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Abstract

This paper is concerned with the reconstruction of perfect phylogeniesdimemy character data with
missing values, and related problems of inferring complete haplotypestiaplotypes or genotypes with
missing data. In cases where the problems considerel Bréard we assumerich data hypothesisinder
which they become tractable. Natural probabilistic models are introducetié generation of character
vectors, haplotypes or genotypes with missing data, and it is showth#s models support the rich data
hypothesis. The principal results include:

e Anear-linear time algorithm for inferring a perfect phylogeny fromesincharacter data (or haplotype
data) with missing values, under the rich data hypothesis;

e A gquadratic-time algorithm for inferring a perfect phylogeny from ggpe data with missing values
with high probability, under certain distributional assumptions;

e Demonstration that the problems of maximum-likelihood inference offdete haplotypes from par-
tial haplotypes or partial genotypes can be cast as minimum-entropydisgticover problems;

¢ In the case where the haplotypes come from a perfect phylogeny, a reprieseotahe set cover
problem as minimum-entropy covering of subtrees of a tree by nodes;

e An exact algorithm for minimum-entropy subtree covering, and dematigh that it runs in polyno-
mial time when the subtrees have small diameter;

e Demonstration that a simple greedy approximation algorithm sohesninimum-entropy subtree
covering problem with relative error tending to zero when the number daphaplotypes per com-
plete haplotype is large;

e An asymptotically consistent method of estimating the frequencies afdhmplete haplotypes in a
perfect phylogeny, under an iid model for the distribution of migsiata;

e Computational results on real data demonstrating the effectivenessefeetidy algorithm for infer-
ring haplotypes from genotypes with missing data, even in the abseagessfect phylogeny.
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1 Introduction

A central problem in genetics and medicine is to discoveragsociations between genetic variations in a hu-
man population and phenotypes such as disease. The mostoroairthese variations are Single-Nucleotide
Polymorphisms (SNPs), in which two (or occasionally moregleotides frequently occur at a giveoly-
morphic sitewithin some chromosome. Thgenotypeof an individual specifies, for each of a selected set of
polymorphic sites, the pair of nucleotides occurring at #ige in a homologous pair of chromosomes. The
genotype does not resolve the question of how the nuclen&teolymorphic sites are assorted between the
two copies of the chromosome. The problem of resolving thibiguity is called theohase problenin geno-
typing. A successful resolution of the phase problem detersan individual's pair ohaplotypes each of
which specifies the contents of the polymorphic sites at dtieectwo copies of the chromosome.

Experimental protocols exist both for genotyping and, aager expense, for haplotyping. Because geno-
typing is cheaper, a common approach is to determine thetyma®of individuals experimentally, and then at-
tempt to infer their haplotypes computationally, somesmth the help of pedigree data. Whichever approach
is taken, the resulting genotypes or haplotypes will irslit contain sites at which the correct nucleotide (or
unordered pair of nucleotides in the case of genotyping)naabe determined with certainty. The problem of
resolving such missing data is one of the major themes optjier.

Given a single genotype containing heterozygous sites dssing data, the problem of resolving it into
a pair of completely specified haplotypes involves assigtive two nucleotides at each heterozygous site to
one haplotype or the other, as well as filling in the missingud@ypically a single genotype can be resolved in
many different ways. However, guidance to the correct tg&wi can be gleaned by simultaneously considering
the genotypes of many individuals and applying two priregplvhich are often valid over genomic regions of
limited extent: first, that the same haplotypes tend to ooepeatedly in the genomes of many individuals, and
secondly that the evolutionary history of these commondtgpes is very simple. In particular, the evolutionary
tree is often gerfect phylogenyin which there is only one mutation event for each polymarsite.

This leads to the second major theme of the paper: the irderehperfect phylogenies from haplotypes
or genotypes with missing data. This problem is isomorphia key problem in phylogenetics - the inference
of a perfect phylogeny for a set of taxa when the binary charatata is incomplete. The problem also occurs
in historical linguistics, where the evolution of a set afdgaages is inferred from incomplete data about two-
valued attributes of the languages; see [15] for a strikpgieation of perfect phylogeny to such problems.

The third major theme is the use of a maximum likelihood pplecto assign complete haplotypes to
genotypes or haplotypes with missing data. This princijple loe applied whether or not the set of complete
haplotypes is restricted to a perfect phylogeny. We preagmbbabilistic generative model of haplotype or
genotype data. The components of this model are the disttbaf the complete haplotypes in a population, the
stochastic process of pairing up complete haplotypes to tmmplete genotypes, and the stochastic process of
masking certain components of the haplotypes or genotgpagate missing data. Within this model, we show
that the most likely valid resolution of the incomplete lwppes or genotypes is the one that minimizes the
entropy of the resulting distribution of complete haplagpWe present algorithms for finding or approximating
the minimum-entropy assignment, both in the case of a pgpfedogeny and in the unrestricted case, and we
present successful computational results on real data.

2 Basic Definitions and Summary of Results

A complete haplotypes an element of0, 1}, where each component indicates the nucleotide at a particu
polymorphic position in an individual’'s genome We restoatrselves to the most common case, in which only
two nucleotides occur with non-negligible frequency at\aegiposition; the two nucleotides at each position
are encoded asand1. A partial haplotypeis an element of0, 1, «}™, wherex indicates that the nucleotide
at a given position is undetermined. A complete haplotyfpé&s compatible with a partial haplotype: if ch



andph take the same value in each position whehecontains0 or 1. A complete genotypis an element of
{0,1,2}™ corresponding to a pair of complete haplotypes which takeséime value as the complete genotype
at positions where the complete genotype contéiires 1, and take opposite values at positions where the
complete genotype contair?s Finally, apartial genotypeis an element of0, 1, 2, x}™, wherex indicates
that the position in the corresponding complete genotypeaetermined. Thus a paih;, che Oof complete
haplotypes is compatible with partial genotypeif ch; andchs both contair0 in a position whereg contains

0, 1 in a position whergyg containsl, and opposite binary values wherg contains2.

