
NEW TECHNIQUES FORPROBABILISTICALLY

CHECKABLE PROOFS ANDINAPPROXIMABILITY

RESULTS

SUBHASH KHOT

A DISSERTATION

PRESENTED TO THEFACULTY

OF PRINCETON UNIVERSITY

IN CANDIDACY FOR THE DEGREE

OF DOCTOR OFPHILOSOPHY

RECOMMENDED FORACCEPTANCE

BY THE DEPARTMENT OF

COMPUTER SCIENCE

NOVEMBER 2003



c© Copyright by Subhash Khot, 2003. All rights reserved.



Abstract

Certain NP-hard problems like Clique and MAX-3SAT have resisted all attempts to

find non-trivial approximation. Is there any inherent reason for the apparent inapprox-

imability of these problems ? The discovery of PCP Theorem and subsequent research

have shown that for Clique and MAX-3SAT, any non-trivial approximation is as hard as

finding the exact solution !

In this work, we continue this line of research and show inapproximability of many

fundamental NP-hard problems. These include (Hyper-)Graph Coloring, Shortest Vector

Problem (SVP) in lattices, Hypergraph Vertex Cover, Clique and Chromatic Number of

graphs, and some results based on the Unique Games Conjecture (UGC) that we propose.

Specifically, we show that :

(Hyper-)Graph Coloring : It is hard to color (i)k-colorable graphs withkΩ(log k) colors,

(ii) 3-colorable3-uniform hypergraphs with(log log n)Ω(1) colors, and (iii)k-colorable4-

uniform hypergraphs with(log n)Ω(k) colors.

SVP : For all large enoughp, it is hard to find the shortest nonzero vector in ann-

dimensional lattice underLp norm within factorp1−o(1).

Hypergraph Vertex Cover : The vertex cover ink-uniform hypergraphs is hard to

approximate within factork − 1− o(1) for everyk ≥ 3.

Clique and Chromatic Number of Graphs : Both these problems are hard to approxi-

mate within factor n
2(logn)γ for some constantγ < 1.

Consequences of UGC : We propose a conjecture about certain 2-Prover-1-Round

games and show that it implies any constant factor hardness for Min-2SAT-Deletion and

factork − o(1) hardness for vertex cover ink-uniform hypergraphs for everyk ≥ 2.

We use the powerful machinery of Probabilistically Checkable Proofs and introduce

many new techniques for constructing and analyzing PCPs.

iii



Acknowledgments

I am forever indebted to my advisor Sanjeev Arora for shaping every aspect of my

academic life. He has always helped me make right decisions : to join Princeton, to pick

my research area, and finally to leave gradschool and move on. He made persistent efforts

to improve my writing and presentation skills, and I am to blame for his failure, if any.

I am most thankful to Andy Yao, Johan H˚astad and Venkatesan Guruswami for guid-

ing my research in correct direction. Andy got me interested in complexity; he is the

best teacher I have seen. Johan and Venkat have been a constant source of new problems,

ideas, and encouragement. Most of my work was done when Johan was at IAS and the

year after when Venkat was at Berkeley.

I am grateful to everybody who has contributed to the awesome research environment

at Princeton : faculty, graduate students, and visitors at Princeton, IAS, NEC, Rutgers,

and DIMACS. Thanks to everybody in Berkeley for the wonderful year I spent there and

everybody at IBM, Almaden for an enjoyable summer.

My research wouldn’t have been possible but for my co-authors : Sanjeev, Johan,

Venkat, Irit Dinur, Oded Regev, Jonas Holmerin, Amit Chakrabarti, Yaoyun Shi, Ravi

Kumar, Jayram Thathachar, Yuval Rabani, Xiaodong Sun, and Venkatesh Raman. I thank

them all for patiently listening to my random ideas and suggesting ideas that actually

work.

Many more people have directly or indirectly influenced my research. At the risk of

leaving out many of them, I acknowledge Bernard Chazelle, Amit Sahai, Moses Charikar,

D. Sivakumar, Ziv Bar-Yosef, S. Venkatesh, Satya Lokam, Ding Liu, Manoj Prabhakaran,

Kunal Talwar, Robi Krauthgamer, and Eran Halperin. I owe a great deal to those who

have instilled in me love for mathematics and problem solving. These include my under-

iv



graduate advisor Sundar Vishwanathan and faculty members at IIT-Bombay, IMSc, and

the IMO Training Program.

I would like to take this opportunity to thank all my friends, who met me at different

junctures of my life and became an inseparable part of it. Words would fall short to thank

my teacher Gogate Sir; he is responsible for moulding my highschool years and continues

to provide guidance and inspiration. Finally, my mom and my brother Amol, they mean

everything to me ...

Subhash Khot

I gratefully acknowledge Sanjeev Arora’s NSF Awards 0205594, CCR 0098180 and

David and Lucile Packard Fellowship. I also acknowledge Wu Fellowship of Princeton

University and IBM PhD Fellowship.

v



To the memories of my beloved father ...

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Approximability of NP-hard Problems . . . .. . . . . . . . . . . . . . . 1

1.2 Work in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Organization of Thesis .. . . . . . . . . . . . . . . . . . . . . . 10

1.3 The PCP Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Research Leading to PCP Theorem . . . . . . . . . . . . . . . . . . . . . 15

1.5 Progress after PCP Theorem . . . . . . . . . . . . . . . . . . . . . . . . 15

2 A Framework for Building PCPs 20

2.1 Plan for Building3-Bit PCP . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 The 2-Prover 1-Round Game . .. . . . . . . . . . . . . . . . . . . . . . 24

2.3 The Label Cover Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Long Codes and Fourier Analysis . . . . . . . . . . . . . . . . . . . . . 28

2.5 Håstad’s 3-Bit PCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Completeness . . . . . .. . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Soundness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 A General Approach to PCP Design . . . . . . . . . . . . . . . . . . . . 37

vii



2.7 Techniques in this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 A Query Efficient PCP and Hardness of Graph Coloring 43

3.1 Definitions, Results and Techniques . . . . . . . . . . . . . . . . . . . . 44

3.2 Basic test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 The Iterated Test (Almost Disjoint Sets Test) . . . . . . . . . . . . . . . . 54

3.4 Hardness of Graph Coloring . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 The FGLSS Graph . . .. . . . . . . . . . . . . . . . . . . . . . 59

3.4.2 Randomized Label Cover. . . . . . . . . . . . . . . . . . . . . . 61

3.4.3 Pruning FGLSS Graph and Proof of Theorem 3.1.1 . . . .. . . . 62

4 Hardness of Coloring3-Uniform Hypergraphs 65

4.1 Definitions, Results and Techniques . . . . . . . . . . . . . . . . . . . . 66

4.2 Constructing Multi-layered Smooth Label Cover . .. . . . . . . . . . . 73

4.2.1 Achieving Smoothness Property . . .. . . . . . . . . . . . . . . 73

4.2.2 Definition of Multi-layered Label Cover Problem . . . . .. . . . 75

4.2.3 The Main Construction .. . . . . . . . . . . . . . . . . . . . . . 78

4.3 Long Codes overZk and Fourier Analysis . . . . . . . . . . . . . . . . . 81

4.4 Hardness of3-Uniform Hypergraph Coloring . . . . . . . . . . . . . . . 83

4.4.1 Soundness of PCP . . .. . . . . . . . . . . . . . . . . . . . . . 84

4.5 Hardness of the Problem NAE3,k . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Soundness of PCP . . .. . . . . . . . . . . . . . . . . . . . . . 91

5 Hardness of Coloring4-Uniform Hypergraphs 96

5.1 Results and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Preliminaries . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

viii



5.2.1 Split Label Cover Problem . . . . . .. . . . . . . . . . . . . . . 99

5.2.2 The Split Code . . . . .. . . . . . . . . . . . . . . . . . . . . . 100

5.2.3 Fourier Analysis of Split Codes . . .. . . . . . . . . . . . . . . 101

5.2.4 Equality Folding of Split Codes . . .. . . . . . . . . . . . . . . 102

5.3 The PCP Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Soundness Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Proofs of Lemmas 5.4.3, 5.4.4 and Theorem 5.1.1 . .. . . . . . . . . . . 112

6 Hardness of Shortest Vector Problem in HighLp Norms 115

6.1 Result and History of the Problem . . . . . . . . . . . . . . . . . . . . . 116

6.2 Problem Definition and Techniques . . . . . .. . . . . . . . . . . . . . . 119

6.3 The Basic Idea in the Reduction . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Full Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.5 Soundness of the Reduction . . .. . . . . . . . . . . . . . . . . . . . . . 129

7 Hardness of Vertex Cover ink-Uniform Hypergraphs 135

7.1 Results and Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.2 Biased Long Code and Intersecting Families .. . . . . . . . . . . . . . . 142

7.3 The Hypergraph Construction . . . . . . . . . . . . . . . . . . . . . . . 144

7.4 Soundness of the Construction .. . . . . . . . . . . . . . . . . . . . . . 147

8 Unique Games Conjecture and its Consequences 151

8.1 Conjecture, its Motivation and Results . . . . . . . . . . . . . . . . . . . 152

8.2 Unique Label Cover Problem . . . . . . . . . . . . . . . . . . . . . . . . 155

8.3 Hardness of Max-2-Lin-2 . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.3.1 Bourgain’s Theorem and Soundness Analysis. . . . . . . . . . . 159

ix



8.4 Proof of Theorem 8.1.2 . . . . .. . . . . . . . . . . . . . . . . . . . . . 163

8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9 Hardness of Vertex Cover Based on Unique Games Conjecture 172

9.1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.2 Constructing the Strong Label Cover . . . . . . . . . . . . . . . . . . . . 174

9.3 Tools from Sensitivity Analysis of Boolean Functions . . . . . . . . . . . 180

9.3.1 Friedgut’s ‘Core’ Theorem . . . . . .. . . . . . . . . . . . . . . 181

9.4 Reduction to Vertex Cover ink-Uniform Hypergraphs . . . . . . . . . . . 184

9.4.1 Construction of the Hypergraph . . .. . . . . . . . . . . . . . . 185

9.4.2 Soundness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.4.3 Proof of Lemma 9.4.1 .. . . . . . . . . . . . . . . . . . . . . . 189

10 Hardness of Clique and Chromatic Number 193

10.1 Results and Techniques . . . . .. . . . . . . . . . . . . . . . . . . . . . 194

10.2 Preliminaries . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

10.2.1 The Raz Verifier . . . .. . . . . . . . . . . . . . . . . . . . . . 199

10.2.2 Fourier Analysis . . . .. . . . . . . . . . . . . . . . . . . . . . 200

10.2.3 Hadamard Codes, their Decoding and Folding . . . . . .. . . . 201

10.3 The Main PCP Construction and Analysis . .. . . . . . . . . . . . . . . 203

10.4 Improved Inapproximability Result for MaxClique .. . . . . . . . . . . 210

10.5 Randomized PCPs and Chromatic Number .. . . . . . . . . . . . . . . 212

10.6 Randomized PCP for Coverable Max-3-Lin-2(ε) . . . . . . . . . . . . . 215

10.6.1 Improved Inapproximability Result for Chromatic Number. . . . 217

10.7 Proof of Theorem 10.5.4 . . . .. . . . . . . . . . . . . . . . . . . . . . 218

x



11 Conclusion 222

11.1 Open Problems . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

11.2 Future Directions .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.2.1 Unique Games Conjecture . . . . . .. . . . . . . . . . . . . . . 225

11.2.2 Feige’s Hypothesis about Random 3SAT . .. . . . . . . . . . . 225

xi



List of Figures

1.1 PCP Verifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Overview of Håstad’s 3-Bit PCP . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Label Cover, Long Code and 3-Bit PCP . . . . . . . . . . . . . . . . . . 32

3.1 FGLSS Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Multi-layered Label Cover . . .. . . . . . . . . . . . . . . . . . . . . . 75

5.1 PCP for 4-Uniform Hypergraph Coloring . . . . . . . . . . . . . . . . . 105

xii



Chapter 1

Introduction

A central theme in complexity theory is lower bounds, i.e. results showing that certain

computational problems are provably hard to solve. Many such results are based on

complexity theoretic assumptions like P6= NP due to absence of unconditional lower

bounds in general computational models like Turing machine. This work focuses on one

specific class of lower bounds : we show that computing approximate solutions to certain

NP-complete problems is hard.

1.1 Approximability of NP-hard Problems

Many optimization problems of theoretical and practical interest are NP-hard to solve ex-

actly. Designing approximation algorithms is a popular and extensively studied approach

for dealing with NP-completeness. An approximation algorithm with ratioC > 1 is a

polynomial time (possibly randomized) algorithm that computes a solutionA(I) for ev-

ery problem instanceI such that (i)A(I) ≤ C ·OPT (I) for minimization problems and

(ii) A(I) ≥ OPT (I)
C

for maximization problems. HereOPT (I) denotes the value of the

1



optimum solution to the problem instance. We refer to a recent book of Vazirani [113]

for an excellent treatment of the field of approximation algorithms.

It turns out that different NP-hard problems behave very differently in terms of how

well they can be approximated. Let us look at three fundamental problems : MAX-3SAT,

Bin-Packing and Set Cover.

MAX-3SAT : Given a set ofn boolean variables and a set ofm 3CNF clauses (i.e.

clauses of typex∨y∨z), find a truth assignment to variables satisfying maximum number

of clauses. If one assigns TRUE or FALSE randomly and independently to every variable,

every clause is satisfied with probability7
8 . Thus a random assignment satisfies7

8 fraction

of the clauses in expected sense and it is easy to convert this to a deterministic algorithm

as well. Thus we get a trivial approximation algorithm with ratio8
7 .

Bin-Packing : Given a set of integers{xi}ni=1 and abin-sizeL, partition the set into

minimum number of setsS1, S2, . . . , St such that
∑

xi∈Sl xi ≤ L for 1 ≤ l ≤ t. Bin-

packing has an approximation algorithm with ratio1 + ε running in timenO(1/ε2) for

every ε > 0 (see [113, Chapter 9]). We say that Bin-Packing has aPolynomial Time

Approximation Schemeor PTAS, meaning1 + ε approximation for everyε. The running

time of the algorithm depends onε, but for every fixedε, the running time is polynomial.

Set Cover : Given a ground setX with |X| = n and a collection of subsetsS1, S2, . . . Sm

⊆ X with∪mi=1Si = X. The goal is to find a minimum size sub-collectionSi1, Si2 , . . . , Sit

such that∪tj=1Sij = X. A greedy algorithm with approximation ratiolnn is known, often

taught in a undergraduate class (see [113, Chapter 2]).

Thus MAX-3SAT has a constant factor approximation, Bin-Packing in fact has a

PTAS and for Set Cover the approximation ratio grows as a function of the input size.

In particular, we don’t know of any constant factor approximation for Set Cover. Is there

any inherent reason why these problems behave differently ? Is there a fundamental limi-

2



tation to designing better algorithms for MAX-3SAT and Set Cover or just that we haven’t

been clever enough to find the right algorithm ?

This was a natural and perplexing question, unresolved till early 90’s. Surprisingly,

the answer came via algebraic techniques developed in the study of interactive proofs.

The celebrated PCP Theorem (by Arora, Safra [13] and Arora, Lund, Motwani, Sudan,

Szegedy [12]) states that MAX-3SAT has no PTAS unless P = NP. In other words, MAX-

3SAT (and a bunch of other problems) has a threshold1 + ε0 such that approximating

the problem better than this threshold is as hard as solving it exactly ! Such results that

rule out the possibility of a good approximation algorithm are calledinapproximability

resultsor hardness results. The PCP Theorem has had tremendous impact on the theory

of inapproximability. For instance, subsequent work has shown that for MAX-3SAT and

Set Cover, the simple algorithms mentioned before are in fact optimal ! So8
7 and lnn

are tightapproximability thresholdsfor the respective problems.

PCP Theorem can be equivalently stated as a result on proof checking. The theorem

gives a way of specifying proofs for NP-statements such that the proofs can bespot-

checkedvery efficiently by a probabilistic verifier. The verifier uses a minimal amount

of randomness and reads only a constant number of bits from the proof ! The discov-

ery of the connection between proof checking and inapproximability results (by Feige,

Goldwasser, Lov́asz, Safra and Szegedy [38]) is one of the most exciting theoretical de-

velopments in the last decade. It demonstrates how complexity theoretic tools can be

used to answer questions arising from algorithm design.

