
Typed Machine Language

Kedar N. Swadi

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

By the Department of

Computer Science

November 2003

c© Copyright by Kedar N. Swadi, 2003. All rights reserved.

Abstract

With high-speed networks, mobile code applications have become common. One

of the important considerations for users (code consumers) of such applications is

the guarantee that the downloaded programs are safe. Proof-carrying code is one

of the frameworks that allow code consumers to independently verify the safety of

untrusted code.

For any such framework to be usable, however, significant trust must be placed

in the correctness of that framework itself. The Proof-Carrying Code (PCC) project

at Princeton addresses this issue, and aims to build a foundational PCC system that

has a trusted component of a very small size. This system consists of a certifying

compiler that generates the executable code, and a safety prover that generates the

proof of the safety of this code.

The certifying compiler also generates hints that help the prover in generating

the safety proof. These hints are in the form of a typed assembly language program

that corresponds to the output object-code program. Therefore, while the hints

are specified as high-level type annotations, the prover must prove the safety of

machine-level programs that operate on memory and register banks.

In this thesis, I present Typed Machine Language (TML), which is used to

bridge this gap. TML is a calculus of type operators that can express constructs in

high-level languages like core ML at a sufficiently low level to correspond directly

to the concrete realisations of these type constructs at the machine level. These

operators are expressive enough to be able to allow provably safe optimisations like

array-bounds-check eliminations and sum-type discriminations. I shall first present

a semantic model for these operators, and typing rules based on them. This model

is then used to provide models for assembly-level instructions. The typing rules,

iii

along with the instruction models provide an interface which allows typed assembly

languages to be type checked without exposing the complex underlying semantic

model.

Finally, I shall present a proof technique that shows how the typability of the

typed assembly languages can be connected to the safety of corresponding machine-

level programs using the foundational semantic models for types and instructions

provided by TML.

iv

Acknowledgments

Many people have contributed in helping me successfully finish my dissertation at

Princeton. A large part of the credit is due to my adviser Andrew Appel. I could

not have hoped to have a more patient, approachable, and understanding adviser.

He shall always remain a model of being a great mentor, teacher, researcher, and a

manager for me. My thesis readers Amy Felty and David Walker gave very helpful,

detailed, and insightful comments which undoubtedly helped me improve the quality

of the thesis.

I’ve also been privileged to have had great colleagues in my research group.

Roberto Virga has been most helpful with many theoretical and implementation

problems I faced. I have also benefited a lot from my technical discussions with

Amal Ahmed, Juan Chen, Neophytos Michael, Gang Tan, and Dinghao Wu. Dan

Wang was always helpful with any technical problem and was a great person to

exchange programming-language related rants with.

I would also like to thank all the CS graduate students who have made my stay

at the department so enjoyable, especially Lujo Bauer, Amit Chakrabarti, Daniel

Dantas, Georg Essl, Yefim Shuf, Iannis Tourlakis, George Tzanetakis, and Brent

Waters. Thanks also to my fellow Indian graduate students Hazra, Kama, Khot,

ND, NPR, Ram, Sai, Sandeep, and SR for all their valuable friendship and support,

and especially to Rahul for being the most accommodating and helpful roommate.

Many other persons have helped my research life in direct and indirect ways. In

particular, I would like to thank my teacher Rustom Mody for getting me interested

in programming languages. I’m also grateful to Ali-Reza Adl-Tabatabai for giving

me the opportunity to work for a summer at MRL, a great research lab.

Thanks are also due to Melissa Lawson for taking care of so many things right

v

from my first day to my last day at Princeton. Thanks also to Chris Tengi and

other technical staff members for keeping all the systems running so smoothly.

Most importantly, I thank my family for making all this possible. Shantanu

has been the ideal big brother: his discipline, dedication, and perseverance have

always been inspiring. Thanks to him and Madhura for providing me a home away

from home in the US. Finally, I dedicate this thesis to the two persons whom I owe

everything: my parents, Nandkumar and Sheela Swadi.

vi

To Aai and Baba,

for your limitless love.

vii

Contents

Abstract . iii

1 Introduction 1

1.1 Safety, Security, and Correctness . 2

1.2 Techniques for Trusting Mobile Code 4

1.3 How much must a code consumer trust? 8

1.3.1 Bytecode Verification . 8

1.3.2 TCB in type-preserving and certifying compilers 9

1.4 Contributions . 10

1.5 Organisation . 11

2 Foundational Proof-Carrying Code 13

2.1 Limitations of traditional approaches 13

2.1.1 Type specialisation . 13

2.1.2 Axiomatic type systems . 15

2.2 FPCC . 16

2.2.1 A semantic approach to PCC 17

2.3 Reduced TCB in FPCC . 19

2.3.1 FPCC compiler . 20

viii

2.3.2 Safety Prover . 21

2.3.3 Proof Checker . 22

2.3.4 Connecting the compiler and the prover 22

2.4 Decreasing the size of trusted components 23

2.5 Related work . 23

2.5.1 Syntactic approaches . 24

3 Typed Machine Language Syntax 27

3.1 Low-level types for FPCC . 27

3.2 Syntax . 28

3.2.1 Types . 29

3.2.2 Integers . 32

3.2.3 Environments . 33

3.3 The choice of type constructors . 33

3.3.1 Representing ML types using TML type constructors 34

3.3.2 Independence of data representation 36

3.3.3 Capturing dataflow information 37

3.4 Subtyping . 40

3.4.1 Subtyping in program safety proofs 41

3.5 TML as a semantic basis . 44

3.5.1 Completeness of syntactic rules for the TML system 45

4 Semantic Models for TML Types 46

4.1 The Appel-Felty Model . 47

4.2 Indexed Model of Types . 50

4.3 Semantic model for TML . 52

ix

4.3.1 Bounded quantification . 65

4.3.2 Structural rules for Tymaps 67

4.4 Properties of TML types . 68

4.4.1 Semantics of subtyping . 70

4.5 Semantics for explicit substitutions 71

4.6 TML as a semantic model for the LTAL type systems 72

5 Managing TML Types With Kinds 76

5.1 Introduction . 76

5.2 Illformed expressions . 77

5.3 Composition of type constructors 78

5.3.1 Contractive and nonexpansive types 79

5.3.2 Representable types . 82

5.4 Kinding system . 85

5.4.1 Kinding hierarchy . 85

5.4.2 Checking types for wellformedness 86

5.4.3 Semantics of the kinding judgment 89

6 Modelling Instructions In TML 93

6.1 Arithmetic instructions . 93

6.2 Control-flow instructions . 95

6.3 Memory access instructions . 96

6.4 The semantic model for instructions 101

6.4.1 Semantic model for quantifiers and the update operator . . . 104

7 Generating Program Safety Proofs 107

x

7.1 High-level structure of semantic safety proofs 108

7.1.1 Syntactic proof technique 108

7.1.2 Semantic proof technique . 111

7.2 Program safety proofs . 117

7.3 Semantics for judgements of safety proofs 123

7.3.1 Program wellformedness . 123

7.3.2 Block wellformedness . 124

7.3.3 Connecting axiomatic instruction semantics to TML instruc-

tions . 128

7.3.4 Instruction wellformedness 134

8 Conclusion 136

8.1 Models for more language features 137

8.2 Flexibility of models and proof techniques 138

8.3 Scaling implementation to a realistic system 138

A Twelf encoding of higher-order logic and related lemmas 139

B Type and typing rule representations in Twelf 144

Bibliography 146

xi

List of Figures

1.1 PCC Architecture . 7

2.1 SAL types . 14

2.2 FPCC architecture . 17

2.3 Semantics for types and typing judgements 18

2.4 VCGen in PCC . 19

2.5 High-level program safety proof . 22

2.6 Connecting TAL evaluation to concrete machine steps 25

3.1 TML Types and Environments . 30

3.2 Using the offset type constructor 31

3.3 Untagged Data Representation . 36

3.4 Data Representation . 37

3.5 Program fragment: Safe sum-type discrimination 39

3.6 Program fragment: Sum of array elements 39

3.7 Program in Figure 3.6 with bounds checks 40

3.8 Using subtyping rules in safety proofs 42

3.9 Subtyping rules . 43

3.10 Subtyping rules (continued) . 44

xii

4.1 Semantic definitions for types due to Appel and Felty 47

4.2 A simplified definition of the machine-step relation due to Michael

and Appel[37] . 50

4.3 Values with approximations . 52

4.4 Definitions for types in the indexed model[11] 53

4.5 Semantic model for TML environments 56

4.6 Explicit substitution rules . 72

4.7 LTAL core syntax (without instructions) 73

4.8 TML type constructors to model LTAL types 74

4.9 TML subtyping rules for to model LTAL coercions 75

5.1 Kinding (well-formedness and subkinding) rules for TML 87

5.2 Failed kinding derivation tree for an illformed type 88

6.1 Memory Allocation . 97

6.2 Memory Allocation . 100

6.3 TML models for LTAL instruction 102

7.1 Syntax of T . 110

7.2 List-length program annotated with LTAL type environments . . . 115

7.3 Sparc translation of the list length program 115

7.4 Entire LTAL program for the list length program 116

7.5 Syntax : Type checking rules . 119

7.6 TML instruction models for list-length LTAL program instructions . 120

7.7 Semantics : Proof tree for ∆(C) ⊆ Γ 128

7.8 Definitions of instructions in terms of machine state 130

xiii

7.9 Rules connecting low-level instructions to TML instructions 130

xiv

Chapter 1

Introduction

In the past decade, high-speed networks have resulted in the widespread use of

programs that exchange information between computers. For example, peer-to-peer

applications like instant messaging and file swapping involve the exchange of data

between possibly unknown machines. Mobile computing, which involves transfer

and execution of programs through web browsers and email clients, is now very

common. Collaborative computing projects like SETI@Home [7, 31] and GIMPS

[1] involve downloading a program from the project website into a host computer.

Resources of the host computer are used in computing data which are sent back

to the project website. This idea is carried even further in Grid Computing [50],

which seeks to share and aggregate computing and data storage resources to provide

a view of a single virtual supercomputer shared by all users.

In all such applications, a program user has to trust that the program maintains

the integrity of his or her system. For example, a file-swapping program must be

trusted only to share files from a particular location. Similarly, an instant mes-

saging program must be trusted not to leak passwords out to other users. These

1

applications tend to be large pieces of software, and program errors often introduce

security flaws. Most of the popular instant messaging programs have had errors

1 that compromise the security by leaking passwords, allowing unauthorised file

creation and program execution on host machines, spoofing usernames, etc..

For infrastructures like Grid Computing to be truly successful, users must be able

to compute and share resources without having to trust the source of the programs.

Proof-Carrying Code (PCC)2 [43] is one of the frameworks which allow users to

independently certify the safety of third-party programs. For techniques like PCC

to work, the framework itself needs to be trusted. Errors in the framework may

allow malicious programs to be flagged as being safe. One of the solutions to this

problem is to minimize the size of this trusted framework. In my thesis, I describe

part of a PCC framework that requires minimum amount of trust from the user.

1.1 Safety, Security, and Correctness

Trusting a program has different implications depending on user requirements. Be-

fore addressing mechanisms for trustless computing, I shall list the various notions

of trust, and clarify the one that is used in this thesis.

Correctness : In the traditional sense, trusting a program implies trusting that the

program is correct, or that it does exactly what a formal specification might require

it to do. Giving a formal specification to real application programs that typically

have at least tens of thousands of lines of code is not easy, so program “correctness”

is often informally expressed as a program doing what you expect it to do (or

1A software vulnerability database maintained by SecurityFocus [2] listed more than 20 critical
flaws in popular instant messaging programs in 2002

2While there are many research projects focusing on proof-carrying code, I shall use the un-
qualified term PCC to refer to Necula’s PCC system.

2

having no surprising effects). In practical settings, proving program correctness is

extremely difficult if not impossible. In the scenarios listed above, though, it is

often sufficient to ensure that the program does nothing “bad” or “illegal” rather

than making sure that it gives the correct answer. We need much weaker guarantees

than partial or total correctness.

Security : A software component may be trustworthy if it is secure. Security,

however, has no one universally acceptable definition. “Not only is there no such

thing as 100 % security, even figuring out what ‘secure’ means differs according

to context” [62], “There is no single definition of security” [27], “... there is no

harm in being liberal about what is considered a security policy” [55]. The term

security encompasses many different considerations such as proper use of resources,

maintenance of privacy, anonymity, and integrity, authentication, etc..

Schneider [55] narrowed the scope of security, and defined a security policy as a

set of executions, specifying security policies by predicates on sets of executions. If

P is a predicate specifying a safety policy, then a program is secure if there is an

enforcement mechanism that verifies that any execution of that program satisfies

P . As a result, ensuring program security may require the presence of a runtime

environment which enforces the security policy.

Safety : Enforceable properties for program security can be classified [55] into safety

and liveness properties. Lamport [32] defined a safety property as one which states

that something (bad) will not happen, and liveness property as one which states

that something (good) must happen. One safety property that can be statically de-

termined is type safety, which is defined by Cardelli [16] as the property stating that

programs do not cause untrapped errors (execution errors that are not immediately

detected). Type safety can only guarantee memory safety and data abstraction,

3

but in practice, these two properties prevent the program from making most illegal

operations.In this thesis, I restrict program safety to only mean type safety.

1.2 Techniques for Trusting Mobile Code

There are a wide variety of techniques used for ensuring that mobile code is trust-

worthy. Each of these give different kinds of guarantees, and incur different program

runtime costs.

Digital Signatures : A common method to instill trust in mobile code is to authen-

ticate its source. Digital signatures use cryptographic methods to allow a user to

ensure that the code comes from a well-known (and hence “trustworthy”) source.

This system generally3 allows the correct identification of the source, but does not

guarantee the absence of programming errors by the software developers which may

result in violation of safety. Furthermore, it also severely restricts the consumer to

use only software from a limited number of producers.

Hardware-based methods : Most modern processors and operating systems provide

support for multiple users. Privacy of user process data is ensured by restricting

processes to access their own individual address spaces. Operating systems allow

processes to access shared resources only through safe system-call interfaces. These

interfaces provide a simple and effective way of ensuring system safety, but system

calls involve expensive context switches into the system kernel, which result in a

runtime penalty. This approach places trust in the correct implementation of the

kernel, and places limitations on dynamic additions to the kernel code.

Software-based methods : Software-based methods seem to give more flexible ways

3A recent advisory from CIAC[3] involves erroneous certificates issues by Verisign to individuals
fraudulently claiming to be Microsoft employees

4

of enforcing system security. Broadly, they can be classified into dynamic methods

and static methods.

• Interpretation : This dynamic method involves using a trusted program which

interprets every instruction, and ensures that only the safe instructions are

allowed to execute. For example, interpreters for languages like Perl provide a

safe environment in which to run untrusted programs. The interpreter checks

for the validity and safety of all memory accesses in the program. Perl also has

a set of predefined security mechanisms (e.g. the taint modes) that give some

security guarantees even when a program is run with increased privileges.

• Program Modification : We can also guarantee safety by modifying a program

to make it safe before execution. For example, Software Fault Isolation [64] is

a technique that involves static analysis of a program to identify potentially

unsafe operations. The program is then modified by enclosing these oper-

ations within additional sandboxing code that prevents any unsafe actions.

This incurs slight runtime penalties, and also requires trust in the program

analysis and modification tools. This technique can also be applied at the

source level. For example, CCured [46] adds runtime checks to C code so

that memory references are guaranteed to be safe. The Naccio system [26]

is a generalisation of this approach, and allows safety policies such as those

that seek to impose limits on writing to files or on network bandwidth usage.

One of the shortcomings of techniques like Software Fault Isolation is that

the interfaces between untrusted modules become complicated. To prevent

one module from corrupting the data of another module, untrusted modules

must run in separate address spaces. Communication between these modules

5

requires techniques such as remote procedure calls (RPC) which complicate

code and also incur considerable runtime costs.

• Reference monitors To be able to express a wider set of security policies,

monitors can be used. Monitors inspect the code at runtime, and edit the

sequence of instructions so that potentially unsafe operations are identified

and prevented. The SASI system [35] implements this approach by modifying

the object code to merge the object and the monitor code. Other developments

like Polymer [15, 14] allow environments that can be customised to many

different expressive policies. However, the addition of the reference monitor

code results in runtime overheads that may be impractical for real-time and

limited-resource embedded applications. Monitors can also be implemented

through interpreters. In this case, the interpreters, which are complicated

pieces of software, must themselves be trusted to ensure complete system

safety.

• Type-preserving and certifying compilers : Type preserving compilers rely on

the type safety of the source languages, and the fact that the type safety

is preserved in each intermediate representation that different phases of the

compiler may need. For example, the TIL compiler [60, 59] can give guarantees

that all optimisations are type-preserving and hence safe. The Flint[57] project

has a similar architecture. TAL [41] carried the TIL work further by also giving

types to the target languages. Assembly programs for architectures like the

x86 are given type annotations [40]. Before assembling these programs, they

can be type checked with respect to these annotations to ensure safety at

very low levels. Though TAL does not result in any runtime penalties, the

6

assembler itself must be trusted. Proof-Carrying Code goes a step further by

generating proof objects for the safety of machine-level programs. Figure 1.1

shows a simple form of the PCC architecture as shown by Necula [44].

compiler
certifying

Policy
Safety

source

Annotations

Machine
Code

Prover
Theorem Safety

Proof

Safety
Theorem

Verification
Condition
Generator Safety

Theorem

Trusted

Untrusted

Safe?

Verification
Condition
Generator

Code Producer Code Consumer

Safety
Policy

Proof
Checker

Figure 1.1: PCC Architecture

In this architecture, a code producer uses a certifying compiler which outputs

machine code with type and dataflow annotations. These two outputs are sent

to a “verification-condition generator” (VCGen) which infers the theorem of

safety for the program. To ensure that this program is safe, the producer

then uses a theorem prover which outputs a proof of the safety theorem.

The producer then sends both the annotated machine code as well as the

proof of safety to the consumer. The consumer uses the code annotations to

independently generate his or her own safety theorem using the same VCGen

(but now, trusted) as the producer. Since the annotations only serve as hints

to the VCGen, these need not be trusted. This theorem is then checked against

the proof supplied by the producer. Proof checking is computationally very

7

easy, and if the theorem is indeed proved by the supplied proof, the code is

marked as safe, and can be executed. The consumer thus need not trust either

the code annotations or the supplied proof. The Touchstone[45] certifying

compiler implements this framework.

1.3 How much must a code consumer trust?

Programming-language-based techniques are extremely promising for ensuring pro-

gram safety, but they still do have significantly large trusted components, or trusted

computing base (TCB).

1.3.1 Bytecode Verification

Typed languages like Java are interpreted within a runtime environment. Appel

and Wang [13] list components of a TCB for Java Virtual Machine systems like

JDK [30], Kaffe[66], and Ginseng[18], etc.. Of this list, the items that make up the

safety TCB 4 are

• the just-in-time compiler, bytecode verifier, and linker

• the garbage collector, and

• the core runtime system

Bytecode verification is performed by JVMs and just-in-time compilers to make

sure that Java class files have the correct format and have valid class and class

hierarchy descriptions. During linking the verifier ensures, among other things,

4Safety TCB measures only the core Java system, not the library base

8

that methods are called with appropriate arguments and fields are assigned values

of appropriate types. The linker and verifier must thus be trusted to be correct. At

runtime the garbage collector might relocate program data, and might therefore also

change values of pointers to the new data location. Errors in the implementation

of the garbage collector can lead to illegal data accesses and unsafe code execution.

The garbage collector must thus be trusted for correctness. The core runtime system

consists of the actual interpreter and core libraries. Errors in these components can

easily compromise safety. Sun’s JDK (Java 2 SDK 1.3) system has a safety TCB

size of 54,200 lines of code [65].

1.3.2 TCB in type-preserving and certifying compilers

Compiler-based systems like TAL and PCC remove runtime penalties associated

with interpretation, but also require TCBs of a large size.

PCC involves trusting a “Verification Condition Generator” program, which

generates the safety theorem of the program. Any errors in this program would

lead to an erroneous theorem that does not correspond to the actual target program.

The encoding of the safety policy (which determines what conditions a safe program

must satisfy) is also trusted for correctness, as is the proof checker. Errors in any

of these can lead to the acceptance of unsafe programs by the framework.

The PCC-based Ginseng Java system takes x86 compiled certified binaries, and

has about 25K lines of code making up the verification condition generator, logic

axiom base, and the proof checker (as measured by Wang and Appel [13]). The core

runtime system is another 6K lines of code. The code producer trusts and uses the

Special J [19] compiler to generate the binaries, and trusts the the soundness of the

type system that the compiler uses. As noted by League et al. [34], the Ginseng

9

system was susceptible to errors resulting from an unsound rule in the low-level

type system it used.

TAL is also susceptible to the problems of a large TCB. TAL relies on a metathe-

orem that the type system used for annotating the assembly code is sound. Also,

we must trust the type checker and the assembler to ensure that the final binary is

indeed safe. The TAL system used in the Popcorn compiler [40] has a TCB con-

sisting of 31K lines of code along with the standard C library and the OCaml and

C compilers.

1.4 Contributions

I believe that the use of types imposes a natural discipline on computer programs

and is by far the most promising approach to generation of safe programs. Since the

PCC approach shifts the burden of safety guarantee to the code producer, it seems

particularly suited for frameworks relying on trustless computing. The success of

PCC depends both on the size of its TCB, as well as its practicality (in terms of

safety proof sizes and proof checking times).

In this thesis, I concentrate on the first aspect, i.e. reduction of the TCB. I

describe part of a foundational PCC (FPCC) [9] system where the TCB is reduced

to the encoding of higher-order logic and basic arithmetic axioms, the description

of the machine instruction semantics, and a small proof checker. The type system

is removed from the TCB by expressing it in terms of a logical layer which relates

it to the actual machine state. My work addresses the syntax and semantics of this

layer, which is called the Typed Machine Language (TML).

TML has a rich set of type constructors and abstract instructions which will

10

allow the construction of semantic models for a wide variety of type systems. In

particular, we target the LTAL type system that is used in the FPCC compiler by

Chen et al. [17]. While type systems for compilers tend to be purely syntactic in

nature, the semantic models for types used within them are complex, depending on

many parameters like the machine semantics, the theory of recursion, the theory of

mutation, and so on. TML provides its clients (like LTAL) foundational proofs for

all their syntactic typing rules while still hiding all the complexities of the semantic

model. This has the software engineering benefit of providing an interface between

the syntactic and semantic aspects of the FPCC system.

Finally, the assembly language level at which soundness is established must also

be connected to the actual machine words generated by the compiler. I shall show

how TML makes this connection in an almost trustless manner (the TCB consist-

ing of arithmetic and higher-order logic rules, along with the machine instruction

specification must still be trusted), thereby removing semantic gaps that have been

present in earlier approaches to language-based code certification techniques.

1.5 Organisation

This thesis is organised as follows :

• Chapter 2 gives a detailed look at Foundational PCC, and the role of TML in

our FPCC system. I shall also discuss some of the other approaches towards

FPCC and how they compare to the Princeton approach.

• Chapter 3 describes the syntax of type constructors in TML. I shall justify

the choice of these operators, show how they can be used in proving compiler

optimisations and data layout choices to be safe.

11

• Chapter 4 describes the semantic model for TML constructors. I shall briefly

describe other semantic models on which TML is based. I shall also show how

various syntactic categories such as types, type environments, and naturals

are unified within the model and justify this model.

• Chapter 5 describes a kinding system over the TML type constructors. This

system allows us to systematically reason about the well-formedness of com-

plex type expressions resulting from the composition of TML constructors.

This work was done with Andrew Appel and Christopher Richards.

• Chapter 6 introduces TML instructions and the semantic models for these

instructions, and how they relate to assembly instructions for concrete archi-

tectures.

• Chapter 7 shows how TML is used as the layer which connects the syntactic

LTAL rules to the semantics of machine-level instructions.This work was done

with Andrew Appel, Gang Tan, and Dinghao Wu.

• Finally, Chapter 8 gives conclusion and future work.

12

Chapter 2

Foundational Proof-Carrying Code

As described in Chapter 1, the size of the trusted computing base is an important

consideration for determining the effectiveness of language-based techniques for cer-

tified code. In this chapter, I shall describe in greater detail the problems associated

with having large trusted components, and how a foundational approach to PCC

minimizes the TCB. Finally, I shall outline the role of Typed Machine Language in

this framework.

2.1 Limitations of traditional approaches

2.1.1 Type specialisation

Type systems are a crucial component of language-based safety certification tech-

niques. For example, the safety policy in Necula’s PCC system is expressed in

terms of a progress and preservation theorem for programs written in a “safe as-

sembly language” (SAL). A program in a concrete machine language is translated

to an equivalent SAL program. The SAL program is then syntactically evaluated

13

using the static semantics given to each SAL instruction, and a safety theorem is

generated for the program. Semantics for these instructions could have be given in

terms of dataflow facts from which safety could be inferred. However, for large and

scalable systems, it is more practical to give semantics in terms of types. Giving se-

mantics in terms of types gives the programmer (or, in this case, the safety specifier)

a more direct control over the desired properties for every instruction.1 Therefore,

the Touchstone compiler for a safe C subset (Safe-C), translates high-level C types

and encodes the dataflow facts into a system of low-level types. SAL instruction

are given semantics with respect to this type system. Figure 2.1 lists this low-level

type system due to Necula [44].

Type τ ::= int | bool | Mem | ptr(τ) | ptropt(τ)
| array(τ1, τ2) | openarray(τ) | pair(τ1, τ2) | µτ1.τ

Figure 2.1: SAL types

While this list of types works very well for Safe-C, the provability of a program’s

safety will now depend not only on its safety, but also on the condition that the

program only uses types that are a subset of those used in Figure 2.1. Consider,

for example, certification of a program written in a language that allows functions

with parametric polymorphism. The description of such functions would require

having the universal quantification type as a primitive. Since the type system is

not equipped with a “∀” (universal quantifier) operator, it would not be possible to

argue about the safety of programs that use this feature. Many programs written

in ML, for example, cannot be certified safe in this type system.

