
The Origins of Network Server Latency &
the Myth of Connection Scheduling∗

Yaoping Ruan and Vivek Pai
Department of Computer Science

Princeton University
{yruan,vivek}@cs.princeton.edu

Abstract

This paper presents an investigation into the origin and
breakdown of server-induced latency with the goal of un-
derstanding how latency-optimization techniques can be
made more effective. Using two servers with different ar-
chitectures, we analyze the latency behavior under various
loads and find that a phenomenon we callservice inversion
is responsible for much of the latency increase under load.
We trace the roots of this problem to negative interactions
between the server application and the locking and block-
ing mechanisms in the kernel. Using a modified server that
avoids these problems, we demonstrate a qualitatively dif-
ferent change in the latency profiles, generating more than
an order of magnitude reduction in latency.

We also find that locking and blocking in the operating
system artificially increases the burstiness of the load pre-
sented to the application. By eliminating such delays, not
only do we observe a much smoother level of activity at
the server, but we also eliminate most of the motivation for
connection scheduling. In effect, we show that connection
scheduling opportunities at the application level appear to
be largely artifact of the server implementation, rather than
a broadly-applicable technique. Our measurements on the
modified server show much lower service inversion, sug-
gesting that when the coarse-grained blocking is removed,
the existing scheduling inside the networking stack ade-
quately performs fine-grained connection scheduling.

1 Introduction

Much of the performance-related research in network
servers has focused on improving throughput, with less
attention paid to latency [13, 14, 19]. In an environment
with large numbers of users accessing the Web over slow
links, the focus on throughput was understandable since
perceived latency was dominated by wide area network
(WAN) delays. Additionally, early servers were often un-
able to handle high request rates, so throughput research
had an easily measurable effect on service availability. The
development of popular benchmarks in this area, such as
SpecWeb and WebBench, also focused on throughput, giv-
ing developers extra incentive to improve throughput.

∗This work has been partially supported by an NSF CAREER award

With the improvements in server-side connectivity, the
increasing broadband penetration rate, and the popularity
of Web proxy cache servers, server-induced latency can be-
come a noticeable fraction of the end user’s response la-
tency. Some recent work has begun to address the issue of
measuring end-user latency [6, 21], with optimization ap-
proaches mostly focusing on scheduling [11, 16, 24, 25].
These approaches generally make the assumption that
queuing delays are inherent to the system, and that ex-
isting operating systems do not handle the request queue
optimally. Unfortunately, the existing research does not
addresswhy these delays exist, complicating attempts to
systematically address their origins. Based on these obser-
vations, we are interested in understanding the causes of
network server latency and investigating how latency opti-
mization techniques can be made more effectively.

This paper investigates the latency characteristics of two
servers under various load conditions in order to understand
how latency arises and what steps can be taken to reduce
it. We use the event-driven Flash Web Server [19] and the
multiple-process Apache Web Server [1] to represent the
two dominant approaches to server software architecture.
Despite their very different architectures and implementa-
tions, we find that both show similar latency increases un-
der load, and also exhibit behavior we callservice inver-
sion, which is responsible for most of the latency increase
under load. We trace the roots of this problem to negative
interactions between the server application and the locking
and blocking mechanisms in the operating system. By ad-
dressing these issues both in the application and the kernel,
we demonstrate a qualitatively different change in the la-
tency profiles, exhibiting much lowerservice inversionand
generating more than an order of magnitude reduction in
server-induced latency.

We further discover that locking and blocking in the
operating system artificially increase the burstiness of the
load presented to the application. This burstiness in
event delivery has often been the motivating condition for
application-level connection scheduling. We observe that
eliminating such delays in the Flash server not only in-
creases the performance of the system, but also reduces
the burstiness of event delivery. With a smaller number
of ready events at any time, the opportunities for connec-
tion scheduling largely disappear, suggesting that connec-
tion scheduling is unnecessary and only a result of other

1

implementation artifacts. By monitoring activity at the
OS scheduler, we confirm that similar problems arise in
the multiple-process Apache server, confirming that these
locking/blocking problems, and the associated artificial
burstiness in load, are not dependent on server architecture.

Finally, we address the remaining issues of latency and
fairness by examining the networking stack, and demon-
strate a new approach to fairness that adaptively adjusts the
TCP congestion window. We show that it achieves effects
similar to scheduling policies like SRPT, but with much
less effort. The results from our latency studies demon-
strate that when the coarse-grained blocking is avoided, the
existing scheduling inside the networking stack adequately
performs fine-grained connection scheduling, that applica-
tion level connection scheduling is largely an artifact of the
server implementation, and can be rendered unnecessary.

The rest of the paper is organized as follow: In Section 2,
we present the test environment, workloads, methodology,
and servers used throughout this paper. In Section 3, we
present our measurements of server latency and introduce
the server inversion metric. We describe our investigation
of some of these latency origins in Section 4 and also de-
scribe how we address the problems identified. In Sec-
tion 5, we show the latency measurements using our new
server. We discuss how these changes affect the burstiness
of event delivery in the server and its implications on con-
nection scheduling in Section 6. Finally, we discuss some
related work in Section 7 and conclude in Section 8.

2 Background

Since we begin our analysis by experimentally measuring
the observed latency characteristics of different servers, we
first provide some context explaining our methodology, ex-
perimental setup, servers tested, and workloads. This ex-
perimental setup and workload are used through out this
paper unless otherwise noted.

2.1 Latency Measurement Methodology

We measure latencies at various requests rates, both to un-
derstand how the latency profile changes with load, and
also to avoid overloading the server. We control the load by
adjusting the client request rate and we measure the client-
perceived latency by recording the wall-clock time between
starting the HTTP request and receiving the last byte of the
response. In practice, we first measure the server’s upper
limit on capacity by having all of the clients issue requests
in an infinite demand model, and then we measure the re-
sponse time at various percentiles of the capacity by chang-
ing the request rate. To simplify comparisons of different
servers, we generally report all rates as load fractionsrela-
tive to the infinite demand capacity of each server.

