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Abstract

The computation of curvature and other differential properties of
surfaces is essential for many techniques in analysis and rendering.
We present a finite-differences approach for estimating curvatures
on irregular triangle meshes that may be thought of as an extension
of a common method for estimating per-vertex normals. The tech-
nique is stable and robust, offers accuracy comparable to or bet-
ter than existing methods, and generalizes naturally to computing
derivatives of curvature and higher-order surface differentials.
CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling.
Keywords: curvature, differential properties, irregular meshes.

1 Introduction

As the acquisition and use of sampled 3D geometry become more
widespread, 3D models are increasingly becoming the focus of
analysis and signal processing techniques previously applied to data
types such as audio, images, and video. A key component of al-
gorithms such as feature detection, filtering, and indexing, when
applied to both geometry and other data types, is the discrete esti-
mation of differential quantities. In the case of shape, surface dif-
ferentials such as normals and curvatures arise not only in the con-
text of these “signal analysis” applications, but also in pure graph-
ics algorithms such as illumination and nonphotorealistic rendering
(Figure 1). This paper describes a general, robust algorithm for esti-
mating curvatures and higher-order surface differentials on surfaces
approximated by triangle meshes.
A key difference between 3D meshes and data types such as im-

ages, video, and even volumetric data stored on voxel grids is that
meshes are typically irregularly sampled. The distribution of ver-
tices across the surface is not uniform, and connectivity (in particu-
lar, the valence of each vertex) is not regular except in special cases.
In order to be generally useful, therefore, an algorithm for estimat-
ing differential quantities must be robust under different distribu-
tions of triangle sizes and shapes. Other properties desirable in an
algorithm that operates on commonly-encountered meshes include:
• not placing any requirements on the topology of the surface.
In particular, the assumption that a surface is hole-free is often
violated.
• being free of degenerate cases, unless the mesh itself is de-
generate. For example, we wish to avoid the instability of
some methods for particular configurations of vertices, such
as collinear points.
• not relying on smoothing or averaging over a large neighbor-
hood to provide robustness. In many cases smoothing is nec-
essary to eliminate noise, but algorithms should not require
large neighborhoods for stability.

In the case of estimating per-vertex normals, we note that a
commonly-used algorithm, namely taking a weighted average of
the normals of faces touching a vertex, satisfies the above prop-
erties. It handles arbitrary triangulations, makes no assumptions
about topology or the presence of holes, is typically free of degen-
eracies, and operates on local neighborhoods. This algorithm is also
efficient, requiring only a single pass over faces and one over ver-
tices (to rescale the resulting normals to unit length), and does not

Figure 1: Left: suggestive contours for line drawings [DeCarlo et al. 2003]

are a recent example of a driving application for the estimation of curva-

tures and derivatives of curvature. Right: suggestive contours are drawn

along the zeros of curvature in the view direction, shown here in blue, but

only where the derivative of curvature in the view direction is positive (the

curvature derivative zeros are shown here in red). This paper describes

a general and stable algorithm for estimating curvature and derivative-of-

curvature tensors on triangle meshes.

require any connectivity data structures beyond the usual vertex list
and indexed face set.
Inspired by this algorithm, we present a method for computing

curvatures and higher-order derivatives in an analogous fashion: we
first compute the properties per-face, then estimate the value at each
vertex as a weighted average over the immediately adjacent faces.
The per-face computations are based directly on the definition of
the relevant derivative, using a a finite-difference approximation.
The curvature tensor, for example, is defined in terms of the di-
rectional derivative of the surface normal, and we calculate it from
differences between estimated per-vertex normals.

2 Background and Previous Work

We begin with a brief overview of curvatures on a 3D surface (see,
for example, [Cipolla and Giblin 2000] for further details). The
normal curvature κn of a surface in some direction is the reciprocal
of the radius of the circle that best approximates a normal slice of
surface in that direction. The normal curvature varies with direc-
tion, but for a smooth surface it satisfies
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for any unit-length vector (s,t) in the local tangent plane (expressed
in terms of an orthonormal coordinate system centered at the point).
The symmetric matrix II appearing here, known as the Weingarten
matrix or the second fundamental tensor, can be diagonalized by a
rotation of the local coordinate system to give
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where κ1 and κ2 are the principal curvatures and (s′,t ′) is now
expressed in terms of the principal directions, which are the di-
rections in which the normal curvature reaches its minimum and



