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Abstract

This paper is concerned with the reconstruction of perfect phylogenies frombinary character data with
missing values, and related problems of inferring complete haplotypes from haplotypes or genotypes with
missing data. In cases where the problems considered areNP -hard we assume arich data hypothesisunder
which they become tractable. Natural probabilistic models are introduced for the generation of character
vectors, haplotypes or genotypes with missing data, and it is shown thatthese models support the rich data
hypothesis. The principal results include:

• A near-linear time algorithm for inferring a perfect phylogeny from binary character data (or haplotype
data) with missing values, under the rich data hypothesis;

• A quadratic-time algorithm for inferring a perfect phylogeny from genotype data with missing values
with high probability, under certain distributional assumptions;

• Demonstration that the problems of maximum-likelihood inference of complete haplotypes from par-
tial haplotypes or partial genotypes can be cast as minimum-entropy disjoint set cover problems;

• In the case where the haplotypes come from a perfect phylogeny, a representation of the set cover
problem as minimum-entropy covering of subtrees of a tree by nodes;

• An exact algorithm for minimum-entropy subtree covering, and demonstration that it runs in polyno-
mial time when the subtrees have small diameter;

• Demonstration that a simple greedy approximation algorithm solves the minimum-entropy subtree
covering problem with relative error tending to zero when the number of partial haplotypes per com-
plete haplotype is large;

• An asymptotically consistent method of estimating the frequencies of thecomplete haplotypes in a
perfect phylogeny, under an iid model for the distribution of missing data;

• Computational results on real data demonstrating the effectiveness of a the greedy algorithm for infer-
ring haplotypes from genotypes with missing data, even in the absence ofa perfect phylogeny.
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1 Introduction

A central problem in genetics and medicine is to discover theassociations between genetic variations in a hu-
man population and phenotypes such as disease. The most common of these variations are Single-Nucleotide
Polymorphisms (SNPs), in which two (or occasionally more) nucleotides frequently occur at a givenpoly-
morphic sitewithin some chromosome. Thegenotypeof an individual specifies, for each of a selected set of
polymorphic sites, the pair of nucleotides occurring at that site in a homologous pair of chromosomes. The
genotype does not resolve the question of how the nucleotides at polymorphic sites are assorted between the
two copies of the chromosome. The problem of resolving this ambiguity is called thephase problemin geno-
typing. A successful resolution of the phase problem determines an individual’s pair ofhaplotypes, each of
which specifies the contents of the polymorphic sites at one of the two copies of the chromosome.

Experimental protocols exist both for genotyping and, at greater expense, for haplotyping. Because geno-
typing is cheaper, a common approach is to determine the genotypes of individuals experimentally, and then at-
tempt to infer their haplotypes computationally, sometimes with the help of pedigree data. Whichever approach
is taken, the resulting genotypes or haplotypes will inevitably contain sites at which the correct nucleotide (or
unordered pair of nucleotides in the case of genotyping), cannot be determined with certainty. The problem of
resolving such missing data is one of the major themes of thispaper.

Given a single genotype containing heterozygous sites and missing data, the problem of resolving it into
a pair of completely specified haplotypes involves assigning the two nucleotides at each heterozygous site to
one haplotype or the other, as well as filling in the missing data. Typically a single genotype can be resolved in
many different ways. However, guidance to the correct resolution can be gleaned by simultaneously considering
the genotypes of many individuals and applying two principles which are often valid over genomic regions of
limited extent: first, that the same haplotypes tend to occurrepeatedly in the genomes of many individuals, and
secondly that the evolutionary history of these common haplotypes is very simple. In particular, the evolutionary
tree is often aperfect phylogeny, in which there is only one mutation event for each polymorphic site.

This leads to the second major theme of the paper: the inference of perfect phylogenies from haplotypes
or genotypes with missing data. This problem is isomorphic to a key problem in phylogenetics - the inference
of a perfect phylogeny for a set of taxa when the binary character data is incomplete. The problem also occurs
in historical linguistics, where the evolution of a set of languages is inferred from incomplete data about two-
valued attributes of the languages; see [15] for a striking application of perfect phylogeny to such problems.

The third major theme is the use of a maximum likelihood principle to assign complete haplotypes to
genotypes or haplotypes with missing data. This principle can be applied whether or not the set of complete
haplotypes is restricted to a perfect phylogeny. We presenta probabilistic generative model of haplotype or
genotype data. The components of this model are the distribution of the complete haplotypes in a population, the
stochastic process of pairing up complete haplotypes to form complete genotypes, and the stochastic process of
masking certain components of the haplotypes or genotypes to create missing data. Within this model, we show
that the most likely valid resolution of the incomplete haplotypes or genotypes is the one that minimizes the
entropy of the resulting distribution of complete haplotypes. We present algorithms for finding or approximating
the minimum-entropy assignment, both in the case of a perfect phylogeny and in the unrestricted case, and we
present successful computational results on real data.

2 Basic Definitions and Summary of Results

A complete haplotypeis an element of{0, 1}m, where each component indicates the nucleotide at a particular
polymorphic position in an individual’s genome We restrictourselves to the most common case, in which only
two nucleotides occur with non-negligible frequency at a given position; the two nucleotides at each position
are encoded as0 and1. A partial haplotypeis an element of{0, 1, ∗}m, where∗ indicates that the nucleotide
at a given position is undetermined. A complete haplotypech is compatible with a partial haplotypeph if ch
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andph take the same value in each position whereph contains0 or 1. A complete genotypeis an element of
{0, 1, 2}m corresponding to a pair of complete haplotypes which take the same value as the complete genotype
at positions where the complete genotype contains0 or 1, and take opposite values at positions where the
complete genotype contains2. Finally, apartial genotypeis an element of{0, 1, 2, ∗}m, where∗ indicates
that the position in the corresponding complete genotype isundetermined. Thus a pairch1, ch2 of complete
haplotypes is compatible with partial genotypepg if ch1 andch2 both contain0 in a position wherepg contains
0, 1 in a position wherepg contains1, and opposite binary values wherepg contains2.