While mean response time is a common metric in
latency-related measurements, it can hide the details of the

latency profiles, especially under workloads with widely-
varying request sizes, such as Web workloads. So, in
addition to mean response time, we also present the5th

and95th percentiles of the latency, as well as the median
(50th percentile). For some measurements, we also provide
the cumulative distribution function (CDF) of the client-
perceived latencies.

2.2 Experimental Setup

All experiments are run on a uniprocessor 3.0GHz Pentium
4 Xeon server with 1GB of physical memory, one 7200
RPM IDE disk, and a single Netgear GA621 gigabit eth-
ernet network adaptor. The clients consist of ten Pentium
II machines running at 300MHz, with 128 MB of memory
per machine. All clients are connected to an Netgear FS518
switch and communicate with the server through a giga-
bit uplink. All machines are configured to use the default
(1500 byte) MTU. We use the FreeBSD 4.6 operating sys-
tem, with all tunable parameters set for high performance.
The number sockets in the box is increased to 128K, the
number of file descriptors per process is increased to 16K,
default socket buffer sizes are increased to 64KB, mbufs
and mbuf clusters are 80K and 40K respectively, and and
the filesystem inode cache is increased to 16K entries.

2.3 Servers

To obtain diversity in measurements, we focus on the event-
driven Flash Web server [19] and the widely used multi-
process Apache server [1], version 1.3.27, because they
represent the two main designs common in server archi-
tectures. The Flash server represents the event-driven ap-
proach, using a single main process that multiplexes all
client connections via the use of non-blocking sockets. The
main process employs a set of helper processes to per-
form disk-related operations to load data into the filesys-
tem cache. Aggressive caching of open files, memory-
mapped data, and application-level metadata are designed
to increase its performance. Apache, in contrast, dedicates
one process per in-progress connection, and performs very
little caching of results in order to reduce the resource con-
sumption of each process. Both servers are configured for
maximum performance. In Flash, the cache size is set to
800MB, and the remaining parameters are automatically
adjusted based on the cache size. In Apache, we increase
the HARD SERVERLIMIT in the source file to support
2048 maximum processes. We disable the periodic shut-
down of processes, in order to reduce the performance loss
associated with that cleanup. Since Apache logging causes
a noticeable performance loss, we disable access logging
in both servers.

2

2.4 Workloads

Our choice of workloads is designed to maintain as much
realism as possible while still confining the number of free
parameters in order to make the analysis more tractable.
We focus on a static content workload modeled on the
SpecWeb96 and SpecWeb99 [23] benchmarks, which are
thede factostandards in industry, with more than 150 pub-
lished results. These workloads are in turn modeled on
the access patterns from multiple Web sites, with file sizes
ranging from 100 bytes to 900KB. Half of all accesses are
for files in the 1KB-9KB range, with 35% in the 100-900
byte range, 14% in the 10KB-90KB range, and 1% in the
100KB-900KB range, yielding an average response size of
roughly 14 KB. Each directory in the system contains 36
files (roughly 5.5 MB total), and the directories are chosen
using a Zipf distribution with an alpha value of 1.

These workloads are normally self-scaling, where both
the data set size and the number of simultaneous con-
nections increase with the throughput level of the system.
However, this approach would render analytical compar-
isons between servers of different capacities more difficult,
so we choose to fix both the data set size and the number of
simultaneous connections. To facilitate comparisons with
other researchers, we choose a data set size of 3.3 GB, and
1020 simultaneous connections, which is a scenario used
to evaluate the Haboob [25] and Knot [24] servers. With
these parameters, we maintain per-client throughput levels
comparable to the ones specified in the quality-of-service
requirements in the SpecWeb99 benchmark. To simulate
connection behavior in the real world, persistent connec-
tions are used with clients issuing 5 requests per connection
before closing it.

3 Server Latency Characteristics

In this section, we show latency characteristics of our two
servers under various loads and analyze how the latency
profiles differ at various levels of detail. In doing so, we
also propose a new index for measuring the fairness of
servers with respect to response latency.

3.1 Latency versus Load

We first use an infinite demand workload to measure the
capacity of our servers, and then use the measurement
methodology described previously to drive the servers at
different load levels. We are interested in how these
two servers with very different architectures behave at the
macroscopic level, and how their latency profiles change
under load. On this workload, in infinite demand mode,
Apache is able to achieve 305 Mb/s, while Flash achieves
352 Mb/s. The slight advantage for Flash is not surpris-
ing due to its aggressive caching optimizations, but these
benefits are tempered by the disk access in this workload.

0

200

400

600

800

1000

1200

1400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
Ti

m
e

(m
se

c)

Relative Load Level

95%
mean
50%
5%

Figure 1:Apache Latency Profile– max load of 305 Mb/s

0

200

400

600

800

1000

1200

1400

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
Ti

m
e

(m
se

c)

Relative Load Level

95%
mean
50%
5%

Figure 2:Flash Latency Profile– max load of 352 Mb/s

Our initial latency measurements show the two servers
to have seemingly similar mean response time profiles,
despite their different architectures. Using the infinite-
demand throughputs, we run these servers with request
rates of 20%, 40%, 60%, 80%, 90%, and 95% of the
infinite-demand rate, with the results shown in Figures 1
and 2. While the general shape of the mean response
curves is not surprising, some important differences emerge
when examining the others. The Apache median la-
tency curve shows much flatter behavior, and matches the
Flash value at the 0.95 load level. The mean latency for
Apache becomes noticeably worse at that level, with a
value roughly double that of Flash, while Apache’s latency
for the95th percentile grows sharply.