maximum. The principal curvatures and principal directions have
been widely used in computer graphics, appearing in applications
such as remeshing [Alliez et al. 2003], smoothing [Desbrun et al.
1999], segmentation [Trucco and Fisher 1995], visualization [Inter-
rante et al. 1995], and nonphotorealistic rendering [Hertzmann and
Zorin 2000; DeCarlo et al. 2003].
We may classify existing methods for estimating principal curva-

tures and directions (as opposed to methods that estimate only the
mean curvature H = (κ1 +κ2)/2 or Gaussian curvature K = κ1κ2 )
into three general categories:
• Patch fitting methods fit an analytic surface (usually a poly-
nomial) to points in a local region, then compute curvatures of
the fit surface analytically. These methods clearly produce ex-
act results if the vertices are on a surface of the class being fit,
and Cazals and Pouget [2003] have shown that in the case of
a general smooth surface the estimated curvatures converge to
the true ones, at least in nondegenerate cases. The weakness
of patch fitting methods that only consider vertex positions
is that they become unstable near degenerate configurations,
most notably if the points lie near a pair of intersecting lines
(Figure 2). Goldfeather and Interrante [2004] have shown that
the degenerate cases can be avoided, and accuracy improved
in general, by including not only points but also estimated
per-vertex normals in the fit.
• Normal curvature-based methods first estimate the normal
curvature in the direction of each edge leaving a vertex, then
use the κn estimates to find the second fundamental tensor.
Most commonly, the formula

κi j =
2ni · (pi− pj)

|pi− pj|2
(3)

is used to find the normal curvature at point pi, in the di-
rection of some neighboring point pj. The principal curva-
tures may then be found from a function of the eigenval-
ues of ∑ j κi j(pi − pj)(pi − pj)

T [Taubin 1995; Page et al.
2001; Hameiri and Shimshoni 2002], which is accurate only
when the distribution of the directions to neighboring points
is uniform. Alternatively, and more generally, the κn sam-
ples may be fit to (1) using least squares [Chen and Schmitt
1992; Hameiri and Shimshoni 2002]. Meyer et al. use a sim-
ilar fit, constrained to match estimates of mean and Gaussian
curvature obtained using a different technique [Meyer et al.
2002]. As shown by Goldfeather and Interrante [2004], least-
squares fitting a curvature tensor to normal curvature samples
is equivalent to patch fitting, with spheres as the class of sur-
faces being fit. This implies that, in most cases, such tech-
niques have the same weakness as point-fitting: they become
unstable when the neighbors of a vertex are close to a pair of
intersecting lines.

Figure 2: Left: degenerate configuration for algorithms that estimate cur-

vature by fitting a parametric patch to points in a neighborhood, as well as

for algorithms that use a least-squares fit of normal curvatures. Configu-

rations similar to this one, including any number of vertices lying on two

intersecting lines, will yield unstable estimates. Center, right: continuous

surfaces of different curvatures consistent with the given vertices.

Figure 3: Many “tensor averaging” algorithms produce significant errors

in estimating curvature, even for densely-spaced samples and simple ge-

ometries such as a sphere. Here we show a tessellated sphere of radius

1 (which should have curvature 1 everywhere), together with the principal

curvature estimates computed by the algorithm of Alliez et al. [2003]. Note

the error in the curvature estimate at the central vertex: this error does not

decrease as the sampling gets more dense.

• Tensor averaging methods compute the average of the cur-
vature tensor over a small area of the polygonal mesh [Cohen-
Steiner and Morvan 2003; Alliez et al. 2003]. The curvature
of a polyhedron is zero within a face and infinite along the
edges, but its average over a region of non-zero measure (such
as the Voronoi region of a vertex) is finite and well-defined.
Tensor averaging definitions of curvature on a mesh are el-
egant and free of unstable configurations, but produce large
errors for certain vertex arrangements (Figure 3).

3 Algorithm

As mentioned earlier, our method for computing curvatures and
derivatives of curvature is based on the common algorithm for find-
ing per-vertex normals by averaging adjacent per-face normals. To
extend this to the case of curvatures, we first define how curvature
is computed over a face, then show how to combine curvature esti-
mates expressed in terms of different coordinate systems. Finally,
we describe how the algorithm generalizes to higher-order surface
differentials.