We consider the following problems:

P1 Given a set oh partial haplotypes, assign a compatible complete haptoty@ach;
P2 Given a set of: partial genotypes, assign a compatible pair of completéohgges to each.

These problem statements are ill posed, because they greason for choosing one solution over another
amongst the vast multiplicity of feasible solutions. Westoain the problem in two ways: first, by requiring that
all the complete haplotypes come from a perfect phylogeng;s®econd, by imposing a maximum likelihood
criterion which favors those solutions that are highly @ntecated on a small number of complete haplotypes.

2.1 Perfect Phylogeny

A set of complete haplotypeSH C {0,1}™, |CH| = n, can be given as a matrig € {0, 1}"*™. We say
that A has a perfect phylogeny if there exists a tfee= (V, E) such that every node in € V is labeled by
a haplotypeh, € {0,1}™, every edge: € E is labeled by a columre, € {1,... ,m}, and the following
conditions are met:

e Every row of A appears as a node labeldn
e Nocolumn{1,... ,m} appears more than once as an edge labél in

e For an edge = (u,v) € E, the haplotype%,, andh, match in all columns except at colunap, where
they differ. In other words, a site label indicates a mutation, or a change in the value of the nudeoti
at sitec. from 0to 1, or from 1 to O.

Let ¢1, co be columns ofd. Let V (¢, c2) be the set of values that the pair of columns takes on over all
the rows of4, soV (e, ¢2) € {(0,0),(0,1),(1,0),(1,1)}. Itis a well known fact (see e.g. [3, 9]), that a
necessary and sufficient condition fdrto have a perfect phylogeny is that, for every pairce of columns of
A, |V (c1,c2)| < 3. We call the pairs of values W (cy, ¢2) thevalid pairsfor columnsey , c;.

Call a perfect phylogengompatiblewith a given set of partial haplotypes if it contains comeleaplotypes
compatible with all the given partial haplotypes, acmmpatiblewith a given set of partial genotypes if it
contains pairs of complete haplotypes compatible withhaldiven partial genotypes. Thus we are led to the
following problems:

PP1 Construct a perfect phylogeny compatible with a given sqtasfial haplotypes (or determine that none
exists).

PP2 Construct a perfect phylogeny compatible with a given sqiasfial genotypes (or determine that none
exists).

Problem PP1 is NP-hard [13] but is solvable in near-lineaetgiven any one of the haplotypes in the
perfect phylogeny [8]. Problem PP2 is proven NP-hard in.[1&8]the case where the given haplotype matrix
does not contain missing data Gusfield [5] introduced a titiege algorithm.

For each of these problems we present a condition whichigfisdtwith high probability when the data is
generated by a natural probabilistic process, and shovutitir this condition the perfect phylogeny is unique
and can be recovered efficiently. Our recovery algorithmHBA runs in near linear time, and our recovery
algorithm for PP2 runs in timé& (nm“~1), wherew =~ 2.37 is the best currently known exponent for the matrix
multiplication algorithm.



We turn now to P1, the problem of choosing the most probalsigasment of compatible complete haplo-
types to partial haplotypes. The problem has two main variat according to whether the compete haplotypes
are constrained to come from a given complete phylogeny @then their choice is unconstrained. kebe
the number of partial haplotypes; the number of partial haplotypes assigned toithecomplete haplotype,
and letp; be 2. Under our probabilistic model the most likely assignmerthie one that minimizes the entropy
>; —pilogp;. Itis shown in [7] that a simple greedy algorithm produceassignment whose entropy is within
a small additive constant of the minimum entropy. We meath@@erformance of the greedy algorithm on real
data sets, and we find that even though the algorithm is varplsito state and to implement, its performance
is comparable and in some cases better than the performasteof the art phase reconstruction algorithms
such as PHASE [14], HAP [2, 6] and HAPLOTYPER [10].

In the case where the complete haplotypes come from a petigligeny they can be viewed as the nodes
of a phylogenetic tred’, and the partial haplotypes can naturally be identified withtrees of’, such that a
complete haplotype is compatible with the partial hapletiffand only if the complete haplotype is a node of
the corresponding subtree. Similarly, a partial genogygpean be identified with a pair of disjoint subtrees of
T, such that a pair of haplotypes is compatible withif and only if one of the haplotypes comes from each
of the two corresponding subtrees. Therefore, in the casgeanthe complete haplotypes come from a known
perfect phylogeny, Problems P1 and P2 reduce to finding amimi-entropy assignment of subtrees to nodes
within them.

We do not know whether there is a polynomial-time algorittifimd a minimum-entropy assignment of
subtrees of a tre& to nodes within them (by contrast, there is a straightfodasarear-time algorithm for
covering a set of subtrees with a minimum number of nodes)veder, we present a dynamic programming
algorithm to find the minimum-entropy assignment in the aaisere all subtrees are of diameteflog log m).
Building on this special case, we present approximatiolrélgns that provide near-optimal solutions with
high probability when the partial haplotypes are generatambrding to our probabilistic model and their num-
ber of is sufficiently large. We also provide a method whidkeg the perfect phylogeny and the set of partial
haplotypes generated from a sample of complete haplotgpes an asymptotically consistent estimate of the
number of occurrences of each complete haplotype in the lsarfs information can be used not only to
assign partial haplotypes to complete haplotypes, buttalestimate the accuracy of the assignment.