3



1.2 Work in this Thesis

After the discovery of PCP Theorem, much research has focused on obtaining tight in-

approximability thresholds for NP-hard problems. The hardness results for MAX-3SAT

and Set Cover are excellent examples of the success of PCP techniques. In this thesis, we

continue this line of research and explore hardness of basic problems like Graph Color-

ing, Vertex Cover, Shortest Vector Problem, Clique and Chromatic Number.

(Hyper-)Graph Coloring

A graph is calledk-colorable if one can assign one color to every vertex of the graph using

at mostk colors, such that every edge has its endpoints colored with different colors. It

is well-known that3-Colorability of graphs is a NP-hard problem. Given a3-colorable

graph, how many colors does one need to find a valid coloring in polynomial time ? This

question is of great interest in combinatorics and computer science.

The best known algorithm ([70], [18]) colors3-colorable graphs with̃O(n3/14) colors.

The number of colors used is huge (polynomial in number of vertices), and even such a

modest guarantee relies on sophisticated combinatorics and semidefinite programming.

The hardness results are not satisfactory either : all we know is it is NP-hard to color3-

colorable graphs with4 colors [72] and for large enoughk, it is hard to colork-colorable

graphs withk3/2 colors [47]. In this thesis, we make a remarkable progress on this prob-

lem. We show that it is NP-hard to colork-colorable graphs withkΩ(log k) colors; the first

superpolynomial bound for this problem as a function ofk (Theorem 3.1.1). The result is

based on a PCP construction where the verifier is highly query-efficient and has perfect

completeness. The goal of this line of work would be to show NP-hardness of coloring

4



3-colorable graphs with any constant number of colors; such a result however seems out

of reach of the current techniques.

Given this state of affairs, it is natural to ask whether strong hardness results can

be shown for coloring hypergraphs. In aq-uniform hypergraph, every edge is a size-

q subset of vertices (thus graphs are2-uniform hypergraphs). A hypergraph is called

k-colorable if its vertices can be colored with at mostk colors so that every edge is

non-monochromatic, i.e. for every edge, not all its vertices get the same color. Forq-

uniform hypergraphs withq ≥ 3, even2-Colorability is NP-hard. Forq ≥ 3, k ≥ 2,

algorithms for coloringk-colorableq-uniform hypergraphs withnΩ(1) colors are known

(e.g. [81]). It came as a surprise when Guruswami, H˚astad, Sudan [55] were able to show

that it is hard to color2-colorable4-uniform hypergraphs withΩ( log logn
log log logn) colors. For

k-colorable4-uniform hypergraphs, we improve this bound to(log n)Ω(k) colors which

exceeds every poly(logn) function ask grows (Theorem 5.1.1). This gives an evidence

that for (hyper)graph coloring, the right answer might be super-polylogarithmic.

What happens for3-uniform hypergraphs ? Guruswami et al’s techniques do not

extend to3-uniform hypergraphs. We introduce a new technique calledMulti-layered

Smooth Label Cover(Theorem 4.2.4) and settle the3-uniform case. We show that it is

hard to color3-colorable3-uniform hypergraphs with(log log n)Ω(1) colors (Theorem

4.1.1). We also obtain new results for a variation of coloring problem where one is

required to use a fixed number of colors and maximize the number of non-monochromatic

edges. This question has been resolved for graphs and4-uniform hypergraphs whereas

we settle the3-uniform case (Theorem 4.1.3).

5



Shortest Vector Problem

An n-dimensional latticeL is a set of vectors{
∑n

i=1 aivi | ai ∈ Z}wherev1, v2, . . . , vn ∈

Rm is a set of independent vectors called the basis for the lattice. The same lattice could

have many bases. Given a basis for ann-dimensional lattice, the Shortest Vector Problem

asks for the shortest non-zero vector in the lattice. The length of the vectors can be

measured in anyLp norm (p ≥ 1) and the corresponding problem is denoted by SVPp.

SVP is one of the most beautiful problems with connections to worst-case to average-

case reduction, breaking and building cryptosystems (!), factoring rational polynomials

and numerous other areas in mathematics and computer science. We refer to Chapter 6

for the history and significance of this problem. A polynomial time algorithm achieving

2o(n)-approximation to SVP is known (the famous LLL Algorithm [87] and improvement

by [107]). This is a rather weak approximation guarantee and it is a major open ques-

tion whether a polynomial factor approximation exists. SVP∞ is long since known to

be NP-hard whereas forp < ∞, even NP-hardness wasn’t known until recently. In a

breakthrough result, Ajtai [2] showed NP-hardness of SVP2 and then Micciancio [96]

showed factor21/p − o(1) inapproximability result for SVPp. Both these results use a

randomized reduction and hold under assumption NP6⊆ BPP.

In this thesis, we show factorp1−o(1) hardness for SVPp for all sufficiently large values

of p (Theorem 6.1.1). Apart from the improved hardness factor, our reduction is much

simpler and direct, much moreelementary, and holds under the weaker assumption NP6⊆

ZPP. We believe that our ideas could be applicable in getting any constant factor hardness

in some fixedLp (maybe even inL2) norm.

6



Hypergraph Vertex Cover

Vertex Cover in a graph is a set of vertices that touches every edge in the graph. Finding

minimum vertex cover is a basic NP-hard problem. A greedy algorithm with approxima-

tion ratio2 is well-known and in spite of a great deal of efforts, no better approximation

is known. The problem is known to haveintegrality gapof 2 for a wide class of linear

programs (see [10]) suggesting that LP-based approach is unlikely to give a better ap-

proximation. It is believed (though some might disagree) that factor2 is indeed optimal.

Showing2− o(1) hardness for vertex cover is equivalent to a fundamental open question

regarding PCPs withzero free bitsand seems to be a first step towards Graph Coloring

problem. The best hardness known is1.36 due to Dinur and Safra [32] and the current

techniques seems to have stuck on this important problem.

Therefore it is natural to investigate the generalization of vertex cover tok-uniform

hypergraphs withk ≥ 3. A factor k approximation algorithm follows easily and no

better algorithm is known. Trevisan [111] showedk1/19 hardness for this problem and

Holmerin ([66], about the same time as our work) showedk1−o(1) hardness. In this thesis,

we show that vertex cover ink-uniform hypergraphs is hard to approximate within factor

k − 1− o(1) for everyk ≥ 3 (Theorem 7.1.1). The result is almost optimal.

Our reduction introduces a new technique called Multi-layered Label Cover (Theorem

4.2.4), also used in proving hardness of3-uniform hypergraph coloring. Vertex Cover on

k-uniform hypergraphs can be viewed as a special case of Set Cover. Our reduction has

an important feature not shared by Set Cover reductions known earlier, viz. in thebad

case, almost all sets are required to cover the universe. Our result has subsequently been

used in showing optimalΩ(log∗ n) hardness for Asymmetrick-Center Problem [26].

7



Unique Games Conjecture and its Consequences

Though we make significant progress on Coloring and Vertex Cover for hypergraphs, we

seem to be stuck on these problems for graphs. Towards the end of this thesis, we set

out to investigate the limitations of current techniques and possible directions for future

research.

We propose a conjecture about certain 2-Prover-1-Round games (Conjecture 8.1.1)

and show that it implies any constant factor hardness for Min-2SAT-Deletion and factor

k − o(1) hardness for vertex cover ink-uniform hypergraphs for everyk ≥ 2 (Theorems

8.3.1 and 9.0.2 respectively). In particular, the conjecture would settle the Vertex Cover

problem on graphs and therefore, also take an important step towards Graph Coloring

problem. The conjecture can be motivated as follows. We are given a system of linear

equations modp wherep is a constant, every equation contains two variables and there

exists an assignment that satisfies almost all equations. Is it possible to find, in poly-

nomial time, an assignment that satisfiesδ fraction of equations whereδ is a constant

independent ofp ? Intuitively, the answer should be NO and roughly speaking, that is

what the conjecture is all about.

A typical PCP verifier is constructed by composition of two verifiers, an Outer Verifier

and an Inner Verifier. The outer verifier is essentially a 2P1R game. The Unique Games

Conjecture states existence of a new outer verifier. It can be used in conjunction with an

appropriate inner verifier to prove desired hardness results.

We also present a semidefinite programming based algorithm (Theorem 8.1.2) that

sheds some light on the truth of this conjecture. We believe that research directed towards

resolving our conjecture would be very fruitful.

8



Clique and Chromatic Number of Graphs

A clique in a graph is a set of vertices such that all of them are pairwise connected by

an edge. Finding maximum clique size in a graph is a fundamental NP-hard problem.

An approximation algorithm with ration is trivial : just output one vertex as a clique.

The best known algorithm does only slightly better, achieving a ratio ofO( n
log2 n

) [21]. A

polynomial time computable function called Lovászθ-function was conjectured to give
√
n approximation to MaxClique. This was disproved by Feige [36] who showed thatθ-

function has approximation ratio as bad asn
2O(
√

logn) . In a breakthrough result, H˚astad [59]

in fact showed that for anyε > 0, approximating MaxClique within factorn1−ε is hard

unless NP = ZPP. Hardness results for MaxClique are equivalent to constructing PCPs

with so-calledlow amortized free bit complexity(see Theorem 3.1.4). Roughly speaking,

this parameter measures the trade-off between number of queries and error probability of

a PCP verifier. H˚astad was able to construct a verifier with arbitrarily low amortized free

bit complexity and this impliesn1−ε hardness for MaxClique.

Even aftern1−ε hardness result, it is still interesting to pin-point the exact hardness

of MaxClique. Specifically, is n
2O(
√

logn) the right answer ? This question was also raised

by Srinivasan [109]. Trevisan [111] showed factor k
2O(
√

log k) hardness for MaxClique on

degreek-graphs (k thought of as a constant). Is it possible to interpolate this result all

the way upto n
2O(
√

logn) ? In this thesis, we take a step towards resolving this question.

We show a hardness factor of n2(logn)γ for someγ < 1 (Theorem 10.1.2). Previously,

Engebretsen and Holmerin [33] showed a hardness factor n
2O(logn/

√
log logn) .

Our result is proved via a new PCP construction based on Hadamard Code (as opposed

to popular long code). Hadamard codes are much shorter in length and yield proofs of

much smaller size. We then apply a technique calledRandomized PCP(Section 10.5)

and show n
2(logn)γ hardness for approximating the Chromatic Number of a graph. Earlier

9



Feige, Kilian [40] and Engebretsen, Holmerin [33] showed hardness factor ofn1−ε and

n
2O(logn/

√
log logn) respectively. They obtain randomized versions of PCPs based on long

code. Our construction is much simpler.

Our results for clique and chromatic number differ in notation from the rest of the

thesis and therefore, we present them towards the end of the thesis.

1.2.1 Organization of Thesis

In Chapter 2, we present the basic tools and definitions used in constructing probabilistic

proof systems (PCPs). We also present a PCP construction due to H˚astad which serves

as a prototype for many of the constructions in this thesis. Each of the results mentioned

above appears as a separate chapter. Each chapter can be read more or less independently,

using certain results from previous chapters as a black-box. In the beginning of every

chapter, we state the problem definition, previous results, and high level techniques. In

Chapter 11, we conclude with a list of open problems and directions for future research.

1.3 The PCP Theorem

We give a formal statement of the PCP Theorem in this section. The next section gives a

brief history of work on interactive proofs and program checking that culminated in this

beautiful result.

A common and very fruitful approach in complexity theory is to identify a class of

problems and show that they are equivalent in terms of their computational complex-

ity. An excellent example is the theory of NP-completeness where one shows that all

NP-complete problems are equivalent in terms of polynomial time computability. In in-

approximability theory, first such result was obtained by Papadimitriou and Yannakakis

10



[101]. They identified a class called MAX-SNP; many natural problems like Vertex

Cover, MAX-3SAT and MAX-CUT are complete problems for this class. They showed

that either all MAX-SNP-complete problems have PTAS (i.e.1 + ε approximation for

everyε > 0) or none of them does. Thus as far as the existence of PTAS is concerned,

all MAX-SNP-complete problems are equivalent. However, the question whether MAX-

SNP-complete problems have PTAS’s was left open. The question was resolved by the

PCP Theorem which showed that MAX-3SAT and therefore every MAX-SNP-complete

problem has no PTAS unless P = NP. This result, proved by Arora, Safra [13] and Arora,

Lund, Motwani, Sudan and Szegedy [12] can be stated as :

Theorem 1.3.1 (PCP Theorem, [13], [12]) There is a polynomial time reduction from

SAT (and hence from any NP problem) to MAX-3SAT mapping an instanceφ of SAT to

an instanceψ of MAX-3SAT such that :

• If φ is satisfiable, so isψ, i.e.OPT (ψ) = 1.

• If φ is not satisfiable, then no assignment toψ satisfies more than a fractions of

the clauses, i.e.OPT (ψ) ≤ s.

HereOPT (ψ) is the maximum fraction of clauses that can be satisfied by any assignment

ands < 1 is an absolute constant. In particular, it isNP-hard to approximate MAX-3SAT

within factor 1
s
.

Thus it is possible to transform 3SAT formulae so that satisfiable formulae remain

satisfiable and unsatisfiable ones becomehighly unsatisfiable. In other words, an error in

the formula, if present, spreads everywhere (giving a hint that error correcting codes are

used to prove the theorem). As indicated before, PCP Theorem can be stated equivalently

as a result on proof checking. Before we do that, let us look at the classic definition of

NP.

11



Definition 1.3.2 NP is defined to be the class of languagesL which have the following

kind of proof system : There is a deterministic, polynomial-time verifierV with access to

input x and a stringΠ which is supposedly a proof showing thatx ∈ L. The length of

Π is polynomially bounded in the length ofx. The verifier reads the proof, performs a

polynomial time checking procedure and accepts or rejects. The proof system has these

properties :

(Completeness :)x ∈ L =⇒ ∃ proof Π such that V (Π) = accept

(Soundness :) x 6∈ L =⇒ ∀ proofs Π, V (Π) = reject

In other words,x ∈ L if and only if there exists a proof that the verifier accepts.

The PCP Theorem gives a new characterization of NP as the class of languages that

have a proof system where the verifier is probabilistic and allowed to read only a few bits

from the proof (instead of reading the whole proof). Let us first give a general definition

of such a class of languages (see Fig. 1.1).

q(n)  query  bits 

r(n) random bits

Proof       Input     x  

Accept / Reject Verifier 

Figure 1.1: PCP Verifier

Definition 1.3.3 Let PCPc,s[r(n), q(n)] be the class of languagesL which have the fol-

lowing kind of proof system : The verifierV is probabilistic and uses onlyr(n) random

bits wheren = |x| is the size of input. The verifier has access to a proofΠ. Depending on

12



the choice of its random coins, the verifier reads onlyq(n) bits from the proof and then

accepts or rejects. It satisfies :

(Completeness :) x ∈ L =⇒ ∃ proof Π such that Pr[V acceptsΠ] ≥ c

(Soundness) : x 6∈ L =⇒ ∀ proofs Π, Pr[V acceptsΠ] ≤ s

1 ≥ c > s > 0 are called the completeness and soundness parameters respectively. If

c = 1, the proof system is said to have perfect completeness.

Remark : It is implicit in the definition that the running time of the verifier and size

of the proof is at mostmax(2O(r(n)), poly(n)). Since the verifier has only2r(n) differ-

ent “runs” and reads onlyq(n) bits in each run, the number of distinct proof locations

accessed is at mostq(n)2r(n). Thus the bound on the proof size makes sense. Also,

since there are only2r(n) different runs, it is reasonable to demand that the verifier spends

2O(r(n)) time to figure out which bits to read and what his acceptance criterion should be

for each run.

The PCP Theorem can now be stated as :

Theorem 1.3.4 (PCP Theorem)

NP = PCP1, 12
[O(logn), O(1)]

The verifier is polynomial time and the proof is of polynomial size.

Thus PCP Theorem states that NP-statements have proofs that can be checked using

only logarithmic randomness and reading only a constant number of bits from the proof !

For a correct statement, there exists a proof that is always accepted. For a false statement,

no proof is accepted with probability more that1
2 . Thus any proof of a false statement

13



must be wrong almost everywhere and reading a few bits suffices to catch such cheating

proofs. Theorem 1.3.4 appears quite counter-intuitive and mystical. However, it is easy

to see that it follows from Theorem 1.3.1. Assuming Theorem 1.3.1, we will show that

every language in NP has a probabilistic proof system with appropriate parameters. Let

L ∈ NP. The PCP verifier proceeds as follows :

1. Given inputx, transform it in poly-time to a SAT formulaφ. This is possible since

SAT is NP-complete.