3.1 Per-Face Curvature Computation

The second fundamental tensor II, already seen in equation 1, is
defined in terms of the directional derivatives of the surface normal:
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where (u,v) are the directions of an orthonormal coordinate system
in the tangent frame (the sign convention used here yields posi-
tive curvatures for convex surfaces with outward-facing normals).
Multiplying this tensor by any vector in the tangent plane gives the
derivative of the normal in that direction:

IIs= Dsn. (5)

Note that the derivative of the normal is itself a vector in the tangent
plane: it often has a component in direction s, but can also have a
component in the perpendicular direction (caused by “twist” in the
surface).
Although this definition holds only for smooth surfaces, we can

approximate it in the discretized case by using finite differences.
For example, for a triangle we have three well-defined directions



(the edges) together with the differences in normals in those direc-
tions (computed from the per-vertex normals). Thus, we have

e0

2n

e1

e2 1n

0n
u
v

II

(

e0 ·u
e0 · v

)

=

(

(n2 −n1 ) ·u
(n2 −n1 ) · v

)

II

(

e1 ·u
e1 · v

)

=

(

(n0 −n2 ) ·u
(n0 −n2 ) · v

)

II

(

e2 ·u
e2 · v

)

=

(

(n1 −n0 ) ·u
(n1 −n0 ) · v

)

This provides a set of linear constraints on the elements of the sec-
ond fundamental tensor, which may then be determined using least
squares. Note that this estimate is always well-defined, unless the
triangle itself has three collinear vertices.
Although a discretization error is introduced by this finite-

difference approximation, we have found that it has a high degree
of accuracy in many common cases. For example, when the ver-
tices of the triangle lie on the surface of a sphere and the vertex
normals are the normals of the sphere, the curvatures produced by
this technique are exact regardless of the shape of the triangle.

3.2 Coordinate System Transformation

Once we have a curvature tensor expressed in the (u f ,v f ) coordi-
nate system of a face, we must average it with contributions from
adjacent triangles. To do this, we assume that each vertex p has its
own orthonormal coordinate system (up,vp), defined in the plane
perpendicular to its normal, and derive a change-of-coordinates for-
mula for transforming a curvature tensor into the vertex coordinate
frame.
We first consider the case when the face and vertex normals are

equal, so that (u f ,v f ) and (up,vp) are coplanar. The first com-
ponent of II, expressed in the (up,vp) coordinate system, may be
found as
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= uTp II up. (6)

Thus, we can find ep in terms of the coordinates of up expressed in
the old (u f ,v f ) coordinate system:

ep = uTp II up =

(

up ·u f
up · v f

)T

II

(

up ·u f
up · v f

)

. (7)

Similarly, we find that fp = uTp II vp and gp = vTp II vp.
When the old and new coordinate systems are noncoplanar, we

cannot simply project the new up and vp axes into the old (u f ,v f )
coordinate system. The projections would not, in general, be unit-
length, which would cause a “loss” of curvature at each each change
of coordinates (specifically, the mean curvature would be multiplied
by the square of the cosine of the angle between the normals). In-
stead, we first rotate one of the coordinate systems to be coplanar
with the other, rotating around the cross product of their normals.
This avoids the cos2 θ curvature loss and increases the accuracy of
estimates on coarsely-tessellated surfaces.

3.3 Weighting

The question of weighting, i.e. how much of the face curvature
should be accumulated at each vertex, has been addressed by prior
work. Following Meyer et al. [2002], we take w f,p to be the portion
of the area of f that lies closest to vertex p. We have found that this
“Voronoi area” weighting produces the best estimates of curvature
for triangles of varying sizes and shapes. This contrasts with the
weights used for estimating normals, for which we take w f,p to be
the area of f divided by the squares of the lengths of the two edges
that touch vertex p. As shown by Max [1999], this produces more

accurate normal estimates than other weighting approaches, and is
exact for vertices that lie on a sphere.