Finally, we present computational results on real data skfsionstrating the effectiveness of a simple
greedy algorithm for resolving genotypes with missing dat&n in the absence of a perfect phylogeny.

3 The Probabilistic Models

Throughout the paper, we assume that the haplotypes givie gorithms as input are randomly generated
by different probabilistic generative models. The basiuaption used is that the human population consists
of a set of haplotypes with frequencies, and that the hapéstyiven to the algorithm are independently drawn
from the distribution specified by the frequencies.

Formally, we say that a set of partial haplotypesisdomly generate they are generated in the following
way. There exists a (not necessarily known) set of complefdotypesh, ... ,hx € {0,1}"™, an unknown
distributionpy, ... , pr wherep; + p2 + ... + pr = 1 and a masking probability. The haplotypes are picked
independently from the distribution one by one, that ishaaaw haplotype is chosen to hewith probability
p;. Once a haplotypé is chosen, the entries of ttheare masked by independently replacing the value of each
coordinate ofh with a * with probability p. The choices to replace those values are independent obtaeh
and are independent of the entries in the stfingVe will usually refer tgp as a constant smaller thap2, and
we assume that the haplotypes . . . , hy are not known unless explicitly stated otherwise.

In some cases we limit ourselves to haplotypes that are malydgenerated from a perfect phylogeny. In
this case we add the additional constraint that the set dbtygg@sh,, ... , hy is taken from the nodes of a
perfect phylogeny tree. We assume that the tree is not givan tinless explicitly stated.



Finally, the genotypes are randomly generated in the fatigway. We first randomly pick two haplotypes
h andh’ independently from the distributiopy, . .. , px, h andh’ and we get a genotype given by their com-
bination. We then mask the genotypes by masking each ofeh&iles independently with probabiliy The
assumption that the two haplotypes are drawn independisriilled random mating and is sometimes referred
to in the literature as the Hardy-Weinberg equilibrium asgtion.

Given a set of partial haplotype3H = {phi, phs,... ,phy,} that are randomly generated by an unknown
distribution and a set of complete haplotyp@$/ = {chq,... ,ch,} that are compatible with the partial
haplotypes, we are interested in estimating the likelihoiatiese complete haplotypes to be the the ones drawn
by the random data generator. kgt no, ... ,n; wheren;+no+...+n; = n be the frequencies of the complete
haplotype ofCH. The probability that for each ch; is the actual complete haplotype that was generated is
Hﬁpz”, wherep; is the unknown probability of the random data generator tegete the-th complete haplotype
(the one which appears times in the data). The probability to obse®é/ and thatC' H will be generated by
the random data generator is therefold —p)""~*II'p?", wheret is the total number of masked entries .
Since the expressigi (1—p)"™ " is fixed, we refer to the likelihood of the assignmentis;. The likelihood
of the assignment is therefore maximized when for eagh = n;/n. The likelihood of this assignment is

Hmﬁ and its logarithm isy , n;logn; — nlogn. In order to maximize this likelihood, we are interested
in finding an assignment which maximizes the expres3igm; logn;. We call this problem Thélaximum-
Concentration Assignment ProblerRind an assignment of partial haplotypes in PH to compleigdtypes
in CH that maximizes theoncentration) _. n; log n,;. This likelihood model was first suggested in [6], and is
consistent with other likelihood models. Note that maximizthe likelihood is equivalent to minimizing the
entropy of the distributioqpy, ... ,p;}, wherep;, = n;/n, for the following reason. The entropy is defined
as) . —p;log p;. Minimizing the entropy is equivalent to maximizig, p; log p; = % >, nilogn; —logn,
which in turn is equivalent to maximizing the concentration

Reference [7] considers the maximum-concentration assgh problem in a general setting wheré!
and PH are arbitrary finite sets endowed with a compatibility relat? C CH x PH. Itis shown that
maximum-concentration assignment problenViB-hard, but that a simple greedy algorithm yields an approx-
imate solution with additive erra®(m). In Section 6 we report on the performance of the greedy iitgor
on haplotyping problems whek@H is taken to be unconstrained (i,&;H = {0,1}™. We further show in
Section 5 how can one find the maximum concentration assignmwigen the data is randomly drawn from a
known perfect phylogeny tree and the probabilitis sufficiently small.

4 Incomplete Perfect Phylogeny Reconstruction

Reconstructing a perfect phylogeny fratne {0, 1, }"*™ is NP-hard in general [13]. In the directed version,
where the root of the tree is known, there is a near-lineasrdlgn for reconstructing a directed perfect phy-
logeny [8]. Therefore, for the undirected case, the prolitambe reduced to finding one haplotype in the tree,
since then we can root the tree at this haplotype and useghgtam of [8].

The rich data hypothesis. Since the problem is NP-hard in general we consider the casgenenough
explicit information is given on the underlying tree. Rathiean requiring a root to be fully specified, we
require that the matrix meet a condition we call tigh data hypothesjsaccording to which the valid pairs
of all pairs of columns appear somewhere in the matrix. Weigeoa linear time algorithm for finding one
haplotype in perfect phylogeny tree that fits the matrix. um{ we can use the near-linear time algorithm of
Pe’er et al. [8] for complete reconstructiondr{nm) time.

