
Edit Automata: Enforcement Mechanisms for

Run-time Security Policies ∗

Jay Ligatti Lujo Bauer David Walker
Department of Computer Science

Princeton University
Princeton, NJ 08544

Technical Report TR-681-03

May 30, 2003

Abstract

We analyze the space of security policies that can be enforced by moni-
toring and modifying programs at run time. Our program monitors, called
edit automata, are abstract machines that examine the sequence of appli-
cation program actions and transform the sequence when it deviates from
a specified policy. Edit automata have a rich set of transformational pow-
ers: They may terminate the application, thereby truncating the program
action stream; they may suppress undesired or dangerous actions without
necessarily terminating the program; and they may also insert additional
actions into the event stream.

After providing a formal definition of edit automata, we develop a rig-
orous framework for reasoning about them and their cousins: truncation
automata (which can only terminate applications), suppression automata
(which can terminate applications and suppress individual actions), and
insertion automata (which can terminate and insert). We give a set-
theoretic characterization of the policies each sort of automaton can en-
force and we provide examples of policies that can be enforced by one sort
of automaton but not another.

1 Introduction

When designing a secure, extensible system such as an operating system that
allows applications to download code into the kernel or a database that allows
users to submit their own optimized queries, we must ask two important ques-
tions.
∗This is a revised and extended version of “More Enforceable Security Policies,” a paper

that first appeared in the Workshop on Foundations of Computer Security, June 2002 [BLW02].

1

1. What sorts of security policies can we expect our system to enforce?

2. What sorts of mechanisms do we need to enforce these policies?

Neither of these questions can be answered effectively without understanding
the space of enforceable security policies and the power of various enforcement
mechanisms.

The first significant effort to define the class of enforceable security policies
is due to Schneider [Sch00]. He investigated the security properties that can be
enforced by a specific type of program monitor. One of Schneider’s monitors
can interpose itself between an untrusted program and the machine on which
the program runs. The monitor can examine the sequence of security-relevant
program actions one at a time and if it recognizes an action that will violate
its policy, the monitor terminates the program. This mechanism is very general
since decisions about whether or not to terminate the program can depend upon
the entire history of the program’s execution. However, since these monitors
can only terminate programs and cannot otherwise modify their behavior, it is
possible to define still more powerful enforcement mechanisms.

In this paper, we re-examine the question of which security policies can be
enforced at run time by monitoring untrusted programs. Our overall approach
differs from Schneider’s, who also used automata to model program monitors, in
that we view program monitors as transformers that edit the stream of actions
produced by an untrusted application. This new viewpoint leads us to define
a hierarchy of enforcement mechanisms, each with different transformational
capabilities:

• A truncation automaton can recognize bad sequences of actions and halt
program execution before the security policy is violated, but cannot other-
wise modify program behavior. These automata are similar to Schneider’s
original security monitors.

• A suppression automaton, in addition to being able to halt program ex-
ecution, has the ability to suppress individual program actions without
terminating the program outright.

• An insertion automaton is able to insert a sequence of actions into the
program action stream as well as terminate the program.

• An edit automaton combines the powers of suppression and insertion au-
tomata. It is able to truncate action sequences and insert or suppress
security-relevant actions at will.

We use the general term security automaton to refer to any automaton that is
used to model a program monitor, including the automata mentioned above.1

The main contribution of this article is the development of a robust theory
for reasoning about these machines under a variety of different conditions. We

1Previous authors [Sch00] have used the term to refer specifically to automata with powers
similar to our truncation automata, which we discuss in Section 3.

2

use our theory to characterize the class of security policies that can be enforced
by each sort of automaton, and we provide examples of security policies that lie
in one class but not another.

More important than any particular result is our methodology, which gives
rise to straightforward, rigorous proofs concerning the power of security mech-
anisms and the range of enforceable security policies. This overall methodology
can be broken down into four main parts.

Step 1. Define the underlying computational framework and the range of secu-
rity policies that will be considered. In this paper, we define the software
systems and sorts of policies under consideration in Section 2.1 through
Section 2.3.

Step 2. Specify what it means to enforce a security policy. As we will see in Sec-
tion 2.4, there are several choices to be made in this definition. One must
be sure that the enforcement model accurately reflects the desires of the
system implementer and the environment in which the monitor operates.
Section 2.5 explains some of the limitations induced by our decisions in
steps 1 and 2.

Step 3. Formally specify the operational behavior of the enforcement mechanism
in question. Sections 3, 4, 5 and 6 define the operational semantics of four
different sorts of monitors and provides examples of the policies that they
can enforce.

Step 4. Prove from the previous definitions that the security mechanism in ques-
tion is able to enforce the desired properties. Sections 3, 4, 5 and 6 state
theorems concerning the security policies that each type of monitor can
enforce. The formal proofs can be found in the Appendix A.

After completing our analysis of edit automata and related machines, we
discuss related work (Section 7). Finally, Section 8 concludes the paper with
a taxonomy of security policies and a discussion of some unanswered questions
and our continuing research.

2 Security Policies and Enforcement Mechanisms

In this section, we define the overarching structure of the secure systems we
intend to explore. We also define what it means to be a security policy, and
what it means to enforce a security policy. Finally, we give a generic definition
of a security automaton as an action sequence transformer.

3

2.1 Systems, Executions, and Policies

We specify software systems at a high level of abstraction. A system S =
(A,Σ) is specified via a set of program actions A (also referred to as program
events) and a set of possible executions Σ. An execution σ is simply a finite
sequence of actions a1, a2, . . . , an. Previous authors have considered infinite
executions as well as finite ones [Sch00]. Some of the applications on which we
might want to enforce policies (such as web servers or operating systems) are
often considered to run infinitely, but in practice their executions will always
eventually terminate. Although we allow A and Σ to be countably infinite,
in this paper we restrict ourselves to finite but arbitrarily long executions to
simplify our analysis. We use the metavariables σ and τ to range over finite
sequences of actions.

The symbol · denotes the empty sequence. We use the notation σ[i] to
denote the ith action in the sequence (beginning the count at 0). The notation
σ[..i] denotes the subsequence of σ involving the actions σ[0] through σ[i], and
σ[i + 1..] denotes the subsequence of σ involving all other actions. We use the
notation τ ;σ to denote the concatenation of two sequences. When τ is a prefix
of σ we write τ � σ. Given a set of executions Σ, pre(Σ) is the set of all prefixes
of all executions in Σ.

In this work, it will be important to distinguish between uniform systems
and nonuniform systems. (A,Σ) is a uniform system if Σ = A? where A? is the
set of all finite sequences of symbols from A. Conversely, (A,Σ) is a nonuni-
form system if Σ ⊂ A?. Uniform systems arise naturally when a program is
completely unconstrained; unconstrained programs may execute operations in
any order. However, an effective security system will often combine static pro-
gram analysis and preprocessing with run-time security monitoring. Such is the
case in Java virtual machines, for example, which combine type checking with
stack inspection. Program analysis, preprocessing, model checking, control- or
data-flow analysis, program instrumentation, type checking, and proof-carrying
code can also give rise to nonuniform systems.

A security policy is a predicate P on sets of executions. A set of executions
Σ satisfies a policy P if and only if P (Σ). Most common extensional program
properties fall under this definition of security policy, including the following.

• Access Control policies specify that no execution may operate on certain
resources such as files or sockets, or invoke certain system operations.

• Availability policies specify that if a program acquires a resource during
an execution, then it must release that resource at some (arbitrary) later
point in the execution.

• Bounded Availability policies specify that if a program acquires a resource
during an execution, then it must release that resource by some fixed point
later in the execution. For example, the resource must be released in at
most ten steps or after some system invariant holds. We call the condition
that demands release of the resource the bound for the policy.

4

• An Information Flow policy concerning inputs s1 and outputs s2 might
specify that if s2 = f(s1) in one execution (for some function f) then there
must exist another execution in which s2 6= f(s1).

2.2 Security Properties

Alpern and Schneider [AS87] distinguish between properties and more general
policies as follows. A security policy P is deemed to be a (computable) property
when it has the following form.

P (Σ) = ∀σ ∈ Σ.P̂ (σ) (Property)

where P̂ is a computable predicate on A?.
Hence, a property is defined exclusively in terms of individual executions.

It may not specify a relationship between possible executions of the program.
Information flow, for example, which can only be specified as a condition on the
set of possible executions of a program, is not a property. The other example
policies provided in the previous section are all security properties.

We assume that the empty sequence is contained in any property. This
describes the idea that an untrusted program that has not started executing is
not yet in violation of any property. From a technical perspective, this decision
allows us to avoid repeatedly considering the empty sequence as a special case
of an execution sequence in future definitions of enforceable properties.

Given some set of actions A, a predicate P̂ over A? induces the security
property P (Σ) = ∀σ ∈ Σ.P̂ (σ). We often use the symbol P̂ interchangeably as
a predicate over execution sequences and as the induced property. Normally,
the context will make clear which meaning we intend.

Safety Properties Properties that specify that “nothing bad ever happens”
are called safety properties [Lam77]. We can make this definition precise as
follows. Predicate P̂ induces a safety property if and only if,

∀σ ∈ pre(Σ).¬P̂ (σ)⇒ ∀σ′ ∈ Σ.(σ � σ′ ⇒ ¬P̂ (σ′)) (Safety)

Informally, this definition states that once a bad action has taken place, thereby
excluding the initial segment of an execution from the property, there is no
extension of that segment that can remedy the situation. For example, access-
control policies are safety properties since once a restricted resource has been
accessed, the policy is broken. There is no way to “un-access” the resource and
fix the situation afterwards.

Our definition of safety differs slightly from that of previous authors. Since
we wish to consider nonuniform systems, σ ranges over pre(Σ) rather than Σ. On
uniform systems Σ = A? and therefore pre(Σ) = Σ; consequently, the definition
we give corresponds exactly to previous work. On nonuniform systems pre(Σ)
is a superset of Σ. In our definition of safety, this implies that a sequence may
become irremediably bad at a point that does not correspond to a full execution
sequence.

5

Liveness Properties In contrast to safety properties, liveness properties [AS85]
state that nothing exceptionally bad can happen in any finite amount of time.
Any finite sequence of actions can always be extended so that it lies within the
property. Formally, predicate P̂ induces a liveness property if and only if,

∀σ ∈ pre(Σ).∃σ′ ∈ Σ.(σ � σ′ ∧ P̂ (σ′)) (Liveness)

On uniform systems availability is a liveness property. If the program has ac-
quired a resource, we can always extend its execution so that it releases the
resource in the next step. As with safety, considering nonuniformity requires us
to use a modified definition of liveness that lets σ range over pre(Σ) rather than
Σ.

Because we are limiting ourselves to considering only finite sequences, our
definition of liveness excludes many interesting liveness properties, such as ter-
mination. We present the definition of liveness for the sake of comparison with
safety.

Other Properties Alpern and Schneider [AS87] show that any property can
be decomposed into a combination of a safety property and a liveness property.
Bounded availability, for example, is a property that combines safety and live-
ness on uniform systems. Suppose our bounded-availability policy states that
every resource that is acquired must be released and must be released at most
ten steps after it is acquired. This property contains an element of safety be-
cause there is a bad thing that may occur (e.g., taking eleven steps without
releasing the resource). It is not purely a safety property because there are
sequences that are not in the property (e.g., we have taken eight steps with-
out releasing the resource) that may be extended to sequences that are in the
property (e.g., we release the resource on the ninth step).