2. Using themagic reductionfrom Theorem 1.3.1, transformφ to an instanceψ of

MAX-3SAT.

3. Expect as a proof, an assignment to variables inψ.

4. Check the proof as below :

• Pick a clause (sayx ∨ y ∨ z) at random from the set of all clauses inψ.

• Read the values of variablesx, y, z from the proof.

• Accept if and only if the values ofx, y, z satisfy the clause.

Now let us verify that this proof system has the right parameters. Ifn = |x|, then|ψ| =

poly(n) and hence the verifier needs onlyO(logn) random bits to pick a random clause.

The verifier reads only3 bits from the proof which is a constant. For completeness

condition, note that ifx ∈ L, thenφ is satisfiable and so isψ. If we take a satisfying

assignment toψ as a proof, then the verifier accepts with probability1. For soundness

condition, note that ifx 6∈ L, thenφ is not satisfiable. Hence no assignment toψ satisfies

more than a fractions of the clauses and consequently, no proof makes the verifier accept

with probability more thans. The soundness parameters can be brought down to12 by

running the checking procedure a constant number of times.

14



The other direction (i.e. Theorem 1.3.4 implies Theorem 1.3.1) is also easy and can

be found in [8, page 12].

1.4 Research Leading to PCP Theorem

The roots of PCP theorem go back to the Interactive Proofs introduced by Goldwasser,

Micali, Rackoff [53] and Arthur-Merlin games introduced by Babai [14]. Both these

proof systems feature a polynomial time probabilistic verifier interacting with an all-

powerful adversary called prover. Techniques from program checking due to Blum,

Kannan [19], Lipton [89] and Blum, Luby, Rubinfeld [20], as well as ideas about rep-

resenting logical formulae with polynomials (Lund, Fortnow, Karloff, Nisan [92] and

Shamir [108]) were used to show surprising results that IP = PSPACE ( [92], [108]) and

MIP = NEXPTIME (Babai, Fortnow, Lund [15]). The result MIP = NEXPTIME was

scaled downto NP ⊆ PCP[O(logn log log n), O(logn log logn)] by Feige, Goldwasser,

Lovász, Safra and Szegedy [38]. They also observed the connection between PCPs and

inapproximability, showing a strong inapproximability result for Clique. The PCP the-

orem was proved in a sequence of two papers by Arora, Safra [13] and Arora, Lund,

Motwani, Sudan, Szegedy [12].

1.5 Progress after PCP Theorem

PCP Theorem has given a tremendous boost to the theory of inapproximability. Hardness

results (in many cases optimal) are now known for a variety of optimization problems.

In this section, we point out some high-level techniques used to prove such results. The

15



list of results stated here is by no means comprehensive, we give only a few examples to

illustrate each technique.

Theorem 1.3.1 gives a “gap” instance of MAX-3SAT (let us call it Gap-3SAT). A

general method to prove hardness of some other problemA is to give a “gap-preserving”

reduction from Gap-3SAT to the problemA. Let us assumeA is a minimization problem.

A gap-preserving reduction is a poly-time reduction that maps an instanceψ of Gap-3SAT

to an instanceI of problemA with the following property :

• (Completeness :) Ifψ is satisfiable, thenOPT (I) ≤ d

• (Soundness :) If no more than a fractions of clauses ofψ are satisfiable, then

OPT (I) ≥ Cd.

Such a reduction implies that it is NP-hard to approximateA within factorC. 1

As a bottomline, all hardness results are essentially gap-preserving reductions from

Gap-3SAT. These reductions are often complicated, involving a sequence of reductions.

The first step is to “amplify the gap” of the Gap-3SAT instance using Raz’s Parallel Rep-

etition Theorem [103]. This gives a 2-Prover-1-Round game which can be equivalently

viewed either as (i) the Label Cover problem defined by Arora et al [9] (see Definition

2.3.1) or as (ii) PCPs where the verifier reads two symbols from the proof and the symbols

come from a (big) alphabet of constant size.

Label Cover problem is a cleanly defined combinatorial problem and abstracts out

the essential properties of 2-Prover games. Therefore we find it convenient to work with

this problem in this thesis and use it as a canonical problem to reduce from for most of

1Many variants of gap-preserving reduction are defined, e.g.L-reductions [101] in the definition of class
MAX-SNP andE-reductions [73] used to relate classes APX and MAX-SNP. Here we give a somewhat
non-rigorous definition that suffices for most purposes.

16



the hardness results. We classify techniques for showing hardness results into four broad

categories :

(1) Direct Reduction from Label Cover

Examples in this category include

• (1−ε) lnn hardness for Set Cover by Feige [37], building on the work of Lund and

Yannakakis [93].

• Hardness of Closest Vector Problem and Closest Codeword Problem by Arora,

Babai, Stern and Sweedyk [9].

• Hardness of Shortest Vector Problem in this thesis (Chapter 6 and [78]).

• Ω(log2−ε n) hardness for Group Steiner Tree by Halperin and Krauthgamer [57].

This introduces a new technique of building a gadget from an integrality gap ex-

ample for a natural linear program.

(2) Using Long Codes and Fourier Analysis

Many results, most notably results on constraint satisfaction problems (CSPs), fall into

this category. These results are proved using a framework developed in the proof of PCP

Theorem and then by Bellare, Goldreich, Sudan [16] and H˚astad ([59], [60]). The idea is

that the verifier expects as a proof, encodings of labels for the Label Cover problem and

then runs some tests to check consistency between these encodings. An encoding scheme

calledLong Codewas introduced in [16] and H˚astad introduced the powerful technique

of analyzing tests with Fourier analysis. A detailed presentation of this methodology

appears in Chapter 2. Examples include

17



• Håstad’sn1−ε hardness for Clique [59],87 − ε hardness for MAX-3SAT, and2− ε

hardness for Max-3-Lin-2 [60].

• Hardness of booleank-CSPs by Samorodnitsky and Trevisan [106].

• Hardness of coloring4-uniform hypergraphs by Guruswami, H˚astad and Sudan

[55].

• Hardness of coloring3-uniform and4-uniform hypergraphs in this thesis (Chapters

4, 5 and [75], [76] respectively).

• Hardness of Vertex Cover on4-uniform hypergraphs by Holmerin [66].

(3) Using Combinatorial View of Long Code

This technique was introduced in Dinur and Safra’s paper [32]. The idea is to take a

combinatorial view of the Long Code and use instead of Fourier analysis, theorems from

extremal combinatorics and sensitivity analysis of boolean functions. Sensitivity analysis

itself relies on Fourier analysis, so there is no strict distinction between this technique

and technique in Category(2). Examples include,

• 1.36-hardness result for Vertex Cover by Dinur and Safra [32].

• k−1−ε hardness for Vertex Cover onk-uniform hypergraphs in this thesis (Chapter

7 and [29]).

• Hardness of coloring3-uniform hypergraphs by Dinur, Regev and Smyth [31].

18



(4) Reductions from Problems in Previous Categories

Here we include results obtained by a reduction from problems whose hardness is proved

using the above three techniques. One typically uses clever gap-preserving gadgets. The

techniques are varied, problem-dependent and often quite involved. It is beyond the scope

of this thesis to give a survey of these techniques. Examples include,

• 17
16 − ε hardness for MAX-CUT by H˚astad [60], via a reduction from Max-3-Lin-2.

• 117
116 − ε hardness for Asymmetric TSP by Papadimitriou and Vempala [100], via a

reduction from Max-3-Lin-2.

• Ω(log∗ n)-hardness for Asymmetrick-Center by Chuzhoy et al [26], via a reduction

from Hypergraph Vertex Cover.

•
√

2− ε hardness for Shortest Vector Problem inL2 norm by Micciancio [96], via a

reduction from Closest Vector Problem.

19



Chapter 2

A Framework for Building PCPs

Techniques in this thesis can be best viewed in context of a general framework for de-

signing PCPs with only a few query bits. In general form, the framework goes back to

the proof of PCP Theorem by Arora, Safra [13] and Arora et al [12]. Some of the key

ideas in their work are composition of verifiers and different encoding schemes. Bellare,

Goldreich and Sudan [16] invented the Long Code which was then used to a great effect

by Håstad ([59], [60]). In this chapter, we explain this framework by presenting a com-

plete proof of Håstad’s3-Bit PCP. In the rest of the thesis, we extend the framework in

many ways, using new verifiers and codes at various levels.

We present the following result in this chapter.

Theorem 2.0.1 (Håstad’s3-Bit PCP [60])

∀ ε, δ > 0, NP = PCP1−ε, 12 +δ[O(logn), 3]

In other words,NP has a probabilistic poly-time verifier that uses logarithmic random-

ness, reads3 bits from the proof, has completeness≥ 1− ε and soundness≤ 1
2 + δ where

20



ε, δ can be made arbitrarily small. Moreover, the verifier accepts if and only if the3 bits

read from the proof satisfy a linear predicate.

Let us say we have proved this theorem. Now let the bits in the proof correspond

to (unknown) boolean variables so that a proof corresponds to a boolean assignment to

these variables. For a fixed choice of the random coins, the verifier reads3 bits from

the proof, sayx, y, z and accepts if and only ifx ⊕ y ⊕ z = 0 (or x ⊕ y ⊕ z = 1).

Write down poly(n) such equations for all possible choices ofO(logn) random coins.

The correspondence between proofs and boolean assignments shows that the probability

of accepting a proof equals the fraction of equations satisfied by an assignment. Using

completeness and soundness properties given by Theorem 2.0.1, we get :

Theorem 2.0.2 Let Max-3-Lin-2 be the following problem : Given a system of linear

equations mod2, each equation containing3 variables, find an assignment that satisfies

maximum number of equations. Then for everyε, δ > 0, there is a poly-time reduction

from any languageL ∈ NP to Max-3-Lin-2 such that :

• The reduction maps inputx to an instanceΓ of Max-3-Lin-2.

• If x ∈ L, thenΓ has an assignment that satisfies1− ε fraction of equations.

• If x 6∈ L, then no assignment toΓ satisfies more than a fraction12 + δ of equations.

In particular, it is NP-hard to approximate Max-3-Lin-2 within factor2 − ε. This result

is tight since a random assignment to variables satisfies half the equations.

It is now clear how constructing a specific PCP implies a hardness result for a con-

straint satisfaction problem. The constraints (in this case linear) correspond to the accep-

tance predicate of the verifier and the hardness factor equals the ratio between complete-

ness and soundness parameters.

21



2.1 Plan for Building 3-Bit PCP

The overall plan for proving Theorem 2.0.1 is as follows (see Fig 2.1) : We start with the

PCP Theorem (Theorem 1.3.1) which shows hardness of Gap-3SAT. A simple 2-Prover-

1-Round game is constructed from Gap-3SAT and then the gap is amplified using Raz’s

Parallel Repetition Theorem. This results in a 2-Prover-1-Round game where the provers’

answers are of constant size, the game has perfect completeness and very low soundness.

The answers are from an alphabet of size1/δO(1) whereδ is the soundness of the 2-Prover

game.

Hastad’s  Test   :   Read   a, b, c  

                         x, y    satisfy  predicate  P(x,y) 

xy

Encoding   Symbols 

 2−Prover−1−Round Game   OR 

NP  =  PCP [  O(log n), O(1) ] 

PCP Theorem  

Completeness 1,   soundness   

Encoded  Proof 

To  check  :    ENC’(x),  ENC’(y)  are correct encodings ; 
ENC’(x) ENC’(y)

                                Accept   iff   a + b + c  =  0   mod 2 

Outer / Raz  Verifier 

O(1) 
O(1) 

Gap−3SAT  is   hard 

and 

Basic 2−Prover−1−Round game 

Raz’s Parallel Repetition Thm 

Inner  Verifier     

Analyze  with  Fourier Analysis  

c

ba

Accept   iff    P(x, y) 

Query  2  symbols  x,  y 

Figure 2.1: Overview of H˚astad’s 3-Bit PCP

The 2-Prover game can be easily converted to a PCP where the verifier reads only 2

symbols from the proof, has perfect completeness and soundnessδ. The verifier demands

22



provers’ answers to all possible questions as a written proof. Instead of asking questions

to provers and receiving answers, the verifier reads off these answers from the written

proof. The completeness/soundness properties follow from the properties of the 2-Prover

game. This verifier is usually referred to as the “Outer Verifier” or “Raz Verifier”.

Now the trouble is that the Outer Verifier reads symbols from a huge alphabet (of

size1/δO(1)) and our goal is to construct a verifier that reads just3 bits. This is achieved

by expecting as a proof, encodings of provers’ answers instead of the answers them-

selves. We fix an encoding schemeENC (which is most often the Long Code). The new

verifier, usually referred to as the “Inner Verifier”, asks for the encodingsENC(x) for

answersx of the provers. The Outer Verifier would read two answersx, y and accept if

a certain predicateP (x, y) is satisfied. The Inner Verifier however has access to strings

ENC ′(x), ENC ′(y) which he expects to be the encodingsENC(x), ENC(y) respec-

tively. A crucial point is that a cheating proof could contain stringsENC ′(x), ENC ′(y)

which might be arbitrary strings and may have nothing to do with the correct encodings.

It is verifier’s task to guard against such cheating proofs. The verifier needs to verify the

following in a probabilistic sense :

• ENC ′(x), ENC ′(y) are “close” to the true encodingsENC(x), ENC(y) respec-

tively. This is referred to as theCodeword Test.

• P (x, y) is satisfied. This is referred to as theConsistency Test.

This task looks hopeless given the restriction that the verifier is allowed to read only

3 bits fromENC ′(x), ENC ′(y). The beauty of H˚astad’s construction lies in combining

these tasks in one single3-bit test and analyze the test with Fourier Analysis. It can be

shown that if the test accepts with probability little more than1
2 , then there is a way to

“decode” the stringsENC ′(x), ENC ′(y) and define provers’ answers which make the

23



verifier in the 2P1R protocol accept with a decent probability. However, this would be a

contradiction, provided the 2P1R game was chosen to have very low soundness.

In the following sections, we carry out this high level plan to prove Theorem 2.0.1. We

define a problem called the Label Cover problem which is an equivalent way of looking

at 2-Prover games. The PCPs in this thesis are described in terms of the Label Cover

problem; we find it easier for the sake of presentation. Let us restate the PCP Theorem :

Theorem 2.1.1 There exists an absolute constancec < 1 such that it is NP-hard to

distinguish satisfiable 3SAT formulae (YES instances) from those where only a fraction

c of the clauses can be satisfied by any assignment (NO instances). This formula has

a regular structure, i.e. any clause is of length exactly 3 and any variable appears in

exactly 5 clauses. We call the instances of 3SAT given by this theorem as instances of

Gap-3SAT-5.

Remark : Compared to Theorem 1.3.1, we have an extra requirement that the 3SAT

formula has a regular structure. This is easy to achieve, see e.g. [37]. This property is

usually convenient, but not essential.

2.2 The 2-Prover 1-Round Game

Definition 2.2.1 A 2P1R gameL2p1r(V,W,N,M,D,Q) consists of a probabilistic veri-

fier V2p1r and two proversP1 andP2.

• V,W are sets of questions the verifier can ask the two provers respectively.

• N,M are sets of provers’ answers. Astrategyof the provers is a mapΦ : V 7→

N,Φ : W 7→M .

24



• Q : V ×W ×N ×M 7→ {0, 1} is the acceptance predicate of the verifier.

• D is a probability distribution onV ×W .

The verifier picks a pair of questions(v, w) ∈ V × W with distributionD and sends

questionsv, w to proversP1, P2 respectively. The provers return answersΦ(v),Φ(w)

according to their strategy. The verifier accepts if and only ifQ(v, w,Φ(v),Φ(w)) = 1.

The value of the game is defined to be the maximum probability with which the provers

can make the verifier accept over all possible prover strategies.

We build a basic 2P1R game from a Gap-3SAT-5 formulaφwith variables{x1, x2, . . . , xn}

and clauses{C1, C2, . . . , Cm}.

Basic2-Prover Game

1. The verifier chooses a clauseCk uniformly at random and a variablexj uniformly

at random, appearing inCk. The verifier sendsxj to proverP1 andCk to proverP2.

2. The verifier receives a value forxj from P1 and a satisfying assignment for the

clauseCk from P2. The verifier accepts if and only if the value forxj agrees with

the assignment toCk.