The rich data hypothesis imposes a very specific structuthedata. In particular, it is not hard to see
by induction on the size of the tree, that for a matrix of coetglhaplotypes, if for every two columns in the
matrix there are exactly three valid pairs, then the treenigue. Thus, under the rich data hypothesis, if a
tree exists then the tree is unique. On the other hand, thalata hypothesis is not a necessary condition for



the uniqueness of the phylogeny tree. It is possible to cactsexamples where a matrix has a unique tree
reconstruction, but not all valid pairs appear. Due to spastictions, we will supply such an example in the
full version of the paper.

It is not clear then, what are the necessary and sufficierditons for the matrix to have a unique perfect
phylogeny tree, and we leave this as an open problem.

We claim that the rich data hypothesis holds with high prdtiglvhen a large number of partial haplotypes
are randomly generated by the random data generator degénitsection 3. Assume that the haplotypes are
randomly generated from a perfect phylogeny tree with aidigton p,,... ,p, and a masking probability
p < 1/2. Letz = min;p;. At each step of the generation of the data, the probabitif the complete
haplotypeh; will be drawn, and that the specific pair of entrigsc, will not be masked ip;(1 — p)? > z/4.
Therefore, by the Chernoff bound, the probability that thisnt will never happen is at mast**/19, By the
union bound, the probability that there will be a haplotypeand a pair of entries that never appear unmasked
in h; is at mostm2ke=*"/10. Sincex, m andk are fixed, for a sufficiently large, with high probability the
rich data hypothesis holds.

4.1 Finding the Tree

Given the valid pairs one can construct a conjunctive noforah formula from the matrix4 as follows. For
every entrya;; in A we introduce a boolean variabtg;. We then add the following constraints. df; = 1
ora;; = 0, we add the constraint that; = a;;. Then, for every two columns; andc;, let (z,y) € {0, 1}?
be such thatz,y) ¢ V(c1,c2) - by the rich data hypothesis there is exactly one such (paiy). For every
row r we add the constraint th@t,., # x) V (a,., # y). One can easily verify that the disjunction of all
these constraints can be written a8-8AT formula, and therefore, using a linear-time algoritfon 2-SAT,
we can find an assignment to the entries of the matrix suchetheaty partial haplotype in the original matrix
is compatible with the assignment and thatc,, c2)| = 3 for every pair of columns;, ¢, that is, the matrix
corresponds to a perfect phylogeny.

4.2 A Linear Time Algorithm

The running time of the algorithm described above is doreihaty the time it takes to find the sets of valid pairs
for each pair of columns. This procedure takes superliriga. tA naive implementation will tak®(nm?),
and a more sophisticated (but still standard) implemestatan takeO (nm“~!) wherew ~ 2.37 is the best
known matrix multiplication exponent. The details of thesgorithms are omitted from this version. Note that
in both cases we get a superlinear algorithm. In this seat®show how to find the tree in near-linear time.

As described above, by finding one haplotype, we can rootrdeeih that haplotype and then use the
algorithm of [8] to find the whole tree. We present here a liniiae algorithm that finds a root.

Let T be the underlying (unique) tree that fits the matfix We first need the following lemma, whose
proof will be given in the appendix:

Lemma l. Leth € {0,1}" be a complete haplotype located on one of the verticds dthenh corresponds
to a leaf inT' if and only if there is a columnin A such that all the rows with A,.. = h. are compatible with
h.

By Lemma 1, in order to find a haplotype i, we can look for a leaf of . In particular, it is enough to
look for a pair(c, z) of a columne and a valuer € {0,1} such that for any two rows, 7/, if 4,. = = and
A, = x, thenr andr’ are consistent, that is the two rows agree whenever botlevalte not ™. In this
case we callc, z) a leaf pair. Once we find a leaf pair, it is a straightforwardgedure to find the haplotypge
which corresponds to that leaf.

We now turn to the algorithm that finds a leaf pair. We first ngeaahe notations and definition. We assume
that the columns are numbered... ,m. Letc be a column, and let € {0,1}, we denote byR(c,x) the
set of rowsr such thatd,. = x. For two columnscy, ¢, let R, (c1,¢c2) = {Ape, | 7 € R(c1,2)}. Thatis,

5



ALGORITHM FIND-LEAF

Input: A matrix A satisfying the rich data hypothesis.
Output: A leaf pair(c, x).

1. Find the two candidates in the first two colurtinz), (2,y). If z = 1 swap the values of the
entries of the first column (i.€) becomed and1 becomed)). If y = 1 swap the values of the
second column. Eventuallgy = {(1,0), (2,0)}.

2. fork=3,... ,mdo:

(a) Forevery € C,if 0,1 € Ry(c, k) we say that is split. If ¢ is not split, letv(c) be the
only element ofRy(c, k) N {0,1} (we show in Lemma 2 that this set is not empty).

(b) If there are no splits and(c) = « for everyc € C, then ifx = 0 swap the values in the
k-th column and addk, 0) as a candidate.

(c) Ifthere is exactly one split* € C', then by Lemma 5, all the other candidates C' have
the same value(c). Lety = 1 — v(c) be the other value. If = 1 swap the values of the
k-th column. Remove* from C and addk to C.

3. For each candidatee C check if R(c, 0) is consistnet. If it is consistnet stop and output thig
pair.

Figure 1: Algorithm FND-LEAF.

R.(c1,c2) € {0,1,x} is the set of values appearing in columnin the sub matrix restricted to the rows of
R(c1,x).

