
Approximate Index Routing: A Case for Content-based Peer-to-Peer Routing 

Abstract – Object location in a distributed peer-to-peer 
system has been a challenging problem. Our goal is to 
achieve efficient and effective query routing while 
imposing little restriction upon the system structure. We 
propose the approach of content-based peer-to-peer 
routing, in comparison to the highly structured address-
based routing schemes such as the distributed hash table 
(DHT) approaches. By decoupling object content and 
their locations, content-based routing retains the 
simplicity and flexibility of an unstructured peer-to-peer 
system. 

We present one implementation of content-based peer-
to-peer routing, namely Approximate Index Routing 
(AIR). Each AIR node maintains an independent 
summarization of the global index. The space 
consumption at each node is saved, while high routing 
accuracy is achieved by cooperation between nodes with 
different summarizations. Because of its simple structure, 
AIR is able to exploit application inherent optimization 
opportunities, such as resource heterogeneity and content 
locality. We show that AIR is able to scale to peer-to-peer 
systems with hundreds of millions of objects. 

1. Introduction    
Peer-to-peer (P2P) system has attracted dramatic 

attention in research communities. The nature of P2P 
systems can be characterized as a distributed system in 
which all nodes have equal capabilities and 
responsibilities and all communication is potentially 
symmetric. The applications built upon such P2P system 
can take advantage of resources (storage, computation 
cycles, content, human presence etc.) available at the edge 
of the Internet. P2P file-sharing systems, such as Gnutella 
[12] and KaZaa [13] are now one of the most popular 
Internet applications and have become a major source of 
Internet traffic [28] .   

A fundamental challenge in distributed P2P systems is 
how to efficiently locate a relevant object stored in the 
system.  

Popular P2P file sharing systems, such as Gnutella 
and KaZaa, adopt an unstructured approach in the sense 
that the search strategy imposes no specific restriction on 
system structure. The peers organize into an ad hoc 
overlay network and maintain no information about object 
locations. Query messages are flooded to all peers, 
generating high network traffic load. Gnutella introduces 
Time-To-Live (TTL) parameter that controls the scope of 
flooding. The result is that an object stored outside the 
query’s horizon cannot be located. Unstructured P2P 
systems have the advantages of simplicity, flexibility and 

strong robustness. It also supports text-based search and 
partial queries. The major disadvantage is that the 
flooding-based search method is inherently unscalable. 

In response to the scaling problem, a number of highly 
structured P2P systems have been proposed, among 
which are Chord [32] , Pastry [9] , Tapestry [33] , and 
CAN [20] . These systems maintain a global index of 
object locations as a distributed hash table (DHT). 
Objects in the system are associated with a unique ID 
(produced, for instance, by hashing the object content), 
and each node in the system is responsible for storing 
objects that map into a certain range of IDs. Nodes 
organize into a well-defined overlay network, according 
to the relationship between their storage responsibilities. 
A query is issued in the form of lookup(objectID). Object 
ID is used to route the query message efficiently through 
the overlay network towards the node responsible for that 
ID.  

Although DHT systems are elegant and highly 
scalable, the tight structure it imposes on the P2P system 
can restrict its applicability and deployment.  

First, the random mapping between objects and their 
locations in DHT inherently conflicts with the geographic 
and content locality of a P2P application. Objects can be 
stored far from their frequent users, and at nodes that have 
neither contributed nor been interested in them.  

Second, DHT scheme makes an implicit assumption 
of homogeneous node capability and responsibility. In 
contrast, it has been found ([25] ) that there is significant 
heterogeneity across peers that participate in real P2P file 
sharing systems. An incapable or highly volatile node can 
be problematic in maintaining the DHT routing invariant.  

Third, in DHT systems, an object is associated with 
precisely one node. It is hard to locate multiple replicas of 
an object, or to search for multiple objects matching the 
same query. It is also impossible to know whether an 
object exists in the system before the query message is 
transmitted all the way to the node that is supposed to 
have the object if it were in the system. If such non-hit 
query is common, their transmission can result in high 
routing inefficiency.  

Finally, DHT systems offer very scalable solution for 
“exact-match” queries on object identifiers. It is yet to be 
demonstrated that these systems can scalably support 
more powerful search semantics such as text-based search 
and partial queries. 

In this paper, we explore the possibility to support 
efficient and effective query resolution in an unstructured 
P2P system. We call such scheme content-based peer-to-
peer routing.  

Fengyun Cao     Jaswinder Pal Singh
Computer Science Department, Princeton University

1



 

Content-based 
routing 

Application 
service 

Client 

Content-based 
routing 

Application 
service 

Content-based 
routing 

Application 
service 

Client 

 
 

Figure 1: Architecture of content-based P2P routing. 
 
The design philosophy for content-based P2P routing 

is to achieve efficient P2P routing while making little 
assumption or restriction on the application system. As 
illustrated in Figure 1, the routing algorithm is designed to 
be an independent module that is completely decoupled 
from other system components, such as storage 
management, and transparent to the upper layer 
functionalities. For generality and flexibility purposes, the 
methodology is to focus on routing framework design and 
leave policy-based decision-making as plug-in modules. 
Thus, the routing scheme has the ability to preserve or 
exploit application-specific properties, and is compatible 
with different application environments through 
appropriate configurations. 

The basic search interface that content-based P2P 
routing supports is search(index-value), in which index-
value can be any indexable, descriptive feature of an 
object. The location of all objects that match the index-
value will be returned. In comparison, the DHT scheme 
can be classified as address-based routing in that routing 
is based on specialized address information, e.g. object 
ID, associated with the message. By decoupling object 
content with their location, content-based P2P routing 
does not rely on any specific overlay network topology or 
object placement strategy. It differs from existing 
unstructured P2P system such as Gnutella in that query 
messages are selectively routed toward nodes that have 
the matching objects, rather than blindly flooded over the 
network.  

In this paper, we present one implementation of 
content-based P2P routing, called Approximate Index 
Routing (AIR). The main idea in AIR is to achieve 
routing efficiency and system scalability by carefully 
balancing the usage of various system resources, such as 
storage space and network bandwidth. AIR is also able to 
exploit application-inherent optimization opportunities 
such as resource heterogeneity and content locality. We 
show that AIR can scale to P2P systems of hundreds of 
millions of objects, and can support a variety of 
applications. AIR is by no means the only way to 
implement content-based P2P routing, and we do not 
claim that it is necessarily better than the other P2P object 
location approaches. Rather, we expect AIR to provide 
preferable solutions to applications with certain 
characteristics, and that the techniques explored in AIR to 
be useful in other systems too. Our discussion is meant to 
be more illustrative than conclusive. 

 

Search(P2P) 

 A 

 C 

 D 

 B 

Search(P2P) 

[Multimedia, P2P, Database] 

[Programming, Graphics] 

{C} 

 E [Multimedia, network] 
Search(P2P
) 

 

Figure 2: Example of content based routing. 
 
The rest of the paper is organized as follows: In 

section 2 an overview of content-based P2P routing is 
given and we briefly describe the basic system design of 
AIR. In section 3 AIR features and optimization 
techniques are analyzed and evaluated in detail. We 
discuss the scalability and applicability of AIR in 
practical world in section 4. Related work is reviewed in 
Section 5 and we conclude in Section 6. 

2. System Design for Approximate 
Index Routing 

In a content-based P2P routing system, nodes (peers) 
self-organize into an overlay network, as shown in Figure 
2. A query message carrying index-value is forwarded 
hop-by-hop in this overlay network towards the location 
with the matching objects, possibly through shortest 
paths.  The return message with identified locations is 
either propagated back through the overlay or directly 
sent to the initiating node. 

2.1 Index routing 

Index routing is one implementation of content-based 
routing. The overlay network in an index-routing system 
is an acyclic graph, i.e. a tree topology. Such tree can be a 
span built upon a mesh topology for resilience purpose. 
For simplicity, here we only discuss the tree topology. 
Each node in the system maintains a routing table as 
shown in Figure 3.    