We consider the following problems:

P1 Given a set ofn partial haplotypes, assign a compatible complete haplotype to each;

P2 Given a set ofn partial genotypes, assign a compatible pair of complete haplotypes to each.

These problem statements are ill posed, because they give noreason for choosing one solution over another
amongst the vast multiplicity of feasible solutions. We constrain the problem in two ways: first, by requiring that
all the complete haplotypes come from a perfect phylogeny; and second, by imposing a maximum likelihood
criterion which favors those solutions that are highly concentrated on a small number of complete haplotypes.

2.1 Perfect Phylogeny

A set of complete haplotypesCH ⊂ {0, 1}m, |CH| = n, can be given as a matrixA ∈ {0, 1}n×m. We say
thatA has a perfect phylogeny if there exists a treeT = (V,E) such that every node inv ∈ V is labeled by
a haplotypehv ∈ {0, 1}m, every edgee ∈ E is labeled by a columnce ∈ {1, . . . ,m}, and the following
conditions are met:

• Every row ofA appears as a node label inT .

• No column{1, . . . ,m} appears more than once as an edge label inT .

• For an edgee = (u, v) ∈ E, the haplotypeshu andhv match in all columns except at columnce, where
they differ. In other words, a site labelce indicates a mutation, or a change in the value of the nucleotide
at sitece from 0 to 1, or from 1 to 0.

Let c1, c2 be columns ofA. Let V (c1, c2) be the set of values that the pair of columns takes on over all
the rows ofA, soV (c1, c2) ⊂ {(0, 0), (0, 1), (1, 0), (1, 1)}. It is a well known fact (see e.g. [3, 9]), that a
necessary and sufficient condition forA to have a perfect phylogeny is that, for every pairc1, c2 of columns of
A, |V (c1, c2)| ≤ 3. We call the pairs of values inV (c1, c2) thevalid pairs for columnsc1, c2.

Call a perfect phylogenycompatiblewith a given set of partial haplotypes if it contains complete haplotypes
compatible with all the given partial haplotypes, andcompatiblewith a given set of partial genotypes if it
contains pairs of complete haplotypes compatible with all the given partial genotypes. Thus we are led to the
following problems:

PP1 Construct a perfect phylogeny compatible with a given set ofpartial haplotypes (or determine that none
exists).

PP2 Construct a perfect phylogeny compatible with a given set ofpartial genotypes (or determine that none
exists).

Problem PP1 is NP-hard [13] but is solvable in near-linear time given any one of the haplotypes in the
perfect phylogeny [8]. Problem PP2 is proven NP-hard in [12]. In the case where the given haplotype matrix
does not contain missing data Gusfield [5] introduced a linear time algorithm.

For each of these problems we present a condition which is satisfied with high probability when the data is
generated by a natural probabilistic process, and show thatunder this condition the perfect phylogeny is unique
and can be recovered efficiently. Our recovery algorithm forPP1 runs in near linear time, and our recovery
algorithm for PP2 runs in timeO(nmω−1), whereω ≈ 2.37 is the best currently known exponent for the matrix
multiplication algorithm.
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We turn now to P1, the problem of choosing the most probable assignment of compatible complete haplo-
types to partial haplotypes. The problem has two main variations, according to whether the compete haplotypes
are constrained to come from a given complete phylogeny or whether their choice is unconstrained. Letn be
the number of partial haplotypes,ni the number of partial haplotypes assigned to theith complete haplotype,
and letpi be ni

n . Under our probabilistic model the most likely assignment is the one that minimizes the entropy∑
i −pi log pi. It is shown in [7] that a simple greedy algorithm produces anassignment whose entropy is within

a small additive constant of the minimum entropy. We measurethe performance of the greedy algorithm on real
data sets, and we find that even though the algorithm is very simple to state and to implement, its performance
is comparable and in some cases better than the performance of state of the art phase reconstruction algorithms
such as PHASE [14], HAP [2, 6] and HAPLOTYPER [10].

In the case where the complete haplotypes come from a perfectphylogeny they can be viewed as the nodes
of a phylogenetic treeT , and the partial haplotypes can naturally be identified withsubtrees ofT , such that a
complete haplotype is compatible with the partial haplotype if and only if the complete haplotype is a node of
the corresponding subtree. Similarly, a partial genotypepg can be identified with a pair of disjoint subtrees of
T , such that a pair of haplotypes is compatible withpg if and only if one of the haplotypes comes from each
of the two corresponding subtrees. Therefore, in the case where the complete haplotypes come from a known
perfect phylogeny, Problems P1 and P2 reduce to finding a minimum-entropy assignment of subtrees to nodes
within them.

We do not know whether there is a polynomial-time algorithm to find a minimum-entropy assignment of
subtrees of a treeT to nodes within them (by contrast, there is a straightforward linear-time algorithm for
covering a set of subtrees with a minimum number of nodes). However, we present a dynamic programming
algorithm to find the minimum-entropy assignment in the casewhere all subtrees are of diameterO(log log m).
Building on this special case, we present approximation algorithms that provide near-optimal solutions with
high probability when the partial haplotypes are generatedaccording to our probabilistic model and their num-
ber of is sufficiently large. We also provide a method which, given the perfect phylogeny and the set of partial
haplotypes generated from a sample of complete haplotypes,gives an asymptotically consistent estimate of the
number of occurrences of each complete haplotype in the sample; this information can be used not only to
assign partial haplotypes to complete haplotypes, but alsoto estimate the accuracy of the assignment.