Before describing the algorithm in detail, we give an ovenwbf the flow of the algorithm. The algorithm
traverses the matrix from left to right, spendi@gn ) time for each column. At each point of time we maintain
a set of candidates for leaf pair§, = {(c1,z1), (c2,22),...,(c,z¢)}, and we assume that the following
invariants are preserved when we reach coldmn

1. For eachc,z) € C' we have that: = 0.

2. Foreveryi # j,i,j € {1,... ,t}, we have thaR(c;,0) N R(c;,0) = ¢.

3. Foreverye < kandz € {0, 1}, if (¢,z) ¢ C then(c, z) is not a leaf pair.
The first property is stated only for the convenience of tresgntation. We will abuse notations and say that
c € Cif (¢,0) € C. The algorithm is given in Figure 1.

The main objective of the algorithm when traversinghi column is to verify that the previous candidates
are still consistent, and to ad#, 0) or (k, 1) to C unless they are proven to be inconsistent. Clearly, oneotann
simply add both of them t@’ since then the invariants are not going to be preserved.

We now prove the correctness of the algorithm. Throughaiptbof we assume that the tréeloes exist,
and that the rich data hypothesis holds. We first need a lenmenwhows that the séty(c, k) N {0, 1} is not
empty (this is needed for step 2a in the algorithm). The pi®gfven in the appendix.

Lemma 2. For everyc € C there is at least one row € R(c,0) such thatA, . # .
The proof of the following is given in the appendix.
Lemma 3. Letc;, co € C. Then for every complete haplotypef T, if h., = 0 thenh., = 1.

Note that in the flow of the algorithm, the size 6f never decreases. Therefore, if we show that the
third invariant property is preserved throughout the atbor, then it is enough to check every candidate for
consistency, and thus the algorithm finds a leaf pair if ongtgx



The first invariant property always holds since the only adetes added t6' throughout the algorithm are
of the form(c¢, 0). The second property can be easily verified by observingwthahever the algorithm adds a
candidate it is disjoint to all previous candidates.

We now prove that the last invariant property holds by iniuct One can verify that it holds for the first
two columns. Assume that it holds before we traverse:ttiecolumn. Note that we remove a candidafeom
C only if it was split, in which case&?(c, 0) is not consistent. Therefore, it is sufficient to show thavéf do
not add(k, x) to C for some valuer then R(k, x) is not consistent. We show this by case analysis using the
following three lemmas (the proofs are given in the appéndix
Lemma 4. If cis not split andv(c) = = for somer € {0, 1} thenR(k, x) is not consistent.

Lemma 5. If there is one split € C thenv(c;) = v(ce) for everyey, e € C.
Lemma 6. There is at most one split.

Consider now thé-th iteration. By Lemma 6, we cover all cases in the algoritkfrthere are no splits, then
by Lemma 4, if there are;, co € C such thaw(c;) # v(cz2), then neithei?(k, 0) nor R(k, 1) are consistent. If
v(c) = x for everyc € C, then again, by Lemma &(k, x) is not consistent, and the algorithm adésl — )
to C (if z = 0 it flips the values in that column). If there is exactly oneitsgghen by Lemma 5 all other
candidates have the same valyand then by Lemma &(k, y) is not consistent, and the algorithm can leave
it out of C'. Therefore, the third invariant is maintained throughdnet algorithm.

We now turn to show that the algorithm runs in linear time.

Theorem 1. Algorithm FIND-LEAF finds a leaf pair in time)(nm).

Proof. Step 2 of the algorithm can be implemented’in) time since the set&(c, 0) are pairwise disjoint.
We run this stepn times so the total running time before the last step of therdlgn isO(nm). In the last
step we have to check for each candidate whether it is censidt is easy to see that checking whetRge, 0)

is consistent can be done in tim&m - |R(c,0)|). Since the set&(c, 0) are pairwise disjoint this sums up to
at mostO(nm). O

5 Maximum Concentration on a Tree

In the case where the complete haplotypes come frdmoavnperfect phylogeny the haplotype assignment
problem can be recast as a problem of assigning each sulbtaetee@ to a node within the subtree. e

the tree of a perfect phylogeny. We will speak interchantyeaba complete haplotype and the nodelirthat

it labels. It is easy to verify that for any partial haplotythe set of compatible complete haplotypes is the set of
nodes of a subtree @f. Thus assigning a partial haplotype to a compatible corapiaplotype can be viewed
as assigning a subtree to a node within it.

A similar situation holds for the problem of assigning a j@denotypepg to a pair of complete haplotypes.
To see this, first observe that the set of single completeohgps compatible witlpg is the set of nodes of
some subtred”, just as in the case of a partial haplotype. ISebe the set of edges of T’ corresponding to
columns where theg contains &. Then two nodes: andv of 77 can be chosen as the pair of complete
haplotypes ofl” compatible withpg if and only if every edge it lies on the path of” betweenu andv.
Except in the special case whe¥ds empty, this uniquely determines two vertex-disjointtsees of7”, each
of which must contain one of the two chosen complete hapéstyny such choice will work. Whefi is
emptyu andv need only be drawn frord”, and need not be distinct.

We now turn to the problem of finding a maximum-concentrati@signment of subtrees to nodes. As
shown in Section 3, finding the maximum concentration assé is a natural problem arising from the
search for a maximum likelihood assignment. ketdenote the number of nodes in the ttBeandn, the
number of distinct subtrees to be covered.

Any assignment of subtrees to nodes can be thought of asointlispver of the subtrees, where each setin
the cover is the set of subtrees mapping to a particular néewill sometimes use the terminology of covers
rather than assignments.



5.1 Constructing a Maximum-Concentration Cover

Theorem 2. There is an algorithm for computing a maximum-concentratiover of subtrees of a trég by
nodes which, for trees of fixed maximum degree, runs in poligidime when all subtrees have diameter
O(loglogm).