1Palsberg and others have shown the equivalence of type systems having recursive, union,
and intersection types with data flow analyses [48, 49], and so this does not lead to an overly
conservative system.

14

TAL similarly has the notion of program safety tied to some particular type sys-

tem. The very rich set of operators in TAL allow it to model most of the constructs

found in modern programming languages. However, there are still some constructs

like dependent types that TAL does not currently support. It would require an

expansion to the system to be able to reason about optimisations like array-bounds

check eliminations which require this feature.

In contrast, it would be ideal to have an infrastructure where the program

provider could “explain” a new type system (or an extension to an already existing

system) to the certification framework without having to modify it. By allowing the

framework to be parametric over the type system that the programs use, it would

be possible to certify programs written in new languages, and also to allow program

to have components written in multiple source languages.

2.1.2 Axiomatic type systems

Normally, when constructing a typed language, the rules of the type system are

not themselves machine checked for soundness, except perhaps through some semi-

formal handwritten safety proof. The safety of a program that typechecks in TAL,

for example, relies on the assumption that all the typing rules are sound. TAL has

a sophisticated type system capable of encoding type abstractions found in many

high-level type-safe languages. Using a rigorous handwritten syntactic induction

proof, the soundness of this type system is proved. Manually writing proofs for

soundness of large type systems is a formidable task, and prone to errors.

For example, though the soundness of the Standard ML system has a manually

checked proof [38], to date, there is no machine-checked soundness proof for the

complete ML type system. The proof (implemented) by Van Inwegen [61] is the

15

closest to a complete machine-checked proof. Furthermore, her work also uncovered

problems in the type system with respect to the proof of type preservation. There

has also been no type soundness proof for the complete Java system, though there

has been encouraging research by Drossopoulou and others [25, 22, 23, 24] which

gives soundness proofs to large subsets of Java. These proofs are very large2 and had

omissions[58] that were discovered and rectified only when the proofs were validated

by means of a theorem prover. PCC and TAL used theorems such as type soundness

that cannot be easily checked by a näıve code consumer, and therefore become a

part of the TCB. It is necessary to be able to independently verify the soundness

of the type system to have a trustworthy certifying framework. The PCC system

must additionally also prove the correctness (a harder property) of the VCGen.

Systems specialised with respect to certain type systems are also not easily

scalable. For example, the addition of a type constructor or modification of a

typing rule requires the whole soundness proof to be reconstructed. For the PCC

framework, the ability to modify the type system would require considerable effort

on the part of the code consumer.

Furthermore, program safety can be guaranteed for only those programs written

in type systems that are built into these frameworks. Changing or adding features

to the system would also require a complete rework of the type soundness proofs.

2.2 FPCC

To address these shortcomings, Appel [9] introduced the notion of Foundational

PCC (FPCC), where the emphasis is on building an end-to-end PCC framework

2Even for Featherweight Java, an extremely small Java subset, where the type system has only
about 20 rules, the handwritten soundness proof[29] turns out to have a dense 10-page proof.

16

with the smallest TCB. I shall describe a high-level view of the FPCC certification

process, with a brief description of each component of the framework.

Compiler

Machine
CodeAnnotations

ML
Source

Machine
Specification Higher−order

logic axioms

Policy
Safety Arithmetic

axioms

Arithmetic
axioms

Machine
Specification Policy

Safety

logic rules
Higher−order

Untrusted

Trusted

Safety
Prover

Safety
Proof
Tree

Checker
Proof

Code Producer Code Consumer

Figure 2.2: FPCC architecture

2.2.1 A semantic approach to PCC

As opposed to the syntactic-proof-based certification techniques, FPCC adopts a

semantic approach to code certification. Appel and Felty[10] showed how to give

semantics to types and instructions for proof-carrying code frameworks. I shall

illustrate the essence of this technique using a small example.

17

Consider the set of type constructors in a type system shown below, with

Types τ ::= int | bool | pair(τ1, τ2) | box(τ1)

base types int and bool, and the type constructors for pairing (pair) and memory

references (box). The type safety rules for this language are given by :

v :m box(τ1) v + 1 :m box(τ2)

v :m pair(τ1, τ2)
pair

readable(m, v) m[v] :m τ

v :m box(τ)
box

We write v :m τ to mean that a value v has type τ in memory m, and readable(m, v)

to mean that the location m[v] is deemed readable according to the safety policy.

For this system, we assume values and locations to be natural numbers, and the

memory to be a partial function from locations to values. We characterise types as

predicates on values and the machine memory. The type of integers, int, places

no restrictions on values, while a boolean value must equal either 0 or 1. Hence we

define these types thus :

int = λ(m, v).true
bool = λ(m, v).(v = 0) ∨ (v = 1)
box = λτ. λ(m, v). readable(m, v) ∧ τ(m,m[v])
pair = λ(τ1, τ2). λ(m, v).box (τ1)(m, v) ∧ box (τ2)(m, (v + 1))

Figure 2.3: Semantics for types and typing judgements

The semantic basis for the typing judgement that a value v has type τ in memory

m is provided by a proof of the fact τ(m, v), and represented by pf (τ(m, v)). The

definitions above can be encoded in a logical framework such as Twelf [52] in terms

of an encoding of higher-order logic as shown in Appendix A. The typing rules can

then be encoded as lemmas based on these definitions, and given machine-checkable

18

Bi : {Ii}
Si1 ↓

{Ii1}
Si2 ↓

{Ii2}
... ↓

{Ji}
jump Bk

Figure 2.4: VCGen in PCC

proofs as shown in Appendix B. We similarly encode any other proofs required

at various steps in proving the safety of a program, using a minimal axiom base

consisting of and encoding of higher-order logic and arithmetic.

2.3 Reduced TCB in FPCC

Unlike Necula’s PCC which has a large VCGen component, FPCC does not have

a program to generate an explicit theorem of safety. The VCGen is a symbolic

evaluator for the programs written in SAL. Every program is divided into basic

blocks (B1, . . . , Bn). Each Bi is annotated with a compiler-generated safety precon-

dition, or invariant, Ii. This invariant is a logical predicate describing all the typing

judgements that hold at the beginning of the block.

As shown in Figure 2.4, given a block Bi made up of the instruction list

{Si1, Si2, . . . , Sin, jump Bk}, the VCGen uses Hoare-logic style rules to generate the

precondition Ji, just before the final control-transfer instruction of that block. If

this condition is stronger than the precondition for the target block of the last in-

struction, i.e., if Ji ⇒ Ik, then the code satisfies all the preconditions necessary to

jump to block Bk, and so it is safe to transfer control to that block.

19

In this process, we must trust the VCGen on two counts. First, we trust that the

machine instruction decoder component of the VCGen obtains the correct assembly-

level instructions from the machine code words. Second, we trust that each of

the symbolic evaluation rules for assembly instruction are sound, and are correctly

implemented by the VCGen.

As shown in Figure 2.2,the FPCC code producer outputs a program along with

its safety proof in a way similar to Necula’s PCC. However, in contrast to Necula’s

system, the safety theorem itself need not be generated by a program like the

VCGen. Instead, in FPCC, the safety theorem is a predicate over machine words

that make up the program. This predicate itself is constructed from components

of the trusted computing base, and is independent of the program itself. The next

few sections describe the form of this safety theorem and how it is constructed.

2.3.1 FPCC compiler

On the producer side, the source program first passes through the FPCC compiler.

This prototype compiler due to Chen et al. [17] compiles core ML to Sparc machine

code. In addition to this, the compiler also produces another program in LTAL

[17], a low-level typed assembly language. While the LTAL program could itself be

assembled and run, in our framework, it is not used with this intent. Instead, the

LTAL program is really used only as a set of hints to help the prover generate the

safety proof for the machine-language program. These hints take the form of type

invariants (which also capture dataflow information) at various points corresponding

to the generated Sparc machine code. These hints contain sufficient information for

the safety prover to easily reason about any optimisations and data representation

choices that the compiler might have made. Furthermore, the LTAL program is

20

organised in a way that allows the safety prover to be able to work in a syntax-

directed way which avoids expensive backtracking proof search.

2.3.2 Safety Prover

The LTAL program hints serve as the interface between the program safety prover

and the compiler. The top-level goal for the safety prover is to show that the machine

program typechecks with respect to the LTAL hints. The prover then makes use

of another rule which states that any program which typechecks with respect to its

corresponding LTAL program is safe. Given a machine program P , and an LTAL

program L, the high-level proof tree for safety is given in Figure 2.5. First, it must

be shown that the bare machine words in P decode into a list of Sparc assembly

instructions, A. This list represents the “untyped” view of the program. Second, it

must be shown that the assembly instructions in A can be well typed. This is done

by showing that they have a correspondence with the LTAL instructions in L, and

respect the type annotations given for those instructions.

The safety prover itself need not be trusted to apply the correct rules. Each

rule applied by the prover is justified by a lemma. These lemmas are based on the

encodings of axioms of higher-order logic, axioms of arithmetic, the definition of

the safety policy, and also the specification of Sparc machine instruction semantics.

When the safety prover applies a rule, it essentially breaks down a proof obligation

into smaller ones. The application of each such rule is justified by a lemma that

shows how proofs for the smaller obligations can be combined. We can thus give an

untrusted proof for the correspondence between code words in P and the assembly

instructions in A, as well as the proof that the program A respects the typing

annotations in L, and is thus itself well typed.

21

P decodes to untyped assembly program A

A respects typing annotations in L

P typechecks with respect to L

P is safe

Figure 2.5: High-level program safety proof

2.3.3 Proof Checker

The producer ships the consumer the programs L, P , and the safety proof derivation

tree. The consumer must check that L and P are related as in Figure 2.5 using

the derivation tree. This requires a trusted proof checker which also uses the same

axioms and encodings (notice that these are trusted on the consumer side) as used

by the program safety prover.

2.3.4 Connecting the compiler and the prover

The safety prover as described above must deal with two disparate views of the

program. The first is the high-level view given by the LTAL program, which gives

hints through a syntactic description of the typing judgements that must hold at

various points in the program. The second view is the low-level instruction semantics

given by the decode prover that describes concrete assembly instructions as relations

on machine states.

These two views are connected using Typed Machine Language (TML). Using

TML we can provide semantic models for all the LTAL operators in terms of pred-

icates on machine states. Chapters 4 and 7 describe how LTAL programs are given

foundational semantics using TML operators and instructions. Using TML also pro-

vides a layer of abstraction that allows the soundness proofs of the LTAL calculus

22

to be free from the complexity of the underlying semantic models.

2.4 Decreasing the size of trusted components

In addition to removing components from the TCB, the size of trusted components

is also reduced in FPCC. One of the largest and most complex components of the

TCB is the machine-instruction specification. Michael and Appel [37] carefully

engineer the instruction decoder into a trusted “step” relation that associates each

instruction with its semantics, and an untrusted “decode prover” which associates

raw bit sequences with structured instructions (identifying opcodes, source and

destination registers, immediate values, etc.). This allows a large part corresponding

to the symbolic evaluator of the VCGen to be written as a set of lemmas based on

the “step” relation, thereby reducing the size of the TCB.

On the consumer side, Appel et al. [12] also structure the proof and predicate

representations in a way that would allow a very small proof checker to verify the

safety proof. The size of their trusted proof checker is about 800 lines of C code. It

is conceivable that a program of such a small size could be manually checked and

tested for errors.

2.5 Related work

There has been some recent work in the area of foundational approaches to PCC.

I shall describe some of the approaches that have been taken by others and their

pros and cons vis-a-vis the approach taken by the Princeton FPCC group.

23

2.5.1 Syntactic approaches

As shown above, FPCC takes a semantic approach to proof-carrying code. As

opposed to this, most other foundational PCC projects are taking the traditional

syntactic approach to reason about program safety. The syntactic approaches make

use of a two-stage technique to arrive at program safety proofs.

First, a type-annotated assembly-level language is specified. This language is

designed with much the same design goals as TAL, so that many source languages

can be expressed, and complex compiler optimisations can be accounted for using

types. Expressions in this language are then given static and dynamic semantics

through which a soundness theorem based on progress and preservation theorems is

proved. This theorem says that a program in a well-typed state can always take an

execution step (progress), and that the execution of a step results in a well-typed

state (preservation).

This general assembly language is then connected to the real machine language

program. For each machine instruction, it is shown that the evaluation used to

express the execution step for the assembly maps correctly onto the operational

semantics of the concrete machine. Figure 2.6 below due to Hamid et al. [28]

illustrates this relation. If a well-typed assembly program P translates into machine

state S, then program P ′ that results from evaluation of P translates into a machine

state S ′ such that S ′ results from taking a machine execution step in state S.

In their FPCC project, Hamid et al. use a “Featherweight Typed Assembly

Language” (FTAL) into which source languages are compiled. This language sup-

ports recursive types, mutable fields, and memory allocation, but does not support

quantified types. The semantics of FTAL are encoded in the Calculus of Inductive

24

` P

(evaluate)

��

translate
+3 S

(step)

��

` P ′
translate

+3 S ′

Figure 2.6: Connecting TAL evaluation to concrete machine steps

Constructions (CiC) [20, 51]. This has the advantage of being able to have inductive

definitions which allows them to perform pattern matching on type terms and there-

fore construct syntactic proofs easily. FTAL, however, must correspond very closely

to the target machine language so that the FTAL-to-machine correspondence can

be easily obtained. Their system currently targets a toy machine architecture with

a small instruction set.

Crary has a syntactic FPCC system that scales up to the Intel IA32 architecture.

In his system, the assembly language used is “TAL Two” (TALT), which derives

from the TALx86 language. While this affords a lot of expressive power, TALT

must still use macro instructions like malloc. As a result, there is a gap between

the actual machine instructions and the assembly instructions. This system has

a trusted garbage collector with a formalised interface. The type safety of this

system is proved using meta-theorems (in Twelf) of progress, preservation and of

the program’s adherence to the garbage collector interface. The Twelf metatheorem

checker required to validate the safety proofs is a large and complex piece of software,

and therefore using it to generate safety proofs increases the TCB size by a large

factor.

Necula and Schneck [54, 47] are also developing a generic PCC system. This

system has the intention of allowing the code producer to be able to specify a safety

25

policy for the program whose soundness can be verified by the consumer. This

system, however, still must rely on a trusted VCGen, and is meant to be the first

incremental step toward a truly foundational system.

26

Chapter 3

Typed Machine Language Syntax

3.1 Low-level types for FPCC

Chapter 2 gave an overview of a foundational PCC system. I also briefly mentioned

how TML can be used as the interface between the prover and compiler. In this

chapter, I shall describe the syntax of the TML type system, which is an extension

of the type system described by Appel and Felty [10]. Their system lists low-level

types that correspond directly to actual machine-level representations of high-level

types found in general purpose programming languages. A low-level type system

like this has the following benefits:

• It allows types to be described as logical predicates operating on concrete

machine states. The typing rules for these types can be written and proved as

lemmas over these type predicates. Therefore, the type system no longer needs

to be a part of the TCB. Furthermore, a code producer need not be restricted

to one particular source language; it is possible to “explain” a new type system

to the code consumer without having to change the FPCC framework. In fact,

27

it also becomes possible to allow programs to have parts written in different

type systems.

• Having low-level types allows us to describe and reason about multiple data

representations for high-level source language types. A benefit of this is that

programs compiled with data-representation optimisations can be proved safe.

• Small additions to the system will generally not affect any of the existing

lemmas about the system and this makes it easy to have provably sound

extensions to the type system1.

The Appel-Felty type system lacked some of the type constructors required to

reason about low-level optimisations and also did not deal with the construction and

manipulation of type environments. The following sections of this chapter provide

the syntax of TML type and environment constructors and justify the choice of low-

level type constructors that make up the system. Also, the Appel-Felty system did

not have an effective way to handle and reason about type expressions constructed

using nested quantifiers.

3.2 Syntax

TML provides semantics to two main syntactic categories: types and instructions.

This chapter deals only with type syntax. The semantics are discussed in Chap-

1During the development of the FPCC project, the models of types required significant changes
to be able to model features such as mutation and contravariant recursive types. These changes
have allowed us to model features for core ML, a realistic general-purpose language. However, the
addition of objects and classes will require still more changes to the model. There were, however,
many small additions to the type system that did not require a complete rework of the model. For
these additions, we were able to retain all the existing lemmas.

28

ter 4, and instructions are discussed in Chapter 6. Figure 3.1 lists the types and

environments in TML.

3.2.1 Types

While high-level languages refer to abstract expressions, which may be composed

of smaller expressions, machine-level programs only refer to the realisation of these

expressions in terms of pieces of code starting at a certain location, or data values.

These values are held in either registers or spill locations, and are integers or mem-

ory references. Types in TML are modelled as predicates on such values. These

predicates also take other arguments that are required by the semantic model, but

I shall not consider them in this chapter.

Figure 3.1 gives a list of types in TML explained below:

• >: Represents the most inclusive type; any value has type >.

• ⊥: Represents the “impossible” type; no value has type ⊥.

• box (τ): This is the type constructor for immutable memory references. Given

a memory m, the value v : box (τ) if the content of m[v] satisfies the type τ .

• ref (τ): The ref type constructor is for mutable memory references. ref is

similar to box, but also offers limited mutation in the sense that any value of

type τ may be stored into that memory location.

• offset(n, τ): A value v has this type if v + n has the type τ . This constructor

is especially useful wherever address arithmetic is required. Consider, for

example, a value held in a register r1 that contains a pointer to a record with

three fields [a : τ1, b : τ2, c : τ3], each of size 4 bytes, as shown in Figure 3.2.

29

Kinds κ ::= T | N | E
Types T τ ::= > | ⊥

| offset(n1, τ1)
| box (τ)
| ref (τ)
| rec α. τ

| τ1 ∪ τ2

| τ1 ∩ τ2

| ∀Tα. τ

| ∃Tα. τ

| ∀Bα < n. τ

| ∃Bα < n. τ

| codeptr (φ)
| intπ(n)
| id(τ)
| α

T

Environments E φ ::= {n : τ}
| φ1 ∩ φ2

| φ1 ∪ φ2

| ∀Eα. φ

| ∃Eα. φ

| ∀notindom(n)α. φ

| α
E

Naturals N n ::= {0, 1, . . .}
| plus(n1, n2)
| minus(n1, n2)
| times(n1, n2)
| α

N

Relops π ::= > | < | ≤ | ≥ | = | 6=

Figure 3.1: TML Types and Environments

We could say that rx : offset(8, box (τ3)). A convenient abbreviation, field(c, τ)

is the same as offset(c, box (τ)).

• τ1 ∩ τ2 is the type of a value satisfying both τ1 and τ2 types. The type of the

register r1 in Figure 3.2 can be given as field(0, τ1) ∩ field(4, τ2) ∩ field(8, τ3).

30

.

..

..
..
.

:a τ1

:τb 2

:τc 3

20001

2

MemoryRegister Bank

2000

2004

2008

Figure 3.2: Using the offset type constructor

• τ1 ∪ τ2 is the type of a value satisfying at least one of τ1 or τ2, and is useful

for handling ML datatypes with multiple constructors.

• ∀T ,∃T : These are the universal and existential quantifiers that are essential

for expressing polymorphic functions and abstract data types.

• ∀Bα < n. τ,∃Bα < n. τ : These constructors give a limited form of bounded

quantification. Within a type τ , the quantified variable (say, i) is a natural,

and can take a value between 0 ≤ i < n. These constructors are mainly used

for the purpose of encoding fixed-length arrays.

• id(τ): This is the identity type constructor i.e., id(τ) = τ .

• rec α. τ : This is the constructor for general (covariant, contravariant) recur-

sive types, where rec binds the variable α which may be free in τ (and is an

alternative notation for the more familiar µx. (Fx)). For appropriate (“con-

tractive”2) expressions in τ , we have that rec α :: κ. τ is a fixed point of τ .

Section 3.3.2 describes how this type constructor can be used to encode linked

lists.

• codeptr (φ): This type constructor is necessary to express code pointers and

2As discussed in Chapter 4

31

function closures. codeptr takes as an argument a TML environment (de-

scribed in Section 3.2.3). This environment describes all the typing invariants

that must hold for the live variables so that it is safe to execute the code.

Code pointers are associated with registers containing program locations (or

labels). Therefore, if register x has type codeptr (φ), then it is safe to transfer

control to the program location given by the value in rx if conditions in φ are

satisfied by the other registers. In section 3.3.1, I shall show how function

closures can be encoded using this type constructor.

• intπ(n): TML also supports a form of dependent types for integers. If v has

type intπ(n), then we can say that the relation v π n holds, where π is a

relational operator. This allows us to capture dataflow facts, as discussed in

Section 3.3. Using it with the ∩ type constructor allows us to express ranges.

For example, unboxed values in SML are in the range {0 . . . 255}, and this is

expressed as int≥(0) ∩ int<(256).

3.2.2 Integers

In TML, we can specify integers and primitive operations on them.

• n: This is an element in the set of natural numbers, and is used to construct

offset and intπ types.

• plus, minus, times: Integers are required primarily for address arithmetic and

for expressing dataflow information. For this purpose, it is sufficient to have

only the basic operations like plus, minus and times. These operations are

defined modulo 232 due to the 4-byte size of machine memory word in our

target Sparc architecture.

32

3.2.3 Environments

An environment is a collection of typing judgements associating each value in a list

(for example, a register bank) with some type. Environments are used for expressing

the codeptr constructor, and for TML instructions.

• { }: The empty environment places no constraints on any of the list values,

i.e., all values are of type >.

• {n : τ}: In this environment, the nth list value has type τ . All other list values

are unconstrained.

• φ1∩φ2: We use this constructor to combine constraints on environments. For

example, given a list with indices i of type τ1 and j of type τ2, (with i and

j not necessarily distinct) we express this environment as {i : τ1} ∩ {j : τ2}.

In the presentation, we also use the syntax {i1 : τ1, i2 : τ2, . . . , in : τn} for

{i1 : τ1} ∩ {i2 : τ2} ∩ . . . ∩ {in : τn}.

• ∀E , ∃E : These are the constructors for universal and existential quantifiers over

environments respectively.

• ∀notindom(n1): This constructor allows us to specify an environment that does

not have binding for the n1
th variable. It is used for models of instructions,

and is explained in detail in Chapter 6.

3.3 The choice of type constructors

The constructors shown in the earlier section are able to model the types that are

commonly used in ML programs. I shall give some simple examples to illustrate this.

33

I shall also show how these constructors allow independence of data representation

for compilers, and how they are able to encode dataflow information used in program

optimisations.

3.3.1 Representing ML types using TML type constructors

The boolean type that encodes true and false values as 1 and 0 respectively may

be specified simply as

bool
def
= int=(0) ∪ int=(1).

A data structure that consists of two fields, an integer and a boolean, is represented

as a boxed value. This value points to a memory location such that the it contains

an integer, and the next memory location has a boolean value. This is encoded

using TML types as

intBoolStruct
def
= field(0, int) ∩ field(4, bool).

The option type for integers written in ML as

datatype int_option = None | Some of int

can be encoded in TML using the universal quantifier as

int=(0) ∪ (int 6=(0) ∩ box (int))

such that Nil is represented simply as a zero value, and Some is represented as a

nonzero pointer to a boxed value of type int.

34

Function closures: To construct function closures, we first make a record of a code

pointer and an abstracted environment. The abstraction is implemented using the

∃ operator, and the record is made using the field constructor. For example, given

a function f : τ1 → τ2 on base types τ1 and τ2, with a free variable environment γ,

we first have a continuation-passing style[8] conversion to

f : (τ1 × (τ2 → Ans))→ Ans

where Ans is the type of the return value. Then, this function is converted into a

closure. The inner continuation is closure-converted into

∃ γ. ((τ2 × γ)→ Ans , γ)

where the existential γ gives the type of the environment within which the function

is evaluated. The closure is a structure with two components: the first is the

CPS-converted function, and the second component is the environment. Using this

closure, the entire expression is converted into the larger closure

∃ β. ((τ1 × (∃ γ. ((τ2 × γ)→ Ans , γ))× β)→ Ans , β).

We then use codeptr to model the function constructor →, and field to model the

structure constructor ×. The inner closure expression above can be expressed using

TML constructors as

τc = ∃Tα. field(0, codeptr ({1 : τ2, 2 : α})) ∩ field(4, α)

35

and the outer closure can be expressed as

∃Tα. field(0, codeptr ({1 : τ1, 2 : α, 7 : τc})) ∩ field(4, α)

3.3.2 Independence of data representation

The TML constructors allow us a great deal of flexibility for data representation.

Consider, for example, a list-of-integers datatype corresponding to the SML decla-

ration:

datatype List = Nil | Cons of int * List

.

..

..
..
.

.

..

..
..
.

.

..

.

Nil

Cons

1

MemoryRegister Bank

0

5 1024

10

2048

1024

1028

Figure 3.3: Untagged Data Representation

The compiler can choose to have either a tagged or an untagged representation

for this type. In an untagged scheme (Figure 3.3) that assumes a 4-byte word size,

if a register r1 contains a list value, we can represent it as

r1 : rec α. (int=(0)
︸ ︷︷ ︸

∪ (int 6=(0) ∩ field(0, int) ∩ field(4, α))
︸ ︷︷ ︸

)

Nil Cons

For the Nil case, the value 0 is used, and hence the left union type. For the

Cons case, a pointer to the memory location containing a record of two fields, the

36

first being the data and the second being the pointer to the next cell. The right

union type captures this layout.

.

..

..
..
.

.

..

..
..
.

.

..

.

