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Abstract  
Designing a distributed architecture for content-based 

publish-subscribe service networks is challenging for two 
reasons: first, communication in such system is guided by the 
content of publications and subscriptions rather than addresses 
or network locations; second, while a publication often 
matches subscriptions from multiple locations, existing group-
based multicast techniques such as IP multicast or application-
layer multicast are not readily applicable due to the highly 
diversified patterns of interests.  We propose an architectural 
approach that combines two orthogonal aspects: Match Early, 
and DYnamic Multicast. We call this a MEDYM architecture, 
and we compare it with two major existing design approaches: 
Content-based Forwarding and Channelization. In MEDYM, 
event publications are matched as close as possible to 
publishers, to obtain the locations of servers that have 
matching subscriptions; then, a multicast route to the matching 
servers is computed dynamically, to best suit the 
heterogeneous event traffic patterns. We present methods to 
efficiently implement the dynamic multicast routing. We 
evaluate the MEDYM architecture using detailed simulations 
as well as a prototype deployment on the PlanetLab test bed.  
Experimental results show that the MEDYM approach 
significantly improves storage, computation and network 
efficiency compared to existing approaches, and is resilient, 
scalable, and extensible. 

1. INTRODUCTION  
Publish-subscribe (pub-sub for short) is an important 

paradigm for asynchronous communication between entities in 
a distributed network. In the pub-sub paradigm, subscribers 
specify their interests as conditions on content of events, and 
will be notified afterwards of any event generated by a 
publisher that matches these conditions. Such content-based 
information delivery is of great value for many distributed 
applications, such as enterprise activity monitoring, mobile 
alerting [1], and application integration [13].  

Pub-sub systems can be characterized into three broad 
types based on the expressiveness of the subscriptions they 
support. In channel-based schemes, events are classified and 
labeled by publisher as belonging to one of a predefined set of 
channels, to which users may subscribe to. In subject-based or 
topic-based systems, subscriptions are restricted to fairly 
narrow conditions on a single dedicated field of an event, 
usually called the subject or topic of the event. For example, a 
finance alert system may use stock ticker as subject of stock 
price movement events, and a user may subscribe to events 

with subject “ IBM” . Content-based pub-sub is a more general 
and powerful paradigm, in which subscribers may specify 
filtering criteria along multiple dimensions of event content 
and using complex conditions. A content-based stock alert 
system, for example, may support subscriptions like 
“(ticker=IBM) AND (price>100 OR volume>8 million)” . 
Therefore, channel-based and subject-based pub-sub can be 
seen as special cases of content-based pub-sub. 

In this paper, we study the question of architecture design 
for scalable distributed content-based pub-sub systems that can 
handle large number of content-based subscriptions and high 
volume of event publications. At the center of the architecture 
design is the question of how to efficiently deliver events to all 
subscribers whose interests they match.  

Content-based event delivery is challenging in part because 
it cannot be directly supported by address-based Internet 
routing primitives. An event may match the interests of 
multiple subscribers, but existing group-based multicast 
techniques such as IP multicast or application-layer multicast 
[12][4] cannot be directly applied to event routing, because 
content-based subscriptions are highly diversified: Different 
events may satisfy the interests of widely varying groups of 
users. In the worst case, mapping all possible event traffic 
patterns into multicast groups may require a number of groups 
exponential in the network size (i.e. 2n where n is the number 
of users). 

The conceptually simplest architecture for a pub-sub 
system is a centralized one. There is a single pub-sub “server” 
that consists of one or multiple machines on the same local 
area network (LAN). Clients submit their subscriptions and 
publications to the server, which matches published events 
with all subscriptions and sends notifications to clients with 
matching subscriptions. This architecture has several 
drawbacks: first, unicasting notifications for an event from the 
server to all interested clients (which may also be far away) is 
not network efficient. Second, many events that match no 
subscription in the system may be sent to the server across the 
network, as there is no way of knowing whether anyone is 
interested in an event before it is matched. It may also be 
difficult or uneconomical to find a single location on the 
Internet with high enough access bandwidth to support the 
heavy incoming and outgoing traffic with large numbers of 
publisher and subscriber clients. Finally, the system has a 
single point of failure: no communication is possible i f the 
pub-sub server location goes down. 
To achieve higher scalability and reliability, like other 
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Figure 1. Example of a pub-sub service network. There are 8 
servers and each server has 2 subscriptions. Event values range 

from 0 to 9. 

previous research [2][7][8][9][11][13] we focus on architecture 
design for a distributed pub-sub service network, as shown in 
Figure 1. A set of pub-sub servers controlled by the service 
network are widely distributed over the Internet; clients access 
the pub-sub service, either to publish events or to register 
subscriptions, through appropriate servers, such as those that 
are close to them or in the same administrative domains. Thus, 
pub-sub servers serve as publication/subscription proxies on 
behalf of clients, and we can view the problem as one of 
getting events from servers where they are published to the 
servers that subscribe – as proxies – to the events. We call 
these publication servers and subscriber servers in the rest of 
this paper. Note that the same server may serve as a 
publication server and as a subscription server. 
Communication between pub-sub servers and their associated 
clients is a separate matter that is now localized and is not 
discussed in this paper.  

In a distributed pub-sub service network, servers cooperate 
to match events with subscriptions and route events to 
interested subscription servers. The matching and routing 
problems are interrelated: event routing decisions are based on 
matching results, and underlying routing capabilities can affect 
where and how matching is performed. In this paper, we use 
the term architecture to refer to manner in which matching and 
routing are distributed and coordinated in the system. We 
discuss how existing distributed pub-sub proposals approach 
these problems, and propose a new architecture. We evaluate 
architecture approaches along three dimensions: 
1. Performance and resource usage efficiency. Resource 

consumption in pub-sub systems usually includes 
subscription storage, matching/routing computation, 
network communication load and management overhead. 
It is also important that resource usage be well enough 
balanced so that total system throughput is not 
compromised.  

2. Service reliability. In a large-scale distributed system, 
server and network failures and condition changes are 
considered normal rather than extreme scenarios. Static 
resilience [17], adaptation to changing environments, and 
failure recovery are important issues. 

3. Scalability and extensibility. Given the fast growing 
nature of information volume and needs, the pub-sub 
architecture should scale gracefully to large user 
population and heavy workload. It should also be 
extensible to more sophisticated forms of subscriptions, 
such as composite subscriptions that depend on 

occurrence of multiple events published from potentially 
different sources in the network, and new data types and 
matching functionalities.   

The rest of the paper is organized as follows: In the next 
section, we review two major existing architecture designs for 
content-based pub-sub service networks and examine their 
tradeoffs. Based on this analysis, we propose a new 
architectural approach called Match Early with Dynamic 
Multicast (MEDYM), in Section 3. Section 4 discusses the 
MEDYM approach and some efficient implementation 
mechanisms in greater depth. In Section 5, we evaluate the 
performance of MEDYEM and the other two major existing 
approaches using detailed simulations. Since the simulation 
results endorse the potential of the approach, we plan to 
implement and deploy a pub-sub service network using the 
MEDYM approach, to gain experience with it on real systems 
and workloads. Section 6 describes our experience so far with 
implementing a prototype MEDYM system on the PlanetLab 
distributed testbed [2]. Section 7 discusses related work, and 
Section 8 concludes the paper and discusses directions for 
future work. 