Proof. Let X be a multiset of subtrees of a tr&e Call a setY C X consistentf, wheneverY contains
one copy of a subtree in the multi s&t, it contains all copies of the subtree. Note that, in any mamxn-
concentration cover of any multiset, every multiset in theer is consistent.

For each vertex in T let S(v) be the multiset of subtrees froi that containv. Let T be rooted at an
arbitrary noder. In this rooted tree each vertexhas a unique parep{v) (where by convention the root is its
own parent), a set of childrefi(v) and a set of descendanf¥v), where in particulap € D(v).

For each vertex and each consistent multisétC S(v) N .S(p(v)), let H (v, A) be the maximum concen-
tration of a disjoint cover ob),,c p(,) (S(u) —S(p(v))UA. In particular,H (r, X) is the maximum concentration
of a disjoint cover ofX by vertices ofT.

The algorithm compute#/ (v, A) for all v and A by working upward from the leaves of the rooted tree
towards the root. Let the children ofbe uy,us, - - ,u.. Define alegal partition with respect to(v, A) as
a family of disjoint consistent setdg, A;,--- , A. such that, fori = 1,2,---, A4; C S(u;) andUi_yA; =
(S(v) = S(p(v)) U A.

ThenH (v, A) = min(|Ao|log |Ao| + 7, H(u;, A;)), where the minimum is taken over all legal parti-
tions with respect t@, A.

The dynamic programming algorithm implied by this recuedsrmula computes a maximum-concentration
cover of X in time O(m2%) wherem is the number of nodes ifi, d is the maximum number of children of
any node , and is the maximum, over all nodes of the number of distinct subtrees.$f{v) N S(p(v)). This
algorithm will run in polynomial time ifdk = O(logm). This will be the case, for example, when all subtrees
are of diamete© (log log m/ log d). O

5.2 Approximation Algorithms

Theorem 3. There is a quadratic-time approximation algorithm thatwes the minimum-entropy subtree cov-
ering problem with relative error tending to zero as — oo, provided that: > m¢ for some constant > 1.

Proof. Thegreedy algorithnfor assigning subtrees to nodes simply repeats the folpstap until all subtrees
have been assigned: choose a node occurring in the maximmuimemwf subtrees remaining to be assigned, and
assign all those subtrees to the node. A general result imffies that the concentration of the resultirgedy
assignmentliffers from that of a maximum-concentration assignmenabgmostO(m). Since the maximum-
concentration assignment has concentration at least(n/m), the relative error of the greedy assignment
tends to zero when > m*. O

The greedy algorithm described in Theorem 3 does not usenfberiation about the tree. In fact, this
algorithm can be applied to a set of partial haplotypes tre@hat compatible with any perfect phylogeny tree.
The following is an alternative approximation algorithnatimay outperform the greedy algorithm in practice,
and which uses the tree structure. l&tbe the multiset of subtrees withiki of diameter at most log log m
for some constani. Using the above dynamic programming algorithm computerarmim-entropy cover of
X' having concentratiod”’. Ths can be done in polynomial time. Then insert each subirée— X' into the
largest set in this cover whose covering node contains thieesl

Theorem 4. The alternative approximation algorithm has relative @rtending to0 with high probability,
under the following assumptions: > m¢, for somec > 1; the partial haplotypes are generated by our
probabilistic model; anghd < 1, wherep is the masking probability and is the maximum degree &f.

Proof. Let C' be the concentration of a maximum-concentration coveXof ThenC > nlog(n/m) =
Q(nlogn). Lett be the cardinality of the multiseX — X’. If the elements ofX — X’ are deleted from



the maximum-concentration cover &fthen the concentration is reduced by at nidsg n. Therefore there is

a cover of X’ with concentration at leagt — ¢ log n. Hence the cover produced by the algorithm has concen-
tration at least” — tlog m. Asymptotically this construction will achieve asymptotelative error tending to

0 provided that = o(n).

We now now show that, under our assumptions= o(n) with high probability. Each subtree has a
root vertex (alias complete haplotype) drawn from the wesit of 7' and consists of the connected compo-
nent of that vertex in a random subtree®fin which each edge is present with probability The proba-
bility that a subtree so constructed has radius greater dhagual to(a/2) log logn is bounded above by
(pd)(@/2)leglogn — (O(1/log n) It follows (by a Chernoff bound) that the number of subtrees of diameter
greater tham log log n is O( —). It follows that our construction produces an assignmettt adncentration
C(1—0(1/logn)) whp. O

5.3 Estimating Frequencies of Complete Haplotypes

Assuming our probabilistic model of the generation of @dtiaplotypes from complete haplotypes (or subtrees
of T' from nodes ofl"), we next give a method of estimating the number of subtreesmted from each node.
Call the subtree from which a subtree is generateddbeof that subtree. Lep; be the number of subtrees
containing node. Lety;; be the number of subtrees containing edgg). Let x; be the number of subtrees
rooted at node. Let f;; be the number of subtrees containing edgg) such that node is on the path of”
from the root of the subtree to noge Given they; and they;; we would like to solve for thef;;. Once we
know thef;; we can solve for the; by the formulaz; = y; — >, fr; wherek ranges over the neighbors ©f

Consider a particular edge, j). Let z;; be the number of subtrees containing nedech that is on the
path from the root of the subtree jan 7', such a subtree may or may not contain ngdéet Z;; be defined
similarly. We get the following equations; = z;; + fji, y; = 2ji + fij, vij = fij + [fji

The following additional equation would allow us to solve f; and f;;: fZ?ZJ? = 1. This gives the result

( ) f]izij
fiz = ijz// yyw and fj; = %J+yyj ZJ _ _ _ o
We claim that the additional equation is “asymptoticallyreot;” i.e., for a given probability distribution

over the nodes, the left-hand-side of the equation shoyltbagphl as the number of subtrees tends to infinity.
The equation states thé@ f“ ; i.e., that the frequency with which a subtree containe€dg), given that

it containsi andi is on the path |riT from the root toy, is equal to the corresponding frequency wlhiemd

j are interchanged; but each of these frequencies shouldagpthe masking probabilify as the number of
subtrees grows. Thus, when the number of subtrees is llgestimation of the;; derived from this equation
will be accurate with high probability, yielding an acc@a&stimation of the:;.