Note that the strategy ofP1 is just an assignment to variables ofφ. Let us say this

assignment satisfies a fractionc′ of the clauses. Then for every clauseC satisfied by the

assignment,P2’s answer could be consistent with the assignment. However, if a clauseC

is unsatisfied, thenP2 has to flip the value of at least one variable inC and then the verifier

will catch this “cheating” with probability1/3. Thus the optimal strategy convinces the

verifier with probabilityc′+ (1− c′)2
3 = (2 + c′)/3. It follows that ifφ is a YES instance

of Gap-3SAT-5, the provers have a strategy with value1 (completeness) and otherwise

25



the optimal strategy of provers has value at most(2 + c)/3 < 1 (soundness) wherec is

the constant from Theorem 2.1.1.

Parallel Repetition and Raz Verifier

One can reduce the soundness of this game by running the verifieru times in parallel. We

call the new verifier Raz Verifier. In this new game, the verifier picks a set ofu clauses

at random, sayw = {Ci | i = 1, 2, . . . , u}, and asksP2 to give a satisfying assignment

to these clauses. For everyi, the verifier picks a variablexi at random from the clause

Ci. Let v = {xi|i = 1, 2, . . . , u} be the set of these variables. The verifier asksP1 to

give an assignment to the setv. The verifier accepts if and only if the answers of the

two provers agree on the set of variablesv. If we denoteπ v,w to be the projection that

maps an assignment tow to its sub-assignment tov, the verifier accepts if and only if the

answer ofP2 is σ and the answer ofP1 is π v,w(σ).

Clearly, if the Gap-3SAT-5 formula is a YES instance, then provers have a strategy

to make the verifier accept with probability1 (completeness). The Parallel Repetition

Theorem of Raz [103] gives the soundness property. It shows that if Gap-3SAT-5 instance

is a NO instance, no strategy can make the verifier accept with probability more thanduc

for some absolute constantdc < 1. Let us formulate this result for future reference.

Theorem 2.2.2 If only a fractionc < 1 of the clauses ofφ can be simultaneously satis-

fied, then no strategy ofP1 andP2 can make the verifier accept with probability greater

thanduc . Heredc < 1 is a constant that only depends onc.

26



2.3 The Label Cover Problem

For the sake of presentation, it is easier to work with a problem called Label Cover prob-

lem instead of 2P1R games. We follow the Label Cover terminology throughout this

thesis.

Definition 2.3.1 A Label Cover problemL(G(V,W,E), N,M, {πv,w|(v, w) ∈ E}) con-

sists of a regular bipartite graphG(V,W,E) with bipartition V,W . Every vertex in

V is supposed to get a label from a setN and every vertex inW is supposed to get

a label from a setM . With every edge(v, w) ∈ E, there is associated a “projec-

tion” πv,w : M → N . For an assignment of labels to the vertices of the graph, that

is for a functionΦ : V 7→ N, Φ : W 7→ M , an edge(v, w) is said to be satisfied if

πv,w(Φ(w)) = Φ(v). The goal is to find an assignment of labels that maximizes the num-

ber of satisfied edges. We defineOPT (L) to be the maximum fraction of edges satisfied

by any labeling.

It is clear that the Label Cover problem is the same as a 2P1R game (see Definition

2.2.1). TakeV,W as the sets of questions to be asked to the provers,N,M as the sets of

possible answers,(v, w) ∈ E as the pairs of questions to be asked to the provers, andπv,w

as the acceptance predicate of the verifier. Using this correspondence, Theorem 2.2.2 can

be restated as :

Theorem 2.3.2 There is an absolute constantγ > 0 such that for every integer param-

eter u, it is NP-hard to distinguish between the following two cases : A Label Cover

problemL(G(V,W,E), N,M, {πv,w}) with |M | = 7u, |N | = 2u has

• OPT (L) = 1 OR

• OPT (L) ≤ 2−γu

27



It can be assumed thatG(V,W ) is a regular bipartite graph where every vertex inV has

degree5u and every vertex inW has degree3u.

2.4 Long Codes and Fourier Analysis

The long code was introduced by Bellare et al [16] and the use of Fourier analysis in PCP

setting was initiated by H˚astad. In this section, we gives the basics of long codes and

their Fourier analysis. As will be clear later, it is convenient to work with bits valued±1

instead of{0, 1} with the correspondence0 7→ 1, 1 7→ −1.

Definition 2.4.1 The long code over a finite domainM is indexed by all functionsg :

M 7→ {−1, 1}. The long codeB of an elementy ∈M is given by

B(g) := g(y) ∀ g : M 7→ {−1, 1}

Let G := {g | g : M 7→ {−1, 1}}. Consider the space of all “tables”B : G 7→ IR. In

particular, a long code is one such table. Consider the charactersχβ whereβ ⊆M . There

is one such character for everyβ. The characterχβ is a table defined by

χβ(g) :=
∏
y∈β

g(y)

The following identities are easily checked,

Lemma 2.4.2 For β, γ ⊆M andg, h : M 7→ {−1, 1},

• χβ(gh) = χβ(g)χβ(h)

• χβ(g)χγ(g) = χβ∆γ(g) where∆ denotes the symmetric difference of sets.

28



• Eg[χβ(g)] = 1 if β = ∅ and 0 otherwise.

For tablesB1, B2, define their inner product as

< B1, B2 > :=
1

2|M |
∑
g∈G

B1(g)B2(g) = Eg
[
B1(g)B2(g)

]
Let us check that the characters form an orthonormal basis under this definition of inner

product. The number of characters is2|M | which equals the dimension of the space of

tables. They are orthonormal because,

< χβ, χγ > = Eg[χβ(g)χγ(g)]

= Eg[χβ∆γ(g)]

= 1 if β = γ and 0 if β 6= γ

It follows that any table can be expanded asB =
∑

β⊆M B̂βχβ whereB̂β are the Fourier

coefficients with
∑

β |B̂β|2 = < B,B > (Parseval’s identity). WhenB : G 7→ {−1, 1},

we have
∑

β |B̂β|2 = 1. The Fourier coefficients are given by

B̂β = < B,χβ > = Eg
[
B(g)χβ(g)

]
WhenB : G 7→ {−1, 1}, it is clear thatB agrees with the character functionχβ on 1+ bBβ

2

fraction of inputs. Thus a Fourier coefficient is a measure of how closeB is to a character

function. Whenβ = ∅, the value of the coefficient̂B∅ is justEg[B(g)].

The following lemma introduces a notion called “folding” which turns out to be cru-

cial in the analysis.

Definition 2.4.3 A tableB is folded ifB(−g) = −B(g) for anyg.

29



Lemma 2.4.4 If B is folded andB̂β 6= 0 then |β| is odd and in particularβ is a non-

empty set.

Proof:

B̂β = Eg[B(g)χβ(g)] = Eg[B(−g)χβ(−g)]

= Eg[(−B(g))
∏
y∈β

(−g(y))] = −(−1)|β|Eg[B(g)χβ(g)] = −(−1)|β|B̂β

ThusB̂β = 0 unless|β| is odd.

To make sure that an arbitrary table is folded we access the table as follows. For

each pair(g,−g) we choose (in some arbitrary but fixed way) one representative. Ifg is

chosen, then the value of the table required atg is accessed as usual by readingB(g). If

the value at−g is required thenB(g) is read and the result is negated. If−g is chosen

from the pair, the procedures are reversed.

We need one more lemma that relates boolean functions on domainM to functions

on domainN via a projection mapπ : M 7→ N . Let f : N 7→ {−1, 1} and(f ◦ π) :

M 7→ {−1, 1} be defined as

(f ◦ π)(y) = f(π(y)) ∀ y ∈M

For a setβ ⊆M , letπ(β) ⊆ N denote the projected set

π(β) := {π(y) | y ∈M}

30



Also define a setπ2(β) ⊆ π(β) as the set of elements ofN that have an odd number of

pre-images inβ. To be precise,

π2(β) := {x ∈ N | |{y ∈ β | π(y) = x}| is odd }

Lemma 2.4.5 χβ(f ◦ π) = χπ2(β)(f)

2.5 Håstad’s 3-Bit PCP

In this section, we describe the 3-Bit PCP. Overall plan for the construction has already

been outlined in Section 2.1. For some intuition behind our construction and a general

approach for PCP design, see Sections 2.5.1 and 2.6.

The verifier starts with an instanceL(G(V,W,E), N,M, {πv,w}) of the Label Cover

problem given by Theorem 2.3.2. He expects as a proof, the long code of the label of

everyv ∈ V andw ∈ W in a supposedly correct labeling toL. These long codes are

assumed to be folded. The verifier picks an edge(v, w) of Label Cover at random. Let

A,B be supposed long codes of labels ofv, w respectively. The verifier has to check that

A,B are indeed correct long codes and they encode labelsa ∈ N, b ∈ M respectively,

with πv,w(b) = a. The verifier checks the proof as follows (see Fig. 2.2) :

1. Pick a randomw ∈W and its random neighborv ∈ V . Letπ = πv,w : M 7→ N be

the corresponding projection map.

2. Let A,B be the supposed long codes of labels ofv andw resp. Recall thatB

is indexed by all functionsg : M 7→ {−1, 1} andA is indexed by all functions

f : N 7→ {−1, 1}.

31



N

V  W 

M 

h 

B = 

A  =  g 

f 

    Encoded Proof and 3−Bit  Test 

|M| 
2

|N| 
2

LC ( label (w) )

LC (label (v) )

Label  Cover   Instance  

Long   Code 

N : M 
v, w v, w

w    

v

Figure 2.2: Label Cover, Long Code and 3-Bit PCP

3. Pick a random functiong : M 7→ {−1, 1} and a random functionf : N 7→

{−1, 1}.

4. Pick a functionµ : M 7→ {−1, 1} by defining independently for everyy ∈M ,

µ(y) =
{ 1 with probability 1− ε

−1 with probability ε

Thusµ() is a function that is−1 on aboutε fraction of inputs chosen randomly.

5. Leth : M 7→ {−1, 1} be a function where for everyy ∈M , we define

h(y) := g(y) · f(π(y)) · µ(y)

In other words,h = g(f ◦ π)µ.

32



6. Read bitsA(f), B(g), B(h) from the proof. Accept if and only if

A(f)B(g)B(h) = 1

Remark : In {0, 1} notation, the verifier’s test isA(f) ⊕ B(g) ⊕ B(h) = 0 which is

indeed a linear test.

2.5.1 Completeness

We show that the completeness of this test is1 − ε. In a correct labeling toL, let a, b

be labels ofv, w respectively, withπ(b) = a. In a correctly encoded proof,A,B are

long codes ofa, b respectively and thereforeA(f) = f(a), B(g) = g(b), andB(h) =

h(b) = g(b)f(π(b))µ(b) = g(b)f(a)µ(b). Thus the test accepts providedµ(b) = 1 which

happens with probability1− ε.

Let us see the intuition behind such a test. We want to test consistency between

tablesA andB. The test reads one bit from tableA and two bits from tableB, say

A(f), B(g), B(h). The test is required to be linear, so the acceptance predicate should

beA(f)B(g)B(h) = 1. Designing a test means specifying a distribution with which the

triple (f, g, h) is picked. Completeness condition requires that ifB is long code ofany

y ∈ M andA is long code ofπ(y), then the test should accept with probability1 (or

close to1). In this case,A(f) = f(π(y)), B(g) = g(y), B(h) = h(y) and we require that

f(π(y))g(y)h(y) = 1. In other words,h = g(f ◦ π).

The reason for introducing error functionµ() is quite subtle. Let us sayh = g(f ◦π).

We will show that the test would accept with probability1 even ifB is not a long code.

Fix x0 ∈ N and letA be long code ofx0. Letβ ⊆M be any set with odd cardinality such

that all elements ofβ map tox0 under projectionπ. LetB = χβ. Note that if|β| = 1

33



thenB would be a long code. So when|β| is “large”,B is interpreted as being “far” from

any long code. The test accepts because

A(f)B(g)B(h) = f(x0)χβ(gh) = f(x0)
∏
y∈β

g(y)h(y) = f(x0)
∏
y∈β

g(y)g(y)f(π(y)) = 1

since|β| is odd. Thus the test withh = g(f ◦ π) fails. We need to somehow enforce the

condition thatβ is singleton, or at least of “small” size. The error functionµ() achieves

exactly this.

So we leth = g(f ◦ π)µ. We will see that if the test accepts with probability1
2 + δ,

then Fourier coefficients of tablesA andB satisfy :

∑
α,β:α=π2(β)

ÂαB̂
2
β (1− 2ε)|β| ≥ δ

The conditionα = π2(β) captures consistency betweenA,B and this is precisely the role

of f ◦ π in the test. Role ofµ() is to introduce the factor(1 − 2ε)|β|. Thus terms with

|β| ≥ O(1
ε

log(1/δ)) contribute only negligible amount, so one can as well assume that

the sum is restricted toβ with smaller size. The idea of introducingµ() is almost a magic

trick. One loses perfect completeness, but it enables us to bound|β| in the soundness

analysis.

2.5.2 Soundness

Now we show that if the test accepts with probability1
2+δ, then there exists an assignment

of labels toL that satisfies a fraction4εδ2 of the edges. Thus if we choose the parameter

u of Theorem 2.3.2 large enough so that2−γu < 4εδ2, it follows that the soundness of the

verifier is at most12 + δ.

34



The idea is to write the probability of acceptance as the following arithmetic expres-

sion :

Pr[accept] = Ev,w,f,g,µ
[1 +A(f)B(g)B(h)

2
]

(2.1)

Note that when the test accepts, the expression inside the bracket equals1 and equals0

otherwise. Therefore, Pr[accept] is the expectation of this expression over the random

choices made by the verifier. It follows that if Pr[accept] ≥ 1
2 + δ, then

Ev,w,f,g,µ
[
A(f)B(g)B(h)

]
≥ δ

We write the tablesA andB as their Fourier expansions, i.e.

A(f) =
∑
α⊆N

Âαχα(f) B(g) =
∑
β⊆M

B̂βχβ(g) B(h) =
∑
γ⊆M

B̂γχγ(h)

whereÂα, B̂β, B̂γ are Fourier coefficients. Substituting,

Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γχα(f)χβ(g)χγ(h)
]
≥ δ

Using Lemmas 2.4.2 and 2.4.5,

χγ(h) = χγ(g(f ◦ π)µ) = χγ(g)χγ(f ◦ π)χγ(µ) = χγ(g)χπ2(γ)(f)χγ(µ)

Thus we get

Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γχα(f)χβ(g)χγ(g)χπ2(γ)(f)χγ(µ)
]
≥ δ

35



which can be simplified to

Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γχα∆π2(γ)(f)χβ∆γ(g)χγ(µ)
]
≥ δ (2.2)

By Lemma 2.4.2, the expectationEg[χβ∆γ(g)] vanishes unlessβ∆γ = ∅, i.e. unless

β = γ. Similarly, the expectation overf vanishes unlessα = π2(γ). AlsoEµ[χγ(µ)] =

(1− 2ε)|γ| by the following lemma.

Lemma 2.5.1Eµ[χγ(µ)] = (1− 2ε)|γ|

Proof:

Eµ[χγ(µ)] = Eµ[
∏
y∈γ

µ(y)] =
∏
y∈γ

Eµ[µ(y)] = (1− 2ε)|γ|

since, for everyy, we haveµ(y) = 1 with probability1− ε andµ(y) = −1 with proba-

bility ε.

Thus Equation (2.2) can be written as

Ev,w
[∑

β

Âπ2(β)B̂
2
β(1− 2ε)|β|

]
≥ δ (2.3)

Using Cauchy-Schwartz inequality and the fact that(1− 2ε)2|β| ≤ (e−2ε)2|β| = e−4ε|β| ≤
1

4ε|β| ,

δ ≤ Ev,w

[∣∣∣∣∣∑
β

Âπ2(β)B̂β(1− 2ε)|β| · B̂β

∣∣∣∣∣
]

≤ Ev,w

√∑
β

Â2
π2(β)B̂

2
β(1− 2ε)2|β|

√∑
β

B̂2
β


≤ Ev,w

√∑
β

Â2
π2(β)B̂

2
β(4ε|β|)−1

 since
∑
β

B̂2
β = 1

36



Again applying Cauchy-Schwartz, we get

Ev,w

[∑
β

Â2
π2(β)B̂

2
β

1
|β|

]
≥ 4εδ2 (2.4)

Now consider the following (randomized) way of assigning labels to vertices ofL. For

everyw ∈ W , let B be the supposed long code forw in the proof. Pick the Fourier

coefficientβ with probabilityB̂2
β, pick an elementy ∈ β at random and define label(w) =

y. Similarly, for everyv ∈ V , let A be the supposed long code forv in the proof.