Given the different growth patterns for the different la-
tency percentiles, we would expect that complete latency
CDF plots to show different curves for the two servers, and
this belief is confirmed in Figures 3 and 4, where latency
CDFs are shown for three load levels in addition to infinite
demand. Both servers exhibit much latency degradation as
the server load approaches infinite demand, with the me-
dian value growing by over one hundred times.

Two features of these CDFs, which appear to be related
to the server architecture, are immediately apparent – the
relative smoothness of the Flash curves, and the seemingly
lower degradation for Apache at or below load levels of

3

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
ro

ba
bi

lit
y

[R
es

po
ns

e
tim

e
<=

 x
]

Time (ms)

20%(61Mb/s)
80%(244Mb/s)
90%(274Mb/s)

100%(305Mb/s)

Figure 3:Apache Latency CDF

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
ro

ba
bi

lit
y

[R
es

po
ns

e
tim

e
<=

 x
]

Time (ms)

20%(70Mb/s)
80%(281Mb/s)
90%(316Mb/s)

100%(352Mb/s)

Figure 4:Flash Latency CDF

0.90. By multiplexing all client connections through a sin-
gle process, the Flash server introduces some batching ef-
fects, particularly through the use of theselect() sys-
tem call. This batching causes even the fastest responses to
be affected under load. As a result, Flash returns very few
responses in less than 10ms when the load exceeds 90%,
whereas Apache still delivers over 60% of its responses
within that time. We believe that this is because Apache’s
multiple processes operate independently, and in-memory
requests are often being serviced very quickly without in-
terference from other requests.

However, this portion of the CDF does not explain
Apache’s worse mean response times, for which the expla-
nation can be seen in the tail of the CDFs. Though Apache
is generally better in producing quick responses under load,
latencies beyond the95th percentile grow sharply, and
these values are responsible for Apache’s worse mean re-
sponse times. Given the relatively slow speed of disk ac-
cess, these tails seem to be disk-related rather than purely
queuing effects. Given the high cost of disk access ver-
sus memory speeds, these tails dominate the mean response
time calculations.

3.2 Identifying Service Inversion

The seemingly contradictory results for Flash, having gen-
erally “worse” CDF curves but a better mean latency, leads
us to further investigate the underlying reasons. Also puz-
zling is why these curves show delays in the tens or hun-
dreds of milliseconds before the80th percentile – only 1%
of the workload involves requests larger than 100KB, so
a rough estimate would suggest that 99% of all requests
could be serviced using only one-tenth of the data set size.
For our 3.3GB data set, this figure is 330MB, which is less
than the main memory of the machine.

series size range percentage
0 0.1 - 0.5 KB 25.06%
1 0.6 - 4 KB 28.055%
2 5 - 6 KB 23.55%
3 7 - 900KB 23.335%

Table 1:Workload Categoriesfor latency breakdowns

The above analysis implies that requests are being pro-
cessed unfairly, with small responses sometimes being de-
layed for hundreds of milliseconds. In Flash, the batch-
ing effects and previously-observed overheads [3] of the
select() call would be the apparent culprit, but the
counterpart in Apache is not obvious. Intuitively, the re-
sponse time of a multi-process server is largely controlled
by the OS scheduler, which applies a processor sharing pol-
icy at a fine-grained level. Runnable processes are not af-
fected by blocked processes, and the large responses are
split into multiple service instances due to the CPU quanti-
zation and the socket buffer size of the network. The sec-
ond factor is likely to dominate, so no request is likely to
receive more than 64KB (the socket buffer size) of service
at once, regardless of the total response size.

This unfairness, where smaller requests can be queued
behind (portions of) larger requests, can increase the over-
all latency of the system, and can contribute to some of
the latency growth. We term the unfairness of the system
“service inversion”, representing the disordering of the re-
quests served. To begin investigating how prevalent service
inversion is in these workloads, we begin by visualizing its
prevalence.

As a qualitative approach to understanding the preva-
lence of service inversion, we split the latency CDF by
decile, and then show the occurrence of different response
sizes within each decile. Using all 36 file sizes present in
the workload would cause clutter and complicate interpre-
tation, so we instead group the responses into four series by
size such that their dynamic frequencies are roughly equal.
These details of this split are shown in Table 1.

The graphs in Figures 5 and 6 show the composition of
responses by decile for the two servers, with the leftmost
bar corresponding to the fastest 10% of the responses and
the rightmost representing the slowest 10%. These graphs

4

are taken from the latency CDFs at a load level of 0.90.
In a perfect scenario with no service inversion, the first

two and one-half bars would consist solely of responses in
Series 1, followed by two and one-half bars from Series 2,
etc. However, as we can see, both graphs show responses
from the different series spread across all deciles, suggest-
ing that the service inversion problem is common to both
servers. One surprising aspect of these plots is that the Se-
ries 1 values are spread fairly evenly across all deciles, in-
dicating that even the smallest files are often taking as long
as some of the largest files.

Figure 5:Apache CDF breakdown by decile at load 0.90

Figure 6:Flash CDF breakdown by decile at load 0.90

Some amount of inversion is to be expected from the
characteristics of the workload itself, since directories are
weighted according to a Zipf-1 distribution. With roughly
700 directories in our data set, the last directory receives
700 times fewer requests than the first. So, even though
files 100KB or greater account for only 1% of the requests
(35 times fewer than the smallest files), the effect of the
directory preference causes the largest files in the first di-
rectory to be requested about 17 times as frequently as the
smallest files in the final directory. While the large files
still require much more space, an LRU-style replacement
in the filesystem cache could cause these large files to be
in memory more often. In practice, this effect seems to be
relatively minor, as we will show later in the paper.

