an appropriate objective function to define the fit.

As first noted by Bourdev [4], there are competing objectives when assigning a

coherent parameterization: 2D arc-length consistency vs. tracking of the 3D shape.

The relative priority of these objectives depends upon æsthetic factors. Screen-space

effects (like dotted lines, Figure 4.11d) generally benefit from a parameterization con-

sistent with 2D arc-length. On the other hand, stylizations depicting apparent 3D

details (like cactus thorns, Figure 4.11a) behave more reasonably when parameteriza-

tion “sticks” to the 3D shape. Shortly, we examine both these objectives in detail and

develop specific fitting schemes to achieve them. Finally, we conclude with a more

flexible method that can optimize for these (and other) objectives at the discretion

of the designer.

But, first we must consider how to parameterize the brush paths that receive no

votes. This, of course, will be the case for all brush paths in the first frame of an

animation. But it also occurs sporadically when vote groups fail to meet our coherence

criteria (Section 4.4.4), or fail to propagate entirely due to extreme view changes. In

this case, we are again faced with the 2D arc-length vs. 3D shape tracking trade-off.

Accordingly, we provide the designer with two choices: arc-length parameterization

T (s) = s, or scaled arc-length parameterization T (s) = ρs.

While the former policy is obvious, the latter deserves further explanation. Scaled

arc-length has already been described in Section 4.3.4 as a reasonable policy when

no coherent propagation framework is available. In brief, the scale factor σm = 1/ρ

60

(si ,ti)(si ,ti)

Tφ(s)

s

t

φ

(si ,ti)(si ,ti)

Tint(s)

s

t

(si ,ti)(si ,ti)

Topt(s)

s

t

τj

(a) phase fitting (b) interpolation (c) optimization

Figure 4.10: Three schemes for assigning a parameterization T (s) to a brush path
given the vote group {(si, ti)}b.

is the ratio of a mesh’s current size to its initial size when stylization is first applied.

We measure this size as the screen-space circumference of the bounding sphere. So,

for example, if the cactus in Figure 4.11a doubles in size on the screen, we expect its

outline to double in perimeter. Accordingly, ρ = 0.5 will stretch the parameterization

to double the thorn spacing, consistent with their interpretation as 3D detail.

We now move on to describe means for parameterizing a brush path when votes

are present. The first two methods strive to meet one of the competing goals described

above, while the third provides a means to balance between multiple objectives.

Phase fitting (Figure 4.10a): This method computes a uniform 2D arc-length

parameterization Tφ(s) = ρs + φ. Least-squares minimization will yield the phase φ

that best fits the votes. The scheme is well-suited to a 2D style like dotted-lines if we

take ρ = 1. At all times, it will produce a parameterization that maintains constant

dot spacing while maximizing coherence with the previous frame (Figure 4.11e).

We can attempt to adapt this policy to stylizations that convey 3D detail by taking

ρ = 1/σm. Now, a stylization like that in Figure 4.11a will behave reasonably under

panning and zooming. Changes in foreshortening, however, lead to an inconsistent

“swimming” effect. As shown in Figure 4.11b, instead of remaining relatively fixed

on the outline, the spines flow around the arms of the cactus.

61

(a) initial (b) phase fitting (c) interpolation

(d) initial (e) phase fitting (f) interpolation

Figure 4.11: The appropriate parameterization fitting scheme depends upon seman-
tics of the stylization. Top row: 3D styles require the tracking behavior shown in (c).
Bottom row: 2D stylizations require the arc-length uniformity shown in (e).

Interpolation (Figure 4.10b): In Section 4.2.4 we found that the 3D arc-length

parameterization of static feature lines will cause stylization to track the 3D shape.

However, we cannot appeal to 3D arc-length for view-dependent contours. Instead,

this method promotes coherence on the 3D shape by interpolating the votes – i.e.,

Tint(s) is a polyline connecting the samples {(si, ti)}b. Under this policy, the cac-

tus spines in Figure 4.11c appear fixed on the model as expected. This is a direct

consequence of our propagation scheme (Section 4.4.3) that causes samples to track

the evolving silhouettes from frame-to-frame. Obviously, the effect is not applica-

ble for styles that are mostly 2D in nature. This is demonstrated by dotted-lines in

Figure 4.11f that undergo undesirable distortion in dot spacing under foreshortening.

62

Optimization (Figure 4.10c): We could simply offer the user a choice between

phase fitting or interpolation methods, but, in practice, we find this inadequate.

Phase fitting is only useful for stylizations that exhibit a purely 2D character, such

as the canonical dotted line. For these, the swimming effect is accepted because

the dots must maintain equal spacing to yield the expected æsthetic. Many other

apparent 2D effects, like the paint strokes in Figure 4.4c, do not require such a rigid

screen-space uniformity. They benefit, instead, from some measure of 3D tracking

to more closely match the incoming votes, and reduce swimming artifacts. On the

other hand, strict interpolation is undesirable even for stylizations that exhibit strong

3D characteristics. The cactus thorns, for instance, will suffer cumulative distortion

after many successive frames of animation. This will eventually lead to an arbitrarily

dense “piling up” or “thinning out” of the stylization. An interpolation scheme that

also promotes some degree of 2D arc-length consistency could relax these distortions.

In general, we find that all but the most extreme stylizations benefit from some

particular balance between 2D arc-length uniformity and 3D shape tracking objec-

tives. To this end, we propose a method that can balance these goals in a fashion

controllable by the designer. We implement this optimal parameterization Topt(s) by

minimizing a total energy defined as a weighted sum of energies corresponding to the

different goals:

E = Evotes + ωρEρ + ωbEbend + ωhEheal (4.8)

The first two terms of this energy correspond, respectively, to how well the pa-

rameterization (1) tracks the 3D shape by interpolating the votes, and (2) exhibits a

uniform scaled 2D arc-length. We also include two additional terms that (3) measure

the local distortion, and (4) promote a “healing” process that we describe shortly.

The non-negative weights ωρ, ωb, and ωh permit the designer to balance between all

these objectives with arbitrary relative priority.

63

We find that expressing the parameterization t as a piecewise-linear function of s

is sufficient to fit the votes well without producing visual artifacts at tangent dis-

continuities. Thus, we take Topt(s) to be a polyline interpolating a vertex sequence

{σj, τj}, where the m knots σj are evenly-spaced arc-length parameters over the brush

path.1 Given the set of incoming votes and chosen weights, the optimization solves

a system of equations to find τj’s minimizing the total energy E. Because its terms

are all linear by design, this can be solved efficiently at run-time – an important

requirement given that arbitrary brush paths may populate any frame.

The first term of the energy equation (4.8) measures how well parameterization

tracks the 3D shape. Analogous to interpolation fitting, this energy gauges how well

the Topt(s) polyline interpolates the incoming votes. This is computed as a sum of

square differences:

Evotes =
1

n

n
∑

i=1

[Topt(si) − ti]
2 (4.9)

Because each term Topt(si) depends only upon the segment j of the polyline in to

which si falls, it is linear in the two free variables τj and τj+1.

The second term measures how well the Topt(s) corresponds to a scaled 2D arc-

length parameterization, identical to that described for phase fitting. This energy

term is most easily expressed if we “normalize” the τj’s by taking τ̃j ≡ τj −ρσj. Now,

measuring how the τj’s deviate from ρ-scaled arc-length is equivalent to measuring

how the normalized τ̃j’s deviate from their average τ̃ave:

Eρ =
1

m

m
∑

j=1

[τ̃ave − τ̃j]2 (4.10)

Depending upon the relative 2D or 3D character of the stylization, the designer may

choose ρ = 1 or 1/σm, respectively, as deemed appropriate.

1In practice, we find it effective to choose the knot spacing as a small multiple of the sampling
distance – e.g., we sample brush paths at 6 pixel intervals and choose an 18 pixel knot spacing.

64

While the first two terms already encompass the competing objectives we have

identified, two additional energies were also found to be particularly effective. First,

it is desirable to provide some control over local distortion in the parameterization

(i.e., bending of the Topt(s) polyline). While (4.10) already discourages bending, it

does so by promoting a globally uniform 2D arc-length parameterization. For cases

where a global arc-length consistency is not imperative, we can define a more local

gauge of distortion. The third term implements this via a “thin-plate” energy that

measures bending between adjacent polyline segments:

Ebend =
1

m

m−2
∑

j=1

[τj − 2τj+1 + τj+2]2 (4.11)

Lastly, as mentioned at the end of Section 4.4.4, two abutting brush paths sharing

a silhouette path may be merged when their parameter discontinuity is small. We

would like this healing to happen often to combat cumulative fragmentation due

to aggressive vote group culling, and the natural evolution of the silhouette paths.

Thus, whenever the discontinuity is small between brush paths, but not yet small

enough to merge them, we coerce the parameterizations on either side of the break to

approach their average tave. This is accomplished by creating an additional healing

vote (sk, tave) at each abutting endpoint sk of the brush paths. Like the vote-fitting

equation (4.9), these healing votes contribute via least-squares differences (with 0, 1

or 2 terms):

Eheal =
∑

k

[Topt(sk) − tave]2 (4.12)

To finally compute the optimal fit Topt(s), we minimize the total energy E by

solving the system of equations given by ∂E/∂τj = 0. That can be accomplished

efficiently using standard LU decomposition [69]. The system will be non-singular as

long as there is at least one vote and ωρ is non-zero.

65

(a) (b)

Figure 4.12: Extensions of the coherence framework: In (a) creases are easily handled,
and in (b) the ID image reveals how the hidden lines are encoded.

4.4.6 Extensions

The coherence framework we have presented can be easily extended in several ways.

Beyond Silhouettes

While we have focused on silhouette contours in this section, the results extend to

other types of lines. Static feature lines are trivially implemented, as their frame-to-

frame correspondences are known a priori. In lieu of the rigid 2D or 3D arc-length

parameterizations discussed in Section 4.2.4, the coherence framework can assign a

parameterization that balances between these extremes with any arbitrary priority.

This work can also extend to other view-dependent contours. DeCarlo et al. [18]

recently analyzed the dynamics of suggestive contours under camera motion and

offer culling methods to reject those exhibiting poor temporal coherence. Therefore,

these contours are also amenable to correspondence tracking in the image-plane. It

remains only to derive expressions for their velocity in the epipolar plane, analogous

to equations (4.6) and (4.7) for silhouette contours (see Appendix B).

66

Pass Objects Components ID Color z-Rd z-Wrt

1. see-thru mesh triangles normal
√ √

2. see-thru hidden lines hidden X X

3. see-thru all lines normal
√

X

4. opaque mesh triangles normal
√ √

5. opaque all lines normal
√

X

Table 4.1: Rendering the ID image in two stages to encode hidden lines.

Beyond Visible Lines

It is possible to extend this framework to hidden lines by adapting a frame-buffer

trick described by Rossignac et al. [73]. They render silhouettes on the GPU using

GL
-
LINES in two passes. The first pass disables z-buffer testing so that hidden lines

will be rendered, then a second pass enables the test to render visible silhouettes in

a different color. The second pass will overwrite the visible portions only, leaving

behind the hidden lines in the first color.