2.3 Security Automata

One way of enforcing security properties is with a monitor that runs in parallel
with a target program [Sch00]. Whenever the target program wishes to execute
a security-relevant operation, the monitor first checks its policy to determine
whether or not that operation is allowed. If the target program’s execution
sequence σ is not in the property, the monitor transforms it into a sequence σ′

that obeys the property.
A program monitor can be formally modeled by a security automaton A,

which is a deterministic finite or infinite state machine (Q, q0, T) that is defined
with respect to some system (A,Σ). Q specifies the possible automaton states
and q0 is the initial state. Each variety of automata will have a slightly differ-
ent sort of complete, deterministic transition function T , and these differences
account for the variations in their expressive power. The exact specification of
T is part of the definition of each kind of automaton.

We will specify the execution of each different kind of security automaton A
using a labeled operational semantics. The basic single-step judgment will have

6

the form (σ, q) τ−→A (σ′, q′) where σ denotes the sequence of actions that the
target program wants to execute; q denotes the current state of the automaton;
σ′ and q′ denote the action sequence and state after the automaton takes a single
step; and τ denotes the sequence of actions produced by the automaton. The
input sequence σ is not observable to the outside world whereas the outputs,
τ , are observable. When we consider nonuniform systems, we will constrain σ
rather than τ (i.e., τ may be any element of A?).

We generalize the single-step judgment to a multi-step judgment as follows.
The basic multi-step judgment has the form (σ, q) τ=⇒A (σ′, q′).

(σ, q) τ=⇒A (σ′, q′)

(σ, q) ·=⇒A (σ, q) (A-Reflex)

(σ, q) τ1−→A (σ′′, q′′) (σ′′, q′′) τ2=⇒A (σ′, q′)

(σ, q)
τ1;τ2=⇒A (σ′, q′) (A-Trans)

In this paper we consider security automata whose transition functions take
the current state and input action (the first of the actions that the target pro-
gram wants to execute) and returns a new automaton state and the sequence
of actions the automaton outputs. Our automata may or may not consume the
current input action while making a transition.

2.4 Enforceable Properties

To be able to compare and contrast the power of various security mechanisms,
it is crucial to have a rigorous definition of what it means for a mechanism to
enforce a security property. We believe that enforcement mechanisms can only
accomplish their task effectively when they obey the following two abstract
principles.

(Soundness) An enforcement mechanism must ensure that all observable out-
puts obey the property in question.

(Transparency) An enforcement mechanism must preserve the semantics of
executions that already obey the property in question.

The first criterion requires that our automata transform bad program ex-
ecutions in such a way that their observable outputs obey the property. A
security mechanism that allows outsiders to observe executions that do not sat-
isfy the given policy is an unsound and inadequate mechanism. The second
criterion requires that enforcement mechanisms operate invisibly on executions
that obey the property in question. In other words, any editing operations that
they perform must not change the meaning of a valid execution.

7

Conservative Enforcement. When an enforcement mechanism is able to
obey the first criterion but not necessarily the second, we say that the mechanism
enforces the property conservatively.

Definition 1 (Conservative Enforcement)
An automaton A with starting state q0 conservatively enforces a property P̂ on
the system (A,Σ) if and only if ∀σ ∈ Σ ∃q′ ∃σ′ ∈ A?.

1. (σ, q0) σ′=⇒A (·, q′), and

2. P̂ (σ′)

Conservative enforcement gives the automaton great latitude. The rela-
tionship between the automaton’s output and the output of the target is not
constrained, so the automaton may choose to enforce policies simply by always
outputting a particular stream of actions (or nothing at all), regardless of the
behavior of the target. Such an automaton is able to enforce any property, but
often not in a useful manner. The existential quantification of q′ and σ′ ensures
that the automaton eventually halts on all inputs.

Precise Enforcement. In order to formalize the second enforcement criterion
(Transparency), we must be specific about what it means to preserve the
semantics of a program execution. However, since this abstract notion may
differ substantially from one computational context to the next, we offer a couple
of different definitions. The simplest reasonable definition requires that the
automaton in question outputs program actions in lockstep with the target
program’s action stream.

Definition 2 (Precise Enforcement)
An automaton A with starting state q0 precisely enforces a property P̂ on the
system (A,Σ) if and only if ∀σ ∈ Σ ∃q′ ∃σ′ ∈ A?.

1. (σ, q0) σ′=⇒A (·, q′),

2. P̂ (σ′), and

3. P̂ (σ)⇒ ∀i ∃q′′. (σ, q0)
σ[..i]
=⇒A (σ[i+ 1..], q′′)

An automaton precisely enforces a property if and only if it conservatively
enforces the property and outputs actions in lockstep with the target applica-
tion. The automaton must not interfere with program execution in any way
when the input obeys the property; every action in a valid input sequence must
be accepted before the next action is considered. Precise enforcement is often the
right correctness criterion for security monitors when any delay in outputting
program actions will change the semantics of the application. This is usually the
case in interactive applications that require an action to return a value before
continuing.

8

Effective Enforcement. Our definition of precise enforcement does not rec-
ognize the fact that it is often the case that two syntactically different action
sequences may be semantically equivalent. This often happens in three sorts of
ways:

1. A sequence containing unnecessary actions or a series of idempotent ac-
tions may be equivalent to a sequence in which one or more of these
actions are removed. In some systems, for example, closing a file twice in
succession is equivalent to closing it just once.

2. A sequence which replaces some action with a different action that has the
same semantics may be considered equivalent to the original sequence. It
may also be permissible to replace several actions with a single action that
subsumes their behavior. For example, an action that opens a socket fol-
lowed by an action that sends data on the socket is semantically equivalent
to a macro instruction that does both.

3. A sequence in which two or more independent actions are permuted may
be equivalent to the original sequence. For example, if we want to open
two different files, the order in which we do this may not matter.

Our final definition of enforcement uses a system-specific equivalence relation
(∼=) on executions to take these possibilities into account. We require that the
relation be reflexive, symmetric, and transitive. Moreover, any property that
we might consider should not distinguish equivalent sequences:

σ ∼= σ′ ⇒ P̂ (σ)⇔ P̂ (σ′) (Equivalence)

With our equivalence relation in hand, we can give a concrete definition of what
it means for a security automaton to effectively enforce a security property.

Definition 3 (Effective Enforcement)
An automaton A with starting state q0 effectively enforces a property P̂ on the
system (A,Σ) if and only if ∀σ ∈ Σ ∃q′ ∃σ′ ∈ A?.

1. (σ, q0) σ′=⇒A (·, q′),

2. P̂ (σ′), and

3. P̂ (σ)⇒ σ ∼= σ′

Informally, an automaton effectively enforces a property whenever it conser-
vatively enforces the property and obeys the principle of transparency.

2.5 Limitations

As always when reasoning about security, one must be acutely aware of situa-
tions in which formal results do not apply and of attacks that can come from
outside the model. In our case, there are several realistic situations in which
security automata fail to enforce a desired policy.

9

• The policy is not a predicate on execution sequences. If the policy depends
upon some external environmental factors, such as the value of some se-
cret that has been hidden from the monitor, the monitor may not be able
to enforce the policy properly. Moreover, because monitors only see indi-
vidual sequences of actions and cannot in general base decisions on other
executions of the target application, security automata are enforcers of
properties rather than general policies.

• The monitor is unable to effectively manipulate (insert, suppress, etc.)
certain security-relevant actions. In a real-time system, some properties
might not be enforceable because the monitor simply cannot perform the
expected computation in the necessary real-time window. Alternatively,
there may be some data (secret keys, passwords, etc.) that the monitor
cannot effectively synthesize. This might mean that the monitor is unable
to insert certain program actions and enforce certain properties.

• The monitor is unable to observe certain security-relevant actions. If the
application has direct access to some hardware device and the monitor is
unable to interpose itself between the application and the device, it may
be unable to enforce certain properties.

• The monitor is compromised by the untrusted program. If the application
is able to corrupt the monitoring code or data then the monitor will not
be able to enforce any meaningful properties. In practice, this means that
any software monitor must be isolated from the application using safe
language technology or operating system support.

3 Truncation Automata

The first and most limited sort of security automaton that we will investigate is
the truncation automaton. A truncation automaton does not change the target’s
output in any way unless the target attempts to invoke a forbidden operation.
If this occurs, the truncation automaton halts the target program. This sort
of automaton is the primary focus of Schneider’s work [Sch00]. However, he
viewed truncation automata as sequence recognizers. To fit this idea into our
framework, we recast these machines as sequence transformers.

3.1 Definition

A truncation automaton T is a finite or infinite state machine (Q, q0, δ) that is
defined with respect to some system (A,Σ). Q specifies the possible automaton
states and q0 is the initial state. The partial function δ : A×Q→Q specifies
the transition function for the automaton that indicates that the automaton

10

should accept the current input action and move to a new state. On inputs for
which δ is not defined, the automaton halts the target program.

The operational semantics of truncation automata is specified below.

(σ, q) τ−→T (σ′, q′)

(σ, q) a−→T (σ′, q′) (T-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) ·−→T (·, q) (T-Stop)

otherwise

As described in Section 2.3, we extend the single-step relation to a multi-step
relation using reflexivity and transitivity rules.

3.2 Precisely Enforceable Properties

Erlingsson and Schneider [UES99, UES00] demonstrate that mechanisms similar
to truncation automata can precisely enforce important access-control proper-
ties including software fault isolation and Java stack inspection. Interestingly,
although the definition of truncation automata is independent of the definition
of safety, when we limit our attention to uniform systems we find that truncation
automata can precisely enforce exactly the set of safety properties.

Theorem 1 (Uniform Precise T-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by a

truncation automaton if and only if ∀σ ∈ pre(Σ). ¬P̂ (σ)⇒ ∀σ′ ∈ Σ. (σ � σ′ ⇒
¬P̂ (σ′)).

Proof Please see Appendix A for the proof. We omit it here due to its length.
�

As will be the case for all security automata introduced in this paper, we
can expand the set of properties that truncation automata can precisely enforce
by considering how they operate in nonuniform systems. For example, suppose
there is a policy requiring that if a program exits then all open resources must
be closed, and suppose that we are working in a system in which all programs
are instrumented by inserting resource-close actions at every exit point of the
program. Although this is not a safety property because there is an illegal se-
quence (open) that may lead to a legal sequence (open; close), the instrumenting
ensures that all illegal executions will eventually become legal. A truncation
automaton can use this fact to accept potentially illegal sequences.

This example demonstrates that on nonuniform systems truncation automata
can precisely enforce more than just safety properties. It also illustrates, how-
ever, that they can do this only when the nonuniform system rules out many

11

illegal input sequences on which it would be impossible for truncation automata
to precisely enforce the desired property. The extent of a truncation automa-
ton’s power in nonuniform systems is captured by the following theorem.