3.3 Quantifying Service Inversion

While the latency breakdowns by decile provide a qualita-
tive feel of the unfairness of the system, a more quantita-
tive evaluation of service inversion can be derived from the
CDF. We construct the formula based on the following ob-
servation: Given a series of filesa, b, c, d, e with file sizes
a < b < c < d < e, if the response time of each file is in
the same order of their sizes, i.e.

a, b, c, d, e (1)

we define it as an ideal server with no service inversion,
and a corresponding value of 0. On the contrary, if the
response time is in the reverse order as their sizes, i.e.

e, d, c, b, a (2)

then we say that the server is completely inverted, and
give it a value of 1. The insight into calculating the in-
version is the following: we want to determine how per-
turbed the order of responses in a given CDF is from its
ideal based only on the response sizes. The perturbation
is merely the difference in position of a response in the
ordered list of response times versus its position in a list
ordered by size, where this distance is calculated for each
response and summed for the entire list. We then normalize
this versus the maximum perturbation possible. A particu-
lar “service inversion” value is given by:

n∑

i=0

Distance/[n2/2] (3)

where distance is how far the request is from the ideal
scenario, and[n2/2] is the total distance of requests in the
reverse order as their sizes, which is the maximum pertur-
bation possible. In the above example, if we receive the file
in the following order:

b, c, a, d, e (4)

By comparing with the order from (1), the distance of
file b is 1,c is 1, anda is 2,d, e are 0. The inversion value
is 4/12 = 0.33. Since this measurement requires only the
response sizes and latencies, as long as the distribution of
sizes is the same, it can be used to compare two different
servers or the same server at multiple load levels.

By measuring service inversion as a function of load
level, we discover that this effect is a major contributor to
the latency increase under load. Figure 7 shows the quanti-
fied inversion values for both servers, and demonstrates that
while inversion is relatively small at low loads, it exceeds
half of the worst-case value as the load level increases.
Put simply, not only can requests expect queuing delays
as servers get busier, but the mechanisms in the scheduler
and networking stack that normally provide some degree of
fairness appear to become less effective under these condi-
tions.

5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Se
rv

ic
e

In
ve

rs
io

n

Relative Load Level

old Flash
Apache

Figure 7:Service Inversionfor Apache and Flash

4 The Origin of Excess Latency

In this section we present the origins of the service inver-
sion phenomenon we observed in the previous sections.
Specifically, we investigate factors which affect server la-
tency both at the OS and application levels. We trace much
of it to the interactions among the operating system, ap-
plication, and workload, which lead to various forms of
locking and blocking within the operating system. We also
briefly describe the changes we make to the Flash Server to
avoid these problems.

4.1 Finding Kernel Delays

To understand the load-induced behavior of the operating
system and the server, we use the Flash server with an
infinite-demand workload since the application-level mul-
tiplexing reduces the number of possible user/kernel inter-
actions occurring at any time. Using the “top” tool, which
shows process activity and processor consumption, we find
that even with a backlog of requests, we are unable to sat-
urate the processor, and we notice that the main Flash pro-
cess is blocking inside the kernel on operations other than
select(). We would expect that on a disk-bound work-
load, the disk bottleneck would prevent saturating the CPU,
but since the main Flash process was designed to be non-
blocking, the only conditions where it should block would
be waiting for any activity inside ofselect().

We confirm this unexpected behavior directly by using
kernel profiling and indirectly by examining the bursti-
ness of the number of events returned from each call to
select(). With the server process blocked or waiting
on locks inside the kernel, ready events are being unneces-
sarily delayed, leading to lower throughput and increased
latency. This factor would also be a major contributor to
the service inversion under load. We begin to investigate
why this behavior was occurring.

In order to identify where applications spend their time
in the kernel and remove unnecessary delays, we instru-
ment the system call entry/exit points, the trap handler, and
the scheduler to record unexpected activity. Among the in-

formation recorded is the time spent in the kernel, the time
spent blocked, the location in the kernel where blocking
occurred, and the resource contention severity. Using this
approach on the Flash Web server, we find several negative
interactions between the server application and the kernel
which leads to the locking and blocking.

4.2 Locking and Blocking Origins

Using this system call monitoring, we find that two sys-
tem calls in the Flash server are responsible for most of the
blocking of the main process, and we remedy these prob-
lems by modifying the application or the kernel.

The first common problem occurs in anopen() sys-
tem call in the cache miss path of request handling, and
is avoided by changing the communication mechanism
Flash uses for interaction between the main process and the
helpers. Flash uses main-memory caching of commonly-
used files, and avoids disk access in the main process by us-
ing blocking helper processes to perform actions like con-
verting from URLs to pathnames in the filesystem. Since
the helpers and main process share the same OS, file data
and metadata accessed by the helper is loaded into the
filesystem cache, and is assumed to be available to the main
process without blocking. The problem we observe arises
when the main process attempts to open a file that has just
been fetched by a helper process. While the metadata may
be in memory, if the helper process has started a new re-
quest in the same directory, inode locking within the OS
causes the main process’sopen() call to block while the
helper finishes its disk activity. We avoid this problem by
having the helper processes return open file descriptors us-
ing sendmsg(), eliminating duplicated work in the main
process.

We discover the other major source of blocking is that
the sendfile() system call, which is used to transfer
files without copying, can exhaust its allocation of kernel
virtual address space, and blocks waiting on existing trans-
fers to free their buffers. We adopt optimizations from
previous zero-copy systems [9, 20] that cache kernel vir-
tual address buffers, thus avoiding multiple mappings for
many requests to the same file. Thus the duplicated vir-
tual memory and associated physical map (pmap) opera-
tions are eliminated.