2. EXISTING APPROACHS  
Existing content-based pub-sub service network design can 

be largely categorized into two classes, which we call the 
Content-based Forwarding (CBF) approach [3][9][10][11][13] 
and the Channelization approach [22][23][28].  

2.1 Content-based Forwarding (CBF) 
We use the Siena system [10] as a representative for CBF 

approach. As shown in Figure 2, servers organize into an 
overlay network with acyclic (tree) peer-to-peer topology1,2, 
which we call a CBF tree. Servers broadcast their 
subscriptions on the tree, and each server records the sum of 
subscriptions from each neighbor’s direction in its forwarding 
table. Advertisement is an optional technique to constrain 
subscription flooding: servers may first broadcast 
advertisements that describe the possible content of their future 
publications, so that subscriptions only need to be sent toward 
servers with matching advertisements, i.e. servers that have the 
potential to publish events that match these subscriptions. We 
will discuss effectiveness of advertisements in more detail in 
Section 5.  

When a CBF server receives an event, it matches the event 
with subscriptions in its forwarding table, and forwards the 
event to neighbors whose directions have matching 
subscriptions. Note that an event does not need to be matched 
against individual subscriptions. Instead, subscriptions in the 
same forwarding table entry can be aggregated and the 

                                                        
1 [] proposed that Siena can work with a cyclic network topology by first 

extracting a routing tree rooted at the origin of the message. However, event 
routing is stil l along a pre-configured acyclic topology and therefore is not 
further discussed in their papers.   

2 Another acyclic topology, i.e. hierarchical topology, was shown to 
perform worse than the peer-to-peer topology and therefore is not considered 
in this paper. 
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Figure 2. Example CBF network structure and event delivery. 
Forwarding tables are shown on the right. 
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Figure 3. Example Channelization network structure and event 
delivery. Event space is clustered into three channels using Forgy 

K-means algorithm. 

matching process only need to determine whether a direction 
matches or not as a whole. Siena has proposed exploiting 
covering and merging relationships among subscriptions from 
multiple servers as they are combined and forwarded in the 
method, to improve storage and matching efficiency. However, 
this has not been evaluated and it is an open question as to how 
efficient and effective the rules are, especially with high 
dimension event space.  

In CBF, events are only forwarded along directions that 
lead to matching subscriptions. In this way, CBF achieves 
network efficiency elegantly. However, its operating and 
maintenance cost can be high for several reasons. 

First, content-based matching of an event with 
subscriptions in the forwarding table is an expensive operation. 
It includes parsing content of various fields of the event 
message and performing complex tests, such as full-text 
search, range queries or Boolean expressions, against large 
number of subscriptions. The complexity of matching is 
determined by the nature of the application, usually being 
more expensive as more flexible and powerful subscriptions 
are supported. Furthermore, in CBF, many of the matching 
operations may be redundant. In Figure 2, event 2 is repeatedly 
matched with subscriptions from server H at server C, E, F, G 
before reaching H. These matching operations result in high 
computation load on pub-sub servers.  

Second, event routing in CBF is limited by the use of a 
single tree topology. An event is often routed through 
intermediate servers that have no subscriptions interested in 
the event, such as server F and G in Figure 2, thus introducing 

unnecessary computation and network traffic load on such 
servers.  

Third, the CBF tree topology has high maintenance cost. 
Because the content and organization of forwarding tables are 
tightly coupled with the tree topology, change of servers’ 
relative positions in the topology requires adjustment of 
subscription content in forwarding tables. This can be difficult 
because the servers may not know exactly which server each 
subscription is from, and may have to consult remote servers, 
resulting in high volume of network traffic.  

Finally, the topology leads to load imbalances. Servers and 
network links located close to the center of the CBF tree are 
likely to route for much more (irrelevant) events than their 
peripheral counterparts and become system bottlenecks.   

2.2 Channelization 
We use [22] as a representative for the Channelization 

approach. As shown in Figure 3, the multi-dimensional event 
space is partitioned into a limited number of event channels 
offline and the partitioning result is replicated on all servers. 
For each event channel, a multicast tree is built that spans all 
servers carrying subscriptions that could match any event in 
that channel. A publication server uses the event space 
partition to determine which channel the event belongs to. The 
event message also carries the channelID of the event, so that 
its content does not need to be matched again at subsequent 
servers in the multicast tree. Event forwarding is thus simple 
and fast.  

Because the available number of multicast channels is 
often much less than the 2n possible event traffic patterns, 
servers in the same multicast tree may have substantially non-
overlapping interests, and hence a server may receive many 
uniteresting events. In Figure 3, event 2 is sent to five servers 
while only two of them have matching subscriptions. 
Especially, server B is neither a matching server itself, nor 
does it lead to any server with matching subscriptions.  

To reduce extraneous event traffic, the Channelization 
approach uses clustering algorithms to partition event space, to 
maximize the commonality of subscription locations of events 
in the same channel. However, the effectiveness of clustering 
heavily depends on the content distribution of events and 
subscriptions. If the distribution does not lend itself to 
promising clustering opportunity, it is generally difficult to 
match the highly diversified user interests in a content-based 
pub-sub system into a small number of groups with high 
accuracy. Furthermore, the distribution itself may be difficult 
to estimate with high accuracy and may change frequently 
over time, requiring clustering to be recomputed and results 
updated between servers. 

2.3 Discussion 
The CBF and Channelization approaches both route events 

along pre-configured network topologies. Because the 
available choices are limited a priori, the routing paths cannot 
be optimized based on individual event traffic patterns, and the 
inefficiency of events traversing irrelevant servers cannot be 
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 Figure 4. Example MEDYM network structure and event 
delivery. The destination lists are shown in braces. 

 
avoided. Furthermore, maintenance and adaptation of the 
network topology can be quite expensive in the face of 
changing subscriptions. 

However, the two approaches balance the tradeoff between 
cost and quality of event delivery differently: CBF performs 
content-based matching for every event at every forwarding 
step, while Channelization only approximates destination 
grouping patterns on a coarse-level, using offline clustering 
results. As a result, we expect that CBF achieve better routing 
accuracy at higher operation cost, while Channelization is 
simpler to perform but may also generate more extraneous 
network traffic.  

3. MEDYM HIGH-LEVEL DESIGN 
Based on the above observations, we propose a new 

architecture for content-based pub-sub service network called 
MEDYM:  Match Early with DYnamic Multicast. To avoid 
high forwarding cost, content-based matching is performed 
only once in MEDYM, as close to the publication server as 
possible3.  The result of the one-time matching is recorded 
with the event message as a destination list; from then on, 
event forwarding is based on the addresses in the destination 
list rather than on the content of the event. Therefore, event 
forwarding is through address-based routing, as opposed to 
content-based routing, and is expected to be simple and fast. 
To allow maximum routing flexibility, MEDYM assumes no 
predetermined routing topology. Rather, routing decisions are 
dynamically made for each event based on its destination list, 
and different routing algorithms can be used for different 
optimization goals. 