Nil

Cons

1

MemoryRegister Bank

5

10241024

1224

0

1

10

2048

1224

1228

1232

Figure 3.4: Data Representation

In a tagged representation, each variant in a sum type is uniquely associated

with a tag, or a natural number. A machine-level representation of an instance of

a sum type has this tag as its first field, followed by the particular fields for that

variant.

r1 : rec α. (field(0, int=(0))
︸ ︷︷ ︸

∪ field(0, int=(1)) ∩ field(4, int) ∩ field(8, α)
︸ ︷︷ ︸

)

Nil Cons

In the case for our list type in Figure 3.4, a nil cell has a tag of 0, and the cons cell

has a nonzero (1) tag field followed by the integer data and the next-cell pointer.

3.3.3 Capturing dataflow information

An important consideration that motivated the choice of type constructors was

the ability to express various kinds of invariants encountered in real programs in

terms of types. Many of these invariants are required for performing provably safe

37

optimisations. I shall list examples of TML types that would capture information

to allow provably safe optimisations. Existential, singleton, and intersection types

allow us to capture dataflow information which can be used to relate two values.

Consider an environment describing the contents of a register bank r used as a value

list. If ri = rj, we can express this fact as

∃Eα. {i : int=(α), j : int=(α)}

A more general environment constructor, relate, captures a wider class of such

relations.

relateπ(F,G)(i, j) ≡ ∃Eα. {i : F (intπ(α))} ∩ {j : G (int=(α))}

We use the following example to illustrate the use of relate. Let the environment

φ1 = {i : box (τ)} hold for register bank r . A load instruction (rj ← m[ri]) would

fetch the contents of the memory (m) at ri into register rj. This operation results

in a new environment, φ2 for r . Trivially, rj = m[ri] in φ2. This fact is expressed

using the relate constructor as relate=(box, id)(i, j). In the definition above, the

existential is instantiated with m[ri]. This instantiation can be shown to satisfy the

two sub-environments, and we have φ2 = {i : box (τ)} ∩ relate=(box, id)(i, j). From

this environment, we can infer that the judgment rj : τ holds in φ2.

We can also use TML constructors to keep enough information to be able to

allow safety proofs for programs using tagged representations for union types. Con-

sider the list representation as shown earlier in Figure 3.3. A list of Sparc in-

structions as shown in Figure 3.5 might be used to load the data field of a list

cell. This assembly program fragment assumes that the register %o1 points to

38

1 ld [%o1], %o2

2 tst %o2

3 bne cons_case ; nop

4 nil_case:

5

6 cons_case: ld [%o1+4], %o3

7

Figure 3.5: Program fragment: Safe sum-type discrimination

1 s = 0; i = 0;

2 while (i < N) {

3 s = s + A[i];

4 i = i + 1;

5 }

Figure 3.6: Program fragment: Sum of array elements

a list (possibly nil) cell. As a result we assume that the environment φ = {1 :

rec α. (field(0, int=(0)) ∪ field(0, int=(1)) ∩ field(4, int) ∩ field(8, α))} (where 1 cor-

responds to %o1, 2 to %o2, etc.) holds for the register bank. After the load

instruction in line 1, we use the relate construct relate=(box, id)(1, 2) to express the

fact that m[%o1] = %o2. For a cons cell, the test in line 2 would also allow us to

infer that %o2 6= 0, expressed by the environment {2 : int 6=(0)}. Combining these

two facts would allow us to infer {1 : field(0, int 6=(0))}. Along with the environment

φ, we can then infer that register %o1 points to a cons cell, and prove the load

instruction in line 6 to be safe.

Array bounds check eliminations: Consider the program fragment in Figure 3.6

that sums an integer array A into the variable s. In a safe language, this code would

expand to include bounds checks as shown in line 3 of Figure 3.7. Using TML con-

39

1 s = 0; i = 0;

2 while (i < N) {

3 if (i >= 0 && i < N) {

4 s = s + A[i];

5 i = i + 1;

6 } else { error ("Array bounds violation"); }

7 }

Figure 3.7: Program in Figure 3.6 with bounds checks

structors, we can conveniently capture the dataflow information that allows us to

remove these checks. After initialisation in line 1 (Figure 3.6), we have an environ-

ment with {i : int≥(0)}. Combining this with the effect of the while condition check

in line 2, we get a new environment in which {i : (int≥(0) ∩ int<(N))}. This mirrors

the bounds check condition, and thus its elimination can be proved safe. The types

for fixed-size arrays of length N can also be expressed as ∀Bα < N. offset(α, ref (τ)).

Similarly, arrays whose elements have size m can be expressed as

∀Bα < N. offset(times(α,m), ref (τ))

3.4 Subtyping

One of the main purposes of TML is to act as the interface between the compiler

and the prover. To be able to have this modularity, the compiler should be shielded

from the complex model of types, environments, and values. In this section, I shall

explain how subtyping on TML types and environments is used as a way of achieving

this separation.

Informally, we say that type τ1 is a subtype of type τ2 (τ1 ⊆ τ2) if every value

that has type τ1 also has value τ2. Equality is a two-way subtyping. The formal

40

definitions of subtyping and equality are presented in Chapter 4. Figures 3.9 and

3.10 give some of the subtyping and equality judgements for TML. The rules for

rec also refer to the types being wellfounded. In Chapter 5, I shall give explanation

about this requirement. In informal presentations of the subtyping rules, where

convenient, I have listed rules for derived type constructors like offset.

3.4.1 Subtyping in program safety proofs

Our program safety proof technique (as will be shown in Chapter 6) uses Hoare-logic

style rules to determine the safety of each basic block of a program. In traditional

proofs of program correctness using Hoare logic, each statement Si in a program is

enclosed within a precondition Pi and a postcondition Pi+1 as shown:

{P1}

S1

{P2}

S2

{P3}

S3

...

The precondition Pi is the predicate that must hold for the program state before

the execution of the statement Si, and the postconditions Pi+1 is the predicate that

must hold for the program state resulting from the execution of Si. Thus, these

predicates essentially give (context-specific) semantics to the instruction Si. For

program safety proofs, where our notion of safety is given by type safety, we can

41

instructions semantics proof step
S1 (φ1, φ

′
1) φ′

1 ⊆ φ2

S2 (φ2, φ
′
2) φ′

2 ⊆ φ3

S3 (φ3, φ
′
3) φ′

3 ⊆ φ4
...

...
Sn−1 (φn−1, φ

′
n−1) φ′

n−1 ⊆ φn

Sn (φn, φ
′
n) φ′

n ⊆ φT

Figure 3.8: Using subtyping rules in safety proofs

express these conditions as the typing judgements that should hold for the program

states before and after the execution of an instruction.

Therefore, given a block B composed from statements S1, S2, . . . Sn, we give

each instruction semantics in terms of the type environments that should hold be-

fore and after the execution of that instruction. Consider, for example, the block

in Figure 3.8. The safety proof first extracts the type semantics of each of the

statements, Si in the form of the pre- and postcondition tuple (φi, φ
′
i). (The last

statement of the block would refer to the precondition of the jump target φT .) Next,

it must ensure that it is safe to execute the following instruction that has the pre-

condition φi+1, i.e., the environment resulting form the execution of Si should be

compatible with φi+1. This check can be proved using the subtyping φ′
i ⊆ φi+1. Fi-

nally, we can ensure that it is safe to jump to the branch target using the subtyping

φ′
n−1 ⊆ φT . Thus, the checking of the safety of each block can be performed by the

client of TML in a purely syntactic manner without having to know the underlying

semantic model for types.

The rules in Figure 3.9 and Figure 3.10 can be roughly classified into the ordering

rules (reflexive and transitive), rules that introduce constructors such as ⊆ -box

and ⊆ -codeptr, rules that justify coercions such as ⊆ -fold and ⊆ -unfold for

42

τ1 ⊆ τ2

τ ⊆ τ
⊆-REFL

τ ⊆ τ ′′ τ ′′ ⊆ τ ′

τ ⊆ τ ′
⊆-TRANS

τ ⊆ >
⊆->

⊥ ⊆ τ
⊆-⊥

τi ⊆ τj τ1 ⊆ τ2

offset(τi, τ1) ⊆ offset(τj, τ2)
⊆-OFFSET

offset(int=(0), τ) ≈ τ
⊆-OFFSET 0

τ1 ⊆ τ2

box (τ1) ⊆ box (τ2)
⊆-BOX

“τ is wellfounded”
τ rec (τ) ⊆ rec (τ)

⊆-FOLD
“τ is wellfounded”
rec (τ) ⊆ τ rec (τ)

⊆-UNFOLD

τ1 ∩ τ2 ⊆ τ1
⊆-∩L1

τ1 ∩ τ2 ⊆ τ2
⊆-∩L2

τ ⊆ τ1 τ ⊆ τ2

τ ⊆ τ1 ∩ τ2
⊆-∩R

τ1 ⊆ τ1 ∪ τ2
⊆-∪R1

τ2 ⊆ τ1 ∪ τ2
⊆-∪R2

τ1 ⊆ τ τ2 ⊆ τ
τ1 ∪ τ2 ⊆ τ

⊆-∪L

τ1 ⊆ τ3

τ1 ⊆ τ3 ∪ τ4
⊆-∪11

τ1 ⊆ τ4

τ1 ⊆ τ3 ∪ τ4
⊆-∪12

τ1 ⊆ τ3 τ2 ⊆ τ4

τ1 ∩ τ2 ⊆ τ3 ∩ τ4
⊆-∩1

τ1 ⊆ τ2

∀(τ1) ⊆ ∀(τ2)
⊆-∀

τ1 ⊆ τ2

∃(τ1) ⊆ ∃(τ2)
⊆-∃

φ2 ⊆ φ1

codeptr (φ1) ⊆ codeptr (φ2)
⊆-CODEPTR

Figure 3.9: Subtyping rules

43

τ1 ⊆ τ2

τ1 ⊆ τ2

{i : τ1} ⊆ {i : τ2}
⊆-SIN

int<(i) ⊆ int<(k) int<(k) ⊆ int<(j)

int<(i) ⊆ int<(j)
⊆-int <

int=(i) ⊆ int≤(i)
⊆-int π

int=(i) ⊆ int
⊆-INT WEAK

τ ⊆ int>(0)

τ ⊆ int 6=(0)′
⊆-> 6=0

τ ⊆ τ ′ τ ′ ⊆ τ

τ ≈ τ ′
⊆-eq τ ≈ τ ′

τ ⊆ τ ′
⊆-eq e1

τ ≈ τ ′

τ ′ ⊆ τ
⊆-eq e2

Figure 3.10: Subtyping rules (continued)

recursive types, and ⊆ -∩l1, ⊆ -∩R, ⊆ -∪r1, and ⊆ -∪l for intersection and union

types. The rule ⊆ -∩sin allows us to determine subtyping relations over single-

value environments. Other rules such as ⊆ -int-< and ⊆ -int-weak are meant

for integer (in)equalities that that arise in proving optimisations such as sum-type

discriminations and array-bounds-check eliminations.

3.5 TML as a semantic basis

The type and environment constructors shown above include bounded quantifica-

tions and singleton types. Such constructors make type inference undecidable in

general. However, TML is not intended to be used directly as a type system for a

language, rather it is meant to provide a semantic basis for a higher-level language

for which type checking would be decidable. In the FPCC project, we use the typed

assembly language LTAL whose type constructors are translated into correspond-

ing TML constructors. All the TML constructors have semantics in terms of the

44

machine state. Using these semantics, the typing rules in LTAL can be justified

as higher-order logic lemmas, thus allowing the construction of foundational safety

proofs.

3.5.1 Completeness of syntactic rules for the TML system

The TML rules (e.g. subtyping listed in Figure 3.9) are not meant to be exhaustive.

There are other true subtyping facts that cannot be proved using the rules listed.

Also, in the presence of union, intersection, singleton, and dependent types, we

cannot expect to have completeness with respect to any set of rules.

Instead of trying to specify and semantically prove every type rule that holds

in TML, for FPCC, we have proved and incorporated rules in the TML system on

a by-need basis. The rules shown are those that were needed by LTAL, the imme-

diate client of TML. Since these rules are targetted specifically for one particular

language and one set of optimisations, additional rules may be needed for each new

optimisation.

45

Chapter 4

Semantic Models for TML Types

The syntax for TML as shown in Chapter 3 described type constructors that would

be used by the compiler for FPCC to interact with the prover. To generate foun-

dational safety proofs of programs that use these type constructors, we must have

semantic models for these constructors. In this chapter, I shall describe in detail

the semantic model for all the described TML syntactic categories. The semantic

model for TML types and environments is based on the indexed model of types by

Appel and McAllester [11]. While there have been many models of types [56, 36, 39]

they have not been particularly suitable for an application like PCC. Most of these

models operate on lambda calculus, with abstract specifications of type construc-

tors. On the other hand, FPCC requires semantic proofs based on machine-level

representations of types, and models of types that work for Von Neumann machines

(in our case, Sparc). Another model, the PER model by Mitchell and Viswanathan

[39, 63] is not suitable for reasoning about programs running on concrete machine ar-

chitectures because their theory is based on programs running on Turing machines.

I shall now describe a semantic model of TML followed by some modifications that

46

const(n) ≡ λ(a,m). λv. v = i

char ≡ λ(a,m). λv. 0 ≤ v < 256
box ≡ λτ. λ(a,m). λv. v ∈ a ∧ τ (a,m) (m(v))

offset ≡ λi. λ(a,m). λv. τ (a,m) (v + i)
intersection ≡ λ(τ1, τ2). λ(a,m). λv. τ1 (a,m) v ∧ τ2 (a,m) v

exists ≡ λF. λ(a,m). λv.∃τ.valid(τ) ∧ F τ (a,m) v

forall ≡ λF. λ(a,m). λv.∀τ.valid(τ) =⇒ F τ (a,m) v

rec ≡ λF. λ(a,m). λv.

∀τ.valid(τ) =⇒
(Fτ (a,m) v =⇒ τ (a,m) v) =⇒ τ(a,m)v

Figure 4.1: Semantic definitions for types due to Appel and Felty

allow us to express TML environments.

4.1 The Appel-Felty Model

The Appel-Felty system [10] model supports basic types like integer constant (constty)

and character (char). Immutable memory references are described using boxed type

(box(τ)). Union (union(τ1, τ2)) and intersection intersection(τ1, τ2) types, along

with the offset (offset i τ) type can be used to describe sum types and structures.

The existential (existential(F)) and universal (universal(F)) quantifier types give

the ability to describe abstract data types and polymorphic functions respectively.

These types describe machine-level representations of values. Therefore, we may

have machine-layout-dependent typing rules such as char, box, and record2 as

47

shown below.

0 ≤ v < 256
v :m char

char

m[v] :m τ

v :m box(τ)
box

v :m box(τ1) v :m offset(1, box(τ2))

v :m record2(τ1, τ2)
record2

The semantic model of types by Appel and Felty which gives justification to the

typing rules shown above describes types as predicates on values. Real-life programs

store values in memory and rely on a model of memory management, which must

keep track of locations that are already allocated and those that are free. The

memory, denoted by m, is modelled as a total1 function from numeric locations

to numeric values, while the allocated set, denoted by a, is modelled as a set of

locations. Types are defined as functions on a, m, and the value v; the semantics

for the typing judgement v :a,m τ is simply τ (a,m) v. As an example, the type

constructor const(n) does not depend on the contents of the memory, and is defined

as

const(n)
def
= λ(a,m). λv. v = n,

while the type constructor for references also refers to the memory and allocated

set, and is defined as

box(τ)
def
= λ(a,m). λv. (v ∈ a) ∧ τ (a,m) (m(v)),

where the first condition ensures that only allocated memory locations are accessed.

1Representations of total and partial functions are different when realised as logical definitions.
We model the memory as a total function, and we assume invalid memory locations to hold some
arbitrary value.

48

Figure 4.1 shows definitions of a larger set of type constructors in this model.

In this model, it is necessary to be able to prove that a typing judgement for

an existing value continues to hold when new values are added or initialised. For

this purpose, and also to be able to give correct semantics to type constructors like

quantifiers which involve functions on types, this model also defined the notion of

validity of types. A type τ is valid if any value that has type τ continues to have

that type when additional values are allocated in the memory, i.e., a valid type must

be invariant under an extended allocated set. Furthermore, any change to memory

not in the allocated set should not affect any existing typing judgements. Validity

is formally defined as

valid(τ)
def
= ∀a, a ′,m, v.((a ⊂ a ′) ∧ τ(a,m)v) =⇒ τ(a ′,m) v ∧

∀x, a,m ′,m, v.((x ∈ a =⇒ m(x) = m ′(x)) ∧ τ(a,m) v) =⇒ τ(a,m ′) v

In this model, the definition of the recursive type constructor rec was sufficient to

model covariant recursive types. For example, it can model types such as

datatype expr = CONST of int

| PLUS of expr * expr.

However, this model did not have the appropriate semantics for contravariant re-

cursive types such as

datatype expr = CONST of int

| PLUS of expr * expr

| FUN of expr -> expr.

that has occurrences of expr on the left of the function arrow. As a result, general

function closures (that realise the FUN variant) cannot be correctly modelled. The

indexed model of types by Appel and McAllester [11] is able to solve this problem,

49

decode
def
= λ m, l , instr.

“bit pattern at m[l] corresponds to instruction instr”∧
(
(instr = add) ∨ (instr = addi) ∨ (instr = load) ∨

(instr = store) ∨ (instr = beq) ∨ . . .
)

7→
def
= λ(r ,m), (r ′,m ′).
∃ i. decode(m, rl , i) ∧ i([l := l + 4]r ,m, r ′,m ′)

Figure 4.2: A simplified definition of the machine-step relation due to Michael and
Appel[37]

and is described next.

4.2 Indexed Model of Types

The indexed model of types gives semantics to types in term of safety of future

execution steps (this characterisation is most obvious in the definition of the code-

pointer type constructor), and I shall start the description of this model with the

formal definition of safety for FPCC.

A concrete machine state is the tuple (r ,m) formed from the machine register

bank and memory. A state is stuck if there is no next state that the machine can

step to. A state is safe if it never leads to a stuck state and is formally defined as :

safe(r ,m)
def
= ∀(r ′,m ′). (r ,m) 7→∗ (r ′,m ′) =⇒

∃(r ′′,m ′′). (r ′,m ′) 7→ (r ′′,m ′′)

The machine step relation is architecture specific, and defines the result of exe-

cution of one machine instruction for any given state. The exact definition of this

function for the Sparc architecture is given by Michael and Appel [37], and is, in

part, a component of the FPCC trusted computing base. Figure 4.2 gives a flavour

50

of the actual definition for 7→. The derived notion of a multi-step (7→∗) denotes the

transitive closure of zero or more execution steps. It is often convenient (as will be

seen later) to express safety for only k future program steps (7→k) as shown by the

predicate safen defined as :

safen(k, r,m)
def
= ∀ j. (j < k) =⇒

∀ (r ′,m ′). (r ,m) 7→j (r ′,m ′) =⇒

∃ (r ′′,m ′′). (r ′,m ′) 7→ (r ′′,m ′′)

As opposed to the Appel-Felty model, in the indexed model a type τ is not just a

set of values satisfying a particular predicate, but a family of sets of values indexed

by k. In the judgement v :k τ , the index k represents how “close” v is to a value

that actually satisfies τ , i.e. it represents how many machine steps can be taken

using v as a value of type τ before the machine enters a “stuck” state. Consider,

for example, a memory m, with register 1 supposed to point to a value of type

τ = box (box (const(42))). If r1 = 0, register 1 does not satisfy this type at all (we

assume zero to be an invalid address); nevertheless, it is safe to execute zero machine

steps using this value, and hence the value 0 has the type τ to approximation k = 0.

Assuming that r1 = 1000, register 1 may be attributed the type τ to various

approximations as shown in Figure 4.3 In Figure 4.3(a), we may index the memory

at location 1000, but not at location given by m[1000], and hence register 1 has type

τ to approximation 1. Figures 4.3(b) and 4.3(c) both allow two memory indirections

(a load instruction) to be executed before any program can realise the error with

the values (that are not equal to 42), and hence they both have register 1 having

type τ to the approximation k = 2. Figure 4.3(d) does actually have a type-correct

value, hence the register 1 has the type τ to approximation k for all values of the

51

20001000

2000 5

(b)

Memory

01000

Memory

2000

Memory

(c)

Memory

20001000

2000 42

(d)

20001000

50

(a)

Figure 4.3: Values with approximations

index k.

The type definitions shown in Figure 4.1 are now modified to the indexed model

definitions and are shown in Figure 4.4. The definition of codeptr, which connects

the indices to the execution steps can be explained thus: if the program counter

points to some program code location v (i.e. if the control has already passed to the

code), such that the machine state satisfies the type environment φ to approximation

j < k, then it would always be safe to execute at least k − 1 instructions starting

at location given by the value v. The value v itself is in some register, and so

it would further take at least another instruction to transfer control to location v

(using a jump or branch instruction). Therefore, it would be safe to execute at least

k instructions, i.e., v would satisfy the code pointer type to approximation k.

4.3 Semantic model for TML

I shall now present some of the modifications that were done to this model to be

able to express some of the type constructors in TML.

52

const ≡ λn. λ(a,m). λk. λv. v = n

char ≡ λ(a,m). λk. λv. 0 ≤ v < 256
box ≡ λτ. λ(a,m). λk. λv. v ∈ a ∧ τ (a,m) (k − 1) (m(v))

offset ≡ λi. λ(a,m). λk. λv. τ (a,m) k (v + i)
intersection ≡ λ(τ1, τ2). λ(a,m). λv. τ1 (a,m) k v ∧ τ2 (a,m) k v

exists ≡ λF. λ(a,m). λk. λv.∃τ.valid(τ) ∧ F τ (a,m) k v

forall ≡ λF. λ(a,m). λk. λv.∀τ.valid(τ) =⇒ F τ (a,m) k v

rec ≡ λF. λ(a,m). λk. λv. (F k+1⊥) (a,m) k v

codeptr ≡ λφ. λ(a,m). λk. λv.

∀j, r′, (a′,m′). j < k (1)
∧ “(a′,m′) extends (a,m)” (2)
∧ r ′

pc = v (3)
∧ “(r′,m′) satisfy environment φ to approximation j” (4)

=⇒ safen(j, r′,m′)

Figure 4.4: Definitions for types in the indexed model[11]

In Chapter 3, the constructors for recursive and quantifier types were shown

using explicit bound variables. In concrete implementations, however, it is more

convenient to use de Bruijn indices to keep track of the quantified variables within

type expressions. Using de Bruijn indices allows implementations to avoid the use

of type functions for implementing the bound type expressions and hence avoids the

requirement for higher-order kinds. The occurrences of de Bruijn indices inside type

expressions are denoted by n for the nth outermost bound variable. To map the de

Bruijn indices to their types, the semantic model needs to have a type context, and

this is denoted by ρ. Types in the context ρ themselves may not have any de Bruijn

indices, i.e., they must be closed. We make use of the work on explicit substitutions

[42, 4] to perform beta reduction manipulations on these type expressions.

For TML semantics, the root value v and the machine state is now combined

into a single tuple cv = (s, v), called a concrete value, where the first component s

53

encompasses the register bank contents, memory contents, and the allocation set.

We use the functions state(cv) and root(cv) to extract the two components of a

concrete value. The function 〈s, v〉 constructs the concrete value given the two

components. A type τ , based on models for the context, index, and concrete values,

is modelled as

τ = λ ρ. λ k. λ cv

where ρ is the type context, k is the approximation index, and cv is the concrete

value.

While Figure 3.1 shows the existential and universal quantifiers to bind vari-

ables of any kind, in the semantic model, we require these quantifiers to constrain

the kinds of the bound variables. The bound variables for type and environment

quantifiers may only be of kind Type or kind Natural. This constraint may be

implemented through different flavours for each quantifier such as ∃T

T
, ∃T

N
, ∃E

N
, and

∃E

T
, and ∀T

T
, ∀T

N
, ∀E

N
, and ∀E

T
, where the subscript denotes the kind of the bound type

variable, and the superscript denotes the kind of the full type expression.

To be able to correctly implement these quantifiers in the explicit substitution

calculus, we would require just as many kinds of de Bruijn indices, and therefore as

many contexts (ρT

T
, ρT

N
, ρE

N
, and ρE

T
). The existence of multiple contexts is a problem,

and therefore the model must be modified to avoid having more than one context.

One of the problems with multiple contexts is that for each kind of bound vari-

able, we require a different version of every operator that is used to manipulate

the de Bruijn indices of that kind in type expressions. Any lemmas based on these

operators would similarly need to have different versions for each kind. Lemmas

that deal with each quantifying operator (such as introduction and elimination lem-

54

mas) would also need to have different versions. It is not possible in our logic to

have definitions and lemmas that can be cleanly abstracted over these kinds, and

so efforts would have to be duplicated. For example, in the example below, a type

and a number quantifier type would be modelled as the predicates shown below.

∀T

T
= λ τ. λ (ρτ , ρn). λ (m, a). λ k. λ cv .

∀ τ2. . . . τ (τ2 :: ρτ , ρn) (m, a) k cv . . .

∀T

N
= λ τ. λ (ρτ , ρn). λ (m, a). λ k. λ cv .

∀n. . . . τ (ρτ , n :: ρn) (m, a) k cv . . .

The two predicates above add elements to different type contexts. To encode

both these requirements in a single universal quantifier definition would involve

making a case analysis over the kind of the variable. Since our implementation in

Twelf does not allow us to write such intensional definitions, we are forced to have

different quantifiers depending on the kind of the quantified variables. For each

kind κ1 that a quantified variable can have, we would require a different context

ρκ1
, and for n such kinds, we would require n2 quantifiers (indexed by the kind of

the quantified variable, and the kind of the entire type expression).

In order to reduce this complexity, we made a design choice to have only one

metalogical representation for all the kinds in TML that would encompass types

for all machine-resident values. This is the kind for environments, and it subsumes

all other kinds. The model for environments in TML can be given as shown in

Figure 4.5.