4.3 Other Optimizations

In the process of finding these problems, we also dis-
cover the management of memory-mapped files via the
mmap/munmap/mincore system calls consumes signif-
icant processing time, and due to the large number of
mapped regions, incurs delays of several milliseconds per
operation. The use ofsendfile() also increases the
number of open file descriptors, causing more work in
select(). We address this problem by using a more
efficient event-deliver call,kevent() [17]. With these

6

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000 10000

P
ro

ba
bi

lit
y

[R
es

po
ns

e
tim

e
<=

 x
]

Time (ms)

new Flash
no mmap

fdpass
old Flash

Figure 8:CDFs for Flash Server Improvements

changes, the memory mapped files are not strictly needed,
but since these operations were being performed to test
memory residency of pages to avoid blocking in the main
process, eliminating them may increase the number of page
faults due to pages missing from the cache. We address this
problem by adding a flag tosendfile() which causes
the call to return with an error if the pages it is trying to
send are not resident and would require blocking. We mod-
ify the Flash server to use this variant ofsendfile().
These observations regardingsendfile() have been
communicated to the FreeBSD developer community, and
work has begun to integrate our changes into a future re-
lease of FreeBSD.

5 A Low Latency Server

In this section we present the performance evaluation of the
steps we made on the Flash server using the same workload
as in the previous sections. We examine the latency profiles
of each optimization, compare the “service inversion” with
the original system, and analyze the latency characteristics
of the new server.

5.1 New Latency Profiles

Using the same load level (0.90) that we used for our previ-
ous latency profiles, we evaluate the performance gains of
the three optimizations described in the previous section.
Figure 8 shows the latency CDF of the old Flash server
(old Flash), the effects of passing file descriptors between
the helpers and the main process (fdpass), the benefits of
eliminating the mapped file cache (no mmap), and the new
Flash server with optimizedsendfile() (new Flash).
The results exhibit more than an order of magnitude reduc-
tion in latency from the original server, with the median of
the new server around 1 millisecond.

Table 2 shows the mean latency (at load level 0.90) and
the throughput of the servers measured using the infinite
demand model. We observe that the new Flash has a fac-

mean Throughput
latency (ms) (Mb/s)

old Flash 180.21 352.0
fd pass 50.01 395.0

no mmap 93.53 437.5
new Flash 23.30 450.0

Table 2:Latencies & Throughputs for improvements

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e
Ti

m
e

(m
se

c)

Relative Load Level

95%
mean
50%
5%

Figure 9:Latency Profile of the New Flash

tor of 8 in mean latency improvement over the original sys-
tem. One interesting observation in this table is the increase
in latency (and throughput) when the memory-mapping of
files is eliminated. Recall that the purpose ofmmap() is to
allow memory residency checking of files, and our work-
load involves significant disk access. Though we save the
file mapping overhead when we eliminatemmap(), the
system actually blocks on cache misses because of the im-
plementation ofsendfile(). This is also shown in Fig-
ure 8 as the lower 90% of the “nommap” latency curve
beats “fdpass,” but the remaining 10% takes longer because
of blocking. This problem is fixed in our final system by the
new flag insendfile(). We also observe that our over-
all throughput gain is only 28%, indicating that the latency
improvement do not stem purely from extra capacity.

Not only does the new server have a lower latency, but
it also showsqualitatively different latency characteris-
tics. Figure 9 demonstrates the latency CDFs for5th per-
centile, mean, median, and95th percentile with varying
load. Though the mean latency and95th percentile in-
crease, the95th percentile shows less than a tripling ver-
sus its minimum values, which is much less growth than
the two orders of magnitude observed originally. The other
values are very flat, indicating that the server serves most
of the requests with the same quality at different load lev-
els. More importantly, the95th percentile CDF values are
lower than the mean latency. The reason for this is that the
time spent on the largest requests is much higher compared
to time spent on other requests. This heavy-tailed feature
is common in Web workloads, and our latency now more
cleanly separates small requests from large requests.

7

Given the fact that the mean latency gains are dominated
by the tail of the response curve, it is reasonable to be con-
cerned that the largest requests are being penalized in order
to improve the latency of most requests. however, when we
compare the maximum latency of the new Flash with the
original, we find that this concern is not founded. Previous
work on differentiated scheduling policies like SRPT [4]
has drawn the conclusion that even with active scheduling,
there is no unfairness to requests in the tail of these Web
workloads.

5.2 Service Inversion of the New Server

Figure 10:CDF breakdown for New Flash, load 0.90

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
er

vi
ce

 In
ve

rs
io

n

Relative Load Level

old Flash
new Flash

Figure 11:Service Inversion of new and old Flash

In order to verify the unfairness of the new server, we fur-
ther examine the latency breakdown by decile for the 0.90
load level and the “service inversion” at different load lev-
els. Figure 10 shows the percentage of each file series
in each decile, and we observe some interesting changes
compared to the original server. The smallest files (se-
ries 1) dominates the first two decile, the largest files (se-
ries 4) dominate the last two deciles, and the series 3 re-
sponses are clustered around the fifth decile. This behav-
ior is much closer to the ideal than what had been seen

Figure 12:In-memory workload CDF breakdown, New
Flash, load 0.90

earlier. Some small responses still appear in the last col-
umn, but these may because these files have low popularity
and incur cache misses. Also complicating matters is that
the absolute latency value is still below 10ms for 98% of
the requests, so the first nine deciles only differ by a very
small amount. This observation is verified by calculating
the “service inversion” value.

Figure 11 shows the change of the inversion value with
the load level. Compared to the old system, we reduce
the inversion by over 40%, suggesting requests are treated
more fairly in the new system. The fact that the inversion
value still increases with the load is a matter for further in-
vestigation. One of the reasons could be “inversion” in the
network queue, which we discuss in the next section.

Since we use a workload with dataset size larger than
the physical memory, we should confirm that the ordering
in Figure 10 is not caused by disk access of the large files.
Research [2, 5] has shown that Web workloads have pop-
ular small files and a few large unpopular files, and our
workload has a similar distribution. Thus, it is very likely
that all of the popular small files hit in the memory cache
and result in shorter response time. In order to test this hy-
pothesis, we use a workload with a 500MB data set that
fits entirely in memory. The latency breakdown shown in
Figure 12, and we see virtually no difference between Fig-
ure 10 and Figure 12. The small workload has an inversion
value of 0.33 and the large one has 0.35, which implies that
the right ordering is not caused by cache but the elimination
of locking and blocking issues.