Figure 4 shows an example MEDYM network. Each 
MEDYM server maintains two kinds of information for all 
other servers in the system: the sum of subscriptions on each 
server, which will be used in matching, and the servers’ 
network locations, which will be used in routing. The server 
matches locally published events against subscriptions to 
obtain a destination list of matching server IDs. (The specific 
content-based matching algorithms used are plug-in modules 
that are independent of the architecture, and are not a focus of 
                                                        

3 The matching is typically performed at the publication server itself, 
except when this is altered for load balancing, see later, or when the system is 
extended to support composite subscriptions, involving events from multiple 
publication servers, in which case the matching wil l be performed as close to 
the publication servers as possible. 

this work.) Once matched, an event always carries a 
destination list that indicates the destination servers that the 
current server is responsible for event delivery. Based on the 
destination list and knowledge of server locations and network 
conditions, the server implements dynamic multicast routing: it 
computes next-hop servers to which to forward the event, as 
well as the new destination lists for each of the next-hop 
servers, and sends the event and (reduced) destination lists to 
these next-hop servers.  

MEDYM routing for the example pub-sub system is shown 
in Figure 4. After matching at server A, event 2 has destination 
list of the three matching servers { C, E, H} . It is first sent to C, 
where it is forwarded to E and H with new destination lists {E}  
and { H} . Because MEDYM does not assume any pre-
configured network topology, the event can be routed so that it 
touches only the three servers that are its destinations. 

MEDYM combines key advantages of the CBF and 
Channelization approaches.  It matches every event against 
subscriptions for high routing accuracy, like CBF, but does 
this early and avoids repeated matching. Once matched, events 
are routed fast based on addresses as in Channelization, but 
with flexibility rather than with constraints on topology or 
channels.  

The major challenge for the MEDYM approach is design 
and implementation of correct and efficient dynamic multicast 
scheme. The rest of this section focuses on dynamic multicast. 

3.1 Dynamic Multicast  
The functionality of dynamic multicast routing at a 

MEDYM server s can be described as: 
diDLfDLn sii ...1,)(},{ ==  

- DL: destination list in the event message server s receives. 
-  fs:  multicast routing algorithm at server s. 
- ni: the ith next-hop server to forward event message to. 
- DLi: destination list for the message sent to server ni. 
- d: number of next-hop servers. 

3.1.1 Routing invariants 
For routing correctness and efficiency, we define the 

following dynamic multicast routing invariants: 

(a) }{
1

sDLDL
d

i
i −=

=
�  

(b) jiDLDL ji ≠=∩ ,φ  

(c) 
ii DLn ∈  

As discussed below, the correctness and efficiency of 
dynamic multicast as proposed in MEDYM are derived from 
these routing invariants. Various concrete routing algorithms 
can be developed for different routing policies, as long as they 
conform to the interface and invariants above. 

3.1.2 Dynamic multicast properties 
Several important properties of dynamic multicast can be 

inferred from the routing invariants, assuming that all servers 
are reachable and function correctly: 
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Figure 5. Analysis of average destination list size in dynamic 
multicast. 

(i) Dynamic multicast delivers an event to all servers with 
matching subscriptions.  

(ii) Dynamic multicast is loop free, i.e. an event traverses a 
server at most once. 

 Therefore, routing paths for an event form a tree topology, 
though the actual routing process is stateless – no information 
about such multicast tree is stored at pub-sub servers. 

(iii) Dynamic multicast route events only through servers 
that are interested in them.  

This property guarantees that the multicast tree for each 
event spans the minimum set of servers, reducing total 
computation and network bandwidth usage in the process of 
event delivery. It also aligns resource consumption with self-
interests of servers, as a MEDYM server only receives events 
that it has interest in, and matches (with remote subscriptions) 
only events locally published.  

(iv) The average destination list size in all messages for an 
event is O(l) servers, where l is the diameter of the dynamic 
multicast tree for the event. 

Since the destination list From invariant (a) we have  

�
=

<−=
d

i
i DLsizeDLsizeDLsize

1

)(1)()(  

As illustrated in Figure 5, at each level of the multicast 
tree, the sum of destination list sizes in all messages is less 
than m, where m is total number of matching servers. Because 
the tree is of depth l, the sum of destination list sizes in all 
messages is less than ml, and there are (m-1) messages in total, 
so that average destination list size is O(ml/m)=O(l). In 
particular, for a multicast tree with diameter O(logm), such as 
a random tree which is often the shape of multicast tree in 
practice, the average destination list size for an event is only 
O(logm).  

Although the real destination list size depends on the shape 
of the multicast tree, this property provides a way to 
approximately estimate the destination list overhead in event 
messages. For a pub-sub system with 10,000 servers, assume 
that an event matches interests of 20% of the servers, and the 
dynamic multicast tree is a random tree, the average 
destination list is expected to consist of about ln(10,000*20%) 
=  8 servers; using 32 bit server ID, the destination list length 
is 8*4 = 32 bytes. This overhead is expected to be acceptable, 
considering the often rich event content in content-based pub-
sub systems, such as in the form of XML messages. 
Compression and coding techniques may be used to further 

reduce the destination list length, and is a direction for future 
work.  

We have shown that the average destination list overhead 
is low. However, the destination list size is longer at publisher 
than at intermediate forwarding servers. If a server publishes a 
lot of events that match subscriptions at many servers, the 
destination list overhead at this server is relatively high. To 
solve this problem, we introduce the concept of a helper. A 
server chooses a server that matches the event it publishes. It 
forwards the event to the helper without destination list. The 
helper then matches the event again and initiates dynamic 
multicast as if it published the event itself. In this way, the 
overhead of destination list size is shifted from the original 
publication server to the helper. By strategically assigning 
helping relationships, this mechanism helps to balance the 
destination list overhead across servers.  

From another perspective, a server ID in the destination list 
can be seen as a reasonable “cost”  that the publication server 
“pays”  for getting the event delivered to that destination server 
through the pub-sub system. Dynamic multicast is an address-
based routing service, and a user is expected to provide the 
destination(s) of a message. Therefore, we do not see this as a 
problem load imbalance problem in event routing and do not 
further investigate it in this paper. 

3.1.3 Dynamic multicast methods 

Source-based dynamic multicast 
A straightforward way to implement dynamic multicast is 

by source-based routing. The publication server computes the 
multicast tree for an event and encodes the tree in the event 
message, probably by ordering the servers in the destination 
list. A forwarding server decodes the tree and forwards the 
event as instructed. The drawback of this approach is that the 
routing quality depends on the knowledge and intelligence 
available at the publication server at the time of event 
publication. If the server’s knowledge about the service 
network status is out-of-date or incomplete, the multicast tree 
computed can be sub-optimal or even incorrect.  