With this scheme, we now have only one set of quantifiers, de Bruijn indices

constructors, and related lemmas. I shall now describe how types of each kind pre-

viously defined are encoded as TML environments, (the kind for which is henceforth

55

Approximation Index Index = Nat

Root Value Root = Nat→ Nat

Concrete Value CV = (State, Root)
de Bruijn Context Context = Nat→ Index→ CV→ o

TML Environment Tymap = Context→ Index→ CV→ o

Figure 4.5: Semantic model for TML environments

referred to as Tymap). In later sections of this chapter, I shall discriminate Tymap

terms into “TML types”(τ) and “TML environments”(φ) and “TML numbers” (n)

wherever it aids explanation. All the type constructor semantics shown below are

implemented in the Twelf system, but the explanation will not refer to the Twelf

syntax.

Environments: To be able to correctly define environments, we must redefine our

notion of values. In Appel-McAllester’s semantics, a value was a number that

represented contents of only one register or only one root pointer to some structure

held in memory. While this characterisation was enough to express individual typing

judgements, it wasn’t enough to capture general dataflow information. Consider,

for example, an environment in which two values v1 and v2 of type int are equal.

Expressing this environment would require us to encode three facts : i) v1 : int,

ii) v2 : int, and iii) v1 = v2. In TML, our intention is to be able to express all of

these, especially the last one (and similarly other constraints of the form f(v1, v2) for

some relation f) as typing judgements. If each typing judgement relates to only one

value, expressing these constraints becomes impossible. To be able to handle this

problem, we change the model of the root of a value from a scalar to a vector, and

represent roots as partial functions of type Nat → Nat . Each index into this vector

allows us to access one individual component of an environment. Using a vector, we

can have another type, eq12
def
= λ ρ.λ k. λ v. v(1) = v(2) and thus encode the third

56

fact. I shall now give the definitions for each of the environment constructors.

• The empty environment { } is defined as

{ }
def
= λ ρ. λ k. λcv . true

Since an empty environment places no constraints on any of its components,

and therefore any vector value satisfies this types. Hence, it is defined as just

“true”.

• The singleton environment {i : τ} defines typing for only one particular com-

ponent of the vector. Due to the unification of kinds we must now write the

singleton environment as {τ1 : τ2}, such that the first environment τ1 effec-

tively represents the number i and the second environment represents the type

τ . For representing i, we use the function const-vector(n) that allows us to

make a vector with every component equal to n.

const-vector
def
= λn. λ i. n

Using this function, we define {τ1 : τ2}.

{τ1 : τ2}
def
= λ ρ. λ k. λcv .

∃ i , n. root(cv)(i) = n (1)

∧ τ1 ρ k 〈state(cv), const-vector(i)〉 (2)

∧ τ2 ρ k 〈state(cv), const-vector(n)〉 (3)

The first conjunct in the definition requires the vector cv to have value n

at some index i . The second conjunct ensures that τ1 = i . Finally, the

57

third conjunct ensures that every component of the type environment τ2 is

satisfied by the value n — in effect treating τ2 like a simple type rather than

an environment. The const type constructor (described later) allows a number

i to be converted to the form of a type. To describe such a context, we normally

make use of the const(i) constructor and encode the typing constraint about

the ith environment component as {const(i) : τ}.

• Intersection and union environment are defined to be the conjunction and

disjunction of the two components respectively.

τ1 ∩ τ2
def
= λ ρ. λ k. λcv . (τ1 ρ k cv) ∧ (τ2 ρ k cv)

τ1 ∪ τ2
def
= λ ρ. λ k. λcv . (τ1 ρ k cv) ∨ (τ2 ρ k cv)

We expect these constructors to be generally used with arguments made from

singletons (e.g. {i : τ1} ∩ {j : τ2})

Numbers : By using the right concrete values, we convert numeric constants and

operators into TML environments.

• const creates a type corresponding to a numeric constant. Being a constant,

a value of this type should hold for any approximation, and should also not

depend on the context ρ. For a constant value, all components of the value root

vector, in particular, the 0th component should have the the desired constant

value. The constructor is therefore defined as

const
def
= λn. λ ρ. λ k. λcv .

root(cv)(0) = n

Using const-vector, we can easily make a value of const type.

58

• Instructions such as add may operate on source registers that have types such

as τ1 = int=(n) and τ2 = int=(m). To correctly capture the type of the

destination register, we require a type that expresses the addition of n and m.

This is effected through arithmetic operations on types such as plus, minus,

and times. For example, the result of the above addition can be expressed

through plus(τ1, τ2). These operations are created using a more general type

constructor, arith, defined as

arith
def
= λ aop. λ τ1. λ τ2. λ ρ. λ k. λcv .

∃n1, n2. τ1 ρ k 〈state(cv), const-vector(n1)〉 (1)

∧ τ2 ρ k 〈state(cv), const-vector(n2)〉 (2)

∧ const(aop(n1, n2)) ρ k cv (3)

This definition is explained thus : condition (1) and (2) extract numbers out of

environments, and condition (3) forces the concrete value cv to be equal to the

constant resulting from the operation aop applied to the extracted numbers.

We can get addition, subtraction, and multiplication by instantiating aop to

+, −, and × respectively, where

plus
def
= arith(λn1, n2. n1 + n2)

minus
def
= arith(λn1, n2. n1 − n2)

times
def
= arith(λn1, n2. n1 × n2)

Types : I shall now give semantic definitions of types in terms of the generalised type

environments. Some of these definitions are simplified versions of the definitions

used by FPCC. The actual definitions are complicated by the fact that the semantic

59

model must also support mutation of store. In this thesis I shall not be dealing with

these complexities. Ahmed et al. [6] describe how to add to the type semantics to

be able to handle mutation.

• >, ⊥ : The top type imposes no constraints on values, and therefore the

definitions for the top type and the empty environment coincide. ⊥ is defined

as

⊥
def
= λ ρ. λ k. λcv . false

The ⊥ type represents the “impossible” values, and would not actually have

any machine-resident instances.

• offset : The unification of the three kinds allows us to express offset as a

constructor derived from minus. The original definition by Appel and Felty[10]

is

offset = λ i.λ τ.λ (a,m). λ v. τ(a,m)(v + i)

We can also equivalently express this definition as ∃w. (v = w− i)∧τ(a,m)w.

Considering the definitions of minus and arith, we see that the third condition

in the definition of arith could express the equality v = w − i, the second

condition enforces the equivalent of τ (a,m) w in the new model (with an

approximation index), and the first condition extracts the number i from the

type environment that would be supplied. We can therefore express offset in

terms of minus and define it as

offset
def
= λ τ1. λ τ2. minus(τ2, τ1)

• box : The simplified semantics for the type for immutable references, box, is

60

defined below. I shall not describe the semantics of mutable reference types.

Please refer to description by Ahmed et al. [6] for a detailed description.

box
def
= λ τ. λ ρ. λ k. λcv .

∃n. (root(cv)(0) = n) ∧ (n ∈ a)

∧ τ ρ (k − 1) 〈state(cv), const-vector(m[n])〉

(where a is the allocation set derived from state of cv , and

m is the memory derived from state of cv)

The first condition extracts the value of the first component of the root of the

concrete value, cv . Using this value as an address to index into the memory,

we construct a new concrete value, cv ′ = 〈state(cv), const-vector(m[n])〉. The

second condition ensures that the extracted address n is in the allocated set

extracted from cv , and that any subsequent memory load instructions would

be legal. Since one instruction is required to perform the memory indirection,

we expect cv ′ to approximate τ to one lesser degree, k − 1, as given by the

third condition in the definition.

• rec : The description of the recursive type is similar to that explained by the

indexed model in Figure 4.4

rec
def
= λF. λ ρ. λ k. λcv .

(F k+1⊥) ρ k cv

The indexed model provides semantics for recursive types in a way similar to

the metric spaces approach taken by MacQueen et al. [36], and it allows the

rec operator to be proved as the fixed point necessary to be able to reason

61

about general recursion (covariant and contravariant). For this result to hold,

it is necessary for the argument to rec to be wellfounded in the indexed model

(or similarly, contractive in the metric spaces model). While using recursive

types, we must therefore ensure this condition, and I shall explain the system

we use to deal with this requirement in Chapter 5.

• ∪ , ∩ : The definitions of these constructors coincide with those for union

and intersection operators on environments.

• ∀, ∃ : Universal and existential quantifier definitions sufficient for interactions

with immutable types are outlined below.

∀
def
= λF. λ ρ. λ k. λcv .∀τ̆ .valid(τ̆) =⇒ F (τ̆ :: ρ) k cv

∃
def
= λF. λ ρ. λ k. λcv .∃τ̆ .valid(τ̆) ∧ F (τ̆ :: ρ) k cv

In both these definitions, we quantify over a closed type (τ̆) (having no de

Bruijn bindings), and we update the context ρ by adding τ̆ as the substitution

for the zeroth de Bruijn index in F . A closed type, denoted by CTymap is

obtained by applying a Tymap type expression to a context :

CTymap = Index→ CV→ o

We also ensure that the closed type is valid (using a validity predicate for

closed types, which is defined in a way analogous to the validity predicate on

62

open types defined in Section 4.1). The operator “::” is defined as

::
def
= λ τ̆ . λ ρ.λ i. λ k. λ cv (i = 0 =⇒ τ̆ k cv)

∧(i > 0 =⇒ ρ (i− 1) k cv)

• codeptr : The code pointer constructor definition is similar to that shown for

the indexed model in Section 4.2 for a system with immutable references.

codeptr
def
= λφ. λ ρ. λ k. λcv .

∀l, j, s. (j < k (1)

∧ root(cv)[0] = l (2)

∧ “state(cv) extends to s” (3)

∧ rpc = l (4)

∧ φ ρ j 〈s, reg-vector(s)〉) (5)

=⇒ safen(j, cv)

Consider a state where register ri contains a program location address l. To

be able to execute the instructions starting at location l, we would require

one jump instruction to first transfer control to that location. If the (j + 1)th

instruction starting at l were were unsafe to execute, then we could still execute

one control transfer instruction to jump to location l, and safely take j further

execution steps starting at l. In other words, if the control were at l and

the machine state satisfied the environment φ to degree k, then it would be

possible to jump to l and execute k − 1 steps (thus k steps in total) safely.

In the definition of codeptr above, condition (2) gets l, the value of the first

component of cv , and condition (4) ensures that the program counter rpc

63

points to the code beginning at memory location l. We then wish to state

that for any register bank (considered as a value vector) that satisfies the

type environment given by argument φ, it should be safe to execute j < k

machine steps starting at location l. We do so by first making a root value

vector from the register bank in state s using a function reg-vector(s)2. Then,

in condition (5) we ensure that φ holds for a concrete value made from state

s and root value vector reg-vector(s) to any approximation j < k.

• intπ : The constructor for types that capture integer ranges relies on an aux-

iliary definition for a general relational constructor, rel.

rel
def
= λ rop. λ τ. λ ρ. λ k. λcv .

∃n1, n2. τ1 ρ k 〈state(cv), const-vector(n1)〉 (1)

∧ const(n2) ρ k cv (2)

∧ rop(n1, n2) (3)

Condition (1) extracts the number n1 from the type-environment representa-

tion τ , condition (2) ensure that the cv has numeric value n2, and condition

(3) ensures the relation between the two. We use instantiations of rop to get

all the dependent type constructors.

int>(τ)
def
= rel(λn1, n2. n1 > n2) τ

int<(τ)
def
= rel(λn1, n2. n1 < n2) τ

int≤(τ)
def
= rel(λn1, n2. n1 ≤ n2) τ

...
...

...

2The model for machine values which includes values held in registers and spill locations is
fairly complex and is not dealt with in this thesis.

64

• n : We use this operator to extract the binding for the nth de Bruijn index

from the context ρ, and the semantics for this operator is

n
def
= λ ρ. λ k. λcv .ρ(n) k cv

4.3.1 Bounded quantification

In Chapter 3, I described bounded quantification that allowed us to describe fixed-

length arrays. The quantifiers described earlier are not powerful enough to capture

bounded quantification that is necessary to be able to describe arrays. A general

encoding of bounded quantification (for example, universal) could be written as

∀B
def
= λ bound . λ F. λ ρ. λ k. λcv .

∀τ̆ . valid(τ̆) ∧ bound(τ̆) =⇒ F (τ̆ :: ρ) k cv

where the argument bound represents the function that imposes the necessary re-

strictions on the quantifying bound variable. This generality however allows us to

encode quantifiers that turn out not to be valid in the indexed model of types. Since

our main use for bounded quantification in FPCC was to be able to deal with con-

tiguous memory locations as in arrays, we use a constrained form of boundedness,

which only allows us to express numeric ranges. We therefore have the bounded

65

quantifiers defined as

∀B
def
= λ τB λF. λ ρ. λ k. λcv .

∃n2. ∀ τ̆ . ∃n1. (valid(τ̆) (1)

∧ (τB ρ k 〈state(cv), const-vector(n2)〉) (2)

∧ (τ̆ k 〈state(cv), const-vector(n1)〉) (3)

∧ n1 ≥ 0 ∧ n1 < n2) (4)

=⇒ (F (τ̆ :: ρ) k cv)

In this definition, the argument τB encodes the number that serves as the upper

bound for the range. The lower (inclusive) bound is taken to be zero. Condition

(2) and (3) ensure that τB and the quantified τ̆ represent numbers, and condition

(4) ensures that the quantified variable respects the bounds. The definition of

existential bound variable is similar.

∃B
def
= λF. λ τB λ ρ. λ k. λcv .

∃B n2. ∃ τ̆ . ∃n1. valid(τ̆)

∧ (τB ρ k 〈state(cv), const-vector(n2)〉)

∧ (τ̆ k 〈state(cv), const-vector(n1)〉)

∧ n1 ≥ 0 ∧ n1 < n2

∧ (F (τ̆ :: ρ) k cv)

Using these definitions, we can now express the array types (as shown in Section 3.3)

as

array
def
= λ τ. λ up bound .∀B(offset(I, box (τ)), const(up bound))

where I = times(0, const(4))

66

The array size is specified by instantiating up bound to const(n) for the desired

upper bound n. For the Sparc architecture, each machine word has size 4. We

would therefore require all offsets to have a separation of 4 bytes. To enforce

this condition, we multiply the indexing variable by 4 using the times type con-

structor. Sometimes, it might also be necessary to consider array ranges start-

ing at an index m 6= 0. This can be encoded by using the plus operator to get

plus(const(m× 4), times(0, const(4))), which adds an additional m × 4 bytes to all

offsets.

4.3.2 Structural rules for Tymaps

Introduction and elimination rules for all Tymap type constructors are implemented

in the Twelf system as machine-checked lemmas. For example, the intersection

environment has the following lemmas :

(τ1 ∩ τ2) ρ k cv

τ1 ρ k cv
∩ e1

(τ1 ∩ τ2) ρ k cv

τ2 ρ k cv
∩ e2

τ1 ρ k cv τ2 ρ k cv

(τ1 ∩ τ2) ρ k cv
∩ i

One of the main benefits of these rules is to provide an abstraction between the

definitions of these constructors and the lemmas that used them. These rules also

provide semantics to coercions (see Sections 4.6) like pack and unpack that are

necessary to typecheck LTAL programs.

Having shown the semantic definitions of the type constructors in TML, I shall

now describe some of the issues related to the static semantics.

67

4.4 Properties of TML types

For a type to be valid (i.e., for a predicate on ρ, k, cv to be a “type”) in the indexed

model, they need to satisfy three conditions :

indexclosed If a value has a type τ to an approximation index k, then, it has that

type for all approximation indices lower than k, i.e.,

indexclosed(τ)
def
= ∀ j, k. ∀ ρ, cv .(j < k ∧ τ ρ k cv) =⇒ τ ρ j cv

extensible Typing judgements continue to hold under extended state as described

by Ahmed et al. [6]. This condition is necessary to ensure that the allocation

and initialisation of new objects in the memory does not affect existing typing

judgements on other reference values.

extensible(τ)
def
= ∀ s. ∀ ρ, cv .

(“s extends to state(cv)” ∧ τ ρ k cv)

=⇒ τ ρ j 〈s, root(cv)〉

extensional Since we model types as function predicates on contexts, we require

these function predicates to be extensional with respect to their arguments,

i.e., if a value has a type in some context ρ1, then it should continue to have

this type for an equivalent context, ρ2. In the concrete Twelf implementation

our logic does not have an extensionality axiom. Therefore, this property

68

must be proved individually for every type that is constructed in TML.

extensional(τ)
def
= ∀ ρ1, ρ2, k, cv.

(∀ i, k, cv. ρ1 i k cv ≡ ρ2 i k cv)

=⇒ (τ ρ1 k cv ≡ τ ρ2 k cv)

This property is required for many rules relating to subtyping, explicit substi-

tutions, and wellformedness (described in Chapter 5) of Tymap expressions.

Theorem 1 All types described in Section 4.3 are valid.

Proof. Machine-checked proofs of validity of the type constructors are implemented

in the Twelf system. As an example, consider the proof for the extensionality of

const(n) shown below presented in the traditional style. In this proof, we assume

rules such as implication introduction (=⇒ i), equivalence introduction (≡ i), and

extensionality introduction (extensional i).

extensional(const(n))
const extens

69

ρ1, ρ2, k, cv

1.

[(const(n) ρ1 k cv)]

1.1. cv[0] = n “By const e”

1.2. (const(n) ρ2 k cv) “By const i”

2. (const(n) ρ1 k cv) =⇒ (const(n) ρ2 k cv) “By ⇒ i(1.1, 1.2)”

3.

[(const(n) ρ2 k cv)]

3.1. cv[0] = n “By const e”

3.2. (const(n) ρ1 k cv) “By const i”

4. (const(n) ρ2 k cv) =⇒ (const(n) ρ1 k cv) “By ⇒ i(3.1, 3.2)”

5. (const(n) ρ2 k cv) ≡ (const(n) ρ1 k cv) “By ≡ i(2,4)”

6. (∀ i. ρ1 i k cv ≡ ρ2 i k cv)

=⇒ ((const(n) ρ1 k cv) ≡ (const(n) ρ2 k cv))

“By ⇒ i(5)”

7. extensional(const(n)) “By extensional i(6)”

4.4.1 Semantics of subtyping

Subtyping for all Tymap constructors (“⊆”) forms a partial order and is defined as

τ1 ⊆ τ2
def
= ∀ρ, k, cv . (τ1 ρ k cv) =⇒ (τ2 ρ k cv)

Equality on types, ≈, is defined in terms of two-way subtyping as

τ1 ≈ τ2
def
= τ1 ⊆ τ2 ∧ τ2 ⊆ τ1

70

We can similarly define notions of subtyping and equality on closed types (⊆,≈)

and equality on contexts (≈) :

τ̆1 ⊆ τ̆2
def
= ∀k, cv . (τ̆1 k cv) =⇒ (τ̆1 k cv)

τ̆1 ≈ τ̆2
def
= τ̆1 ⊆ τ̆2 ∧ τ̆2 ⊆ τ̆1

ρ1 ≈ ρ2
def
= ∀i, (ρ1 i) ≈ (ρ2 i)

For the indexed model, it is sometimes necessary to prove the subtyping relation to

approximation k, and this is given by

τ1 ⊆k τ2
def
= ∀ρ, j, cv . (j < k ∧ (τ1 ρ j cv)) =⇒ (τ2 ρ j cv)

4.5 Semantics for explicit substitutions

We use the standard explicit substitutions calculus [4] for manipulation of TML

expressions with respect to de Bruijn contexts. The substitution operators are

Substitutions Subst ::= id | shift(i) | cons(τ, s) | compose(s1, s2)

The foundational semantics for substitution operators are given as :

Subst s : Context→ Context

Identity substitution id
def
= λ ρ. ρ

Index shift shift
def
= λ i. λ ρ. ρ(i + 1)

Term append cons
def
= λ (τ, s). λ ρ. (τ ρ) :: (sρ)

Substitution composition compose
def
= λ s1. λ s2.λ ρ. s1 (s2 ρ)

71

ρ ≈ id(ρ)
sub-ID

((cons(τ, s)) ρ)(0) ≈ τ ρ
sub-ρ0

τ (s1 (s2 ρ)) ≈ τ (compose(s1, s2) ρ)
sub-ρ COMPOSE

τ (compose(id, s) ρ) ≈ τ (s ρ)
sub-ID COMPOSE

τ (compose(shift, id) ρ) ≈ τ (shift ρ)
sub-SHIFT ID

extensional(τ)

τ (compose(shift, (cons(τρ, s))) ρ) ≈ τ (s ρ)
sub-SHIFT CONS

Figure 4.6: Explicit substitution rules

Figure 4.6 gives the identities that hold for expressions involving substitutions.

The substitution operator semantics have been encoded in Twelf and these identities

are encoded as lemmas with machine-checked proofs.

4.6 TML as a semantic model for the LTAL type

systems

In our FPCC project, core ML is compiled into machine code, and also into LTAL,

a “low-level typed assembly language”. The machine code program is typechecked

with respect to annotations in the LTAL program and the LTAL typing rules. The

LTAL types are given foundational semantics in terms of TML constructors, and

LTAL typing judgements are given semantics in terms of machine-checked lemmas

about TML constructors. LTAL has four syntactic categories: values, types, co-

ercions, and instructions. Of these, TML is used to provide semantics to all but

72

Types τ ::= t v(n) | t int | t code(n,m, φ) | t sum(n, τ) | t fix(τ)
| t exists(τ) | t i(n) | t nat(π, n) | t bottom

| t inters(τ1, τ2) | t union(τ1, τ2) | t range(n1, n2)
| t field(n, τ)

Values v ::= v | n | l | c(v)
Coercions c ::= | c fold | c unfold | c pack | c union1 | c union2

| c inters1 | c inters2 | c offset0

Figure 4.7: LTAL core syntax (without instructions)

LTAL values. TML is therefore more of a logic than a language.

A part of the core LTAL type system due to Chen et al. [17] is reproduced in

Figure 4.7, and the TML semantics for constructors in LTAL are listed for each

syntactic category.

Types : LTAL has integer (t int) and refined integer types (t i) (to capture

dataflow facts), intersection and union types (used to encode sum types and struc-

tures), fixed-length array types, existential and code pointer types (to create clo-

sures), reference types, and recursive types. TML types can model each of them

as shown in Figure 4.8. While most of these types are standard, some of them re-

quire explanation. The type t v is for type variables, and is modelled by de Bruijn

indices. The code pointer type takes two extra arguments (n and m) which are

concerned with the number of type variables and memory availability requirements.

The type t sum allows us to express the number of constant constructors in a sum

type. The range type t range allows LTAL to express integer ranges. As shown,

LTAL also has other types that are used more for type checking than for specify-

ing actual values that reside in registers or memory. These types do have models,

but the semantics for these types is given directly in terms of predicates based on

higher-order logic, rather than through composition of TML constructors. Since

73

LTAL constructors with TML models

variable T V(n) =| n

integer T INT =| int≥(0) ∩ int<(maxint32)
code pointer T CODE(n,m, φ) =| codeptr (φ)
sum T SUM(n, τ) =| int≥(0) ∪ int<(n) ∪ τ

recursive T FIX(τ) =| rec (τ)
existential T EXISTS(τ) =| ∃(τ)
constant integer T I(n) =| int=(n)
refined integer T NAT(π, n) =| intπ(n)
bottom T BOTTOM =| ⊥
intersection T INTERS(τ1, τ2) =| τ1 ∩ τ2

union T UNION(τ1, τ2) =| τ1 ∪ τ2

integer range T RANGE(n1, n2) =| ∀B(n2, int=(plus(n1, 0)))
field T FIELD(n, τ) =| field(n, τ)

Some LTAL constructors without TML models

address offset T DIFF
condition code T CMPCC(τ1, τ2)
memory check T TESTFULL(n)
address check T ADDR(n)

Figure 4.8: TML type constructors to model LTAL types

there would be no machine-resident value of these types, they need not have to be

proved valid.

Coercions : Instructions in a program often need to view values as having different

types depending on how they are accessed. For example, a value of type integer

may also be seen as a variant of a sum type having an integer and boolean. LTAL

has coercions such as fold and unfold for recursive types, pack for existential

types, union1, union2 and inters1, inters2 for union and intersection types.

Figure 4.9 lists some of the coercions used in LTAL and the TML subtyping rules

that are used to provide semantic bases to them. The full LTAL calculus has many

74

Recursive type folding C FOLD =| ⊆-fold

Recursive type unfolding C UNFOLD =| ⊆-unfold

Existential type packing C PACK =| ⊆-pack

union type introduction C UNION1 =| ⊆-∪ r1

union type introduction C UNION2 =| ⊆-∪ r1

intersection elimination C INTERS1 =| ⊆-∩ l1

intersection elimination C INTERS2 =| ⊆-∩ l2

sum to range C INTERS2 =| ⊆-∩ l2

zero offset elimination C OFFSET0 =| ⊆-offset 0

Figure 4.9: TML subtyping rules for to model LTAL coercions

other coercions; most of these can be easily given semantics by the composition of

two or more of the subtyping rules shown in Figure 3.9 and Figure 3.10.

Instructions : The semantics for LTAL instructions in terms of TML instructions

shall be dealt with in Chapter 6.

75

Chapter 5

Managing TML Types With Kinds

5.1 Introduction

Conventional type systems classify types using a kind system. In Chapter 3,

I described various TML kinds (types, environments, and naturals), which were

unified in Chapter 4 to simplify the model for types for our FPCC project. That is,

constructors for types, environments, and naturals were all encoded using the same

metalogical kind. This approach helped us reduce the complexity of the semantic

model, and also reduce the number of lemmas in the system.

This unification of different TML kinds, however, comes at a price: it now

becomes possible for illformed types to be composed. This chapter deals with a

kinding system that not only allows types to be checked for valid compositions of

type constructors, but also allows us to reason about the effect of such composi-

tions on some of the important properties of type expressions. Unlike conventional

kinding systems, we do not have the kind of type functions in TML. This is because

it is not possible for us to have a single metalogical type (in our higher-order logic)

76

that would handle arbitrarily higher-order kinds. Core ML programs do not need

this feature and it is possible to reason about these programs using only first order

kinds.