Theorem 2 (Nonuniform Precise T-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
truncation automaton if and only if there exists a decidable predicate D such
that for all executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. D(σ)⇒ (∀σ′ ∈ Σ. σ � σ′ ⇒ ¬P̂ (σ′))

2. ¬D(σ)⇒ (∀σ′ ∈ Σ. σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)))

Proof See Appendix A. �

Intuitively, when encountering an illegal portion of an input sequence, a
truncation automaton has two options. It may halt if there is no way to correct
this sequence, or it may accept and continue if it can decide that this illegal
input will always be corrected by future actions.

3.3 Effectively Enforceable Properties

In addition to harnessing the power of constraints placed on the set of executions
(Σ) to precisely enforce non-safety properties, truncation automata can take
advantage of a system’s equivalence relation to effectively enforce non-safety
properties, even on uniform systems.

Consider a uniform system whose only actions are to open and close a login
window. We wish to enforce the policy that the first action in any sequence must
close the login window. The policy also allows the login window to be closed and
then opened and closed any number of times, as this is considered equivalent to
closing the window once. All sequences (and only those sequences) of the form
close; (open; close)? satisfy the property, and close; (open; close)? ∼= close. This is
not a safety property because there is an illegal sequence (close; open) that can
be extended into a legal sequence (close; open; close).

A truncation automaton can effectively enforce this property by checking
that the first action closes the login window. If it does then the automaton
accepts the action and halts; otherwise, it does not accept but still halts. This
effectively enforces the property because any legal sequence will be equivalent
to the accepted close action and all sequences emitted by the automaton (either
· or close) obey the property.

As with our example of precise enforcement on nonuniform systems, this
illustrates both that truncation automata can effectively enforce more than just
safety properties and that these non-safety properties are very limited. Before
we can formally characterize the properties effectively enforceable by truncation
automata, we must generalize the transformations truncation automata induce
on instruction sequences into functions that act over sequences of actions. Given
a set of actions A, a function α? : A?→A? is a truncation-rewrite function if it
satisfies the following conditions.

12

1. α?(·) = ·

2. ∀σ ∈ A? ∀a ∈ A.
α?(σ; a) = α?(σ); a, or
α?(σ; a) = α?(σ) ∧H(α?, σ; a)

where H(ρ?, σ) is a predicate defined on a general rewrite function ρ? and a
sequence σ as follows.

H(ρ?, σ)⇔ (∀σ′ ∈ A?. σ � σ′ ⇒ ρ?(σ′) = ρ?(σ))

Informally, H(ρ?, σ) is true if and only if an automaton whose output matches
that of the rewrite function ρ? halts on input σ, ceasing to output any additional
actions. That is, whenever an automaton stops processing its input σ (for
example, by applying rule T-Stop), it cannot examine any extensions to σ, so
its output on any such extension must match its output on σ alone.

The restrictions placed on truncation-rewrite functions capture the opera-
tional restrictions of truncation automata. Condition (1) above ensures that
truncation-rewrite functions do not output actions without receiving any in-
put, and condition (2) stipulates that when examining the current action a,
the rewrite function must either accept and output a (after it has finished out-
putting actions corresponding to earlier input) or halt and output nothing more.
Note that when deciding how to transform an action a, the rewrite function can
base its decision on the history of the entire execution up to a. Hence the input
to the function in condition (2) is σ; a and not just a.

The following theorem specifies the properties effectively enforceable by trun-
cation automata on both uniform (where Σ = A?) and nonuniform systems.

Theorem 3 (Effective T-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
truncation automaton if and only if there exists a computable truncation-rewrite
function α? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (α?(σ))

2. If P̂ (σ) then σ ∼= α?(σ)

Proof See Appendix A. �

4 Suppression Automata

Given our novel view of security automata as sequence transformers, it is a
short step to define new sorts of automata that have greater transformational
capabilities than truncation automata. In this section, we describe suppression
automata and characterize the properties they enforce precisely and effectively.

13

4.1 Definition

A suppression automaton S is a finite or infinite state machine (Q, q0, δ, ω) that
is defined with respect to some system (A,Σ). As before, Q is the set of all
possible machine states, q0 is a distinguished starting state for the machine,
and the partial function δ specifies the transition function. The partial function
ω : A×Q→{−,+} has the same domain as δ and indicates whether or not the
action in question is to be suppressed (−) or emitted (+).

(σ, q) τ−→S (σ′, q′)

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→S (σ′, q′) (S-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

(σ, q) ·−→S (·, q) (S-Stop)

otherwise

Note that although rule S-Stop is not strictly necessary (rather than halting,
the automaton could suppress all further actions), using S-Stop simplifies the
automaton’s specification and decreases its running time.

As before, we extend the single-step semantics to a multi-step semantics
using the reflexivity and transitivity rules from Section 2.3.

4.2 Precisely Enforceable Properties

Similarly to truncation automata, in uniform systems suppression automata can
precisely enforce any safety property and no other properties.

Theorem 4 (Uniform Precise S-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by

a suppression automaton if and only if ∀σ ∈ pre(Σ). ¬P̂ (σ) ⇒ ∀σ′ ∈ Σ. (σ �
σ′ ⇒ ¬P̂ (σ′)).

Proof See Appendix A. �

In a nonuniform system, suppression automata can precisely enforce non-
safety properties not enforceable by truncation automata. For example, consider
the following system S.

14

A = {aq, use, rel}
Σ = {aq; rel,

aq; use; rel,
aq; use; use; rel}

The symbols aq, use, and rel denote the acquisition, use, and release of a
resource. The set of executions includes zero, one, or two uses of the resource.
Such a scenario might arise were we to publish a policy that programs must
release the resource after using it at most two times. After publishing such a
policy, we might find a bug in our implementation that makes it impossible for
us to handle the load we were predicting. Naturally we would want to tighten
the security policy as soon as possible, but we might not be able to change the
policy we have published. Fortunately, we can use a suppression automaton to
suppress extra uses and dynamically change the policy from a two-use policy to
a one-use policy. Notice that an ordinary truncation automaton is not sufficient
to make this change because it can only terminate execution, in which case the
rel symbol would be missing from the end of the sequence. After terminating a
two-use application, a truncation automation would be unable to insert the rel
necessary to satisfy the policy.

To formally characterize the properties that can be precisely enforced by
suppression automata, we again generalize our automata to functions that act
over sequences of symbols. Given a set of actions A, a function ω? : A?→A? is
a suppression-rewrite function if it satisfies the following conditions.

1. ω?(·) = ·

2. ∀σ ∈ A? ∀a ∈ A.
ω?(σ; a) = ω?(σ); a, or
ω?(σ; a) = ω?(σ)

These conditions encode the restrictions placed on suppression automata that
(1) nothing can be output when no actions are input and (2) an input action
can only be accepted or suppressed. Halting is equivalent to suppressing all
additional input actions.

A suppression automaton can precisely enforce the following properties.

Theorem 5 (Nonuniform Precise S-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
suppression automaton if and only if there exists a computable suppression-
rewrite function ω? such that for all sequences σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (ω?(σ)).

2. If P̂ (σ) then ω?(σ) = σ.

Proof See Appendix A. �

15

4.3 Effectively Enforceable Properties

Even on uniform systems, suppression automata can effectively enforce a proper
superset of the properties enforceable by truncation automata. As in the pre-
ceding discussion of nonuniform precise enforcement, we illustrate this with an
example.

Consider an authenticated-login policy that requires users who wish to login
to use an authenticated login, on a uniform system with actions for both an
unauthenticated login (ulogin) and an authenticated login (alogin). On this sys-
tem, an unauthenticated login followed by an authenticated login is semantically
equivalent to a single authenticated login (i.e., ulogin; alogin ∼= alogin); however,
logging in more than once with an authenticated login is not equivalent to a
single authenticated login (i.e., alogin; alogin 6∼= alogin).

A truncation automaton cannot effectively enforce this property because
upon seeing a ulogin it can take no valid action. It cannot accept because an
authenticated login may never occur, which violates the property. It also cannot
halt because the next action may be alogin, making the automaton’s input
(ulogin; alogin) obey the property but not be equivalent to its output (·). In
contrast, a suppression automaton can effectively enforce this property simply
by suppressing the ulogin. If the next action is alogin, then the suppression
automaton accepts this and will have correctly effectively enforced the property
since its output (alogin) is equivalent to its input (ulogin; alogin). If the alogin
does not appear (and hence the input sequence violates the property), then the
suppression automaton will not have emitted anything, thereby satisfying the
property.

The following theorem formally specifies the properties effectively enforce-
able by suppression automata.

Theorem 6 (Effective S-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
suppression automaton if and only if there exists a computable suppression-
rewrite function ω? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (ω?(σ))

2. If P̂ (σ) then σ ∼= ω?(σ)

Proof See Appendix A. �

The essence of suppression automata as effective enforcers is that they can
suppress an action if it is potentially bad and at the same time unnecessary. If
the input sequence turns out to be in the property, then because the suppressed
action was unnecessary, no harm was done.

5 Insertion Automata

This section introduces insertion automata, which have the power to insert
actions into the action stream or halt the target program but cannot suppress

16

actions. As with truncation and suppression automata, we define them formally
and then consider what properties they can enforce precisely and effectively.

5.1 Definition

An insertion automaton I is a finite or infinite state machine (Q, q0, δ, γ) that is
defined with respect to some system (A,Σ). The partial function δ : A×Q→Q
specifies the transition function as before. The new element is a partial function
γ that specifies the insertion of a finite sequence of actions into the program’s
action sequence. We call this the insertion function and it has type A×Q→−→A ×
Q, where the first component in the returned pair indicates the finite and non-
empty sequence of actions to be inserted. In order to maintain the determinacy
of the automaton, we require the domain of the insertion function to be disjoint
from the domain of the transition function.

We specify the execution of an insertion automaton as before. The single-
step relation is defined below.

(σ, q) τ−→I (σ′, q′)

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a;σ′

and δ(a, q) = q′

(σ, q) τ−→I (σ, q′) (I-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

(σ, q) ·−→I (·, q) (I-Stop)

otherwise

We also extend this single-step semantics to a multi-step semantics as before.

5.2 Precisely Enforceable Properties

Identically to truncation and suppression automata, on uniform systems inser-
tion automata precisely enforce exactly the set of safety properties. Perhaps
surprisingly, the power to suppress or insert actions does not enable security
automata to precisely enforce more properties on uniform systems. This is be-
cause every illegal sequence must be transformed into a legal sequence, but
doing so prevents any legal extension from being precisely enforced (because
the sequence has already been modified and cannot be accepted in an entirely
lockstep manner). Therefore, regardless of the transformational capabilities a
security automaton has on execution sequences, on uniform systems it can only
precisely enforce safety properties.

17

Theorem 7 (Uniform Precise I-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by

an insertion automaton if and only if ∀σ ∈ pre(Σ). ¬P̂ (σ) ⇒ ∀σ′ ∈ Σ. (σ �
σ′ ⇒ ¬P̂ (σ′)).