 
 

Neighbor 
Index 

Index-value 
set 

e1 Set1 
e2 Set2 

…… …… 
ej Setj 

…… …… 

…… 

 n 
ej 

…… 

Set1 

Set2 

Setj 

Setd 

Routing table 

ed 

e1 
e2 

 

 

Figure 3: Routing table in index routing system. 
 
A routing table has d entries, where d is the number of 

neighbors a node has. Each entry contains the set of 
index-values of objects stored in that neighbor’s direction. 

2



When receiving a query, the node checks the index-value 
membership against each entry in routing table, except the 
one for the direction that the message came from. Then, 
the message is forwarded to all directions that are 
indicated to lead to objects with the queried index-value. 

In principle, as stated above, the index routing tables 
can be built by indexing on any feature (index-value) of 
objects that users want to query with. An index-value 
does not imply any information about the object’s 
location. Neither is it required to completely or uniquely 
identify an object, e.g. an mp3 can have more than one 
keyword and different songs may share the same 
keywords. Therefore, the indexing routing scheme 
supports partial queries and allows explicit object 
replications. 

The design of data structure of index sets in the 
routing tables and the algorithm of membership test have 
significant impact on performance of index routing. 
Specifically, to correctly route all query messages, the 
size of a routing table can be O(N), where N is the total 
number of  index-values in the system.  Thus, the 
potentially large routing table size and the complexity of 
membership test can be a major challenge for scalability 
of index routing.  

2.2 Approximate Index Routing 

In our work, we ask the question of whether P2P 
routing has to be performed with perfect accuracy. We 
observe that a little “false positive” routing, i.e. 
forwarding messages toward nodes that actually do not 
have the object does not hurt routing correctness: all the 
objects that match the query can still be located, although 
at the cost of extra network traffic load. On the other 
hand, “false negative” routing can fail to locate a queried 
object that exists in the system and is not tolerable. Based 
on this observation, we designed Approximate Index 
Routing (AIR) scheme, in which routing information is 
maintained at an approximate level, but using much less 
space. The space efficiency is achieved at the cost of a 
little false positive routing. Next, we describe AIR in its 
basic form; in Section 3 we will present additional design 
features that improve system performance and scalability. 

Approximate index routing is illustrated in Figure 4. 
Summarization function f maps the index-value set into a 
new set of more compact format but with false positive 
probability. More specifically, f maps five index-values 
into a set of only three distinct values. “P2P” and 
“Network” are mapped into the same value 1. Therefore, 
at node C, the query for “P2P” is forwarded to node E, 
which in fact does not have “P2P” but has “Network”.  

Bloom Filter as approximation index 
AIR routing tables are implemented using Bloom 

Filters [1] . Bloom Filter is a randomized data structure 
for concisely representing a set in order to support 
approximate membership queries. It provides an attractive 

opportunity for tradeoff the space efficiency and accuracy 
of the representation.  

 
 
 

Neighbor Index Summarized  
index-value set 

D {2,3} 
…… …… 

Index-value f(Index-value) 
P2P 1 

Multimedia 2 
 Network 1 

Programming 2 
Graphics 3 

Neighbor Index Summarized  
index-value set 

E {1,2} 
…… …… 

Search(P2P) 

Search(P2P) 

 A 

 C 

 D 

 B 
Search(P2P) 

[Programming, 
Graphics] 

{C} 

 E [Multimedia, network] 

Routing table of node B 

Summarizing function f 

Routing table of node C 

Search(P2P) 

 

Figure 4: Example of approximate index routing. 
 
 

Neighbor Index Approximate 
index-value set 

E 10101101 
…… …… 
……. …… 

1 1 0 0 1 1 1 0 

x1 x2 

h1 h2 

h3 h1 

h2 
h3 

     m = 8 

n=2, k=3 

Bloom Filter as routing table entries 

 

Figure 5: Bloom Filter used in approximate index routing table. 
 
The principle of Bloom Filter is as follows:  
To represent a set A of n elements, a Bloom Filter uses 

a vector v of m bits, all initially set to 0, and k 
independent hash functions, h1, h2, …, hk , each with range 
{1, …, m}. For each element in A, the bits at positions 
h1(a), h2(a), …, hk(a) in v are set to 1. Bloom Filter 
answers a query for element b by checking the bits at 
positions h1(b), h2(b), …, hk(b). If any of them is 0, b is 
certainly not in the set A. Otherwise Bloom Filter gives 
the positive answer that b is in the set although there is a 
certain probability that it is not. This is called a “false 
positive” answer. The probability for the Bloom Filter to 
generate false positive answer is 

km

kn
knk e

m
)1())

1
1(1(

−
−≈−−=α  

α is minimized for k = (m/n)ln2 hash functions, in 
which case the right side of the above formula equals 
(1/2)k. 

A Bloom Filter example is shown in Figure 5. Using 8 
bits and 3 hash functions to represent 2 index-values, the 
probability that the Bloom Filter gives a false positive 
answer is around 0.167. If this Bloom Filter is used in the 
AIR routing table of node C in Figure 4, for representing 
the two index-values at node E, the probability for node C 
to mistakenly forward an arbitrary query message to node 
E is 0.167. Dedicating more memory space in the routing 
tables can easily reduce such false positive network 
traffic. For example, using 16 bits and still 3 hash 
functions, the false positive rate drops to 0.033. 
Therefore, Bloom Filter offers a very flexible opportunity 
for AIR to tradeoff memory space usage and network 

3



bandwidth consumption. As memory space is the most 
constrained resource in content-based routing, we expect 
the price of a little extra network traffic may well be 
worthwhile to reduce the necessary routing table size.  

2.3 AIR construction and maintenance  

Bootstrap and node join 
The tree topology of AIR overlay network can be 

directly constructed or extracted from an underlying 
mesh. For simplicity, we only discuss the tree topology in 
this paper. 

To join the network, the new node chooses only one 
existing node to be its neighbor in the acyclic graph. As in 
other P2P systems, a new AIR node initially knows about 
one or more nodes already in the system by some external 
means. Typical methods include using expanding ring IP 
multicast, configuration by system administrator through 
outside channels, or resolving bootstrapping node IPs 
associated with a well-known DNS domain. In choosing a 
node to connect with, new node may take many factors 
into consideration, such as geographic location, content 
locality, node capabilities and load condition etc. Some 
factors have impact on AIR performance and will be 
discussed further in Section 3. Others factors are 
orthogonal to AIR design and, therefore, we leave them as 
separate component to be integrated into AIR systems.  

After joining the network, the new node advertises its 
local index values to its neighbor and builds its own 
routing table by learning abou objects in the system from 
its neighbor. It also starts to actively monitor 
advertisements from other nodes, to populate its routing 
tables. 

Node departure and failure  
To address the lack of redundancy in the tree-topology 

overlay network, each AIR node selects one neighbor to 
be its “successor node”. When a node wants to leave the 
network, it first notifies its successor. The successor node 
then copies the routing tables from the leaving node and 
connects with the node’s other neighbors as its new 
neighbors. After these operations are done, the node 
leaves. The successor node uses the inherited routing 
tables to route for the new neighbors. If a node fails 
abruptly, its successor node still connects with the other 
neighbors and then copies the routing tables from these 
new neighbors. 

The process is illustrated in Figure 6. The original 
topology is shown in Figure 6(a). Then, in (b), node A 
leaves and its successor node B connects with A’s other 
neighbors. From the figure, we can see that the successor 
node not only keeps the topology a connected acyclic 
graph, it also guarantees that the same relative positions 
between the nodes is maintained, i.e. the objects remain at 
the same directions to each node, so that the routing tables 
are still valid. In contrast, another mechanism in (c) also 
repairs the network to an acyclic graph, but the relative 

position between nodes is changed. Both node C and E 
have to modify their routing tables to reflect the change, 
which is a potentially expensive operation. 