Distributed dynamic multicast  
We observe that the interface of dynamic multicast routing 

only requires a server to resolve the local part of the multicast 
tree. Therefore, dynamic multicast can also be implemented in 
a distributed way.  

In distributed dynamic multicast, no server is responsible 
for or knows about the entire multicast tree. Each server only 
determines its next-hop servers and their destination lists; 
exactly how these next-hop servers are going to deliver the 
event is out of concern and transparent to the current server. 

Distributed dynamic multicast is highly flexible and 
resilient. Servers may run different routing algorithms to best 
fit their routing policy, and make real-time routing decision 
adjustment for condition changes. When a server observes that 
a next-hop server went down, it can simply re-run the routing 
algorithm with the failed node removed from the destination 
list, so that the event can be routed around that server. 

In Section 4 we will design concrete routing algorithms for 
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both source-based and distributed dynamic multicast.  

3.2 Discussion 
In this Section, we introduced MEDYM, a new 

architectural design for content-based pub-sub service 
network. It combines two orthogonal aspects: Match Early, 
and Dynamic Multicast. We believe that content-based 
matching for every event is necessary to achieve high routing 
efficiency and should be performed as early as possible in the 
process of event delivery. To suit the heterogeneous event 
traffic pattern, we propose dynamic multicast as a general 
event routing scheme for distributed content-based pub-sub 
system. We defined the functionality and invariants for 
dynamic multicast routing, and analyzed its correctness and 
efficiency features. We also discussed two ways of 
implementing dynamic multicast and their tradeoffs. In the 
next Section, we discuss in detail design and efficient 
implementation of MEDYM system. 

4. MEDYM DESIGN DETAILS 
As a new architectural design, MEDYM faces potential 

challenges that are not present in the existing approaches. In 
Section 3, we have analyzed the destination list overhead in 
MEDYM. In this Section, we discuss several other points of 
concern in MEDYM and present ways to address them in 
detail. 

4.1 Efficient Dynamic Multicast Routing  
In dynamic multicast, routing paths are computed for every 

event in real time. It is important that the routing algorithm is 
efficient enough to support high volume of event traffic.  

In this paper, we develop routing algorithms that aim at 
optimizing the total network communication cost in event 
delivery. We use network latency as communication cost 
between servers, and design three dynamic multicast routing 
algorithms as follows: 

MST is a routing algorithm that computes minimum 
spanning tree for servers in the destination list. The neighbors 
of the current server in the minimum spanning tree will be 
used as next-hop servers, and each sub-tree of the neighbor 
will be used as the next-hop server’s destination list. The 
algorithm is the same for source-based or distributed multicast.  
The computation time for MST is of O(D2logD) where D is the 
number of servers in the destination list. 

CloseMST is a distributed routing algorithm designed to 
expedite routing computation by approximation.  Instead of 
computing a minimum spanning tree for all servers in the 
destination list, a server first chooses the closest c destination 
servers as candidates, and computes a minimum spanning tree 
for the candidates. Then, it uses the neighbors in this small 
minimum spanning tree as next-hop servers, and assigns the 
other destination servers into the destination list of the closest 
next-hop server to that destination. In this way, the 
computation complexity of the algorithm is reduced to 
O(c2logc+Dc). In experiments, c is set to a small constant 
number around 10, and therefore the computation time is linear 

to the destination list size. We have also explored alternative 
ways of choosing the candidate servers, such as by clustering 
servers by their network locations or directions offline, but 
their routing qualities are not as good as that of CloseMST. 

BalanedMST is a variant of CloseMST that takes server 
load into consideration when making routing decisions. Even 
though dynamic multicast does not route events along one pre-
configured tree topology, servers at the center of the network 
are still more likely to be chosen as intermediate servers in 
multicast trees and forward more copies of event messages 
than their peripheral counterparts. BalanedMST is the same as 
CloseMST, except that a server computes the minimum 
spanning tree only for the candidate servers that are not 
overloaded. If all candidate servers are overloaded, it chooses 
one closest not overloaded destination server as the only next-
hop server.  The overloading criteria can be specified by the 
application. In our experiments, we define a server to be 
overloaded if the ratio of number of messages it sends to the 
number of messages it receives is above an 
OverloadThreashold (OT). When this ratio is high, it indicates 
that the server has high connectivity degree in multicast trees 
and consumes much network access bandwidth. 

Table 1 presents performance and quality results of the 
three routing algorithms. The simulation details are as 
described in Section 5. The algorithms are written in Java and 
run on PC with 2.0 GHz Pentium-III CPU and 512MB 
memory. The running time is computed as average of 100,000 
times running. Routing quality is measured by the Normalized 
Resource Usage (NRU), a normalized total network resource 
usage metric, of the resulting multicast tree.  

Table 1 shows that the approximate routing algorithms are 
significantly faster than MST, while achieving comparable 
routing quality. BalancedMST has higher NRU as it sometimes 
chooses sub-optimal routing paths for load balancing. More 
detailed results can be found in simulation results in Section 5. 
In Section 3, we have shown that the average destination list 
size is usually quite short. Therefore, these routing algorithms, 
especially the approximate ones, are expected to be efficient 
enough for large-scale pub-sub systems with high event traffic 
throughput. The running time of these algorithms are also 
much shorter than the content-based matching time presented 
in pub-sub literatures [11][18][24], confirming our expectation 
that address-based forwarding are faster and cheaper than 
content-based forwarding.  

4.1.1 Caching routing decisions 
An interesting question is that whether routing results 

could be cached at MEDYM servers, so that routing for events 
with the same destination sets can be solved by a cache 

Table 1. Running time and routing quality of dynamic multicast 
routing algorithms. 

Running time (ms) Quality (NRU) Routing 
algorithm Configuration 

D=100 D=2000 D=100 D=2000 
MST  1.8 144 105% 122% 

CloseMST c=16 0.08 1.12 121% 157% 
BalancedMST c=16, OT=5 0.08 1.31 150% 216% 



 
 
 
 
 
 
 

7

lookup instead of routing algorithm computation. Like in the 
Channelization approach, effectiveness of such caching 
depends on the locality property of communication patterns: 
caching is most effective if and only if some event traffic 
patterns are more often than the others. We plan to investigate 
caching mechanisms with realistic application properties in the 
future. 

4.2 Managing and Updating Information 
In MEDYM, each server needs to know about other 

servers’  subscriptions for content-based matching, and 
network locations for dynamic multicast routing. In the most 
straightforward way, such information can be broadcasted 
using a multicast group. Below we describe techniques to 
improve information update efficiency. 

4.2.1 Subscriptionse 
With use of advertisement, subscriptions in MEDYM can 

be sent through dynamic multicast to servers with matching 
advertisements. From property (iii) in Section 3, we know that 
the subscription will be only forwarded to, and stored at, 
servers with relevant advertisements. Compared to 
subscription broadcast, this reduces the subscription update 
traffic and the amount of subscriptions stored and matched at 
publication servers. The improvement results are shown in 
Section 5. 