Finally, we present computational results on real data sets, demonstrating the effectiveness of a simple
greedy algorithm for resolving genotypes with missing data, even in the absence of a perfect phylogeny.

3 The Probabilistic Models

Throughout the paper, we assume that the haplotypes given tothe algorithms as input are randomly generated
by different probabilistic generative models. The basic assumption used is that the human population consists
of a set of haplotypes with frequencies, and that the haplotypes given to the algorithm are independently drawn
from the distribution specified by the frequencies.

Formally, we say that a set of partial haplotypes israndomly generatedif they are generated in the following
way. There exists a (not necessarily known) set of complete haplotypesh1, . . . , hk ∈ {0, 1}m, an unknown
distributionp1, . . . , pk wherep1 + p2 + . . . + pk = 1 and a masking probabilityp. The haplotypes are picked
independently from the distribution one by one, that is, each new haplotype is chosen to behi with probability
pi. Once a haplotypeh is chosen, the entries of theh are masked by independently replacing the value of each
coordinate ofh with a * with probabilityp. The choices to replace those values are independent of eachother
and are independent of the entries in the stringh. We will usually refer top as a constant smaller than1/2, and
we assume that the haplotypesh1, . . . , hk are not known unless explicitly stated otherwise.

In some cases we limit ourselves to haplotypes that are randomly generated from a perfect phylogeny. In
this case we add the additional constraint that the set of haplotypesh1, . . . , hk is taken from the nodes of a
perfect phylogeny tree. We assume that the tree is not given to us unless explicitly stated.
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Finally, the genotypes are randomly generated in the following way. We first randomly pick two haplotypes
h andh′ independently from the distributionp1, . . . , pk, h andh′ and we get a genotype given by their com-
bination. We then mask the genotypes by masking each of theirentries independently with probabilityp. The
assumption that the two haplotypes are drawn independentlyis called random mating and is sometimes referred
to in the literature as the Hardy-Weinberg equilibrium assumption.

Given a set of partial haplotypesPH = {ph1, ph2, . . . , phn} that are randomly generated by an unknown
distribution and a set of complete haplotypesCH = {ch1, . . . , chn} that are compatible with the partial
haplotypes, we are interested in estimating the likelihoodof these complete haplotypes to be the the ones drawn
by the random data generator. Letn1, n2, . . . , nl wheren1+n2+. . .+nl = n be the frequencies of the complete
haplotype ofCH. The probability that for eachi, chi is the actual complete haplotype that was generated is
Πl

ip
ni

i , wherepi is the unknown probability of the random data generator to generate thei-th complete haplotype
(the one which appearsni times in the data). The probability to observePH and thatCH will be generated by
the random data generator is thereforept(1−p)nm−tΠl

ip
ni

i , wheret is the total number of masked entries inPH.
Since the expressionpt(1−p)nm−t is fixed, we refer to the likelihood of the assignment asΠl

ip
ni

i . The likelihood
of the assignment is therefore maximized when for eachi, pi = ni/n. The likelihood of this assignment is

Πin
ni
m

i , and its logarithm is
∑

i ni log ni − n log n. In order to maximize this likelihood, we are interested
in finding an assignment which maximizes the expression

∑
i ni log ni. We call this problem TheMaximum-

Concentration Assignment Problem: Find an assignment of partial haplotypes in PH to complete haplotypes
in CH that maximizes theconcentration

∑
i ni log ni. This likelihood model was first suggested in [6], and is

consistent with other likelihood models. Note that maximizing the likelihood is equivalent to minimizing the
entropy of the distribution{p1, . . . , pl}, wherepi = ni/n, for the following reason. The entropy is defined
as

∑
i −pi log pi. Minimizing the entropy is equivalent to maximizing

∑
i pi log pi = 1

n

∑
i ni log ni − log n,

which in turn is equivalent to maximizing the concentration.
Reference [7] considers the maximum-concentration assignment problem in a general setting whereCH

andPH are arbitrary finite sets endowed with a compatibility relation R ⊆ CH × PH. It is shown that
maximum-concentration assignment problem isNP -hard, but that a simple greedy algorithm yields an approx-
imate solution with additive errorO(m). In Section 6 we report on the performance of the greedy algorithm
on haplotyping problems whereCH is taken to be unconstrained (i,e,,CH = {0, 1}m. We further show in
Section 5 how can one find the maximum concentration assignment when the data is randomly drawn from a
known perfect phylogeny tree and the probabilityp is sufficiently small.

4 Incomplete Perfect Phylogeny Reconstruction

Reconstructing a perfect phylogeny fromA ∈ {0, 1, ∗}n×m is NP-hard in general [13]. In the directed version,
where the root of the tree is known, there is a near-linear algorithm for reconstructing a directed perfect phy-
logeny [8]. Therefore, for the undirected case, the problemcan be reduced to finding one haplotype in the tree,
since then we can root the tree at this haplotype and use the algorithm of [8].

The rich data hypothesis. Since the problem is NP-hard in general we consider the case where enough
explicit information is given on the underlying tree. Rather than requiring a root to be fully specified, we
require that the matrix meet a condition we call therich data hypothesis, according to which the valid pairs
of all pairs of columns appear somewhere in the matrix. We provide a linear time algorithm for finding one
haplotype in perfect phylogeny tree that fits the matrix. In turn, we can use the near-linear time algorithm of
Pe’er et al. [8] for complete reconstruction iñO(nm) time.

The rich data hypothesis imposes a very specific structure onthe data. In particular, it is not hard to see
by induction on the size of the tree, that for a matrix of complete haplotypes, if for every two columns in the
matrix there are exactly three valid pairs, then the tree is unique. Thus, under the rich data hypothesis, if a
tree exists then the tree is unique. On the other hand, the rich data hypothesis is not a necessary condition for
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the uniqueness of the phylogeny tree. It is possible to construct examples where a matrix has a unique tree
reconstruction, but not all valid pairs appear. Due to spacerestrictions, we will supply such an example in the
full version of the paper.