6 The Myth of Connection Scheduling

We have demonstrated that locking and blocking in the op-
erating system are the main origins of server-induced la-
tency. By eliminating these issues, we show improvement
in latency and service quality. We demonstrate that they
are also responsible for burstiness of the load presented
in the server, which is the foundation for application-level

8

connection scheduling. In this section we present mea-
surements of event queue lengths in both the Flash server
and the Apache server, and discuss the fact that connec-
tion scheduling is unnecessary in nonblocking systems and
largely a result of other implementation artifacts.

6.1 Event Batching in the Flash Server

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

P
ro

ba
bi

lit
y

[#
 E

ve
nt

s
<=

 x
]

of Ready Events

new Flash
no mmap

fdpass
old Flash

Figure 13:Event Queue Lengths for Flash Variants

The main prerequisite for connection scheduling is that the
server receives enough requests at once in order to perform
any sort of meaningful scheduling. We did observe this
kind of burstiness in the original Flash server, due to the
combination of batching inselect() and the impact of
delays caused by locking. Since both effects have been re-
moved in the new Flash, we expect that events will be de-
livered to the application as soon as possible, resulting in
fewer large bursts of requests.

We measure the number of ready events returned by the
event delivery system callsselect()/kevent(). Fig-
ure 13 shows the CDF of ready events measured in half an
hour on four different server configurations with the same
workload we used in previous sections, while Figure 14
shows the same data weighted by the number of events re-
turned. We have all of the clients issuing requests in an
infinite demand model to fully load the server. The orig-
inal Flash server exhibits longer event queue lengths with
a mean of 61 event per dispatch and a maximum length of
more than 600. In contrast, the new server only returns an
average of 1.6 events per call, with 99.9% of the dispatches
returning fewer than 10 events. One would expect that with
fewer events returned with each call, the new server dis-
patches ready events more frequently. Checking the num-
ber of dispatches confirms this analysis, with the new server
completing almost four hundred times more calls than the
original server. By eliminating the unnecessary locking and
blocking in the OS, requests are being served as soon as
they are ready. As long as the CPU is not overloaded, we
expect that there are always fewer batched events at any
time.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 1000

P
ro

ba
bi

lit
y

[#
 W

ei
gh

te
d

E
ve

nt
s

<=
 x

]

of Ready Events

new Flash
no mmap

fdpass
old Flash

Figure 14:Weighted Queue Lengths for Flash Variants

Though the new server does run a bit faster than the
old one, both servers are fully loaded with the clients is-
suing requests as fast as possible. Even with this work-
load, the new server exhibits only minimal burstiness. In
an open-system model such as would be found outside of
the lab, this workload pattern would only result from over-
load. In that scenario, admission control and load shedding
would be mandatory for good performance. So, even in
the event that this workload presents any opportunities for
application-level connection scheduling, the likelihood of
it having any meaningful impact outside the lab is mini-
mal. With a properly-designed server, lower load levels
would not generate enough burstiness, and higher load lev-
els would have to be handled by overload control mecha-
nisms. These results convince us that the opportunities for
connection scheduling are largely nonexistent with a better
server, and that what has been observed previously is the
artifact of server implementation.

6.2 Burstiness in the Apache Server

Since we optimized only the Flash server to remove the
locking and blocking issues, we are interested in knowing
if the burstiness of the multi-process servers is also affected
by these problems. This question motivates us to investi-
gate the burstiness of the Apache server. We instrument the
OS scheduler to export the length of runnable processes
queue every second. Because each Apache process han-
dles requests with a blocking manner, blocking is expected
in the system. But locking caused by resource contention
may also artificially increase the burstiness of the load, re-
sulting in longer runnable process queue. To test our the-
ory, we configure the Apache server with different number
of maximum processes, and have all the clients fully load
both of the systems.

We configure the Apache server with 256 and 1024 max-
imum processes and measure the number of runnable pro-
cesses in each case. We show the sampling of runnable
processes as dots scattered over 500 seconds. Figure 15
shows the scattering with the server configured with 256

9

maximum processes, and Figure 16 is the result for 1024
maximum processes. Each dot represents the number of
runnable processes at that particular time. We notice that
the dots in Figure 15 are more dispersed than those in Fig-
ure 16, and the number of runnable processes is always
close to the maximum number when it is configured with
1024 processes. We do not see similar behavior in Fig-
ure 15 where the number of runnable processes is generally
much lower than the maximum number.

Figure 15:Run queue length for 256 Apache processes

Because all the clients issue requests in an infinite de-
mand model, both systems should be fully loaded, and we
confirm that both of them achieve almost the same capac-
ity. The existence of the larger process queue in the sys-
tem with 1024 processes suggests that the system may have
more burstiness, and spend more time on blocking, with no
processes runnable at certain times.

In order to confirm the percentage of time which is ac-
tually idle because of blocking, we normalize the queue
length and generate a system load level as follows:

loadlevel = #RunnableProcesses/#Processes (5)

Figure 17 shows the PDF of the normalized load levels
over the time period. Our hypothesis that the system actu-
ally spends some time blocking is confirmed by seeing 40%
of the time is in idle on the system with 1024 processes and
20% is idle on the one with 256 processes. We also ob-
serve that the Apache server with 1024 processes exhibits
heavier bursts of load (but for shorter periods) than the 256
process configuration. When the server is configured with
256 maximum processes, the system has a lower load level
but is more evenly distributed over the whole period.

These results indicate that the problems of locking and
blocking, and the associated artificial burstiness in load, are
not dependent on server architecture, but are a phenomenon
caused by the OS. Though eliminating these problems in
multi-process servers may be more difficult, our experience
with Flash suggests the benefits may be worthwhile.