Pick the Fourier coefficientα with probability Â2
α, pick an elementx ∈ α at random

and define label(v) = x. Inequality (2.4) says that there is a good chance that we will

haveα = π2(β) and after pickingx ∈ α, with chance1/|β| pick y ∈ β such that

π(y) = x. Thus the expected fraction of edges of the Label Cover instance satisfied by

this (randomized) labeling is at least4εδ2. Hence the Label Cover instance has a labeling

that satisfies this much fraction of edges, completing the proof.

2.6 A General Approach to PCP Design

We use the proof of H˚astad’s 3-Bit PCP to illustrate some general principles for designing

PCPs.

The acceptance predicate for a PCP test is tailor-made for the target problem for which

we desire a hardness of approximation result. For example, to show hardness of Max-3-

Lin-2, we designed a test with predicatex ⊕ y ⊕ z = 0. This is a predicate with arity

three and a binary alphabet. In general, the arity and alphabet size could be arbitrary. The

following table gives acceptance predicates for some well-known problems.

37



Problem Predicate Alphabet Size Folding
MAX-2SAT x ∨ y 2 YES
MAX-3SAT x ∨ y ∨ z 2 YES
MAX-CUT x 6= y 2 NO
MAX-k-CUT x 6= y k NO
3-Colorability of graphs x 6= y 3 NO
2-Colorability of Not-All-Equal(x, y, z, w) 2 NO
4-uniform hypergraphs
Vertex cover in graphs x ∨ y 2 NO

Acceptance predicates for NP-hard problems

Thus the choice of acceptance predicate is straightforward. The most intricate part is

designing the actual test. One needs to check consistency between two long codesA and

B. More specifically, one needs to check thatA andB encode labelsa andb respectively

such thatπ(b) = a for some given mapπ. The test corresponds to selecting bits from

tablesA andB in an appropriate way. Choice of these bits is dictated by the completeness

requirement, namely that a correct proof be accepted with probability1 (or close to1).

In the 3-Bit PCP, we designed a verifier that reads three bits,A(f), B(g), B(h). As seen

in Section 2.5.1, the completeness requirement suggests thath be defined asg(f ◦ π).

Then a counter-example is presented to motivate the use of error functionµ() resulting

in imperfect completeness. Some applications however require perfect completeness,

e.g. hypergraph coloring results require that in completeness case,everyedge is non-

monochromatic. In such applications, our test must accept with probability1.

For the soundness analysis, we begin by arithmetizing the acceptance probability of

the verifier as in Equation (2.1). We plug in Fourier expansions, do straightforward sim-

plifications and get Equation (2.3). We use such an equation to extract some meaning-

ful consistency between tablesA andB. The error functionµ() introduces the factor

(1 − 2ε)|β| that effectively allows us to ignoreβs with large size. Applying Cauchy-

38



Schwartz and Parseval’s identity, we get Equation (2.4). Finally, we define a randomized

labeling that shows consistency betweenA andB.

Overall, in addition to some intuitive ideas, one also needs playing around with

Fourier coefficients and a trial-and-error approach. One needs to go back and forth be-

tween the definition of functionsf, g, h and the resulting Fourier expressions, and finally

arrive at the right test. Sometimes, one also needs the outer Label Cover instance to

have some special properties and such instances must be constructed (e.g multi-layered

smooth label cover in Theorem 4.2.4). It is also helpful to come up with counter-examples

or cheating proof strategies. We cite a couple of such counter-examples below.

Note thatα, β picked in the randomized labeling are guaranteed to be non-empty

sets. This is because folding ensures (Lemma 2.4.4) that the coefficientsÂ∅, B̂∅ are zero.

However, folding is not only a clever trick, it is necessary. The verifier reads3 bitsx, y, z

and accepts ifxyz = 1. If one sets all bits in the proof to1, then the test would always

accept. Folding ensures thatA(−f) = −A(f). Hence the test of the verifier is actually

x′y′z′ = 1 wherex′, y′, z′ are either variables or their negations. Similarly, for showing

hardness of MAX-3SAT, one designs a test with predicatex ∨ y ∨ z. But because of

folding, the test is actuallyx′ ∨ y′ ∨ z′ wherex′, y′, z′ are positive or negative literals. In

some applications like hypergraph coloring however, we cannot use folding. The reason

is that folding introduces constraints saying “if vertexx is colored blue, then vertexx′

must be colored red” ; such constraints cannot be enforced for coloring problems. In fact,

inability to use folding turns out to be the biggest difficulty in showing hardness results

for hypergraph coloring.

The use of error functionµ() is another subtlety worth noting. Technically speaking,

it allows us to ignore contribution ofβs with large size. But at a deeper level, something

like this is necessary. The error functionµ() results in imperfect completeness and the

39



resulting system of linear equations has no assignment that satisfiesall equations. One

can always find a satisfying assignment (by Gaussian elimination) in polynomial time if

one exists. Hence imperfect completeness is necessary for NP-hardness results for linear

predicates. In Chapter 3, we design a non-linear5-bit test with perfect completeness.

In order to apply Parseval’ identity, namely
∑

β B̂
2
β = 1, one needs the coefficient

B̂β in a squared form. This is achieved by readingtwo bits from tableB. At least one

bit must be read from tableA, and therefore the test reads three bits. Let us see why we

cannot build a2-bit test. It would require us to read one bit fromA and one bit from

B which gives instead of Equation (2.3), something like
∑

α,β:α=π2(β) ÂαB̂β. We cannot

apply Parseval, and in fact, this sum could potentially have large negative value. Thus

we do not know how to analyze PCPs with only two queries; Fourier methods seem to

fail. This is also a reason why we cannot prove good hardness results for vertex cover

and coloring of graphs. We can however construct PCPs with three or more queries and

show corresponding results for hypergraphs. Instead of just using Parseval, one could po-

tentially use deeper results from Fourier analysis. In Chapter 8 and 9, we use Bourgain’s

Theorem and Friedgut’s Theorem and construct2-bit PCPs that yield hardness results for

vertex cover in graphs and Min-2SAT-Deletion. However, these PCPs rely on a certain

conjecture and it is an open problem to construct them unconditionally.

2.7 Techniques in this Thesis

In this section, we briefly mention some of the techniques developed in the thesis. We

introduce new techniques at all levels of PCP design, namely, the Label Cover problem

(or Outer Verifier), the encoding scheme and the PCP test (or Inner Verifier). There are

several other problem-dependent techniques that we do not mention here.

40



Label Cover

The Label Cover instances given by Theorem 2.3.2 are not adequate for some applica-

tions, e.g. showing hardness of3-uniform hypergraph coloring. The bipartite structure of

the Label Cover instance turns out to be a bottleneck. The hypergraph constructed from

such an instance also has bipartite structure and hence always2-colorabale.

In Chapter 4, we build the state of the art outer verifier which we call Multi-layered

Smooth Label Cover (Theorem 4.2.4). We use it to prove hardness of coloring3-uniform

hypergraphs (Chapter 4) and hardness of vertex cover in hypergraphs (Chapter 7). We

believe that this verifier would have many applications in future.

In Chapter 8, we make a conjecture about existence of a new outer verifier. The con-

jecture has highly non-trivial implications, namely, optimal hardness results for Vertex

Cover and Min-2SAT-Deletion.

Encoding Schemes

We make an extensive use of long code. Different tests for checking a long code are

designed and analyzed using Fourier analysis. Checking whether a given string is a cor-

rect long code is same as checking whether a boolean function (given as a truth-table)

depends on only one input coordinate. Therefore, theorems about Fourier spectrum of

boolean functions have a natural place in PCP analysis. We use two such theorems, The-

orem 8.3.2 due to Bourgain and Theorem 9.3.5 due to Friedgut.

In Chapters 4 and 5, we use long codes over non-boolean domains. This allows us to

design some tests where analogous tests in the boolean case seem to fail.

For some applications however, long code turns out to be too inefficient in terms of its

length. We instead use codes with much shorter length : in Chapter 10, we use Hadamard

41



Code and in Chapter 5, we introduce Split Code. We develop Fourier analysis techniques

for these codes as well.

PCP Tests

We develop a variety of new tests depending on specific application. In Chapter 3, we

use a5-bit non-linear test and extend it in a query-efficient manner to a PCP with optimal

amortized query complexity and perfect completeness. In Chapter 4 (Chapter 5 resp.), we

use a test that reads three (four resp.) queries and accepts if and only if not all symbols

are equal. This test is used to show hardness of coloring3-uniform (4-uniform resp.)

hypergraphs.

In Chapter 7 and 9, we use a combinatorial view of long code and show hardness

results for (hyper)graph vertex cover. In the (hyper)graphs we construct, the (hyper)edges

can be thought of as PCP tests. The constructions are analyzed using techniques from

extremal combinatorics and Friedgut’s Theorem.

42



Chapter 3

A Query Efficient PCP and Hardness of

Graph Coloring

Graph Coloring is one of the most fundamental (and frustrating) problems in combina-

torics and computer science. A graph is calledK-colorable if every vertex can be as-

signed one color from a set ofK colors so that endpoints of every edge receive different

colors. Given aK-colorable graph for a constantK ≥ 3, one seeks a polynomial time

algorithm to color the graph using few colors. Best known algorithms use a huge number

of colors, i.e.nΩ(1) colors wheren is the number of vertices in the graph. On the hardness

side however, we only know that it is NP-hard to color3-colorable graphs with4 colors

andK-colorable graphs with roughlyK3/2 colors for all large enoughK.

In this chapter, we make a significant progress on this frustrating problem. We show

that it is NP-hard to colorK-colorable graphs withKΩ(logK) colors for all large enough

K, obtaining the first superpolynomial lower bound for this problem (Theorem 3.1.1). It

gives a strong evidence that perhaps it is NP-hard to colorK-colorable graphs withany

constant number of colors. The result is based on a PCP verifier that is very efficient

43



in terms of the trade-off between the number of queries and the soundness parameter.

The verifier achievesperfect completeness, a feature not shared by similar constructions

known before. We also introduce a technique calledRandomized Label Coverwhich

could be useful to obtain further results on graph coloring.

3.1 Definitions, Results and Techniques

The main result in this chapter is :

Theorem 3.1.1 [74] For sufficiently large constantsK, it is NP-hard to color aK-

colorable graph withKΩ(logK) colors. The result holds on graphs with degree2KO(logK)
.

There is a huge gap between known algorithmic and hardness results for graph col-

oring. On the algorithmic side, Blum and Karger [18] give an algorithm to color a3-

colorable graph with̃O(n3/14) colors whereas Karger et al [70] give an algorithm to color

aK-colorable graph with̃O(n1−3/(K+1)) colors. On the hardness side, Garey and John-

son [48] show that if for everyK there exists an algorithm to color aK-colorable graph

with 2K − 6 colors, then P = NP. But they do not specify an integerK for which it is

NP-hard to color aK-colorable graph with2K − 6 colors. Lund and Yannakakis [93]

show that for every constantC, there exists a constantK(C) such that it is NP-hard to

color aK(C)-colorable graph withC · K(C) colors. Khanna et al [72] show that for

everyK ≥ 3, it is NP-hard to color aK-colorable graph withK ′ = K + 2bK3 c − 1

colors. F̈urer [47] shows the following result which was so far asymptotically the best

result (definition ofamortized free bit complexityappears next).

Theorem 3.1.2 If NP has a PCP verifier with logarithmic randomness and amortized

free bit complexityf , then for every constantε > 0, for all sufficiently large constants

44



K, it is hard to color aK-colorable graph withK ′ = K
1+ 1

max(1+2f,2)
−ε

colors assuming

NP 6= ZPP.

Using current PCPs with arbitrarily low amortized free bit complexity, this theorem gives

K ′ = K3/2−ε. It was an open problem (also raised by Khanna et al [72]) whether one can

replaceK ′ by a superpolynomial function ofK. Theorem 3.1.1 resolves this question.

Our result is based on construction of a new verifier (Theorem 3.1.5) that is efficient in

terms of itsamortized query complexityandamortized free bit complexity.

Definition 3.1.3 A verifier is said to have free bit complexityf if there is a subset off

queries read by the verifier such that the answer to every other query is determined by

the answers to this subset of queries (if the verifier is to accept).

For example, H˚astad’s3-bit verifier reads3 bits (x, y, z) and accepts if and only if

x⊕y⊕z = 0 (or x⊕y⊕z = 1). This verifier has free bit complexity2 since the answers

for bitsx, y automatically fix the answer to the bitz if the verifier is to accept.

If a verifier queriesq bits of whichf are free and has soundnesss, then theamortized

query complexityq and theamortized free bit complexityf are defined as

q =
q

log(1/s)
, f =

f

log(1/s)

The amortized free bit complexity is an important parameter for showing hardness of

approximating clique (or equivalently independent set). The reason is that in the funda-

mental connection between PCPs and inapproximability of clique (see [38]), the size of

the FGLSS graph produced grows with parameterf . The soundness parameter on the

other hand gives a “gap” between the clique sizes in completeness and soundness case.

Thus the trade-off betweenf ands turns out to be crucial. The following result appears

in [16].

45



Theorem 3.1.4 If NP has a PCP verifier that uses logarithmic randomness, has com-

pleteness≥ 1
2 and amortized free bit complexityf , then assumingNP 6⊆ BPP, no poly-

nomial time algorithm can approximate clique size in ann-vertex graph within factor

n
1

1+f
−ε

. Hereε > 0 is an arbitrarily small constant.

In this chapter, we construct the following PCP verifier that appears in a paper of H˚astad

and Khot [62].

Theorem 3.1.5 For every integerk, NP has a PCP verifier that queries4k + k2 bits of

which4k bits are free, has perfect completeness and soundness at most2−k2+1.

Theorem 3.1.5 gives a verifier that has1 + δ amortized query complexity andδ amor-

tized free bit complexity for an arbitrarily smallδ. The verifier is optimal in both the

parameters and in particular we get an alternate proof of H˚astad’s [59]n1−ε hardness re-

sult for Clique. Such a verifier was already constructed by Samorodnitsky and Trevisan

[106], but their verifier loses perfect completeness and this seems to be essential for their

proof. For many reasons it is preferable to have perfect completeness. Firstly, it is natural

to have a proof system where a correct proof of a correct theorem is always accepted.

Secondly, perfect completeness is sometimes essential to obtain further results. Some

inapproximability results for problems such as coloring often make essential use of per-

fect completeness and when using a given PCP as a submodule in future PCPs, perfect

completeness, to say the least, simplifies matters.

Several results in the past have focused on achieving PCPs with perfect completeness

and this task often turns out to be much harder than obtaining corresponding PCPs with-

out this property. For instance, H˚astad shows that MAX-3SAT is hard to approximate

within ratio 8
7 − ε. This result follows from his 3-Bit PCP construction (Theorem 2.0.1)

using a simple gadget that reduces Max-3-Lin-2 to MAX-3SAT. To extend this result to

46



satisfiable instances however requires a new construction and a technically much more

complicated proof.

Our result is based on a basic non-linear test which reads5 bits(b1, b2, b3, b4, b5) from

the proof and accepts ifb1 = b2 ⊕ b3 ⊕ (b4 ∧ b5). We would like to emphasize that

PCP with a linear predicate cannot achieve perfect completeness. We call this constraint

Tri-Sum-And and let MAX-TSA be the problem of satisfying maximum number of such

constraints. We have the following theorem.

Theorem 3.1.6 For anyε > 0, it is NP-hard to distinguish satisfiable instances of Max-

TSA from those where one can satisfy only a fraction1
2 + ε of the constraints.

Note that this is tight for MAX-TSA since a random assignment satisfies half the

constraints. We then iterate this basic test in a way similar to Samorodnitsky and Trevisan

iterate the basic3-bit test by Håstad. The iterated test suffices to prove Theorem 3.1.5. A

standard reduction from PCPs to constraint satisfaction problems implies the following

theorem :

Theorem 3.1.7 Boolean constraint satisfaction problem onk variables is hard to ap-

proximate within ratio2k−O(
√
k) on satisfiable instances.

Techniques

We prove Theorem 3.1.6 by designing an appropriate PCP verifier that reads5 bits from

the proof. Denote this test by MAX-TSA(b1, b2, b3, b4, b5) which accepts if and only if

b1 = b2 ⊕ b3 ⊕ (b4 ∧ b5). Think of b2, b3, b4, b5 as free bits andb1 as depending on them.