3.4 Algorithm and Extension to Curvature Derivatives

We may now state our final algorithm for per-vertex computation
of the curvature tensor:

Compute per-vertex normals
Construct an initial (up,vp) coordinate system in the
tangent plane of each vertex

for each face:
Compute edge vectors e and normal differences ∆n
Solve for II using least squares
for each vertex p touching the face:
Re-express II in terms of (up,vp)
Add this tensor, weighted by w f,p, to vertex curvature

for each vertex:
Divide the accumulated II by the sum of the weights
If desired, find principal curvatures and directions
by computing eigenvalues and eigenvectors of II

One of the most important features of this algorithm is that it
generalizes to higher-order differential properties. Just as the cur-
vature tensor gives the change in the normal with motion along the
surface, one may define a “derivative of curvature” tensor that gives
the change in the curvature along the surface. This is a 2× 2× 2
rank-3 tensor or “cube of numbers,” and because of symmetry it
has only four unique entries. Writing it as a vector of matrices, the
derivative-of-curvature tensor C has the form
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Multiplying C by a direction vector three times gives the deriva-
tive of curvature in that direction. Although derivatives of curva-
ture have not been applied in as many contexts as curvatures them-
selves, they have been used for such applications as fair surface
design [Moreton and Séquin 1992; Gravesen and Ungstrup 2002],
detecting creases in surfaces [Lengagne et al. 1996; Watanabe and
Belyaev 2001], and producing line drawings [DeCarlo et al. 2003].
A simple extension to our curvature-estimation algorithm can be

used to estimate derivatives of curvature and, where needed, any
higher-order derivatives. Just as curvatures are estimated per-face
by considering the differences in normals along the edges, we es-
timate C with a least-squares fit to the differences in the curva-
ture tensor along the edges. The algorithm uses the change-of-
coordinate-system formula to transform curvatures from vertex co-
ordinates to face coordinates, and an analogous formula to trans-
form the C back into vertex coordinates.

4 Results

Figures 4 and 5 show the results of computing curvatures and
derivatives of curvature on a large (1.5 million polygon) scanned
mesh. We found that the algorithm is efficient enough in both time
(curvature computation took 4 seconds) and space (no additional
connectivity data structures are required) to be practical even for
data sets of this size.
Although the main goals of our algorithm are robustness and

easy generalizability to derivatives of any order, we have found that
the quality of the curvature estimates it produces on analytic mod-
els is competitive with other methods in the literature. Figure 6
shows results for a torus mesh, examining the effects of both noise
(perpendicular to the surface) and differences in surface tessella-
tion. The top graph of Figure 6 shows curvature error for a uniform
tessellation of the sphere, for both our algorithm and contemporary
algorithms in each of the three categories considered earlier, Note



Figure 4: Suggestive contour rendering of a model of the face of St.

Matthew (1.5M polygons). To filter out scanning noise, the normal field

was smoothed by a Gaussian filter of width 0.5 mm (this also had the ef-

fect of smoothing the curvature estimates). Computation of curvatures and

curvature derivatives took 4.0 and 5.2 seconds, respectively.

Figure 5: Detail of minimum principal curvature directions around the eye

of the St. Matthew model.
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Figure 6: Estimation errors for our curvature estimation algorithm, com-

pared to contemporary alternatives based on tensor averaging [Alliez et al.

2003], fitting to normal curvature estimates, and patch fitting to points and

normals [Goldfeather and Interrante 2004]. We show results for both reg-

ular and irregular tessellations, as the amount of noise is increased. We

report the RMS difference between the estimated and exact normal curva-

tures, integrated over all directions and averaged over all points on the

mesh. The results are averaged over 1000 trials, and results are normalized

by the exact RMS curvature over the model.

that both the normal curvature fitting and tensor averaging methods
produce good results for perfect data, but degrade rapidly with the
addition of noise. The bottom row of this figure shows the effect of
varying the tessellation on the performance of the algorithms. We
see that although the performance of all algorithms deteriorates rel-
ative to the regular tessellation, the results of the tensor averaging
method, in particular, degrade significantly. The results in all cases,
of course, could be improved by either pre-smoothing the mesh or
by smoothing the final curvature field.

5 Conclusion

This paper presents a general algorithm for computing curvatures,
derivatives of curvature, and higher-order differential properties on
triangular meshes. The algorithm is efficient, robust, and free of de-
generate configurations, and yields accurate estimates in the pres-
ence of irregular tessellation and moderate amounts of noise.
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