Proof See Appendix A. �

Once again, considering nonuniform systems expands the set of precisely
enforceable properties. Let us consider the nonuniform aq; use; rel system of
Section 4.2. This time, we want to enforce the property that the resource will
be used exactly once or twice, rather than zero or one times. The only sequnces
which satisfy our property are aq; use; rel and aq; use; use; rel. A truncation au-
tomaton cannot precisely enforce this property because upon encountering an
aq it can take no action. It cannot accept because the full input sequence may
be aq; rel and the automaton has no way of inserting the required use; and it
cannot truncate because then it would give up on precisely enforcing any input
seqences that start with aq and actually do obey the property, such as aq; use; rel.

An insertion automaton precisely enforces this property by accepting aq and
use actions. When it encounters a rel, it will insert a use if one was not already
present in the input.

We formally characterize the properties that can be precisely enforced by an
insertion automaton as follows.

Theorem 8 (Nonuniform Precise I-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
insertion automaton if and only if there exists a computable function γp such

that for all executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ. σ � σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof See Appendix A. �

We can also compare the power of insertion automata with suppression au-
tomata. A suppression automaton cannot precisely enforce the one-or-two-use
policy described in this section because it cannot insert use events that are nec-
essary if the program releases the resource without using it, and it cannot simply
suppress resource acquisitions because this would modify sequences that do sat-
isfy the policy. Hence, insertion automata can precisely enforce some properties
that suppression automata cannot. On the other hand, an insertion automaton
can precisely enforce the zero-or-one-use aq; use; rel policy of Section 4.2 sim-
ply by inserting a rel event and then halting whenever a bad sequence is found
(i.e., aq; use; use would be transformed to aq; use; rel). Generalizing from this,
we see that insertion automata are strictly more powerful precise enforcers than
suppression automata.

18

Theorem 9 (Precise S-Enforceable Subset of Precise I-Enforceable)
If there exists a suppression automaton S= (Qs, q0s , δs, ω) that precisely en-

forces P̂ on some system (A,Σ) then there exists an insertion automaton I=
(Qi, q0i , δi, γ) that precisely enforces P̂ on the same system.

Proof See Appendix A. �

5.3 Effectively Enforceable Properties

Let us now consider insertion automata operating as effective, rather than pre-
cise, enforcers. As with the other automata seen so far, insertion automata
viewed in this light can enforce a greater range of properties, even on uniform
systems. We illustrate this with a very application-specific example: the San
Francisco cable car.

The property we want to enforce is that if a person boards the car (board), she
must show her ticket either to the conductor (show conductor) or to the driver
(show driver). She may show them her ticket either before or after getting onto
the car, and it is OK, though redundant, to show the ticket twice. A person may
board the car at most once. The only sequences not in the property are getting
onto the car without ever showing a ticket and boarding more than once.

An insertion automaton can effectively enforce this property because upon
seeing a bad sequence where no ticket has been shown but a passenger boards
(board), it can insert the action show driver. If the stream turns out to al-
ready contain either show driver or show conductor, no harm has been done (be-
cause show driver; board; show driver ∼= board; show driver and show driver; board;
show conductor ∼= board; show conductor).

�����
rd

��� �	��
����� �����	���������
d

a

��� ��� �	��
�������������
or ∨��� ��� �	��
����� �����

��� ��� �	��
�������������
or ∨��� ��� �	��
����� �����

a

��� ��� �	��
�������������
or ∨��� ��� �	��
����� �����

a

�����
rd

�����
rd

��� ��� �	��
�������������
or ∨��� ��� �	��
����� �����

a

Figure 1: An insertion automaton that effectively enforces the cable-car policy
on a uniform system.

Figure 1 shows an insertion automaton that effectively enforces the cable-

19

car policy. The nodes in the picture represent the automaton states and the
arcs represent the transitions. The action above an arc triggers the transition,
and the sequence below an arc represents the actions that are emitted. An arc
with multiple symbols below it is an insertion transition. All other transitions
are accepting transitions, and if there is no arc for the current action then the
automaton halts.

A truncation automaton cannot effectively enforce this property because it
has no way to handle an initial board action. If it accepts and there are no
further actions, then it has allowed a passenger to board without showing a
ticket; if it halts and the sequence does obey the property, then it has not
preserved the semantics of the input sequence. Either way, it cannot effectively
enforce the property.

As with precise enforcement, we can compare the powers of insertion and
suppression automata as effective enforcers. The authenticated-login policy of
Section 4.3 cannot be effectively enforced by an insertion automaton. When
confronted with the sequence ulogin, an insertion automaton cannot accept be-
cause if there is no further input, the output would not obey the property;
it cannot halt because the sequence could potentially be in the property (and
ulogin; alogin 6∼= ·); and it cannot insert an alogin because possible future alogin
actions would make the stream obey the property yet not be equivalent to the
stream with the inserted alogin.

This shows that there are properties that are effectively enforceable by sup-
pression automata that are not effectively enforceable by insertion automata.
Conversely, not all properties effectively enforceable by insertion automata can
be effectively enforced by suppression automata. The cable-car example, for
instance, cannot be effectively enforced by a suppression automaton. When
confronted with a board action, a suppression automaton cannot accept because
¬P̂ (board), and cannot halt or suppress because that could change a legal se-
quence into one that is not equivalent to it (e.g., board; show driver 6∼= show driver
and board; show driver 6∼= ·).

Before we characterize the properties that can be effectively enforced by
insertion automata, we again generalize our automata into functions that act
over sequences of symbols. Given a set of actions A, a function γ? : A?→A? is
an insertion-rewrite function if it satisfies the following conditions.

1. γ?(·) = ·

2. ∀σ ∈ A? ∀a ∈ A ∃τ ∈ A?.
γ?(σ; a) = γ?(σ); τ ; a, or
γ?(σ; a) = γ?(σ); τ ∧ (∀τ ′ ∈ A?.τ 6= τ ′; a) ∧H(γ?, σ; a)

where H(γ?, σ) is the computable predicate defined in Section 3.3.
The intuition for insertion-rewrite functions is similar to that for the other

rewrite functions, except that there are more possible behaviors of the corre-
sponding automata to consider. When processing an action a, an insertion
automaton can react in any of the following ways: it may accept a, insert some

20

number of actions (the number of inserted actions is finite in this article be-
cause we limit our analysis to finite-length sequences) before accepting a, halt
the target, or insert some number of actions before halting the target. The
first clause of condition (2) above captures the first two of these possibilities by
allowing the rewrite function to insert some number (possibly zero) of actions
before accepting. The second part of condition (2) captures the other possibil-
ities where some number (possibly zero) of actions are inserted before halting.
For the sake of determinacy—that is, to make sure that only one of the two
clauses in condition (2) applies—the case in which the automaton inserts some
sequence that ends with a and then halts is handled as if a were accepted before
halting.

The following theorem formally specifies the properties effectively enforce-
able by insertion automata.

Theorem 10 (Effective I-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
insertion automaton if and only if there exists a computable insertion-rewrite
function γ? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (γ?(σ))

2. If P̂ (σ) then σ ∼= γ?(σ)

Proof See Appendix A. �

The defining feature of insertion automata as effective enforcers is that they
allow required actions to be inserted into a sequence whenever it is OK for the
inserted actions to be repeated. If the automaton’s input actually does obey the
property, the automaton’s output remains semantically equivalent to the input.

6 Edit Automata

We now turn to a far more powerful security automaton, the edit automaton.
After defining edit automata formally and considering the properties they can
enforce precisely and effectively, we present an extended example of an edit
automaton that effectively enforces a market transaction policy.

6.1 Definition

We form an edit automaton E by combining the insertion automaton with the
suppression automaton. Our machine is now described by a 5-tuple of the form
(Q, q0, δ, γ, ω). The operational semantics is derived from the composition of the
operational rules of the two previous automata. Again, the partial functions δ
and ω have the same domain while δ and γ have disjoint domains.

(σ, q) τ−→E (σ′, q′)

21

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = +

(σ, q) ·−→E (σ′, q′) (E-StepS)

if σ = a;σ′

and δ(a, q) = q′

and ω(a, q) = −

(σ, q) τ−→E (σ, q′) (E-Ins)

if σ = a;σ′

and γ(a, q) = τ, q′

(σ, q) ·−→E (·, q) (E-Stop)

otherwise

Although rule E-StepA is not strictly necessary (rather than accepting an
action a, the automaton could insert a and then suppress the original a), its
presence allows acceptance of an action in only one step. This simplifies the
specification of the automaton and in general decreases its running time. Sim-
ilarly, and as with suppression automata, the effect of rule E-Stop can be
accomplished by suppressing any further input, again at the cost of increased
running time and specification complexity.

As with the other security automata, we extend the single-step semantics
of edit automata to a multi-step semantics with the rules for reflexivity and
transitivity.

6.2 Precisely Enforceable Properties

On uniform systems, edit automata precisely enforce exactly the set of safety
properties. This follows immediately from the discussion in Section 5.2—as
precise enforcers on uniform systems, edit automata have the same power as
truncation, suppression, and insertion automata.

Theorem 11 (Uniform Precise E-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by

an edit automaton if and only if ∀σ ∈ pre(Σ). ¬P̂ (σ) ⇒ ∀σ′ ∈ Σ. (σ � σ′ ⇒
¬P̂ (σ′)).

22

Proof See Appendix A. �

When we consider nonuniform systems, edit automata precisely enforce ex-
actly those properties precisely enforceable by insertion automata. This result
is not particularly surprising because edit automata are just a composition of
insertion and suppression automata, and insertion automata precisely enforce a
superset of the properties precisely enforceable by suppression automata.

Theorem 12 (Nonuniform Precise E-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some edit
automaton if and only if there exists a computable function γp such that for all

executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ. σ � σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof See Appendix A. �

6.3 Effectively Enforceable Properties

Similarly to truncation, suppression, and insertion automata, considering edit
automata as effective enforcers enables them to enforce a wider range of prop-
erties. In addition, edit automata can effectively enforce properties effectively
enforceable by neither suppression nor insertion automata. Section 6.4 illus-
trates this with a detailed example.

Edit automata are very powerful effective enforcers because they can insert
actions that are required and later suppress those same actions if they appear
in the original input sequence. Conversely, an edit automaton can suppress a
sequence of potentially illegal actions, and if the sequence is later determined to
be legal, just re-insert it. Interestingly, with this technique edit automata can
effectively enforce any property—the automaton simply suppresses all actions
until it can confirm that the current prefix obeys the property, at which point it
inserts all the suppressed actions. Any legal input will thus be output without
modification. If an input is illegal, an edit automaton will output its longest
valid prefix.

The following theorem formalizes this idea, and its proof shows how to con-
struct an edit automaton to effectively enforce any property. This theorem
holds on all systems S because it only uses strict equality as the equivalence
relation and places no constraints on the set of possible executions (so S may
be uniform).

Theorem 13 (Effective E-Enforcement)
Any property P̂ on the system S = (A,Σ) can be effectively enforced by some
edit automaton.

Proof See Appendix A. �

23

6.4 An Example: Transactions

To demonstrate the power of our edit automata, we show how to implement
the monitoring of transactions. The desired properties of atomic transactions
[EN94], commonly referred to as the ACID properties, are atomicity (either the
entire transaction is executed or no part of it is executed), consistency preser-
vation (upon completion of the transaction the system must be in a consistent
state), isolation (the effects of a transaction should not be visible to other con-
currently executing transactions until the first transaction is committed), and
durability or permanence (the effects of a committed transaction cannot be
undone by a future failed transaction).

