

1

MEDYM: An Architecture for Content-based
Publish-Subscribe Service Networks

 Fengyun Cao Jaswinder Pal Singh
 Princeton University Princeton University

Abstract
Designing a distributed architecture for content-based

publish-subscribe service networks is challenging for two
reasons: first, communication in such system is guided by the
content of publications and subscriptions rather than addresses
or network locations; second, while a publication often
matches subscriptions from multiple locations, existing group-
based multicast techniques such as IP multicast or application-
layer multicast are not readily applicable due to the highly
diversified patterns of interests. We propose an architectural
approach that combines two orthogonal aspects: Match Early,
and DYnamic Multicast. We call this a MEDYM architecture,
and we compare it with two major existing design approaches:
Content-based Forwarding and Channelization. In MEDYM,
event publications are matched as close as possible to
publishers, to obtain the locations of servers that have
matching subscriptions; then, a multicast route to the matching
servers is computed dynamically, to best suit the
heterogeneous event traffic patterns. We present methods to
efficiently implement the dynamic multicast routing. We
evaluate the MEDYM architecture using detailed simulations
as well as a prototype deployment on the PlanetLab test bed.
Experimental results show that the MEDYM approach
significantly improves storage, computation and network
efficiency compared to existing approaches, and is resilient,
scalable, and extensible.

1. INTRODUCTION
Publish-subscribe (pub-sub for short) is an important

paradigm for asynchronous communication between entities in
a distributed network. In the pub-sub paradigm, subscribers
specify their interests as conditions on content of events, and
will be notified afterwards of any event generated by a
publisher that matches these conditions. Such content-based
information delivery is of great value for many distributed
applications, such as enterprise activity monitoring, mobile
alerting [1], and application integration [13].

Pub-sub systems can be characterized into three broad
types based on the expressiveness of the subscriptions they
support. In channel-based schemes, events are classified and
labeled by publisher as belonging to one of a predefined set of
channels, to which users may subscribe to. In subject-based or
topic-based systems, subscriptions are restricted to fairly
narrow conditions on a single dedicated field of an event,
usually called the subject or topic of the event. For example, a
finance alert system may use stock ticker as subject of stock
price movement events, and a user may subscribe to events

with subject “ IBM” . Content-based pub-sub is a more general
and powerful paradigm, in which subscribers may specify
filtering criteria along multiple dimensions of event content
and using complex conditions. A content-based stock alert
system, for example, may support subscriptions like
“(ticker=IBM) AND (price>100 OR volume>8 million)” .
Therefore, channel-based and subject-based pub-sub can be
seen as special cases of content-based pub-sub.

In this paper, we study the question of architecture design
for scalable distributed content-based pub-sub systems that can
handle large number of content-based subscriptions and high
volume of event publications. At the center of the architecture
design is the question of how to efficiently deliver events to all
subscribers whose interests they match.

Content-based event delivery is challenging in part because
it cannot be directly supported by address-based Internet
routing primitives. An event may match the interests of
multiple subscribers, but existing group-based multicast
techniques such as IP multicast or application-layer multicast
[12][4] cannot be directly applied to event routing, because
content-based subscriptions are highly diversified: Different
events may satisfy the interests of widely varying groups of
users. In the worst case, mapping all possible event traffic
patterns into multicast groups may require a number of groups
exponential in the network size (i.e. 2n where n is the number
of users).

The conceptually simplest architecture for a pub-sub
system is a centralized one. There is a single pub-sub “server”
that consists of one or multiple machines on the same local
area network (LAN). Clients submit their subscriptions and
publications to the server, which matches published events
with all subscriptions and sends notifications to clients with
matching subscriptions. This architecture has several
drawbacks: first, unicasting notifications for an event from the
server to all interested clients (which may also be far away) is
not network efficient. Second, many events that match no
subscription in the system may be sent to the server across the
network, as there is no way of knowing whether anyone is
interested in an event before it is matched. It may also be
difficult or uneconomical to find a single location on the
Internet with high enough access bandwidth to support the
heavy incoming and outgoing traffic with large numbers of
publisher and subscriber clients. Finally, the system has a
single point of failure: no communication is possible i f the
pub-sub server location goes down.
To achieve higher scalability and reliability, like other

2

A

D

C G

F

H

E

Server Subscriptions
A {1,5}
B {7,8}
C {1,2}
D {0,6}
E {2,3}
F {5,7}
G {4,6}
H {2,9}

B

Publish

 Notify

Subscribe

End
user

End
user

Figure 1. Example of a pub-sub service network. There are 8
servers and each server has 2 subscriptions. Event values range

from 0 to 9.

previous research [2][7][8][9][11][13] we focus on architecture
design for a distributed pub-sub service network, as shown in
Figure 1. A set of pub-sub servers controlled by the service
network are widely distributed over the Internet; clients access
the pub-sub service, either to publish events or to register
subscriptions, through appropriate servers, such as those that
are close to them or in the same administrative domains. Thus,
pub-sub servers serve as publication/subscription proxies on
behalf of clients, and we can view the problem as one of
getting events from servers where they are published to the
servers that subscribe – as proxies – to the events. We call
these publication servers and subscriber servers in the rest of
this paper. Note that the same server may serve as a
publication server and as a subscription server.
Communication between pub-sub servers and their associated
clients is a separate matter that is now localized and is not
discussed in this paper.

In a distributed pub-sub service network, servers cooperate
to match events with subscriptions and route events to
interested subscription servers. The matching and routing
problems are interrelated: event routing decisions are based on
matching results, and underlying routing capabilities can affect
where and how matching is performed. In this paper, we use
the term architecture to refer to manner in which matching and
routing are distributed and coordinated in the system. We
discuss how existing distributed pub-sub proposals approach
these problems, and propose a new architecture. We evaluate
architecture approaches along three dimensions:
1. Performance and resource usage efficiency. Resource

consumption in pub-sub systems usually includes
subscription storage, matching/routing computation,
network communication load and management overhead.
It is also important that resource usage be well enough
balanced so that total system throughput is not
compromised.

2. Service reliability. In a large-scale distributed system,
server and network failures and condition changes are
considered normal rather than extreme scenarios. Static
resilience [17], adaptation to changing environments, and
failure recovery are important issues.

3. Scalability and extensibility. Given the fast growing
nature of information volume and needs, the pub-sub
architecture should scale gracefully to large user
population and heavy workload. It should also be
extensible to more sophisticated forms of subscriptions,
such as composite subscriptions that depend on

occurrence of multiple events published from potentially
different sources in the network, and new data types and
matching functionalities.

The rest of the paper is organized as follows: In the next
section, we review two major existing architecture designs for
content-based pub-sub service networks and examine their
tradeoffs. Based on this analysis, we propose a new
architectural approach called Match Early with Dynamic
Multicast (MEDYM), in Section 3. Section 4 discusses the
MEDYM approach and some efficient implementation
mechanisms in greater depth. In Section 5, we evaluate the
performance of MEDYEM and the other two major existing
approaches using detailed simulations. Since the simulation
results endorse the potential of the approach, we plan to
implement and deploy a pub-sub service network using the
MEDYM approach, to gain experience with it on real systems
and workloads. Section 6 describes our experience so far with
implementing a prototype MEDYM system on the PlanetLab
distributed testbed [2]. Section 7 discusses related work, and
Section 8 concludes the paper and discusses directions for
future work.

2. EXISTING APPROACHS
Existing content-based pub-sub service network design can

be largely categorized into two classes, which we call the
Content-based Forwarding (CBF) approach [3][9][10][11][13]
and the Channelization approach [22][23][28].