We use the same technique in the ID image to render the hidden components of the

lines with a different set of ID colors. Figure 4.12b shows the ID image corresponding

to the stylized rendering on its left. As in Figure 4.6, mesh triangles appear in reds

and visible lines appear in greens, but now their hidden portions are also visible in

shades of blue. When the designer chooses to reveal and stylize hidden lines, the

pipeline simply changes over to testing for the blue IDs during their visibility testing,

and sample propagation phases.

We implement this in two stages (Table 4.1), first rendering the see-thru objects

(those that reveal hidden lines), and then rendering the remaining opaque objects and

their lines. By drawing the opaque objects in the final pass, they have the opportunity

to occlude the hidden lines of see-thru objects. The second stage (passes 4 and 5) are

identical to the original ID image rendering passes (1 and 2, Table 3.1, Page 24).

67

Beyond Rubber-Stamping

The choice to rubber-stamp a single prototype along all silhouettes in Sections 4.3.2

and 4.3.4, was made to reduce the burden of determining correspondences for these

view-dependent contours. However, the sample propagation stage of the coherence

pipeline reestablishes these correspondences. With this framework, it is possible to

assign a unique stylization prototype to each brush path.

When brush paths are created in f ′, any silhouette path that receives no votes

from f is assigned a single brush path with default parameterization. A prototype

synthesis scheme, like Markov synthesis (Section 4.2.2), could also assign a unique

prototype π to each new brush path b. Instead of sketching a single prototype to

rubber-stamp, the designer can now sketch a collection of prototypes to seed the gen-

erator. We then modify the coherence pipeline to propagate the unique prototype π

along with the parameterization samples as follows:

1. Each new brush path b is assigned unique prototype → π

2. Samples along b now include its prototype → (p , b , π , t)

3. Corresponding votes also carry the prototype → (s , b , π , t)

4. Votes groups from b each share a unique π → {(si, ti)}b, π

5. Each propagated brush path b ′ receives unique prototype → π

Now, brush paths at time-zero, and those that receive no votes, are assigned unique

stylizations retained by corresponding brush paths in future frames. A given styl-

ization prototype will persist in the image until all brush paths that carry it fail to

propagate samples to any visible silhouette paths.

Beyond Evotes, Eρ, Ebend, Eheal

One strength of this coherence framework is the ease with which additional coherence

goals may be integrated into the total energy expression. The four terms we have

68

presented in Jot cover the primary coherence objectives, but more sophisticated terms

might be conceived. For instance, one might formulate terms that account for how

extreme the view change is between f and f ′. During small changes coherence could

enforce 3D tracking, while larger changes could favor arc-length to relieve distortion.

Such an approach provides a higher degree of correspondence when it is most per-

ceptible, and takes advantage of extreme view changes to hide the swimming that

accompanies relaxing distortion. A more complete WYSIWYG NPR system might

offer the designer control over these and other potentially useful energy terms.

4.5 Discussion

Summary of Line Effects

In this chapter, various aspects of WYSIWYG NPR tool development for line styl-

ization effects were explored (Table 2.4.2, page 15). We demonstrated the means for

designers to annotate silhouettes and feature lines by directly sketching over them

with stylized strokes. Additional tools synthesize annotations automatically from a

small set of examples, simplifying the task of stylizing complex scenes. Coupled with

a flexible stroke primitive and media simulation, these tools provide the artist with a

wide range of styles, and the hands-on means to impart one’s own personal æsthetic.

Some diverse examples can be found in Figures 4.4 (page 45) and 6.1 (page 95).

Once annotated, the 3D scene can be rendered automatically from novel views.

The system assumes the task of maintaining the artist’s original annotations, while

dynamically adapting properties such as stroke widths and offsets to changing level

of detail. The user can tune the underlying parameterization of feature lines and

silhouettes to exhibit a spectrum of dynamics, ranging from a purely 2D æsthetic, to

one that tracks the 3D shape. And, for lines that are annotated in multiple passes,

the stylization can animate cyclically, producing a pseudo-random Squigglevision
TM

effect (Figure 6.4, page 99).

69

Figure 4.13: The designer annotate only the first frame of this animation. The system
handles the tedious task of maintaining the thorny stylization in the remainder.

We ensure that all of these tools function effectively in an interactive setting,

providing the designer with a responsive, hands-on environment. By employing a

stochastic silhouette extraction scheme, an ID image for visibility and sample prop-

agation, and exploiting the GPU to render our media simulation, we achieve the

necessary real-time performance rates. Furthermore, the stylizations applied to sil-

houette contours and feature lines maintain their frame-to-frame coherence under

real-time scene navigation, as well as during the playback of scripted animations.

Because of their view-dependence, achieving this coherence for stylized silhouettes

was particularly challenging. To this end, we present a new, robust framework which

can accomplish this for both view-dependent contours and static feature lines. Our

approach can optimize for multiple coherence objectives, striking a particular balance

appropriate to a given stylization as chosen by the designer. To our knowledge, this

framework is the first system to provide effective, controllable coherence for stylized

silhouettes, either in real-time or for off-line animation.

Without coherent parameterization, the designer cannot use strokes that wiggle,

taper, or vary in color along their length – these risk introducing coherence artifacts

during animation. This is true even of hand generated cell-animation, which nearly

always exhibits such uniform outlines. With these WYSIWYG tools, the artist can

now explore these previously inaccessible styles, while the system assumes the tedious

or intractable task of ensuring coherence (Figures 4.13 and 6.7, page 99).

70

Future Work

Localized Stylization

In Section 4.2.1 we describe how to stylize static feature lines locally – each time a

static feature is annotated by the designer, a unique prototype is unambiguously asso-

ciated with it. However, this type of localization is not possible with view-dependent

contours. Thus far, our approach can only localize the stylization of dynamic contours

up to a given patch of surface. On any patch each different line type (e.g., hidden sil-

houettes, visible suggestive contours, etc.) may be assigned a unique stylization. But

as the view changes and contours cross patch boundaries, we currently just break them

at the patch interface. An important open question concerns how moving contours

might transition smoothly between unique stylizations at these boundaries. Another

open problem involves how these patches are defined in the first place. Presently,

we generate them using traditional modeling software, but ultimately we imagine a

WYSIWYG approach whereby the designer’s own localized annotations give rise to

corresponding patches of stylization.

Level of Detail

At present, our system can diminish stylization detail by shrinking offsets and stroke

widths as an object recedes from the camera. But under these conditions, human-

crafted illustrations typically also omit lines to reduce the image complexity. An

interesting question is how to omit or even merge strokes in such scenes automatically,

and to do so with temporal coherence as the camera zooms in or out. The same

mechanism could be useful for meshes that contain many small surface details, leading

to silhouettes that are fragmented into many tiny loops. The resulting paths could

benefit from simplification into longer, smoother connected paths in screen-space.

71

While automatic level of detail systems are useful, determining appropriate details

to omit is often a judgment best left with the designer. Therefore, it is also worth

pursuing systems that enable the artist to customize this behavior, perhaps by directly

annotating the silhouettes at various levels of detail. Once again, this raises the open

question of how a contour can smoothly transition from one stylization to another.

Offline-Coherence

The coherence framework presented in this chapter propagates information between

pairs of consecutive frames f and f ′ in a time-forward fashion. This design choice

was made to fit the real-time constraints imposed on rendering in interactive systems.

However, the off-line rendering of scripted animations can also benefit significantly

from this work. In this case, we are at liberty to propagate coherence information

both forward and backward in time. Future work might investigate optimizations

over entire sequences of frames, rather than just consecutive isolated pairs.

These global optimizations can arrange for stylization to evolve in a fashion that

improves coherence by “anticipating” potential coherence breaking events in future

frames. Furthermore, global optimization could also permit the designer to “key-

frame” the stylization – an essential feature for production-level NPR animation tools.

72

Chapter 5

Surface Effects

5.1 Introduction

To complement our methods for stylizing the existing outlines of objects, this chap-

ter presents a set of tools for generating stroke-based effects on their surfaces. With

these tools, the artist can create groups of strokes to elicit various surface proper-

ties ranging from shading effects to more detail oriented markings. In the example

session from Section 2.2 (seen in Figure 5.1b) an artist demonstrates shading effects

using cross-hatching, and employs detail markings to depict a label. These tools can

be used to achieve a wide range of styles – narrow brushes can generate detailed

line drawings (Figure 5.1d), while many wide strokes produce richly painted sur-

faces (Figure 5.1a), where just a few lines craft more minimal æsthetics (Figure 5.1c).

Various researchers have explored algorithms to produce these types of line-art and

painterly styles automatically from 2D image input [16, 33, 36, 74, 79, 80]. Other work

has explored how to extend these techniques to video image sequences by tracking vi-

sual flow to achieve coherence between frames [39, 53]. However, these approaches as-

sume no a priori knowledge about the underlying 3D geometry. With this additional

3D information, Meier demonstrates that coherence is easily enforced by attaching

stroke rendering primitives to the underlying surfaces during animation [61]. Recent

research has even explored how to implement this in real-time settings [13, 83].

73

(a) (c)

(b)

(d) (e)

Figure 5.1: Strokes on surfaces achieve various effects: (a) wide brushes stroke
create a richly painted surface, (b) hatching conveys shading and details provide a
label, (c) a few brush strokes depict a flower, (d) thin strokes create a line drawing
revealing surface shape and hair details, and (e) the system can automatically render
new views.

All of these systems derive the actual placement, appearance and behavior of

strokes from hands-off image processing methods. Meier, for instance, randomly pop-

ulates surfaces with strokes and employs scripting to describe how they are influenced

by the depth buffer, normal maps, and color reference images generated from the un-

derlying 3D geometry.

To bring these tools into the WYSIWYG NPR domain we follow Meier’s approach,

but implement hands-on tools for the designer to describe the stroke-based effects.

Instead of using scripts and algorithms, the user describes the placement of strokes

by drawing them interactively onto the 3D surface. We also provide associated con-

74

trols to describe their dynamic behavior during real-time navigation and animation.

This approach follows a similar one to Disney’s Deep Canvas system1 which was used

to create painterly effects on dynamic 3D backgrounds in the movie Tarzan, as briefly

described by Daniels [17].

In our work, we classify these strokes based upon the type of information they

convey about the underlying surface. Groups of strokes which achieve a broad range

of different surface detail effects are described first in Section 5.2. We consider the

more specific case of tonal stroke groups, like hatching, in Section 5.3. This distinction

will impact the dynamic behavior exhibited by the strokes under changing viewing

and lighting conditions.

5.2 Detail Marks

The most straightforward surface annotations in Jot are details marks. An artist

can use these to depict a myriad of effects as shown in Figure 5.1 – except for the

cross-hatching on the apple sauce tin in (b), all of these effects are achieved using

groups of detail strokes.

5.2.1 Annotating Surfaces

Our hands-on approach to annotating surfaces with strokes was originally inspired

by the WYSIWYG texture painting system of Hanrahan and Haeberli [34]. In their

work, the artist’s strokes are projected into texture maps on parameterized 3D sur-

faces. In contrast, we project strokes onto 3D objects to create spline curves that are

ultimately rendered using the stroke primitive in Chapter 3. Furthermore, we do not

require a parameterization of the surface. Each control point is simply represented

as a barycentric location on a particular mesh triangle. When the mesh deforms in

animation, the control points track the surface in the same fashion as a texture map.

1 Some details can be found in the SIGGRAPH sketch [17], and filed with U.S. pat. no. 6,268,865.

75

As with line stylization effects of Chapter 4, the designer first chooses a particular

brush style, and then draws strokes into the 3D scene using the tablet interface.