5.2 Illformed expressions

Our main motivation for combining the three kinds (vectors, scalars, and numbers)

into a single kind was to reduce the number of quantification operators. For ex-

ample, in Chapter 3, there were different quantifier for each quantified-variable and

expression combination such as ∀T

T
, ∀E

N
, ∀E

T
, etc.. By having a single metalogical

kind to represent all the TML kinds, we were able to implement variable bindings

through a single de Bruijn context. As a result, it was sufficient to have only a

single set of quantifiers (∀ and ∃).

However, removing the kind restrictions allows us to construct type expressions

such as the one given below :

∃({0 : codeptr (0), 1 : plus(0, const(1))})

In this expression, the quantified variable 0 is used as an environment in its first

occurrence and as a number in its second occurrence. This inconsistency would not

lead to any safety problems since any use of such type constructors would have to

be backed by machine-checked lemmas. While syntactically valid, this expression

would just not be useful for any real programs. In constructing syntax-directed

proofs of safety, however, it is often useful to ensure that the quantifier variables

are used in a consistent way at all occurrences in the binding type expressions.

77

The kinding system presented in this chapter allows these types of checks to be

performed.

5.3 Composition of type constructors

The semantic models for reasoning about recursive types (such as the indexed model

that we use for FPCC and the metric spaces model [36, 5]) require that the recursive

type functions be contractive in their arguments. This requirement in turn necessi-

tates certain type constructors (functions) to be either contractive or nonexpansive

in their arguments. The above mentioned works on these models explain how we

can prove contractiveness for single-argument type functions, and also how to rea-

son about the composition of single-argument contractive and nonexpansive type

functions. As an example, in the type expression

rec (box (0) ∪ field(const(4), 0))

both occurrences of 0 referred to the same variable (the one bound by the rec

constructor), and subexpressions occurring inside the rec constructor (for example,

the inner union type constructor) can also be considered as type functions on a single

variable. This simplifies the presentation of lemmas such as the fold-unfold lemma in

the Appel-McAllester model. However, in FPCC, we commonly use type expressions

(functions) that are compositions of multiple-argument type functions. For example,

in the expression below, the union type constructor inside the existential refers to

two variables, one bound by itself, and the other bound by the inner rec constructor.

rec (rec (1 ∩ ∃(0 ∪ 1)))

78

This chapter describes a kinding system that allows us to systematically keep

track of properties such as contractiveness in the presence of type expressions in

several variables. Though these properties relate to semantic well formedness of

type expressions, the kinding system allows for a purely syntactic presentation, so

that the safety prover does not need to know the underlying semantics of either the

types or the kinds. Any semantic reasoning about type constructors for languages

like core ML would require the properties that are considered in this system, and

such a system might be useful even outside the current scope of the FPCC project.

TML provides semantics to only first-order kinds, and this kinding system is also

restricted to the management of first-order kinds.

5.3.1 Contractive and nonexpansive types

To reason about recursive types using the two-way subtyping rec (τ) ≈ τ(rec (τ))

that is used for the fold and unfold rules, we must know that τ is contractive in

its first argument.

In terms of execution steps for a concrete machine, a type constructor F is

contractive if it takes more machine instructions to reach the bottom of a value of

type F (τ) than it does to reach the bottom of a value of type τ . For example, if it

takes n instructions to completely traverse the value v of type τ , then it takes at

least n+1 instructions to traverse a value v′ of type box (τ) since one more memory

load instruction is needed to access the boxed value in v′. In terms of approximation

indices, if value v has type τ to approximation k, then the value v ′ has type F (τ)

to approximation k + 1 at least.

Type constructors such as box and codeptr are contractive. However, the con-

structors offset, ∩ , and ∪ are not. For example, it would take only as many

79

instructions to completely traverse a value of type τ1 ∩ τ2 as it would take to tra-

verse a value of one of τ1 or τ2. These operators are, however, nonexpansive, i.e., if

value v has type τ to approximation k, then the value v′ has type F (τ) (for some

nonexpansive operator F) to approximation k. An important property of these non-

expansive operators is that the result of composing them with contractive operators

is contractive.

Formally, we define contractiveness of a closed type expression as follows. Let

bτ̆ck be a closed type representing the kth approximation to the closed type τ̆ ,

bτ̆ck = λv.∀j < k. τ̆(j, v)

and let the replacement of the ith binding in the type context ρ by its jth approxi-

mation be given by ρ[i 7→ bρ(i)cj]. Then we say a type function f is contractive in

its ith type argument iff

∀ρ, k, v. bf(ρ)ck+1 v ≡ bf(ρ[i 7→ bρ(i)ck])ck+1 v

Similarly, a type function is nonexpansive with respect to its ith argument iff :

∀ρ, k, v. bf(ρ)ck v ≡ bf(ρ[i 7→ bρ(i)ck])ck v

If f is contractive, judging f ρ (k + 1) v requires requires judging ρ(i) at a

lesser approximation k. Due to this, we can have a well-founded induction (over

the approximation index) when we construct and reason about recursive types. The

contractiveness property is therefore referred to as wellfoundedness by Appel and

McAllester in the indexed model.

80

Appel and McAllester show rules for deciding the wellformedness of compositions

of single-argument type functions like rec in the indexed model. While techniques

in MacQueen et al., and Appel and McAllester both can be extended to work for

multiple argument functions, they are too unwieldy for writing machine-checkable

implementations.

Consider, for example, the ML type

datatype ’a List = Cons of ’a * ’a List | Nil

Assuming a untagged representation, this type can be represented using TML op-

erators as :

rec (int 6=(0) ∩ offset(0, box (1)) ∩ offset(1, box (0))
︸ ︷︷ ︸

∪ int=(0)
︸ ︷︷ ︸

)

Cons Nil

In this type expression, the de Bruijn index 1 refers to the type instantiation of

the polymorphic list type, and the de Bruijn index 0, the parameter to rec, appears

deep inside the type expression within a box operator. The rec constructor requires

its argument to be contractive in order for the whole type expression to be well

formed. It is not always the first argument (de Bruijn index 0) that requires the

contractiveness to hold. Consider an ML datatype t built using Standard ML first-

class continuations

datatype t = A of t cont

Note that this recursive type has an additional existential for the context that the

continuation is evaluated in, and as explained in Section 3.2.1, it can be described

81

as :

rec (∃(field(0, codeptr ({0 : 1, 1 : 0}))
︸ ︷︷ ︸

∩ field(4, 0)
︸ ︷︷ ︸

))

Function Pointer Environment

In the boxed type, we require contractiveness to hold for the de Bruijn index 1 (the

rec parameter). A kinding system allows us to keep track of the contractive and

nonexpansive properties of type variables in expressions that might have such wide

separations of the binding of the type variables and their uses. One of the aims of

our kinding system is to make this calculus easier for writing and proving lemmas,

especially in an automated or semiautomated framework.

5.3.2 Representable types

The semantic model described in Chapter 4 does not address the issue of muta-

ble references. Ahmed et al. show how the model for types and machine state

can be enhanced to allow the inclusion of mutable references in the presence of

impredicative polymorphism, and it is this model that is used for FPCC. For this

mutable-references model to work, it is necessary for types to be representable. In-

formally, if a type is representable then a value with that type can be stored in a

mutable cell in memory. We give a brief explanation of what it means for types to

be representable.

The Appel-Felty model [10] for machine state and memory allocation allows

only immutable references. As described in Chapter 4, in this model, a type is a

predicate on memory m, the allocated set a, and a value v where a is the set of

allocated locations. In conventional syntactic calculi with mutable references, it is

not enough to just know that a location is allocated, we must also know what types

82

of values may be safely stored to that location. Hence, the allocated set a must

be modelled as a finite map from locations to types. These syntactic calculi have a

judgment m : a saying that each allocated element in memory m has an appropriate

type that is given by the allocated set a.

A näıve extension of the Appel-Felty model where a is a function from locations

to types would yield the following problematic model:

Type τ : (m, a)→ v → o

Memory m : l→ v

Allocated Set a : l→ τ

Values v : {0, 1,}

Locations l : {0, 1,}

In this semantic model, there is a circularity; types are predicates on memory al-

location sets, and allocation sets are predicates on types. To break this circularity,

Ahmed et al. [6] model the allocation set as a partial map from locations to a type

syntax that represents the type. This representation takes form of a tree (or can be

equivalently enumerated as a Gödel number) which gives a syntactic description of

the type expression. (In their scheme, each node in the type expression syntax tree

has a number which is uniquely associated with a type constructor). This removes

the circularity, but it requires another map from the type syntax to the semantic

type. This map is the representation function repr. Given a type-syntax encoding,

83

repr gives the corresponding semantic type. The new model of types is given as :

Type syntax τsyn : {0, 1, 2, ...}

Allocated Set a : l→ τsyn.

RepresentationFunction repr : τsyn → τ.

The predicate “representable” is defined over type expressions as

representable
def
= λτ. ∃τsyn. repr(τsyn) = τ

In the FPCC system, in addition to the types shown in Figure 3.1, there are also

some types (as given in Chapter 4) that never need to be put inside mutable refer-

ences. These types therefore do not need to be representable.

Since the type system itself allows the construction of type expressions that

have references to these types, we must have a systematic way of ensuring that all

the types that are actually put in mutable references are valid and representable.

In the semantic model, the base types shown in Figure 3.1 can be shown to be

representable by constructing explicit syntax trees for them. Most of the non-base

type constructors (such as box and offset) can also be shown to be representable if

their components are representable. Quantified types are representable only if they

are quantified over representable types. To keep track of representability of complex

type expressions in an organized way, we encode representability as a kind in our

system. Types are then ensured to be meaningful with respect to representability

through the kinding system.

84

5.4 Kinding system

Previous sections have motivated the need for a kinding system which is able to track

type expressions properties such as validity, representability, contractiveness, and

constancy. I shall now describe a set of kinds suited for this purpose, and give these

kinds a semantic model that allows us to prove kinding rules as lemmas. Given these

lemmas, it is easy to implement a kinding prover that assists the program-safety

prover in ensuring the wellformedness of TML type expressions.

5.4.1 Kinding hierarchy

The kinding system for TML consists of predicates on closed types. There are four

basic kinds in the system :

• ΩV : This is the most inclusive kind, requiring only that its members be valid

(as explained in Chapter 4).

• ΩR : All the types belonging to this kind should be representable.

• ΩC : Types belonging to this kind should be contractive.

• ΩS : Since we unify all the kinds into that of a TML environment, we use this

kind to qualify those type expressions that are intended to represent types for

single values rather than environments over a vector of values.

• ΩN : This is the kind of integer singleton types (those constructed from const).

Often, it is necessary to have types that respect more than one of these kinds.

We have a list of derived kinds that are constructed from the combinations of these

85

kinds. These derived kinds are :

ΩVR

def
= λ f. ΩV (f) ∧ ΩR(f)

(“valid, representable”)

ΩVRC

def
= λ f. ΩVR(f) ∧ ΩC(f)

(“valid, representable, contractive”)

ΩVRCS

def
= λ f. ΩVRC (f) ∧ ΩS(f)

(“valid, representable, contractive, scalar”)

ΩVRCSN

def
= λ f. ΩVRCS (f) ∧ ΩN(f)

(“valid, representable, contractive, scalar, constant”)

With these derived kinds, we can define a subkinding judgment

κ1 ⊆κ κ2
def
= ∀ f. (κ1 f) =⇒ (κ2 f)

The order of compositions is intended to capture a flat list of kinds rather than

impose a hierarchy on derived kinds. One of the main reasons for having a total

order is to be able to write a nonbacktracking prover for the kinding system where

each derived kind can be easily broken down into its constituent basic kinds.

5.4.2 Checking types for wellformedness

Figure 5.1 shows the kinding rules for TML type constructors (Figure 3.1). We

use the kinding judgments described above to check that the types we use are well

formed. As an example, consider the type expression τ = rec (∀(box (0) ∩ 1)). Note

that 0 refers to the variable bound by “∀”, and 1 to the variable bound by “rec”.

The argument of rec is not contractive. Consider, for example, a value v which has

86

Γi ⊆κ κ

Γ ` i :: κ
wf-V AR

Γ ` > :: ΩV RCS
wf->

Γ ` ⊥ :: ΩV RCS
wf-⊥

Γ ` τ :: ΩV RC

Γ ` codeptr (τ) :: ΩV RCS

wf-CPTR

κ ∈ {ΩV , ΩR, ΩS} Γ ` τ :: κ

Γ ` box (τ) :: κ
wf-BOX R0

Γ ` τ :: ΩV R

Γ ` box (τ) :: ΩV RC

wf-BOX RC

Γ ` τ :: ΩV R

Γ ` ref (τ) :: ΩV RC

wf-REF
Γ ` τ :: ΩV R Γ ` τ :: ΩS

Γ ` ref (τ) :: ΩV RCS

wf-REF

ΩV R, Γ ` τ :: ΩV RC

Γ ` rec τ :: ΩV R
wf-REC

Γ ` τ1 :: κ Γ ` τ2 :: κ

Γ ` τ1 ∩ τ2 :: κ
wf-∩

Γ ` τ1 :: κ Γ ` τ2 :: κ

Γ ` τ1 ∪ τ2 :: κ
wf-∪

ΩV RC , Γ ` τ :: ΩV RC(SN)

Γ ` ∀ τ :: ΩV RC(SN)
wf-∀

ΩV RC , Γ ` τ :: ΩV RC(SN)

Γ ` ∃ τ :: ΩV RC(SN)
wf-∃

Γ ` const(n) :: ΩV RCSN

wf-N
Γ ` τ :: ΩV RCSN

Γ ` geq(τ) :: ΩV RCSN

wf-≥

Γ ` τ1 :: ΩV RCSN Γ ` τ2 :: ΩV RCSN

Γ ` plus(τ1, τ2) :: ΩV RCSN

wf-+

Γ ` τ1 :: ΩV RCSN Γ ` τ2 :: ΩV RCS

Γ ` {τ1 : τ2} :: ΩV RC

wf-{}

ΩV ⊆κ ΩV R
Ω vr1

ΩR ⊆κ ΩV R
Ω vr2

ΩV RC ⊆κ ΩV R
Ω vrc1

ΩV RC ⊆κ ΩC
Ω vrc2

ΩV RCS ⊆κ ΩV RC
Ω vrcs1

ΩV RCS ⊆κ ΩS
Ω vrcs2

ΩV RCSN ⊆κ ΩV RCS
Ω vrcsn1

ΩV RCS ⊆κ ΩN
Ω vrcs2

κ1 ⊆κ κ2 κ2 ⊆κ κ3

κ1 ⊆κ κ3
Ω TRANS

Γ ` τ :: κ1 κ1 ⊆κ κ2

Γ ` τ :: κ2
wf-<:

Figure 5.1: Kinding (well-formedness and subkinding) rules for TML

87

a recursive type τ shown below to approximation k.

v :k rec (∀(box (0) ∩ 1))
︸ ︷︷ ︸

approximation k

Unfolding the recursive type would involve the application of this type to itself to

give

∀(box (0) ∩ rec (∀(box (0) ∩ 1))
︸ ︷︷ ︸

)

approximation k

The intersection type constructor is only nonexpansive, and the right component of

intersection only has approximation k. Hence the complete type expression (τ τ)

has approximation k (and not k +1), as a result of which it is not contractive. This

type is therefore not well formed, and the kinding derivation tree to prove this fails,

as shown in Figure 5.2.

{ΩV RC , ΩV R, Γ}(0) ⊆κ ΩV R

ΩV RC , ΩV R, Γ ` 0 :: ΩV R
wf-V AR

ΩV RC , ΩV R, Γ ` box (0) :: ΩV RC

wf-BOX RC
?

ΩV RC , ΩV R, Γ ` 1 :: ΩV RC

ΩV RC , ΩV R, Γ ` box (0) ∩ 1 :: ΩV RC

wf-∪

ΩV R, Γ ` ∀(box (0) ∩ 1) :: ΩV RC

wf-∀

Γ ` rec (∀(box (0) ∩ 1)) :: ΩV R

wf-REC

Figure 5.2: Failed kinding derivation tree for an illformed type

88

5.4.3 Semantics of the kinding judgment

In a conventional kinding system the syntax of the kinding judgment takes the

following form:

x0 :: κ0, . . . , xn :: κn ` τ :: κ

where the kind of a type expression τ may depend on the kinds of the type variables

found within that expression. Since we use de Bruijn indices in type expressions in

TML instead of explicit named variables, our kinding judgment mentions kinds for

the indices occurring in the expression. We assume that the index i has kind κi.

The kinding judgment now takes the form

κ0, . . . , κn ` τ :: κ

where the kind of the ith binding variable is implicit in the ordering of the list of

kinds to the left of the turnstile. We refer to this list of kinds using Γ, and denote

by Γi the ith kind in the array

Giving semantics to the kinding judgments is slightly complicated due to the

difference between the semantics for the bound variables in the expressions and the

expressions themselves. In the judgment shown above, τ is an open term, i.e. it

has de Bruijn indices occurring inside. The expressions that the indices represent,

however, are assumed to be closed. This difference is removed by applying τ to a

context ρ which would map each occurring de Bruijn in τ to some closed type ρ(i).

Given this setup of associating each type variable to a kind, the natural model

for kinds is predicates on closed types. This approach is good enough to model

properties like validity, representability and constancy. However, we are unable to

89

correctly model contractiveness.

Contractiveness poses a problem because unlike the other kinds, it is a property

of functions from types to types rather than types themselves. Thus we must

formulate our kinding calculus so that kinds (Ω) are predicates on type functions.

In this setup, the base kinds can defined as predicates on a type function argument

f as follows :

Ω : (CTymap→ CTymap)→ o

ΩV
def
= λf. ∀ τ̆ . valid(f τ̆)

ΩR
def
= λf. ∀ τ̆ . representable (f τ̆)

ΩC
def
= λf. ∀ τ̆ , k, v. (bf τ̆ck+1) v ≡ (bf bτ̆ckck+1) v

ΩS
def
= λf. ∀ τ̆ . ∀ k, v1, v2.

(state(v1) = state(v2) ∧ root(v1)[0] = root(v2)[0])

=⇒ (f τ̆) k v1 ≡ (f τ̆) k v2

ΩN
def
= λf. ∀τ̆ . ∃ n. ∀ ρ. (f τ̆) ≈ (const(n) ρ)

The definitions of ΩV and ΩR are obvious, and since we raise the level from types

to type functions, we expect that the kind properties hold no matter what (closed)

type arguments the (closed) type functions are applied to. The definition of ΩC

follows the definition of contractiveness. When determining that an expression is

a TML scalar type (rather than the default TML environment), we first extract

a closed type expression from f by applying it to some closed type argument τ̆ .

Then, we ensure that for any two concrete values v1 and v2 that agree on their state

components and their first root vector components, one of them satisfies (f τ̆) iff

the other does. For the last kind, ΩN , we simply ensure that there exists a number

n such that the type (f τ̆) for any closed type τ̆ is equivalent to a constant type for

90

n.

The added complexity of the kinding system due to type functions should be

hidden from the users of this system, and therefore, we would like to keep the simple

syntax of the kinding judgment unchanged. The semantics of the kinding judgment

can be given as

Γ : Nat → Ω

R : Nat → (CTymap→ CTymap)

Γ ` τ :: κ
def
= ∀R. (∀i. Γi(Ri))⇒ κ(λτ̆ . τ(λi. Ri(τ̆)))

In this definition, we use a context R which is modelled as a partial map from

naturals to closed-type functions. Ri denotes the ith component of R. For any R

such that each of its components satisfies the kinds given in Γ (i.e. ∀ i. Γi(Ri)),

the kinding judgment for τ should hold. Since τ itself is an open type, we cannot

directly apply the kind κ to it. The type τ is therefore raised to the level of a

closed-type function thus : first, we close the type τ with some closed type τc and

enclose it in a function (taking a closed-type argument)

λτ̆ . (τ τc)

where the argument τc is itself constructed from the closed-type function context R

and the argument τ̆ by applying each component Ri of the context to τ̆ and thus

lowering it to the level of a closed type.

(λi. Ri(τ̆))

91

The syntactic rules become machine-checked lemmas in the semantic models

described above, and so soundness follows immediately. With the syntactic rules,

however, rules, however, we do not have semantic completeness. i.e. there are con-

tractive expressions that would not be found by our system. Consider, for example,

the type expression

rec (leq(2) ∩ gt(2) ∩ 0)

The first intersection results in a null range, and thus there cannot be a value that

can satisfy this type. Therefore, this type is semantically equivalent to the bottom

type “⊥”, and hence is contractive. However, our kinding rules would not be able

to prove this type as being contractive. However, a higher-level client of TML like

LTAL is expected to use only a restricted class of type expressions that would not

be susceptible to this problem.

92

Chapter 6

Modelling Instructions In TML

Chapter 4 gave semantics to types and environments in TML. In this chapter, I shall

give semantics to high-level typed instructions. As in traditional Hoare logic, we

can model instructions as predicate transformers, i.e., an instruction may be char-

acterised by the manner in which it transforms preconditions to give the strongest

postconditions (or transforms postconditions to give the weakest preconditions).

Since our safety policy for FPCC is type safety, the scope of these predicates is

limited to typing judgments on the values of variables occurring in programs.

6.1 Arithmetic instructions

We can model an instruction as a relation between two type environments, φ, and φ′,

where φ gives the precondition for the instruction to be safely executed, and φ′ gives

the postcondition resulting from the execution of the instruction. For the arithmetic

add instruction, shown as (add vi ← vj + vk), one of the conditions requires the

source values to be integers. So we have the precondition vj : T INT, vk : T INT.

93

This condition is captured by the TML type environment given by

φ1 = φ ∩ {j : int32} ∩ {k : int32}

where φ may impose additional constraints on other values. The environment φ2

denotes the type environment that should hold after the addition. In this environ-

ment, all previous typing judgements about vi are invalidated. Additionally, in φ2,

vi gets the integer type, and this is encoded1 in TML as

φ2 = φ1[i 7→ int32]

We can have a much more general formulation for add where we quantify over the

values that the arguments take. For example, for any values n and m that vj and

vk may contain, i.e.,

φ1 ⊆ {j : int=(n), k : int=(m)}

we may encode the resultant environment as

φ2 = φ1[i 7→ int=(plus(n,m))]

In real programs, however, additions occur in contexts other than those shown above

above, most notably for address arithmetic needed for subsequent loads and stores.

In these situations, we have one variable vj holding the base address b, and another

variable vk holding the offset l. To safely load from the address obtained from

1The update operator ([7→]) in the given postcondition is difficult to model as a Tymap construc-
tor. Since the update operator is only required in the semantics for instructions, it is internalised
in semantics associated with instructions and the model is discussed in Section 6.4.

94

vj + vk, the typing precondition can be given as :

φ1 = φ ∩ {j : field(const(c), τ)} ∩ {k : int=(const(c))}

The result of the addition would be given by

φ2 = φ1[i 7→ field(const(0), τ)] or, equivalently,

φ2 = φ1[i 7→ box (τ)]

For the move instruction, (mov i ← j), the pre- and postconditions, φ1 and φ2

respectively can be given simply by

φ1 = φ ∩ {j : τ} and φ2 = φ1[i 7→ τ].

6.2 Control-flow instructions

Unlike traditional Hoare logic which reasons about structured control-flow con-

structs, in FPCC we must reason about explicit control transfer instructions like

(conditional) jumps. To ensure that a jump is safe, the typing judgement holding

at the jump instruction should be at least as strong as the typing judgement at

the jump target. Therefore, to model such instructions, we also require Γ, a func-

tion that maps memory locations to the typing judgements that must hold at those

addresses. For a set of labels l1, l2, . . . , ln, we would have

Γ = {l1 7→ codeptr (φl1), l2 7→ codeptr (φl2), . . . , ln 7→ codeptr (φln)}

95

Given that vl contains the value n (the branch target location) and Γ[n] = codeptr (φ′),

the precondition for the instruction jump v l is

φ1 = φ ∩ {l : codeptr (φ′)}

where some φ may give the typing judgements for other variables. Due to the

control transfer, we do not reach the (statically) next instruction, and as a result,

the postcondition for this instruction is simply ⊥.

A general model for an instruction may thus be given by the TML instruction

constructor instr that takes the label map Γ, the precondition φ1, and the post-

condition φ2. Using this constructor, we give a TML instruction model for the

machine-level add instruction as :

tml-add i← j + k
def
= ∀m,n, Γ, φ. instr(Γ, φ1, φ1[i 7→ int=(plus(n,m))])

where φ1 = φ ∩ {j : int=(n), k : int=(m)}

With this general form for instructions, we can also define subtyping on instructions

that would allow us to relate a principal form of an instruction to a specialised form

such as the integer- and pointer-arithmetic forms of the add instruction. Subtyping

is denoted by ⊂i, and defined as

instr(Γ1, φ1, φ
′
1) ⊂i instr(Γ2, φ2, φ

′
2)

def
= Γ2 ⊆ Γ1 ∧ φ2 ⊆ φ1 ∧ φ′

1 ⊆ φ′
2

6.3 Memory access instructions

In FPCC we must also be able to reason about the concrete instruction sequences

that implement macro instructions like malloc, so that optimised code that rear-

96

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � � �
� � � � � � �

� � � � � �
� � � � � �

Free

Initialised

Allocated

Start

Boundary

Limit

ap

cp

lp

Figure 6.1: Memory Allocation

ranges these sequences can also be proved safe. For malloc, in particular, it is

necessary to be able to argue about the safety of store instructions that initialise

new values in memory. (Ahmed et al. [6] describe how to reason about store in-

structions for mutation of existing values). To explain the semantics we give to the

store instruction, I shall outline the particular memory management scheme we use

in this project. Semantics of the store instructions are dependent on this scheme.