2.1 Content-based Forwarding (CBF)
We use the Siena system [10] as a representative for CBF

approach. As shown in Figure 2, servers organize into an
overlay network with acyclic (tree) peer-to-peer topology1,2,
which we call a CBF tree. Servers broadcast their
subscriptions on the tree, and each server records the sum of
subscriptions from each neighbor’s direction in its forwarding
table. Advertisement is an optional technique to constrain
subscription flooding: servers may first broadcast
advertisements that describe the possible content of their future
publications, so that subscriptions only need to be sent toward
servers with matching advertisements, i.e. servers that have the
potential to publish events that match these subscriptions. We
will discuss effectiveness of advertisements in more detail in
Section 5.

When a CBF server receives an event, it matches the event
with subscriptions in its forwarding table, and forwards the
event to neighbors whose directions have matching
subscriptions. Note that an event does not need to be matched
against individual subscriptions. Instead, subscriptions in the
same forwarding table entry can be aggregated and the

1 [] proposed that Siena can work with a cyclic network topology by first

extracting a routing tree rooted at the origin of the message. However, event
routing is stil l along a pre-configured acyclic topology and therefore is not
further discussed in their papers.

2 Another acyclic topology, i.e. hierarchical topology, was shown to
perform worse than the peer-to-peer topology and therefore is not considered
in this paper.

3

 Forwarding table
Server

Neighbor Subscriptions
A C { 0-9}
B C {0-7,9}

A { 1,5}
B { 7,8}
D { 0,6}

C

E {2-7,9}
D C { 1-9}

C {0-2,5-8} E
F {2,4-7,9}
E {0-3,5-8}

F
G {2,4,6,9}
F {0-3,5-8}

G
H { 2,9}

H G { 0-8}

A

D

B

C G

F

H

E

Event 2

Figure 2. Example CBF network structure and event delivery.
Forwarding tables are shown on the right.

 Event channels:

Channel Events Servers

ch0 5 8 A B E F
ch1 0 1 4 6 A C D G

ch2 2 3 7 9 B C E F H

Multicast tree for ch0

Multicast tree for ch1

Multicast tree for ch2

A

D

B

C G

F

H

E

Event 2

Figure 3. Example Channelization network structure and event
delivery. Event space is clustered into three channels using Forgy

K-means algorithm.

matching process only need to determine whether a direction
matches or not as a whole. Siena has proposed exploiting
covering and merging relationships among subscriptions from
multiple servers as they are combined and forwarded in the
method, to improve storage and matching efficiency. However,
this has not been evaluated and it is an open question as to how
efficient and effective the rules are, especially with high
dimension event space.

In CBF, events are only forwarded along directions that
lead to matching subscriptions. In this way, CBF achieves
network efficiency elegantly. However, its operating and
maintenance cost can be high for several reasons.

First, content-based matching of an event with
subscriptions in the forwarding table is an expensive operation.
It includes parsing content of various fields of the event
message and performing complex tests, such as full-text
search, range queries or Boolean expressions, against large
number of subscriptions. The complexity of matching is
determined by the nature of the application, usually being
more expensive as more flexible and powerful subscriptions
are supported. Furthermore, in CBF, many of the matching
operations may be redundant. In Figure 2, event 2 is repeatedly
matched with subscriptions from server H at server C, E, F, G
before reaching H. These matching operations result in high
computation load on pub-sub servers.

Second, event routing in CBF is limited by the use of a
single tree topology. An event is often routed through
intermediate servers that have no subscriptions interested in
the event, such as server F and G in Figure 2, thus introducing

unnecessary computation and network traffic load on such
servers.

Third, the CBF tree topology has high maintenance cost.
Because the content and organization of forwarding tables are
tightly coupled with the tree topology, change of servers’
relative positions in the topology requires adjustment of
subscription content in forwarding tables. This can be difficult
because the servers may not know exactly which server each
subscription is from, and may have to consult remote servers,
resulting in high volume of network traffic.

Finally, the topology leads to load imbalances. Servers and
network links located close to the center of the CBF tree are
likely to route for much more (irrelevant) events than their
peripheral counterparts and become system bottlenecks.

2.2 Channelization
We use [22] as a representative for the Channelization

approach. As shown in Figure 3, the multi-dimensional event
space is partitioned into a limited number of event channels
offline and the partitioning result is replicated on all servers.
For each event channel, a multicast tree is built that spans all
servers carrying subscriptions that could match any event in
that channel. A publication server uses the event space
partition to determine which channel the event belongs to. The
event message also carries the channelID of the event, so that
its content does not need to be matched again at subsequent
servers in the multicast tree. Event forwarding is thus simple
and fast.

Because the available number of multicast channels is
often much less than the 2n possible event traffic patterns,
servers in the same multicast tree may have substantially non-
overlapping interests, and hence a server may receive many
uniteresting events. In Figure 3, event 2 is sent to five servers
while only two of them have matching subscriptions.
Especially, server B is neither a matching server itself, nor
does it lead to any server with matching subscriptions.

To reduce extraneous event traffic, the Channelization
approach uses clustering algorithms to partition event space, to
maximize the commonality of subscription locations of events
in the same channel. However, the effectiveness of clustering
heavily depends on the content distribution of events and
subscriptions. If the distribution does not lend itself to
promising clustering opportunity, it is generally difficult to
match the highly diversified user interests in a content-based
pub-sub system into a small number of groups with high
accuracy. Furthermore, the distribution itself may be difficult
to estimate with high accuracy and may change frequently
over time, requiring clustering to be recomputed and results
updated between servers.

2.3 Discussion
The CBF and Channelization approaches both route events

along pre-configured network topologies. Because the
available choices are limited a priori, the routing paths cannot
be optimized based on individual event traffic patterns, and the
inefficiency of events traversing irrelevant servers cannot be

4

 Information at a MEDYM
server:

Server Sub-

scriptions
Network
location

A { 1,5} …
B { 8,9} …
C { 1,2} …
D { 0,6} …
E { 2,3} …
F { 5,7} …
G { 4,6} …
H { 2,9} …

A

D

C G

F

H

E

B

Publish

 Notify

Subscribe

End
user

End
user

Event 2

{C,E,H}

{H}

{E}

 Figure 4. Example MEDYM network structure and event
delivery. The destination lists are shown in braces.

avoided. Furthermore, maintenance and adaptation of the
network topology can be quite expensive in the face of
changing subscriptions.

However, the two approaches balance the tradeoff between
cost and quality of event delivery differently: CBF performs
content-based matching for every event at every forwarding
step, while Channelization only approximates destination
grouping patterns on a coarse-level, using offline clustering
results. As a result, we expect that CBF achieve better routing
accuracy at higher operation cost, while Channelization is
simpler to perform but may also generate more extraneous
network traffic.

3. MEDYM HIGH-LEVEL DESIGN
Based on the above observations, we propose a new

architecture for content-based pub-sub service network called
MEDYM: Match Early with DYnamic Multicast. To avoid
high forwarding cost, content-based matching is performed
only once in MEDYM, as close to the publication server as
possible3. The result of the one-time matching is recorded
with the event message as a destination list; from then on,
event forwarding is based on the addresses in the destination
list rather than on the content of the event. Therefore, event
forwarding is through address-based routing, as opposed to
content-based routing, and is expected to be simple and fast.
To allow maximum routing flexibility, MEDYM assumes no
predetermined routing topology. Rather, routing decisions are
dynamically made for each event based on its destination list,
and different routing algorithms can be used for different
optimization goals.

Figure 4 shows an example MEDYM network. Each
MEDYM server maintains two kinds of information for all
other servers in the system: the sum of subscriptions on each
server, which will be used in matching, and the servers’
network locations, which will be used in routing. The server
matches locally published events against subscriptions to
obtain a destination list of matching server IDs. (The specific
content-based matching algorithms used are plug-in modules
that are independent of the architecture, and are not a focus of

3 The matching is typically performed at the publication server itself,
except when this is altered for load balancing, see later, or when the system is
extended to support composite subscriptions, involving events from multiple
publication servers, in which case the matching wil l be performed as close to
the publication servers as possible.

this work.) Once matched, an event always carries a
destination list that indicates the destination servers that the
current server is responsible for event delivery. Based on the
destination list and knowledge of server locations and network
conditions, the server implements dynamic multicast routing: it
computes next-hop servers to which to forward the event, as
well as the new destination lists for each of the next-hop
servers, and sends the event and (reduced) destination lists to
these next-hop servers.