Strokes are associated with the surface under the tablet pen at the beginning of the

stroke, and are clipped to that surface for the remainder of the gesture. This permits

the designer to sketch near the edge of an object without concern for strokes landing

on background geometry. While annotating surfaces, the artist can freely navigate

the scene, zooming in and rotating about to ensure that the scene is “interesting”

from various distances and viewpoints, including the “backside.”

Collections of strokes that share brush styles and work in concert to achieve some

æsthetic effect can be grouped together. During sketching, a double-tap gesture with

the tablet pen is used to indicate that a group of strokes has been completed. In the

next two sections, we demonstrate how dynamic properties of stroke are controlled

by the designer on a per-group basis.

5.2.2 Dynamic Stroke Behavior

Obviously, our individually rendered strokes do not suffer the blurring or aliasing ar-

tifacts of those in conventional texture maps. But more significant differences become

apparent when these strokes are examined during dynamic viewing conditions. As

shown in Figure 5.2, the strokes can maintain their image-space width when rendered

from oblique perspectives. Furthermore, the width can be modulated independently

from the underlying surface. In the example, the strokes narrow in the distance, but

grow only minimally under magnification. In this section we describe the designer’s

controls for specifying the dynamic behavior of stroke widths under both changing

magnification and foreshortening.

Recall from Figure 3.1a (page 22) in Chapter 3 that a stroke is represented by a list

of spline control points {q i} called the base path. In each frame, the 3D stroke spline

is rendered by tessellating it at a chosen screen-space resolution and generating a

76

Figure 5.2: Detail strokes change in size independent of their underlying object.
Upper: Stroke widths shrink under minification, but grow slowly in magnification.
Lower: Stroke widths remain constant despite the foreshortening in oblique views.

triangle strip along it. Each tessellated point q is projected into the image plane, and

a pair of vertices are generated, separated by w along the transverse directions ±ŵ.

To control the dynamic behavior of strokes under magnification and foreshortening,

we provide the designer with parameters that influence w and ŵ, respectively.

We first consider the effects of changing magnification. To measure the degree to

which the object has changed in size, we proceed as in Section 4.3.3 using the ratio

σm of the object’s current image size to its size when the stroke group was completed.

If strokes maintain their original brush width defined at σm = 1 in all other views

σm 6= 1, then they will exhibit an æsthetic consistent with “real” brushes of fixed size

in 2D image plane. However, this will cause details to “pile up” eventually as the

object recedes from the camera. This can be avoided by scaling widths in proportion

to σm, achieving an æsthetic more consistent with 3D details. Unfortunately, now

the strokes can grow unbounded under magnification.

We might consider a hybrid factor like max(σm, 1), but, in practice, we find that

scaling strictly by 1 or σm is simply too rigid – strokes appear to behave most nat-

urally when they strike some balance between these extremes. Since this trade-off

77

generally depends upon semantic aspects of the stylization, and even changes between

minification and magnification, we leave this policy up to the designer to adjust ap-

propriately. For each stroke group, we provide the parameters β−, β+ ∈ [0, 1] which

balance between 1 and σm. These describe the scale factor ρw that modulates stroke

width as magnification changes:

ρw =

β− + (1 − β−) σm if σm < 1,

β+ + (1 − β+) σm if σm ≥ 1.
(5.1)

In Figure 5.2, the artist chooses a β− ∼ 0.9 causing strokes to shrink slightly

more slowly than real 3D features – an effect that we find avoids “pile ups” while

suggesting a degree of “2D-ness.” Similarly, a choice β+∼ 0.1 allows strokes to grow

slowly without becoming absurdly large under magnification. A subtle effect is also

achieved by setting β− slightly larger for the central green stroke, causing this feature

to dominate when the object is viewed distantly.

The other parameter under artist control influences how strokes behave when

their underlying surface is viewed obliquely. Though we always render the 3D stroke

path {q i} by constructing our triangle strips in the 2D image plane, the particular

choice of the 2D transverse direction ŵ at each point will lead to different dynamics.

We define q̇ as the 3D tangent vector to the stroke spline at q. A purely 2D æsthetic

can be achieved with ŵ2d (5.2), the perpendicular to the image projection of the

stroke tangent. On the other hand, we can produce a 3D dynamic with ŵ3d (5.3),

the projection of the vector both perpendicular to the stroke and contained in the

tangent plane. The approximate equalities indicate that these must be normalized:

ŵ2d ≃ proj
⊥
(q̇) (5.2)

ŵ3d ≃ proj (q̇ × n̂) (5.3)

78

γ = 0

γ = 1

(a) (b) (c)

Figure 5.3: Three views of a cylinder annotated with wide strokes – exaggerated with
un-stylized triangle strips as in Figure 3.1b. Upper: Strokes that are constructed in
the surface’s tangent plane are well-behaved in all regimes. Lower: Strokes that are
constructed purely in screen-space are unstable when parallel to the silhouette.

For each stroke group, we again provide the designer with a parameter γ ∈ [0, 1]

which balances between these two extreme dynamics:

ŵ ≃ γ ŵ2d + (1 − γ) ŵ3d (5.4)

While the designer is free to employ arbitrary γ, any choice γ > 0 can lead

to artifacts near the silhouette. As shown in Figure 5.3, if the stroke tangent is

nearly parallel to the camera direction q̇ · v̂ ∼ 1, then its projection in the image

plane becomes highly sensitive to small camera changes. This instability in ŵ2d is

revealed by wide strokes as the transverse direction bends abruptly at the silhouette.

Rather than force the designer to employ γ = 0 universally, we reduce this artifact

by enforcing it locally as | q̇ · v̂ | → 1. The effective γ is now given by:

γeff = γ [1 − (q̇ · v̂)2] (5.5)

In the lower row of Figure 5.2 the artist’s choice of γ ∼ 1 produces a mainly 2D effect

by preserving stroke widths under foreshortening. In the rightmost image, strokes

parallel to the silhouette protrude off the surface as desired, unaffected by (5.5).

79

σ
(0)
m = 1 σ

(1)
m = 1 σ

(2)
m = 1 σ

(3)
m = 1

(a) (b) (c) (d)

Figure 5.4: Four levels of detail for an eye effect: (a) initially there is little detail,
(b) additional strokes soon reveal an iris and eyebrow details, (c) a highlight appears,
and (d) fine details annotate the iris and the corner of the eye.

5.2.3 Level of Detail

Using only the tools described thus far, it is difficult to annotate an object with

detail marks over a wide range of size scales. In any intermediate view, coarse details

will become highly magnified σm ≫ 1, while fine details will be squashed together

σm ≪ 1. This constrains the designer to using β−, β+ ∼ 1. However, we find that

when stroke widths scale closely with the size of the mesh over too wide a range, the

result disturbs the painterly æsthetic – approaching an effect more akin to texture

mapping. In this section, we describe a means for the artist to divide stroke groups

into discrete levels of detail that are rendered only at appropriate scales, alleviating

these constraints on more richly detailed scenes.

While composing a group of detail strokes, the user signifies the completion of

each separate level of detail (LOD) with a single-tap gesture of the tablet pen. Once

all of the desired LODs have been created, the group as a whole is again completed

with a double-tap gesture as in Section 5.2.1. Instead of tracking object scale using

a single σm for the whole group, now each separate LOD is associated with its own

ratio σ
(i)
m of the object’s current size to that when the LOD was completed.

80

Once complete, the LODs are sorted in order of ascending scale so that σ
(0)
m cor-

responds to the details visible when the object is most distant. The decision whether

or not to render a given LOD is based upon its σ
(i)
m . If the object is so distant that

σ
(0)
m ≪ 1, then no LODs are rendered at all. The first LOD only becomes visible as

σ
(0)
m → 1. Then, as scale changes, the strokes in this LOD vary in width according

to (5.1) using their respective σ
(0)
m . Once magnification increases such that σ

(1)
m → 1,

the system presents the designer with two possibilities: the higher LOD can either

augment the strokes in the previous one, or simply replace them altogether to avoid

excessive magnification. The process continues analogously for the remaining LODs,

reversing when magnification decreases.

In the example of Figure 5.4, the artist created four LODs to depict an eye using

the augmentation policy. It is worth mentioning that each LOD was not drawn at its

respective scale. Instead, the designer composed all four LODs from camera pose (d)

to gain increased precision. After each LOD was drawn, the camera was adjusted

to its respective pose before “locking-in” the scale with a single-tap gesture. As we

progressively zoom in upon the stylized bust, stroke widths grow only gradually, while

additional details transition in to augment the sparse details from coarser scales.

Care must be taken not to introduce coherence artifacts during discrete changes

in LOD. Interactive scene navigation makes this especially challenging because the

camera paths are unknown a priori. We approach this by scheduling an animated

transition whenever the σ
(i)
m test determines that some LOD should appear. The

animation modulates one or both of width and α to cause strokes to grow smoothly

into existence, and performs the reverse as they vanish. Once begun, transitions

always run to completion so that LODs never persist in a state inconsistent with the

designer’s chosen brush parameters. Furthermore, we use hysteresis in the scale test

to reduce spurious transitions. A given LOD will not be scheduled to appear until

σ
(i)
m > 1+δ+. And, once visible, it will not be scheduled to vanish until σ

(i)
m < 1−δ−.

81

In total, this section presents a particularly large collection of parameters to con-

trol the dynamics exhibited by each group of detail marks: β−, β+, γ, δ−, δ+, and a

few other LOD policy choices including replacement vs. augmentation, and animated

transition settings. However, in practice, we have found that we can set many of

these parameters to defaults that are reasonable for the vast majority of stylizations.

In Jot’s GUI, the more esoteric settings are concealed in roll-out panels that are only

opened when the designer chooses to tweak some default parameter to achieve a more

specific effect.

5.2.4 Interactivity

Like static feature lines (Section 4.2), detail marks present few challenges to achieving

interactive performance rates. Their visibility can be resolved in real-time by again

using the ID reference image (Section 3.2), though this time we test for triangle IDs

instead of feature lines. Rendering then proceeds via the efficient stroke primitive

described in Chapter 3.

Furthermore, the frame-to-frame coherence of these strokes is essentially intrinsic.

Because they remain fixed on the underlying surface, their coherence will simply

reflect that of any dynamic effects. The magnification and foreshortening behaviors

described in Section 5.2.2 are both smooth functions of the view, so these do not

introduce new artifacts. However, explicit effort was necessary to reduce the impact

of the discrete LOD transitions in Section 5.2.3. We mitigate these with a hysteresis

test that reduces spurious transition events. When transitions do finally occur, strokes

are introduced and removed from the image gradually using smooth animations.

82

(a) (b)

(c) (d)

Figure 5.5: Tonal marks convey lighting-induced shading effects. Jot implements
(a) roughly parallel structured hatching and (c) cross-hatching stroke groups, as well as
(d) a flexible free-form hatching. In (b), the annotations move under implied lighting.

5.3 Tonal Marks

The other class of surface annotations we address in Jot are tonal marks. More rigidly

defined than detail marks, these are groups of strokes that act collectively to convey

tone, or shading effects that arise from lighting considerations. We focus primarily

upon a common form of tonal markings called hatching – one or more overlapping

sets of roughly parallel strokes, as in Figure 5.5a and c. Several NPR researchers have

investigated methods to use procedural textures or principle curvature directions to

define hatching strokes on the 3D surface consistent with a lighting environment

[40, 82, 92, 93]. Recently, others have extended this work into real-time via novel

application of GPU texturing hardware, and programmable shaders [29, 68, 88]. But

all of these approaches are hands-off, taking as input only a description of the lighting,

and the stroke textures or parameters governing how strokes populate the surface.