I assume a restricted memory model where allocations are performed in a con-

tiguous region in order i.e., every location is allocated after all preceding locations

have been allocated. As shown in figure 6.1, the heap is a region in memory that be-

gins at “Start” and ends at “Limit”, and all locations till “Boundary” are allocated.

We have two special purpose variables, vap, the allocation pointer which keeps track

of the boundary, and, vlp the limit pointer, which keeps track of the allocation limit.

When we store multiple words, it is efficient to first store all words (initialise the

locations) and then bump the allocation pointer (mark the locations as allocated).

Furthermore, an optimising compiler might also reschedule other instructions before

incrementing the allocation pointer. However, such optimisations make it difficult

to reason about the machine state for all the intermediate instructions before the

97

allocation pointer is incremented. To allow us to reason about the safety of these

optimisations, we make use of the “current boundary pointer” variable vcp, a virtual

variable which points to the next word to store in. A virtual variable is one that

would not correspond to any real machine register or memory location; it is merely

used as a bookkeeping variable in the semantic model. Virtual variables are similar

to logical or ghost variables used in Hoare logic.

We always start out with the initial condition vcp = vap for all programs, and

since the variable vcp is virtual, it is never an argument to any instruction.

For an initialising store (m[va + c] ← vb), we must ensure that i) we store at

the first unwritten position (va + c = vcp), and ii) we have enough space to store

(vcp < vlp). When performing multiple writes, we bump the allocation pointer after

all the writes. We use the virtual vcp variable to keep track of the next place to

write to. This allows the program to interlace allocation with other operations and

also to handle code sequences that safely break apart an opaque malloc instruction.

The precondition for the store is therefore given by φ′ such that

φ′(a, b, c) ≡ φ ∩ relate≤(id, id)(ap, cp) “vcp ≥ vap”

∩ {cp : int=(l)} “vcp = l”

∩ relate=(offset c, id)(a, cp) “va + c = vcp”

∩ {b : τ}

∩ relate<(id, id)(cp, lp) “vcp < vlp”

The postcondition, φ′′ updates vcp to point to the next location, and gives the

type field(c, τ) to variable a.

φ′′(a, b, c) ≡ φ′(a, b, c)[cp 7→ int=(l + 1), a 7→ field(c, τ)]

Therefore, the semantics for the store instructions is

98

tml-store(a, b, c) = ∀Γ, φ, l, τ. instr(Γ, φ′(a, b, c), φ′′(a, b, c))

Note that the allocation pointer has not been affected by this store, and so the

locations that have been just written to are not well typed with respect to the

allocation set. It is therefore not possible to reason about the safety of accessing

these values (via load instructions) until the allocation pointer is bumped to be

equal to the virtual current pointer in some future machine instruction.

As an example, consider a program that stores two words to memory, written in

pseudocode (and corresponding Sparc assembly, assuming that register w1, w2, and

the allocation pointer, ap respectively) as:

(1) store w1 (st %o1, [%o5+0])

(2) update allocation pointer (add %o5, 1, %o5)

(3) store w2 (st %o2, [%o5+0])

Figure 6.2 illustrates the changes to the memory contents after each store. At the

beginning, we have vcp and vap both pointing to the start of the allocation area.

After storing a word, the virtual vcp is incremented using the TML store instruction

semantics, thus leaving a 1-word area that is initialised but not allocated. The

second instruction explicitly updates the allocation pointer vap, thereby turning

this area into an allocated area, and updating the allocation boundary. The third

instruction stores the second word and adds another 1-word initialised area.

We also use the notion of virtual variables to give semantics to conditional

branch instructions. Conditional branches require references to condition codes.

For example, in the branch-if-equal instruction (beq l) we jump to location l if

the zero flag is set, else go to the next instruction. We model each condition code

as a separate virtual variables. For example, the “zero” condition is modelled as

a variable vz. We assume {z : const(1)} if the zero flag is set, and {z : const(0)}

99

���������
���������
�������
������� �������

�������
�������
�������

���������
���������
���������
�������
�������
����������������
���������
�������
�������

Initialised

FreeFree Free

Allocated

Initialised

Start After (1) After (2) After (3)

Free

Allocated
ap

lp

Start

Limit

cp Boundary
ap

lp

cp

Start

Boundary

Limit

ap

lp

Start

Limit

cp Boundary
ap

lp

Start

Limit

cp Boundary

Figure 6.2: Memory Allocation

otherwise. The corresponding TML instruction can be written as

tml-beq l
def
= ∀n, Γ, φ. instr(Γ, φ1, φ2)

“ where φ1 = φ ∩ {l : codeptr (Γ[n])} ∩ {z : int=(const(1))}

and φ2 = φ ∩ {l : codeptr (Γ[n])} ∩ {z : int=(const(0))}”

The compare instruction cmp allows us to relate the compared value with the con-

dition codes. For example, (considering only the equal flag), after the instruction

(cmp a b), we may assert that the equal flag is set if a = b and not set otherwise.

This may be encoded using TML constructors as

φ1 = (relate=(id, id)(a, b) ∩ {z : int=(const(1))})

∪ (relate 6=(id, id)(a, b) ∩ {z : int=(const(0))})

Using φ1, the cmp instruction may be encoded as the TML instruction

tml-cmp a b
def
= ∀Γ, φ. instr(Γ, φ, φ ∩ φ1)

This encoding captures the dependency of the condition codes on the two values

being compared, and allows an optimising compiler to insert other instructions

100

between the comparison and the branch instruction.

Using the TML instructions described above, we can provide semantic models

for LTAL instructions. Figure 6.3 lists the TML instruction models for some of the

main LTAL instructions. These models are used in the construction of program

safety proofs as will be discussed in Chapter 7.

6.4 The semantic model for instructions

The TML instructions just described are now given a semantic model in terms of

the machine state. The pre- and postconditions for the instr constructor are TML

environments and therefore have the same semantic model as that described in

Chapter 4 for TML environments. Similarly, the label-to-environment map Γ can

also be described as a TML environment of the form :

{l1 : codeptr (φ1), l2 : codeptr (φ2), . . . , ln : codeptr (φn)}

where the set {l1, l2, . . . , ln} contains all the branch targets. A major difference

between the two environments, however, is the set of values that they will be applied

to. The φs are applied to values that reflect the contents of the registers, while Γ

is applied to the list of program locations. The register bank can be modelled as a

function from the register number (a natural) to its contents (a natural), while the

set of locations can be modelled simply as idvec, the identity function on natural

numbers. Therefore, we can define a TML instruction as a relation on two concrete

values cv and cv ′ where the root vectors represent the contents of the machine

101

Ltal Instructions TML models Remarks
LTAL-MOV tml-mov

LTAL-MOVHI tml-mov (for Sparc sethi)
LTAL-WRY tml-mov (for Sparc wry)
LTAL-LOAD tml-load

LTAL-STORE tml-store

LTAL-LBLADD tml-add (Address arithmetic)
LTAL-RECORD-OR tml-mov (store allocation pointer in register)
LTAL-RECORD-STORE tml-store (store allocation pointer in memory)
LTAL-ALLOCA macro instruction
LTAL-SEL tml-load (select field of record)
LTAL-SUB tml-load (select array element)
LTAL-ARITH tml-add (arithmetic instructions, e.g. add)
LTAL-INJN-NULL Type coercion
LTAL-INJN-OR tml-mov (Inject value into a union)
LTAL-GETTAG tml-load (Get tag of boxed value)
LTAL-AARITH tml-add (Address arithmetic, e.g. add)
LTAL-IARITH tml-add (Immediate arithmetic, e.g. add)
LTAL-CMPCC tml-cmp (Comparisons)
LTAL-TESTFULL tml-cmp (Test if memory full)
LTAL-TESTBOX tml-cmp (Test if value is boxed)
LTAL-CMPCCI tml-cmp (Comparison)
LTAL-OPEN tml-mov (Move and open an existential value)
LTAL-UPDATE tml-store (Update a memory location)
LTAL-ASSIGN tml-store (Update a array index)
LTAL-IFFULL tml-bge (Branch if memory full)
LTAL-IF tml-beq (Generic branch, e.g. branch-if-equal)
LTAL-IFTAG tml-beq (Branch on tag of a boxed value)
LTAL-IFBOXED tml-bge (Branch if value is boxed)
LTAL-CALL-LBL tml-jump (Transfer control to label)
LTAL-CALLN (Fall through)

Figure 6.3: TML models for LTAL instruction

102

register banks. The TML instruction constructor instr is defined as :

instr
def
= λ(Γ, φ1, φ2). λρ, k, cv , cv ′.

((k > 0) ∧ (φ1 ρ k cv) ∧ (Γ ρ k 〈state(cv), idvec〉)) =⇒

((reg-vector(state(cv))(pc) = reg-vector(state(cv ′))(pc)

=⇒ (φ2 ρ (k − 1) cv ′))

∧ (∀φ3. (reg-vector(state(cv))(pc) 6= reg-vector(state(cv ′))(pc))

∧ (Γ ⊆ {reg-vector(state(cv ′))(pc) : codeptr (φ3)})

=⇒ (φ3 ρ (k − 1) cv ′)))

Intuitively, this definition says that if we start in a machine state that satisfies the

precondition φ1 to degree k (i.e. if k machine steps can be safely taken starting in

this state), and if the label environment Γ also holds to approximation k (i.e. k

steps may be safely taken starting at any label location), then it should be possible

to execute the current instruction and end in a state (given by cv ′) from which

k− 1 more steps may be safely taken. This requires an analysis of two cases: in the

first case, the instruction is not a control-transfer instruction (so that the program

counter remains unchanged), and as a result, the second environment φ2 must be

satisfied by the resulting concrete value cv ′ to approximation k−1. If it is a control-

transfer instruction (and the program counter is changed), then cv ′ must instead

satisfy the target label environment to approximation k − 1. This allows a total

of k steps to be executed from the current instruction regardless of whether it is a

control-transfer instruction. This definition reflects the notion of type preservation

for the indexed model of types.

103

6.4.1 Semantic model for quantifiers and the update oper-

ator

The descriptions of instructions also required us to quantify over types. These

were shown simply using the forall quantifier, ∀. However, we must make a new

instruction constructor for such quantification, ∀i, and its semantic model is given

as given as

∀i
def
= λ(Γ, φ1, φ2). λρ, k, cv , cv ′.

∀τ̆ . valid(τ̆) =⇒ instr (Γ, φ1, φ2) (τ̆ :: ρ) k cv cv ′

which adds the quantified type to the context if it is valid, in a way similar to the

quantifier over Tymap constructors.

To give a semantic model for the update operator used in the descriptions of

instructions, I shall outline a technique due to Gang Tan. In this technique, we first

define a predicate notindom.

notindom
def
= λi, λφ. ∀k, v1, v2.

(∀ j. (j 6= i) =⇒ ((root(v1))(j) = (root(v2))(j)))

=⇒ φ k v1 ≡ φ ρ k v2

This predicate allows us to express the fact that the type environment φ does not

have any constraints for the ith component of the root vector of a concrete value.

It can be extended to account for multiple components (e.g. i and j), which we

abbreviate as notindom(i, j). Using this predicate, we define a new form of bounded

quantification, ∀notindom(i), which quantifies over all environments which have no

binding for the ith component of the root vector in the way similar to the range

104

bounded quantification described in Section 4.3.1.

∀notindom(i)
def
= λ(Γ, φ1, φ2). λρ, k, cv , cv ′.

∀φ. valid(φ) ∧ notindom(i, φ) =⇒

instr (Γ, φ1, φ2) (φ :: ρ) k cv cv ′

Using this quantification, we can model an instruction such as add that requires

updates as

add(vi ← vj + vk)
def
= ∀Γ, n,m. ∀notindom(i) φ.

instr(Γ, φ ∩ {j : int=(n)} ∩ {k : int=(m)},

φ ∩ {i : int=(plus(n,m))})

The add instruction can be used in two ways, in the first one, the source and destina-

tion variables are distinct. In this case, the instantiation of φ, the type environment

has bindings for both the source variables. For example given an add instruction

add v1 <- v3 + v4, φ has bindings given by {3 : int=(n)} ∩ {4 : int=(m)}. The

result of the addition removes the binding for v1, but retains that for v3 and v4. On

the other hand, we could also use add to overwrite one of the source registers. For

example, given the instruction add v3 <- v3 + v4 we wish to retain the original

binding only for v4. In this case, we would instantiate φ with {4 : int=(m)}. This

would give an environment with the new binding for variable v3, but would not

retain the earlier binding.

105

Thus, the list of instruction types in TML can be given as:

Instructions ι ::= tml-add (n1, n2, n3) | tml-load (n1, n2, n3) | tml-jump (n)

| tml-mov (n1, n2) | tml-store (n1, n2, n3) | tml-beq (n)

| tml-cmp (n1 n2)

where the TML instruction types are defined as:

tml-add (i, j, k)
def
= ∀m,n, Γ.∀notindom(i)φ.

instr(Γ, φ1, φ ∩ {i : int=(plus(n,m))})

where φ1 = φ ∩ {j : int=(n), k : int=(m)}

tml-load (i, j, c)
def
= ∀n, Γ,∀notindom(i)φ.instr(Γ, φ1, φ ∩ {i : τ})

where φ1 = φ ∩ {j : field(c, τ)}

tml-jump (l)
def
= ∀n, Γ, φ.instr(Γ, φ ∩ {l : codeptr (Γ[n])},⊥)

tml-mov (i, j)
def
= ∀Γ,∀notindom(i)φ.instr(Γ, φ ∩ {j : τ}, φ ∩ {i : τ})

tml-store (i, j, c)
def
= ∀Γ,∀notindom((i,cp))φ.

instr(Γ, φ′, φ ∩ {cp : int=(l + 1)} ∩ {i : field(c, τ)})

where φ′ = φ ∩ relate≤(id, id)(ap, cp) ∩ {cp : int=(l)}

∩ relate=(offset c, id)(i, cp) ∩ {j : τ}

∩ relate<(id, id)(cp, lp)

tml-beq l
def
= ∀n, Γ, φ.

instr(Γ, φ ∩ {l : codeptr (Γ[n])} ∩ {z : int=(const(1))},

φ ∩ {l : codeptr (Γ[n])} ∩ {z : int=(const(0))})

tml-cmp i j
def
= ∀Γ,∀notindom(z)φ.instr(Γ, φ, φ ∩ φ1)

where φ1 = (relate=(id, id)(i, j) ∩ {z : int=(const(1))})

∪ (relate 6=(id, id)(i, j) ∩ {z : int=(const(0))})

106

Chapter 7

Generating Program Safety Proofs

Having shown the semantics for types, environments, and instructions, I shall now

discuss the important steps in constructing safety proofs of machine code using

these semantic models. One of the challenges in producing proofs of machine code

is that there must be no semantic gaps in the safety proofs. Earlier approaches

to PCC and language-based security have been prone to such gaps. For example,

in Necula’s PCC system, the safety proof is generated by the component called

the Verification Condition Generator (VCGen) with respect to a verification con-

dition (or a safety theorem) derived from a program. The system assumes that

this theorem corresponds correctly to the program. An error in the VCGen would

allow unsafe programs to be executed. The concrete-machine-specific TAL system

TALx86 [40] is very close to the x86 assembly-level language. However, TALx86

still reasons about safety at the assembly level, and then uses a trusted assembler1

1In FPCC, we do not trust an assembler, however we do trust the component of the TCB that
captures the syntax and semantics of machine instructions. Michael and Appel [37] have shown
how to have a minimal amount of trust in this component by carefully engineering it to be highly
factored and to have a very small axiomatic base. This component consists of predicates over
the machine state, and the disassembler is a logic program whose correctness is proved from the
axioms in the TCB, in a way similar to the rules of TML being proved correct using the semantic

107

to produce the machine-level program. The operational semantics for TAL involves

a relation between abstract machine states given by a triple of the heap, register

bank, and instruction sequences rather than purely based on the raw machine mem-

ory and register bank. The soundness of the TALx86 type system has been shown

by a rigorous manually constructed proof. This soundness is still with respect to

an abstract machine, and the relation between the type system of TALx86 and the

concrete machine operational semantics does not have a machine-checked proof. For

a foundational approach, the absence of this proof results in a semantic gap in the

system.

The FPCC system avoids semantic gaps in safety proofs by directly reasoning

about the safety of the actual machine code. In this chapter, I shall describe various

judgements and rules involved in the generation of syntactic safety proofs, and how

we can use TML to give semantic models for them to yield truly foundational proofs.

7.1 High-level structure of semantic safety proofs

7.1.1 Syntactic proof technique

The program safety proof in FPCC does not use techniques used in syntactic pre-

sentations of program safety proofs. I shall first outline the syntactic program safety

proof technique, and then describe the proof technique that we use in FPCC.

Syntactic presentations of program safety proofs involve subject reduction and

progress theorems based on the operational semantics of typed assembly language

instructions. To relate the typed assembly language (LTAL, in our case) to an as-

sembly language of a concrete architecture (Sparc, in our case), a simulation theorem

model. As a result, the logic program itself does not need to be trusted.

108

is proved which shows that one step in the typed assembly language corresponds

exactly to one step in the concrete architecture assembly language.

Consider, for example, the tiny typed assembly language, T , given in Figure 7.1,

along with fragments of its semantics enough only to illustrate this technique. To

determine the safety of a program in T , we first prove the two lemmas :

• Progress : If P is well formed (` P), then there exists a P ′ such that P

evaluates to P ′ in one step (P 7−→ P ′).

• Preservation : If P is well formed, and P 7−→ P ′, then P ′ is wellformed.

This allows us to prove that the typed assembly language always steps to a well

typed (and hence, safe) state. Next, this abstract semantics is related to the actual

machine state in terms of the memory contents and the program counter given by

the translation relation (=⇒) :

“Heap H corresponds to memory state M”

“R corresponds to machine register bank R”

“Instruction sequence I resides in memory at location l”

“Program counter (pc) points to l”

(H, R, I) =⇒ (M,R, pc)
(translate)

Finally, we need a simulation relation between the assembly step and the machine

step, i.e. we show that if assembly state P steps to P ′ (P T
7−→P ′), and P translates

to machine state S (P =⇒ S), and if machine state S steps to S ′, then P ′ =⇒ S ′.

This simulation relation connects the safety of the assembly to the safety of the

machine code : since P T
7−→P ′ is a relation on only safe states, the machine states

corresponding to P and P ′ must be safe.

109

Syntax
Type τ ::= int | τ × τ

Register Environment Γ ::= {r1 : τ1, r2 : τ2, . . . , rn : τ31}
Register Value vr ::= N

Heap Values vh ::= 〈N0, N1, . . . , Nn−1〉
Register Bank R ::= {r0 7→ vr0, r1 7→ vr1, . . . , r31 7→ vr31}

Heap H ::= {0 7→ vh0, 1 7→ vh1, . . . , n 7→ vhn}
Instruction ι ::= load rd, rs, c

Instruction Sequence I ::= ι; I | �
Natural N ::= {0, 1, 2, . . .}

Operational Semantics
(H, R, load rd, rs, c; I) T

7−→ (H, R{rd 7→ vi}, I)
where 0 ≤ c < n,

H(R(rs)) = 〈v0, . . . , vc, . . . , vn−1〉
(H, R, �) T

7−→ (H, R, �)
Static Semantics

` P (Program wellformed)

(0 ≤ i < 32 H ` R(i) : Γ(i)) Γ ` I safe

` (H, R, I)
(prog)

Γ ` I safe (Instructions wellformed)

Γ(rs) : τ0 × . . .× τi × . . . × τn Γ[rd 7→ τi] ` I safe

Γ ` load rd, rs, c; I safe
(load)

Γ ` � safe
(�)

Figure 7.1: Syntax of T

110

7.1.2 Semantic proof technique

In the FPCC project, the semantic approach has influenced the program safety proof

technique. As opposed to the syntactic approach, in FPCC all typing judgements

related to proving safety are given semantic models in terms of TML constructors.

The well-typedness of a program now becomes a theorem based on this semantic

model. Then, another theorem that states that well-typed programs are safe is

also proved with respect to this semantic model. The LTAL program instructions

are given operational semantics in terms of the trusted Sparc step relation, hence

we also do not need an explicit simulation proof. The main predicate we prove in

this approach outlined by Appel and McAllester[11] is safe(r,m). This predicate is

defined over machine register bank r and memory m as

safe(r,m)
def
= ∀r′,m′.(r,m) 7→∗ (r′,m′) =⇒ ∃r′′,m′′.(r′,m′) 7→ (r′′,m′′)

and says that a machine will not step into a stuck state. The step relation (7→)

used in this definition is that defined by Michael and Appel [37] and is shown in

Figure 4.2. It captures the decoding and execution of all program instruction. For

example, the machine word corresponding to the load instruction load rd, rs, c

would be decoded into a predicate load on a pair of “before” and “after” machine

states.

load(rd, rs, c)
def
= λ(r,m), (r′,m′).

readable(rs + c) ∧ r′ = r[rd 7→ m(rs + c)] ∧ m′ = m

Using this notion of machine-step semantics based safety, the main lemma that

111

allows us to prove the program safe is

“Program p loaded in memory m at location l” (1)

“State (r,m) satisfies program preconditions” (2)

“All program locations satisfy compiler-generated typing invariants” (3)

safe(r,m)
(safe)

The compiler generates invariants of the form

Γ ≡ {l1 : codeptr (φ1), l2 : codeptr (φ2), . . . , ln : codeptr (φn)}

Condition (1) ensures that the program counter pc points to the beginning of the

program and condition (2) ensures that the the initial state satisfies the precondi-

tions for the program, which is given by Γ(rpc). Condition (3) involves proving that

all locations are well-typed, or alternatively, that the typing judgement li : Γ(li)

holds for each location i ∈ dom(Γ). In the indexed model, this involves showing

that the typing judgement li :k Γ(i), or, li :k codeptr (φi) holds to all approximations

k. The semantic definition of codeptr given in Section 4.3, along with the seman-

tics of instructions (as shown for load) then allows us to prove that any number of

machine steps can be safely taken from each location i, thus proving the safety of

the program.

The construction of this proof requires various components of FPCC such as

LTAL to communicate the typing hints given by Γ, and the decode prover to com-

municate the decoding and execution semantics of machine words to the safety

prover. In the remaining sections I shall give the details of how the program safety

proof is constructed using TML as an interface between the prover and these com-

ponents.

112

To illustrate the proof technique, as an example, consider the core ML program

to find the length of a list shown below :

datatype myList = Cons of myList | Nil

fun length (Nil) = 0

| length (Cons rest) = 1 + length (rest)

A simple translation of this program into a low-level program is

length (l) =

len = 0;

loop : if (l is a cons cell) goto cons;

return len;

cons : len = len + 1;

l = tail(l);

goto loop;

After passing this program through the LTAL compiler, we get the LTAL program2

(P) that is listed in Figure 7.4 and explained using Figure 7.2 and Figure 7.3.

The corresponding machine code (C) generated by the LTAL compiler is shown in

Figure 7.3 (in column 2) with annotations.

The LTAL program can be divided into three parts : the first part consists

of LTAL instructions which operate on LTAL variables. Each instruction either

corresponds to one machine-level instruction, or to a coercion (which requires no

machine-level instructions). As shown below, the LTAL instructions follow the

2The LTAL compiler actually generates programs corresponding to the continuation-passing-
style and closure-converted form, which complicates the function entry and exit code. For the ease
of presentation, however, I shall use an LTAL program without these complications.

113

control flow shown in the pseudocode earlier:

Labels LTAL instructions Corresponding pseudocode

var(2) = C(NAT2INT,0) len = 0

2$: var(3) = C(UNFOLD, var(1))

var(4) = TESTBOX(var3)

IFBOXED {var(4)} if l is cons cell

THEN CALL(label(4)) then goto 4

ELSE CALL(label(3)) else goto 3

3$: CALL (var(99)) return len

4$: var(5) = var(4) len = len + 1

var(7) = var(2) + C(NAT2INT,1) len = len + 1

var(8) = var(5)[0] l = tail(l)

var(2) = var(7)

var(1) = var(8)

CALL (label(2)) goto 2

In Figure 7.4, the LTAL instructions are shown enclosed in ‘〈 〉’ brackets. The second

part consisting of lines starting with ‘#’ give a description of the environment typing

at all the branch targets3. Environment typings are given to LTAL variables. The

mapping of LTAL variables to machine registers is given by the “Register Map”.

For the pseudocode, we have the type environments as shown in Figure 7.2, which

can be seen to roughly correspond to the LTAL program output.

3In this example, I have given environment descriptions for every instruction. From the environ-
ment typings at branch targets, the program-safety prover can automatically generate environment
typings at all other program locations.