MEDYM routing for the example pub-sub system is shown
in Figure 4. After matching at server A, event 2 has destination
list of the three matching servers { C, E, H} . It is first sent to C,
where it is forwarded to E and H with new destination lists {E}
and { H} . Because MEDYM does not assume any pre-
configured network topology, the event can be routed so that it
touches only the three servers that are its destinations.

MEDYM combines key advantages of the CBF and
Channelization approaches. It matches every event against
subscriptions for high routing accuracy, like CBF, but does
this early and avoids repeated matching. Once matched, events
are routed fast based on addresses as in Channelization, but
with flexibility rather than with constraints on topology or
channels.

The major challenge for the MEDYM approach is design
and implementation of correct and efficient dynamic multicast
scheme. The rest of this section focuses on dynamic multicast.

3.1 Dynamic Multicast
The functionality of dynamic multicast routing at a

MEDYM server s can be described as:
diDLfDLn sii ...1,)(},{ ==

- DL: destination list in the event message server s receives.
- fs: multicast routing algorithm at server s.
- ni: the ith next-hop server to forward event message to.
- DLi: destination list for the message sent to server ni.
- d: number of next-hop servers.

3.1.1 Routing invariants
For routing correctness and efficiency, we define the

following dynamic multicast routing invariants:

(a) }{
1

sDLDL
d

i
i −=

=
�

(b) jiDLDL ji ≠=∩ ,φ

(c)
ii DLn ∈

As discussed below, the correctness and efficiency of
dynamic multicast as proposed in MEDYM are derived from
these routing invariants. Various concrete routing algorithms
can be developed for different routing policies, as long as they
conform to the interface and invariants above.

3.1.2 Dynamic multicast properties
Several important properties of dynamic multicast can be

inferred from the routing invariants, assuming that all servers
are reachable and function correctly:

5

O(l) levels

sum < m

sum < m

In total: < O(ml) destinations. (m-1) messages.
On average: l destinations/message

Figure 5. Analysis of average destination list size in dynamic
multicast.

(i) Dynamic multicast delivers an event to all servers with
matching subscriptions.

(ii) Dynamic multicast is loop free, i.e. an event traverses a
server at most once.

 Therefore, routing paths for an event form a tree topology,
though the actual routing process is stateless – no information
about such multicast tree is stored at pub-sub servers.

(iii) Dynamic multicast route events only through servers
that are interested in them.

This property guarantees that the multicast tree for each
event spans the minimum set of servers, reducing total
computation and network bandwidth usage in the process of
event delivery. It also aligns resource consumption with self-
interests of servers, as a MEDYM server only receives events
that it has interest in, and matches (with remote subscriptions)
only events locally published.

(iv) The average destination list size in all messages for an
event is O(l) servers, where l is the diameter of the dynamic
multicast tree for the event.

Since the destination list From invariant (a) we have

�
=

<−=
d

i
i DLsizeDLsizeDLsize

1

)(1)()(

As illustrated in Figure 5, at each level of the multicast
tree, the sum of destination list sizes in all messages is less
than m, where m is total number of matching servers. Because
the tree is of depth l, the sum of destination list sizes in all
messages is less than ml, and there are (m-1) messages in total,
so that average destination list size is O(ml/m)=O(l). In
particular, for a multicast tree with diameter O(logm), such as
a random tree which is often the shape of multicast tree in
practice, the average destination list size for an event is only
O(logm).

Although the real destination list size depends on the shape
of the multicast tree, this property provides a way to
approximately estimate the destination list overhead in event
messages. For a pub-sub system with 10,000 servers, assume
that an event matches interests of 20% of the servers, and the
dynamic multicast tree is a random tree, the average
destination list is expected to consist of about ln(10,000*20%)
= 8 servers; using 32 bit server ID, the destination list length
is 8*4 = 32 bytes. This overhead is expected to be acceptable,
considering the often rich event content in content-based pub-
sub systems, such as in the form of XML messages.
Compression and coding techniques may be used to further

reduce the destination list length, and is a direction for future
work.

We have shown that the average destination list overhead
is low. However, the destination list size is longer at publisher
than at intermediate forwarding servers. If a server publishes a
lot of events that match subscriptions at many servers, the
destination list overhead at this server is relatively high. To
solve this problem, we introduce the concept of a helper. A
server chooses a server that matches the event it publishes. It
forwards the event to the helper without destination list. The
helper then matches the event again and initiates dynamic
multicast as if it published the event itself. In this way, the
overhead of destination list size is shifted from the original
publication server to the helper. By strategically assigning
helping relationships, this mechanism helps to balance the
destination list overhead across servers.

From another perspective, a server ID in the destination list
can be seen as a reasonable “cost” that the publication server
“pays” for getting the event delivered to that destination server
through the pub-sub system. Dynamic multicast is an address-
based routing service, and a user is expected to provide the
destination(s) of a message. Therefore, we do not see this as a
problem load imbalance problem in event routing and do not
further investigate it in this paper.

3.1.3 Dynamic multicast methods

Source-based dynamic multicast
A straightforward way to implement dynamic multicast is

by source-based routing. The publication server computes the
multicast tree for an event and encodes the tree in the event
message, probably by ordering the servers in the destination
list. A forwarding server decodes the tree and forwards the
event as instructed. The drawback of this approach is that the
routing quality depends on the knowledge and intelligence
available at the publication server at the time of event
publication. If the server’s knowledge about the service
network status is out-of-date or incomplete, the multicast tree
computed can be sub-optimal or even incorrect.

Distributed dynamic multicast
We observe that the interface of dynamic multicast routing

only requires a server to resolve the local part of the multicast
tree. Therefore, dynamic multicast can also be implemented in
a distributed way.

In distributed dynamic multicast, no server is responsible
for or knows about the entire multicast tree. Each server only
determines its next-hop servers and their destination lists;
exactly how these next-hop servers are going to deliver the
event is out of concern and transparent to the current server.

Distributed dynamic multicast is highly flexible and
resilient. Servers may run different routing algorithms to best
fit their routing policy, and make real-time routing decision
adjustment for condition changes. When a server observes that
a next-hop server went down, it can simply re-run the routing
algorithm with the failed node removed from the destination
list, so that the event can be routed around that server.

In Section 4 we will design concrete routing algorithms for

6

both source-based and distributed dynamic multicast.

3.2 Discussion
In this Section, we introduced MEDYM, a new

architectural design for content-based pub-sub service
network. It combines two orthogonal aspects: Match Early,
and Dynamic Multicast. We believe that content-based
matching for every event is necessary to achieve high routing
efficiency and should be performed as early as possible in the
process of event delivery. To suit the heterogeneous event
traffic pattern, we propose dynamic multicast as a general
event routing scheme for distributed content-based pub-sub
system. We defined the functionality and invariants for
dynamic multicast routing, and analyzed its correctness and
efficiency features. We also discussed two ways of
implementing dynamic multicast and their tradeoffs. In the
next Section, we discuss in detail design and efficient
implementation of MEDYM system.

4. MEDYM DESIGN DETAILS
As a new architectural design, MEDYM faces potential

challenges that are not present in the existing approaches. In
Section 3, we have analyzed the destination list overhead in
MEDYM. In this Section, we discuss several other points of
concern in MEDYM and present ways to address them in
detail.

4.1 Efficient Dynamic Multicast Routing
In dynamic multicast, routing paths are computed for every

event in real time. It is important that the routing algorithm is
efficient enough to support high volume of event traffic.