It is not clear then, what are the necessary and sufficient conditions for the matrix to have a unique perfect
phylogeny tree, and we leave this as an open problem.

We claim that the rich data hypothesis holds with high probability when a large number of partial haplotypes
are randomly generated by the random data generator described in Section 3. Assume that the haplotypes are
randomly generated from a perfect phylogeny tree with a distribution p1, . . . , pk and a masking probability
p ≤ 1/2. Let x = mini pi. At each step of the generation of the data, the probability that the complete
haplotypehi will be drawn, and that the specific pair of entriesc1, c2 will not be masked ispi(1 − p)2 ≥ x/4.
Therefore, by the Chernoff bound, the probability that thisevent will never happen is at moste−xn/10. By the
union bound, the probability that there will be a haplotypehi and a pair of entries that never appear unmasked
in hi is at mostm2ke−xn/10. Sincex,m andk are fixed, for a sufficiently largen, with high probability the
rich data hypothesis holds.

4.1 Finding the Tree

Given the valid pairs one can construct a conjunctive normalform formula from the matrixA as follows. For
every entryaij in A we introduce a boolean variablexij . We then add the following constraints. Ifaij = 1
or aij = 0, we add the constraint thatxij = aij. Then, for every two columnsc1 andc2, let (x, y) ∈ {0, 1}2

be such that(x, y) /∈ V (c1, c2) - by the rich data hypothesis there is exactly one such pair(x, y). For every
row r we add the constraint that(arc1 6= x) ∨ (arc2 6= y). One can easily verify that the disjunction of all
these constraints can be written as a2-SAT formula, and therefore, using a linear-time algorithmfor 2-SAT,
we can find an assignment to the entries of the matrix such thatevery partial haplotype in the original matrix
is compatible with the assignment and that|V (c1, c2)| = 3 for every pair of columnsc1, c2, that is, the matrix
corresponds to a perfect phylogeny.

4.2 A Linear Time Algorithm

The running time of the algorithm described above is dominated by the time it takes to find the sets of valid pairs
for each pair of columns. This procedure takes superlinear time. A naive implementation will takeO(nm2),
and a more sophisticated (but still standard) implementation can takeO(nmω−1) whereω ≈ 2.37 is the best
known matrix multiplication exponent. The details of thesealgorithms are omitted from this version. Note that
in both cases we get a superlinear algorithm. In this sectionwe show how to find the tree in near-linear time.

As described above, by finding one haplotype, we can root the tree in that haplotype and then use the
algorithm of [8] to find the whole tree. We present here a linear time algorithm that finds a root.

Let T be the underlying (unique) tree that fits the matrixA. We first need the following lemma, whose
proof will be given in the appendix:

Lemma 1. Let h ∈ {0, 1}n be a complete haplotype located on one of the vertices ofT . Thenh corresponds
to a leaf inT if and only if there is a columnc in A such that all the rowsr with Arc = hc are compatible with
h.

By Lemma 1, in order to find a haplotype inT , we can look for a leaf ofT . In particular, it is enough to
look for a pair(c, x) of a columnc and a valuex ∈ {0, 1} such that for any two rowsr, r′, if Arc = x and
Ar′c = x, thenr andr′ are consistent, that is the two rows agree whenever both values are not ’*’. In this
case we call(c, x) a leaf pair. Once we find a leaf pair, it is a straightforward procedure to find the haplotypeh
which corresponds to that leaf.

We now turn to the algorithm that finds a leaf pair. We first needsome notations and definition. We assume
that the columns are numbered1, . . . ,m. Let c be a column, and letx ∈ {0, 1}, we denote byR(c, x) the
set of rowsr such thatArc = x. For two columnsc1, c2, let Rx(c1, c2) = {Arc2 | r ∈ R(c1, x)}. That is,
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ALGORITHM FIND-LEAF

Input: A matrix A satisfying the rich data hypothesis.
Output: A leaf pair(c, x).

1. Find the two candidates in the first two column(1, x), (2, y). If x = 1 swap the values of the
entries of the first column (i.e.0 becomes1 and1 becomes0). If y = 1 swap the values of the
second column. Eventually,C = {(1, 0), (2, 0)}.

2. for k = 3, . . . ,m do:

(a) For everyc ∈ C, if 0, 1 ∈ R0(c, k) we say thatc is split. If c is not split, letv(c) be the
only element ofR0(c, k) ∩ {0, 1} (we show in Lemma 2 that this set is not empty).

(b) If there are no splits andv(c) = x for everyc ∈ C, then ifx = 0 swap the values in the
k-th column and add(k, 0) as a candidate.

(c) If there is exactly one splitc∗ ∈ C, then by Lemma 5, all the other candidatesc ∈ C have
the same valuev(c). Let y = 1 − v(c) be the other value. Ify = 1 swap the values of the
k-th column. Removec∗ from C and addk to C.

3. For each candidatec ∈ C check ifR(c, 0) is consistnet. If it is consistnet stop and output this
pair.

Figure 1: Algorithm FIND-LEAF.

Rx(c1, c2) ⊆ {0, 1, ∗} is the set of values appearing in columnc2 in the sub matrix restricted to the rows of
R(c1, x).

Before describing the algorithm in detail, we give an overview of the flow of the algorithm. The algorithm
traverses the matrix from left to right, spendingO(n) time for each column. At each point of time we maintain
a set of candidates for leaf pairs,C = {(c1, x1), (c2, x2), . . . , (ct, xt)}, and we assume that the following
invariants are preserved when we reach columnk:

1. For each(c, x) ∈ C we have thatx = 0.

2. For everyi 6= j, i, j ∈ {1, . . . , t}, we have thatR(ci, 0) ∩ R(cj , 0) = φ.

3. For everyc < k andx ∈ {0, 1}, if (c, x) /∈ C then(c, x) is not a leaf pair.

The first property is stated only for the convenience of the presentation. We will abuse notations and say that
c ∈ C if (c, 0) ∈ C. The algorithm is given in Figure 1.