83

The images rendered by these parametric systems generally consist of large num-

bers of small strokes that collectively approximate the Gouraud shading model. They

cannot, for instance, produce hatching effects which are more localized, conform to

non-physical lighting models, or consist of only a few carefully chosen strokes. For

these difficult to simulate effects – like the examples in Figure 5.5 – it is necessary to

provide the designer with hands-on controls to describe the æsthetic. In this section,

we describe a preliminary approach to implementing such tools. The process begins

with the artist sketching the desired hatching effects directly into the scene. A light-

ing model is directly inferred from the annotations, such as those in Figure 5.5a, and

the system adjusts them accordingly in novel views, as in Figure 5.5b.

We explore two types of tonal stroke groups – structured hatching (Section 5.3.1)

which is composed of roughly parallel marks, and a free-form hatching (Section 5.3.2),

which imposes no restriction upon stroke arrangement. These two categories are

distinguished primarily by how their LOD behavior preserves tone over changing size

scales. We reserve for Section 5.3.3 the discussion of how these hatching annotations

define a lighting environment to govern their behavior in novel views.

5.3.1 Structured Hatching

In illustrations, one of the most common forms of tonal marks are the roughly parallel

lines we call structured hatching. These groups of annotations collectively convey

shading on the surface in proportion to their stroke density in the image. In Jot, the

designer creates these effects by sketching them into the scene. After each group is

drawn, the camera pose is adjusted until the hatching exhibits the desired spacing –

a final tap gesture “locks-in” this target tone for the group. The result is a set of

spline curves on the object surface that are rendered in a similar fashion to the detail

marks in Section 5.2.

84

σ
(0)
h = 1.0 1.2 1.6 −→ 1.6 1.8 2.0

σ
(1)
h = 0.5 0.6 0.8 −→ 0.8 0.9 1.0

Figure 5.6: As the camera approaches structured hatching, level of detail effects
preserve stroke density. Stroke widths change to preserve tone between transitions.

However, unlike detail strokes, structured hatching groups exhibit only a particular

form of dynamic behavior. When magnification or foreshortening lead to changes in

stroke density, the system compensates with effects geared toward maintaining the

target tone. One way to affect this is by modulating stroke widths, but, as we found

for detail marks, this is only æsthetically viable over small scales. Therefore, we

again employ a discrete level of detail (LOD) framework (Section 5.2.3). This time,

however, the designer need not sketch each LOD. Instead, we exploit the regularity

of structured hatching to do this automatically.

Each time hatching density falls too low, we introduce a new LOD that augments

the existing hatching strokes to restore their spacing. This is governed by the ratio

σ
(0)
h of the current mean spacing between hatching strokes, to that when the designer

locked the group. By definition, hatching exhibits the desired tone if σ
(0)
h = 1. As

shown in Figure 5.6, when magnification leads this spacing to double σ
(0)
h = 2, a new

LOD restores the desired tone by doubling the density. The new strokes are created

automatically in the interstices of the existing ones via interpolation. As before,

each LOD is associated with its own ratio σ
(i)
h which controls its behavior. The first

synthesized LOD restores the target tone σ
(1)
h = 1 when σ

(0)
h = 2. This proceeds

analogously for each successive doubling of the original spacing σ
(0)
h = 2i , where an

associated LOD re-establishes target tone σ
(i)
h = 1 by again doubling density.

85

Between discrete LOD transitions, we compensate for disparity in target density

by modulating brush widths, as described for detail marks in equation (5.1). When

stroke spacing exceeds or falls short of the target, the original brush widths expand

or narrow, respectively. However, we move the LOD transition threshold from σ
(i)
m =

1± δ± for detail groups, to σ
(i)
h = 3/4 ± δ± for hatching groups. This ensures that the

active LOD is always the one which most closely approximates the original density.

As the camera approaches a hatching group in Figure 5.6, spacing begins to exceed

the target (σ
(0)
h > 1) and widths increase in response to preserve collective tone.

Eventually the threshold for the next LOD is crossed (here δ+ = 0.05), and new

strokes grow in during the scheduled transition animation. Spacing now falls short

of the target (σ
(1)
h < 1), so widths scale back from their original brush size until the

desired density is reached again at σ
(1)
h = 1.

Because of the coherence cost incurred during each stroke-doubling event, we have

investigated LOD schemes that amortize this impact by introducing fewer strokes

more often. However, we find that this actually accentuates the problem. Though

individually such transitions are less disruptive, in practice they often draw more

attention by virtue of their frequency. Nevertheless, more complete systems might

offer these or other novel tone-preserving dynamic effects.

5.3.2 Free-Form Hatching

For some tonal effects, the artist may find structured hatching too constraining.

Therefore, we also provide a free-form hatching that enables the designer to explicitly

build the tone-preserving LODs. These are composed by directly drawing arbitrary

arrangements of strokes, as in Figure 5.7. Indeed, this is precisely the same LOD

framework described for detail marks in Section 5.2.3. But there is an important

distinction – as described in the next section, both structured and free-form hatching

groups can imply a lighting model to dynamically control them in novel views.

86

Figure 5.7: Using free-form hatching, the designer can achieve arbitrary tonal effects.
Custom generated level of detail strokes (that preserve tone) are revealed in a close-up.

5.3.3 Dynamic Lighting

Thus far, we have presented dynamic effects that strive to preserve the tone of hatch-

ing groups under changing views. As their density changes, hatching strokes appear,

disappear, and change in width, but otherwise are stationary on the underlying sur-

face. As a result, the shading effects these markings convey will imply consistency

with lighting models fixed in the world frame. However, it is natural to investigate

the impact of dynamic lighting models. This is easily accomplished in hands-off

systems, as they render imagery by starting from a description of the lighting envi-

ronment itself. Typically, many small strokes on the surface are used to approximate

the standard Gouraud shading model, in what is effectively a half-toning problem.

In contrast, we have chosen an approach which provides the designer means to di-

rectly sketch the final hatching effects. It is not obvious how to derive an explicit

description of the lighting model from the designer’s annotations. In fact, the artist

is entirely free to produce imagery that does not exhibit consistency with any global

lighting environment. And, even if such a lighting description could be extracted

from the scene, it is still unclear how the designer’s annotation should respond if it

were to change dynamically.

87

n
h

(a) (b)

Figure 5.8: Dynamic lighting effects apply identically to highlights and shadows:
(a) each hatching group defines a directional light along the local surface normal, and
(b) in novel views hatching groups move because lighting is fixed in the camera frame.

To approach this challenge, we proceed from observations of these effects in tradi-

tional illustrations. Often, artists will employ shading near the silhouettes of objects,

suggestive of lighting cast from somewhere behind the camera. In novel views of the

scene, these shading marks do not remain fixed on the surface, but tend to appear

again near the silhouettes. This behavior is consistent with lighting which is fixed in

the camera frame. Because we cannot hope to determine a globally consistent lighting

model, we will pursue this observed dynamic on a per-hatching group basis. That

is, if the designer annotates the “left side” of an object with a tonal marks (e.g., on

the snowman in Figure 5.9), the system will maintain these annotations on the “left

side” of the object in new views. We call this mobile hatching. The artist can employ

this dynamic with both structured and free-form hatching, as shown on the snowman

and trees, respectively, in Figure 5.9.

We accomplish this with a straightforward model that applies equally to tonal

marks suggestive either of highlights or shadows. Each hatching group created by the

artist is associated with a pseudo directional light source opposite to the local surface

normal n̂h. By definition, this source will illuminate the surface most strongly at the

88

location of the annotation. For highlights, we imagine a light source in the usual

sense producing this tone. However, for shading strokes, we think of a “dark light”

shining darkness onto the local surface. As shown in Figure 5.8, these pseudo sources

are held fixed in the camera frame in novel views. The dynamic effect is achieved as

each mobile hatching group moves about the surface to maintain a location which is

strongly illuminated by its respective source.

Motivated by the goal of real-time rendering, we currently implement this gen-

eral technique only for surfaces that satisfy a narrow set of constraints. We consider

smooth surface regions with roughly uniform uv-parameterization, and further restrict

the motion of mobile hatching to particular curves in parameter space. Specifically,

we choose the direction along which surfaces exhibit a “wrapping” in the parame-

terization (e.g., along the longitudinal lines of a sphere or cylinder). We will call

this the u direction. When the artist completes a mobile hatching group, the system

projects the strokes into uv-space, computes their convex hull, locates its centroid

(uc, vc), and records n̂h as the surface normal at (uc, vc). The parametric path over

which hatching travels is taken to be the line v = vc. For new views, we sample the

surface normal along the line n̂(u, vc), and evaluate a Lambertian lighting function

ℓ(u) = n̂h · n̂(u, vc). Note that, when obtaining either n̂h or ℓ(u), we use a copy

of n̂(u, vc) cached with the hatching group. Each copy is smoothed via a filter ker-

nel with the extent of its respective stroke group, thereby accounting for the normal

across the entire band of surface inhabited by the hatching, and reducing sensitivity

to small-scale surface variations. Next, at each local maximum in ℓ(u) we create a

mobile hatching group whose extent is governed by the width of the peak. We omit

maxima where ℓ(u) is less than a confidence threshold T (we use 1/2) that prevents

hatching from being placed at insignificant local maxima arising from the constrained

motion of the group. Finally, as ℓ(u) approaches T we fade out the group to achieve

a coherent transition.

89

Figure 5.9: Simple geometry provides a “blank canvas” for stroke-based details. A
‘toon shader and structured hatching suggest lighting on the snowman, detail strokes
depict a face, and uneven blue crayon silhouettes imply bumpy snow. Conical trees
are annotated with sawtooth crayon silhouettes plus two layers of hatching effects.

While this particular implementation is limited, it could be easily extended to

handle arbitrary unparameterized surfaces. This is possible with the use of “proxy

surfaces.” As demonstrated by Markosian [55], compelling hatching effects can be

generated by composing roughly parallel strokes in the image plane, and then simply

clipping them to an underlying 3D surface – optionally modulating their widths to

account for curvature, etc. Instead of the image plane, we could enable the designer to

sketch mobile hatching effects onto a proxy surface, such as a bounding cylinder with

the necessary uv-parameterization. By clipping the final hatching to the underlying

general surface, we can achieve a similar effect to Markosian, but with additional

dynamic behavior arising from our lighting model.

90

While the “dark light” model may not be physically accurate, it does yield plau-

sible cartoonish lighting effects. It is also extremely easy for the artist to specify, and

does not constrain him to depict lighting that is globally consistent. Still, the problem

of inferring lighting in response to hand-drawn shading merits further investigation.

Other researchers, for example, Poulin et al. [67] and Schoeneman et al. [77], have

addressed this problem with greater rigor in the context of photorealism.