In this paper, we develop routing algorithms that aim at
optimizing the total network communication cost in event
delivery. We use network latency as communication cost
between servers, and design three dynamic multicast routing
algorithms as follows:

MST is a routing algorithm that computes minimum
spanning tree for servers in the destination list. The neighbors
of the current server in the minimum spanning tree will be
used as next-hop servers, and each sub-tree of the neighbor
will be used as the next-hop server’s destination list. The
algorithm is the same for source-based or distributed multicast.
The computation time for MST is of O(D2logD) where D is the
number of servers in the destination list.

CloseMST is a distributed routing algorithm designed to
expedite routing computation by approximation. Instead of
computing a minimum spanning tree for all servers in the
destination list, a server first chooses the closest c destination
servers as candidates, and computes a minimum spanning tree
for the candidates. Then, it uses the neighbors in this small
minimum spanning tree as next-hop servers, and assigns the
other destination servers into the destination list of the closest
next-hop server to that destination. In this way, the
computation complexity of the algorithm is reduced to
O(c2logc+Dc). In experiments, c is set to a small constant
number around 10, and therefore the computation time is linear

to the destination list size. We have also explored alternative
ways of choosing the candidate servers, such as by clustering
servers by their network locations or directions offline, but
their routing qualities are not as good as that of CloseMST.

BalanedMST is a variant of CloseMST that takes server
load into consideration when making routing decisions. Even
though dynamic multicast does not route events along one pre-
configured tree topology, servers at the center of the network
are still more likely to be chosen as intermediate servers in
multicast trees and forward more copies of event messages
than their peripheral counterparts. BalanedMST is the same as
CloseMST, except that a server computes the minimum
spanning tree only for the candidate servers that are not
overloaded. If all candidate servers are overloaded, it chooses
one closest not overloaded destination server as the only next-
hop server. The overloading criteria can be specified by the
application. In our experiments, we define a server to be
overloaded if the ratio of number of messages it sends to the
number of messages it receives is above an
OverloadThreashold (OT). When this ratio is high, it indicates
that the server has high connectivity degree in multicast trees
and consumes much network access bandwidth.

Table 1 presents performance and quality results of the
three routing algorithms. The simulation details are as
described in Section 5. The algorithms are written in Java and
run on PC with 2.0 GHz Pentium-III CPU and 512MB
memory. The running time is computed as average of 100,000
times running. Routing quality is measured by the Normalized
Resource Usage (NRU), a normalized total network resource
usage metric, of the resulting multicast tree.

Table 1 shows that the approximate routing algorithms are
significantly faster than MST, while achieving comparable
routing quality. BalancedMST has higher NRU as it sometimes
chooses sub-optimal routing paths for load balancing. More
detailed results can be found in simulation results in Section 5.
In Section 3, we have shown that the average destination list
size is usually quite short. Therefore, these routing algorithms,
especially the approximate ones, are expected to be efficient
enough for large-scale pub-sub systems with high event traffic
throughput. The running time of these algorithms are also
much shorter than the content-based matching time presented
in pub-sub literatures [11][18][24], confirming our expectation
that address-based forwarding are faster and cheaper than
content-based forwarding.

4.1.1 Caching routing decisions
An interesting question is that whether routing results

could be cached at MEDYM servers, so that routing for events
with the same destination sets can be solved by a cache

Table 1. Running time and routing quality of dynamic multicast
routing algorithms.

Running time (ms) Quality (NRU) Routing
algorithm Configuration

D=100 D=2000 D=100 D=2000
MST 1.8 144 105% 122%

CloseMST c=16 0.08 1.12 121% 157%
BalancedMST c=16, OT=5 0.08 1.31 150% 216%

7

lookup instead of routing algorithm computation. Like in the
Channelization approach, effectiveness of such caching
depends on the locality property of communication patterns:
caching is most effective if and only if some event traffic
patterns are more often than the others. We plan to investigate
caching mechanisms with realistic application properties in the
future.

4.2 Managing and Updating Information
In MEDYM, each server needs to know about other

servers’ subscriptions for content-based matching, and
network locations for dynamic multicast routing. In the most
straightforward way, such information can be broadcasted
using a multicast group. Below we describe techniques to
improve information update efficiency.

4.2.1 Subscriptionse
With use of advertisement, subscriptions in MEDYM can

be sent through dynamic multicast to servers with matching
advertisements. From property (iii) in Section 3, we know that
the subscription will be only forwarded to, and stored at,
servers with relevant advertisements. Compared to
subscription broadcast, this reduces the subscription update
traffic and the amount of subscriptions stored and matched at
publication servers. The improvement results are shown in
Section 5.

4.2.2 Network locations and server status
Dynamic multicast requires each server knows about

network locations of all other servers. This is not true in CBF
or Channelization, where servers only need to know about a
fixed set of neighbors. However, we do not expect this to be a
big overhead. First, research works have designed network
location estimation techniques [15][20][21] that efficiently
estimate and summarize server location information with
reasonable accuracy. For example, in GNP [21], servers
summarize their network locations using coordinates in a
virtual d-dimensional Euclidean space. Servers only need to
broadcast their coordinates, and locally computes latencies
between remote servers based on their coordinates. For a
network of 10,000 servers, with each update message of 1000
bits and every server broadcasting every 10 minutes, the
bandwidth consumption for network location update is only
about 10,000 * 1000/600 = 17k bps. Other server status
information such as load conditions can be broadcasted in a
similar fashion. Furthermore, we expect that such per-server
level network information is of much smaller size and update
frequency than the per-client level subscription information
and is not the major management overhead.

4.3 Inter-server Communication
Reliable event delivery is an important feature of a pub-sub

service. We propose to use reliable network protocol such as
TCP for inter-server communication. In dynamic multicast
routing, a server does not have a fixed set of neighbors.
Instead, it computes the multicast tree assuming an underlying
full-mesh (IP) network, and may need to directly forward

events to any other server(s) at any time. In case of high event
traffic volume, frequently opening and closing TCP
connections is expensive and limits the maximum traffic
throughput. We address this problem in three ways:

First, TCP connections can be left open between adjacent
event transmissions between the same pair of servers for a
limited period of time, in a similar fashion as the persistent
connection optimization in HTTP/1.1. If the total number of
simultaneously open TCP connections is restricted by the
system’s limit, we may consider switching reliable UDP or
user-level TCP [14].

Second, event transmissions between the same pair of
servers can be batched together, within an acceptable latency.
In this way, connections are open only periodically and only
when there are events waiting to be sent.

Third, we may restrict which servers can directly
communicate. This is like imposing a mesh overlay topology
upon which routing paths can be built. The mesh topology
represents the tradeoff between connection management and
routing quality. This solution violates the dynamic multicast
routing invariant (c) defined in Section 3, and we leave it as a
future work.

4.4 Scaling to Very Large Systems
The current MEDYM architecture has a flat, peer-to-peer

network structure. This architecture is designed for pub-sub
service network with thousands or tens of thousands of servers.
Because each server can support a large number of individual
clients, we expect such scale is large enough for many pub-sub
applications. For a system with even larger scale, we expect
that a hierarchical architecture with multiple levels of
MEDYM would be a more efficient choice. In such system,
servers are organize into clusters, so that information update
and routing decisions can be localized. We believe that the
detailed design of multi-level MEDYM should be based on
full understanding and evaluation of current architecture and
therefore leave it as a future work.

5. EVALUATION THROUGH
SIMULATION

In this Section, we present evaluation of the three pub-sub
service network architectural designs, i.e. CBF,
Channelization, and MEDYM, using message level event-
based simulation.