4.2.2 Network locations and server status  
Dynamic multicast requires each server knows about 

network locations of all other servers. This is not true in CBF 
or Channelization, where servers only need to know about a 
fixed set of neighbors. However, we do not expect this to be a 
big overhead. First, research works have designed network 
location estimation techniques [15][20][21] that efficiently 
estimate and summarize server location information with 
reasonable accuracy. For example, in GNP [21], servers 
summarize their network locations using coordinates in a 
virtual d-dimensional Euclidean space. Servers only need to 
broadcast their coordinates, and locally computes latencies 
between remote servers based on their coordinates. For a 
network of 10,000 servers, with each update message of 1000 
bits and every server broadcasting every 10 minutes, the 
bandwidth consumption for network location update is only 
about 10,000 *  1000/600 = 17k bps. Other server status 
information such as load conditions can be broadcasted in a 
similar fashion. Furthermore, we expect that such per-server 
level network information is of much smaller size and update 
frequency than the per-client level subscription information 
and is not the major management overhead. 

4.3 Inter-server Communication 
Reliable event delivery is an important feature of a pub-sub 

service. We propose to use reliable network protocol such as 
TCP for inter-server communication. In dynamic multicast 
routing, a server does not have a fixed set of neighbors. 
Instead, it computes the multicast tree assuming an underlying 
full-mesh (IP) network, and may need to directly forward 

events to any other server(s) at any time. In case of high event 
traffic volume, frequently opening and closing TCP 
connections is expensive and limits the maximum traffic 
throughput. We address this problem in three ways:  

First, TCP connections can be left open between adjacent 
event transmissions between the same pair of servers for a 
limited period of time, in a similar fashion as the persistent 
connection optimization in HTTP/1.1. If the total number of 
simultaneously open TCP connections is restricted by the 
system’s limit, we may consider switching reliable UDP or 
user-level TCP [14].   

Second, event transmissions between the same pair of 
servers can be batched together, within an acceptable latency. 
In this way, connections are open only periodically and only 
when there are events waiting to be sent. 

Third, we may restrict which servers can directly 
communicate. This is like imposing a mesh overlay topology 
upon which routing paths can be built. The mesh topology 
represents the tradeoff between connection management and 
routing quality. This solution violates the dynamic multicast 
routing invariant (c) defined in Section 3, and we leave it as a 
future work. 

4.4 Scaling to Very Large Systems 
The current MEDYM architecture has a flat, peer-to-peer 

network structure. This architecture is designed for pub-sub 
service network with thousands or tens of thousands of servers. 
Because each server can support a large number of individual 
clients, we expect such scale is large enough for many pub-sub 
applications. For a system with even larger scale, we expect 
that a hierarchical architecture with multiple levels of 
MEDYM would be a more efficient choice. In such system, 
servers are organize into clusters, so that information update 
and routing decisions can be localized. We believe that the 
detailed design of multi-level MEDYM should be based on 
full understanding and evaluation of current architecture and 
therefore leave it as a future work. 

5. EVALUATION THROUGH 
SIMULATION  

In this Section, we present evaluation of the three pub-sub 
service network architectural designs, i.e. CBF, 
Channelization, and MEDYM, using message level event-
based simulation.  

5.1 Simulation Setup 
5.1.1 Network topology 

The network topology we used is generated by GT-ITM 
random graph generator using the transit-stub model. There are 
20 transit domains with an average of 5 routers in each. Each 
transit router has an average of 3 stub domains attached, and 
each stub domain has an average of 8 routers. Altogether there 
are 2500 routers and 8938 links. The link latencies are random 
numbers between 50-100ms for intra-transit domain links, 10-
40ms for transit-stub links, and 1-5ms for intra-stub domain 
links. Pub-sub servers are randomly attached to the 
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routers by LAN links with 1ms latency. IP multicast routing is 
simulated using a shortest path tree formed by merging IP 
unicast routes from the source to each destination. We have 
also simulated network topology generated by Inet [19] and 
from Rocketfuel [25]. The resulting trends are very similar to 
the ones from GT-ITM and are omitted due to space 
constraint.  

5.1.2 Workloads 
A major challenge in pub-sub system evaluation is the lack 

of real-world workloads. For comprehensiveness, we 
experiment with four publication/subscription distributions and 
study their effects on system performance. These distributions 
either are prevalent in other information delivery applications 
and/or have been used in pub-sub literatures:  
- Uniform distribution, in which both publications and 

subscriptions are uniformly randomly distributed. 
- Zipf-uniform distribution, in which subscriptions follow 

Zipf distribution [6] with Zipf parameter set to 1.2, and 
publication is uniformly distributed, as in [29]. 

- Multimodal distribution, in which publication and 
subscription distribution follow the same multivariate 
Gaussian distribution. In this scenario, events that are 
popular are also published more often. In our experiments, 
five distribution peaks are randomly chosen in the event 
space, and the standard deviations are set to 1/4 of the 
distances between peaks.  

- Regional distribution [28][22], in which the probability 
that a subscription from server si matches an event from 
server sj is set to: 

γ),(
),(

ji
jimatch ssdistance

c
ssprob =  

where c is a normalizing factor. This distribution simulates 
the scenario that users have more interest in local events. In 
our experiments, �  is set to 1. 

Since our focus is not on actual matching algorithms, for 
simplicity, we use integers on [0, 100,000] as publication and 
subscription values and perform only equality matching.  

5.1.3 Simulation input and output 
We simulate CBF as in [10], Channelization as in [22], and 

MEDYM with the three routing algorithms: MST, CloseMST 
and BalancedMST. In CBF, servers are organized into one 
minimum spanning tree. In Channelization, we cluster events 
into 50 event channels using Forgy K-means algorithm. The 
configuration for CloseMST and BalancedMST are the same 
as in Section 4. We assume that an event message has content 
of 200 bytes, TCP/IP header of 44 bytes, and server IDs in the 
destination lists takes 16 bits each. 

We focus on two key parameters of a pub-sub network 
scenario: the network size, i.e. number of total pub-sub 
servers, and matching ratio of the servers. Matching ratio is 
defined as the probability that an average event matches any 
subscription on a pub-sub server. It is the product of the 
average number of users per server, number of subscriptions 
per user, and percentage of events each subscription matches. 

In this way, it summarizes the subscription selectivity of a 
pub-sub server as a whole. Low matching ratio means user 
subscriptions are highly selective, and vice versa. Unless stated 
otherwise, we simulate a network of 1000 pub-sub servers. 

5.2 Results 
We evaluate pub-sub system performance along the 

following dimensions:  
- Storage and management cost, measured by percentage of 

global subscription information an average server has to 
store and match with. 

- Network efficiency in event routing: this includes total 
network resource usage and network load carried by pub-
sub servers and network links. 

- Destination list overhead, in terms of extra bandwidth it 
consumes in event transmission. 

- System reliability, measured by the percentage of events 
lost in the face of pub-sub server failures. 

- Scalability of pub-sub system with increasing number of 
subscriptions and network size. 