The first property, atomicity, can be modeled using an edit automaton by
creating an intentions log. That is, the automaton suppresses input actions from
the start of the transaction and, if the transaction completes successfully, the
entire sequence of actions is emitted atomically to the output stream; otherwise
it is discarded. Consistency preservation can be enforced by simply verifying
that the sequence to be emitted leaves the system in a consistent state. The
durability or permanence of a committed transaction is ensured by the fact that
committing a transaction is modeled by emitting the corresponding sequence of
actions to the output stream. Once an action has been written to the output
stream it can no longer be touched by the automaton; furthermore, failed trans-
actions output nothing. We only model the actions of a single agent in this
example and therefore ignore issues of isolation.

���������
n)

a≠
��������� 	�

∧

a≠ � ���� 	�

a

-n

+n

� ����� n)���������
n

�� � � y(n)

���������
n

�� � � y(n)

� ����� n)

���������
n)

¬ � ���� n)� ���
ning

a≠
��������� 	�

∧

a≠ � ����� 	�

a

����� ���������
k

��

k ≠n) ∨ a=pay(_)

Figure 2: An edit automaton that effectively enforces the market policy.

To make our example more concrete, we will model a simple market sys-
tem with two main actions, take(n) and pay(n), which represent acquisition of
n apples and the corresponding payment. We let a range over all the actions
that might occur in the system (such as take, pay, window-shop, browse, etc.).
Our policy is that every time an agent takes n apples it must pay for those ap-
ples. Payments may come before acquisition or vice versa, and take(n); pay(n)

24

is semantically equivalent to pay(n); take(n). The automaton enforces the atom-
icity of this transaction by emitting take(n); pay(n) only when the transaction
completes. If payment is made first, the automaton allows clients to perform
other actions such as browse before paying (the take-pay transaction appears
atomically after all such intermediary actions). On the other hand, if apples are
taken and not paid for immediately, we issue a warning and abort the trans-
action. Consistency is ensured by remembering the number of apples taken or
the size of the prepayment in the state of the machine. Once acquisition and
payment occur, the sale is final and there are no refunds (durability). Figure 2
displays the infinite-state edit automaton that effectively enforces our market
policy. Arcs with no symbols beneath them represent suppression transitions.

Neither an insertion automation nor a suppression automaton can effectively
enforce the market policy. An insertion automaton, if it encounters pay(n), can
take no action: it cannot halt because the next action may be take(n), it cannot
accept because there may be no more actions, and it cannot insert take(n)
because that may disrupt a valid sequence of take(n) and pay(n) in an input
that obeys the property. A suppression automaton, upon encountering take(n),
can take no action: it cannot suppress or halt because the next action may be
pay(n), and it cannot accept because there may be no more actions.

7 Related Work

Schneider [Sch00] was the first to analyze the power of security mechanisms.
He defined the set of security properties precisely enforceable by truncation au-
tomata and observed that it was a subset of the safety properties. Schneider
also briefly mentions mechanisms more powerful than truncation automata, but
he does not give a detailed analysis of their power. Schneider’s definition pro-
vides an upper bound on the set of properties that can be precisely enforced by
security automata on a uniform input set. However, it is a loose upper bound.
Viswanathan, Kim, and others [Vis00, KKL+02] demonstrate that to obtain a
tighter bound on the power of run-time monitors, one must add computabil-
ity constraints to the definition of truncation automata. Viswanathan [Vis00]
has also demonstrated that the set of properties enforceable through run-time
monitoring is equivalent to the CoRE properties.

Concurrently with our work, Hamlin, Morrisett, and Schneider [HMS02]
have begun to investigate the power of a broader set of enforcement mecha-
nisms. They consider security mechanisms based upon static analysis, run-time
monitoring, and program rewriting and compare and contrast the power of these
mechanisms. They observe that the statically enforceable properties correspond
to the recursively decidable properties of programs. Taken with Viswanathan’s
result, this fact implies that run-time monitors (when given access to the source
program text) can enforce strictly more properties than can be enforced through
static analysis. Hamlin et al. also prove that program rewriters do not corre-
spond to any complexity class in the arithmetic hierarchy.

In contrast with these other theoretical research efforts, our work provides

25

a detailed analysis of the power of run-time monitors. We introduce several
kinds of monitors, each with different run-time capabilities (i.e., truncation,
suppression, and insertion). We clearly specify what it means to enforce a
property and we demonstrate that the power of these monitors varies depending
upon the context in which they are used.

Implementation efforts [ET99, UES99, UES00, KVBA+99] are considerably
more advanced than the corresponding theoretical investigations. In general,
these systems allow arbitrary code to be executed in response to a potential
security violation, so edit automata provide a reasonable model for attempting
to understand their behavior. In most cases, these languages can be considered
domain-specific aspect-oriented programming languages [KHH+01], which have
been designed to facilitate the enforcement of security properties.

Other researchers have investigated optimization techniques for run-time
monitors [CF00, Thi01], and certification of programs instrumented with se-
curity checks [Wal00]. Kim et al. [KKL+02] analyze the performance cost of
run-time monitors and show that the language one uses to define monitors has
a significant impact on performance. They also define optimizations to decrease
the overhead of run-time monitoring.

Run-time monitoring and checking can also be used in settings where secu-
rity is not necessarily the primary focus. Lee et al. [KVBA+99], for example,
have developed a monitoring system specifically for improving the reliability of
real-time systems. Sandholm and Schwartzbach have used run-time monitor-
ing to ensure that concurrently executing Web scripts obey important safety
properties [SS98].

8 Conclusions

In this article, we have introduced a detailed framework for reasoning about the
power of security mechanisms that are able to intercept and modify untrusted
program actions at run time.

Before we begin the analysis proper, we carefully define what it means to en-
force a property at run time. Our definitions of policy enforcement is motivated
by two main considerations:

(Soundness) The final output of a monitored system must obey the policy.
Consequently, bad programs that would otherwise violate the policy must
have their executions modified by the enforcement mechanism.

(Transparency) Whenever the untrusted program obeys the policy in ques-
tion, a run-time enforcement mechanism should preserve the semantics
of the untrusted program. In other words, the actions of the enforcement
mechanism should not be observable when monitoring good programs that
do not violate the policy.

One obtains slightly different definitions of enforcement depending upon the
interpretation of what it means for a mechanism to be “semantics-preserving.”

26

Consequently, it is necessary to ensure that the definition of enforcement is
appropriate for the application and context at hand.

Once the definition of enforcement is set, we investigate the power of a hier-
archy of monitors, each with varying run-time capabilities, including truncation,
suppression, and insertion of security-relevant program actions. We demonstrate
that the power of these different kinds of monitors varies, and we characterize
their enforceable properties precisely. We also observe that when the monitor’s
input space is constrained (possibly by a prior program rewriting pass or other
mechanisms), a monitor may be able to enforce a larger set of properties. A
summary of our main findings is presented in Figures 3 and 4.

����� ��� ���
	����	�������� ������� ����������� ���	����	����
ties

����	�	���������� ��
	����	��

���������������
ng	����	��

Figure 3: A taxonomy of precisely enforceable security properties on nonuniform
systems.

This article sets some of the fundamental limits of security mechanisms that
operate by monitoring and modifying program behavior at run time. However,
there are many open questions that continue to spark our interest in this area.
In particular, we desire to understand further the impact of constraining the
resources available either to the running program or the run-time monitor. For
example, are there practical properties that can be enforced by exponential-
time but not polynomial-time monitors? What effect does bounding the space
available to edit automata have on the set of enforceable properties? What if we
limit the program’s access to random bits and therefore its ability to use strong
cryptography? Can we generalize our analyses to infinite sequences? These
unanswered questions and many similar ones suggest a variety of new research
directions in this nascent research field.

27

����� ��� �	��
���	
�������� ���

���	
�
���������� �	�

����
��

� �	����� ��� ���

�����
�

Figure 4: A taxonomy of effectively enforceable security properties on both
uniform and nonuniform systems.

Acknowledgments

Enlightening discussions with Kevin Hamlin, Greg Morrisett, and Fred Schnei-
der helped to stimulate our research and improve this article. We would also
like to thank the anonymous reviewers for their helpful and thorough comments.

References

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Informa-
tion Processing Letters, 21(4):181–185, October 1985. 6

[AS87] Bowen Alpern and Fred Schneider. Recognizing safety and liveness.
Distributed Computing, 2:117–126, 1987. 5, 6

[BLW02] Lujo Bauer, Jarred Ligatti, and David Walker. More enforceable
security policies. In Foundations of Computer Security, Copen-
hagen, Denmark, July 2002. 1

[CF00] Thomas Colcombet and Pascal Fradet. Enforcing trace properties
by program transformation. In Twenty-Seventh ACM Symposium
on Principles of Programming Languages, pages 54–66, Boston,
January 2000. ACM Press. 26

[EN94] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of
database systems. The Benjamin/Cummings Publishing Company,
Inc., 1994. 24

28

[ET99] David Evans and Andrew Twyman. Flexible policy-directed code
safety. In IEEE Security and Privacy, Oakland, CA, May 1999.
26

[HMS02] Kevin Hamlin, Greg Morrisett, and Fred Schneider. In pursuit of
punctuality: Computability classes for enforcement mechanisms.
Unpublished Manuscript, November 2002. 25

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jef-
frey Palm, and William Griswold. An overview of AspectJ. In
European Conference on Object-oriented Programming. Springer-
Verlag, 2001. 26

[KKL+02] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky,
and Mahesh Viswantathan. Computational analysis of run-time
monitoring—fundamentals of Java-MaC. In Run-time Verification,
June 2002. 25, 26

[KVBA+99] Moonjoo Kim, Mahesh Viswanathan, Hanene Ben-Abdallah, Sam-
path Kannan, Insup Lee, and Oleg Sokolsky. Formally specified
monitoring of temporal properties. In European Conference on
Real-time Systems, York, UK, June 1999. 26

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.
IEEE Transactions of Software Engineering, 3(2):125–143, 1977.
5

[Sch00] Fred B. Schneider. Enforceable security policies. ACM Transac-
tions on Information and Systems Security, 3(1):30–50, February
2000. 2, 4, 6, 10, 25

[SS98] Anders Sandholm and Michael Schwartzbach. Distributed safety
controllers for web services. In Fundamental Approaches to Soft-
ware Engineering, volume 1382 of Lecture Notes in Computer Sci-
ence, pages 270–284. Springer-Verlag, 1998. 26

[Thi01] Peter Thiemann. Enforcing security properties by type special-
ization. In European Symposium on Programming, Genova, Italy,
April 2001. 26

[UES99] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of se-
curity policies: A retrospective. In Proceedings of the New Se-
curity Paradigms Workshop, pages 87–95, Caledon Hills, Canada,
September 1999. 11, 26

[UES00] Úlfar Erlingsson and Fred B. Schneider. IRM enforcement of Java
stack inspection. In IEEE Symposium on Security and Privacy,
pages 246–255, Oakland, California, May 2000. 11, 26

29

[Vis00] Mahesh Viswanathan. Foundations for the Run-time Analysis of
Software Systems. PhD thesis, University of Pennsylvania, 2000.
25

[Wal00] David Walker. A type system for expressive security policies. In
Twenty-Seventh ACM Symposium on Principles of Programming
Languages, pages 254–267, Boston, January 2000. 26

A Proofs of Theorems

Theorem 1 (Uniform Precise T-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by a

truncation automaton if and only if ∀σ ∈ pre(Σ).¬P̂ (σ) ⇒ ∀σ′ ∈ Σ.(σ � σ′ ⇒
¬P̂ (σ′)).