 
 

 A 

 C  D 

 B  E 

     (a)           (b)     (c)          (d) 

 A 

 C  D 

 B  E 

 F 

 A 

 C  D 

 B  E 

 C  D 

 B  E 

 F  F  F 

 A 

 
 

Figure 6: AIR node departure. 
 
The AIR nodes at the edge of the network, i.e. the 

leave nodes in the tree topology do not have successor 
nodes. An inner AIR node chooses a neighbor with high 
capability and low connectivity load as its successor, so 
that the neighbor is able to accommodate the new 
connectivity when needed. However, a neighbor may 
refuse to be the node’s successor if itself is under heavy 
load. If a node has no neighbor that is willing to be its 
successor, it may look further and choose a capable non-
neighbor node. For example, as shown in Figure 6(d), node 
F becomes node A’s successor. In this case, there must be 
one neighbor D that is originally on the path from the 
node A to the successor F. A tells F about D so that when 
A leaves, F connects to all A’s other neighbors except D. 
The ability to choose a successor node multiple hops 
away helps to achieve global load balance. However, the 
further distance between a node and its successor, the 
larger “disruption” is brought to the network, as the nodes 
that were previously far away in the overlay are now close 
and vice versa. Such change may be unfavorable in 
preserving the properties built at the time of network 
construction, such as geographic or content locality. On 
the other hand, the successor node mechanism can be 
used for adaptation purpose. When the network topology 
is sub-optimal, an AIR node actively adjusts the 
connectivity by leaving the network and connecting its 
neighbors to a more appropriate area.  

To address the possibility of simultaneous failure of a 
node and its successor, each node may choose a sorted list 
of successor nodes. A node in this list serves the 
successor responsibility if and only if all the nodes before 
it are gone. The node and the successor node(s) 
periodically exchange their neighbor information. 

Object insertion and deletion 
The routing tables are constructed and populated by 

listening to advertisement message from neighbors, in a 
similar fashion to IP routing protocols, such as OSPF. 
When a new object is inserted at an AIR node, the node 
advertises its index-values by sending  “new object 
message” to all its neighbors, and the neighbors forward 
the message on to all other nodes. For network efficiency, 
the “new object message” are batched or piggybacked 
with other messages. During the delayed period, some 

4



queries may get false negative results. Therefore, the 
frequency of transmission of the message involves a 
trade-off between routing accuracy and efficiency. 
Similarly, when an object is deleted, a node sends out an 
“object deleted message”. A node receiving the message 
forwards it to a neighbor only when it knows that the 
object is neither stored on the other directions. 

Inserting objects into a Bloom Filter is easy: hash the 
object index value k times and set the bits to 1. 
Unfortunately, one cannot perform a deletion by reversing 
the process. If we set the corresponding bits to 0, we may 
be clearing a location that is hashed by some other objects 
in the set. In this case, the Bloom Filter no longer 
correctly represents all the objects. To avoid this problem, 
[10] introduces the idea of counting Bloom Filter, in 
which each entry of Bloom Filter is not a single bit but a 
small counter, to keep track of how many objects have set 
the bit. Here we propose another method that uses less 
space for small number of deletions. Each routing table is 
associated with a “deletion list” of index-values that have 
been recently deleted. A query is forwarded to a neighbor 
only when the queried index-value is not in the “deletion 
list” and results in a hit in the Bloom Filter. The deletion 
list can also be used to cache index-values that result in 
the most frequent false positive routing on a direction, 
based on the feedback from the nodes in that direction.  

2.4 Supporting unicast search 

As discussed before, the basic AIR routing semantic 
supports multicast search, meaning it is capable of 
locating all replicas of one object or all objects matching a 
query message. The strategy used is parallel search in 
which a query message is forwarded to the subset of 
neighbors who satisfied the routing table lookup. The 
result list of locations can be augmented with a ranking 
system to help user finally choose one location to perform 
the actual data retrieval. Distributed search system is one 
typical application. 

Alternatively, in some applications, it is desirable for 
the routing layer to locate only one copy of the object 
queried. For example, in a distributed file sharing system, 
a popular file is cached over a fair fraction of the network. 
Multicasting a query message for this file to all its 
replicas while only one copy is wanted can bring high, 
unnecessary routing overhead on the system, not to 
mention that queries for such popular files are likely to be 
common.  

For this purpose, AIR supports another interface: 
unicastSearch(index-value), which returns only one 
location for the matching object, if it exists in the system. 
The routing mechanism can simply be changed to 
sequential routing or random walk, e.g. forwarding to one 
candidate neighbor at a time, until an object is located or a 
negative result is returned. However, the random location 
thus identified may not be a good one in terms of 
application preference. For example, it is often desirable 
to locate one copy of the file that is “close” to the 

querying user, in terms of latency or/and access 
bandwidth. Study in [25] showed that in a distributed P2P 
file sharing system, there are three large classes of 
latencies that a peer interacts with: latencies to peers on 
the same part of the continent, latencies to peers on the 
opposite part of the continent, and latencies to trans-
oceanic peers. Latency is a very important consideration 
when selecting amongst multiple peers in this application, 
because of the well-known feature of TCP congestion 
control that discriminates against flows with large rotund-
trip times, and the large size of the files exchanged 
(usually in the order of 2-4 MB).  

 
 

Neighbor Index Index-value set 
e1 Set1 
e2 Set2 

…… …… 
ej Setj 

…… …… 

Ranking Layer 1 Layer2 …… Layer N 

Neighbor Index Index-value set 
e1 Set1 
e2 Set2 

…… …… 
ej Setj 

…… …… 

Neighbor Index Index-value set 
e1 Set1 
e2 Set2 

…… …… 
ej Setj 

…… …… 
 

Figure 7: Layered AIR routing table. 
 
To enable more intelligent decision-making, an AIR 

routing table is divided into several layers, each layer 
associated with a rank range, as shown in Figure 7. 
Simple information, such as location, of an object is 
encoded in the index-value advertisements. The index-
value is then ranked based on such information or other 
node statistics, and inserted into the corresponding layer. 
When a query message is received, the top-ranked table 
layer is consulted first. If all answers are negative, the 
next layer is checked. Otherwise, the message is 
forwarded to one direction that is indicated to have the 
object at that layer. Note that due to the false positive 
probability of approximate index, the message may have 
been sent to a direction that does not lead to any matching 
object. In this case, a negative acknowledgement is sent 
back by the first node that detects the mistake. The 
initiating node then tries the next best-ranked direction 
that is said to have the object. If the false positive ratio is 
high, two directions can be tried simultaneously. As the 
process is in fact a distributed breadth-first search, 
unicastSearch is expected to return a close-to-optimal 
copy of the object in the system. 

While we believe that a ranking module can be 
plugged into AIR system rather easily, we leave the 
evaluation of different strategies as future work. For 
simplicity, in the rest of this paper, we will concentrate on 
the original multicast-search scheme. 

3. AIR improvements and evaluation 
In this section, we describe AIR design in more detail 

and present analytical and simulation-based evaluations of 
AIR performance, in terms of balancing the tradeoff 
between memory consumption and network traffic load to 

5



achieve global system scalability. Furthermore, we show 
that AIR is able to exploit optimization opportunities 
inherent in P2P applications, such as resource 
heterogeneity and content locality. 