5.1 Simulation Setup
5.1.1 Network topology

The network topology we used is generated by GT-ITM
random graph generator using the transit-stub model. There are
20 transit domains with an average of 5 routers in each. Each
transit router has an average of 3 stub domains attached, and
each stub domain has an average of 8 routers. Altogether there
are 2500 routers and 8938 links. The link latencies are random
numbers between 50-100ms for intra-transit domain links, 10-
40ms for transit-stub links, and 1-5ms for intra-stub domain
links. Pub-sub servers are randomly attached to the

8

routers by LAN links with 1ms latency. IP multicast routing is
simulated using a shortest path tree formed by merging IP
unicast routes from the source to each destination. We have
also simulated network topology generated by Inet [19] and
from Rocketfuel [25]. The resulting trends are very similar to
the ones from GT-ITM and are omitted due to space
constraint.

5.1.2 Workloads
A major challenge in pub-sub system evaluation is the lack

of real-world workloads. For comprehensiveness, we
experiment with four publication/subscription distributions and
study their effects on system performance. These distributions
either are prevalent in other information delivery applications
and/or have been used in pub-sub literatures:
- Uniform distribution, in which both publications and

subscriptions are uniformly randomly distributed.
- Zipf-uniform distribution, in which subscriptions follow

Zipf distribution [6] with Zipf parameter set to 1.2, and
publication is uniformly distributed, as in [29].

- Multimodal distribution, in which publication and
subscription distribution follow the same multivariate
Gaussian distribution. In this scenario, events that are
popular are also published more often. In our experiments,
five distribution peaks are randomly chosen in the event
space, and the standard deviations are set to 1/4 of the
distances between peaks.

- Regional distribution [28][22], in which the probability
that a subscription from server si matches an event from
server sj is set to:

γ),(
),(

ji
jimatch ssdistance

c
ssprob =

where c is a normalizing factor. This distribution simulates
the scenario that users have more interest in local events. In
our experiments, � is set to 1.

Since our focus is not on actual matching algorithms, for
simplicity, we use integers on [0, 100,000] as publication and
subscription values and perform only equality matching.

5.1.3 Simulation input and output
We simulate CBF as in [10], Channelization as in [22], and

MEDYM with the three routing algorithms: MST, CloseMST
and BalancedMST. In CBF, servers are organized into one
minimum spanning tree. In Channelization, we cluster events
into 50 event channels using Forgy K-means algorithm. The
configuration for CloseMST and BalancedMST are the same
as in Section 4. We assume that an event message has content
of 200 bytes, TCP/IP header of 44 bytes, and server IDs in the
destination lists takes 16 bits each.

We focus on two key parameters of a pub-sub network
scenario: the network size, i.e. number of total pub-sub
servers, and matching ratio of the servers. Matching ratio is
defined as the probability that an average event matches any
subscription on a pub-sub server. It is the product of the
average number of users per server, number of subscriptions
per user, and percentage of events each subscription matches.

In this way, it summarizes the subscription selectivity of a
pub-sub server as a whole. Low matching ratio means user
subscriptions are highly selective, and vice versa. Unless stated
otherwise, we simulate a network of 1000 pub-sub servers.

5.2 Results
We evaluate pub-sub system performance along the

following dimensions:
- Storage and management cost, measured by percentage of

global subscription information an average server has to
store and match with.

- Network efficiency in event routing: this includes total
network resource usage and network load carried by pub-
sub servers and network links.

- Destination list overhead, in terms of extra bandwidth it
consumes in event transmission.

- System reliability, measured by the percentage of events
lost in the face of pub-sub server failures.

- Scalability of pub-sub system with increasing number of
subscriptions and network size.

5.2.1 Subscription replication
First, we look at cost of subscription replication at pub-sub

servers. The three approaches maintain remote subscription
information in different ways. Both CBF and MEDYM are
able to benefit from subscription aggregation techniques to
summarize subscriptions from the same direction or server, but
at different levels. In Channelization, servers maintain event
space partition result rather than subscription content. The
amount of information depends on the granularity of specific
partitioning method.

Therefore, it is difficult to directly compare the size of
storage used for subscription replication in different schemes.
Rather, we measure the percentage of global subscriptions that
each pub-sub server needs to know about, or equivalently,
percentage of servers at which a subscription is replicated on
average. Higher subscription replication ratio indicates not
only higher storage cost, but also more network traffic and
management overhead for subscription update, and the
dependence on synchronous, correct operation of more servers.

Without using advertisements, all three approaches require
all subscription information be replicated on all servers.
Therefore, we focus on the effectiveness of using
advertisements to reduce subscription replication. In MEDYM
and Channelization, because remote subscriptions are only
used in matching with local publications, servers only need to
store subscriptions that overlap with their advertisements. A
CBF server, in contrast, may have to store subscriptions that
are irrelevant to its publication, if it is on a CBF tree path from
the subscription server to any publication server with matching
advertisements.

In simulation, we randomly choose a subset of servers to
be publication servers. Each publication server randomly
selects certain events to advertise on. The three figures in
Figure 6 show results for having 1%, 10% or 100% of servers
as publication servers. In each figure, x-axis shows average

9

 CBF 1% matching ratio CBF 10% matching ratio CBF 50% matching ratio CBF 100% matching ratio Channelization/MEDYM

10% publishing servers

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%

Average advertisement range

S
ub

sc
rip

tio
n

re
pl

ic
at

io
n

ra
tio

100% publishing servers

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Average advertisement range

S
ub

sc
rip

tio
n

re
pl

ic
at

io
n

ra
tio

1% publishing servrs

0%

10%

20%

30%

40%

50%

0% 20% 40% 60% 80% 100%

Average advertisement range

S
bs

cr
ip

tio
n

re
pl

ic
at

io
n

ra
tio

Figure 6. Subscription replication comparison, with uniform publication and subscription distribution.

NRU for Regional d istr ibution

0

2

4

6

8

10

12

14

16

1% 10% 50% 100%

M atching ra tio

NRU for Uniform dis tribution

0

2

4

6

8

10

12

14

1% 10% 50% 100%
Match ing ra tio

NRU for Multimodal d istr ibution

0

2

4

6

8

10

12

14

1% 10% 50% 100%

M atching ratio

NRU for Zipf d istr ibution

0

4

8

12

16

20

24

1% 10% 50% 100%
M atching ratio

 CB F Channel i zation M EDY M _M ST M EDY M _CloseM ST M EDY M _B alancedM ST Unicaast Broadcast

Figure 7. NRU comparison, with various publication and subscription distributions.

Table 2. Server access bandwidth consumption for delivery of one event, with uniform publication and subscription distribution.

Node stress Link Stress Matching
ratio

Schemes
AvgNS MaxNS MaxNS/

AvgNS
#Servers
traversed

AvgLS MaxLS MaxLS/
AvgLS

#Nonzero-
stress links

CBF 251 7935 31.6 65 0.05 1.61 30.9 2686
Channelization 1098 5111 4.65 286 0.26 3.48 13.4 3747

MST 39 136 3.4 10 0.02 0.25 11.7 3444
CloseMST 39 136 3.5 10 0.02 0.27 12.1 3452

1%
MEDYM

BalancedMST 39 60 1.6 10 0.03 0.20 8.1 3464
CBF 1958 15759 14.9 296 0.21 2.65 12.5 2686

Channelization 3766 21923 5.8 962 0.55 6.96 12.6 2971
MST 418 2237 5.3 100 0.13 1.48 11.3 3717

CloseMST 400 1733 4.3 100 0.14 1.34 9.4 3757

10%
MEDYM

BalancedMST 399 660 1.7 100 0.15 1.21 8.2 3801
CBF 3836 23040 6.0 1000 0.66 6.96 10.5 2485

Channelization 3836 23040 6.0 1000 0.66 6.96 10.5 2485
MST 4384 26328 6.0 1000 0.66 6.96 10.5 2485

CloseMST 4010 20192 5.0 1000 0.54 5.81 10.7 3672

100%
MEDYM

BalancedMST 4381 14461 3.3 1000 0.64 5.71 8.9 4094

10

advertisement range, i.e. the average percentage of events a
publication server advertises, and y-axis shows subscription
replication ratio, i.e. the percentage of global subscriptions an
average server stores. For Channelization and MEDYM
approaches, subscription replication ratio is always equal to
the product of the percentage of publication servers and the
servers’ advertisement range. For CBF, the result is sensitive
to subscription selectivity. Curves in each figure show that
with higher matching ratio, a server subscribes to publications
from more servers, and its subscriptions have to be stored at
more locations. The fraction of extra replication in CBF is
most prominent with high publication selectivity, i.e. with
small number of publication servers and small advertisement
range per server. In such scenarios, most of the subscription
replicas are stored on intermediate servers rather than
publication servers. These are the situations when
advertisement is most needed, but its effectiveness most
limited in CBF.