5.2.1 Subscription replication 
First, we look at cost of subscription replication at pub-sub 

servers. The three approaches maintain remote subscription 
information in different ways. Both CBF and MEDYM are 
able to benefit from subscription aggregation techniques to 
summarize subscriptions from the same direction or server, but 
at different levels. In Channelization, servers maintain event 
space partition result rather than subscription content. The 
amount of information depends on the granularity of specific 
partitioning method. 

Therefore, it is difficult to directly compare the size of 
storage used for subscription replication in different schemes. 
Rather, we measure the percentage of global subscriptions that 
each pub-sub server needs to know about, or equivalently, 
percentage of servers at which a subscription is replicated on 
average. Higher subscription replication ratio indicates not 
only higher storage cost, but also more network traffic and 
management overhead for subscription update, and the 
dependence on synchronous, correct operation of more servers. 

Without using advertisements, all three approaches require 
all subscription information be replicated on all servers. 
Therefore, we focus on the effectiveness of using 
advertisements to reduce subscription replication. In MEDYM 
and Channelization, because remote subscriptions are only 
used in matching with local publications, servers only need to 
store subscriptions that overlap with their advertisements. A 
CBF server, in contrast, may have to store subscriptions that 
are irrelevant to its publication, if it is on a CBF tree path from 
the subscription server to any publication server with matching 
advertisements. 

In simulation, we randomly choose a subset of servers to 
be publication servers. Each publication server randomly 
selects certain events to advertise on. The three figures in 
Figure 6 show results for having 1%, 10% or 100% of servers 
as publication servers. In each figure, x-axis shows average
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Figure 6. Subscription replication comparison, with uniform publication and subscription distribution. 
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Figure 7. NRU comparison, with various publication and subscription distributions. 

Table 2. Server access bandwidth consumption for delivery of one event, with uniform publication and subscription distribution. 

Node stress Link Stress Matching 
ratio 

Schemes 
AvgNS MaxNS MaxNS/ 

AvgNS 
#Servers 
traversed 

AvgLS MaxLS MaxLS/ 
AvgLS 

#Nonzero-
stress links 

CBF 251 7935 31.6 65 0.05 1.61 30.9 2686 
Channelization 1098 5111 4.65 286 0.26 3.48 13.4 3747 

MST 39 136 3.4 10 0.02 0.25 11.7 3444 
CloseMST 39 136 3.5 10 0.02 0.27 12.1 3452 

 
 

1%  
MEDYM 

BalancedMST 39 60 1.6 10 0.03 0.20 8.1 3464 
CBF 1958 15759 14.9 296 0.21 2.65 12.5 2686 

Channelization 3766 21923 5.8 962 0.55 6.96 12.6 2971 
MST 418 2237 5.3 100 0.13 1.48 11.3 3717 

CloseMST 400 1733 4.3 100 0.14 1.34 9.4 3757 

 
 

10%  
MEDYM 

BalancedMST 399 660 1.7 100 0.15 1.21 8.2 3801 
CBF 3836 23040 6.0 1000 0.66 6.96 10.5 2485 

Channelization 3836 23040 6.0 1000 0.66 6.96 10.5 2485 
MST 4384 26328 6.0 1000 0.66 6.96 10.5 2485 

CloseMST 4010 20192 5.0 1000 0.54 5.81 10.7 3672 

 
 

100%  
MEDYM 

BalancedMST 4381 14461 3.3 1000 0.64 5.71 8.9 4094 
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advertisement range, i.e. the average percentage of events a 
publication server advertises, and y-axis shows subscription 
replication ratio, i.e. the percentage of global subscriptions an 
average server stores. For Channelization and MEDYM 
approaches, subscription replication ratio is always equal to 
the product of the percentage of publication servers and the 
servers’  advertisement range. For CBF, the result is sensitive 
to subscription selectivity. Curves in each figure show that 
with higher matching ratio, a server subscribes to publications 
from more servers, and its subscriptions have to be stored at 
more locations. The fraction of extra replication in CBF is 
most prominent with high publication selectivity, i.e. with 
small number of publication servers and small advertisement 
range per server. In such scenarios, most of the subscription 
replicas are stored on intermediate servers rather than 
publication servers. These are the situations when 
advertisement is most needed, but its effectiveness most 
limited in CBF. 

5.2.2 Network efficiency  
Next, we evaluate network efficiency per event delivery. 

The results are average of simulating 10,000 event deliveries.  

Normalized Resource Usage (NRU)  
We measure the total network resource usage by the 

summation of latency of network links traversed in event 
routing. We define NRU as the ratio of the total network 
resource usage of an event delivery scheme over that of the 
ideal multicast, in which there exists an IP multicast group for 
delivery of each event. 

The results are presented in Figure 7. For comparison, we 
also simulate two simple event delivery solutions, unicast from 
publication server to all servers with matching subscriptions, 
and broadcast to all servers in the system.  

Overall, Figure 7 shows that CBF and MEDYM_MST 
achieve low network resource usage under all circumstances. 
The approximate MEDYM routing algorithms, 
MEDYM_CloseMST and MEDYM_BalancedMST, perform 
less well, as they trade off routing quality for computation 
efficiency and load balancing. However, when matching ratio 
is low, even the approximate MEDYM algorithms outperform 
CBF and Channelization. Results for Channelization have 
similar trends as broadcast, which indicates that it is not very 
effective in preventing event from being sent to irrelevant 
locations. Channelization is also sensitive to data distributions:  
it performs best with the Multimodal distribution, in which the 
publication and subscription have consistent distributions with 
strong locality property; it is less effective with the Uniform 
distribution, which offers not much clustering opportunity; it 
performs worst with the Zipf and Regional distribution. This is 
because with Zipf distribution, most events only match a small 
number of subscriptions, and therefore the extraneous network 
traffic ratio is especially high; in Regional distribution, 
Channelization is especially penalized for sending irrelevant 
events to far-away servers, while schemes with content-based 
matching benefit from filtering these events off. When the 

average matching ratio is high, performance of all the schemes 
converge to broadcast. 

Results from Figure 7 confirm our expectation that per-
event content-based matching is critical in achieving high 
routing accuracy. It also confirms that multicast-like routing 
efficiency is highly desirable. Unicasting or broadcasting 
events to individual subscription clients would perform even 
worse than the inter-server unicast and broadcast schemes 
examined here; thus, centralized architecture is not expected to 
be efficient or scalable for a large pub-sub system. 

Network load: node stress and link stress 
We evaluate network load of a pub-sub system from two 

aspects: load on pub-sub servers, i.e. node stress, and load on 
network links, i.e. link stress. We measure node stress at a 
node, i.e. a pub-sub server, by the network access bandwidth 
consumption at that server in event delivery. Note that except 
for the destination list overhead in MEDYM (which is 
included in these measurements), the bandwidth consumption 
are proportional to number of events a server receives. 
Therefore, the bandwidth results also indicate the overall 
routing load on pub-sub servers. We measure link stress by 
number of messages carried by network links in event 
delivery. The results are shown in Table 2. Due to space 
constraint, only the results for the uniform distribution are 
presented in the rest of the paper, as they are the clearest to 
understand. Results with other data distributions have the same 
trend as those of uniform distribution and the differences 
between them are similar to the analysis above.  