3.1 Independent false positives 

The first observation is that if every AIR node indexes 
the objects in the same way, there is high level of 
information redundancy between the routing tables. An 
example is shown in Figure 8. Assume that the index-
value of objects i and j happen to conflict for all the 
hashing functions used in Bloom Filter BF1. In this case, 
if either i and j is stored on one direction, a node using 
BF1 in its routing table always forwards queries for the 
other object to that direction too, even if the other object 
was not there. Figure 8(a) shows that when every AIR 
node uses BF1, a query message for object i is forwarded 
all the way to the nodes with object j, resulting in high 
false positive routing. In contrast, if the AIR nodes use 
different Bloom Filters, as shown in (b), the false positive 
routing is stopped quickly. The reason for this is that it is 
unlikely that object i and j conflict again in the Bloom 
Filters used by the other nodes on the path. If the false 
positive results of these routing tables are independent, 
the probability such false positive routing continues drops 
exponentially at each step the message is forwarded. 
Specifically, assuming that the queried object is not stored 
in the system, we have 

α
αααα
−

=+++=
1

...

)lengthpath  routing positive (false

32

nExpectatio
 (1) 

Where α is the false positive probability of one Bloom 
Filter. Immediately following (1), we have  

∑
−

=

=+++=
1

1
3

3
2

2
1 ...

)  trafficrouting positive (false
n

i
i

innnn

nExpectatio

αααα
  (2) 

Where ni is the number of nodes at distance i from the 
initiating node. In contrast, for the case of all nodes using 
the same Bloom Filters, we have 

)(...

)lengthpath  routing positive (false

nAPL

nExpectatio

αααα =+++=
 (3) 

Where APL(n) is the average path length in the 
overlay network, and 

)1(...

) trafficrouting positive (false

321 −=+++= nnnn

nExpectatio

αααα
  (4) 

Clearly, the value of (3) and (4) are much larger than 
that of (1) and (2), especially for large network size n. 
Therefore, using different Bloom Filters in AIR greatly 
reduces the false positive routing compared to using the 
same ones. For the case that there is matching object(s) 
stored in the system, AIR guarantees to route the message 

to the node that has the object. The total false positive 
network traffic can be seen as the sum of those starting 
from each node on the routing path, and the results are 
similar.  

 
 query(i) 

object j object j object j 

BF1(i)=BF1 (j) 

BF2(i)=BF2(j) BF3(i)=BF3(j) 

object j object j 

query(i) 

α 

α 

α α 

α  α 
 

α 

α 

α2 

BF4(i)=BF4(j) 

BF1(i)=BF1 (j) 

BF1(i)=BF1 (j) 

BF1(i)=BF1 (j) BF1(i)=BF1 (j) 

BF1(i)=BF1 (j) 

(a)         (b) 
 

Figure 8: AIR with same or different Bloom Filters 
 
The idea of using different Bloom Filters at different 

nodes shares the same intuition with the DHT systems. In 
both cases, the nodes are designed to take different 
“views” of the system, so that at each step a message is 
forwarded, it benefits from the new knowledge and 
becomes more (accurately) informed about its destination.  

Bloom Filter configurations 
We present AIR performance using two 

configurations for Bloom filters: the number of bits for 
each index-value (m/n) being 4 and 8, and we always use 
4 hash functions. We present the result of these two 
configurations because their tradeoff between memory 
space consumption and network overhead generated are 
expected to be of most practical interest. As will be 
shown later, using 8 bits per index-value, AIR achieves so 
good accuracy that we expect further improvement is not 
worth the additional space required. Using 4 bits per 
index-value generates more network overhead but may 
still be acceptable. More interesting results of combining 
these two configurations will be also discussed.  

The hash functions are built by first concatenating 
local IP address with the index-value, then calculating the 
MD5 signature [18] of the result string, which yields 128 
bits. We divide the 128 bits into four 32-bit words, and 
take the modulus of each 32-bit word by the bit vector 
size m as the four hash values for the index. MD5 is a 
cryptographic message digest algorithm that hashes 
arbitrary length strings to 128 bits. We select it because of 
its well-known properties and relatively fast 
implementation. The Bloom Filters thus constructed use 
different hash functions at each node and result in 
independent false positive probabilities. This concept will 
serve as the basis for our analysis. 

3.2 Basic AIR performance  

In this section, we present performance of basic AIR 
design, in which AIR nodes use different Bloom Filters 
but with the same configuration. Because AIR overlay 

6



topology is configurable based on application-specific 
features, we experiment with two highly different tree 
topologies and study their impact on AIR performance. 
First, we generate the tree topology using the network 
construction process described in Section 2: each time 
when a new node joins the network, it uniformly 
randomly selects an existing node to be its neighbor. We 
call such a tree an evolvement tree. We then generate a 
uniform random tree topology, using the random walk 
process proposed by Broder in [1] . The random tree has a 
uniform probability to be any one of all the possible tree 
structures connecting the n nodes in the system. The 
degree distributions of these topologies are compared in 
Figure 9, together with the power law distribution, which 
is found to prevail in the degree distribution of Internet 
topologies. Figure 9 shows that an evolvement tree has a 
higher fraction of high-degree nodes than the power law 
distribution, while most of the nodes in the random trees 
have very low degrees. Therefore, the evolvement tree has 
a relatively dense shape while the uniform tree has a 
sparser one. In this paper, we will focus on analysis in the 
evolvement tree topology, as it is the more realistic 
topology for a P2P overlay network.  

 

0%

20%

40%

60%

80%

100%

degree

C
um

ul
at

iv
e 

di
st

rib
ut

io
n 

fu
nc

tio
n 

(C
D

F
)

random tree

powerlaw
distribution

evolvement tree

n-1 1 

 
Figure 9: Comparison of three degree distributions. 

 
We compare the network traffic generated in AIR with 

a conjectured “accurate routing” scenario, in which all the 
routing tables are perfectly accurate and the query 
messages are forwarded toward and only toward the 
nodes that have the queried objects. Accurate routing 
achieves optimal network efficiency in a given AIR 
overlay network. However, we expect such high 
efficiency comes at the cost of larger memory space 
requirement and/or more complicated routing table 
lookup operations. 

AIR performance is evaluated in terms of total 
network traffic generated for routing a query message.  

Figure 10 shows the simulation results of average 
number of hops a query message propagates when routed 
to a node that has the object. For accurate routing, this 
number equals to the path length from the initiating node 
to the destination node (there is only one such path in the 
acyclic overlay network). For AIR, it includes the correct 
routing on the path, and some extraneous routing off the 
path due to false positive index results.  

As shown in Figure 10, the extraneous network traffic 
in approximate routing is quite low in both evolvement 
tree and random tree topology. Especially, with the 
configuration of 8 bits per index-value, AIR performance 
is very close to that of accurate routing. Because the 
evolvement tree has a denser structure, its average 
distance for both accurate and approximate routing is less 
than in the random tree. However, the fraction of false 
routing in total network traffic is lower in the random tree 
than in the evolvement tree. This can be explained by 
formula (2): 

∑
−

=

=+++=
1

1
3

3
2

2
1 ...

) trafficrouting positive (false
n

i
i

innnn

nExpectatio

αααα
 

Which indicates that in a dense graph with many high 
degree nodes, ni is large for small i, and the expectation of 
false positive network load would be relatively high.  

 

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000

Number of servers

N
et

w
or

k 
tr

af
fi

c 
fo

r 
on

e 
qu

er
y 

m
es

sa
ge

AIR m/n=8 random AIR m/n=4 random
Accurate random AIR m/n=4 evolvement
AIR m/n=8 evolvement Accurate evolvement

 

Figure 10: Simulation results of AIR performance in routing 
query message to matching objects in system. 

 
In appendix, we analyze AIR and accurate routing in 

evolvement tree in more detail. We show that the average 
path length in evolvement tree is O(logn), i.e. a query 
message arrives at the destination node in O(logn) steps. 
Based on the recursion formulas in appendix, we plot the 
AIR overhead, in terms of percentage compared with total 
traffic in accurate routing, for network of larger scale in 
Figure 11. In a network of 10 million nodes, using 8 bits 
for each index-value, the approximate routing overhead is 
as low as 20%. Using 4 bits for each index-value, the 
overhead is 3 times of the accurate routing. In practice, 
such overhead may still be acceptable, especially if 
compared with the network bandwidth consumed in 
downloading the object located.  