5.3.4 Interactivity

The key challenges addressed in achieving interactivity for tonal marks are essentially

identical to those for detail marks (Section 5.2.4). A notable exception is our approach

to achieving real-time rendering for mobile hatching. For this effect, it was necessary

to constrain the solution to parameterized surfaces to simplify the task of evaluating

the pseudo lighting criterion. Additionally, each parameterized region which receives

mobile hatching annotations is stored into spatial data structure – one that permits

O(1) look-up of the triangle containing a given uv-coordinate. This is necessary to

facilitate efficient rendering as mobile hatching traverses parameter-space.

5.4 Discussion

Summary of Surface Effects

In this chapter, we addressed various aspects of WYSIWYG NPR tool development

for surface stylization effects (Table 2.4.2, page 15). We began by describing our

approach to annotating surfaces via the sketching of strokes directly into the scene.

Such tools for creating detail marks immediately lead to a wide array of effects, rang-

ing from rich painterly styles (Figure 5.1a), to detailed line drawings (Figure 5.1d).

Similar tools for hatching enable the artist to create tonal effects directly and locally,

unconstrained by global lighting models. In concert with a flexible stroke primitive

91

and media simulation, these systems provide æsthetic flexibility, and the hands-on

means for designers to impart their personal æsthetic (Figure 6.1).

The annotated surfaces can be freely rendered under animation and novel viewing

conditions. The system preserves the artist’s annotations while dynamically adapting

stroke properties to changing scales and perspective. The designer can tune this

scripted behavior to elicit effects that balance between 2D stroke-like behavior and

3D texture mapping æsthetics. Additional controls provide LOD effects customized

through direct sketching at the desired scales, while the regularity of hatching is

exploited to accomplish this automatically. We also present a new cartoonish lighting

model that is inferred directly from hatching annotations, which imposes no physical

consistency constraints upon the implied illumination.

And, once again, we ensure that these tools function effectively in an interactive

domain – providing the designer with a responsive, hands-on environment. Various

design choices coupled with rendering algorithms that exploit the GPU for visibility

and stylized rendering, achieve real-time performance rates for scenes of reasonable

complexity [46, 47]. Furthermore, groups of strokes on the surface maintain their

frame-to-frame coherence during LOD changes. This is accomplished through scripted

transition animations that mitigate the impact of discrete LOD events, both under

real-time navigation and during the playback of animated sequences (Figure 6.6).

With WYSIWYG NPR tools, the artist may explore stylizations previously inac-

cessible in animation. When the system assumes the coherence of the annotations,

the artist is free to exploit detailed stroke-based effects which would be daunting

to produce by hand (e.g., Figures 5.1c and d). In fact, the vast majority of hand-

generated cell-animation employs absolutely no stroke-based effects at all. Surfaces

are generally portrayed in only solid colors, or at most, a few discrete bands. Clearly,

these tools can open the way to new styles for the animator.

92

Future Work

Pattern/Hatching Synthesis

We have yet to explore tools that can synthesize stylization from the annotations

made on surfaces, as we have for stylized lines in Chapter 4. This could significantly

reduce the burden on the designer when stylizing many elements in complex scenes.

For example, the artist might sketch only a few bricks, and then direct the system

to generate similar effects over an entire wall. This challenge has been pursued in

the context of repetitive image synthesis from example input [25, 26, 37, 89], and

extended to the explicit case of texture maps on surfaces [87, 90, 94]. But with the

exception of some work on a particular form of hatching effects by Jodoin et al. [45],

the synthesis of stroke-based patterns remains an entirely open problem.

Automatic Abstraction

Hand crafted illustrations typically omit details to reduce image complexity as scenes

are viewed more distantly. At present, our system supports this sort of abstraction

in the form of the explicitly constructed LODs for detail and hatching stroke groups.

An interesting question is how to omit or even merge strokes in scenes automatically,

and to do so with temporal coherence as the camera zooms in or out. For instance,

the designer might specify surface annotations at their highest LOD, while the system

assumes the task of omitting and merging strokes to automatically generate the more

abstract representations. This type of effect has been investigated in 2D painterly

rendering systems, and other applications in NPR (see DeCarlo et al. [20] for a brief

survey), but the problem of achieving this with coherence remains unaddressed.

93

Chapter 6

Conclusions

6.1 Summary

In this dissertation, we have begun to target the key challenges that have so far lim-

ited the use of stylization and abstraction in computer graphics. The inability to

apply these techniques has greatly restricted the adoption of 3D rendering systems

by content creators beyond a small number of particular applications. The reason

is that photorealistic content is extremely difficult and expensive to create, and, in

many cases, is not the most effective medium of expression. Over the centuries, artists

have developed a broad range of techniques which convey visual information more ef-

fectively and efficiently for many applications. A growing branch of graphics research

now explores NPR technologies that bring these methods into the 3D graphics do-

main, but relatively little research has addressed the problem of creating flexible tools

at the disposal of the designer. Thus far, the focus has been upon “black boxes” which

can replicate certain traditional styles. Though such systems are certainly useful, our

goal in this work was to demonstrate the fundamental importance of developing a

more hands-on, flexible class of tools.

94

Figure 6.1: WYSIWYG annotation tools provide wide degree of æsthetic flexibility.
The same cup mesh has been stylized in 18 different ways.

95

To this end, we proposed WYSIWYG NPR – design tools that offer flexible inter-

faces to exploit the designer’s particular skills and judgment, and useful algorithms

he can exploit to offload the more tedious aspect of content creation. We approached

this challenge by focusing on three key aspects: annotation tools for describing the

stylization of 3D scenes, interfaces and algorithms that govern the dynamic behavior

of stylization in novel views, and the challenges that arise when implementing fully

interactive NPR systems.

Though we explored these tools for a small set of stroke-based effects, we find

the pay-off in æsthetic range to be large. Direct, hands-on annotation interfaces

immediately lead to a wide degree of flexibility in stylization (Figure 6.1). Complex

geometry tends to offer the designer details that can be “revealed” through media

shaders and contour stylization (Figures 6.2 and 3.4, page 27), whereas simpler objects

offer a “blank slate” on which to create new details where none exist (Figure 5.9,

page 90). By bringing the artist into the loop, we exploit his unique discretion to

produce subtle or complex effects that would be extremely difficult to simulate in

automatic rendering systems. Nevertheless, to expedite stylization of dense scenes,

the user can still call upon the system to automatically generate annotations. Because

these are synthesized from the artist’s own examples, he still remains in control of

the final æsthetic.

The rewards of WYSIWYG NPR are further realized in dynamic settings. Once

geometry is annotated by the designer, he can freely render the scene from novel

views while the system maintains the annotations automatically. To accomplish this,

it was necessary to consider how annotations from one view evolve under dynamic

viewing conditions – a problem unique to hands-on tools. We met this with various

rendering algorithms that can exhibit a range of behavior which the designer can

adjust to specific goals, either by tuning parameters or directly sketching the desired

effects.

96

Figure 6.2: The objects from Figures 4.4b and Figure 3.4 annotated in new styles.

Figure 6.3: To create this still life, the artist annotated silhouettes, and sketched
hatching effects. Surfaces are lit, textured, and composited on splotchy paper.

97

And, finally, all of these systems were developed to meet the demands of interac-

tive environments. We presented solutions which ensure the necessary performance

rates, including several that exploit the GPU to achieve real-time visibility, sample

propagation, media simulation, etc. Furthermore, we enforce the coherence of styl-

izations during real-time interactive navigation (and off-line rendering). While this

was relatively straightforward for most of the effects in Jot, it presented significant

challenges for view-dependent contours. We addressed these with a new coherence

framework that significantly surpasses previous work, opening the door to much richer

stylizations for animation. The designer can stylize just one frame of an animated se-

quence, as in Figure 6.6, and the system assumes the task of enforcing a coherence in

future frames. The behavior of the coherence can be tailored from a purely 2D effect

(as on the animated gears in Figure 6.5), through to a 3D shape tracking dynamic

(like the dancing cactus in Figure 6.7), and even animated stylizations (Figures 6.4).

The value of WYSIWYG NPR tools is clear. These hands-on systems provide

the artist with a new range of æsthetic flexibility and convenient tools to off-load

the tedious aspects of content creation, even opening the way to effects previously

challenging or impossible to attain by traditional means.

6.2 Future Work

To increase the expressive power of 3D graphics for the content creator, in Chapters 1

and 2 we propose WYSIWYG NPR tools that bring the techniques of stylization and

abstraction to bear in a hands-on domain. We organized our approach identifying

key design considerations, and mapped the problem space for our test system in

Table 2.4.2 (page 15). The majority of these issues were considered in this project,

while a few remain for future work. We have made substantial progress toward this

new class of tools, but even if we had addressed all aspects in Table 2.4.2, this work

would still be far from complete. In fact, we have taken only a few first steps toward

systems that can vastly enhance the expressive power of computer graphics.

98

Figure 6.4: A Squigglevision
TM

effect Figure 6.5: Animation of rigid bodies

Figure 6.6: Four frames from an animation with objects undergoing full deformation.
Silhouette stylization and free-form hatching produce the shown æsthetic.

Figure 6.7: The “Boogie Cactus.” A stylization depicting thorns sticks to the sil-
houette of the smooth underlying mesh as the figure deforms under animation.

99

Markosian [55] observes that there is a fundamental difference in how one gauges

the success of photorealistic imagery versus that of NPR. We recognize that photore-

alism has achieved its goal when the result looks photorealistic. But, while research in

non-photorealism commonly describes success when the result looks good, this metric

should instead reflect how close the result looks as the designer intended. Indeed,

the clearest path to this goal is the continued development of tools that provide the

designer with the highest degree of hands-on control and æsthetic flexibility.

In addition to our recommendations in Sections 4.5 and 5.4, we can imagine such

future work as additions to Table 2.4.2 that extend the flexibility of WYSIWYG

NPR. New rows, for instance, represent additional design considerations. Our current

focus has been upon annotation of 3D scenes for real-time interaction. However,

if the target is the production of scripted animation, then tools are required for

specifying stylization effects in the time domain – perhaps by sketching stylizations

at key-frames. On the other hand, additional columns for the table represent new

forms of stylization. One might investigate more complex stroke-based æsthetics, like

blended painterly styles where underlying strokes begin to interact or bleed together,

or perhaps dense markings like stippling. Another interesting problem involves the

effects that are a hybrid of geometry and stylization, such as graftals that depict

details like leaves, and fur [50, 57]. Tools for these effects could be useful for adding

apparent geometric details to much simpler underlying 3D objects.

Tools for the annotation of existing 3D geometry are, however, only half of the

content creation equation. Indeed, in Section 2.1 we posit that the “Holy Grail” of

NPR research in to enable the artist to simply draw in the image plane and thereby

express a complete, stylized 3D scene. Full WYSIWYG systems should also enable

the designer to create the underlying geometry through similar hands-on methods.

One possible approach would be to integrate WYSIWYG NPR tools like Jot, with

sketch-based modeling systems such as Teddy [42]. In fact, we have already begun

100

preliminary work on such tools. The teacup seen throughout this thesis, and the “still

life” in Figure 6.3, were all created entirely through gestural input from the tablet in

Jot. An additional mode of the system (under development) offers a gestural interface

for creating objects and composing them in the scene, the results of which can then

be annotated with the WYSIWYG NPR tools we have described.