The main objective of the algorithm when traversing thek-th column is to verify that the previous candidates
are still consistent, and to add(k, 0) or (k, 1) to C unless they are proven to be inconsistent. Clearly, one cannot
simply add both of them toC since then the invariants are not going to be preserved.

We now prove the correctness of the algorithm. Throughout the proof we assume that the treeT does exist,
and that the rich data hypothesis holds. We first need a lemma which shows that the setR0(c, k) ∩ {0, 1} is not
empty (this is needed for step 2a in the algorithm). The proofis given in the appendix.

Lemma 2. For everyc ∈ C there is at least one rowr ∈ R(c, 0) such thatArc 6= ∗.

The proof of the following is given in the appendix.

Lemma 3. Let c1, c2 ∈ C. Then for every complete haplotypeh of T , if hc1 = 0 thenhc2 = 1.

Note that in the flow of the algorithm, the size ofC never decreases. Therefore, if we show that the
third invariant property is preserved throughout the algorithm, then it is enough to check every candidate for
consistency, and thus the algorithm finds a leaf pair if one exists.
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The first invariant property always holds since the only candidates added toC throughout the algorithm are
of the form(c, 0). The second property can be easily verified by observing thatwhenever the algorithm adds a
candidate it is disjoint to all previous candidates.

We now prove that the last invariant property holds by induction. One can verify that it holds for the first
two columns. Assume that it holds before we traverse thek-th column. Note that we remove a candidatec from
C only if it was split, in which caseR(c, 0) is not consistent. Therefore, it is sufficient to show that ifwe do
not add(k, x) to C for some valuex thenR(k, x) is not consistent. We show this by case analysis using the
following three lemmas (the proofs are given in the appendix).
Lemma 4. If c is not split andv(c) = x for somex ∈ {0, 1} thenR(k, x) is not consistent.
Lemma 5. If there is one splitc ∈ C thenv(c1) = v(c2) for everyc1, c2 ∈ C.
Lemma 6. There is at most one split.

Consider now thek-th iteration. By Lemma 6, we cover all cases in the algorithm. If there are no splits, then
by Lemma 4, if there arec1, c2 ∈ C such thatv(c1) 6= v(c2), then neitherR(k, 0) norR(k, 1) are consistent. If
v(c) = x for everyc ∈ C, then again, by Lemma 4,R(k, x) is not consistent, and the algorithm adds(k, 1−x)
to C (if x = 0 it flips the values in that column). If there is exactly one split, then by Lemma 5 all other
candidates have the same valuey, and then by Lemma 4R(k, y) is not consistent, and the algorithm can leave
it out of C. Therefore, the third invariant is maintained throughout the algorithm.

We now turn to show that the algorithm runs in linear time.
Theorem 1. AlgorithmFIND-LEAF finds a leaf pair in timeO(nm).

Proof. Step 2 of the algorithm can be implemented inO(n) time since the setsR(c, 0) are pairwise disjoint.
We run this stepm times so the total running time before the last step of the algorithm isO(nm). In the last
step we have to check for each candidate whether it is consistent. It is easy to see that checking whetherR(c, 0)
is consistent can be done in timeO(m · |R(c, 0)|). Since the setsR(c, 0) are pairwise disjoint this sums up to
at mostO(nm).

5 Maximum Concentration on a Tree

In the case where the complete haplotypes come from aknownperfect phylogeny the haplotype assignment
problem can be recast as a problem of assigning each subtree of a tree to a node within the subtree. LetT be
the tree of a perfect phylogeny. We will speak interchangeably of a complete haplotype and the node inT that
it labels. It is easy to verify that for any partial haplotypethe set of compatible complete haplotypes is the set of
nodes of a subtree ofT . Thus assigning a partial haplotype to a compatible complete haplotype can be viewed
as assigning a subtree to a node within it.

A similar situation holds for the problem of assigning a partial genotypepg to a pair of complete haplotypes.
To see this, first observe that the set of single complete haplotypes compatible withpg is the set of nodes of
some subtreeT ′, just as in the case of a partial haplotype. LetS be the set of edges of T’ corresponding to
columns where thepg contains a2. Then two nodesu andv of T ′ can be chosen as the pair of complete
haplotypes ofT ′ compatible withpg if and only if every edge inS lies on the path ofT ′ betweenu andv.
Except in the special case whereS is empty, this uniquely determines two vertex-disjoint subtrees ofT ′, each
of which must contain one of the two chosen complete haplotypes; any such choice will work. WhenS is
emptyu andv need only be drawn fromT ′, and need not be distinct.

We now turn to the problem of finding a maximum-concentrationassignment of subtrees to nodes. As
shown in Section 3, finding the maximum concentration assignment is a natural problem arising from the
search for a maximum likelihood assignment. Letm denote the number of nodes in the treeT , andn, the
number of distinct subtrees to be covered.

Any assignment of subtrees to nodes can be thought of as a disjoint cover of the subtrees, where each set in
the cover is the set of subtrees mapping to a particular node.We will sometimes use the terminology of covers
rather than assignments.
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5.1 Constructing a Maximum-Concentration Cover

Theorem 2. There is an algorithm for computing a maximum-concentration cover of subtrees of a treeT by
nodes which, for trees of fixed maximum degree, runs in polynomial time when all subtrees have diameter
O(log log m).