This estimation method yields another way of assigning sablree to a node: choose the node within the
subtree for which the associated estimated valug &f largest. The method has the advantage of providing an
estimate of the probability that this choice is correct; pimthe estimated value af;, divided by the sum of
the estimated values for all the nodes in the subtree.

6 Experimental Results

In Section 5.2 we presented a greedy algorithm for the maxirooncentration problem that does not use any
information about the tree. In haplotype terminology, gieeset of partial haplotypes, the algorithm iteratively
finds the complete haplotype which is compatible with the imaxn possible number of partial haplotypes,

removes this set of partial haplotypes and continues inrtfaainer. In [7] a more general results implies that
this process results in an additive error@fm) to the maximum concentration. A similar algorithm can be
defined for partial genotypes, and in [7] it is shown that fengtypes the algorithm gives a multiplicative error

of 2.



We measured the performance of the greedy algorithm inipeadioth for genotype phase reconstruction
and for haplotype missing data completion. We used a brandhbaund procedure to find the complete
haplotype which is compatible with the maximal number oftiphthaplotypes. Our results show that the
greedy algorithm, which is very simple to state and to immatnperforms reasonably well, and for parts of
the data it is even better then previous phase reconstnuatgmrithms such as PHASE [14], HAPLOTYPER
[10]and HAP [2, 6]. We would like to emphasize that one of theagjadvantages of the greedy algorithm is its
simplicity compared to the algorithms mentioned above.

The data sets. We applied our algorithm to two haplotype data sets by [1,ati] populationD of [4]. The
first data set is a 500 kilobase region of chromosome 5g3hrong 103 SNPs from the studies of [1] and [11].
In this study, genotypes for th€)3 SNPS are collected frort29 mother, father, child trios from a European-
derived population in an attempt to identify a genetic riz&tér for Crohn’s disease. A significant portion of
the genotype data (about%) is missing with an average @f) SNPs per individual's genotype missing. This
data set was partitioned in [1, 11] into eleven blocks of feghrelation. Since this set consists of trios, we
can infer each individual’s haplotypes in all positions epicfor the positions where all three individuals are
heterozygous or missing. We use populatidh$érom the [4] data which has pedigree information. The data
consists of genotypes of SNPs fran regions. PopulatiorD consists 0of0 individuals from30 trios from
Yoruba.

Completing missing haplotypes. We measured the performance of the greedy algorithm on typelaata
with missing data. We first took the data two data sets andiderexl the haplotypes of the parents inferred
by the trios. These haplotypes contain a certain amount sding data that is a result of the missing data in
the original data and positions where the mother, fatherthecthild had heterozygous or missing data. We
added random missing data by masking each position indepégdvith probabilityp for some valuep. We
then partitioned the data into blocks and ran the greedyrittigo on each of these blocks. The block size for
the data taken from [4] was fixed as siz& and the blocks size for the data taken from [1, 11] was déteun

by the blocks given in [1]. We then compared the resultingdtgpes of the greedy algorithm to the original
haplotypes. We consider each masked position and we olos#ntevas correctly reconstructed or not. We
found that the error rate in the reconstruction is only a fercents in both data sets, even when the missing
data consists of abo@t% of the data. The results are given in Figure 2 in the appendix.

Phasing genotype data We used the greedy algorithm to phase genotype data. We husédos in order to
infer the haplotypes of the parents, and we measured therpehce of the algorithm on the set of genotypes of
the parents. We compared our results to the results givenmreg bther phasing algorithms, namely HAP [2, 6],
PHASE [14] and HAPLOTYPER [10]. The results of the comparisoe given in Figure 3 in the appendix.

We observe that although the greedy algorithm is much simplgtate then the other algorithms, the results
achieved by the greedy algorithm are competitive with tineotesults. In fact, for the the data taken from [1],
the performance of the greedy algorithm is superior to théopmance of all the other algorithms. For the
Gabriel [4] data, the greedy algorithm is inferior than tiigeo algorithms, but it still gives reasonable results.

7 Future Work

Following our discussion, the following problems are lgfea and it would be interesting to settle them. First,
it is still open whether there is a polynomial-time algamittior constructing a perfect phylogeny compatible
with a given set of partial haplotypes, under the assumpkiahexactly one such tree exists? What if the given
setis a set of partial genotypes instead of partial hapéstypnother problem that stands open is whether there
a polynomial-time algorithm for computing a minimum-emyocover of subtrees by nodes? Finally, does the
greedy algorithm for assigning complete haplotypes to tygras with missing data approximate the minimum-
entropy assignment with additive error bounded above bynataat (such a result holds for haplotypes with
missing data)?
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Data Set | Total missing| Added missing| Error rate
Daly et al. 26% 10% 2.8%
Gabriel et al. 10.5% 0.5% 8.1%
Gabriel et al. 15% 5% 7.4%
Gabriel et al. 20% 10% 7.8%

Figure 2:The performance of the greedy algorithm under the different data sethaddferent missing data ratio. The
first column specifies the data set on which the experiment was done. Thel setomn specifies the total missing data
given to the algorithm - this missing data contains the added misisitegand the missing data given by the original data
and since some positions are unresolvable by the trios. The tHiichoocorrespond to the ratio of added missing data
(that is - it specifies the value @), and the fourth column specifies the error rate of the algorithm, shthiei number of
incorrectly reconstructed masked positions divided by the total nunflmeasked positions.