Proof (If Direction) We construct a truncation automaton that precisely en-
forces any such P̂ as follows.

• States: q ∈ pre(Σ) (the sequence of actions seen so far)

• Start state: q0 = · (the empty sequence)

• Transition function (δ):
Consider processing the action a in state σ.

(A) If P̂ (σ; a) then emit the action a and continue in state σ; a.
(B) If ¬P̂ (σ; a) then simply stop (i.e., we leave δ is undefined in this

case).

The automaton maintains the invariant Invp(q) that q = σ and σ has been
output and P̂ (σ). The automaton can initially establish Invp(q0) since our
definition of a property assumes P̂ (·) for all properties. A simple inductive
argument on the length of the input σ suffices to show that the invariant is
maintained for all inputs.

We now show that this automaton precisely enforces P̂ on any σ ∈ Σ (where
Σ = A? because the system is uniform). There are two cases to consider.

• Case P̂ (σ):
Consider any prefix τ of σ. If ¬P̂ (τ) then by the safety constraint stated
in the theorem and the fact that τ � σ, we would have ¬P̂ (σ), contrary to
the assumption that P̂ (σ). Therefore, P̂ (τ) must be true for all prefixes
τ of σ, so by examination of the transition function given above, the
automaton must accept every prefix of σ without ever halting.

• Case ¬P̂ (σ):
Invp maintains that regardless of the state of the automaton, it has always
emitted some σ such that P̂ (σ).

The automaton correctly precisely enforces P̂ in both cases.

30

(Only-If Direction) Consider any σ ∈ pre(Σ) such that ¬P̂ (σ). Because
Σ = A?, we have σ ∈ Σ, so the truncation automaton T must edit σ when σ is
supplied as input. That is, since T precisely enforces P̂ and ¬P̂ (σ) and σ ∈ Σ,
it cannot be the case that (σ, q0) σ=⇒T (·, q′) for some q′. Suppose for the sake
of obtaining a contradiction that ∃σ′ ∈ Σ.σ � σ′∧P̂ (σ′). Then by the definition
of precise enforcement, all actions of σ′ must be accepted without any editing,
implying (since σ is later extended to σ′) that (σ, q0) σ=⇒T (·, q′) for some q′,
which we just showed cannot be true. Therefore, ∃σ′ ∈ Σ.σ � σ′ ∧ P̂ (σ′) is not
true, so ∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′). �

Theorem 2 (Nonuniform Precise T-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
truncation automaton if and only if there exists a decidable predicate D such
that for all executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. D(σ)⇒ (∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′))

2. ¬D(σ)⇒ (∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)))

Proof (If Direction) We construct a truncation automaton that precisely en-
forces any such P̂ as follows.

• States: q ∈ pre(Σ)× {+,−} (the sequence of actions seen so far paired
with + (-) to indicate that this sequence is (is not) in the property)

• Start state: q0 = 〈·,+〉 (the empty sequence)

• Transition function (δ):

Consider processing the action a in state q.

(A) If q = 〈σ,+〉 and P̂ (σ; a) then emit the action a and continue in state
〈σ; a,+〉.

(B) If q = 〈σ,+〉 and ¬P̂ (σ; a) and D(σ; a) then simply stop (i.e., δ is
undefined in this case).

(C) If q = 〈σ,+〉 and ¬P̂ (σ; a) and ¬D(σ; a) then emit a and continue in
state 〈σ; a,−〉

(D) If q = 〈σ,−〉 and ¬P̂ (σ; a) then emit the action a and continue in
state 〈σ; a,−〉.

(E) If q = 〈σ,−〉 and P̂ (σ; a) then emit the action a and continue in state
〈σ; a,+〉.

The automaton maintains the following invariant Invp(q) when processing
some input τ ∈ Σ.

• If q = 〈σ,+〉 then σ is the prefix of τ input so far and σ has been emitted
and P̂ (σ).

31

• If q = 〈σ,−〉 then σ is the prefix of τ input so far and σ has been emitted
and ¬P̂ (σ) and ∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)).

The automaton can initially establish Invp(q0) since our definition of a prop-
erty assumes P̂ (·) for all properties. A simple inductive argument on the length
of the input σ suffices to show that the invariant is maintained for all inputs.

The automaton never halts in some state 〈σ,−〉 because the precondition
for entering this state given in automaton transition (C) (¬D(σ), implying that
∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.σ; τ � σ′ ∧ P̂ (σ; τ)) guarantees that we will
eventually reach some prefix of the input that is in the property. When this
occurs after having input some σ; τ , the automaton will follow transition (E) to
return to state 〈σ; τ,+〉.

In addition, we note that all transitions of the truncation automaton have
decidable boolean guards, so the automaton must indeed halt on all inputs.
Thus, when some σ′ ∈ Σ is input into this automaton, the machine either
halts in state 〈σ′,+〉 or halts by following transition (B). In the latter case,
by examination of the guard for transition (B) and Invp, the final state must
have been 〈σ,+〉 for some σ � σ′. In any case, Invp ensures that whenever the
automaton halts, it has emitted some σ such that P̂ (σ).

Finally, we must show that this automaton accepts every action in any input
sequence σ′ such that P̂ (σ′). In such a case, the predicate ∀σ′ ∈ Σ.σ � σ′ ⇒
¬P̂ (σ′) can clearly never be true for any σ such that σ � σ′, so by the contra-
positive of clause (1) in the theorem, ¬D(σ) for all σ such that σ � σ′. The
only transition that could prevent the automaton from accepting all actions in
σ′ is (B), but this transition cannot be followed on input σ′ because it requires
D(σ) to be true for some σ � σ′. The automaton can therefore never follow
transition (B) on input σ′, so it must accept every action in σ′, as required.

(Only-If Direction) Given some truncation automaton T, we must construct
a decision procedure D such that for all σ ∈ pre(Σ) where ¬P̂ (σ),

1. D(σ)⇒ (∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′))

2. ¬D(σ)⇒ (∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)))

The decision procedure simply runs T on input σ and evaluates to true if
and only if T prematurely halts. That is, let D(σ) be true if and only if T
at some point steps via rule T-Stop on input σ. T is a precise enforcer and
as such must halt within finite time on all inputs (since ∀σ ∈ Σ.∃q′.∃σ′ ∈
A?.(σ, q0) σ′=⇒T (·, q′)), so D is a decidable predicate. Also, D(σ) implies that
∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′) because halting on σ prevents the automaton from
precisely enforcing P̂ on any σ′ such that σ � σ′ and P̂ (σ′). Finally, ¬D(σ)
implies that ∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)). In this case,
we have (σ, q0) σ=⇒T (·, q′) for some q′, so because T is a truncation automaton
precisely enforcing P̂ and must therefore emit some prefix σ; τ of its input σ′

such that P̂ (σ; τ) (when T has already emitted σ on input σ and σ � σ′), we

32

conclude that ∀σ′ ∈ Σ.σ � σ′ ⇒ ∃τ ∈ A?.(σ; τ � σ′ ∧ P̂ (σ; τ)). �

Theorem 3 (Effective T-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
truncation automaton if and only if there exists a computable truncation-rewrite
function α? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (α?(σ))

2. If P̂ (σ) then σ ∼= α?(σ)

Proof (If Direction) We construct a truncation automaton that effectively en-
forces any such P̂ as follows.

• States: q ∈ pre(Σ) (the sequence of actions seen so far)

• Start state: q0 = · (for the empty sequence)

• Transition function (δ):

Consider processing the action a in state σ.

(A) If α?(σ; a) = α?(σ); a then emit a and continue in state σ; a.

(B) If α?(σ; a) = α?(σ) and H(α?, σ; a) then halt (i.e., we leave δ unde-
fined in this case).

The automaton maintains the invariant Invp(q) that q = σ and σ is the
input so far and the automaton has emitted α?(σ). Initially, Invp(q0) because
α?(·) = ·, and a simple inductive argument on the length of the input σ suffices
to show that the invariant is maintained for all inputs.

We now show that the automaton emits α?(σ) when the input is σ. There
are two cases, derived by inspection of the truncation automaton. In the first
case, the automaton halts in state σ, so by Invp(σ), α?(σ) has been emitted.
Otherwise, the automaton must halt in some state σ′ such that σ′ � σ and
H(α?, σ′). Invp(σ′) then implies that α?(σ′) has been emitted when the au-
tomaton halts. However, H(α?, σ′) and σ′ � σ imply that α?(σ′) = α?(σ), so
the automaton has in fact emitted α?(σ) when it halts in this case as well.

Consider any execution σ ∈ Σ. By clause (1) in the theorem statement,
if ¬P̂ (σ) then P̂ (α?(σ)). Because α?(σ) is actually what the automaton out-
puts on input σ, it correctly effectively enforces any σ ∈ Σ such that ¬P̂ (σ).
Similarly, clause (2) of the theorem states that if P̂ (σ) then σ ∼= α?(σ), so
the automaton’s output is equivalent to its input when P̂ (σ). The automaton
therefore effectively enforces P̂ .

33

(Only-If Direction) Define α?(σ) to be whatever sequence is emitted by the
truncation automaton on input σ. By this definition, α?(σ) is a computable
function because the automaton is an effective enforcer and as such acts deter-
ministically and halts on all inputs in the set of executions (Σ). We first show
that this is a truncation-rewrite function. Clearly, α?(·) = ·. When processing
some action a after having already processed any sequence σ, the automaton
may step via T-Step or T-Stop.

• Case T-Step: The automaton emits whatever has been emitted in pro-
cessing σ (by definition, this is α?(σ)), followed by a.

• Case T-Stop: The automaton emits only what has already been emitted,
so α?(σ; a) = α?(σ). Because the automaton halts, it may not examine
any remaining input, implying that H(α?, σ; a) is true.

In any case, the truncation automaton’s output adheres to the definition of a
truncation-rewrite function.

Now consider any arbitrary σ ∈ Σ. By the definition of effective enforcement
and that α?(σ) is defined to be whatever sequence is emitted by the truncation
automaton on input σ, P̂ (α?(σ)) and P̂ (σ)⇒ σ ∼= α?(σ). �

Theorem 4 (Uniform Precise S-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by a

suppression automaton if and only if ∀σ ∈ pre(Σ).¬P̂ (σ)⇒ ∀σ′ ∈ Σ.(σ � σ′ ⇒
¬P̂ (σ′)).

Proof Both directions proceed completely analogously to the proof of Uniform
Precise T-Enforcement. �

Theorem 5 (Nonuniform Precise S-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
suppression automaton if and only if there exists a computable suppression-
rewrite function ω? such that for all sequences σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (ω?(σ)).