6.3 Congestion Window Effects

Previous work shows that under heavy network conges-
tion, server latency can be reduced by giving preference
to small files or requests based on the SRPT (Shortest Re-
maining Processing Time) and controlling the sending or-
der of packets in the network buffer [11]. Though our new
system does reduce latency significantly, we believe there
is still space for improvement and these issues affect the
remaining service inversion shown in Figure 10. This ob-
servation draws our attention to investigate the effect of
network stack, which we address in the remainder of this
section.

Figure 16:Run queue length for 1024 Apache processes

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300 350 400 450 500

N
or

m
al

iz
ed

 L
oa

d
Le

ve
l

Sorted Sample Counts

256 Processes
1024 Processes

Figure 17:Normalized load levels for Apache

The “mice and elephants” behavior of TCP flows arises
from the observation that most flows are short-lived (mice),
but that the majority of bytes transferred take place in large,
long-lived flows (elephants) [10]. With a median trans-
fer size of less than 10KB, many Web transfers are com-
plete before the TCP connection has exited the slow-start
phase. However, longer transfers not only exit slow start,
but can open large congestion windows over time. Persis-
tent connections can cause a similar effect [12], since mul-
tiple transfers over a single connection will appear to TCP
as a single large transfer.

10

The “problem” with large congestion windows is
twofold – large transfers can use bandwidth unfairly, pe-
nalizing smaller transfers, and new responses sent over a
connection with an enlarged congestion window will com-
plete more quickly than if they had started with a new TCP
connection. These transfers may complete more quickly
than other responses, yielding queuing delays and more un-
fairness.

10

15

20

25

30

35

0 10 20 30 40 50 60 70

M
ea

n
La

te
nc

y
(m

s)

Congestion Window Size (KB)

persistent
non persistent

Figure 18:Mean latency vs max congestion window size

To experiment with this behavior, we limit the size of
the TCP congestion window in our networking stack and
repeat the latency experiments at the 0.90 load level. This
change can be made entirely on the server side, and does
not have to be visible to the application, since the socket
buffer size can remain the same. The resulting mean laten-
cies for persistent and nonpersistent connections are shown
in Figure 18, and are quite surprising.

This simple approach reduces the mean latency from an
already low 33ms to as little as 10ms. The results indicate
that the “sweet spot” for the maximum congestion window
size is roughly the average transfer size, with larger con-
gestion windows penalizing small responses and increasing
the mean response time. The “unfair” aspect of persistent
connections are also visible, with the nonpersistent connec-
tions showing lower mean response time.

This experiment is merely a starting point for further
investigations, since the lab conditions used to produce it
are not representative of wide-area network conditions. In
WAN environments, large congestion windows are needed
for high bandwidth-delay pipes to be fully utilized. Like-
wise, persistent connections reduce the number of round-
trip delays associated with connection setup and teardown.
However, this experiment illustrates two important points:
some of our remaining latency is due to unfairness in the
network, and we can achieve benefits similar to SRPT
scheduling, but with a much simpler mechanism. Inter-
estingly, the service inversion value remains 0.33, which
we believe is attributable to the benefits taking place within
series 4, and therefore not being counted in our metric.

7 Related Work

Performance optimization on the network servers has been
an important research area, with much work focused on
improving throughput. Performance studies of the Harvest
Cache [7] established the suitability of event-driven designs
for network servers, and the Flash server demonstrated how
to avoid some disk-related blocking [19]. Schmidt and
Hu [22] performed much of the early work in studying
threaded architectures for improving server performance.
We have demonstrated that these servers can benefit from
latency-improving techniques designed to eliminate block-
ing within the operating system.

More recently, researchers have focused more attention
to latency measurement and improvement. Rajamony &
Elnozahy [21] measure the client-perceived response time
by instrumenting the documents being measured. Bent
and Voelker explore similar measurements, but focusing
on how optimization techniques affect download times [6].
Olshefski et al. [18] propose a way of inferring client re-
sponse time by measuring server-side TCP behaviors.

Connection scheduling as a technique to reduce server
latency has been proposed in several works. Most of the
attention in this area has been focused on SRPT policy [8],
both including server modification and kernel instrumenta-
tion for network stack scheduling [11]. Two server plat-
forms, Haboob [25] and Knot [24], implement this ap-
proach in user space. Cohort scheduling [16] focuses on
gaining performance by batching similar requests. Our
work examines the assumption of these approaches, par-
ticularly the opportunities for scheduling, and find that the
underlying assumptions may not exist in well-implemented
servers under realistic load scenarios.

Our approach of fairness evaluation may be more suit-
able for network servers than the Jain fairness index [15]
used in other works, since we focus more on the latencies of
individual requests rather than coarse-grained characteris-
tics of clients. Bansal & Harchol-Balter [4] investigate the
unfairness of SRPT scheduling policy under heavy tailed
workloads and draw the conclusion that the unfairness is
barely noticeable. Our new server relies on the existing
scheduling disciplines within the operating system and net-
working code to give small requests faster treatment, and
we find that eliminating the existing obstacles yields auto-
matic performance improvement.

8 Discussion & Conclusion

In this paper, we have examined the causes of server-
induced latency in network servers, and have found that
locking and blocking mechanisms not only cause high la-
tency and burstiness, but are the major reasons behind the
unfairness of existing servers. We have shown that elim-
inating these problems can be simple, and can yield dra-
matic latency reductions. The burstiness of these systems

11

had been previously harnessed for application-level con-
nection scheduling, and we demonstrate that once the im-
plementation issues causing the problems are addressed,
the queue lengths diminish to the point where any extra
scheduling is not only unnecessary, but also difficult to ap-
ply.