Proof. Let X be a multiset of subtrees of a treeT . Call a setY ⊆ X consistentif, wheneverY contains
one copy of a subtree in the multi setX, it contains all copies of the subtree. Note that, in any maximum-
concentration cover of any multiset, every multiset in the cover is consistent.

For each vertexv in T let S(v) be the multiset of subtrees fromX that containv. Let T be rooted at an
arbitrary noder. In this rooted tree each vertexv has a unique parentp(v) (where by convention the root is its
own parent), a set of childrenC(v) and a set of descendantsD(v), where in particularv ∈ D(v).

For each vertexv and each consistent multisetA ⊆ S(v) ∩ S(p(v)), let H(v,A) be the maximum concen-
tration of a disjoint cover of∪u∈D(v)(S(u)−S(p(v))∪A. In particular,H(r,X) is the maximum concentration
of a disjoint cover ofX by vertices ofT .

The algorithm computesH(v,A) for all v andA by working upward from the leaves of the rooted tree
towards the root. Let the children ofv be u1, u2, · · · , uc. Define alegal partition with respect to(v,A) as
a family of disjoint consistent setsA0, A1, · · · , Ac such that, fori = 1, 2, · · · , Ai ⊆ S(ui) and∪c

i=0Ai =
(S(v) − S(p(v)) ∪ A.

ThenH(v,A) = min(|A0| log |A0| +
∑c

i=1 H(ui, Ai)), where the minimum is taken over all legal parti-
tions with respect tov,A.

The dynamic programming algorithm implied by this recursive formula computes a maximum-concentration
cover ofX in time O(m2dk) wherem is the number of nodes inT , d is the maximum number of children of
any node , andk is the maximum, over all nodesv, of the number of distinct subtrees inS(v) ∩ S(p(v)). This
algorithm will run in polynomial time ifdk = O(log m). This will be the case, for example, when all subtrees
are of diameterO(log log m/ log d).

5.2 Approximation Algorithms

Theorem 3. There is a quadratic-time approximation algorithm that solves the minimum-entropy subtree cov-
ering problem with relative error tending to zero asm → ∞, provided thatn ≥ mc for some constantc > 1.

Proof. Thegreedy algorithmfor assigning subtrees to nodes simply repeats the following step until all subtrees
have been assigned: choose a node occurring in the maximum number of subtrees remaining to be assigned, and
assign all those subtrees to the node. A general result in [7]implies that the concentration of the resultinggreedy
assignmentdiffers from that of a maximum-concentration assignment byat mostO(m). Since the maximum-
concentration assignment has concentration at leastn log(n/m), the relative error of the greedy assignment
tends to zero whenn ≥ mc.

The greedy algorithm described in Theorem 3 does not use the information about the tree. In fact, this
algorithm can be applied to a set of partial haplotypes that are not compatible with any perfect phylogeny tree.
The following is an alternative approximation algorithm that may outperform the greedy algorithm in practice,
and which uses the tree structure. LetX ′ be the multiset of subtrees withinX of diameter at mosta log log m
for some constanta. Using the above dynamic programming algorithm compute a minimum-entropy cover of
X ′ having concentrationC ′. Ths can be done in polynomial time. Then insert each subtreein X − X ′ into the
largest set in this cover whose covering node contains the subtree.

Theorem 4. The alternative approximation algorithm has relative error tending to0 with high probability,
under the following assumptions:n ≥ mc, for somec > 1; the partial haplotypes are generated by our
probabilistic model; andpd < 1, wherep is the masking probability andd is the maximum degree ofT .

Proof. Let C be the concentration of a maximum-concentration cover ofX. Then C ≥ n log(n/m) =
Ω(n log n). Let t be the cardinality of the multisetX − X ′. If the elements ofX − X ′ are deleted from
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the maximum-concentration cover ofX then the concentration is reduced by at mostt log n. Therefore there is
a cover ofX ′ with concentration at leastC − t log n. Hence the cover produced by the algorithm has concen-
tration at leastC − t log m. Asymptotically this construction will achieve asymptotic relative error tending to
0 provided thatt = o(n).

We now now show that, under our assumptions,t = o(n) with high probability. Each subtree has a
root vertex (alias complete haplotype) drawn from the vertex set ofT and consists of the connected compo-
nent of that vertex in a random subtree ofT in which each edge is present with probabilityp. The proba-
bility that a subtree so constructed has radius greater thanor equal to(a/2) log log n is bounded above by
(pd)(a/2) log log n = O(1/ log n). It follows (by a Chernoff bound) thatt, the number of subtrees of diameter
greater thana log log n is O( n

log n). It follows that our construction produces an assignment with concentration
C(1 − O(1/logn)) whp.

5.3 Estimating Frequencies of Complete Haplotypes

Assuming our probabilistic model of the generation of partial haplotypes from complete haplotypes (or subtrees
of T from nodes ofT ), we next give a method of estimating the number of subtrees generated from each node.
Call the subtree from which a subtree is generated theroot of that subtree. Letyi be the number of subtrees
containing nodei. Let yij be the number of subtrees containing edge(i, j). Let xi be the number of subtrees
rooted at nodei. Let fij be the number of subtrees containing edge(i, j) such that nodei is on the path ofT
from the root of the subtree to nodej. Given theyi and theyij we would like to solve for thefij. Once we
know thefij we can solve for thexi by the formulaxi = yi −

∑
k fki wherek ranges over the neighbors ofi.