The test has perfect completeness and soundness essentially1
2 . This test is then iterated

in a query efficient way to prove Theorem 3.1.5. The iterated test first reads a set of4k

free bits, sayS. Then it readsk2 more bits, say{bi1|1 ≤ i ≤ k2} and conducts the basic

47



test MAX-TSA(bi1, b
i
2, b

i
3, b

i
4, b

i
5) wherebi2, b

i
3, b

i
4, b

i
5 ∈ S are the free bits already read. It

accepts if and only if allk2 basic tests accept. A very surprising result of Samorodnitsky

and Trevisan [106] shows that thesek2 tests behave as independent tests, each test reduces

the soundness by a factor1
2 and thus the iterated test has soundness essentially2−k2

.

However the analysis of both the basic test and the iterated test are rather technical.

The result on graph coloring is proved using the iterated test as a black-box, so one could

read that result without going through cumbersome analysis of PCP tests.

The graph coloring result is shown by invoking the following fundamental connection

between PCPs and independent sets in graphs by Feige et al [38] : If there is a PCP that

has near-perfect completeness,f free bits and soundnesss, then there is a reduction from

this PCP to a graph (called FGLSS graph) such that (i) in completeness case, the graph

contains an independent set of (fractional) size2−f and (ii) in soundness case, there is no

independent set of sizes. Using the PCP of Theorem 3.1.5, we see that in the soundness

case, the FGLSS graph has no independent set of size2−k2+1 and therefore needs2k2−1

colors to color it. On the other hand, in completeness case, we have a large independent

set (of size2−4k). We might hope to have2O(k) such independent sets that cover the

whole graph so that the graph is2O(k)-colorable. An independent set in FGLSS graph

corresponds to a proof for PCP, which in turn corresponds to a labeling to Label Cover

instance. Therefore we need to ensure that the underlying Label Cover instance has

manycorrect labelings. A simple technique calledRandomized Label Coverallows us to

achieve this (see Section 3.4.2).

Here is a simple example that motivates the randomization technique. Let us say

we have a satisfiable SAT formulaφ. Now we add some dummy variables toφ and

construct a new formulaψ, keeping exactly the same clauses. Nowφ has (at least) one

satisfying assignment butψ has many satisfying assignments since the dummy variables

48



of ψ can be assigned arbitrary values. This (trivial) construction is the essence of the

randomization technique. We have to apply a similar construction to the Label Cover

problem. Things get a bit complicated since we have to look at the iterated test, combine

it with the randomization technique and the FGLSS graph. We also need to prune a small

portion of the FGLSS graph.

Graphs Vs Hypergraphs

In subsequent chapters, we will see strong hardness results for coloring hypergraphs.

These results are shown by a completely different approach. To show hardness of coloring

q-uniform hypergraphs, we construct a PCP that readsq symbols from the proof and

accepts if not all symbols are equal. This is aq-query PCP with a specific acceptance

predicate. Then we let the symbols (locations) in the proof to be vertices of a hypergraph

and the tests of the verifier as the edges of the hypergraph. Forq ≥ 3, Fourier methods

can be applied and the PCP can be analyzed in a rather straightforward way.

However, graphs correspond to the caseq = 2, i.e. PCPs with two queries. Currently

we do not know how to analyze2-query PCPs with Fourier methods. Thus the difference

between graphs and hypergraphs is rooted in the power of PCPs with two or more queries.

The only connection we know between PCPs and independent sets in graphs is the FGLSS

connection.

3.2 Basic test

In this section, we describe our basic5-bit test with the acceptance predicate as MAX-

TSA. LetL = (G(V,W,E), N,M, {πv,w}) be an instance of the Label Cover problem

given by Theorem 2.3.2. Recall that|N | = 2u, |M | = 7u and the soundness is2−γu. For

49



bitsa, b ∈ {−1, 1}, let a ∧ b denote the logical AND ofa, b where−1 represents logical

TRUE and1 represents logical FALSE.

The action of the verifierV5bit is :

1. Pick a random vertexw ∈ W and its random neighborv ∈ V . Let π = πv,w :

M 7→ N be the corresponding projection function.

2. LetA,B be the supposed long codes of labels ofv, w in the proof. These long

codes are assumed to be folded (i.e.A(−f) = −A(f)).

3. Choose two random functionsg, g′ ∈ G and and two random functionsf, f ′ ∈ F

where

G = {g | g : M 7→ {−1, 1}}, F = {f | f : N 7→ {−1, 1}}

4. Define a functionh ∈ G ash = g(f ◦ π)(g′ ∧ (f ′ ◦ π)), i.e. by setting for each

y ∈M ,

h(y) = g(y)f(π(y))(g′(y) ∧ f ′(π(y)))

5. Accept if and only if

B(h) = B(g)A(f)(B(g′) ∧ A(f ′))

We have the basic completeness lemma.

Lemma 3.2.1 The completeness of the basic test is 1.

50



Proof: In a correct proof,A,B are long codes of labelsa ∈ N, b ∈ M resp. with

π(b) = a. HenceB(h) = h(b) and similarly for the other involved functions. The

completeness now follows from the definition ofh.

The major work is involved in establishing the soundness.

Lemma 3.2.2 If the verifier in the basic test accepts with probability(1+δ)/2 then there

exists a labeling for the Label Cover instanceL that satisfiesδO(1) fraction of edges, i.e.

OPT (L) ≥ δO(1). In particular, the soundness of the verifier is at most(1+δ)/2 provided

the parameteru of the Label Cover problem in Theorem 2.3.2 satisfies2−γu < δO(1).

Proof: The acceptance probability of the verifier is

Pr[accept] = Ev,w,f,f ′,g,g′[
1 +B(h)B(g)A(f)(B(g′) ∧A(f ′))

2
]

The hypothesis of the lemma implies that

Ev,w,f,f ′,g,g′[B(h)B(g)A(f)(B(g′) ∧ A(f ′))] = δ. (3.1)

Fix v, w, f ′ andg′ and let us study

Ef,g[B(h)B(g)A(f)].

Replacing each function by its Fourier expansion we see that this equals (we denote

f ◦ π, f ′ ◦ π by f, f ′ resp. whenever the meaning is clear)

∑
β1,β2,α

B̂β1B̂β2ÂαEf,g[χβ1(fg(f ′ ∧ g′))χβ2(g)χα(f)].

51



The expectation overg is zero unlessβ1 = β2 = β and expectation overf is zero unless

π2(β) = α (definitions of setsπ(β) andπ2(β) appear before Lemma 2.4.5).

Thus the expression equals

∑
β

B̂2
βÂπ2(β)χβ(f ′ ∧ g′).

Hence we need to analyze

Ef ′,g′[χβ(f ′ ∧ g′)(B(g′) ∧ A(f ′))].

We havea ∧ b = 1
2(1 + a+ b− ab) and using this we should analyze

E[χβ(f ′∧g′)], E[χβ(f ′∧g′)B(g′)], E[χβ(f ′∧g′)A(f ′)], andE[χβ(f ′∧g′)B(g′)A(f ′)].

Fix the value off ′ and letβ′ = {y | y ∈ β ∧ f ′(π(y)) = −1}. Observe that

Eg′ [χβ(f ′ ∧ g′)] = Eg′ [
∏
y∈β

(f ′(π(y)) ∧ g′(y))] = Eg′ [
∏
y∈β′

g′(y)] (= 0 unlessβ′ = ∅)

Similarly, the third expected value is0 unlessβ′ = ∅ while the second and the fourth

expected values equal̂Bβ′ andB̂β′A(f ′), respectively. The probability, over the choice

of f ′ thatβ′ is empty is2−|π(β)|. Cauchy-Schwartz inequality implies

Ef ′
[
|B̂β′|

]
= 2−|π(β)|

∑
α⊆π(β)

|B̂β∩π−1(α)|

≤ 2−|π(β)|/2

 ∑
α⊆π(β)

B̂2
β∩π−1(α)

1/2

≤ 2−|π(β)|/2 (3.2)

52



This implies that we get an overall upper bound on the left hand side of (3.1) as

Ev,w

[∑
β

B̂2
β |Âπ2(β)| (2−|π(β)| + 2−|π(β)|/2)

]
≤ Ev,w

[∑
β

B̂2
β |Âπ2(β)| 21−|π(β)|/2

]
(3.3)

and hence this expression is at leastδ. We use this to establish a good labeling for the

Label Cover instance. We first establish that some parts of the given sum are small. We

have the following lemma from [60].

Lemma 3.2.3 There is a constantc > 0 such that the Label Cover instance given by

Theorem 2.3.2 has the following additional property : For everyw ∈ W , andβ ⊆ M , if

v is a randomly chosen neighbor ofw andπ = πv,w, then

Ev[|π(β)|−1] ≤ |β|−c

The valuec = 1
35 is acceptable.

Let Sδ = (4(6 + 2 log δ−1)/δ)1/c and consider anyβ of size at leastSδ. Since

E[|π(β)|−1] ≤ δ/(4(6 + 2 log δ−1)), we conclude that the probability that|π(β)| ≤

(6 + 2 log δ−1) is bounded byδ/4. Thus for any suchβ we have

Ev[21−|π(β)|/2] ≤ δ

4
+
δ

4
=
δ

2

and hence discarding terms withβ of size at leastSδ in (3.3) still keeps a sum of expected

value at leastδ/2.

Furthermore since
∑

β B̂
2
β = 1 we can discard any term with|Âπ2(β)| ≤ δ/4 and not

reduce the sum by more thanδ/4. We conclude that the sum which is the right hand side

of (3.3) is at leastδ/4 even if we restrict summation toβ of size at mostSδ and such that

|Âπ2(β)| ≥ δ/4.

53



Now consider the following randomized labeling for vertices inV,W of the Label

Cover problem. For everyw ∈W , letB be the supposed long code of label ofw. Choose

β ⊆ M with probability B̂2
β, pick a randomy ∈ β and define label(w) = y. Similarly

for everyv ∈ V , let A be the supposed long code of label ofv. Chooseα ⊆ N with

probabilityÂ2
α, pick a randomx ∈ α and define label(v) = x. We note that sinceA,B

are folded, by Lemma 2.4.4, the setsα andβ selected by this procedure are nonempty.

The fraction of edges satisfied by this labeling is at least

Ev,w

[∑
β

B̂2
βÂ

2
π2(β)|β|−1

]
(3.4)

If we restrict summation to|β| ≤ Sδ and|Âπ2(β)| ≥ δ/4, expression (3.4) is at least

S−1
δ δ/4 Ev,w

 ∑
β;|β|≤Sδ,|Âπ2(β)|≥δ/4

B̂2
β|Âπ2(β)|


By the above reasoning, this expected value is at leastδ/4 and we get a lower bound

S−1
δ (δ/4)2 onOPT (L). This completes the proof of the lemma.

The basic test reads 5 bits(b1, b2, b3, b4, b5) from the proof and checks whetherb1b2b3(b4∧

b5) = 1 which is same asb1 = b2 ⊕ b3 ⊕ (b4 ∧ b5) in {0, 1} notation. Theorem 3.1.6 now

follows by a standard procedure of replacing the bits in the proof by variables and asking

for a proof that maximizes the acceptance probability.

3.3 The Iterated Test (Almost Disjoint Sets Test)

Now we prove Theorem 3.1.5. We extend our basic test in a query efficient way. The ver-

ifier which we callVeffi is given a Label Cover instanceL(G(V,W,E), N,M, {πv,w}).

54



The action of the verifier is :

• Pickv ∈ V and pickk functions(fi)ki=1 andk functions(f ′j)
k
j=1 all fromF .

• Pickk neighbors ofv fromW , say(wl)kl=1, andk pairs of functions(gl, g′l) fromG.

• Perform the basic test for(fi, f ′j, gl, g
′
l) for all triples(i, j, l) for which i+ j + l =

0 modk. Specifically, let

hijl = glfi(f ′j ∧ g′l)

and test if

Bl(hijl)Bl(gl)A(fi)(A(f ′j) ∧Bl(g′l)) = 1 (3.5)

Remark : Note that one could potentially carry out the test for all triples(i, j, l), but

we do it only fork2 triples (i, j, l) with i + j + l = 0 mod k. This set of triples has

the property that any two triples intersect in at most one point (hence the namealmost

disjoint sets test). This property is crucial as we want to show that thesek2 tests behave

as if they were independent tests.

The following theorem proves Theorem 3.1.5. The iterated test is analyzed using

Håstad and Wigderson’s [64] method which gives a simpler analysis of Samorodnitsky

and Trevisan’s PCP [106].

Theorem 3.3.1 The iterated test has completeness1 and soundness2−k2 + δ provided

2−γu < δO(1). In particular, the soundness is2−k2+1 providedu = O(k2). The test

queries4k + k2 bits of which4k are free.

55



Proof of Theorem 3.3.1

The completeness follows from that of the basic test and we need to analyze the sound-

ness. LetZ0 denote the set of triples(i, j, l) with i + j + l = 0 modk. Let Acc(i, j, l)

be a variable that indicates whether the test given by the triple(i, j, l) accepts, taking the

value1 if it does and−1 otherwise. Note that in fact

Acc(i, j, l) = Bl(hijl)Bl(gl)A(fi)(A(f ′j) ∧Bl(g′l))

Consider

∏
(i,j,l)∈Z0

1 + Acc(i, j, l)
2

= 2−k
2 ∑
S⊆Z0

∏
(i,j,l)∈S

Acc(i, j, l) (3.6)

This number equals1 if the test accepts and is0 otherwise and thus its expected value

is the probability that the test accepts. The expectation is over the choice ofv, (fi)ki=1,

(f ′j)
k
j=1, (wl, gl, g′l)

k
l=1.

The term withS = ∅ is 1 and to establish the theorem it is sufficient to establish that

any other term is bounded byδ. Let TS be the expected value of the term corresponding

toS. We go on to define a labeling for the Label Cover instance which satisfies a fraction

|TS|O(1) of edges.

Suppose that(i0, j0, l0) ∈ S and let us fix the values offi, i 6= i0, f ′j, j 6= j0 and

(wl, gl, g′l) for l 6= l0 in such a way as not to decrease|TS|. Consider any triple(i, j, l) ∈ S

other than(i0, j0, l0). It intersects(i0, j0, l0) in at most one place. Ifi 6= i0, j 6= j0, l 6= l0,

after the fixings, Acc(i, j, l) reduces to a constant±1. Similarly, if i = i0, j 6= j0, l 6= l0,

Acc(i, j, l) reduces toX(fi0) whereX is some function offi0 . An important point is that

X depends only on the choice ofv. If i 6= i0, j = j0, l 6= l0, Acc(i, j, l) reduces to some

56



functionY (f ′j0) depending only onv. Finally if i 6= i0, j 6= j0, l = l0, Acc(i, j, l) reduces

to some functionZ(gl0, g′l0) depending both onwl0 andv.

On the other hand, usingx ∧ y = 1+x+y−xy
2 one can write

Acc(i0, j0, l0) = Bl0(hi0j0l0)Bl0(gl0)A(fi0) ·
1 +A(f ′j0) +Bl0(g′l0)− A(f ′j0)Bl0(g′l0)

2

Altogether we can writeTS as a sum of4 terms of the form

Bl0(hi0j0l0)A′(fi0)A′′(f ′j0)C(gl0, g
′
l0) (3.7)

each with a coefficient1/2. HereA′, A′′, C are boolean functions that “absorb” all the

functions of typeX, Y, Z respectively. We again stress thatA′ andA′′ only depend onv

and hence can be used to define a labeling forv. Bl0 is the original long code forwl0 and

hence is useful to define a labeling forwl0 . FinallyC is a Boolean function that depends

on bothv andwl0 and is not useful to define a labeling.

Let us now discard the indices for readability and write (3.7) as

B(h)A′(f)A′′(f ′)C(g, g′)

We want to compute the expected value of this expression over random choices off , f ′,

g andg′. Expanding all factors exceptA′′(f ′) by the Fourier transform we get

∑
α,β,γ,γ′

Â′αB̂βĈγ,γ′E[χα(f)χβ(gf(f ′ ∧ g′))χγ(g)χγ′(g′)A′′(f ′)] (3.8)

Now taking the expected value overf we see that unlessα = π2(β) the term is zero.