But, perhaps not all NPR effects are best expressed as annotations atop a conven-

tional 3D mesh. Bourguignon et al. [5], for instance, describe a system that generates

just enough geometry to present a stylized, view-dependent result consistent with

each input gesture from the designer. Yet the system never explicitly creates the

actual 3D object that these gestures serve to depict. This can be particularly useful

when the artist needs to quickly convey a “back of the envelope” sketch, but does

not have the time or resources to find or create the requisite 3D geometry. However,

these approaches [12, 86] presently place significant restrictions on the structure of

this geometry as well as final rendering æsthetics.

Nevertheless, with the ultimate goal of presenting a “blank canvas” with tools ca-

pable of expressing stylized virtual scenes that can meet the designer’s intentions, it is

necessary to pursue the ongoing development and integration of WYSIWYG modeling

and annotation tools, as well as these hybrid systems which blur such distinctions.

101

6.3 Jot

What is the status of Jot?

· The WYSIWYG NPR system described in this dissertation can be downloaded

for personal, educational, and research purposes.

· A binary is available for Windows platforms, but Linux and OS X are planned.

· Source code will ultimately be released under some license.

Where can you get it?

102

Appendix A

Media Simulation Details

A.1 Overview

In this section, we describe an efficient GPU-based implementation for the media effect

from Section 3.3. The goal is to simulate the process of depositing pigment onto an

uneven paper surface as fragments are composited into the frame-buffer. In practice,

we imagine that the α-component of each incoming fragment (r g b α) represents

the “pressure” with which pigment (r g b) is deposited. A paper height-field texture

is used to control a remapping α → t(α, h), where the transfer function at each pixel

accounts for the underlying paper height and incoming pressure value. The final

pigment (r g b) is then composited through alpha blending into the frame-buffer

according to the remapped component t(α, h).

This effect can be applied to any rendering primitive with an α-component. For

strokes, α can be viewed as the pressure profile across a brush. With effectively

chosen stroke parameters (Section 3.1) and paper textures, various forms of traditional

media can be emulated, as in Figure 3.3 (page 26). But, this effect applies equally to

mesh triangles. In Section 2.3, we describe how objects can be assigned a basecoat

consisting of shaders that render the object’s triangles. These include solid shading,

103

conventional Gouraud lighting and texture mapping, and ‘toon shaders – all of which

can be configured to assign an α-component in some way, as demonstrated with the

‘toon shader in Figure 3.4 (page 27).

In this appendix, we demonstrate the GPU code that implements such a ‘toon

shader coupled with the media simulation effect. For clarity we simplify the imple-

mentation by removing certain functionality. For instance, our actual shader supports

both directional and point source ‘toon lighting, as well as providing brightness and

contrast parameters to adjust the paper height field texture. The latter was found

extremely useful for tuning the media simulation æsthetic.

A.2 Design Considerations

We implement the media simulation efficiently in hardware using both vertex and

fragment programs. The vertex program is necessary to set the texture coordinate

of each vertex to its screen-space location, causing the paper height field texture to

appear fixed in the image plane. The associated fragment program can then look

up the paper height at each pixel to compute the alpha transfer function given by

equation (3.3).

The vertex and fragment programs that implement a ‘toon shader are given in

Sections A.3 and A.4, respectively. The ‘toon profile texture is bound to Tex0, while

the paper height field texture is bound to Tex1. The vertex program sets the Tex0

coordinates to u0 = (s t r q) = (n̂ · ℓ̂ 0 0 1) appropriate for a directional light ℓ̂,

while the Tex1 coordinates u1 are set according to the screen-space position of the

vertex. At points interior to a triangle, the fragment program modulates each pixel

by the local value of the ‘toon texture Tex0(ũ0), and re-maps α → t(α, h) using the

paper height at the location of the pixel Tex1(ũ1). The texture coordinates ũ0, ũ1 of

each fragment are interpolated across triangle faces from the values at the vertices.

104

And this is the catch: we must be careful when setting u0 to the screen-space

location of the vertex. The GPU will determine texture coordinates ũ1 for each

pixel inside a triangle by perspective-correct interpolation of the coordinates u1 at its

vertices [3, 35]. Because the paper texture lies in the image plane (unlike the ‘toon

texture), we must ensure that these texture coordinates are only linearly interpolated

in the image plane. Failure to do so will cause the media effect to warp as the camera

approaches 3D objects, violating the expected behavior of an image-space height field.

Given object vertex p = (x y z 1) and concatenated 4 × 4 modelview-projection

matrix MP, the homogeneous clipping coordinates of the vertex are:

p′ = (x ′ y ′ z ′ w ′) = pMP. (A.1)

Once clipped to the view frustum, the final screen-space coordinates are given by:

p′′ = (x ′′ y ′′ z ′′ 1) = (x ′/w ′ y ′/w ′ z ′/w ′ w ′/w ′) (A.2)

We require for each vertex that the Tex1 coordinate u1 reflect its screen-space location:

u1 = (s t r q) = (x ′′ y ′′ 0 1) (A.3)

However, this choice causes distortion at triangle interiors where perspective correc-

tion determines ũ1 via pre-multiplying by 1/w ′ to linearly interpolate the perspective

corrected quantity below, before post-multiplying by w ′/q:

u1
×1/w ′

−→ (s/w ′ t/w ′ r/w ′ q/w ′)
×w ′/q−→ ũ1 (A.4)

Therefore, we choose u1 = (x ′ y ′ 0 w ′). By equations (A.4) and (A.2), this leads to

linear interpolation of screen-space location (x ′/w ′ y ′/w ′ 0 w ′/w ′) = (x ′′ y ′′ 0 1),

as we desire. Because this is post-multiplied by w ′/w ′= 1, the final texture coordi-

nate ũ1 gives back the screen-space location we seek in equation (A.3).

105

A.3 Vertex Program

This GL VERTEX PROGRAM ARB sets the texture coordinates appropriately for a ‘toon

shader with light ℓ̂, and the media simulation of Section 3.3.

!!ARBvp1.0

ATTRIB iCol = vertex.color;

ATTRIB iPos = vertex.position;

ATTRIB iNorm = vertex.normal;

OUTPUT oCol = result.color;

OUTPUT oPos = result.position;

OUTPUT oTex0 = result.texcoord[0];

OUTPUT oTex1 = result.texcoord[1];

PARAM cOne = 1.0,1.0,1.0,1.0;

PARAM cZero = 0.0,0.0,0.0,0.0;

PARAM mMP[4] = state.matrix.mvp ;

PARAM mTex0[4] = state.matrix.texture[0] ;

PARAM mTex1[4] = state.matrix.texture[1] ;

PARAM cL = program.env[0];

TEMP tPprime;

TEMP tNDotL;

Compute p’ = p MP for media effect

DP4 tPprime.x, mMP[0], iPos;

DP4 tPprime.y, mMP[1], iPos;

DP4 tPprime.z, mMP[2], iPos;

DP4 tPprime.w, mMP[3], iPos;

Compute N dot L for toon shader

DP3 tNDotL.x,iNorm,cL;

MOV tNDotL.yz,cZero;

MOV tNDotL.w, cOne;

DP4 oTex0.x, mTex0[0], tNDotL;

DP4 oTex0.y, mTex0[1], tNDotL;

DP4 oTex0.z, mTex0[2], tNDotL;

DP4 oTex0.w, mTex0[3], tNDotL;

DP4 oTex1.x, mTex1[0], tPprime;

DP4 oTex1.y, mTex1[1], tPprime;

DP4 oTex1.z, mTex1[2], tPprime;

DP4 oTex1.w, mTex1[3], tPprime;

MOV oPos, tPprime;

MOV oCol, iCol;

END

106

A.4 Fragment Program

This GL FRAGMENT PROGRAM ARB applies the ‘toon texture in Tex0, and then remaps

α according to equation (3.3) using the paper height in Tex1. The media simulation

of Section 3.3 is completed by compositing the result with alpha blending.

!!ARBfp1.0

ATTRIB iCol = fragment.color;

OUTPUT oCol = result.color;

ATTRIB iTex0 = fragment.texcoord[0];

ATTRIB iTex1 = fragment.texcoord[1];

PARAM cOne = { 1.0, 1.0, 1.0, 1.0 };
PARAM cTwo = { 2.0, 2.0, 2.0, 2.0 };

TEMP tPeak;

TEMP tValley;

TEMP tResult;

Conventional 2D texture modulation

TXP tResult, iTex0, texture[0], 2D;

MUL tResult, iCol, tResult;

Peak and valley transfer functions

MUL SAT tPeak.a, cTwo, tResult;

MAD SAT tValley.a, cTwo, tResult, -cOne;

Weighted sum of peak and valleys functions

TXP tResult.a, iTex1, texture[1], 2D;

LRP tResult.a, tResult, tPeak, tValley;

Pre-multiply by alpha

MUL tResult.rgb, tResult, tResult.a;

Final result should be composited using

glBlendFunc(GL ONE, GL ONE MINUS SRC ALPHA)

MOV oCol, tResult;

END

107

Appendix B

Epipolar Silhouette Motion

To ensure the frame-to-frame coherence of stylized silhouettes, we assign their pa-

rameterization based on samples propagated from the previous frame. Corresponding

points on silhouette are established between frames through a search of the epipo-

lar plane, as described in Section 4.4.3. The appropriate search direction is given

by equation (4.6), page 55, the displacement δp in the epipolar plane of point p on

the silhouette contour due to camera motion δc. We derive this following a similar

analysis for suggestive contours presented by DeCarlo et al. [18]. They also provide a

brief background in differential geometry that encompasses the notation and concepts

applied here, but additional information can be found in [10, 22, 49].

Section 4.3.1 defines the silhouette contour as the zero-set of a scalar function g,

evaluated at triangle vertices, and extended to interiors through linear interpolation.

Given the camera location c, the silhouette contour consists of points p that satisfy:

v = c − p (B.1)

g = n̂ · v = 0 (B.2)

We seek to determine how these silhouette contours evolve under camera motion.

This can be derived from the implicit function theorem [63], which relates the partial

108

derivatives of implicit functions at level sets. We are interested in the change in

position p with respect to camera location c at the zero set of g on the surface. One

can show that, for a small camera displacement δc, such a point will be displaced

through the tangent plane in direction x by:

δp = −
(

∂g

∂c
· δc

)(

Dxg

‖x‖

)−1
x

‖x‖ (B.3)

Where Dxg denotes the directional derivative of function g on the surface in tangent

direction x, while ∂g/∂c is a regular derivative with respect to vector c. We are

concerned with motion through the epipolar plane, which intersects the tangent plane

along the v direction. Substituting and applying the product rule gives:

δp = −

(

∂n̂

∂c
δc

)

· v + n̂ ·
(

∂v

∂c
δc

)

(

Dvn̂
)

· v + n̂ ·
(

Dvv
) v (B.4)

If the camera displacement δc is accompanied by animation that deforms the mesh at

point p, we denote this displacement and change in surface normal as δpa and δn̂a,

respectively. The differential quantities can now be expressed as:

∂n̂

∂c
δc = δn̂a (B.5)

∂v

∂c
δc = δc − δpa (B.6)

n̂ · (Dvv) = −n̂ · v = 0 (B.7)

(Dvn̂) · v = II(v,v) (B.8)

Here, II is the second fundamental form which describes how the local surface changes

at p as a function of direction [22]. We substitute these quantities:

δp = −v · δn̂a + n̂ · (δc − δpa)

II(v,v)
v (B.9)

109

The second fundamental form yields the normal curvature κn(x) of the surface at p

in tangent direction x as:

κn(x) =
II(x,x)

x · x (B.10)

But the camera vector v lies in the tangent plane at p, so this normal curvature is

equivalent to the radial curvature:

κr = κn(v) (B.11)

Collecting terms arising from animated mesh deformation provides the final result:

δp = − n̂ · δc +
(

v · δn̂a − n̂ · δpa

)

κr ‖v‖2 v (B.12)

For animations that involve only camera displacement this reduces to equation (4.6):

δp = − n̂ · δc
κr ‖v‖2 v (B.13)

In practice, we evaluate this using a camera displacement derived from c and c ′ after

each are transformed into object space in frames f and f ′, respectively. This accounts

for rigid body animation achieved through variation in an object’s world transform

matrix. Thus, the example case of the spinning sphere in Figure 4.7 is equivalent to a

stationary sphere with camera orbiting in the equatorial plane. However, to account

for general animation that deforms the surface, we return to equation (B.12).