Consider a particular edge(i, j). Let zij be the number of subtrees containing nodei such thati is on the
path from the root of the subtree toj in T ; such a subtree may or may not contain nodej. Let Zji be defined
similarly. We get the following equations:yi = zij + fji, yj = zji + fij, yij = fij + fji

The following additional equation would allow us to solve for fij andfji:
fijzji

fjizij
= 1. This gives the result

fij =
yij(yi−yij)
yi+yj−yij

andfji =
yij(yj−yij)
yi+yj−yij

.
We claim that the additional equation is “asymptotically correct;” i.e., for a given probability distribution

over the nodes, the left-hand-side of the equation should approach1 as the number of subtrees tends to infinity.
The equation states thatfij

zij
=

fji

zji
. ; i.e., that the frequency with which a subtree contains edge (i, j), given that

it containsi andi is on the path inT from the root toj, is equal to the corresponding frequency wheni and
j are interchanged; but each of these frequencies should approach the masking probabilityp as the number of
subtrees grows. Thus, when the number of subtrees is large, the estimation of thefij derived from this equation
will be accurate with high probability, yielding an accurate estimation of thexi.

This estimation method yields another way of assigning eachsubtree to a node: choose the node within the
subtree for which the associated estimated value ofxi is largest. The method has the advantage of providing an
estimate of the probability that this choice is correct; namely, the estimated value ofxi, divided by the sum of
the estimated values for all the nodes in the subtree.

6 Experimental Results

In Section 5.2 we presented a greedy algorithm for the maximum concentration problem that does not use any
information about the tree. In haplotype terminology, given a set of partial haplotypes, the algorithm iteratively
finds the complete haplotype which is compatible with the maximum possible number of partial haplotypes,
removes this set of partial haplotypes and continues in thatmanner. In [7] a more general results implies that
this process results in an additive error ofO(m) to the maximum concentration. A similar algorithm can be
defined for partial genotypes, and in [7] it is shown that for genotypes the algorithm gives a multiplicative error
of 2.
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We measured the performance of the greedy algorithm in practice, both for genotype phase reconstruction
and for haplotype missing data completion. We used a branch and bound procedure to find the complete
haplotype which is compatible with the maximal number of partial haplotypes. Our results show that the
greedy algorithm, which is very simple to state and to implement, performs reasonably well, and for parts of
the data it is even better then previous phase reconstruction algorithms such as PHASE [14], HAPLOTYPER
[10]and HAP [2, 6]. We would like to emphasize that one of the great advantages of the greedy algorithm is its
simplicity compared to the algorithms mentioned above.

The data sets. We applied our algorithm to two haplotype data sets by [1, 11]and populationD of [4]. The
first data set is a 500 kilobase region of chromosome 5q31 containing103 SNPs from the studies of [1] and [11].
In this study, genotypes for the103 SNPS are collected from129 mother, father, child trios from a European-
derived population in an attempt to identify a genetic risk factor for Crohn’s disease. A significant portion of
the genotype data (about10%) is missing with an average of10 SNPs per individual’s genotype missing. This
data set was partitioned in [1, 11] into eleven blocks of highcorrelation. Since this set consists of trios, we
can infer each individual’s haplotypes in all positions except for the positions where all three individuals are
heterozygous or missing. We use populationsD from the [4] data which has pedigree information. The data
consists of genotypes of SNPs from62 regions. PopulationD consists of90 individuals from30 trios from
Yoruba.

Completing missing haplotypes. We measured the performance of the greedy algorithm on haplotype data
with missing data. We first took the data two data sets and considered the haplotypes of the parents inferred
by the trios. These haplotypes contain a certain amount of missing data that is a result of the missing data in
the original data and positions where the mother, father andthe child had heterozygous or missing data. We
added random missing data by masking each position independently with probabilityp for some valuep. We
then partitioned the data into blocks and ran the greedy algorithm on each of these blocks. The block size for
the data taken from [4] was fixed as size10, and the blocks size for the data taken from [1, 11] was determined
by the blocks given in [1]. We then compared the resulting haplotypes of the greedy algorithm to the original
haplotypes. We consider each masked position and we observed if it was correctly reconstructed or not. We
found that the error rate in the reconstruction is only a few percents in both data sets, even when the missing
data consists of about25% of the data. The results are given in Figure 2 in the appendix.

Phasing genotype data We used the greedy algorithm to phase genotype data. We used the trios in order to
infer the haplotypes of the parents, and we measured the performance of the algorithm on the set of genotypes of
the parents. We compared our results to the results given by three other phasing algorithms, namely HAP [2, 6],
PHASE [14] and HAPLOTYPER [10]. The results of the comparison are given in Figure 3 in the appendix.

We observe that although the greedy algorithm is much simpler to state then the other algorithms, the results
achieved by the greedy algorithm are competitive with the other results. In fact, for the the data taken from [1],
the performance of the greedy algorithm is superior to the performance of all the other algorithms. For the
Gabriel [4] data, the greedy algorithm is inferior than the other algorithms, but it still gives reasonable results.

7 Future Work

Following our discussion, the following problems are left open and it would be interesting to settle them. First,
it is still open whether there is a polynomial-time algorithm for constructing a perfect phylogeny compatible
with a given set of partial haplotypes, under the assumptionthat exactly one such tree exists? What if the given
set is a set of partial genotypes instead of partial haplotypes. Another problem that stands open is whether there
a polynomial-time algorithm for computing a minimum-entropy cover of subtrees by nodes? Finally, does the
greedy algorithm for assigning complete haplotypes to genotypes with missing data approximate the minimum-
entropy assignment with additive error bounded above by a constant (such a result holds for haplotypes with
missing data)?
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Data Set Total missing Added missing Error rate
Daly et al. 26% 10% 2.8%

Gabriel et al. 10.5% 0.5% 8.1%
Gabriel et al. 15% 5% 7.4%
Gabriel et al. 20% 10% 7.8%

Figure 2:The performance of the greedy algorithm under the different data sets and the different missing data ratio. The
first column specifies the data set on which the experiment was done. The second column specifies the total missing data
given to the algorithm - this missing data contains the added missingdata and the missing data given by the original data
and since some positions are unresolvable by the trios. The third column correspond to the ratio of added missing data
(that is - it specifies the value ofp), and the fourth column specifies the error rate of the algorithm, that is the number of
incorrectly reconstructed masked positions divided by the total number of masked positions.