2. If P̂ (σ) then ω?(σ) = σ.

Proof (If Direction) We construct a suppression automaton that precisely en-
forces any such P̂ as follows.

• States: q ∈ pre(Σ) (the sequence of actions seen so far)

• Start state: q0 = · (the empty sequence)

• Transition and suppression functions (combined for simplicity):
Consider processing the action a in state q = σ.

34

(A) If ω?(σ; a) = ω?(σ); a then emit a and continue in state σ; a.

(B) If ω?(σ; a) = ω?(σ) then suppress a and continue in state σ; a.

This suppression automaton maintains the invariant Invp(q) that q = σ and
σ is the input seen so far and ω?(σ) has been output. Initially, Invp(q0) because
ω?(·) = ·, and a simple inductive argument on the length of the input σ suffices
to show that the invariant is maintained for all inputs.

By inspection of the automaton, we note that when processing some input
σ ∈ Σ, the automaton always halts in state σ because there is no more input
to process. Thus, Invp(σ) ensures that the automaton always emits ω?(σ)
whenever the input to the automaton is σ.

Consider any execution σ ∈ Σ. By clause (1) in the theorem statement, if
¬P̂ (σ) then P̂ (ω?(σ)). Because ω?(σ) is actually what the automaton outputs
on input σ, it correctly precisely enforces any σ ∈ Σ such that ¬P̂ (σ). Similarly,
by clause (2), the automaton never suppresses any action (i.e., it accepts every
action) in its input σ when P̂ (σ). The automaton therefore precisely enforces
P̂ .

(Only-If Direction) Define ω?(σ) to be whatever sequence is emitted by the
suppression automaton on input σ. By this definition, ω?(σ) is a computable
function because the automaton is a precise enforcer and as such acts deter-
ministically and halts on all inputs in the set of executions (Σ). We first show
that this is indeed a suppression-rewrite function. Clearly, ω?(·) = ·. When
processing some action a after having already processed any sequence σ, the
automaton may step via S-StepA, S-StepS, or S-Stop. In the S-StepA case,
the automaton emits whatever has been emitted in processing σ (by definition,
this is ω?(σ)), followed by a. In the other cases, the automaton emits only
ω?(σ). Hence, ω? is a valid suppression function.

Now consider any arbitrary σ ∈ Σ. By the definition of precise enforcement
and that ω?(σ) is defined to be whatever sequence is emitted by the suppression
automaton on input σ, P̂ (ω?(σ)) (because all final outputs must be in the
property) and P̂ (σ) ⇒ σ = ω?(σ) (because no suppressions or halting may
occur on inputs that are in the property).

�

Theorem 6 (Effective S-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
suppression automaton if and only if there exists a computable suppression-
rewrite function ω? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (ω?(σ))

2. If P̂ (σ) then σ ∼= ω?(σ)

Proof (If Direction) We construct a suppression automaton that effectively
enforces any such P̂ as follows.

35

• States: q ∈ pre(Σ) (the sequence of actions seen so far)

• Start state: q0 = · (the empty sequence)

• Transition and suppression functions (combined for simplicity):
Consider processing the action a in state q = σ.

(A) If ω?(σ; a) = ω?(σ); a then emit a and continue in state σ; a.

(B) If ω?(σ; a) = ω?(σ) then suppress a and continue in state σ; a.

This is the same automaton constructed in the proof of Nonuniform Precise
S-Enforcement, so by the same reasoning given there, this automaton always
emits ω?(σ) whenever the input to the automaton is σ.

Analogously to the argument given in the Effective T-Enforcement theorem,
because the automaton always outputs ω?(σ) on input σ, clauses (1) and (2) in
the theorem statement ensure that the automaton effectively enforces P̂ .

(Only-If Direction) Define ω?(σ) to be whatever sequence is emitted by the
suppression automaton on input σ. This is a computable suppression-rewrite
function by the same argument given in the Only-If Direction of the proof of
Nonuniform Precise S-Enforcement. Moreover, given that the automaton is an
effective enforcer of P̂ and ω?(σ) always matches the output of the automaton
on input σ, both requirements of P̂ stated in the theorem are clearly met.

�

Theorem 7 (Uniform Precise I-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by

an insertion automaton if and only if ∀σ ∈ pre(Σ).¬P̂ (σ)⇒ ∀σ′ ∈ Σ.(σ � σ′ ⇒
¬P̂ (σ′)).

Proof Both directions proceed completely analogously to the proof of Uniform
Precise T-Enforcement. �

Theorem 8 (Nonuniform Precise I-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some
insertion automaton if and only if there exists a computable function γp such

that for all executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof (If Direction) We construct an insertion automaton that precisely en-
forces any such P̂ as follows.

• States: q ∈ pre(Σ) ∪ {end} (the sequence of actions seen so far, or end
if the automaton will stop on the next step)

36

• Start state: q0 = · (the empty sequence)

• Transition and insertion functions (for simplicity, we combine δ and γ):
Consider processing the action a in state q.

(A) If q=end then stop (i.e., δ and γ are undefined, so rule I-Stop ap-
plies).

(B) Else if q = σ and P̂ (σ; a) then emit a and continue in state σ; a.

(C) Else if q = σ and ¬P̂ (σ; a) and σ; a 6∈ Σ and P̂ (σ; a; γp(σ; a)) then
emit a and continue in state σ; a

(D) Else if q = σ and ¬P̂ (σ; a) and ∀σ′ ∈ Σ.σ; a � σ′ ⇒ ¬P̂ (σ′) and
P̂ (σ) then stop.

(E) Else if q = σ and ¬P̂ (σ; a) and ∀σ′ ∈ Σ.σ; a � σ′ ⇒ ¬P̂ (σ′) and
¬P̂ (σ) then insert γp(σ) and continue in state end.

This automaton halts on all inputs σ ∈ Σ because only decidable boolean
predicates need to be evaluated during execution. Note that if transitions (A),
(B), and (C) are not followed, then by clauses (1) and (2) given in the statement
of this theorem, it must be the case that ∀σ′ ∈ Σ.σ; a � σ′ ⇒ ¬P̂ (σ′). Therefore,
after eliminating transitions (A), (B), and (C), the only test that needs to be
performed in order to determine which of transitions (D) and (E) to apply is
whether P̂ (σ), which is assumed to be a decidable predicate (possibly in contrast
to the predicate ∀σ′ ∈ Σ.σ; a � σ′ ⇒ ¬P̂ (σ′)).

If σ is the input so far, the automaton maintains the following invariant
Invp(q).

• If q = σ then σ has been emitted and either P̂ (σ) or (¬P̂ (σ) and σ 6∈ Σ
and P̂ (σ; γp(σ))).

• Otherwise, q = end and the automaton has emitted σ; γp(σ) and P̂ (σ; γp(σ)).

Initially, Invp(q0) since our definition of a property assumes P̂ (·) for all
properties. A simple inductive argument on the length of the input σ suffices
to show that the invariant is maintained for all inputs.

Given this invariant, it is straightforward to show that the automaton pro-
cesses every input σ ∈ Σ properly and precisely enforces P̂ . There are two
cases.

• Case P̂ (σ):
Consider any prefix σ[..i]. By induction on i, we show that the automaton
accepts σ[..i] without stopping, inserting any actions, or moving to the
state end.

– If P̂ (σ[..i]) then the automaton accepts this prefix using transition
(B) and continues.

37

– If ¬P̂ (σ[..i]) then since σ[..i] � σ and P̂ (σ), clause (1) in the theorem
statement cannot be true of σ[..i], so σ[..i] 6∈ Σ and P̂ (σ[..i]; γp(σ[..i])).
Hence, the automaton accepts this prefix using transition (C) and
continues.

• Case ¬P̂ (σ):
The automaton may halt by applying transitions (A) or (D), or by running
out of input actions to process. Thus, the final state prior to halting must
be one of the following.

– end, if transition (A) is applied

– σ′ such that σ′ � σ and P̂ (σ′), if transition (D) is applied

– σ, if the automaton ran out of input actions

In the first case, Invp(end) ensures that the automaton’s output is in the
property. The second case dictates that P̂ (σ′), and Invp(σ′) implies that
σ′ is the automaton’s output. The third case cannot occur because ¬P̂ (σ)
and σ ∈ Σ contradict Invp(σ). Therefore, the automaton always outputs
some sequence that is in the property.

(Only-If Direction) To show that any property P̂ precisely enforced by an
insertion automaton I conforms to the constraints outlined in the theorem, we
define a decidable algorithm for computing γp(σ) for all σ ∈ pre(Σ). This
definition follows.

1. Run insertion automaton I on input σ to completion.

2. If I does not output exactly σ on input σ then let γp(σ) = ·.

3. Otherwise, begin searching for a τ ∈ A? such that P̂ (σ; τ). Once the first
such τ is found, let γp(σ) = τ .

Steps (1) and (2) require only finite time because I is a precise enforcer and
as such must halt within finite time on all inputs (since ∀σ ∈ Σ.∃q′.∃σ′ ∈
A?.(σ, q0) σ′=⇒I (·, q′)). Now consider step (3), which occurs when I outputs
exactly σ on input σ. Because σ ∈ pre(Σ), there must be some τ ′ ∈ Σ such
that σ � τ ′. Moreover, since I enforces P̂ , I must output some sequence σ′ on

input τ ′ such that P̂ (σ′), but because (σ, q0) σ=⇒I (·, q′), (τ ′, q0) σ′=⇒I (·, q′′),
and σ � τ ′, we have σ′ = σ; τ for some τ ∈ A?. Thus guaranteed that at least
one τ exists such that P̂ (σ; τ), we can search A? for this τ in finite time because
A? is countable (though possibly countably infinite). This algorithm therefore
halts on all inputs σ ∈ pre(Σ), meeting the constraint that γp be a computable
function.

Next, we consider any arbitrary σ ∈ pre(Σ) such that ¬P̂ (σ) and show that
one of the following must hold.

1. ∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′), or

38

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Consider any case in which (1) does not hold. Then, ∃σ′ ∈ Σ.σ � σ′ ∧ P̂ (σ′),
so I must output exactly σ on input σ (because σ may later be extended to σ′,
which must be precisely enforced by accepting every action in σ′). By the defi-
nition of γp(σ), then, P̂ (σ; γp(σ)). Also, since (σ, q0) σ=⇒I (·, q′), it must be that
case that σ 6∈ Σ (if σ ∈ Σ then P̂ (σ) because I is a precise enforcer, contrary
to the assumption that ¬P̂ (σ)). Thus, (2) must hold whenever (1) does not. �

Theorem 9 (Precise S-Enforceable Subset of Precise I-Enforceable)
If there exists a suppression automaton S= (Qs, q0s , δs, ω) that precisely en-

forces P̂ on some system (A,Σ) then there exists an insertion automaton I=
(Qi, q0i , δi, γ) that precisely enforces P̂ on the same system.

Proof We construct I as follows and then show that it precisely enforces P̂ .

• States: Qi = pre(Σ) ∪ {end} (a state q ∈ Qi represents the sequence of
actions seen so far, or end if the automaton will stop on the next step)

• Start state: q0i = · (the empty sequence)

• Transition and insertion functions (we combine δi and γi for simplicity):
Consider processing the action a in state q.