Finally, it is interesting to rearrange equation (B.13) into the following format:

δp = − n̂ · (δc/‖v‖)
κr

v̂ (B.14)

Now, it becomes evident that the angular velocity δc/‖v‖ of the camera about a

point p on the silhouette governs its motion δp under epipolar correspondences.

110

Bibliography

[1] Gill Barequet, Christian A. Duncan, Michael T. Goodrich, Wenjing Huang, Sub-

odh Kumar, and Mihai Pop. Efficient Perspective-Accurate Silhouette Compu-

tation. Fourth CGC workshop on Computational Geometry, October 1999.

[2] William Baxter, Vincent Scheib, Ming Lin, and Dinesh Manocha. dAb: Interac-

tive Haptic Painting with 3D Virtual Brushes. Proceedings of ACM SIGGRAPH

2001, pages 461–468, 2001.

[3] James F. Blinn. Hyperbolic Interpolation. IEEE Computer Graphics and Appli-

cations, 12(4):89–94, 1992.

[4] Lubomir Bourdev. Rendering Non-Photorealistic Strokes with Temporal and

Arc-Length Coherence. Master’s thesis, Brown University, May 1998. URL:

http://www.cs.brown.edu/research/graphics/art/bourdev-thesis.pdf.

[5] David Bourguignon, Marie Paule Cani, and George Drettakis. Drawing for Il-

lustration and Annotation in 3D. In Computer Graphics Forum, volume 20:3,

pages 114–122. Blackwell Publishers, 2001.

[6] Matthew Brand and Aaron Hertzmann. Style Machines. Proceedings of SIG-

GRAPH 2000, pages 183–192, 2000.

[7] David J. Bremer and John F. Hughes. Rapid Approximate Silhouette Rendering

of Implicit Surfaces. In Proceedings of Implicit Surfaces, pages 155–164, 1998.

111

[8] Roberto Cipolla. The Visual Motion of Curves and Surfaces. Philosophical

Transactions of the Royal Society of London, 356(A):1103–1121, 1998.

[9] Roberto Cipolla and Andrew Blake. Surface Shape from the Deformation of

Apparent Contours. Int. J. Computer Vision, 9(2):83–112, 1992.

[10] Roberto Cipolla and Peter Giblin. Visual Motion of Curves and Surfaces. Cam-

bridge University Press, 2000.

[11] Johan Claes, Fabian Di Fiore, Gert Vansichem, and Frank Van Reeth. Fast 3D

Cartoon Rendering with Improved Quality by Exploiting Graphics Hardware.

Image and Vision Computing, pages 13–18, 2001.

[12] Jonathan M. Cohen, John F. Hughes, and Robert C. Zeleznik. Harold: A World

Made of Drawings. Proceedings of NPAR 2000, pages 83–90, 2000.

[13] Derek Cornish, Andrea Rowan, and David Luebke. View-Dependent Particles for

Interactive Non-Photorealistic Rendering. Graphics Interface 2001, June 2001.

[14] Matthieu Cunzi, Joëlle Thollot, Sylvain Paris, Gilles Debunne, Jean-Dominique

Gascuel, and Frédo Durand. Dynamic Canvas for Immersive Non-Photorealistic

Walkthroughs. In Proc. Graphics Interface. A. K. Peters, June 2003.

[15] Brian Curless and Marc Levoy. A Volumetric Method for Building Complex Mod-

els from Range Images. In Proceedings of the 23rd Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 303–312. ACM Press, 1996.

[16] Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, and

David H. Salesin. Computer-Generated Watercolor. Proceedings of SIGGRAPH

97, pages 421–430, 1997.

[17] Eric Daniels. Deep Canvas in Disney’s Tarzan. In ACM SIGGRAPH 99 Con-

ference Abstracts and Applications, page 200. ACM Press, 1999.

112

[18] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive Ren-

dering of Suggestive Contours with Temporal Coherence. Proceedings of NPAR

2004 (to appear), 2004.

[19] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella.

Suggestive Contours for Conveying Shape. ACM Transactions on Graphics,

22(3):848–855, July 2003.

[20] Doug DeCarlo and Anthony Santella. Stylization and Abstraction of Pho-

tographs. In Proceedings of the 29th Annual Conference on Computer Graphics

and Interactive Techniques, pages 769–776. ACM Press, 2002.

[21] Oliver Deussen and Thomas Strothotte. Computer-Generated Pen-and-Ink Il-

lustration of Trees. Proceedings of SIGGRAPH 2000, pages 13–18, 2000.

[22] Manfredo do Carmo. Differential Geometry of Curves and Surfaces. Prentice

Hall, 1976.

[23] Frédo Durand. An Invitation to Discuss Computer Depiction. Proceedings of

NPAR 2002, pages 111–124, 2002.

[24] Frédo Durand, Victor Ostromoukhov, Mathieu Miller, Francois Duranleau, and

Julie Dorsey. Decoupling Strokes and High-Level Attributes for Interactive Tra-

ditional Drawing. In 12th Eurographics Workshop on Rendering, pages 71–82,

London, June 2001.

[25] Alexei A. Efros and William T. Freeman. Image Quilting for Texture Synthesis

and Transfer. Proceedings of SIGGRAPH 2001, pages 341–346, August 2001.

[26] Alexei A. Efros and Thomas K. Leung. Texture Synthesis by Non-Parametric

Sampling. In IEEE International Conference on Computer Vision, pages 1033–

1038, Corfu, Greece, September 1999.

113

[27] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Com-

puter Graphics: Principles and Practice, 2nd Edition. Addison-Wesley, 1990.

[28] William T. Freeman, Josh B. Tenenbaum, and Egon C. Pasztor. An Example-

Based Approach to Style Translation for Line Drawings. Technical Report TR99-

11, MERL, Cambridge, MA, 1999. http://www.merl.com/papers/TR99-11.

[29] Bert Freudenberg. Real-Time Stroke Textures. In ACM SIGGRAPH 2001 Con-

ference Abstracts and Applications, page 252. ACM Press, 2001.

[30] Bruce Gooch and Amy Gooch. Non-Photorealistic Rendering. A.K. Peters, 2001.

[31] Bruce Gooch, Peter-Pike J. Sloan, Amy Gooch, Peter S. Shirley, and Rich Riesen-

feld. Interactive Technical Illustration. In 1999 ACM Symposium on Interactive

3D Graphics, pages 31–38, April 1999.

[32] Donald P. Greenberg, Kenneth E. Torrance, Peter Shirley, James Arvo, Eric

Lafortune, James A. Ferwerda, Bruce Walter, Ben Trumbore, Sumanta Pat-

tanaik, and Sing-Choong Foo. A Framework for Realistic Image Synthesis. In

Proceedings of the 24th Annual Conference on Computer Graphics and Interac-

tive Techniques, pages 477–494. ACM Press, 1997.

[33] Paul Haeberli. Paint by Numbers: Abstract Image Representations. In Pro-

ceedings of the 17th annual conference on Computer graphics and interactive

techniques, pages 207–214. ACM Press, 1990.

[34] Pat Hanrahan and Paul Haeberli. Direct WYSIWYG Painting and Texturing

on 3D Shapes. Proceedings of SIGGRAPH 90, pages 215–223, 1990.

[35] Paul Heckbert and Henry Moreton. Interpolation for Polygon Texture Mapping

and Shading. In State of the Art in Computer Graphics: Visualization and

Modeling, pages 101–111. Springer-Verlag, 1991.

114

[36] Aaron Hertzmann. Painterly Rendering with Curved Brush Strokes of Multiple

Sizes. Proceedings of SIGGRAPH 98, pages 453–460, July 1998.

[37] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H.

Salesin. Image Analogies. In Proceedings of the 28th annual conference on Com-

puter graphics and interactive techniques, pages 327–340. ACM Press, 2001.

[38] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steven M. Seitz. Curve

Analogies. In Proc. of 13th Eurographics Workshop, pages 233–246, 2002.

[39] Aaron Hertzmann and Ken Perlin. Painterly Rendering for Video and Interac-

tion. In Proceedings of NPAR 2000, Annecy, France, June 2000.

[40] Aaron Hertzmann and Denis Zorin. Illustrating Smooth Surfaces. In Proceedings

of ACM SIGGRAPH 2000, pages 517–526, July 2000.

[41] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John

McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise Smooth Surface

Reconstruction. In Proceedings of the 21st Annual Conference on Computer

Graphics and Interactive Techniques, pages 295–302. ACM Press, 1994.

[42] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A Sketching

Interface for 3D Freeform Design. Proc. of SIGGRAPH 99, pages 409–416, 1999.

[43] Tobias Isenberg, Bert Freudenberg, Nick Halper, Stefan Schlechtweg, and

Thomas Strothotte. A Developer’s Guide to Silhouette Algorithms for Polygonal

Models. IEEE Computer Graphics and Applications, 23(4):28–37, July 2003.

[44] Tobias Isenberg, Nick Halper, and Thomas Strothotte. Stylizing Silhouettes

at Interactive Rates: From Silhouette Edges to Silhouette Strokes. Computer

Graphics Forum (Proceedings of Eurographics 2002), 21(3), 2002.

115

[45] Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Piché, and Victor Ostro-

moukhov. Hatching by Example: A Statistical Approach. In Proceedings of

NPAR 2002, pages 29–36. ACM Press, 2002.

[46] Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and Adam Finkelstein.

Coherent Stylized Silhouettes. ACM Transactions on Graphics (Proceedings of

SIGGRAPH ‘03), 22(3):856–861, 2003.

[47] Robert D. Kalnins, Lee Markosian, Barbara J. Meier, Michael A. Kowalski,

Joseph C. Lee, Philip L. Davidson, Matthew Webb, John F. Hughes, and Adam

Finkelstein. WYSIWYG NPR: Drawing Strokes Directly on 3D Models. ACM

Transactions on Graphics (Proceedings of SIGGRAPH ‘02), 21(3):755–762, 2002.

[48] Jan J. Koenderink. What Does the Occluding Contour Tell Us About Solid

Shape? Perception, 13:321–330, 1984.

[49] Jan J. Koenderink. Solid Shape. MIT Press, 1990.

[50] Michael A. Kowalski, Lee Markosian, J. D. Northrup, Lubomir Bourdev, Ronen

Barzel, Loring S. Holden, and John Hughes. Art-Based Rendering of Fur, Grass,

and Trees. In Proceedings of SIGGRAPH 99, pages 433–438, 1999.