HAPLOTYPER PHASE HAP GREEDY
Gabriel et al. – 4.4 % 3.7 % 7.3 %
Daly et al. 4% 1.65 % 1.27 % 0.82 %

Figure 3: The results for the genotype phasing algorithm. Each column corresponds to a different algorithm and each
row corresponds to a different data set. We did not run HAPLOTYPER onpopulationD of the data from Gabiel et al.
[4]. Evidently, on the Daly et al. data set, the greedy algorithm outperform the other algorithms. On the other hand,
on the Gabriel data set the greedy algorithm does not perform as well, although its error rate is comparable to the other
algorithms.

A Genotype Phase Resolution

As described in Section 3, we are interested in finding the phase of the genotypes, given that the genotypes are
randomly generated from an unknown distribution. We next show how this can be done if the sample size is
large enough, that is, whenn is large enough.

Theorem 5. For a set of randomly generated partial genotypes from a distribution p1, . . . , pk, such thatpi ≥
480 log n

n , and such that the masking probabilityp < 1
2 we can reconstruct the tree with probability at least

1 − 1
n4 .

Proof. We claim that for each pair of columns,(c1, c2), the set of valid pairs is of size exactly three with high
probability. In this case, we can reconstruct the tree usinga 2-SAT solver in a similar way to the algorithm
given in Section 4.1.

Let V (c1, c2) = {(x, y), (x̄, y), (x̄, ȳ)} for somex, y ∈ {0, 1}. For (a, b) ∈ V (c1, c2), let Pab be the
probability that a haplotype with a pair(a, b) is drawn from by the random data generator. By the conditionsof
the theorem,Pab ≥ (1 − p)2480 log n

n ≥ 120 log n
n .

Assume first that the pair with the maximum probability is(x, y). Then,Pxy ≥ (1 − p)2 1
3 ≥ 1

12 . Thus, the
probability to see(x, y) as a homozygous pair is at least1144 and the probability to see(2, y) and(2, 2) is at
least10 log n

n . By applying the Chernoff bound, one can verify that the probability not to observe one of those
pairs in the data is at moste−4 log n = 1

n4 . Similarily, if the pair with the maximum probability is(x̄, y) then it
is easy to verify that the probability not to observe one of the following pairs:(x̄, y), (x̄, 2), (2, y) is at most 1

n4 .
In the latter case, we simply get all the valid pairs by observing the data. In the first case, if we do not get

all valid pairs, we infer that the pairs(2, 2) came from(x, y) and(x̄, ȳ) ((x, y) is the only homozygous pair),
and thus get all valid pairs.
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B Proof of some lemmas

Lemma 1. Let h ∈ {0, 1}n be a complete haplotype located on one of the vertices ofT . Thenh corresponds
to a leaf inT if and only if there is a columnc in A such that all the rowsr with Arc = hc are compatible with
h.

Proof. If h corresponds to a leaf inT then consider the edge that is incident withh. This edge corresponds to
a columnc in A. Sinceh is a leaf, every haplotypeh′ 6= h of T satisfies thath′

c 6= hc. Consider a rowr such
thatArc = hc. Then for every haplotypeh′ 6= h of T , h′ is not compatible withr sinceh′

c 6= Arc.
In order to show the other direction, we assume for contradiction that there is a complete haplotypeh which

is not a leaf ofT such that all rowsr with Arc = hc satisfy that they are compatible withh. Let ec be the edge
of T corresponding to the columnc. Let S1, S2 be the two connected components ofT \ ec. Assume without
loss of generality thath ∈ S1. If there ish′ 6= h such thath′ ∈ S1, let c2 be such thathc2 6= h′

c2. By the
rich data hypothesis and the contradiction assumption, there is a rowr such thatArc = h′

c, Arc2 = h′
c2 . Then,

Arc = hc, butArc2 6= hc2 which is a contradiction.

Lemma 2. (Lemma 2) For everyc ∈ C there is at least one rowr ∈ R(c, 0) such thatArc 6= ∗.

Proof. Assume the contrary. ThenV (c, k) could only contain(1, 0) and(1, 1), which contradicts the rich data
hypothesis.

Lemma 3. Let c1, c2 ∈ C. Then for every complete haplotypeh of T , if hc1 = 0 thenhc2 = 1.

Proof. By the second invariant property,R(c1, 0) ∩ R(c2, 0) = φ. Therefore, by the rich data hypothesis,
V (c1, c2) = {(1, 0), (0, 1), (1, 1)}. The lemma then follows.

Lemma 4. If c is not split andv(c) = x for somex ∈ {0, 1} thenR(k, x) is not consistent.

Proof. If c is not split, then by the rich data hypothesis,V (c, k) = {(0, x), (1, 0), (1, 1)}. Therefore, no matter
what is the value ofx is, two of the valid pairs are(0, x) and(1, x), and thusR(k, x) is not consistent.

Lemma 5. If there is one splitc ∈ C thenv(c1) = v(c2) for everyc1, c2 ∈ C.

Proof. Assume for contradiction thatv(c1) 6= v(c2). Then, by Lemma 3 (applied toc, c1 and then toc, c2) the
valid pairs of(c, k) contain(1, 0) and(1, 1). On the other hand, sincec is split, the valid pairs of(c, k) also
contain(0, 0) and(0, 1) which is a contradiction to the rich data hypothesis.

Lemma 6. There is at most one split.

Proof. Assume for contradiction thatc1, c2 ∈ C are both split pairs. Then, by Lemma 3 (applied toc1, c2),
|V (c1, k)| = 4. This is a contradiction to the existence ofT .
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