Network access bandwidth is a precious resource that often 
directly affects the deployment cost of a pub-sub system.  
Table 2 shows that MEDYM schemes almost always has lower 
node stress than CBF and Channelization. The advantage is 
especially significant when matching ratio is low: to deliver an 
event with 1% matching ratio, an average CBF server 
consumes 6.4 times bandwidth than a MEDYM server, and an 
average Channelization server consumes about 28 times than a 
MEDYM server. To explain this, we also present average 
number of servers an event traverses in Table 2. The more 
servers an event traverses, the higher bandwidth each server 
spends for routing an average event. Channelization’s ability 
to filter off irrelevant events becomes ineffective quite early: 
an event that matches only 10% servers is sent to more than 
96% servers. CBF is better than Channelization due to its 
content-based matching ability, but its extraneous bandwidth 
consumption is still quite high with high subscription 
selectivity. As in NRU, differences between schemes 
disappear with higher matching ratio, as all routing methods 
converge to broadcast. However, MEDYM consumes more 
bandwidth than the other approaches when matching ratio is 
100%. This is due to the overhead of destination lists in 
MEDYM and will be discussed In more detail later. 
Interestingly, the higher bandwidth needs due to destination 
lists is clearly more than outweighed by other considerations in 
realistic scenarios. 

Results for link stress are similar to that of node stress. The 
number of nonzero-stress network links, i.e. number of 
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network links that carry event routing traffic, indicates the 
ability of a routing scheme in utilizing underlying network 
resources. In CBF, events are only routed through links in the 
CBF tree. Idle resources on off-tree links may not be used even 
if these in-tree links become congested. Channelization and 
MEDYM benefit form higher routing diversity than CBF. 
Again, BalancedMST is the best in balancing traffic load over 
network links. 

Load balancing 
Load balancing is an important feature to achieve high 

system throughput. Table 2 shows that CBF server load is 
highly imbalanced. As analyzed in Section 2, servers close to 
the center of the network carry much higher event traffic than 
others. For example, in a network of 1000 servers and 1% 
matching ratio, the server at the center of the CBF tree routes 
for 1-(1/2)m = 99.9% events, while a server at the edge of the 
tree only receives the 1% events that it has interest in. 
Channelization provides more load balancing opportunity as it 
distributes event traffic onto different trees. MEDYM schemes 
generally have well balanced server load due to the high 
routing diversity. BalancedMST is shown to be especially 
effective in load balancing. With matching ratio of 1%, the 
most heavily loaded server in BalancedMST consumes 
bandwidth that is only 1% of that in CBF and Channelization.  

5.2.3 Destination list overhead 
Let us examine destination list overhead more closely, 

since it was an area of potential concern for MEDYM. Figure 
8 shows the average destination list size in the above 
experiments. The curves confirm our expectation that with a 
random multicast tree topology, the average destination list 
size is of O(logm), where m is the number of matching servers. 
Figure 8 also shows that different versions of MEDYM have 
different destination list size. This is because the routing 
algorithms generate multicast trees with different shapes. The 
MST algorithm generates the most skinny tree, while the 
CloseMST generates a flatter one, as it considers choosing 
close servers to be next-hop servers in a more greedy fashion. 
BalancedMST is largely similar to CloseMST, but it 
sometimes detours event messages through far away servers 
for load balancing. The effect is especially apparent with high 
matching ratio, when servers are likely to be overloaded. 

The overhead of destination list adds to bandwidth 
consumption in MEDYM. Exactly when does MEDYM 
consume more bandwidth than CBF and Channelization in 
event delivery? To answer this question, we plot average 
server bandwidth consumption versus matching ratio in Figure 
9. It shows that MEDYM consumes more bandwidth than 
CBF_MST when matching ratio is higher than 75% and 
surpasses Channelization when matching ratio is higher than 
90%. CBF_CloseMST has lowest bandwidth overhead and 
surpasses CBF only when matching ratio is higher than 95%. 
These numbers are dependent on the size of event message 
payload, and the shape of multicast trees generated in each 
scheme. In all, destination list overhead is lower for pub-sub 
systems with low matching ratio and large event messages.  
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Figure 8. Average destination list size in MEDYM. 
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Figure 9. Average server access bandwidth consumption. 
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Figure 10. Pub-sub service reliability in the face of server failures. 

Interestingly, the point at which MEDYM destination list 
overhead hurts MEDYM efficiency relative to other systems is 
close to a point at which it may as well switch to broadcast. 
5.2.4 Reliability 

Reliability is an important yet challenging issue in 
distributed pub-sub systems. We compare system reliability in 
terms of percentage of events lost in the face of server failures. 
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Figure 11. Scalability with increasing network size and fixed number of total subscriptions.  

Because failure recovery mechanisms have not been explicitly 
stated in CBF or Channelization approach, we focus on the 
static resilience of the approaches, i.e. how many events are 
lost in the face of server failures, before system has recovered. 
In simulation, we assume that a certain fraction of servers are 
down, and examine what fraction of the events is lost due to 
the server failures. In CBF, Channelization, and MEDYM with 
source-based dynamic multicast, the failed servers silently 
drop the events they receive. For MEDYM with distributed 
dynamic multicast, the server that intends to forward the event 
to a failed server detects the failure (because of the reliable 
inter-server communication) and rerun the routing algorithm to 
route events around failed servers. Figure 10 shows the results 
for CBF and MEDYM. Results for Channelization is very 
similar to CBF and not shown for clarity. Results for the three 
MEDYM routing algorithms are also very similar and so only 
one curve is drawn. In MEDYM, an event arrives at all 
running servers with subscriptions. In CBF, when a server 
goes down, the CBF tree becomes disconnected and the events 
cannot reach the other side of the tree. As shown in Figure 10, 
in CBF, percentage of lost events increase with number of 
failed servers quickly. More than half of events are lost with 
10% failed servers. It also increases with higher matching 
ratios, when an average event is routed through more servers 
and has a higher probability of being dropped.  
Note that we only look at the static resilience case here. We 
show that MEDYM servers can quickly adapt routing decision 
on environment changes, while the other approaches often 
have to wait for a system-wide action to be taken. 

5.2.5 Scalability 
We study how a pub-sub service network scales with two 

factors: total number of subscriptions and total number of 
servers in the network. Because we focus on per event delivery 
efficiency, the total number of publications is not considered.  

Three scaling scenarios are listed in Table 3. The analysis 
above focused on the first scenario. For the second scenario, 
most of the metrics stay constant because of the constant 
matching ratio. The results can be inferred from the results 
above with the same matching ratio and therefore are not  

Table 3. Pub-sub service network scaling scenarios. 

Scenario Total #sub Total #servers #sub/server Matching ratio 
A �  − �  �  
B �  �  − − 
C − �  − �  

shown here. Next, we examine the third scenario. This is the 
case that shows how increasing number of servers in a pub-sub 
service network cooperate and share the load of event delivery. 