7



 

0%

50%

100%

150%

200%

250%

300%

350%

100 1k 10k 100k 1m 10m

Number of nodes 

E
xt

ra
ne

ou
s 

ne
tw

or
k 

tr
af

fi
c

m/n=4

m/n=8

 

Figure 11: Analytical results of AIR overhead in routing 
query message to matching objects in the system. 

 
If the P2P system does not have any object matching a 

query message, we study the average number of hops 
such message propagates in AIR, due to the false positive 
index results. Table 1 shows that on average, AIR 
forwards the query for no more than one hop. In 
appendix, we prove that this number converges to 2α/(1-
2α) in the evolvement tree, where α is the false positive 
ratio of one Bloom Filter. This limit equals 0.543 for 
m/n=4 and 0.056 for m/n=8. In comparison, recall that the 
message would be routed O(logn) steps in DHT systems, 
and flooded over the network in Gnutella.  

Table 1: AIR performance for routing query message that 
has no matching object in the system. 

 
Average number of hops a non-hit 

query message is forwarded 
Random tree Evolvement tree 

#nodes 

m/n=4 m/n=8 m/n=4 m/n=8 

100 0.400 0.047 0.523 0.052 
200 0.412 0.049 0.525 0.053 
500 0.422 0.049 0.530 0.053 

1000 0.442 0.050 0.533 0.053 
2000 0.445 0.052 0.541 0.054 
5000 0.447 0.052 0.538 0.054 

 

3.3 Exploiting Heterogeneity 

So far, we have made the implicit assumption that the 
responsibility across AIR nodes is uniform, and that all 
nodes participate and contribute equally in AIR routing. 
Measurements in [20] indicate that the set of hosts 
participating in real P2P systems such as Napster [19]  
and Gnutella is heterogeneous with respect to many 
characteristics: Internet connection speeds, latencies, 
lifetimes, and shared data. In this section we study how to 
actively exploit node heterogeneity in AIR. 

The strategy is to associate the nodes’ contributions to 
AIR to their capabilities. For example, the nodes with 
more available memory space maintain their routing 
tables with higher accuracy; those with high bandwidth, 

low latency network access take more AIR neighbors. At 
the same time, the requirement for less capable nodes is 
reduced. 

AIR nodes are divided into three categories: stub 
nodes, routers and super routers. Stub nodes are to 
represent the most unstable and incapable nodes in a P2P 
system. Due to their short lifetime in the system or/and 
lack of resource, stub nodes do not maintain AIR routing 
tables. Instead, they unconditionally forward all query 
messages received to their AIR neighbors. Routers and 
super routers are the more reliable and capable 
participants that take the responsibility of AIR routing. 
Super nodes are like the “hub nodes” in Gnutella or 
KaZaa that are highly stable and with abundant resources. 
In their routing table configurations, we assume that super 
routers use 8 bits for each index-value while normal 
routers use 4 bits. 

We experiment with two proportions of the three 
categories as shown in Table 2. They are set to model the 
distribution found in [25] of Napster and Gnutella users 
with network connections of less than 300Kbps, between 
300Kbps and 3Mbps, and beyond 3Mbps. During the 
process of network construction, we assume super routers 
are the nodes that join the AIR network first, then the 
normal routers, and finally the stub nodes. This sequence 
is consistent with the stability characteristics, and result in 
connectivity distribution that naturally biases toward 
nodes with high capabilities. Each new AIR node still 
randomly selects an existing node to be its neighbor. This 
is because the metric used in network construction can be 
orthogonal to the resource characteristics. 

Table 2: Distribution of heterogeneity in AIR. 
 

 Stub 
nodes 

Routers Super 
routers 

Hetero_2_1_1 50% 25% 25% 
Hetero_5_4_1 50% 40% 10% 

 
The performance of heterogeneous configurations is 

presented in Table 2, in comparison with the 
homogeneous configurations described in Section 2. Note 
that in terms of total memory usage in overall AIR 
system, both heterogeneous configurations require less 
amount of memory space than the homogeneous 
configurations.  

Table 3 shows that both heterogeneous configurations 
greatly improved AIR accuracy in routing a query 
message to its destination node, compared to the 
homogeneous 4 bits per index-value configuration. In 
fact, the performance of hetero_2_1_1 even approaches 
the homogeneous 8 bits per index-value case, in which 
every node is configured as a super router. Further 
reducing memory requirements, hetero_5_4_1 
configuration can still keep false positive network 
overhead below 25%. The reason for this is that in the 
heterogeneous settings, the nodes with low “filtering 
power” have also low network connectivity. The false 

8



Table 3: AIR performance with homogeneous and heterogeneous configurations 
 

Extraneous network traffic in routing query 
message to destination node (in percentage 

compared to accurate routing) 

Average number of hops a query message is 
transmitted when the queried object is not 

stored in the system 
Homogeneous 
configurations 

Homogeneous 
configurations 

# nodes 

m/n=4 m/n=8 

Hetero_
2_1_1 

Hetero_5
_4_1 

m/n=4 m/n=8 

Hetero_2_
1_1 

Hetero_5_
4_1 

100 56.53% 10.05% 9.84% 21.05% 0.523 0.052 0.667 0.820 
200 66.42% 9.93% 9.51% 20.89% 0.525 0.053 0.668 0.844 
500 80.46% 10.76% 10.13% 21.55% 0.530 0.053 0.674 0.853 

1000 88.28% 11.97% 11.27% 23.00% 0.533 0.053 0.686 0.847 
2000 107.88% 12.53% 12.16% 23.64% 0.541 0.054 0.682 0.843 
5000 139.15% 12.97% 12.65% 24.02% 0.538 0.054 0.690 0.846 

 
positive decisions these nodes make generate relatively 
low real network traffic. An extreme case is that for a stub 
node that has only one degree. When the queried object is 
stored anywhere in the system other than the stub node 
itself, the unconditional forwarding by such a stub node is 
in fact usually a correct operation. The situation is 
different if the queried object is not in the system. In this 
case, the unconditional forwarding is always a wrong one. 
However, the network traffic generated is still quite low 
and the queries can still be dropped off within less than 
one step. 

Exploiting heterogeneity in node characteristics is 
highly effective in improving scalability of the AIR 
system. Now, the efficiency of AIR routing no longer 
relies on the premise that every participant exhibits 
satisfying performance. Instead, it is enough if some 
nodes in the system are capable to do so. The system is 
now able to accommodate a more diversified set of nodes, 
especially those that are volatile and less cooperative. It is 
especially promising that even when half of the nodes 
keep no routing information at all, AIR still achieves 
fairly high accuracy. The technique to exploit 
heterogeneity is also easy to deploy. The heterogeneous 
configurations do not have to fall into an explicit 
hierarchy. Each AIR node can configure its Bloom Filter 
to match its characteristic with high flexibility.  

3.4 Data grouping  

Up to now, each AIR node maintains global index for 
all objects in the system. They do this more for “common 
good” than for their self-interest. It has been observed that 
users in P2P systems have highly focused interests [30] . 
For example, a user may care for particular genre of 
music or certain field of scientific study. To exploit such 
interest locality, we propose the technique of data 
grouping. 

The logical space of index-values is partitioned into g 
groups. An object is said to belong to one group if one of 
its index-value falls into the group. The principle of the 

partition is to group “similar” objects together, i.e. the 
objects that belong to the same group have higher  
probability to be queried or/and stored together than the 
objects in different groups.  

An AIR node is said to have interest in a group if it 
has objects in that group that it wants to share, or that it 
wants to query about objects in that group. For each 
group, all the interested nodes organize into an acyclic 
overlay network in the same way as in the basic AIR. We 
call such an overlay a group-tree. When receiving a query 
message, the AIR node first determines the group the 
queried index-value belongs to, and then routes the 
message in the corresponding group-tree. 