(A) If q = end then halt.

(B) If q = σ and (σ; a, q0s)
σ;a
=⇒S (·, q′) for some q′ then accept a and

continue in state σ; a.

(C) If q = σ and (σ; a, q0s)
σ=⇒S (·, q′) for some q′ then insert the first

τ ∈ A? found such that P̂ (σ; τ) and continue in state end.

We show that I precisely enforces P̂ by considering two cases of σ ∈ Σ. If
P̂ (σ) then because S precisely enforces P̂ , S must accept every action in σ.
Therefore, the boolean guard on transition (B) in insertion automaton I will
always evaluate to true (in finite time because S is a precise enforcer and as
such must halt on all inputs in finite time), so I will also accept every action in
σ, thereby correctly precisely enforcing P̂ on any σ ∈ Σ such that P̂ (σ).

In the other case, ¬P̂ (σ), implying that S must somehow edit σ so that its
output is in the property. Let σ[j] be the first action in σ that is not accepted
by S, implying that S (and therefore I) accepts and emits σ[..j − 1]. Since S
precisely enforces P̂ , there must exist some τ ∈ A? such that P̂ (σ[..j − 1]; τ),
so that S can emit σ[..j − 1]; τ on input σ (in the case of S halting at σ[j], we
have τ = ·). Because S ’s first suppression or halting occurs at σ[j], insertion
automaton I must follow transition (C) when it reaches σ[j], and because there
must exist some τ ∈ A? such that P̂ (σ[..j − 1]; τ), automaton I will find and
insert the requisite τ in finite time (since A? must be countable, though possibly
countably infinite). Therefore, the final output of I on input σ (i.e., σ[..j−1]; τ)

39

is in the property, as required to precisely enforce P̂ . �

Theorem 10 (Effective I-Enforcement)
A property P̂ on the system S = (A,Σ) can be effectively enforced by some
insertion automaton if and only if there exists a computable insertion-rewrite
function γ? such that for all executions σ ∈ Σ,

1. If ¬P̂ (σ) then P̂ (γ?(σ))

2. If P̂ (σ) then σ ∼= γ?(σ)

Proof (If Direction) We construct an insertion automaton that effectively en-
forces any such P̂ as follows.

• States: q ∈ (pre(Σ)× {+,−}) ∪ {end} (the sequence of actions seen so
far paired with + (-) to indicate that the automaton did not (did) most
recently step via rule I-Ins, or end if the automaton will stop on the next
step)

• Start state: q0 = 〈·,+〉 (for the empty sequence)

• Transition and insertion functions (for simplicity, we combine δ and γ):
Consider processing the action a in state q.

(A) If q = end then stop.

(B) If q = 〈σ; a,−〉 then emit the action a and continue in state 〈σ; a,+〉.
(C) If q = 〈σ,+〉 and γ?(σ; a) = γ?(σ); τ ; a then insert τ and continue in

state 〈σ; a,−〉.
(D) If q = 〈σ,+〉 and γ?(σ; a) = γ?(σ); τ and ∀τ ′ ∈ A?.τ 6= τ ′; a and

H(γ?, σ; a) then insert τ and continue in state end.

The automaton maintains the following invariant Invp(q).

• If q = 〈σ,+〉 then σ is the input so far and the automaton has emitted
γ?(σ).

• If q = end then σ is the input so far and the automaton has emitted γ?(σ)
and H(γ?, σ).

• Otherwise, q = 〈σ; a,−〉 and σ; a is the input so far and γ?(σ; a) =
γ?(σ); τ ; a and the automaton has emitted γ?(σ); τ .

Initially, Invp(q0) because γ?(·) = ·, and a simple inductive argument on
the length of the input σ suffices to show that the invariant is maintained for
all inputs.

We now show that the automaton emits γ?(σ) when the input is σ. There are
two cases, derived by inspection of the insertion automaton. In the first case,
the automaton halts in state 〈σ,+〉, so by Invp(σ), γ?(σ) has been emitted.

40

Otherwise, the automaton must halt in state end, having only seen input σ′

such that σ′ � σ. In this case, Invp(end) implies that γ?(σ′) has been emitted
when the automaton halts and H(γ?, σ′). However, H(γ?, σ′) and σ′ � σ imply
that γ?(σ′) = γ?(σ), so the automaton has in fact emitted γ?(σ) when it halts
in this case as well. Note that the automaton cannot halt in state 〈σ; a,−〉
because the next step will always be to emit a and continue in state 〈σ; a,+〉
(using transition (B)).

Analogously to the argument given in the Effective T-Enforcement theorem,
because the automaton always outputs γ?(σ) on input σ, clauses (1) and (2) in
the theorem statement ensure that the automaton effectively enforces P̂ .

(Only-If Direction) Define γ?(σ) to be whatever sequence is emitted by
the insertion automaton on input σ. By this definition, γ?(σ) is a computable
function because the automaton is an effective enforcer and as such acts deter-
ministically and halts on all inputs in the set of executions (Σ). We first show
that this is an insertion-rewrite function. Clearly, γ?(·) = ·. When processing
some action a after having already processed any sequence σ, the automaton
may step via I-Step, I-Ins, or I-Stop.

• Case I-Step: Here the automaton emits whatever has been emitted in
processing σ (by definition, this is γ?(σ)), followed by a. Thus, γ?(σ; a) =
γ?(σ); τ ; a, where τ = ·.

• Case I-Stop: Here the automaton emits only what has already been
emitted, so γ?(σ; a) = γ?(σ); τ , where τ = · and ∀τ ′ ∈ A?.τ 6= τ ′; a.
Because the automaton halts, it may not examine any remaining input,
implying that H(γ?, σ; a).

• Case I-Ins: Because the automaton effectively enforces P̂ , it may only
insert a finite sequence of symbols before either accepting or halting on
the current action. That is, although the automaton may apply rule I-Ins

multiple times in succession, the end result must be the insertion of only
a finite sequence of actions, followed by acceptance or termination. In the
case of ultimate acceptance, the net output of the automaton, γ?(σ; a),
is γ?(σ); τ ; a. In the case of ultimate termination, no more input may be
examined, so H(γ?, σ; a) and either γ?(σ; a) = γ?(σ); τ ; a (if a was the
last inserted action), or γ?(σ; a) = γ?(σ); τ and ∀τ ′ ∈ A?.τ 6= τ ′; a (if a
was not the last inserted action).

In any case, the insertion automaton’s output adheres to the definition of an
insertion-rewrite function.

Now consider an arbitrary σ ∈ Σ. By the definition of effective enforcement
and that γ?(σ) is defined to be whatever sequence is emitted by the insertion
automaton on input σ, P̂ (γ?(σ)) and P̂ (σ)⇒ σ ∼= γ?(σ). �

41

Theorem 11 (Uniform Precise E-Enforcement)
A property P̂ on the uniform system S = (A,Σ) can be precisely enforced by

an edit automaton if and only if ∀σ ∈ pre(Σ).¬P̂ (σ) ⇒ ∀σ′ ∈ Σ.(σ � σ′ ⇒
¬P̂ (σ′)).

Proof Both directions proceed completely analogously to the proof of Uniform
Precise T-Enforcement. �

Theorem 12 (Nonuniform Precise E-Enforcement)
A property P̂ on the system S = (A,Σ) can be precisely enforced by some edit
automaton if and only if there exists a computable function γp such that for all

executions σ ∈ pre(Σ), if ¬P̂ (σ) then

1. ∀σ′ ∈ Σ.σ � σ′ ⇒ ¬P̂ (σ′), or

2. σ 6∈ Σ and P̂ (σ; γp(σ))

Proof (If Direction) By the Nonuniform Precise I-Enforcement theorem, given
a function γp and a property P̂ satisfying the requirements stated above, we
may build an insertion automaton I = (Q, q0, δ, γ) to enforce P̂ . Then, we can
construct an edit automaton E = (Q, q0, δ, γ, ω), where ω is defined to be + over
all of its domain (the same domain as δ). Clearly, E and I enforce the same
property because whenever I steps via I-Step, I-Ins, or I-Stop, E respectively
steps via E-StepA, E-Ins, or E-Stop, while emitting exactly the same actions
as I. Because I precisely enforces P̂ , so too must E.

(Only-If Direction) This direction proceeds completely analogously to the
Only-If Direction of the proof of Nonuniform Precise I-Enforcement. �

Theorem 13 (Effective E-Enforcement)
Any property P̂ on the system S = (A,Σ) can be effectively enforced by some
edit automaton.

Proof We construct an edit automaton that effectively enforces any P̂ as follows.

• States: q ∈ pre(Σ) ×A? × {+,−} (the sequence of actions seen so far,
the actions seen but not emitted, and + (-) to indicate that the automaton
must not (must) suppress the current action)

• Start state: q0 = 〈·, ·,+〉 (for the empty sequence)

• Transition, insertion, and suppression functions (for simplicity, we com-
bine δ, γ, and ω):
Consider processing the action a in state q.

(A) If q = 〈σ, τ,+〉 and ¬P̂ (σ; a) then suppress a and continue in state
〈σ; a, τ ; a,+〉.

42

(B) If q = 〈σ, τ,+〉 and P̂ (σ; a) then insert τ ; a and continue in state
〈σ; a, ·,−〉.

(C) If q = 〈σ; a, ·,−〉 then suppress a and continue in state 〈σ; a, ·,+〉.

The automaton maintains the following invariant Invp(q).

• If q = 〈σ, τ,+〉 then σ is the input so far and σ = σ′; τ (for some σ′ ∈ A?)
and the automaton has emitted σ′ and σ′ is the longest prefix of σ such
that P̂ (σ′).

• Otherwise, q = 〈σ; a, ·,−〉 and σ; a is the input so far and σ; a has been
emitted and P̂ (σ; a).

Initially, Invp(q0) because P̂ (·), and a simple inductive argument on the
length of the input σ suffices to show that the invariant is maintained for all
inputs.

By inspection, we note that the edit automaton cannot halt in state 〈σ; a, ·,−〉
because the next step will always be to suppress a and continue in state 〈σ; a, ·,+〉
(using transition (C)). Therefore, the automaton always halts in some state
〈σ, τ,+〉 on input σ, so Invp(〈σ, τ,+〉) ensures that the automaton emits some
σ′ such that P̂ (σ′) on all inputs. In addition, Invp(〈σ, τ,+〉) implies that if
P̂ (σ) then σ = σ′, so the automaton must emit exactly σ on input σ whenever
P̂ (σ). This edit automaton thus effectively enforces P̂ .

�

43

	Introduction
	Security Policies and Enforcement Mechanisms
	Systems, Executions, and Policies
	Security Properties
	Security Automata
	Enforceable Properties
	Limitations

	Truncation Automata
	Definition
	Precisely Enforceable Properties
	Effectively Enforceable Properties

	Suppression Automata
	Definition
	Precisely Enforceable Properties
	Effectively Enforceable Properties

	Insertion Automata
	Definition
	Precisely Enforceable Properties
	Effectively Enforceable Properties

	Edit Automata
	Definition
	Precisely Enforceable Properties
	Effectively Enforceable Properties
	An Example: Transactions

	Related Work
	Conclusions
	Proofs of Theorems