We have proposed a new metric for quantifying unfair-
ness, the service inversion index, and we have shown how
this metric can be used to understand the root causes of la-
tency degradation under load. Through the use of this met-
ric, we have seen that the queuing delays, long assumed
to be responsible for latency growth, are only secondary
factors under Web-like workloads. Our resulting latency
profile looks both qualitatively and quantitatively different
from other servers. Not only do we show latency reduc-
tions ranging from one to two orders of magnitude, but we
also show very little degradation for most requests as load
increases.

We believe that as broadband penetration increases and
wide-area round-trip times decrease, more attention will be
paid to server-induced latency. In this context, we advocate
seriously re-examining many of the widely-held assump-
tions regarding the origins of latency, because as we have
shown, much of the conventional wisdom seems to not be
rooted in fact.

We expect to conduct further research in this area, not
only to understand how our service inversion metric can be
made more useful, but also to understand the limits of la-
tency in these systems. Even with our optimizations, we
did not achieve perfect fairness for all requests, and we are
curious as to whether this goal is achievable without com-
promising overall performance.

References
[1] Apache Software Foundation. The Apache Web server. http://www.

apache.org/.

[2] M. F. Arlitt and C. L. Williamson. Web Server Workload Character-
ization: The Search for Invariants. InProceedings of the ACM SIG-
METRICS ’96 Conference, pages 126–137, Philadelphia, PA, Apr.
1996.

[3] G. Banga, J. C. Mogul, and P. Druschel. A scalable and explicit
event delivery mechanism for UNIX. InUSENIX 1999 Annual Tech-
nical Conference, pages 253–265, Monterey, CA, June 1999.

[4] N. Bansal and M. Harchol-Balter. Analysis of srpt scheduling: In-
vestigating unfairness. InProc. of the SIGMETRICS ’01 Confer-
ence, Cambridge, MA, June 2001.

[5] P. Barford and M. Crovella. Generating representative web work-
loads for network and server performance evaluation. InMeasure-
ment and Modeling of Computer Systems, pages 151–160, 1998.

[6] L. Bent, Geoffrey, and M. Voelker. Whole page performance. In In
Proceedings of the Seventh International Workshop on Web Content
Caching and Distribution (WCW’02), Boulder, CO, August 2002.,
2002.

[7] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F.
Schwartz. The Harvest information discovery and access system.
Computer Networks and ISDN Systems, 28(1–2):119–125, 1995.

[8] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in web servers. InProc. of the 2nd USENIX Symp. on
Internet Technologies and Systems (USITS’97), Boulder, CO, Oct.
1999.

[9] P. Druschel and L. L. Peterson. Fbufs: A high-bandwidth cross-
domain transfer facility. InProc. of the 14th ACM Symp. on Oper-
ating System Principles, pages 189–202, Asheville, NC, Dec. 1993.

[10] L. Guo and I. Matta. The war between mice and elephants. Technical
Report 2001-005, Boston University, June 2001.

[11] M. Harchol-Balter, B. Schroeder, M. Agrawal, and N. Bansal. Size-
based scheduling to improve web performance.ACM Transactions
on Computer Systems, 21(2), May 2003.

[12] J. Heidemann. Performance interactions between p-http and tcp
implementations. InACM Computer Communication Review,
27(2):65–73, April 1997.

[13] J. C. Hu, I. Pyrali, and D. C. Schmidt. Measuring the impact of
event dispatching and concurrency models on web server perfor-
mance over high-speed networks. InProceedings of the 2nd Global
Internet Conference, Phoenix, AZ, Nov. 1997.

[14] Y. Hu, A. Nanda, and Q. Yang. Measurement, analysis and perfor-
mance improvement of the apache web server. InProceedings of the
18th IEEE International Performance, Computing and Communica-
tions Conference (IPCCC’99), February 1999.

[15] R. Jain. Congestion control and traffic management in ATM net-
works: Recent advances and A survey.Computer Networks and
ISDN Systems, 28(13):1723–1738, 1996.

[16] J. Larus and M. Parkes. Using cohort-scheduling to enhance server
performance. InUSENIX 2002 Annual Technical Conference, pages
103–114, Monterey, CA, June 2002.

[17] J. Lemon. Kqueue: A generic and scalable event notification facility.
In FREENIX Track: USENIX 2001 Annual Technical Conference,
pages 141–154, Boston, MA, June 2001.

[18] D. Olshefski, J. Nieh, and D. Agrawal. Inferring clientresponse
time at the web server. InProc. of the SIGMETRICS ’02 Conference,
Marina Del Rey, CA, June 2002.

[19] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and
portable web server. InUSENIX 1999 Annual Technical Conference,
pages 199–212, Monterey, CA, June 1999.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel. IO-Lite: a unified I/O
buffering and caching system.ACM Transactions on Computer Sys-
tems, 18(1):37–66, 2000.

[21] R. Rajamony and M. Elnozahy. Measuring client-perceived re-
sponse times on the www. InProc. of the 3rd USENIX Symp. on
Internet Technologies and Systems (USITS’97), San Francisco, CA,
March 2001.

[22] D. C. Schmidt and J. C. Hu. Developing flexible and high-
performance Web servers with frameworks and patterns.ACM Com-
puting Surveys, 32(1):39, 2000.

[23] Standard Performance Evaluation Corporation. SPEC Web
96 & 99 Benchmarks. http://www.spec.org/osg/ web96/ and
http://www.spec.org/osg/web99/.

[24] R. von Behren, J. Condit, F. Zhou, G. C. Necula, , and E. Brewer.
Capriccio: Scalable threads for internet services. InProc. of the 18th
ACM Symp. on Operating System Principles, Bolton Landing, NY,
Oct. 2003.

[25] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architec-
ture for well-conditioned, scalable internet services. InProc. of the
19th ACM Symp. on Operating System Principles, pages 230–243,
Chateau Lake Louise, Banff, Canada, Oct. 2001.

12