HAPLOTYPER | PHASE | HAP | GREEDY
Gabriel et al. - 4.4 % 3.7% 7.3%
Daly et al. 4% 165% | 1.27% | 0.82%

Figure 3: The results for the genotype phasing algorithm. Each column corrdsgora different algorithm and each
row corresponds to a different data set. We did not run HAPLOTYPERamulationD of the data from Gabiel et al.
[4]. Evidently, on the Daly et al. data set, the greedy algorithm outperthe other algorithms. On the other hand,
on the Gabriel data set the greedy algorithm does not perform as welluglthits error rate is comparable to the other
algorithms.

A Genotype Phase Resolution

As described in Section 3, we are interested in finding theg@lo&the genotypes, given that the genotypes are
randomly generated from an unknown distribution. We negirxshow this can be done if the sample size is
large enough, that is, whenis large enough.

Theorem 5. For a set of randomly generated partial genotypes from aibigtion p1, ... , px, such thatp; >
480%™ and such that the masking probabilipy < % we can reconstruct the tree with probability at least

n

_ 1
1- 1.

Proof. We claim that for each pair of columng;;, c2), the set of valid pairs is of size exactly three with high
probability. In this case, we can reconstruct the tree uaiBgSAT solver in a similar way to the algorithm
given in Section 4.1.

Let V(ci,e2) = {(x,y),(Z,y),(z,y)} for somex,y € {0,1}. For(a,b) € V(ey,c2), let Py, be the
probability that a haplotype with a pdis, b) is drawn from by the random data generator. By the conditidns
the theorempP,;, > (1 — p)?480187 > 120loan

Assume first that the pair with the maximum probabilityisy). Then,P,, > (1 — p)?3 > 5. Thus, the
probability to segx,y) as a homozygous pair is at Ieaéﬁ and the probability to se€,y) and(2,2) is at
Ieastlolo%. By applying the Chernoff bound, one can verify that the pimlity not to observe one of those
pairs in the data is at most 41" = n—14 Similarily, if the pair with the maximum probability i, y) then it
is easy to verify that the probability not to observe one efftillowing pairs:(z, y), (z,2), (2,y) is at most#.

In the latter case, we simply get all the valid pairs by obisgrthe data. In the first case, if we do not get
all valid pairs, we infer that the pai(, 2) came from(z,y) and(z,y) ((x,y) is the only homozygous pair),
and thus get all valid pairs. O
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B Proof of some lemmas

Lemma 1. Leth € {0,1}" be a complete haplotype located on one of the verticds dthenh corresponds
to a leaf inT if and only if there is a columnin A such that all the rows with A,.. = h. are compatible with
h.

Proof. If h corresponds to a leaf ifi then consider the edge that is incident withThis edge corresponds to
a columnc in A. Sinceh is a leaf, every haplotypk’ # h of T satisfies that!, # h.. Consider a row such
that A,. = h.. Then for every haplotypg’ # h of T', 1 is not compatible with- sinceh!, # A,..

In order to show the other direction, we assume for conttexti¢hat there is a complete haplotypavhich
is not a leaf ofl" such that all rows with A,.. = h,. satisfy that they are compatible with Lete. be the edge
of T corresponding to the column Let Sp, S2 be the two connected componentsiof e.. Assume without
loss of generality thak < S;. If there ish’ # h such thath’ € Sy, let c; be such thah., # hi,. By the
rich data hypothesis and the contradiction assumptiome fisea rowr such thatd,.. = b/, A,., = h’c2. Then,
Are = he, but4,., # h., which is a contradiction. O

Lemma 2. (Lemma 2) For every € C there is at least one row € R(c,0) such thatA,. # x.

Proof. Assume the contrary. Théri(c, k) could only contain(1,0) and(1, 1), which contradicts the rich data
hypothesis. O

Lemma 3. Letc;, co € C. Then for every complete haplotypef T, if h.,, = 0 thenh., = 1.

Proof. By the second invariant propert®(ci,0) N R(c2,0) = ¢. Therefore, by the rich data hypothesis,
V(ec1,c2) = {(1,0),(0,1),(1,1)}. The lemma then follows. O

Lemma 4. If cis not split andv(c) = = for somer € {0, 1} thenR(k, x) is not consistent.

Proof. If cis not split, then by the rich data hypothedigc, k) = {(0,x), (1,0), (1,1)}. Therefore, no matter
what is the value of is, two of the valid pairs aré), x) and(1, ), and thusR(k, z) is not consistent. [

Lemma 5. If there is one split € C thenv(c;) = v(ce) for everyey, co € C.

Proof. Assume for contradiction that(c;) # v(c2). Then, by Lemma 3 (applied 9 ¢; and then ta:, ¢;) the
valid pairs of(c, k) contain(1,0) and(1,1). On the other hand, sinceis split, the valid pairs ofc, k) also
contain(0, 0) and(0, 1) which is a contradiction to the rich data hypothesis. O

Lemma 6. There is at most one split.

Proof. Assume for contradiction that;,co € C are both split pairs. Then, by Lemma 3 (applied-10cs),
|V (c1,k)| = 4. This is a contradiction to the existenceTof O
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