5.2.2 Network efficiency
Next, we evaluate network efficiency per event delivery.

The results are average of simulating 10,000 event deliveries.

Normalized Resource Usage (NRU)
We measure the total network resource usage by the

summation of latency of network links traversed in event
routing. We define NRU as the ratio of the total network
resource usage of an event delivery scheme over that of the
ideal multicast, in which there exists an IP multicast group for
delivery of each event.

The results are presented in Figure 7. For comparison, we
also simulate two simple event delivery solutions, unicast from
publication server to all servers with matching subscriptions,
and broadcast to all servers in the system.

Overall, Figure 7 shows that CBF and MEDYM_MST
achieve low network resource usage under all circumstances.
The approximate MEDYM routing algorithms,
MEDYM_CloseMST and MEDYM_BalancedMST, perform
less well, as they trade off routing quality for computation
efficiency and load balancing. However, when matching ratio
is low, even the approximate MEDYM algorithms outperform
CBF and Channelization. Results for Channelization have
similar trends as broadcast, which indicates that it is not very
effective in preventing event from being sent to irrelevant
locations. Channelization is also sensitive to data distributions:
it performs best with the Multimodal distribution, in which the
publication and subscription have consistent distributions with
strong locality property; it is less effective with the Uniform
distribution, which offers not much clustering opportunity; it
performs worst with the Zipf and Regional distribution. This is
because with Zipf distribution, most events only match a small
number of subscriptions, and therefore the extraneous network
traffic ratio is especially high; in Regional distribution,
Channelization is especially penalized for sending irrelevant
events to far-away servers, while schemes with content-based
matching benefit from filtering these events off. When the

average matching ratio is high, performance of all the schemes
converge to broadcast.

Results from Figure 7 confirm our expectation that per-
event content-based matching is critical in achieving high
routing accuracy. It also confirms that multicast-like routing
efficiency is highly desirable. Unicasting or broadcasting
events to individual subscription clients would perform even
worse than the inter-server unicast and broadcast schemes
examined here; thus, centralized architecture is not expected to
be efficient or scalable for a large pub-sub system.

Network load: node stress and link stress
We evaluate network load of a pub-sub system from two

aspects: load on pub-sub servers, i.e. node stress, and load on
network links, i.e. link stress. We measure node stress at a
node, i.e. a pub-sub server, by the network access bandwidth
consumption at that server in event delivery. Note that except
for the destination list overhead in MEDYM (which is
included in these measurements), the bandwidth consumption
are proportional to number of events a server receives.
Therefore, the bandwidth results also indicate the overall
routing load on pub-sub servers. We measure link stress by
number of messages carried by network links in event
delivery. The results are shown in Table 2. Due to space
constraint, only the results for the uniform distribution are
presented in the rest of the paper, as they are the clearest to
understand. Results with other data distributions have the same
trend as those of uniform distribution and the differences
between them are similar to the analysis above.

Network access bandwidth is a precious resource that often
directly affects the deployment cost of a pub-sub system.
Table 2 shows that MEDYM schemes almost always has lower
node stress than CBF and Channelization. The advantage is
especially significant when matching ratio is low: to deliver an
event with 1% matching ratio, an average CBF server
consumes 6.4 times bandwidth than a MEDYM server, and an
average Channelization server consumes about 28 times than a
MEDYM server. To explain this, we also present average
number of servers an event traverses in Table 2. The more
servers an event traverses, the higher bandwidth each server
spends for routing an average event. Channelization’s ability
to filter off irrelevant events becomes ineffective quite early:
an event that matches only 10% servers is sent to more than
96% servers. CBF is better than Channelization due to its
content-based matching ability, but its extraneous bandwidth
consumption is still quite high with high subscription
selectivity. As in NRU, differences between schemes
disappear with higher matching ratio, as all routing methods
converge to broadcast. However, MEDYM consumes more
bandwidth than the other approaches when matching ratio is
100%. This is due to the overhead of destination lists in
MEDYM and will be discussed In more detail later.
Interestingly, the higher bandwidth needs due to destination
lists is clearly more than outweighed by other considerations in
realistic scenarios.

Results for link stress are similar to that of node stress. The
number of nonzero-stress network links, i.e. number of

11

network links that carry event routing traffic, indicates the
ability of a routing scheme in utilizing underlying network
resources. In CBF, events are only routed through links in the
CBF tree. Idle resources on off-tree links may not be used even
if these in-tree links become congested. Channelization and
MEDYM benefit form higher routing diversity than CBF.
Again, BalancedMST is the best in balancing traffic load over
network links.

Load balancing
Load balancing is an important feature to achieve high

system throughput. Table 2 shows that CBF server load is
highly imbalanced. As analyzed in Section 2, servers close to
the center of the network carry much higher event traffic than
others. For example, in a network of 1000 servers and 1%
matching ratio, the server at the center of the CBF tree routes
for 1-(1/2)m = 99.9% events, while a server at the edge of the
tree only receives the 1% events that it has interest in.
Channelization provides more load balancing opportunity as it
distributes event traffic onto different trees. MEDYM schemes
generally have well balanced server load due to the high
routing diversity. BalancedMST is shown to be especially
effective in load balancing. With matching ratio of 1%, the
most heavily loaded server in BalancedMST consumes
bandwidth that is only 1% of that in CBF and Channelization.

5.2.3 Destination list overhead
Let us examine destination list overhead more closely,

since it was an area of potential concern for MEDYM. Figure
8 shows the average destination list size in the above
experiments. The curves confirm our expectation that with a
random multicast tree topology, the average destination list
size is of O(logm), where m is the number of matching servers.
Figure 8 also shows that different versions of MEDYM have
different destination list size. This is because the routing
algorithms generate multicast trees with different shapes. The
MST algorithm generates the most skinny tree, while the
CloseMST generates a flatter one, as it considers choosing
close servers to be next-hop servers in a more greedy fashion.
BalancedMST is largely similar to CloseMST, but it
sometimes detours event messages through far away servers
for load balancing. The effect is especially apparent with high
matching ratio, when servers are likely to be overloaded.

The overhead of destination list adds to bandwidth
consumption in MEDYM. Exactly when does MEDYM
consume more bandwidth than CBF and Channelization in
event delivery? To answer this question, we plot average
server bandwidth consumption versus matching ratio in Figure
9. It shows that MEDYM consumes more bandwidth than
CBF_MST when matching ratio is higher than 75% and
surpasses Channelization when matching ratio is higher than
90%. CBF_CloseMST has lowest bandwidth overhead and
surpasses CBF only when matching ratio is higher than 95%.
These numbers are dependent on the size of event message
payload, and the shape of multicast trees generated in each
scheme. In all, destination list overhead is lower for pub-sub
systems with low matching ratio and large event messages.

0

5

10

15

20

25

0% 20% 40% 60% 80% 100%
Matching ratio

A
ve

ra
ge

 d
es

tin
at

io
n

lis
t s

iz
e

MST

CloMST

BLMST

Figure 8. Average destination list size in MEDYM.