In simulation, we divide index-values into 20 groups. 
Each AIR node randomly joins k of these groups, based 
on each group’s popularity. The group popularity is set to 
follow Zipf distribution [3] , i.e. the probability that a 
node joins group i is proportional to the ranking of group i 
in terms of its popularity: Pi  ~ i-α. α is set to 1, based on 
results in [31] . The implication of this distribution is that 
a few groups are very popular while most groups have 
low popularity. Figure 12 shows the real group sizes, in 
terms of percentage of nodes it has, in descending order. 
Note that the distribution is not always consistent with the 
popularity distribution; instead, it is affected by k, the 
number of groups each node joins. The broader a node’s 
interest is, the more evenly distributed the group sizes. 
The average routing table size after grouping is shown in 
Figure 13. For comparison, we also plot the results for 
uniform group popularity case. It is clear that the more 
focused a node’s interest is, the smaller routing table is 
needed. The difference between the two curves is because 
with group popularity as Zipf distribution, a node has 
higher probability to join a popular group, which also 
tends to have more members. Study in [5] , [30] showed 
that in a P2P file sharing system, there often exist small 
subsets of users that share the same interests. In a system 
of thousands of users, a high fraction of a user’s queries 
can be answered by asking only ten other users. 
Therefore, in reality, we expect each AIR node joins a 
small number of groups, and the routing table sizes are 

9



significantly reduced compared to without data grouping. 
Furthermore, because the query messages now propagate 
only between a subset of nodes, the average routing path 
length is reduced. The network traffic load is the same as 
querying in a smaller network with the size of the group. 

Data grouping also offers flexible optimization 
opportunities. The overlay network topology and 
configuration strategy for each group-tree can be finely 
customized based on the special features in the data 
group. The overall AIR overlay network with multiple 
embedded group-trees is also more robust and resilient 
than a single tree topology.  

 

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Group

G
ro

up
 s

iz
e 

k=20

k=10

k=5

k=1

 
Figure 12: Group sizes based on Zipf group popularity. 

 

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920

Number of groups a server joins

R
ou

tin
g 

ta
bl

e 
si

ze

zipf popularity

uniform popularity

 

Figure 13: Routing table sizes with data grouping. 

4. Applicability analysis  

Scalability 
Scalability of AIR system has two folds, the routing 

table space consumption and the network traffic load.  We 
have shown that AIR routing can achieve close-to-optimal 
accuracy. In this section we analyze the AIR scalability 
based on the memory space requirement and management 
cost.  

AIR indexes on the index-values of objects. For 
applications such as keyword-based search in a P2P file 
sharing system, the number of index-values can be higher 
than the object quantity, while when using AIR to support 
group communication, many objects share the same 
index-value. In our analysis, we simply assume that the 

number of distinct index-values in the system to be 
roughly equal to the total number of objects.  

We consider a P2P system with 100 million objects. 
Assume that each user is interested in 10% of all the 
objects, and the content popularity follows Zipf 
distribution. Figure 13 shows that the average AIR 
routing table indexes about 20% of all objects. Using 8 
bits per object configuration, the Bloom Filters in a 
routing table need 20%×100×8/8 =20 MB space. The 
routing table may also contain other information such as 
ranking, layering and cached deletion list. We assume that 
these data adds to no more than 10 MB. At the time of 
writing, 30 MB is a very reasonable memory requirement 
for an application software running on a normal PC. We 
expect this much memory space to be easily affordable by 
an AIR node, especially the routers and super routers. 
(The algorithm of AIR does not require routing tables to 
be in memory. We do not consider the possibility of using 
disk space to avoid degradation of AIR performance.) 

As stated in Section 2, object insertion and deletion 
trigger advertisement messages that may propagate to the 
entire network. Assume that in a dynamic P2P system, 
10% of all content change every day, and each update 
message contains 1000 bits. The network traffic of these 
update messages is 20%×100×10%/(24×3600)=23.15 
Kbps. Note that the update messages are only exchanged 
between AIR routers and super routers, which are 
supposed to have network bandwidth higher than 300 
Kbps. Therefore, the background traffic consumes less 
than 7.7% of the total network bandwidth available, 
which should be a reasonable management overhead.  

From these analyses, we expect AIR to be able to 
support P2P systems of hundreds of millions of objects.  

Potential applications 
One of the motivations for AIR work is to provide 

scalable object location scheme for P2P applications that 
cannot be directly supported by DHT systems. A 
fundamental difference between DHT and AIR 
functionality is that AIR inherently supports multiple 
object location. This can be very useful in supporting 
application level group communication. Furthermore, 
because AIR can support large number of index-values, 
the communication can also be based on finer criteria than 
explicitly established groups. A typical application is 
distributed content-based publish-subscribe system [10] . 
In such system, a user subscribes for certain kind of 
events that are going to happen in the future. 
Subscriptions are submitted to a server (node) in an 
overlay network. Events are published to any of the 
servers in the system and AIR can be used to route the 
events to all the nodes that have matching subscriptions. 

AIR can also be used in implementing a write-able file 
sharing system. Update is possible because AIR can 
locate all replicas of a file and maintain consistency 
between multiple copies.   

10



Another application for AIR is distributed search 
engine. Bloom Filters offers space saving and faster 
membership check than text-based operations. However, 
an open question is how to efficiently support Boolean 
queries on distributed index structures.  

5. Related work   
There have been many recent works on improving or 

extending one of the two major established P2P system 
models: the Gnutella-like unstructured systems and the 
highly structured DHT systems. 

 [5] , [30] proposed to improve scalability of Gnutella-
like systems by exploiting interest-based locality. The 
basic assumption is that in a P2P file sharing system, if a 
peer has content that matched a previous query, it is very 
likely that it also has content that will match other queries 
from the same peer. Such peers are said to share the same 
interest. The approach is to build additional overlay 
structure on top of the Gnutella network, and direct search 
messages to first propagate within this overlay. Only 
when the overlay fails to locate an object will the message 
be flooded over the network. Results show that the 
approach can decrease the amount of traffic load in the 
system and the time to locate content. However, because 
of their reliance on the underlying Gnutella scheme, a 
query message is not guaranteed to find an object stored 
in the system.  

To actively exploit the heterogeneous characteristics 
across the peers in a P2P system [27] , Lv et. al [17]  
proposed a flow control method that matches the skewed 
network load, generated by the routing algorithms they 
used, with heterogeneous peer capabilities. [14]  
introduced a two-level hierarchy architecture that groups 
peers into clusters. The “delegate node” in each cluster 
takes more routing responsibility and serves as a central 
directory server for the cluster. These schemes do not 
guarantee finding an existing object either.   

The DHT functionality has proved to be a useful 
substrate for large distributed systems; a number of 
projects are proposing to build Internet-scale facilities 
layered above DHTs. [8] and [25] are two read-only 
distributed storage systems built on top of Chord [32] and 
Pastry [9] . To support data replication, caching, and load 
balance, both systems modified the routing algorithm and 
semantic of the underlying DHT overlay. Another 
persistent storage utility, OceanStore [15] , provides data 
privacy, allows client updates, and guarantees durable 
storage. However, these features come at the price of high 
complexity, and it is assumed that the core system will be 
maintained by commercial providers. DHT routing has 
also been used to implement application-layer multicast 
[21] [34] and event notification services [5] [26] . In these 
works, DHT routing is used to locate the rendezvous node 
for a communication group, and a separate multicast tree 
has to be built for real data dissemination. Unlike the 
unstructured systems, the tight coupling of data content 

and their location in DHT systems has relatively restricted 
their potential in exploiting content locality and resource 
heterogeneity. 