Similarly we needβ = γ, and fixingf ′ we see that unlessγ′ = β ∩ π−1(f ′−1(−1)) we

57



also get a zero expected value. Thus the expression reduces to

∑
β

Â′π2(β)B̂βĈβ,β∩π−1(f ′−1(−1))A
′′(f ′). (3.9)

We have

| Ef ′[Ĉβ,β∩π−1(f ′−1(−1))A
′′(f ′)] | ≤ Ef ′ [ |Ĉβ,β∩π−1(f−1(−1))| ]

≤ 2−|π(β)|
∑

α′⊆π(β)

|Ĉβ,β∩π−1(α′)|

≤ 2−|π(β)|/2

 ∑
α′⊆π(β)

Ĉ2
β,β∩π−1(α′)

1/2

Substituting this estimate into (3.9) and using Cauchy-Schwartz inequality overβ we get

the upper estimate

(∑
β

B̂2
βÂ
′2
π2(β)2

−|π(β)|

)1/2(∑
β,β1

Ĉ2
β,β1

)1/2

≤
(∑

β

B̂2
βÂ
′2
π2(β)2

−|π(β)|

)1/2

for |TS|. The rest of the proof now follows along the same lines as for the basic test. We

define the same labeling and the analysis is almost identical. We omit the details.

3.4 Hardness of Graph Coloring

We prove Theorem 3.1.1 in this section. We give a reduction from the PCP verifierVeffi

in Section 3.3 to a graphG such that : in completeness case, the graph can be colored

withK colors and in soundness case, the graph needsKΩ(logK) colors to color it. We use

a modification of the verifierVeffi and use Theorem 3.3.1. We also use the fundamental

58



connection between PCPs and independent sets in graphs, discovered by Feige et al [38].

We first describe their construction that builds a graph from any PCP verifier.

Definition 3.4.1 An accepting patternτ for a PCP verifier is a pairτ = (S, ν) such that

for some choice of the random string,S is the set of query bits read by the verifier and

ν is a setting of these bits for which the verifier would accept. The set of all accepting

patterns is denoted byT . A proof Π is said to be consistent with a patternτ = (S, ν) if

the values of bits in proofΠ corresponding to the setS matchν.

3.4.1 The FGLSS Graph

Given a PCP verifierVpcp that usesr random bits andf free bits, we define the cor-

responding FGLSS graphG as follows (Fig. 3.1). The vertices of this graph are all

accepting patternsτ = (S, ν). There is an edge between two patterns(S, ν) and(S′, ν′)

if the setsS, S ′ have a bit in common andν, ν′ assign different values to this bit, i.e. if

these patterns are conflicting. Note that there is one setS of queries for every choice of

the random string used by the verifier and there are2f settingsν such that(S, ν) is an

accepting pattern. So the FGLSS graph has|G| = 2r+f vertices. It is convenient to group

the vertices into2r groups, one group for every random string. Each group contains2f

vertices which form a clique.

The important property of the FGLSS graph is the following : For a proofΠ, consider

the set of patterns that are consistent with this proof. This set consists of one pattern for

every random string on which the verifier accepts. Since these patterns are consistent with

the proofΠ, they are non-conflicting and hence form an independent set in the FGLSS

59



r  = # random bits used 

1

2 

3 

2

  edges  =   conflict between patterns  

vertices   = accepting patterns )(S, 

is a clique 

Each  group 

vertices  in each group 
f 

2

f  = # free bits 

− 1 
r

2

r 

Figure 3.1: FGLSS Graph

graph. We call this independent setIΠ. Its size is given by

|IΠ| = ] random strings for which proofΠ is accepted

= 2r · (acceptance probability for proofΠ ) (3.10)

Conversely, an independent set in the FGLSS graph gives a proof whose acceptance

probability is proportional to the size of this independent set, as given by the above equa-

tion. Thus there is a one-to-one correspondence between proofs for the verifier and inde-

pendent sets in the FGLSS graph.

Now consider the verifierVeffi described in Section 3.3. Its soundness is at most

2−k2+1. Equation (3.10) implies that the size of a maximum independent set in the corre-

sponding FGLSS graph is at most2r · 2−k2+1. Since every independent set is “small”, the

60



graph needs lots of colors to color it. Specifically, we need at least

|G|
2r · 2−k2+1 =

2r+f

2r · 2−k2+1 =
2r+4k

2r · 2−k2+1 = 2k
2+4k−1

colors to color the FGLSS graph.

We investigate the completeness case next. We would like to show that the graph can

be colored with a small number of colors, or equivalently it can be covered by a small

number of independent sets. This is not necessarily true for the FGLSS graph constructed

from the verifierVeffi, so we need to construct a new verifier which we callVrand.

Note that an independent set in FGLSS graph corresponds to a correct proof, which

in turn, corresponds to a correct labeling of the Label Cover instanceL. Thus, in order

to have many independent sets in the FGLSS graph, we need to have many correct label-

ings to the Label Cover instance. The following construction gives a new instanceL′ of

Label Cover from the original instanceL with the extra property that it has many correct

labelings.

3.4.2 Randomized Label Cover

Definition 3.4.2 Given a Label Cover instanceL = (G(V,W,E), N,M, {πv,w}), and a

finite setZ, the randomized Label Cover instanceL′ = (G(V,W,E), N ′,M ′, {π′v,w}) is

defined as follows.

• M ′ = M × Z, N ′ = N × Z

• For (v, w) ∈ E, and the projection mapπv,w : M 7→ N , the new projection map

π′v,w : M ′ 7→ N ′ is defined as

π′v,w((b, z)) = (πv,w(b), z) ∀ (b, z) ∈M ′ = M × Z

61



To summarize,L′ has the same set of vertices and edges asL. However, the label

sets are nowM × Z andN × Z. The new projection maps are same as the previous

projection maps on the first coordinate and identity on the second coordinate. Thus the

second coordinate is “dummy”. The following properties are obvious.

Lemma 3.4.3 If L′ is randomized Label Cover instance obtained fromL and a setZ,

then

• OPT(L′) = OPT(L).

• If a labelingΦ : V 7→ N,Φ : W 7→ M is a correct labeling forL (i.e. labeling

that satisfies every edge), then for everyz0 ∈ Z, the labelingΦ′ : V 7→ N ′,Φ′ :

W 7→M ′ is a correct labeling forL′. The labelingΦ′ is defined as

Φ′(v) = (Φ(v), z0), Φ′(w) = (Φ(w), z0)

In particular, a correct labeling ofL gives|Z| correct labelings ofL′ for different

choices ofz0.

3.4.3 Pruning FGLSS Graph and Proof of Theorem 3.1.1

The idea is to construct a new verifierVrand that works as follows : Given a Label Cover

instanceL, first construct a randomized Label Cover instanceL′ and then run the verifier

Veffi (from Section 3.3) onL′. We choose|Z| = 25k.

Recall that in the completeness case, there are|Z| different labelings toL′ and hence

there are several correct proofs (i.e. proofs accepted with probability1), one proofΠ(z)

for every choice ofz ∈ Z. Each of these correct proofs corresponds to an independent

set of size2r. We may expect that these independent sets cover the FGLSS graph. This

62



essentially turns out to be the case : they cover all but a tiny portion of the FGLSS graph.

This tiny portion can be identified beforehand and thrown away. Thus the remaining

FGLSS graph can be colored with a small number (25k) of colors. The next definition

helps us identify this “bad” portion of the FGLSS graph. Recall that the vertices of the

FGLSS graph correspond to the verifier’s choice of the tables(A,B1, . . . , Bk) and the

functions(fi, f ′j, gl, g
′
l)i,j,l=1,2,... ,k. The functionsfi, f ′j are now on the domainN ′ =

N × Z and the functionsgl, g′l are now on the domainM ′ = M × Z.

We will identify some of the choices of the functions as “bad”.

Definition 3.4.4 A choice of functions(fi, f ′j, gl, g
′
l)i,j,l=1,2,... ,k is called good if

∀ a ∈ N, ∀ b1, b2, . . . , bk ∈M, ∀ x ∈ {−1, 1}4k, ∃ z ∈ Z such that

x = ( f1(a, z), f ′1(a, z), . . . , fk(a, z), f ′k(a, z), g1(b1, z), g′1(b1, z), . . . , gk(bk, z), g′k(bk, z) )

Lemma 3.4.5 If |Z| = 25k, then the probability that a choice of functions(fi, f ′j, gl, g
′
l)

is not good is≤ 2−2k−1
providedk is large enough.

Proof: Fix x, a, b1, . . . , bk. Note that(fi, f ′j , gl, g′l) are defined by setting value±1 with

equal probability at every point independently. So for everyz ∈ Z, the probability that

x 6= ( f1(a, z), f ′1(a, z), . . . , fk(a, z), f ′k(a, z), g1(b1, z), g′1(b1, z), . . . , gk(bk, z), g′k(bk, z) )

is 1 − 2−4k. The probability that this holds for everyz ∈ Z is (1 − 2−4k)25k ≤ 2−2k .

Now we take a union bound over all choices ofx, a, (bi)ki=1. There are24k choices forx,

|N | = 2u choices fora, and|M | = 7u choices for each ofb1, b2, . . . bk. Thus the total

number of choices is2O(ku) andu = O(k2) (see Theorem 3.3.1). It follows that a choice

of functions is not good with probability at most2−2k+O(k3) ≤ 2−2k−1
.

63



We remove the vertices in the FGLSS graph which correspond to a bad choice of

functions and call the remaining graph as themodified FGLSS graph. By Lemma 3.4.5,

the fraction of vertices removed is very small. So in the soundness case, we still need at

least2k2
colors to color the modified FGLSS graph.

In the completeness case, consider any vertex(S, ν) of the modified FGLSS graph

whereS corresponds to a set of queries( {A(fi)}ki=1, {A(f ′j)}kj=1, {Bl(gl), Bl(g′l)}kl=1)

andν is some setting of these bits. In a correct proofΠ(z) for verifierVrand, the tables

A,Bj are long codes of some labels(a, z), (bj , z). Hence

A(fi) = fi(a, z), A(f ′j) = f ′j(a, z), Bl(gl) = gl(bl, z), Bl(g′l) = g′l(bl, z) (3.11)

In the modified FGLSS graph, we are guaranteed that for some choice ofz, the bits in

(3.11) match the bit-patternν (by Definition 3.4.4). Thus the independent sets corre-

sponding to the proofs{Π(z)}z∈Z cover every vertex of the modified FGLSS graph and

hence it can be colored with|Z| = 25k colors.

Thus the modified FGLSS graph can either be colored with25k colors or requires2k2

colors to color it. TakingK = 25k proves Theorem 3.1.1. It is easy to see that the FGLSS

graph has degree at most2KO(logK)
.

64



Chapter 4

Hardness of Coloring3-Uniform

Hypergraphs

Coloring3-colorable graphs is one of the most important open problems in combinatorics

and computer science. The current best algorithms ([18], [70]) requireÕ(n3/14) colors

wheren is the number of vertices in the graph. On the other hand, we only know that it is

NP-hard to color3-colorable graphs with4 colors [72]. Current techniques seem to have

stuck on this problem and therefore it is natural to study its generalization to hypergraphs.

In this chapter, we obtain first strong hardness result for coloring3-uniform hy-

pergraphs. We show that it is hard to color3-colorable3-uniform hypergraphs with

(log logn)Ω(1) colors. In terms of techniques, our main contribution is construction of

a new PCP outer verifier, which we call Multi-layered Smooth Label Cover (Theorem

4.2.4). It is also used in Chapter 7 for showing hardness of Hypergraph Vertex Cover.

This verifier represents the state of the art outer verifier and could have many other appli-

cations in future.

65



Hardness results were earlier known for coloring4-uniform hypergraphs (see [55])

and we overcome the hurdles involved in extending these results to3-uniform hyper-

graphs. Hardness results for graph coloring however seem out of reach of current tech-

niques. We point out a fundamental difference between graphs and hypergraphs that

sheds some light on the difficulty in attacking graph coloring problem.

4.1 Definitions, Results and Techniques

A q-uniform hypergraphH = (V, E) consists of a set of verticesV and a set of edges

E . Every edgee ∈ E is a size-q subset of the set of vertices (so graphs are2-uniform

hypergraphs). A hypergraph is said to bek-colorable if the vertices can be colored with

k colors so that for every edge, not all its vertices have the same color. We consider both,

the minimization and maximization versions of hypergraph coloring problem.

Minimization Version : In the minimization version (also called Approximate Coloring

problem), we are given ak-colorable hypergraph wherek is a small constant and we seek

an algorithm to color the hypergraph with as few colors as possible. It is well-known

that it is NP-hard to test3-colorability of graphs whereas Lovász [90] showed that it

is NP-hard to test2-colorability of 3-uniform hypergraphs. The best known algorithms

for (hyper)graph coloring are summarized in Table 1. Explicit algorithms are known

only for 2-colorable3-uniform hypergraphs. However, it is a folklore result that for any

q ≥ 3, k ≥ 2, one can colork-colorableq-uniform hypergraphs in polynomial time with

nc(q,k) colors for some constantc(q, k) < 1.

A big open problem is whether3-colorable graphs are hard to color with constantly

many colors. Surprisingly, Guruswami et al [55] were able to show such a result for

4-uniform hypergraphs. They showed hardness of coloring2-colorable4-uniform hy-

66



Holds for Colors with
Blum, Karger [18] 3-colorable graphs Õ(n3/14) colors

Karger et al [70] k-colorable graphs, Õ(n1− 3
k+1 ) colors;

k ≥ 3 Improvements by Halperin et al [58]
Krivelevich et al [81] 2-colorable3-uniform Õ(n1/5) colors

hypergraphs

Table 1 : Known algorithmic results for (hyper)graph coloring.

Holds for Hardness of coloring Assumption
with

Khanna et al [72] 3-colorable graphs 4 colors P 6= NP
Khot [74] k-colorable graphs, kΩ(log k) colors P 6= NP
Chapter 3 all sufficiently largek
Guruswami et al 2-colorable4-uniform constantly many colors P 6= NP
[55] hypergraphs
Guruswami et al 2-colorable4-uniform Ω( log logn

log log logn) colors NP 6⊆
[55] hypergraphs DTIME(nO(log logn))
Khot [76] k-colorable4-uniform (log n)ck colors, NP 6⊆
Chapter 5 hypergraphs,k ≥ 5 c > 0 absolute constant DTIME(2(logn)O(1)

)
Khot [75] 3-colorable3-uniform constantly many colors P 6= NP
This chapter hypergraphs
Khot [75] 3-colorable3-uniform (log log n)1/8 colors NP 6⊆
This chapter hypergraphs DTIME(nO(log logn))
Dinur et al [31] 2-colorable3-uniform constantly many colors P 6= NP

hypergraphs
Dinur et al [31] 2-colorable3-uniform (log log n)1/3 colors NP 6⊆

hypergraphs DTIME(2(logn)O(1)
)

Table 2 : Known hardness results for (hyper)graph coloring.

67



pergraphs with constantly many colors. A question left open by Guruswami et al [55]

was whether similar hardness result holds for3-uniform hypergraphs. We answer this

question positively by proving that :

Theorem 4.1.1 For every constantδ > 0, it is NP-hard to distinguish whether ann-

vertex3-uniform hypergraph is3-colorable or it contains no independent set of sizeδn.

In particular, it is NP-hard to color3-colorable3-uniform hypergraphs with constantly

many colors.

Independent set in a hypergraph is defined as a set of vertices such that no edge lies

entirely within this set. In a properly colored hypergraph, the vertices colored with the

same color form an independent set. Thus saying that a hypergraph contains no indepen-

dent set of sizeδn is stronger than saying it cannot be colored with1/δ colors. The above

theorem implies that given a hypergraph that contains an independent set of sizeΩ(n) (n3

in this case), it is hard to find an independent set of sizeδn for any constantδ > 0. Such

a result was first proved in [76] and [66] for4-uniform hypergraphs. Obtaining a similar

result for graphs is a major open problem and is equivalent to constructing PCPs with

zero free bits, completenessΩ(1) and arbitrarily low soundness. There is no such PCP

characterization for independent sets in hypergraphs. Thus one outcome of the work on

hypergraph coloring is to point out the fundamental difference between graphs and hy-

pergraphs. Guruswami et al’s paper [55] gave hope that techniques for hypergraphs might

eventually be used for graphs, but evidence from subsequent work has been negative.

Under a stronger complexity assumption than P6= NP, we show the following stronger

hardness result.