Average server access bandwidth (bits)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0% 20% 40% 60% 80% 100%
Matching ratio

CBF
Channelization

MST

CloseMST

BalancedMST

Figure 9. Average server access bandwidth consumption.

0%

20%

40%

60%

80%

100%

0% 5% 10% 15% 20% 25% 30%

Percentage of failed servers

P
er

ce
nt

ag
e

of
 e

ve
nt

s
lo

st

 CBF 1% matching ratio CBF 10% matching ratio
 CBF 50% matching ratio CBF 100% matching ratio
 MEDYM with distributed dynamic multicast

Figure 10. Pub-sub service reliability in the face of server failures.

Interestingly, the point at which MEDYM destination list
overhead hurts MEDYM efficiency relative to other systems is
close to a point at which it may as well switch to broadcast.
5.2.4 Reliability

Reliability is an important yet challenging issue in
distributed pub-sub systems. We compare system reliability in
terms of percentage of events lost in the face of server failures.

12

1

10

100

1000

10000

10 100 1000 10000

Number of servers (in log scale)

A
ve

rg
e

se
rv

er
 a

cc
es

s
ba

nd
w

id
th

 (
bi

ts
)

(in
 lo

g
sc

al
e)

1

10

100

1000

10000

100000

0 500 1000 1500 2000

Number of servers

M
ax

im
um

 s
er

ve
r

ac
ce

ss
 b

an
dw

id
th

(in

 lo
g

sc
al

e)

0

5

10

15

20

25

0 500 1000 1500 2000

Number of servers

A
ve

ra
ge

 n
um

be
r

of
 h

op
s

pe
r

ev
en

t
pa

th

 CBF Channelization MEDYM_MST MEDYME_CloseMST MEDYM_BalancedMST

Figure 11. Scalability with increasing network size and fixed number of total subscriptions.

Because failure recovery mechanisms have not been explicitly
stated in CBF or Channelization approach, we focus on the
static resilience of the approaches, i.e. how many events are
lost in the face of server failures, before system has recovered.
In simulation, we assume that a certain fraction of servers are
down, and examine what fraction of the events is lost due to
the server failures. In CBF, Channelization, and MEDYM with
source-based dynamic multicast, the failed servers silently
drop the events they receive. For MEDYM with distributed
dynamic multicast, the server that intends to forward the event
to a failed server detects the failure (because of the reliable
inter-server communication) and rerun the routing algorithm to
route events around failed servers. Figure 10 shows the results
for CBF and MEDYM. Results for Channelization is very
similar to CBF and not shown for clarity. Results for the three
MEDYM routing algorithms are also very similar and so only
one curve is drawn. In MEDYM, an event arrives at all
running servers with subscriptions. In CBF, when a server
goes down, the CBF tree becomes disconnected and the events
cannot reach the other side of the tree. As shown in Figure 10,
in CBF, percentage of lost events increase with number of
failed servers quickly. More than half of events are lost with
10% failed servers. It also increases with higher matching
ratios, when an average event is routed through more servers
and has a higher probability of being dropped.
Note that we only look at the static resilience case here. We
show that MEDYM servers can quickly adapt routing decision
on environment changes, while the other approaches often
have to wait for a system-wide action to be taken.

5.2.5 Scalability
We study how a pub-sub service network scales with two

factors: total number of subscriptions and total number of
servers in the network. Because we focus on per event delivery
efficiency, the total number of publications is not considered.

Three scaling scenarios are listed in Table 3. The analysis
above focused on the first scenario. For the second scenario,
most of the metrics stay constant because of the constant
matching ratio. The results can be inferred from the results
above with the same matching ratio and therefore are not

Table 3. Pub-sub service network scaling scenarios.

Scenario Total #sub Total #servers #sub/server Matching ratio
A � − � �
B � � − −
C − � − �

shown here. Next, we examine the third scenario. This is the
case that shows how increasing number of servers in a pub-sub
service network cooperate and share the load of event delivery.

Figure 11 shows scalability results for networks with 100
to 2,000 servers. The first figure plots the average server
access bandwidth, as an indication of routing load on each
server, in log-log scale. Curves for MEDYM schemes are
straight-line, indicating that server load are inversely
proportional to the network size, which is expected in a well
scalable system. However, this is not true for CBF and
Channelization. The curve for CBF can be regressed to
y=14732x-0.5893 with R-square value of 0.9934. The curve for
Channelization only starts to decrease with network of more
than 500 servers, beyond which matching ratio is low enough
for the clustering algorithm in Channelization to be effective.
These results indicate that in CBF and Channelization,
increasing network size introduces extra routing overhead and
the designs do not scale very well in this scenario.

The second figure in Figure 11 shows that the routing load
on the most heavily loaded server in CBF and Channelization
cannot be relieved with the presence of more servers. In
MEDYM, servers only route for events they are interested, and
the number of such events decreases with the matching ratio,
even for the most heavily loaded server. Especially, the curve
for BalanedMST can be regressed to y = 44011x-0.9131 with R-
square value of 0.9914, indicating well balanced sharing of
routing load among servers.

Finally, the third figure in Figure 11 shows the average
event path length in terms of number of overlay hops. CBF
grows fastest because this number is always equal to the
diameter of the CBF tree, which is approximately logarithmic
to the network size. Curve for Channelization stays largely flat
with more than 500 servers, when the clustering starts to be
effective. However, even lower matching ratio cannot further

13

reduce this number, because the average size of the multicast
trees is limited by the fixed number of channels available.
MEDYM curves stay flat because the size of the dynamic
multicast trees stay constant, as the average number of
subscriptions per server is constant.

These results show that MEDYM scales with pub-sub
network size more gracefully than the other approaches.

6. IMPLEMANTATION RESULTS
To validate the MEDYM architectural design and test its

performance on real network, we deployed a prototype of
MEDYM, called Eos, on PlanetLab test bed. We run Eos
servers on 56 PlanetLab sites, 44 in United States and 12
abroad. We used two different ways for input of server
network location information: pair-wise ping and GNP [21]
with 8 dimension Euclidean space. Results such as bandwidth
consumption and destination list overhead are consistent with
the simulation results above and are not shown here. Figure 12
shows the Relative Delay Penalty (RDP) for event paths in Eos
using MST and CloseMST routing algorithm. RDP is defined
as the ratio of end-to-end event path latency in Eos system to
the IP latency (measured by pair-wise ping) between the
publishing and subscription servers. Figure 12 shows that pair-
wise ping provides more accurate server location information
than GNP. We found that the error from GNP mainly comes
from the scenarios where latencies between servers are
inconsistent with their network locations: for example, servers
that are close in geographic locations often observe similar
latencies to the landmark nodes and therefore obtain similar
coordinates. However, the real IP latency between them can be
quite high, probably due to a congested network link or
specific ISP configuration. This can also be seen from Figure
13, which shows that all event paths with high RDP have small
IP latencies. Figure 12 and Figure 13 also show that about 10%
event paths have RDP less than 1, which indicates that overlay
forwarding can take less time than IP forwarding, especially
when IP latency between servers are high.

7. RELATED WORK
Many distributed pub-sub system designs adopt the

content-based forwarding (CBF) approach. In JEDI [13], a
hierarchical event routing scheme is proposed, but it was found
to perform inferior to the peer-to-peer topology in [9]. In
Gryphon [3], a link-matching algorithm is designed to partially
match the event with an annotated network topology data
structure to determine the directions to forward the event to.
[11] designed detailed matching algorithm for content-based
forwarding. [8] proposes to build multiple small CBF networks
for a pub-sub system, so that event routing in each network can
be implemented with lower cost. However, because event
routing is still by content-based forwarding, it inherits the
tradeoffs of CBF.