In this paper, we improve the efficiency of query 
routing in a simple, unstructured P2P system. The routing 
scheme is effective in the sense that all matching objects 
are guaranteed to be located. The idea of content-based 
routing has been used in distributed publish-subscribe 
systems [6] and intra-agent communications [29] . The 
typical system architecture and content format in these 
applications are usually different from a P2P system and 
different methodology is used.  

In AIR implementation, we used the technique of 
Bloom Filter to balance the tradeoff between routing 
accuracy and index scalability. Bloom Filter has been 
used in Web caching [11] , resource routing [23] , and 
free text search [22] . We are different from these works 
in that AIR is achieved through cooperation of 
independent Bloom Filters in an overlay network. To our 
best knowledge, no work has studied the performance and 
properties of such systems.    

6. Conclusion and future work  
In this paper, we proposed the approach of content-

based routing for query resolution in a P2P system, and 
presented Approximate Index Routing as one 
implementation. 

We explored the tradeoff in routing based on 
approximate index, and found that cooperation between 
nodes with different approximations greatly improves 
routing accuracy and efficiency. At the same time, AIR is 
highly effective in that it guarantees to find all matching 
objects in the system, and stops quickly if such object 
does not exist. Due to its simple and flexible system 
structure, AIR is able to take advantage of application 
specific properties such as resource heterogeneity and 
content locality. In all, analysis shows that AIR can scale 
to P2P systems of hundreds of millions of objects, and 
provides a promising routing solution for many potential 
applications. 

Much future work remains. We plan to deploy 
approximate index routing in a real P2P system, and 
further analyze its dynamic behavior. We also plan to 
investigate the optimal configurations of AIR for a given 
application background. An intriguing question is how to 
implement AIR in more flexible overlay topologies, such 
as mesh networks. 

References  
[1]  B. Bloom, “Space/time trade-offs in hash coding 

with allowable errors”. In Commun. ACM, vol. 13 
no. 7, pp. 422-426, July 1970. 

[2]  A. Broder. “Generating random spanning trees”. In 
IEEE 30th Annual Symposium on Foundations of 
Computer Science, pages 442--447. IEEE, 1989 

11



[3]  Lee Breslau, Pei Cao, Li Fan, Graham Phillips, 
Scott Shenker (2000), “Web caching and Zipf-like 
distributions: evidence and implications”, 
Proceedings of INFOCOM'99 (IEEE Press). 

[4]  A. Broder, M. Mitzenmacher. “Network 
applications of bloom filters: A survey”, In 
Allerton, 2002 

[5]  L. F. Cabrera, M. B. Jones, and M. Theimer, 
“Herald: Achieving a global event notification 
service”, In HotOS VIII, May 2001. 

[6]  A. Carzaniga, D. Rosenblum, and A. Wolf. 
“Achieving Scalability and Expressiveness in an 
Internet-Scale Event Notification Service”. In 
Proceedings of the 19th Annual Symposium on 
Principles of Distributed Computing (PODC 2000. 

[7]  E. Cohen, A. Fiat, and H. Kaplan, “A case for 
associative peer-to-peer overlays”. In Proc. Of 
Workshop on Hot Topics in Networks, 2002. 

[8]  F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, 
I.Stoica, “Wide-area cooperative storage with 
CFS”. In proceedings of the 18th ACM Symposium 
on Operating Systems Principles (SOSP ’01) 

[9]  P. Druschel, and A. Rowstron, “Pastry: Scalable, 
distributed object location and routing for large-
scale peer-to-peer systems”. In Proceedings of the 
18th IFIP/ACM International Conference on 
Distributed Systems Platforms (Middle-ware 2001) 
Nov 2001. 

[10]  P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. 
Kermarrec. “The Many Faces of 
Publish/Subscribe”. Technical report, EPFL, 
Lausanne, Switzerland, 2001 

[11]  L. Fan, P.Cao, J. Almeida, and A.Z. Broder. 
“Summary cache: a scalable wide-area Web cache 
sharing protocol”. In IEEE/ACM Transactions on 
Networking, 8(3): 281-293, 2000 

[12]  Gnutella, http://gnutella.wego.com. 
[13]  KaZaa, http://www.kazaa.com. 
[14]  B. Krishnamurthy, J. Wang, and Y. Xie, "Early 

Measurements of a Clusterbased Architecture for 
P2P Systems," in Proceedings of ACM Sigcomm 
Internet Measurement Workshop, November 2001. 

[15]  J. Kubiatowicz, D. Bindel, P. Eaton, Y. Chen, D. 
Geels, R. Gummadi, S. Rhea, W. Weimer, C. 
Wells, H. Weatherspoon, and B. Zhao. 
“OceanStore: An architecture for global-scale 
persistent storage”. In ACM SIGPLAN Notices, 
35(11): 190-201. November 2001. 

[16]  Q. Lv, P. Cao, K. Li, and S. Shenker, “Replication 
strategies in unstructured peer-to-peer networks,” 
In Proceedings Of ACM International Conference 
on Supper Computing(ICS), 2002. 

[17]  Q, Lv, S. Ratnasamy, S. Shenker, “Can 
heterogeneity make Gnutella scalable”, In First 
International Workshop on Peer-to-Peer Systems 
(IPTPS) 2002, Cambridge, MA, USA, March 
2002.  

[18]  A. J. Menezes, P. C. van Oorschot, and S. A. 
Vanstone, “Handbook of applied cryptography”. 
CRC Press, 1997 

[19]  Napster, http://www.napster.com 
[20]  S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. 

Shenker, “A scalable Content Addressable 
Network”. In Proc. ACM SIGCOMM, pp. 161-172. 

[21]  S. Ratnasamy, M. Handley, R. Karp, S. Shenker, 
“Application-level Multicast using Content-
Addressable Networks”. In Proceedings of  NGC 
2001  

[22]  P. Reynolds and A. Vahdat. “Efficient peer-to-peer 
keyword searching”. Unpublished manuscript. 

[23]  S. C. Rhea and J. Kubiatowicz. “Probabilistic 
location and routing”.  In Proc. of INFOCOM 2002. 

[24]  M. Ripeanu, I. Foster, and A. Iamnitchi, “Mapping 
the Gnutella network: Properties of large-scale 
peer-to-peer systems and implications for system 
design”. In IEEE Internet Computing Journal, vol. 
6 no. 1, 2002. 

[25]  A. Rowstron and P. Druschel, “Storage 
management and caching in PAST, a large-scale, 
persistent peer-to-peer storage utility”. In 18th 
ACM SOSP'01, Lake Louise, Alberta, Canada, 
October 2001.  

[26]  A.I.T. Rowstron, A.-M. KermalTec, M. Castro, and 
P. Druschel. “SCRIBE: The design of a large-scale 
event notification infrastructure”. In Networked 
Group Communication, pages 3043, 2001. 

[27]  S. Saroiu, K. Gummadi, S. Gribble, “A 
measurement study of peer-to-peer file sharing 
systems”. In proceedings of Multimedia 
Conferencing and Networking 2002. 

[28]  S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and 
H. Levy. “An Analysis of Internet Content Delivery 
Systems”. In Proceedings of OSDI 2002, December 
2002 

[29]  N. Skarmeas and K. Clark, “Content based routing 
as the basis for intra-agent communication”, To 
appear in Intelligent Agents V, Springer Verlang. 

[30]  K, Sripanidkulchai, B, Maggs, H, Zhang, “Efficient 
content location using interest-based locality in 
peer-to-peer system”, In Infocom 2003 

[31]  K, Sripanidkulchai, “The popularity of Gnutella 
queries and its implications on scalability.” In 
O’Reilly’s www.openp2p.com (Feb. 2001). 