[51] Adam Lake, Carl Marshall, Mark Harris, and Marc Blackstein. Stylized Render-

ing Techniques for Scalable Real-Time 3D Animation. In Proceedings of NPAR

2000, pages 13–20, 2000.

[52] John Lansdown and Simon Schofield. Expressive Rendering: A Review of Non-

Photorealistic Techniques. IEEE Comp. Graph. and Apps., 15(3):29–37, 1995.

[53] Peter Litwinowicz. Processing images and video for an impressionist effect. Pro-

ceedings of SIGGRAPH 97, pages 407–414, August 1997.

116

[54] Charles Loop. Smooth subdivision surfaces based on triangles. Master’s thesis,

University of Utah, Dept. of Mathetmatics, 1987.

[55] Lee Markosian. Art-Based Modeling and Rendering for Computer Graphics. PhD

thesis, Brown University, May 2000.

[56] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev,

Daniel Goldstein, and John F. Hughes. Real-Time Non-Photorealistic Rendering.

Proceedings of SIGGRAPH 97, pages 415–420, 1997.

[57] Lee Markosian, Barbara J. Meier, Michael A. Kowalski, Loring S. Holden, J. D.

Northrup, and John F. Hughes. Art-Based Rendering with Continuous Levels

of Detail. In Proceedings of NPAR 2000, pages 59–66. ACM SIGGRAPH /

Eurographics, 2000.

[58] Maic Masuch, Stefan Schlechtweg, and Bert Schönwälder. daLi! – Drawing An-

imated Lines! In Proceedings of Simulation und Animation ’97, pages 87–96.

SCS Europe, 1997.

[59] Maic Masuch, Lars Schumann, and Stefan Schlechtweg. Animating Frame-to-

Frame Coherent Line Drawings for Illustrative Purposes. In Proceedings of Sim-

ulation und Visualisierung, pages 101–112. SCS Europe, 1998.

[60] Barbara Meier. Computers for Artists Who Work Alone. Computer Graphics,

33(1):50–51, February 1999.

[61] Barbara J. Meier. Painterly Rendering for Animation. In Proceedings of SIG-

GRAPH 96, Computer Graphics Proceedings, Annual Conference Series, pages

477–484. ACM SIGGRAPH / Addison Wesley, August 1996.

117

[62] Thomas B. Moeslund and Erik Granum. A Survey of Computer Vision-Based

Human Motion Capture. Computer Vision and Image Understanding: CVIU,

81(3):231–268, 2001.

[63] James R. Munkres. Analysis on Manifolds. Addison Wesley Publish. Co., 1991.

[64] J. D. Northrup and Lee Markosian. Artistic Silhouettes: A Hybrid Approach.

Proceedings of NPAR 2000, pages 31–38, 2000.

[65] Ken Perlin. An Image Synthesizer. In Proceedings of the 12th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ‘85), pages 287–

296. ACM Press, 1985.

[66] Mihai Pop, Gil Barequet, Christian A. Duncan, Michael T. Goodrich, Wenjing

Huang, and Subodh Kumar. Efficient Perspective-accurate Silhouette Compu-

tation. Proceedings of the 17th Annual ACM Symposium on Computational Ge-

ometry (SoCG), June 2001.

[67] Pierre Poulin, Karim Ratib, and Marco Jacques. Sketching Shadows and High-

lights to Position Lights. In Proceedings of Computer Graphics International 97,

pages 56–63. IEEE Computer Society, June 1997.

[68] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-Time

Hatching. Proceedings of SIGGRAPH 2001, pages 579–584, 2001.

[69] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. Numerical Recipes: The Art of Scientific Computing. Cambridge University

Press, 2nd edition, 1992.

[70] Katherine Pullen and Christoph Bregler. Motion Capture Assisted Animation:

Texturing and Synthesis. In Proceedings of the 29th Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 501–508. ACM Press, 2002.

118

[71] Ramesh Raskar. Hardware Support for Non-photorealistic Rendering. In Pro-

ceedings of SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2001.

[72] Ramesh Raskar and Michael F. Cohen. Image Precision Silhouette Edges. In

1999 ACM Symposium on Interactive 3D Graphics, pages 135–140, 1999.

[73] Jarek Rossignac and Maarten van Emmerik. Hidden Contours on a Framebuffer.

Proceedings of 7th Workshop on Computer Graphics Hardware, 1992.

[74] Mike Salisbury, Corin Anderson, Dani Lischinski, and David H. Salesin. Scale-

Dependent Reproduction of Pen-and-Ink Illustrations. In SIGGRAPH ’96

Conference Proceedings, Annual Conference Series, pages 461–468. ACM SIG-

GRAPH, Addison Wesley, August 1996.

[75] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Sny-

der. Silhouette Clipping. In Proceedings of the 27th Annual Conference on Com-

puter Graphics and Interactive Techniques, pages 327–334. ACM Press/Addison-

Wesley Publishing Co., 2000.

[76] Arno Schödl, Richard Szeliski, David Salisin, and Irfan Essa. Video textures.

Proceedings of SIGGRAPH 2000, pages 489–498, 2000.

[77] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald Green-

berg. Painting with Light. In Proc. of SIGGRAPH 93, pages 143–146, 1993.

[78] Joshua Seims. Putting the Artist in the Loop. Computer Graphics, 33(1):52–53,

February 1999.

[79] Michio Shiraishi and Yasushi Yamaguchi. Image Moment-Based Stroke Place-

ment. Technical Report ID no. skapps3794, University of Tokyo, Tokyo Japan,

May 1999.

119

[80] Michio Shiraishi and Yasushi Yamaguchi. An Algorithm for Automatic Painterly

Rendering based on Local Source Image Approximation. In Non-Photorealistic

Animation and Rendering 2000 (Proceedings of NPAR 2000), Annecy, France,

June, 2000.

[81] Dave Shreiner, Mason Woo, Jackie Neckler, and Tom Davis. OpenGL Program-

ming Guide: The Official Guide to Learning OpenGL, Version 1.4. Addison-

Wesley Longman Publishing Co., Inc., 2003.

[82] Mario Costa Sousa and John W. Buchanan. Computer-Generated Graphite Pen-

cil Rendering of 3D Polygonal Models. Computer Graphics Forum (Proceedings

of EuroGraphics ’99), 18(3):195–207, 1999.

[83] Daniel Sperl. Künstlerisches Rendering für Echtzeit-Applikationen (Artistic Ren-

dering for Real-time Applications). Master’s thesis, Fachhochschule Hagenberg,

Medientechnik, Austria, 2003. http://www.incognitek.com/painterly/.

[84] Thomas Strothotte, Bernard Preim, Andreas Raab, Jutta Schumann, and

David R. Forsey. How to render frames and influence people. Computer Graphics

Forum, 13(3):455–466, 1994.

[85] Thomas Strothotte and Stefan Schlechtweg. Non-Photorealistic Computer

Graphics: Modeling, Rendering, and Animation. Morgan Kaufman, 2002.

[86] Osama Tolba, Julie Dorsey, and Leonard McMillan. A Projective Drawing Sys-

tem. In ACM Symposium on Interactive 3D Graphics, pages 25–34, March 2001.

[87] Greg Turk. Texture Synthesis on Surfaces. In Proceedings of SIGGRAPH 2001,

pages 347–354. ACM Press, 2001.

120

[88] Matthew Webb, Emil Praun, Adam Finkelstein, and Hugues Hoppe. Fine Tone

Control in Hardware Hatching. In NPAR 2002: Second International Symposium

on Non-Photorealistic Rendering, pages 53–58, June 2002.

[89] Li-Yi Wei and Marc Levoy. Fast Texture Synthesis Using Tree-Structured Vector

Quantization. Proc. SIGGRAPH 2000, pages 479–488, 2000.

[90] Li-Yi Wei and Marc Levoy. Texture Synthesis Over Arbitrary Manifold Sur-

faces. In Proceedings of the 28th Annual Conference on Computer Graphics and

Interactive Techniques, pages 355–360. ACM Press, 2001.

[91] Wikipedia, The Free Enclyclopedia. Search topic: WYSIWYG, March 2004.

http://en.wikipedia.org/wiki/WYSIWYG.

[92] Georges Winkenbach and David H. Salesin. Computer-Generated Pen-and-Ink

Illustration. Proceedings of SIGGRAPH ‘94, pages 91–100, 1994.

[93] Georges Winkenbach and David H. Salesin. Rendering Parametric Surfaces in

Pen and Ink. In SIGGRAPH ‘96 Conference Proceedings, Annual Conference

Series, pages 469–476. ACM SIGGRAPH, Addison Wesley, August 1996.

[94] Lexing Ying, Aaron Hertzmann, Henning Biermann, and Denis Zorin. Texture

and Shape Synthesis on Surfaces. In Proceedings of the 12th Eurographics Work-

shop on Rendering Techniques, pages 301–312. Springer-Verlag, 2001.

[95] Robert Zeleznik, Kenneth Herndon, and John F. Hughes. SKETCH: An Interface

for Sketching 3D Scenes. In Proceedings of SIGGRAPH ‘96, Annual Conference

Series, pages 469–476. ACM SIGGRAPH, Addison Wesley, August 1996.

121

	Abstract
	Acknowledgments
	List of Figures
	1 Introduction
	1.1 Why NPR tools?
	1.2 Thesis
	1.3 Organization

	2 WYSIWYG NPR
	2.1 Overview
	2.2 Example Session
	2.3 Parametric Controls
	2.4 Direct Controls
	2.4.1 Line Stylization Effects
	2.4.2 Surface Stylization Effects

	2.5 Design Considerations
	2.5.1 Annotation
	2.5.2 Dynamics
	2.5.3 Interactivity
	2.5.4 Mapping the Problem Space

	3 Stroke Primitive
	3.1 Representation
	3.2 Visibility
	3.3 Media Simulation

	4 Line Effects
	4.1 Introduction
	4.2 Static Feature Lines
	4.2.1 Over-Sketching Stylization
	4.2.2 Stylization Synthesis
	4.2.3 Level of Detail
	4.2.4 Parameterization
	4.2.5 Interactivity

	4.3 View-Dependent Contours
	4.3.1 Silhouette Contours
	4.3.2 Sketching Prototypes
	4.3.3 Level of Detail
	4.3.4 Parameterization
	4.3.5 Animated Stylization

	4.4 Generalized Coherence Framework
	4.4.1 Overview
	4.4.2 Coherent Rendering Pipeline
	4.4.3 Sample Propagation
	4.4.4 Brush Path Generation
	4.4.5 Brush Path Parameterization
	4.4.6 Extensions

	4.5 Discussion

	5 Surface Effects
	5.1 Introduction
	5.2 Detail Marks
	5.2.1 Annotating Surfaces
	5.2.2 Dynamic Stroke Behavior
	5.2.3 Level of Detail
	5.2.4 Interactivity

	5.3 Tonal Marks
	5.3.1 Structured Hatching
	5.3.2 Free-Form Hatching
	5.3.3 Dynamic Lighting
	5.3.4 Interactivity

	5.4 Discussion

	6 Conclusions
	6.1 Summary
	6.2 Future Work
	6.3 Jot

	A Media Simulation Details
	A.1 Overview
	A.2 Design Considerations
	A.3 Vertex Program
	A.4 Fragment Program

	B Epipolar Silhouette Motion
	Bibliography