114

〈Γ(0) = {l : t fix(tvar(1),t sum(1,t field(0,t v tvar(1)))),
return env : t code([], [var(2) : t int])}〉
len = 0;

〈Γ(1) = Γ(0) ∩ {len : t int}〉
loop : if (l is a cons cell) goto cons;
〈Γ(3) = {l : t nat(=, 0), len : t int}

return len

〈Γ(4) = {l : t field(0,t fix(tvar(1),t sum(1,t field(0,t v tvar(1))))),
len : t int, return env : t code([], [var(2) : t int])}〉

cons : len = len + 1;
〈Γ(5) = {l : t field(0,t fix(tvar(1),t sum(1,t field(0,t v tvar(1))))),

len : t int, return env : t code([], [var(2) : t int])}〉
l = tail(l);

〈Γ(6) = {l : t fix(tvar(1),t sum(1,t field(0,t v tvar(1)))),
len : t int, return env : t code([], [var(2) : t int])}〉
gotoloop;

Figure 7.2: List-length program annotated with LTAL type environments

Address Machine word Sparc Assembly Annotation
0 0x94102000 start : mov 0, %o2 clear counter
4 0x80a26100 loop : cmp %o1, 256 if cons cell
8 0x36800004 bge cons goto cons

12 0x01000000 nop

16 0x81c3c000 jmp %o7 else done
20 0x01000000 nop

24 0x9402a001 cons : add %o2, 1, %o2 increment counter
28 0xd2024000 ld [%o1], %o1 get next list element
32 0x10bffff9 ba loop repeat loop
36 0x01000000 nop

Figure 7.3: Sparc translation of the list length program

115

1 # Type Environment : {
2 # var(1) : t fix(tvar(1),t sum(1,t field(0,t v tvar(1)))),
3 # var(10) : t code[](var(2) : t int)}
4 # Register Map :{1 : %o1, 10 : %o7}
5 1$: mov 0, %o2 〈var(2) = C(NAT2INT,0)〉
6 # Type Environment : {
7 # { var(1) :t fix(tvar(1),t sum(1,t field(0,t v tvar(1))))
8 # var(2) :t int

9 # var(10) :t code[](var(2) : t int)}
10 # Register Map :{1 : %o1, 2 : %o2, 10 : %o7}
11 2$: 〈var(3) = C(UNFOLD, var(1))〉
12 #Register Map :{1 : %o1, 2 : %o2, 3 : %o1, 10 : %o7}
13 cmp %o1, 256 〈var(4) = TESTBOX(var3)〉
14 # Register Map :{1 : %o1, 2 : %o2, 3 : %o1, 4 : %o1, 10 : %o7}
15 bge 4$ 〈IFBOXED {var(4)} THEN

16 var(5) ⇒ CALL(label(4), [])
17 ELSE var(6) ⇒ CALL(label(3), [])〉
18 nop

19 # Type Environment : {
20 # { var(2) :t int

21 # var(10) :t code[](var(2) : t int)}
22 # Register Map :{2 : %o2, 10 : %o7}
23 3$: jmp %o7 〈{CALL var(99)[]()}〉
24 nop

25 # Type Environment : {
26 # { var(2) :t int

27 # var(5) :t field(0,t fix(tvar(1),t sum(1,t field(0,t v tvar(1)))))
28 # var(10) :t code[](var(2) : t int)}
29 # Register Map :{2 : %o2, 5 : %o1, 10 : %o7}
30 4$: add %o2, 1, %o2 〈var(7) = var(2) + C(NAT2INT,1)〉
31 ld [%o1], %o1 〈var(8) = var(5)[0]〉
32 〈var(2) = var(7)〉
33 〈var(1) = var(8)〉
34 ba 2$ 〈CALL (label(2), [])〉
35 nop

Figure 7.4: Entire LTAL program for the list length program

116

Finally, the third part consists of the actual Sparc assembly instructions that

the core ML program compiles into. It is this part that must be proved safe without

having to trust the annotations given by the other two parts.

Given such a tuple, L = (P, C), our primary aim is to show that C is safe. The

safety of C is determined in the following way: since typability implies safety for

FPCC, we first ensure that the LTAL program type checks with respect to the spec-

ified environment typing judgements. Then, using semantics for LTAL instructions,

we show that each untyped machine-level instruction in the program C respects

the typing judgments for a corresponding typed LTAL program instruction in P.

The next section describes the proof technique we use to generate the foundational

safety proof for C.

7.2 Program safety proofs

I shall now present the syntactic judgements necessary to prove the safety of a pro-

gram C obtained from the output of an LTAL compiler. (This was joint work with

Gang Tan and Dinghao Wu.) The LTAL compiler[17] also outputs the LTAL pro-

gram that provides, among other pieces of information, a label environment (which

is denoted by Γ) that gives the typing invariants for all branch targets. Program

safety is syntactically expressed through the following wellformedness judgements

on the tuple C and Γ.

• Program : The judgement `p (C, Γ) means that the program C is wellformed

with respect to label environment Γ.

117

• Block : The judgment Γ; l `b (C, Γ′) means that machine code C, that starts

at a basic block beginning at address l and goes to the end of the remaining

code, is well formed. The block C may transfer control to any label within

Γ. The environment Γ′ is a subenvironment of Γ, and its significance will be

made clear in the semantics for the block rules given in Section 7.3.2.

• Decode : The judgement C `d I means that the code sequence C decodes

to a list of TML instructions I. This judgement uses the machine instruction

semantics specification that is a part of the TCB.

• Instruction : The judgement Γ; l `i {φ} I {φ′} means that assembly code

instruction sequence I, starting at address l, is wellformed with precondition

φ and postcondition φ′. The purpose of location l is to be able to compute

the destination address for a pc-relative jump instructions.

To check that an annotated program (C with Γ) is wellformed (`p (C, Γ)),

the prog rule (in Figure 7.5) will call (Γ; 0 `b (C, Γ)), which would call rules

block-1 and block-2 to check that each basic block in C is well-formed under the

assumption that the first block in C starts at address 0. For the list-length program

example in Figure 7.3, the domain of Γ is {0, 4, 24}, C has three pieces:

start : 0x94102000

loop : 0x80a26100; . . . ; 0x81c3c000; 0x01000000

cons : 0x94021001; . . . ; 0x10bffff9; 0x01000000

To check the wellformedness of each piece of C, we first decode the machine

words into an assembly language instruction sequence given by I. This is done

using block wellformedness (`b) rules, dec-1 and dec-2. Then, each instruction

118

Γ; 0 `b (C, Γ)

`p (C, Γ)
PROG

Γ(l) = codeptr (φ1)
Γ(l + |C1|) = codeptr (φ2)

C1 `d I1 Γ; l `i {φ1} I1 {φ2}
Γ; l + |C1| `b (C2, Γ

′)

Γ; l `b (C1; C2, {l : codeptr (φ1)} ∩ Γ′)
BLOCK 1

C `d I

Γ ⊆ {l : codeptr (φ)} Γ; l `i {φ} I {⊥}

Γ; l `b (C, {l : codeptr (φ)})
BLOCK 2

C1 `d I1 C2 `d I2
C1; C2 `d I1; I2

DEC 1
decode(n, i)

n `d i
DEC 2

Γ; l `i {φ1} I1 {φ2} Γ; l + |I1| `i {φ2} I2 {φ3}

Γ; l `i {φ1} I1; I2 {φ3}
COMP

φ′
1 ⊆ φ1 φ2 ⊆ φ′

2 Γ; I `i {φ1} I {φ2}

Γ; l `i {φ
′
1} I {φ′

2}
WEAKEN

φ ⊆ φ1 φ2 ⊆ φ′

Γ; l `i {φ} instr(Γ, φ1, φ2) {φ
′}

INS

Figure 7.5: Syntax : Type checking rules

119

LTAL instructions Corresponding TML operations
var(2) = C(NAT2INT,0) tml-mov

var(3) = C(UNFOLD, var(1)) ⊆ −unfold

var(4) = TESTBOX(var3) tml-cmp

IFBOXED {var(4)} . . . tml-bge

CALL var(99)() tml-jump

var(7) = var(2) + C(NAT2INT,1) tml-add

var(8) = var(5)[0] tml-load

CALL label(2)() tml-jump

Figure 7.6: TML instruction models for list-length LTAL program instructions

sequence must be checked to be wellformed (or type safe), and this is done using the

judgements for instruction sequences (`i), where the sequence is broken down into

individual instructions using the rule comp. The rule ins is then used for individual

instructions to determine their wellformedness. For our example program, we have

the LTAL instructions and their TML instr models given in Figure 7.6.

Each application of the ins rule ensures that the pre- and postconditions for

TML instructions are compatible with the typing judgements that hold at the lo-

cations where the corresponding machine instructions are located. LTAL coercion

instructions such as unfold help guide the prover to generate the correct typing

judgements, and require a subtyping rule (e.g. ⊆-unfold) rather than a TML

instruction. As an example, we begin the list-length program (Figure 7.4) with the

environment

{%o1 : rec (const(0) ∪ field(0, 0)), %o7 : codeptr ({2 : int})}

where the Sparc output registers 1 and 7 are denoted using the Sparc assembly-

language convention as %o1 and %o7. The register map given by the LTAL pro-

gram is used to map the LTAL variables into actual Sparc registers, but I shall not

illustrate this intermediate step for this example. Using the tml-mov instruction,

120

we get the postcondition to be

{%o1 : rec (const(0) ∪ field(0, 0)), %o7 : codeptr ({2 : int}), %o2 : int}

The type environment at label $2 in Figure 7.4 is a subtype of the type environment

shown above, and therefore it is safe to execute the tml-mov instruction. Next, the

unfold coercion results in using the ⊆-unfold subtyping rule to obtain the type

environment

{%o1 : const(0) ∪ field(0, rec (const(0) ∪ field(0, 0))),

%o7 : codeptr ({2 : int}), %o2 : int}

The comparison instruction (Figure 7.4 line 13) is modelled by the tml-cmp TML

instruction, and results in a zero flag being tied to the comparison of %o1 and the

value4 256. The postcondition of the comparison instruction is

{%o1 : const(0) ∪ field(0, rec (const(0) ∪ field(0, 0))),

%o7 : codeptr ({%o2 : int}), %o2 : int} ∩

(relate>(id, id)(%o1, const(256)) ∩ {g : int=(const(1))}

∪ relate≤(id, id)(%o1, const(256)) ∩ {g : int=(const(0))})

The comparison instruction is followed by a bge branch-if-greatereq instruction. To

ensure the safety of the bge instruction, we must ensure that the precondition at the

branch target is a subtype of the precondition at the bge instruction. The branch

target precondition as shown at line 25 in Figure 7.4 is translated into a TML type

environment as

{%o1 : rec (const(0) ∪ field(0, 0)),

%o7 : codeptr ({%o2 : int}), %o2 : int}

4Datatypes that have constant constructors (such as the Nil variant for lists) do not need to be
boxed. ML implementations allow multiple constant constructors by representing them as unboxed
constant numbers in the range (0 . . . 255). The comparison with 256 allows the differentiation
between unboxed and boxed constructors.

121

and we can show that the precondition for the bge instruction is a subtype of the

precondition for the branch target instruction. If the branch is not taken, then we

execute a jump to the contents of register %o7. The type of this register (and hence

the precondition for a safe jump) is codeptr ({%o2 : int}). The current bge precon-

dition enforces this condition, and therefore the branch-if-greatereq instruction is

safe to execute in either case. If the branch were taken (if there are more elements

in the list), we have the branch target precondition

{%o1 : field(0, rec (const(0) ∪ field(0, 0))),

%o7 : codeptr ({%o2 : int}), %o2 : int}

We use the TML instruction tml-add to argue about the safety of the add instruc-

tion to increment the list-length variable in register %o2 (line 30 Figure 7.4). This

addition is safe since we have {%o2 : int} as a part of the type environment, and

this satisfies the precondition for the add instruction. The precondition for the

subsequent instruction to load the next list element (line 31 in Figure 7.4) is also

satisfied, since register %o1 is of a field type. After the load instruction, as modelled

by the TML instruction tml-load, we are left with the postcondition

{%o1 : rec (const(0) ∪ field(0, 0)), %o7 : codeptr ({%o2 : int}), %o2 : int}

which satisfies the precondition for the target (label $2 at line 11 in Figure 7.4)

of the subsequent unconditional jump instruction. Therefore this program is well

formed.

The next section gives models for all the syntactic rules which allow us to prove

that a wellformed machine program obeys the safety policy, and is therefore safe to

execute.

122

7.3 Semantics for judgements of safety proofs

To make these syntactic proofs foundational, I shall present a semantic model for

each of these judgements and show the role of TML instructions in the construction

of proofs. From these models, each of the typing or wellformedness rules given in

Figure 7.5 can be proved as a derived lemma. To correctly model the program

wellformedness judgement `p, we first model the machine program words in C as

a TML environment. This is done as follows : If a program code word n is loaded

in memory at location l, we encode this using the singleton environment as {l :

num (n)}, where num (n)
def
= box (int=(n)). The entire program can thus be described

as

∆(n0; n1; . . .)
def
= {0 : num (n0), 4 : num (n1), . . .}

where the constructor ∆ converts a sequence of machine code words into a type

environment. For the list-length program, we have

∆(C) = {0 : num (0x94102000), 4 : num (0x80a26100), . . . , 36 : num (0x01000000)}}

7.3.1 Program wellformedness

The model for the program wellformedness judgement `p is given as

`p (C, Γ)
def
= safe-code(C)

123

where we have

C v m
def
= ∀x ∈ dom(C). x ∈ dom(m) ∧ C(x) = m(x)

safe-code(C)
def
= ∀ρ, k, s.

(C v mem(s) ∧ reg-vector(s)(pc) = 0 ∧ (φ0 ρ k reg-vector(s)))

=⇒ safe(mem(s), reg-vector(s))

using the definition of safe given in Section 4.2. This definition says that a machine

code program C is safe in any state s having memory m and registers r if i) m

extends C, ii) the program counter, r(pc) initially points to address 0, and iii)

when the program begins executing, some precondition φ0 holds.5 The semantics

of `p (C, Γ) is safe-code(C) so that “typability implies safety” follows directly from

this definition. Notice that Γ is not used in this definition. This highlights the

fact the the LTAL program P need not be trusted; any Γ given by the compiler is

acceptable since it is only a hint to prove that C is safe.

7.3.2 Block wellformedness

The judgment Γ; l `b (C, Γ′) makes a connection between the program and the

typing invariants provided by the LTAL program. We must ensure that C respects

the invariants Γ. Using ∆ to show that ∆(C) ⊆ Γ directly is hard. The difficulty

5We want our semantic model of types to be entirely in the proof of the safety theorem, not in
the statement of the theorem; this way, the choice of type system is up to the compiler and prover,
and is not constrained by the checker. But this makes the definition of the initial precondition
φ0 tricky : we must not use types. In our actual implementation, the machine-code program is
called with simple integer arguments, which can be specified easily without using our semantic
model. The example program that computes the length of a linked list is not quite realistic (as a
complete program) because it takes a linked-list argument; this program is more representative of
what might occur as a subroutine of some larger chunk of proof-carrying code. In summary, we
assume that the initial precondition φ0 is simple enough that it can be described directly in our
underlying logic, and is also easy to describe using our semantic type operators.

124

is explained informally thus: On one hand, to judge that a jump instruction is safe

we need to assume that the destination is safe to jump as long as the precondition

is met, i.e., we need to assume Γ correctly specifies the label preconditions. On the

other hand, the point of ∆(C) ⊆ Γ is to prove that Γ has the correct label invariants.

Traditional domain-theoretic models[21] prove that a (recursive) program C

matches invariants Γ by induction over approximations of C. In the indexed model,

this proof instead uses induction over the approximation indices of Γ. Since types

in our model are sequences of k-approximations, we prove ∆C ⊆ Γ by induction

over k.

If done näıvely, this approach would be inconvenient because we would be contin-

ually manipulating explicit indices (k, k+1) throughout a very large proof. Instead,

we make the proof manageable by abstracting away from the indices: we define the

operator `0 Γ which says that Γ is true at index zero, and use the subtype-plus

predicate Γ1 +⊂ Γ2, which says that if Γ1 holds to approximation k, then Γ2 should

hold to one degree more accurately.

`0 Γ
def
= ∀ρ k v. Γ ρ 0 v

Γ1 +⊂ Γ2
def
= ∀ρ k v. Γ1 ρ k v =⇒ Γ2 ρ (k + 1) v

Our obligation for any given program is to prove `0 Γ and to prove ∆(C)∩Γ +⊂ Γ;

then we can combine these two with the following induction theorem:

Theorem 2 (Subtype Induction)

`0 Γ ∆(C) ∩ Γ +⊂ Γ

∆(C) ⊆ Γ

Proof. The base case is given by `0 Γ. For the inductive case, we assume

125

∆(C) ρ k v =⇒ Γ ρ k v and show that ∆(C) ρ (k + 1) v =⇒ Γ ρ (k + 1) v. It can

be easily verified that ∆(C) is a valid environment and thus closed under decreasing

index. Hence, given ∆(C) ρ (k + 1) v, we also have ∆(C) ρ k v. From the induction

hypothesis, we get Γ ρ k v.

Therefore, we have ∆(C) ∩ Γ ρ k v, and by the premise ∆(C) ∩ Γ +⊂ Γ, we have

Γ ρ (k + 1) v. �

Proving the first premise `0 Γ for the subtype induction rule is easy: Γ is the

intersection of code pointer types, which can be verified to be always true under

index zero (informally, after jumping to any address it’s always safe to execute zero

steps).

To prove ∆(C) ∩ Γ +⊂ Γ, we need to show that ∀ρ, k, v. the judgement Γ ρ k v

holds under the assumption that (∆(C) ∩ Γ) ρ k v holds. In other words, we need

to prove all the branch targets are of code pointers to approximation k + 1 under

the assumption that they are of code pointers to approximation k.

In the block wellformedness judgement Γ; l `b (C′, Γ′), C′ is a portion of the

program code, from address l to the end of the program, and Γ′ is the collection of

preconditions of labels inside C′ and is a part of global label environment Γ. If we

gave Γ; l `b (C′, Γ′) the simple model offset(l, ∆(C)) ⊆ Γ′, we would be in trouble

if C were to contain a jump instruction to a label outside C; since this model didn’t

give us any assumptions about such labels. Therefore, we give it the model :

Γ; l `b (C, Γ′) =| (offset(l, ∆(C)) ∩ Γ +⊂ Γ′) ∧ (`0 Γ′)

This model would guarantee that every label in C is safe for at least k steps even

in the presence of jumps.

126

With these semantic models, we can prove the prog rule in Figure 7.5 as a

derived lemma.

Theorem 3 (Safe Code)
Γ; 0 `b (C, Γ)

`p (C, Γ)
PROG

Proof. From the definition of Γ; 0 `b (C, Γ), we have

offset(0, ∆(C)) ∩ Γ +⊂ Γ ∧ `0 Γ

Since offset(0, ∆(C)) = ∆(C), we have ∆(C) ⊆ Γ by Theorem 2.

The goal `p (C, Γ) is modeled by safe-code(C), from whose definition we have the

following assumptions for state s and want to show that safe(reg-vector(s), mem(s)).

i) C v mem(s) ii) φ0 ρ k 〈s, reg-vector(s)〉 iii) reg-vector(s)(pc) = 0

The deduction steps from ∆(C) ⊆ Γ to safe(reg-vector(s), mem(s)) are summa-

rized by the proof tree in Figure 7.7.

Step (1) says to prove s is safe, it suffices to prove that s is safe for an arbitrary k

steps. Step (2) is justified by the definition of the code pointer constructor codeptr

in Section 4.3. along with assumptions ii) and iii). Step (3) are by instantiation of

the universal quantifier. Step (4) is by the definition of the singleton environment

constructor. Finally, step (5) is by the definition of ‘⊆’ (Section 3.4), and transitivity

of subtyping (Figure 3.9). �

127

∆(C) ρ k 〈s, idvec〉 ∆(C) ⊆ Γ Γ ⊆ {0 : codeptr (φ0)}

{0 : codeptr (φ0)} ρ k 〈s, idvec〉
(5)

∀ρ, k.codeptr (φ0) ρ k 〈s, const-vector(0)〉
(4)

∀ρ, k.codeptr (φ0) ρ (k + 1) 〈s, const-vector(0)〉
(3)

ii iii

∀k. safen(k, reg-vector(s), mem(s))
(2)

safe(reg-vector(s), mem(s))
(1)

Figure 7.7: Semantics : Proof tree for ∆(C) ⊆ Γ

7.3.3 Connecting axiomatic instruction semantics to TML

instructions

The decode judgement uses the decode relation due to Michael and Appel [37] to

relate instruction words to relations on states in form of register bank and memory

pairs. For example, the add instruction is given an axiomatic characterisation in

the FPCC system as

add
def
= λ(i, j, k).λ(r,m), (r′,m′).

(r′ = r[i 7→ r(i) + r(j)]) ∧ (m = m′)

In Chapter 6, I described high-level TML instructions that operate on type

environments rather than on raw machine state. For example, the TML instruction

corresponding to the addition instruction above is:

tml-add i← j + k
def
= ∀m,n, Γ, φ. instr(Γ, φ1, φ1[i 7→ int=(plus(n,m))])

where φ1 = φ ∩ {j : int=(n), k : int=(m)}

It is much more convenient to consider TML instructions rather than the ax-

iomatic characterisations of instructions for the generation of safety proofs. To

connect a low-level instruction such as add to the TML instruction tml-add, we

128

use the constructor instr@, which allows us to express the fact that some location

l contains a machine word that decodes to the low-level instruction add, and add

implements the TML instruction tml-add. We make this connection with rules such

as:

decode(n, add(ri, rj, rk))

num (n) ⊆ instr@(∀φ,m, n′.instr(Γ, φ1, φ1[i 7→ int=(plus(n′,m))]))
add

where φ1 = φ ∩ {j : int=(n′), k : int=(m)}

This rule allows us to express instructions as predicate transformers on type envi-

ronments rather than on raw machine states. Some of the other important low-level

axiomatic definitions of instructions6 are listed in Figure 7.8, and rules connecting

them to corresponding TML instructions using instr@ are listed in Figure 7.9. The

precise definition of instr@ is due to Gang Tan and is not discussed in this thesis,

rather, the rules below give the interface that the safety prover can use to be able

to link machine words to TML instructions. The foundational proofs for the rules

in Figure 7.9 are currently under construction.

Using the instr@ type constructor, we construct a TML code environment Π

defined as

Π(ι0, ι1, . . .) ≡ {0 : instr@(ι0), 2 : instr@(ι1), . . .}

This construction allows us to compare the machine code environment and the high-

level TML code environment via the subtyping operator, i.e., if ∆(C)(i) contains a

machine word, then Π(I)(i) must contain a TML instruction such that

∆(C)(i) ⊆ Π(I)(i) holds. Therefore, the semantic model for C `d I is simply

6The instruction cmp only considers the zero condition, and cmp and beq use z to stand for
the zero flag in the condition code register.

129

load
def
= λ(i, j, c).λ(r,m), (r′,m′).

(r′ = r[i 7→ m[r(j) + c]]) ∧ (m = m′)

store
def
= λ(i, j, c).λ(r,m), (r′,m′).

(r = r′) ∧ (m′ = m[(r(j) + c) 7→ r(i)])

jump
def
= λ(l).λ(r,m), (r′,m′).

(r′ = r[pc 7→ l]) ∧ (m = m′)

cmp
def
= λ(i, c).λ(r,m), (r′,m′).

((r[i] = c =⇒ (r′ = r[z 7→ 1])) ∨ (r[i] 6= c =⇒ (r′ = r[z 7→ 0])))
∧ (m = m′)

beq
def
= λ(l).λ(r,m), (r′,m′).

((r[z] = 1 =⇒ (r′ = r[pc 7→ l])) ∨ (r[z] = 0 =⇒ (r′ = r)))
∧ (m = m′)

Figure 7.8: Definitions of instructions in terms of machine state

decode(n, load(ri, rj, c))

num (n) ⊆ instr@(∀φ.instr(Γ, φ1, φ1[i 7→ τ]))
load

where where φ1 = φ ∩ {j : field(c, τ)}

decode(n, store(ri, rj, c))

num (n) ⊆ instr@(∀φ.instr(Γ, φ′, φ′′))
store

where φ′ and φ′′ are as described in Section 6.3

decode(n, jump(l))

num (n) ⊆ instr@(∀m,φ.instr(Γ, φ ∩ {l : codeptr (Γ[m])},⊥))
jump

decode(n, cmp(ri, c))

num (n) ⊆ instr@(∀Γ, φ. instr(Γ, φ, φ ∩ φ1))
cmp

where φ1 = (relate=(id, id)(i, const(c)) ∩ {z : int=(const(1))})
∪ (relate 6=(id, id)(i, const(c)) ∩ {z : int=(const(0))})

decode(n, beq(l))

num (n) ⊆ instr@(∀m,φ. instr(Γ, φ1, φ2))
beq

where φ1 = φ ∩ {l : codeptr (Γ[m])} ∩ {z : int=(const(1))}
φ2 = φ ∩ {l : codeptr (Γ[m])} ∩ {z : int=(const(0))}

Figure 7.9: Rules connecting low-level instructions to TML instructions

130

∆(C) ⊆ Π(I).

With these semantics, we can now prove the rules block-1 and block-2 as

lemmas.

Theorem 4

Γ(l) = codeptr (φ1)

Γ(l + |C1|) = codeptr (φ2)

C1 `d I1 Γ; l `i {φ1} I1 {φ2}

Γ; l + |C1| `b (C2, Γ
′)

Γ; l `b (C1; C2, {l : codeptr (φ1)} ∩ Γ′)
BLOCK 1

Proof. By the semantic model `b, we need to show

offset(l, ∆(C1; C2)) ∩ Γ +⊂ {l : codeptr (φ1)} ∩ Γ′

and `0 {l : codeptr (φ1)} ∩ Γ′

First, we have (a)

offset(l, ∆(C1; C2)) ∩ Γ

⊆ offset(l, ∆(C1)) ∩ Γ (1)

⊆ offset(l, Π(I1)) ∩ Γ (2)

⊆ offset(l, Π(I1)) ∩ Γ ∩ {l + |I1| : codeptr (φ2)} (3)

+⊂ {l : codeptr (φ1)} (4)

131

Step (1) uses the rule (from the definition of ∆):

∆(C1; C2) ⊆ ∆(C1) ∩ offset(|C1|, ∆(C2))

the weakening rule of intersection: φ1 ∩ φ2 ⊆ φ1 and the rule:

φ1 ⊆ φ2

offset(l, φ1) ⊆ offset(l, φ2)

Step (2) uses the definition of C1 `d I1; step (3) uses the fact that {l + |I1| : codeptr (φ2)}

is a part of Γ, which is based on the premise that Γ(l + |C1|) = codeptr (φ2) and

|C1| = |I1|; step (4) uses the definition of Γ; l `i {φ1} I1 {φ2}.

We also have (b)

offset(l, ∆(C1; C2)) ∩ Γ

⊆ offset(l + |C1|, ∆(C2)) ∩ Γ (1)

+⊂ Γ′ (2)

Step (2) uses the definition of Γ; l + |C1| `b (C2, Γ
′).