[32]  I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. 
Balakrishnan, “Chord: A scalable peer-to-peer 
lookup service for internet applications.” In 
Proceedings of the ACM SIGCOMM 2001 

[33]  B.Y. Zhao, J. Kubiatowicz, A. Joseph. “Tapestry: 
An infrastructure for fault-tolerant wide-are 
location and routing”. Tech. R1ep. UCB/CSD-01-
1141., University of California at Berkeley, 
Computer Science Department, 2001.  

[34]  S. Q. Zhuang, B. Y. Zhao, and A. D. Joseph. 
“Bayeux: An architecture for scalable and fault-

12



tolerant wide-area data dissemination”. In 11th 
ACM/IEEE NOSSDAV, New York, June 2001. 

Appendix A. Index routing on 
evolvement tree 

This section presents analysis of network performance 
of index routing on the evolvement tree topology. AIR 
nodes are assumed to use different Bloom Filters but with 
same configuration. Therefore, the false positive result at 
each node is independent but the probability, denoted as 
α, is the same across all nodes. 

The proofs are by induction based on the process that 
the evolvement tree is constructed. 

 
Theorem 1. A query that has no matching object in 

the system is called a non-hit query. The expected number 
of hops a non-hit query message propagates in AIR 
converges to 2α/(1-2α) with α<1/2. 

Proof of Theorem 1: Let vi be a node in the 
evolvement tree of n nodes and fvi(n, α) be the expectation 
of number of hops a non-hit query message initiating 
from vi propagates. Let ni be the number of nodes at 
distance i from node vi in the evolvement tree. Because 
the false positive probability on each node is independent, 
we have  

i
n

i
iv nnf

i
αα ∑

=

=
1

),(     (5) 

When a new node vn+1 joins the tree, it connects to any 
existing node with probability 1/n. If it connects with vi, a 
non-hit query message starting from vi has probability of 
α to traverse the edge (vi, vn+1); if vn+1 connects with a 
node vj and j≠i, a non-hit query message starting from vi 
has probability αdij+1 to traverse the edge (vj, vn+1), where 
dij is the distance between node vi and vj. Therefore,  

)),(1(),(

1
),(

11
),(),1(

1

1

ααα

αααα

αααα

nf
n

nf

n
nn

nf

nn
nfnf

ii

i

ij

ii

vv

n

k

k
kv

ij

d
vv

++=

++=

++=+

∑

∑

=

≠

+

  (6) 

A non-hit query message from node vn+1 has 
probability α to propagate one step to its neighbor and 
then it can be seen as a non-hit query message initiating at 
its neighbor. Therefore, 

∑
=

+=+
+

n

i
vv nf

n
nf

in
1

)),(1(),1(
1

ααα    (7) 

Let gn(α) be the sum of expected network traffic for 
non-hit query messages initiating from each of the n 
nodes, i.e. 

∑
=

=
n

i
vn nfg

i
1

),()( αα     (8) 

Summing (6) for all n nodes and (7) we have 

ααα

ααααα

2)()
2

1(

)(
2

2)()(1

++=

++=+

n

nnn

g
n

g
n

gg    (9) 

13



Now let hn(α) be the average expected network traffic 
for non-hit query message initiating from a random node,  

n

g
h n

n

)(
)(

αα =      (10) 

Substituting (10) to (9) we have 
)(22)(1 αααα nn hh +=+    (11) 

It is clear that if α<1/2, hn(α) converges to 2α/(1-2α) 
and does not converge for α≥1/2.   □ 

In practice, recall from Section 2 that the false positive 
rate of a Bloom Filter is minimized when using k = 
(m/n)ln2 hash functions, in which case  

1for       ,
2

1
)

2

1
( ><≈ kkα     

 
Theorem 2. If a query has a matching object stored in 

the system, the total network traffic in AIR to route the 
query message to a node with the object is O(nα) hops. 

Proof of Theorem 2: Let fvi,vj(n, α) be the total 
network traffic generated in AIR to route a message from 
node vi to node vj. With accurate routing, fvi,vj(n, α) would 
equal to the number of hops on the path in the tree 
connecting vi and vj; using approximate index in AIR, 
fvi,vj(n, α) has an additional part, which is the extraneous 
traffic off the path due to false positive results from the 
Bloom Filters. Let nk as number of nodes whose shortest 
distance to the path (vi, vj) is k. For i≠j, we have 

k
n

k
kvv nnf

ji
αα ∑

=

=
1

, ),(     (12) 

For i=j, fvi, vi(n, α) equals to the expected network 
traffic for a non-hit query message starting from node vi. 
Let gn(α) be defined the same as in (8), we have 

∑
=

=
n

i
vvn nfg

ii
1

, ),()( αα     (13) 

Analogous to the proof in Theorem 1, for 1≤ i, j ≤ n,  

)),((
1

),(),1( ,,, ααααα nf
n

nfnf
jijiji vvvvvv ++=+  (14) 

)),(1(
1

),1( ,
1

, 1
αα nf

n
nf

jini vv

n

j
vv ∑

=

+=+
+

  (15) 

∑
=

+=+
++

n

i
vvvv nf

n
nf

iinn
1

,, )),(1(),1(
11

ααα   (16) 

Let pn(α) be the sum of expected network traffic for 
AIR to route between any pair of the n nodes,  

∑∑
= =

=
n

i

n

j
vvn nfp

ji
1 1

, ),()( αα    (17) 

Summing (14), (15) and (16) we have 

)()(
2

)2()()(1 αααααααα nnnn g
n

p
n

npp ++++++=+
 (18) 

We know from Theorem 1 that gn(α)/n converges to 
constant. If pn(α) to grow faster than O(n), we have  

)(
2

)()(1 αααα nnn p
n

pp
++≈+

   (19) 

Taking derivative of (19) over n, we have  

)(
2

)()(
d

)(d
1 ααααα

nnn
n p

n
pp

n

p +=−= +
   

)()( 2 αα +=⇒ nOpn
    (20) 

Let qn(α) be the average expected network traffic for 
routing a message between any pair of nodes in an 
evolvement tree of n nodes, we have  

)(
)1(

)(
)( ααα nO

nn

p
q n

n =
−

=    □ 

The exact close formula of qn(α) is one of our ongoing 
work. However, now we know asymptotically how fast 
qn(α) grows with n. Next, we ask how fast the network 
traffic of accurate routing grows with n. We know that it 
equals to the length of the path connecting the two nodes 
on the evolvement tree. Therefore, we study the average 
path length in the evolvement tree. 

 
Theorem 3. The average path length in an evolvement 

tree is O(logn) hops. 
Proof of Theorem 3: We observe that by taking 

derivative of (5) over α, we have 
1

1

),( −

=
∑= i

n

i
i

v
in

d

ndf
i α

α
α     (21) 

When α equals 1, the right side of (21) is exactly the 
average length of all paths in the evolvement tree that 
start from node vi. Let t(n) be the total length of all paths 
in the evolvement tree, we have  

1|
d

)(d
)( == αα

αng
nt     (22) 

Taking derivative of recursion formula in (8), we have 

α
α

αα

α
α

αα 2|
d

)()
2

1(d
|

d

)(d
11

1 +
+

= ==
+

n
n

g
ng   (23) 

When α is 1, gn(α) represents the network traffic of 
flooding the whole evolvement tree, which equals n(n-1). 
Substituting  gn(1)=n(n-1) and (22) into (23), we have  

nnt
n

nt 2)()
2

1()1( ++=+      

)log()(2)(
2

d

)1(d 2 nnOntnnt
nn

nt =⇒+=+   (24) 

Let d(n) be the average path length in the evolvement 
tree,  

)(log
)1(

)(
)( nO

nn

t
nd n =

−
= α    (25) 

□ 
   
Therefore, we know that AIR routes a query message 

to the destination node on the evolvement tree within 
O(logn) steps, at the total cost of O(nα) network traffic. 
When the query has no matching object in the system, it is 
given a negative answer in 2α/(1-2α) steps.  

14