Figure 11 shows scalability results for networks with 100 
to 2,000 servers. The first figure plots the average server 
access bandwidth, as an indication of routing load on each 
server, in log-log scale. Curves for MEDYM schemes are 
straight-line, indicating that server load are inversely 
proportional to the network size, which is expected in a well 
scalable system. However, this is not true for CBF and 
Channelization. The curve for CBF can be regressed to 
y=14732x-0.5893 with R-square value of 0.9934. The curve for 
Channelization only starts to decrease with network of more 
than 500 servers, beyond which matching ratio is low enough 
for the clustering algorithm in Channelization to be effective. 
These results indicate that in CBF and Channelization, 
increasing network size introduces extra routing overhead and 
the designs do not scale very well in this scenario. 

The second figure in Figure 11 shows that the routing load 
on the most heavily loaded server in CBF and Channelization 
cannot be relieved with the presence of more servers. In 
MEDYM, servers only route for events they are interested, and 
the number of such events decreases with the matching ratio, 
even for the most heavily loaded server. Especially, the curve 
for BalanedMST can be regressed to y = 44011x-0.9131 with R-
square value of 0.9914, indicating well balanced sharing of 
routing load among servers.  

Finally, the third figure in Figure 11 shows the average 
event path length in terms of number of overlay hops. CBF 
grows fastest because this number is always equal to the 
diameter of the CBF tree, which is approximately logarithmic 
to the network size. Curve for Channelization stays largely flat 
with more than 500 servers, when the clustering starts to be 
effective. However, even lower matching ratio cannot further 
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reduce this number, because the average size of the multicast 
trees is limited by the fixed number of channels available. 
MEDYM curves stay flat because the size of the dynamic 
multicast trees stay constant, as the average number of 
subscriptions per server is constant.  

These results show that MEDYM scales with pub-sub 
network size more gracefully than the other approaches. 

6. IMPLEMANTATION RESULTS 
To validate the MEDYM architectural design and test its 

performance on real network, we deployed a prototype of 
MEDYM, called Eos, on PlanetLab test bed. We run Eos 
servers on 56 PlanetLab sites, 44 in United States and 12 
abroad. We used two different ways for input of server 
network location information: pair-wise ping and GNP [21] 
with 8 dimension Euclidean space. Results such as bandwidth 
consumption and destination list overhead are consistent with 
the simulation results above and are not shown here. Figure 12 
shows the Relative Delay Penalty (RDP) for event paths in Eos 
using MST and CloseMST routing algorithm. RDP is defined 
as the ratio of end-to-end event path latency in Eos system to 
the IP latency (measured by pair-wise ping) between the 
publishing and subscription servers. Figure 12 shows that pair-
wise ping provides more accurate server location information 
than GNP. We found that the error from GNP mainly comes 
from the scenarios where latencies between servers are 
inconsistent with their network locations: for example, servers 
that are close in geographic locations often observe similar 
latencies to the landmark nodes and therefore obtain similar 
coordinates. However, the real IP latency between them can be 
quite high, probably due to a congested network link or 
specific ISP configuration. This can also be seen from Figure 
13, which shows that all event paths with high RDP have small 
IP latencies. Figure 12 and Figure 13 also show that about 10% 
event paths have RDP less than 1, which indicates that overlay 
forwarding can take less time than IP forwarding, especially 
when IP latency between servers are high.  

7. RELATED WORK  
Many distributed pub-sub system designs adopt the 

content-based forwarding (CBF) approach. In JEDI [13], a 
hierarchical event routing scheme is proposed, but it was found 
to perform inferior to the peer-to-peer topology in [9]. In 
Gryphon [3], a link-matching algorithm is designed to partially 
match the event with an annotated network topology data 
structure to determine the directions to forward the event to. 
[11] designed detailed matching algorithm for content-based 
forwarding. [8] proposes to build multiple small CBF networks 
for a pub-sub system, so that event routing in each network can 
be implemented with lower cost. However, because event 
routing is still by content-based forwarding, it inherits the 
tradeoffs of CBF.   

The problem of delivering an event message to a group of 
distributed users is similar to the traditional multicast problem. 
Application-layer multicast [4][12] is expected to scale better  
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Figure 12. Cumulative Distribution Function for Relative Delay 
Penalty of event delivery paths on PlanetLab. 
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Figure 13. RDP vs. IP latency in GNP_CloseMST experiment. 

Each point denotes the existence of an event path with a given IP 
latency and RDP. 

than IP multicast mainly because an end host only routes 
messages for groups that it participates. This is similar to the 
idea in MEDYM that servers only route for interesting events. 
In comparison, dynamic multicast is completely stateless so 
that no session information needs to be established or 
managed. Explicit Multicast [5] is another technique of 
stateless multicast. Dynamic multicast is different from 
Explicit Multicast mainly in three ways: first, dynamic 
multicast only route events through destination servers, and the 
destination list overhead is a function of the number of such 
servers; Explicit Multicast routes messages through many 
intermediate IP routers and therefore cannot scale with large 
destination sets; Second, dynamic multicast paths are 
dynamically computed for each event message received. 
Finally, dynamic multicast may be implemented in a 
distributed way that is highly flexible and resilient. 

8. CONCLUSION AND FUTURE WORK 
We have examined architectural approaches for distributed, 

content-based publish-subscribe service networks, and have 
proposed a new approach called MEDYM (Match Early with 
DYnamic Multicast). We compared MEDYM with two major 
existing design approaches: content-based forwarding 
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(CBF) and Channelization. MEDYM shares the advantage 
with the Content-based Forwarding approach in that 
destination servers for a message are determined accurately 
based on content-based matching against subscriptions.  It 
shares the advantage with Channelization in that after event 
content is matched once, subsequent event forwarding is 
through simple, fast address-based routing rather than 
expensive content-based routing. In this way, MEDYM is a 
design approach following the end-to-end argument [26], 
extracting the complex content-based matching functionality 
out of the routing network, while CBF is more of an active 
network [27] approach, developing network intelligence. 

Unlike the existing approaches, MEDYM does not assume 
static network topologies for event delivery. Instead, it uses 
dynamic multicast for event routing, which matches the highly 
diversified communication pattern in pub-sub system with 
high routing diversity. Extensive simulation shows that 
dynamic multicast achieves high network efficiency and low 
operation cost as well as low management overhead. It allows 
for flexible routing optimization and distributed routing 
decision-making that helps to improve system reliability. We 
examined potential overhead introduced in MEDYM, mainly 
the destination list size and real-time routing computation, and 
found that they are well manageable and more than over-
weighted by the benefits MEDYM brings. 

Compared to the existing approaches, advantage of 
MEDYM is most prominent with large-scale pub-sub service 
network with high user interest selectivity. We observe that 
this is exactly the scenario where content-based pub-sub is 
most attractive, and intelligent and efficient event routing is 
most needed. Therefore, we believe that MEDYM is a 
promising architectural design, with the dynamic multicast 
scheme being potentially applicable in contexts other than pub-
sub as well. We plan to further build out, scale and test the real 
system, and use it to deploy publicly available pub-sub 
services and hence generate real workloads (a key limitation 
going forward in pub-sub research). 
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