Combining (a) and (b) use the lemma

Γ +⊂ Γ1 Γ +⊂ Γ2

Γ +⊂ Γ1 ∩ Γ2

we get

offset(l, ∆(C1; C2)) ∩ Γ +⊂ {l : codeptr (φ1)} ∩ Γ′

By Γ; l + |C1| `b (C2, Γ
′), we also get `0 Γ′. Combining it with the easily verified

132

lemma `0 {l : codeptr (φ1)} using the lemma

`0 Γ1 `0 Γ2

`0 Γ1 ∩ Γ2

we get `0 {l : codeptr (φ1)} ∩ Γ′. �

Theorem 5

C `d I

Γ(l) = codeptr (φ) Γ; l `i {φ} I {⊥}

Γ; l `b (C, {l : codeptr (φ)})
BLOCK 2

Proof. By the semantic model `b, we need to show

offset(l, ∆(C)) ∩ Γ +⊂ {l : codeptr (φ)}

and `0 {l : codeptr (φ)}

The second goal can be proved from the definition of type codeptr (φ). For the

first goal, we have

offset(l, ∆(C)) ∩ Γ

⊆ offset(l, Π(I)) ∩ Γ (1)

⊆ offset(l, Π(I)) ∩ Γ ∩ {l + |I| : codeptr (⊥)} (2)

+⊂ {l : codeptr (φ)} (3)

Step (1) uses the model for C `d I; step (2) uses the lemma that {l : codeptr (⊥)} = >;

step (3) uses the model for Γ; l `i {φ} I {⊥}. �

133

7.3.4 Instruction wellformedness

To prove that an instruction is wellformed we must show that it respects the typing

hints given by Γ. That is, given the assumption location l has an instruction given

by instr(Γ, φ1, φ2), we should prove i) that Γ(l) is codeptr (φ′) such that φ′ ⊆ φ1.

This ensures that the environment at l satisfied all the preconditions for safely

executing the instruction at location l. Furthermore, we should prove ii) that

the postcondition φ2 should satisfy all the requirements for the next instruction at

location l+4. This is expressed as φ2 ⊆ φ′′. In the indexed model, we wish to assert

that at location l, the type constraint φ1 should hold for one index higher than the

constraint φ2 at location l + 4 to account for the execution of one instruction at l.

We encode all these constraints and get the following model for `i :

`i
def
= λΓ, l, φ, I, φ′.

offset(l, Π(I))
︸ ︷︷ ︸

∩ Γ ∩ {l + |I| : codeptr (φ′)}
︸ ︷︷ ︸

+⊂ {l : codeptr (φ)}
︸ ︷︷ ︸

assumption condition(ii) condition(i)

With this model, the proof of rule ins becomes straightforward.

Theorem 6

φ ⊆ φ1 φ2 ⊆ φ′

Γ; l `i {φ} instr(Γ, φ1, φ2) {φ
′}

INS

Proof. By the semantic model `i, we have the assumptions

offset(l, Π(instr(Γ, φ1, φ2))) (1)

{l + 4 : codeptr (φ′)} (2)

134

By the hypotheses in the ins rule, we also have φ ⊆ φ1 and φ2 ⊆ φ′. Using the

definition of instruction subtyping, we have

offset(l, Π(instr(Γ, φ, φ′)))

Therefore, it is safe to execute one step at location l so that the resultant state

satisfies the type environment φ′. By (2), it is safe to execute k instructions from

the location l + 4. Therefore, k + 1 steps may be safely taken from location l,

thus completing the proof. Note that this proof remains the same in case the

instruction at l is a jump, since by assumption, the environment Γ is also satisfied

to approximation k. �

135

Chapter 8

Conclusion

The FPCC project aims to provide a PCC framework with the minimal-size TCB.

Implementing an FPCC framework requires a compiler that generates machine code

along with hints to prove safety of that code. In our framework, these hints are pro-

vided through a typed assembly language (LTAL) program. The type annotations

in the LTAL program are used as hints by the safety prover and it uses the typ-

ing rules for LTAL to prove the safety of the machine code. To get a foundational

safety proof, each of these rules must be given a semantic basis. In this thesis, I have

shown how to provide semantic bases for some of the aspects of the FPCC Infras-

tructure project through the Typed Machine Language. More importantly, TML

has provided us with an interface between the certifying compiler and the safety

prover. A client of TML such as LTAL is able to use TML as a syntactic calculus

without having to deal with the complex underlying semantic model. TML extends

the semantic models due to Appel and Felty [10] and Appel and McAllester [11],

and provides semantics for types, type environments, and typed instructions. I have

also described a kinding system that gives semantic models for a first-order kinding

136

system required for the types used by TML. Finally, I have described a semantic

program-safety-proof technique used in the FPCC framework, which allows TML

to be used as an interface between the program safety prover and other parts of the

FPCC framework such as the LTAL compiler. There is more work to be done in

this area, and I shall outline some of the interesting directions for future work.

8.1 Models for more language features

The type constructors described in earlier chapters are sufficient to encode core ML.

However, the encoding of our semantic models in Twelf is not sufficiently powerful

to be able to encode features such as classes, which is essential for compiling modern

object-oriented languages such as Java. There has been some recent work related

to encoding of classes in low-level types by League et al. [33] that uses higher-order

and row kinds [53] to be able to encode inheritance. Incorporating the ML module

system into the FPCC semantic framework would also require us to have higher-

order kinds. Adding semantic models for more expressive kinds therefore seems to

be essential to be able to compile languages that support such features.

As seen in Chapter 4, LTAL also has some type constructors that are given se-

mantic models directly in terms of higher-order logic predicates rather than through

a composition of TML type constructors. Having TML constructors for these types

would allow us to make TML an even more well-defined interface between LTAL

and the program safety prover.

137

8.2 Flexibility of models and proof techniques

Our current definition of safety is type safety. There are many other notions of

safety such as bounded resource usage. Our current definitions for types and safety

proof techniques are closely related to the notion of safety. Changing the definitions

to cater to different safety requirements seems to be difficult. I would like to ex-

plore how semantic frameworks such as FPCC could be parameterised over different

notions of safety, which would allow easy extensions and combinations of different

safety policies.

8.3 Scaling implementation to a realistic system

The current implementation is still under progress, and there are many details that

remain to be implemented, especially the proofs discussed in Chapters 6 and 7.

The rules and definitions that are discussed in this thesis are targetted for a FPCC

system for core ML source programs. For FPCC to be truly useful, the TML type

and instruction definitions and rules would have to be scaled up to account for the

constructs used in other languages as well as the complex optimisations that are

performed by modern compilers. This would allow us to discover shortcomings in the

current system and would also present us with new interesting research questions.

138

Appendix A

Twelf encoding of higher-order

logic and related lemmas

The encoding of higher-order logic that is a part of the FPCC trusted computing

base is listed below. The listing below uses an encoding with implicit parameters.

This requires trusting the Twelf type reconstruction and unification algorithm which

increases the size of the TCB. In order to reduce this size, the actual implementation

has a trusted layer of all definitions with explicit parameters. On top of this layer,

the FPCC system has an untrusted layer of implicit definitions that look similar to

the ones listed below. This layering is described in detail by Appel et al. [12]. For

simplicity of presentation, the explicit encoding is not listed.

139

tp : type.

tm : tp -> type.

form : tp.

num : tp.

arrow : tp -> tp -> tp. %infix right 14 arrow.

pf : tm form -> type.

lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).

@ : tm (T1 arrow T2) -> tm T1 -> tm T2. %infix left 20 @.

forall : (tm T -> tm form) -> tm form.

imp : tm form -> tm form -> tm form. %infix right 10 imp.

beta_e : {P : tm T2 -> tm form}

pf (P (lam (F : tm T1 -> tm T2) @ X)) -> pf (P (F X)).

beta_i : {P : tm T2 -> tm form}

pf (P (F X)) -> pf (P (lam (F : tm T1 -> tm T2) @ X)).

imp_i : (pf A -> pf B) -> pf (A imp B).

imp_e : pf (A imp B) -> pf A -> pf B.

forall_i : ({X:tm T}pf (A X)) -> pf (forall A).

forall_e : pf(forall A) -> {X : tm T} pf (A X).

and : tm form -> tm form -> tm form =

[A : tm form][B : tm form]

forall [c : tm form] (A imp B imp c) imp c.

%infix right 12 and.

or : tm form -> tm form -> tm form =

[A : tm form][B : tm form]

forall [c : tm form] (A imp c) imp (B imp c) imp c.

%infix right 11 or.

exists : (tm T -> tm form) -> tm form =

[F] forall [b] (forall [x] F x imp b) imp b.

eq : tm T -> tm T -> tm form =

[A : tm T][B : tm T] forall [p] p @ B imp p @ A.

false : tm form =

forall [a : tm form] a.

not : tm form -> tm form =

[A : tm form] A imp false.

true : tm form =

not false.

140

and_i : pf A -> pf B -> pf (A and B) =

[P1][P2] forall_i [C] imp_i [P3]

imp_e (imp_e P3 P1) P2.

and_e1 : pf (A and B) -> pf A =

[P1] imp_e (forall_e P1 A) (imp_i [P2] imp_i [P3] P2).

and_e2 : pf (A and B) -> pf B =

[P1] imp_e (forall_e P1 B) (imp_i [P2] imp_i [P3] P3).

or_i1 : pf A -> pf (A or B) =

[P] forall_i [C] imp_i [P1] imp_i [P2] imp_e P1 P.

or_i2 : pf B -> pf (A or B) =

[P] forall_i [C] imp_i [P1] imp_i [P2] imp_e P2 P.

or_e : pf (A or B) -> (pf A -> pf C) -> (pf B -> pf C) ->

pf C =

[P1][P2][P3] imp_e (imp_e (forall_e P1 C) (imp_i P2))

(imp_i P3).

false_e : pf false -> pf A =

[P: pf (forall [A] A)] forall_e P A.

or_e1 : pf (A or B) -> pf (not B) -> pf A =

[p1: pf (A or B)] [p2: pf (not B)]

or_e p1 ([p3: pf A] p3) ([p4: pf B] false_e

(imp_e p2 p4)).

or_e2 : pf (A or B) -> pf (not A) -> pf B =

[p1: pf (A or B)] [p2: pf (not A)]

or_e p1 ([p3: pf A] false_e (imp_e p2 p3))

([p4: pf B] p4).

exists_i : {X : tm T}pf ((A : tm T -> tm form) X) ->

pf (exists A) =

[X : tm T][P1 : pf (A X)]

forall_i [B : tm form]

imp_i [P2 : pf (forall [X] A X imp B)]

imp_e (forall_e P2 X) P1.

141

exists_e : pf (exists A) -> ({X:tm T} pf (A X) -> pf B) ->

pf B =

[P1: pf (forall [B] (forall [X] A X imp B) imp B)]

[P2: ({X:tm T} pf (A X) -> pf B)]

imp_e (forall_e P1 B)

(forall_i [X] imp_i [P3: pf (A X)] P2 X P3).

not_i : (pf A -> pf false) -> pf (not A) =

[FQ] (imp_i ([Z] (FQ Z))).

not_e : pf (not A) -> pf A -> pf false = imp_e.

beta : pf (eq ((lam F) @ X) (F X)) =

forall_i [G]

imp_i [P1: pf (G @ (F X))]

beta_i ([C] G @ C) P1.

congr : {H: tm T -> tm form} pf (eq X Z) -> pf (H Z) ->

pf (H X) =

[H] [P1: pf (eq X Z)][P2: pf (H Z)]

beta_e ([C] C) (imp_e (forall_e P1 (lam H))

(beta_i ([C] C) P2)).

refl : pf (eq X X) =

forall_i [A] imp_i [P] P.

symm : pf (eq X Y) -> pf (eq Y X) =

[q] (congr ([z] (eq Y z)) q refl).

gdef_i : pf (eq X Z) -> {Pattern: tm T -> tm form}

pf (Pattern Z) -> pf (Pattern X) =

[Name][Pattern] congr Pattern Name.

gdef_e : pf (eq X Z) -> {Pattern: tm T -> tm form}

pf (Pattern X) -> pf (Pattern Z) =

[Name][Pattern] (congr Pattern (symm Name)).

def_i : pf (eq X Z) -> pf Z -> pf X = [Name] gdef_i Name ([A]A).

def_e : pf (eq X Z) -> pf X -> pf Z = [Name] gdef_e Name ([A]A).

defarg1 : pf (eq (lam B @ X) (B X)) =

congr ([S] eq S (B X)) beta refl.

142

def1_i : pf (B X) -> pf (lam B @ X) = def_i defarg1.

def1_e : pf (lam B @ X) -> pf (B X) = def_e defarg1.

lam2 : (tm A -> tm B -> tm C) -> tm (A arrow B arrow C) =

[f] lam [x] lam (f x).

defarg2 : pf (eq (lam2 B @ Y @ Z) (B Y Z)) =

congr ([S] eq (S @ Z) (B Y Z)) beta

(congr ([S] eq S (B Y Z)) beta refl).

def2_i : pf (B X Y) -> pf (lam2 B @ X @ Y) = def_i defarg2.

def2_e : pf (lam2 B @ X @ Y) -> pf (B X Y) = def_e defarg2.

lam3 : (tm A -> tm B -> tm C -> tm D) ->

tm (A arrow B arrow C arrow D) =

[f] lam [x] lam2 (f x).

defarg3 : pf (eq (lam3 B @ X @ Y @ Z) (B X Y Z)) =

congr ([s] eq (s @ Y @ Z) (B X Y Z)) defarg1 defarg2.

def3_i : pf (B X Y Z) -> pf (lam3 B @ X @ Y @ Z) = def_i defarg3.

def3_e : pf (lam3 B @ X @ Y @ Z) -> pf (B X Y Z) = def_e defarg3.

lam4 : (tm A -> tm B -> tm C -> tm D -> E) ->

tm (A arrow B arrow C arrow D arrow E) =

[f] lam [x] lam3 (f x).

defarg4 : pf (eq (lam4 B @ W @ X @ Y @ Z) (B W X Y Z)) =

congr ([s] eq (s @ Y @ Z) (B W X Y Z)) defarg2 defarg2.

def4_i : pf (B W X Y Z) -> pf (lam4 B @ W @ X @ Y @ Z) =

def_i defarg4.

def4_e : pf (lam4 B @ W @ X @ Y @ Z) -> pf (B W X Y Z) =

def_e defarg4.

memory : tp = (num arrow num).

readable : tm (memory arrow num arrow form).

143

Appendix B

Type and typing rule

representations in Twelf

% type definitions

int_type = lam[m] lam[v] true.

bool_type = lam[m] lam[v] (eq v zero) or (eq v one).

box_type = lam[tau]

lam[m] lam[v] readable @ m @ v and tau @ m @ v.

pair_type = lam[tau1] lam[tau2]

lam[m] lam[v] box_type @ tau_1 @ m @ v

and box_type @ tau_2 @ m @ (succ v).

% typing rules

pair_i : pf (box_type @ Tau_1 @ M @ V) ->

pf (box_type @ Tau_2 @ M @ (succ V)) ->

144

pf (pair_type @ Tau_1 @ Tau_2 @ M @ V)

= [p1][p2] def4_i (and_i p1 p2).

box_i : pf (readable @ M @ V) ->

pf (Tau @ M @ (M @ V)) ->

pf (box_type @ Tau @ M @ V)

= [p1][p2] def3_i (and_i p1 p2).

145

Bibliography

[1] The Great Internet Mersenne Prime Search.
http://www.mersenne.org/prime.htm.

[2] Security Focus software vulnerabilities database.
http://www.securityfocus.com/bid.

[3] Computer incident advisory capability information bulletin.
http://www.ciac.org/ciac/bulletins/l-062.shtml, Mar. 2003. web page
fetched Tue Mar 4 2003.

[4] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions.
In Seventeenth Annual ACM Symp. on Principles of Prog. Languages, pages
31–46. ACM Press, Jan 1990.

[5] M. Abadi, B. C. Pierce, and G. D. Plotkin. Faithful ideal models for recursive
polymorphic types. International Journal of Foundations of Computer Science,
2(1):1–21, 1991.

[6] A. Ahmed, A. W. Appel, and R. Virga. A stratified semantics of general
references embeddable in higher-order logic. Jan. 2002. Proceedings of 17th
IEEE Symposium on Logic in Computer Science LICS 2002.

[7] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: an experiment in public-resource computing. Communications
of the ACM, 45(11):56–61, 2002.

[8] A. W. Appel. Compiling with Continuations. Cambridge University Press,
Cambridge, England, 1992.

[9] A. W. Appel. Foundational proof-carrying code. In Symposium on Logic in
Computer Science (LICS ’01), pages 247–258. IEEE, June 2001.

146

[10] A. W. Appel and A. P. Felty. A semantic model of types and machine in-
structions for proof-carrying code. In POPL ’00: The 27th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 243–253.
ACM Press, Jan. 2000.

[11] A. W. Appel and D. McAllester. An indexed model of recursive types for
foundational proof-carrying code. ACM Trans. on Programming Languages
and Systems, 23(5):657–683, Sept. 2001.

[12] A. W. Appel, N. G. Michael, A. Stump, and R. Virga. A trustworthy proof
checker. In Foundations of Computer Security - FCS 2002 Copenhagen, Den-
mark, July 2002.

[13] A. W. Appel and D. C. Wang. JVM TCB: Measurements of the Trusted Com-
puting Base of Java Virtual Machines. Technical Report TR-647-02, Princeton
University, Apr. 2002.

[14] L. Bauer, J. Ligatti, and D. Walker. A calculus for composing security policies.
Technical Report TR-655-02, Princeton University, Aug. 2002.

[15] L. Bauer, J. Ligatti, and D. Walker. More enforceable security policies. In In
Foundations of Computer Security ’02 (associated with LICS ’02), Copenhagen,
Denmark, July 2002.

[16] L. Cardelli. Type systems. In A. B. Tucker, editor, The Computer Science and
Engineering Handbook, Boca Raton, FL, 1997. CRC Press.

[17] J. Chen, A. Appel, D. Wu, and H. Fang. A provably sound TAL for back-
end optimization. In Proceedings of the 2003 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’03). ACM Press,
June 2003.

[18] C. Colby, P. Lee, G. C. Necula, F. Blau, K. Cline, and M. Plesko. A certifying
compiler for Java. In Proceedings of the 2000 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’00). ACM Press,
June 2000.

[19] C. Colby, P. Lee, G. C. Necula, F. Blau, M. Plesko, and K. Cline. A certifying
compiler for Java. ACM SIGPLAN Notices, 35(5):95–107, 2000.

[20] T. Coquand and G. Huet. The calculus of constructions. Information and
Computation, 76(2/3):95–120, February/March 1988.

[21] A. de Bruin. Goto statements: Semantics and deduction systems. Acta Infor-
matica, (15):385–424, 1981.

147

[22] S. Drossopoulou and S. Eisenbach. Java is type safe — probably. Lecture Notes
in Computer Science, 1241, 1997.

[23] S. Drossopoulou and S. Eisenbach. Towards an Operations Semantics and Proof
of Type Soundness for Java. Springer-Verlag, Berlin Germany, 1998.

[24] S. Drossopoulou, S. Eisenbach, and S. Khurshid. Is the java type system sound?
Theory and Practice of Object Systems, 5(1):3–24, 1999.

[25] S. Drossopoulou, T. Valkevych, and S. Eisenbach. Java type soundness revis-
ited.

[26] D. Evans and A. Twyman. Flexible policy-directed code safety. In 1999 IEEE
Symposium on Security and Privacy Oakland, California, May 1999.

[27] D. Gollmann. Computer Security. Worldwide Series in Computer Science. John
Wiley & Sons Ltd., 1998.

[28] N. A. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach
to foundational proof-carrying code. In Proceedings of 17th IEEE Symposium
on Logic in Computer Science LICS 2002, jan 2002.

[29] A. Igarashi, B. Pierce, and P. Wadler. Featherweight java: A minimal core
calculus for java and gj. In L. Meissner, editor, Proceedings of the 1999 ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages
& Applications (OOPSLA‘99), volume 34(10), pages 132–146, N. Y., 1999.

[30] Java object serialization specification—JDK 1.2.
ftp://ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.ps, Nov. 1998.

[31] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky.
SETI@home : Massively distributed computing for SETI. In IEEE Computing
in Science and Engineering, volume 3, pages 78–83, Jan. 2001.

[32] L. Lamport. Proving the correctness of multiprocess programs. In IEEE Trans-
actions on Software Engineering SE-3 (March) 125-143, Mar. 1977.

[33] C. League, Z. Shao, and V. Trifonov. Encoding Java classes in a typed inter-
mediate language. Unpublished FLINT Memo, September 1998.

[34] C. League, Z. Shao, and V. Trifonov. Precision in practice: A type-preserving
Java compiler. Technical Report YALEU/DCS/TR-1223, Dept. of Computer
Science, Yale University, New Haven, CT, Mar. 2002.

148

[35] lfar Erlingsson and F. B. Schneider. Sasi enforcement of security policies: A
retrospective. Sept. 1999.

[36] D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive poly-
mophic types. Information and Computation, 71(1/2):95–130, 1986.

[37] N. G. Michael and A. W. Appel. Machine instruction syntax and semantics in
higher-order logic. In 17th International Conference on Automated Deduction,
June 2000.

[38] R. Milner and M. Tofte. Commentary on Standard ML. MIT Press, Cambridge,
Massachusetts, 1991.

[39] J. C. Mitchell and R. Viswanathan. Effective models of polymorphism, subtyp-
ing and recursion. In 23rd International Colloquium on Automata, Languages,
and Programming. Springer-Verlag, 1996.

[40] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith,
D. Walker, S. Weirich, and S. Zdancewic. TALx86: A realistic typed assembly
language. 1999.

[41] G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. In POPL ’98: 25th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 85–97. ACM Press,
Jan. 1998.

[42] G. Nadathur. An explicit substitution notation in a lambdaProlog implemen-
tation. http://www.cs.uchicago.edu/~gopalan, Dec. 1997.

[43] G. Necula. Proof-carrying code. In 24th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 106–119, New York, Jan. 1997.
ACM Press.

[44] G. C. Necula. Compiling with Proofs. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, Sept. 1998.

[45] G. C. Necula and P. Lee. The design and implementation of a certifying com-
piler. In Proceedings of the 1998 ACM SIGPLAN Conference on Prgramming
Language Design and Implementation (PLDI), pages 333–344, 1998.

[46] G. C. Necula, S. McPeak, and W. Weimer. CCured: type-safe retrofitting of
legacy code. In Symposium on Principles of Programming Languages, pages
128–139, 2002.

149

[47] G. C. Necula and R. R. Schneck. Proof-carrying code with untrusted proof
rules. In The 2nd International Software Security Symposium, Nov. 2002.

[48] J. Palsberg and P. O’Keefe. A type system equivalent to flow analysis. ACM
Transactions on Programming Languages and Systems, 17(4):576–599, July
1995.

[49] J. Palsberg and C. Pavlopoulou. From polyvariant flow information to inter-
section and union types. In Conference Record of POPL 98: The 25TH ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, New York, pages, 1998.

[50] M. Parashar, editor. Grid Computing - GRID 2002, Third International Work-
shop, Baltimore, MD, USA, November 18, 2002, Proceedings, volume 2536 of
Lecture Notes in Computer Science. Springer, 2002.

[51] C. Paulin-Mohring. Inductive definitions in the system Coq; rules and proper-
ties. In M. Bezem and J. F. Groote, editors, Proceedings of the International
Conference on Typed Lambda Calculi and Applications, volume 664, pages 328–
345. Springer Verlag Lecture Notes in Computer Science, 1993.

[52] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In The 16th International Conference on
Automated Deduction. Springer-Verlag, July 1999.

[53] D. Rémy. Syntactic theories and the algebra of record terms. Research Re-
port 1869, Institut National de Recherche en Informatique et Automatisme,
Rocquencourt, BP 105, 78 153 Le Chesnay Cedex, France, 1993.

[54] R. R. Schneck and G. C. Necula. A gradual approach to a more trustwor-
thy, yet scalable, proof-carrying code. In Conference on Automated Deduction
(CADE’02) Copenhagen, July 2002.

[55] F. B. Schneider. Enforceable security policies. ACM Transactions on Informa-
tion and System Security, 3(1), Feb. 2000.

[56] D. S. Scott and C. Strachey. Towards a mathematical semantics for computer
languages. In Proc. Symp. Computers and Automata, pages 19–46, Brooklyn,
New York, 1971. Polytechnic Press.

[57] Z. Shao. An overview of the FLINT/ML compiler. In Proc. 1997 ACM SIG-
PLAN Workshop on Types in Compilation, June 1997.

[58] D. Syme. Proving java type soundness. Technical Report 427, University of
Cambridge Computer Science Laboratory, June 1997.

150

[59] D. Tarditi. Design and Implementation of Code Optimizations for a Type-
Directed Compiler for Standard ML. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, 1997.

[60] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. In Proc. ACM SIGPLAN ’96
Conference on Programming Language Design and Implementation, pages 181–
192, 1996.

[61] M. VanInwegen. The Machine-Assisted Proof of Programming Language Prop-
erties. PhD thesis, University of Pennsylvania, 1996. MS-CIS-96-31.

[62] J. Viega and G. McGraw. Building Secure Software. Professional Computing
Series. Addison Wesley, 2002.

[63] R. Viswanathan. Recursion Theoretic Semantics, Fully Abstract Term Models,
and Imperative Constructs. PhD thesis, Stanford University, 1995.

[64] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient software-based
fault isolation. In Proc. 14th ACM Symposium on Operating System Principles,
pages 203–216, New York, 1993. ACM Press.

[65] D. C. Wang and A. W. Appel. Type-preserving garbage collectors. In POPL
2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 166–178. ACM Press, Jan. 2001.

[66] T. J. Wilkinson. Kaffe–a virtual machine to compile and interpret java byte-
codes.

151