The problem of delivering an event message to a group of
distributed users is similar to the traditional multicast problem.
Application-layer multicast [4][12] is expected to scale better

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15
RDP

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f e
ve

nt
 p

at
hs

Ping_MST
Ping_CloseMST
GNP_MST
GNP_CloseMST

Figure 12. Cumulative Distribution Function for Relative Delay
Penalty of event delivery paths on PlanetLab.

0

5

10

15

20

25

30

35

40

45

50

0 500 1000 1500

IP latency (ms)

R
D

P

Figure 13. RDP vs. IP latency in GNP_CloseMST experiment.

Each point denotes the existence of an event path with a given IP
latency and RDP.

than IP multicast mainly because an end host only routes
messages for groups that it participates. This is similar to the
idea in MEDYM that servers only route for interesting events.
In comparison, dynamic multicast is completely stateless so
that no session information needs to be established or
managed. Explicit Multicast [5] is another technique of
stateless multicast. Dynamic multicast is different from
Explicit Multicast mainly in three ways: first, dynamic
multicast only route events through destination servers, and the
destination list overhead is a function of the number of such
servers; Explicit Multicast routes messages through many
intermediate IP routers and therefore cannot scale with large
destination sets; Second, dynamic multicast paths are
dynamically computed for each event message received.
Finally, dynamic multicast may be implemented in a
distributed way that is highly flexible and resilient.

8. CONCLUSION AND FUTURE WORK
We have examined architectural approaches for distributed,

content-based publish-subscribe service networks, and have
proposed a new approach called MEDYM (Match Early with
DYnamic Multicast). We compared MEDYM with two major
existing design approaches: content-based forwarding

14

(CBF) and Channelization. MEDYM shares the advantage
with the Content-based Forwarding approach in that
destination servers for a message are determined accurately
based on content-based matching against subscriptions. It
shares the advantage with Channelization in that after event
content is matched once, subsequent event forwarding is
through simple, fast address-based routing rather than
expensive content-based routing. In this way, MEDYM is a
design approach following the end-to-end argument [26],
extracting the complex content-based matching functionality
out of the routing network, while CBF is more of an active
network [27] approach, developing network intelligence.

Unlike the existing approaches, MEDYM does not assume
static network topologies for event delivery. Instead, it uses
dynamic multicast for event routing, which matches the highly
diversified communication pattern in pub-sub system with
high routing diversity. Extensive simulation shows that
dynamic multicast achieves high network efficiency and low
operation cost as well as low management overhead. It allows
for flexible routing optimization and distributed routing
decision-making that helps to improve system reliability. We
examined potential overhead introduced in MEDYM, mainly
the destination list size and real-time routing computation, and
found that they are well manageable and more than over-
weighted by the benefits MEDYM brings.

Compared to the existing approaches, advantage of
MEDYM is most prominent with large-scale pub-sub service
network with high user interest selectivity. We observe that
this is exactly the scenario where content-based pub-sub is
most attractive, and intelligent and efficient event routing is
most needed. Therefore, we believe that MEDYM is a
promising architectural design, with the dynamic multicast
scheme being potentially applicable in contexts other than pub-
sub as well. We plan to further build out, scale and test the real
system, and use it to deploy publicly available pub-sub
services and hence generate real workloads (a key limitation
going forward in pub-sub research).

References:
[1] http://mobile.yahoo.com/wireless/alert
[2] http://www.planet-lab.org
[3] M. K. Aguilera, R. E. Strom, D. C. Sturman,

M.Astley, and T. D. Chandra, “Matching events in a
content-based subscription system,” In Eighteenth
ACM Symposium on Principles of Distributed
Computing, 1999.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy.
“Scalable Application Layer Multicast” . In Proc. of
ACM SIGCOMM, 2002.

[5] R. Boivie et al., “Explicit Multicast (Xcast) Basic
Specification”, draft-ooms-xcast-basic-spec-03.txt

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S.
Shenker, “Web caching and zipf-like distributions:
Evidence and implications,” In INFOCOM, 1999.

[7] L. F. Cabrera, M. B. Jones and M. Theimer, “Herald:
Achieving a Global Event Notification Service,” In
Proc. of the Eighth Workshop on Hot Topics in
Operating Systems (HotOS-VIII), May 2001.

[8] F. Cao, J.P.Singh, “Efficient event routing in
content-based publish-subscribe service network”. In
Proc. IEEE INFOCOM 2004.

[9] A. Carzaniga, “Architectures for an Event
Notification Service Scalable to Wide-area
Networks”. PhD Thesis. 1998.

[10] A. Carzaniga, D. Rosenblum, and A. Wolf, “Design
and evaluation of a wide-area event notification
service,” In ACM Trans. on Comp. Sys., 2001.

[11] A. Carzaniga, A.L. Wolf, “Forwarding in a Content-
Based Network". In Proceedings of ACM
SIGCOMM 2003.

[12] Y. H. Chu, S. G. Rao and H. Zhang, “A case for end
system multicast,” in ACM SIGMETRICS, 2000.

[13] G. Cugola, E. Di Nitto, A. Fuggetta, “The JEDI
Event-based Infrastructure and its Application to the
Development of the OPSS WFMS”, in Proc. Of
IEEE Transactions on Software Engineering, 2001.

[14] D. ELY, S. SAVAGE et al. “ Alpine: A user-level
infrastructure for network protocol development.” In
Proc. 3rd USITS 2001.

[15] P. Francis, S. Jamin, et al, “ IDMaps: a global internet
host distance estimation service”. In Proc.
IEEE/ACM Trans. Netw. 9(5): 525-540, 2001

[16] Z. Ge, M. Adler, J. Kurose, D. Towsley and Steve
Zabele, “Channelization problem in large scale data
dissemination,” Technical report, University of
Massachusetts at Amherst, 2001.

[17] R.Gummadi, S.Gribble et al. “The Impact of DHT
Routing Geometry on Resilience and Proximity” , In
ACM SIGCOMM 2003.

[18] E. N. Hanson, C. Carnes, L. Huang, M. Konyala,
“Filtering Algorithms and Implementations for Very
Fast Publish/Subscribe Systems,” In Proc. of ACM
SIGMOD, pages 115-126, 2001.

[19] C. Jin, Q. Chen, and S. Jamin, "Inet: Internet
Topology Generator," Tech. Rep. CSE-TR-433-00,
EECS Department, University of Michigan, 2000

[20] A. Nakao, L. Peterson, “A routing underlay for
overlay networks”, In Proc. ACM SIGCOMM 2003.

[21] T. S. E. Ng and H. Zhang. “Predicting Internet
Network Distance with Coordinates-Based
Approaches.” In Proc. IEEE INFOCOM 2002.

[22] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang,
“Clustering Algorithms for content-based
publication-subscription systems,” In ICDCS 2002.

[23] A. Riabov, Z. Liu, J. Wolf, P. Yu and L. Zhang,
“New Algorithms for content-based publication-
subscription systems”, In ICDCS 2003.

[24] R. Shah, R. Jain, F. Anjum, “Efficient Dissemination
of Personalized Information Using Content-Based
Multicast,” In IEEE Infocom, 2002.

[25] N. Spring, R. Mahajan, et al, “Measuring ISP
Topologies with Rocketfuel” . In SIGCOMM 2002.

[26] J. Saltzer, D. Reed, and D. Clark. “End-to-end
arguments in system design”. In ACM Trans.
Computer System, 2(4), pp. 277--88, 1984.

[27] D. Tennenhouse, J. Smith, et al. “A Survey of Active
Network Research”. In IEEE Communications
Magazine, Vol. 35, No. 1, pp80-86. January 1997

[28] T. Wong, R. Katz, and S. McCanne. “An evaluation
of preference clustering in largescale multicast
applications,” In Proc. IEEE INFOCOM 2000.

[29] T. Yan and H. Garcia-Molina. “SIFT---A tool for
wide-area information dissemination”. In Proc
USENIX TECH CONF. 1995.