Theorem 4.1.2 AssumingNP 6⊆ DTIME(nO(log logn)), it is hard to color a3-colorable

3-uniform hypergraph onn vertices with(log log n)1/8 colors.

68



Maximization Version : In the maximization version of the hypergraph coloring prob-

lem, we are given aq-uniform hypergraph andk different colors. The goal is to assign one

color to every vertex so as to maximize the number of edges that are non-monochromatic.

One can also think of the maximization version as a constraint satisfaction problem

(CSP) on the Not-All-Equal predicate. The vertices of the hypergraph are variables of the

CSP and the edges are constraints of the CSP. Since the hypergraph isq-uniform, every

constraint is defined onq variables. Assignment of colors to the vertices corresponds to

assigning every variable a value from a domain of sizek. A constraint is satisfied iff all

its variables arenot assigned the same value, or equivalently, the corresponding edge is

non-monochromatic. We call this CSP to be the problem NAEq,k. The optimum of the

CSP is the maximum fraction of the constraints that can be satisfied by any assignment.

Note that assigning every variable a random value from the size-k domain satisfies

(1 − 1
kq−1 ) fraction of the constraints. The problem NAEq,k is said to have aRandom

Threshold Propertyif it is NP-hard to do strictly better than assigning random values, or

more specifically, if it is NP-hard to distinguish whether the optimum is≥ 1 − ε or

≤ 1− 1
kq−1 + ε for arbitrarily smallε > 0.

NAE2,k : For graphs (q = 2), the casek = 2 corresponds to the MAX-CUT problem and

Goemans and Williamson [50] give an algorithm that performs strictly better than taking

a random cut. Frieze and Jerrum [46] extend this algorithm fork ≥ 3 colors. Thus the

problem NAE2,k does nothave the random threshold property for anyk ≥ 2.

NAE4,k : Håstad [60] showed that for the problem NAE4,2, a gap(1, 7
8 + ε) is hard, i.e.

this problem has the random threshold property. It is implicit in his work that NAE4,k has

the random threshold property for everyk ≥ 2. This result was the basic starting point

for the hypergraph coloring result of Guruswami et al [55].

69



NAE3,k : Quite interestingly, Zwick [115] showed that for the problem NAE3,2, there

exists an algorithm that does strictly better than the random assignment. This seemed

to be a stumbling block in extending Guruswami et al’s techniques to3-uniform hyper-

graphs. In this chapter, we resolve the only remaining case i.e. NAE3,k with k ≥ 3. We

show that

Theorem 4.1.3 For everyk ≥ 3, the problemNAE 3,k has the random threshold prop-

erty on satisfiable instances. In particular, it is NP-hard to distinguish whether a3-

uniform hypergraph is3-colorable or any coloring of the vertices with3 colors has at

most8
9 + ε fraction of the edges non-monochromatic. Hereε > 0 is an arbitrarily small

constant.

Equivalent Formulation in terms of PCPs

We prove Theorem 4.1.1 and 4.1.3 by constructing a suitable PCP. We construct a PCP

verifier that expects a proof over the ternary domainZ3 (ork-ary domainZk). The verifier

reads3 symbols from the proof and accepts if and only if not all3 symbols are equal.

We let the locations in the proof to be the vertices of a hypergraph and the tests of the

verifier (reading3 locations) to be the edges of the hypergraph. This defines a3-uniform

hypergraph. In completeness case, we show that there exists a proof that the verifier

always accepts and hence the hypergraph is3-colorable. In soundness case, we show

that the hypergraph has no independent set of sizeδn. This proves Theorem 4.1.1. We

also show in soundness case that the probability of acceptance of the verifier is at most

8
9 + ε which proves Theorem 4.1.3. For the latter result, we need to construct a somewhat

different PCP so that it works for everyk ≥ 3.

70



Remark : Guruswami et al [55] use a technique calledcovering complexityto analyze

their PCP. The hypergraph they construct indeed has no independent set of sizeδn, but

this fact cannot be proven using covering complexity method. This was proved using a

more direct approach by Holmerin [66].

Techniques

The main technique in this chapter is construction of a new version of Label Cover prob-

lem which we call Multi-layered Smooth Label Cover problem.

Motivation for multi-layered structure : The Label Cover problem defined in Theorem

2.3.2 has a bipartite structure, i.e. the underlying graph has two layers. This2-layered

structure turns out to be a bottle-neck in showing certain hardness of approximation re-

sults. Let us say we want to prove Theorem 4.1.1. As explained before, this is equivalent

to building a3-query PCP with Not-All-Equal predicate. Consider such a PCP built from

a 2-layered Label Cover problem. In this PCP, the proof naturally splits into two parts.

Verifiers that can be built using current techniques are forced to read one query from the

left part and two queries from the right part. When a hypergraph is constructed from such

a PCP, the hypergraph also splits into two layers and every hyperedge has one vertex in

left layer and two vertices in the right layer. Coloring all vertices in each layer with the

same color gives a proper2-coloring of the hypergraph. Thus the hypergraph is always

2-colorable and the construction is doomed.

In the multi-layered version of Label Cover problem, the underlying graph has many

layers and between every pair of layers, we have an instance of the usual Label Cover

problem. A hypergraph built from a multi-layered version has many layers and there are

hyperedges between every pair of layers. Thus the “cheating strategy” described above

breaks down with the multi-layered construction.

71



Motivation for smoothness : Significance of smoothness property is rather technical in

nature. Smoothness refers to the property of the mapsπv,w in the definition of the Label

Cover problem (Definition 2.3.1). In general, these maps are many-to-one maps. As we

will see in Chapter 8, one possible direction for getting hardness results for some open

problems (e.g. Min-2SAT-Deletion, Vertex Cover), is to show hardness of Label Cover

instances with the property that the mapsπv,w are bijections. In other words, we would

like to have, for every edge(v, w), and every pair of distinct labelsb, b′ ∈M ,

πv,w(b) 6= πv,w(b′)

A simple and powerful technique in this chapter is to get a weaker analogue of the above

property. We will show hardness of Label Cover instances where the mapsπv,w are

“smooth”. For everyw ∈W and every pair of distinct labelsb, b′ ∈M , we have

Prv[πv,w(b) 6= πv,w(b′)] ≈ 1

Thus over the choice of a random neighbor ofw, the projections of labelsb andb′ are

distinct with high probability. The significance of this property will be evident only when

we get to the analysis. We build Label Cover instances with both the properties : multi-

layered structure and smoothness.

Remark : The idea of multi-layered Label Cover is from Dinur et al [29] and the

smoothness property is from Khot [75]. The latter paper combines the two ideas and that

is what we present in this chapter.

72



Comparison with Dinur et al’s Work :

Dinur, Regev and Smyth [31] obtained a better hardness result for coloring3-uniform

hypergraphs, and our work was partly influenced by their result. They show hardness

of coloring 2-colorable3-uniform hypergraphs with constantly many colors. However

their construction has large independent sets (in fact independent sets of sizen
2 ) and in

this respect, their result is weaker than Theorem 4.1.1. Both results use the multi-layered

Label Cover problem. We, in addition, use smoothness property and Fourier analysis

whereas Dinur et al make a clever use of Kneser graphs and their construction is more

combinatorial in nature. It is interesting that they are able to get a hardness result for

2-colorable3-uniform hypergraphs even though the problem NAE3,2 doesnot have the

random threshold property. It would be nice, if possible, to obtain a Fourier analysis

based proof of their result.

4.2 Constructing Multi-layered Smooth Label Cover

4.2.1 Achieving Smoothness Property

Let us first focus on achieving smoothness property. We will later present a combined

construction that achieves both smoothness and multi-layered structure.

We modify the 2-Prover-1-Round game (i.e. Raz’s Verifier) in Section 2.2 in the fol-

lowing way : The verifier is given an instanceφ of Gap-3SAT-5. Letu, T be parameters.

The verifier picks randomly a setw′ of u clauses and a setv′ of u variables as before;

variables inv′ include one variable from each clause inw′. Then he picks a setw′′ of Tu

clauses at random. He asks the second prover to give a satisfying assignment to the set

73



w = w′∪w′′ and asks the first prover to give a satisfying assignment to the setv = v′∪w′′.

The verifier accepts if and only if the answers of the two provers agree on the setv.

The clauses inw′′ are “dummy” in some sense. For a fixedw′′, the game is simply

a copy of the 2P1R game in Raz’s verifier. Thus this modified game also has soundness

2−Ω(u). Fix the setw of (T + 1)u clauses, hence fixing the question asked to the second

prover. The question asked to the first prover can be equivalently viewed as picking a

random subsetw′ ⊆ w of u clauses and taking one variable from each clause inw′ giving

a set of variablesv′. The question to the first prover isv = v′ ∪ (w \ w′). Letπv,w be the

projection that maps an assignment to the setw to its sub-assignment to the setv.

The following lemma gives a crucial property of this construction.

Lemma 4.2.1 (Smoothness property) For fixedw and any two distinct assignments

b1, b2 tow,

Pr v
[
πv,w(b1) 6= πv,w(b2)

]
≥ 1− 1

T

Proof: The assignmentsb1, b2 differ on at least one clauseC0 ∈ w. Note thatw′ is a

random subset ofw with |w′| = u and|w| = (T + 1)u. Hence with probability1 − 1
T

over the choice of the setw′, C0 6∈ w′ and consequentlyC0 ∈ v. Whenever this happens,

the sub-assignments ofb1, b2 to the setv are distinct.

In terms of the Label Cover problem, we can restate Theorem 2.3.2 with the additional

smoothness property given by Lemma 4.2.1.

Theorem 4.2.2 There is an absolute constantγ > 0 such that for all integer parameters

u andT , it is NP-hard to distinguish between the following two cases : A Label Cover

problemL(G(V,W,E), N,M, {πv,w|(v, w) ∈ E}) with |M | = 7(T+1)u, |N | = 2u7Tu

has

• OPT (L) = 1 OR

74



• OPT (L) ≤ 2−γu

The Label Cover instance has the following “smoothness property”. For everyw ∈ W ,

andb1, b2 ∈M , b1 6= b2, if v is a randomly chosen neighbor ofw, then

Pr v
[
πv,w(b1) 6= πv,w(b2)

]
≥ 1− 1

T

It can be assumed thatG(V,W,E) is a regular bipartite graph where every vertex inW

has degree
((T+1)u

u

)
3u and every vertex inV has degree5u.

4.2.2 Definition of Multi-layered Label Cover Problem

W

W
W

W
W

0

1
i

j
L

MM M M
M L

 Layer 0             Layer  1                    Layer  i                                        Layer  j                                     Layer   L 

v

w 

v,w 

Set  of labels 

0 1 i j

Figure 4.1: Multi-layered Label Cover

75



Definition 4.2.3 A multi-layered Label Cover instance (see Fig. 4.1)

Lmulti(G, {Wi}Li=0, E = ∪0≤i<j≤LEij , {Mi}Li=0, {πv,w}(v,w)∈E)

has the following description :G is a graph whose vertices are partitioned intoL + 1

layers. The layers are numbered from0 to L and the set of vertices in layeri isWi. For

0 ≤ i < j ≤ L, letEij denote the set of edges between layersi andj. The graph between

every pair of layers in a regular bipartite graph. There are no edges between vertices of

the same layer.

The goal is to assign labels to vertices of this graph. Vertices inith layer are supposed

to get labels from a setMi. For v ∈ Wi, w ∈ Wj such thati < j, (v, w) ∈ Eij, there is a

projection mapπv,w : Mj 7→Mi.

An assignment of labelsΦ : Wi 7→Mi assigns one label for every vertex in the graph.

The assignment is said to satisfy an edge(v, w) if

πv,w(Φ(w)) = Φ(v)

Let OPT (Lmulti, i, j) denote the maximum fraction of edges satisfied between layersi

andj by any labeling.

The following theorem states the construction of the multi-layered smooth Label Cover

problem.

Theorem 4.2.4 There is a poly-time reduction from Gap-3SAT-5 to a multi-layered Label

Cover problem

Lmulti(G, {Wi}Li=0, E = ∪0≤i<j≤LEij , {Mi}Li=0, {πv,w}(v,w)∈E)

76



and parametersT, u with these properties (think ofT � L � 1 andu as independent

parameter) :

1. |Mi| = 2(L−i)u7(T+i)u for every0 ≤ i ≤ L.

2. For i < j < k andwi ∈ Wi, wj ∈ Wj , wk ∈ Wk, if (wi, wj) ∈ Eij , (wj, wk) ∈ Ejk

then(wi, wk) ∈ Eik. In fact for anywk ∈ Wk, selecting its random neighbor in

layeri is same as first selecting its random neighborwj in layerj and then selecting

a random neighbor ofwj in layeri. This property can be generalized to anyt layers

i1 < i2 < . . . it. For a vertexwit ∈Wit, selecting its random neighbor in layeri1 is

same as successively selecting verticeswit−1 ∈Wit−1 , wit−2 ∈Wit−2 , . . . wi1 ∈Wi1

wherewil−1 is a random neighbor ofwil for l = t, t− 1, . . . , 2.

3. (Completeness) : If Gap-3SAT-5 instance is a YES instance (i.e. satisfiable), then

there exists a labeling that satisfies every edge ofLmulti.

4. (Soundness) : If Gap-3SAT-5 instance is a NO instance (i.e. no more than a con-

stant fraction of clauses are satisfiable), thenOPT (Lmulti, i, j) ≤ 2−γ(j−i)u ≤

2−γu. Hereγ is an absolute constant same as Theorem 2.3.2.

5. (Smoothness Property) :

Let 0 ≤ i < j ≤ L andw ∈ Wj. Let b, b′ ∈ Mj be two distinct labels tow. If

v ∈Wi is a random neighbor ofw in layer i, then

Pr v
[
πv,w(b) = πv,w(b′)

]
≤ L

T

6. (Weak Expansion Property) :

77



Consider anyt layers numberedi1 < i2 < . . . < it wheret = d2/δe. Choose

any setsSil ⊆ Wil with |Sil| ≥ δ|Wil| for 1 ≤ l ≤ t. Then there exist two layers

numberedil andil′ such that the number of edges between the setsSil andSil′ is at

least a fractionδ2/4 of the total number of edges between the layersil andil′.

4.2.3 The Main Construction

In this section, we prove Theorem 4.2.4. Let a Gap-3SAT-5 instance be given by Theorem

2.1.1. The variables will be denoted byx1, x2, . . . and the clauses byC1, C2, . . . . Let T

andu be integer parameters.

Defining Layers and Vertices forLmulti

For 0 ≤ i ≤ L, a type-i vertex corresponds to the union of a set of(L − i)u variables

and a set of(T + i)u clauses. LetWi be the set of of all type-i vertices.

Remark : A type-i vertex is union of a set of variables and a set of clauses. The fact

that the components aresetsand nottuplesis important. By definition, there is no order

associated with elements of a set.

Defining Edges Between Pairs of Layers

For 0 ≤ i < j ≤ L, let v ∈ Wi be a neighbor ofw ∈ Wj if one can obtainv by

replacing(j − i)u clauses{C l | l = 1, 2, .., (j − i)u} in w by (j − i)u variables

{xl | l = 1, 2, ..., (j − i)u} such that the variablexl is contained in the clauseCl for

1 ≤ l ≤ (j − i)u.

78



For w ∈ Wj, a random neighbor ofw in layer i is obtained by choosing(j − i)u

clauses at random from the(T + j)u clauses inw and replacing each clause by one of the

variables appearing in that clause picked at random.

Defining Sets of Labels

A vertex v ∈ Wi contains(L − i)u variables and(T + i)u clauses and thus a total of

(L− i)u+ 3(T + i)u variables. A label to vertexv is an assignment to these(L− i)u+

3(T + i)u variables such that the assignment satisfies all the clauses inv. LetMi denote

the set of all satisfying assignments tov ∈Wi with |Mi| = 2(L−i)u7(T+i)u.

If v is a type-i neighbor of a type-j vertexw, then every satisfying assignment tow

can be restricted to a satisfying assignment tov. Let the mapπv,w : Mj 7→ Mi denote

this operation of taking a sub-assignment/restriction.

Regularity, Completeness and Soundness

Since the Gap-3SAT-5 instance is regular, it is clear that the bipartite graph between every

pair of layersWi andWj is regular. Also, Property (2) of Theorem 4.2.4 follows from the

way we define edges between two layers.

Completeness is clear. For soundness, we note that between every pair of layers, we

have an instance of the smooth 2P1R game described in Section 4.2.1. As noted there,

this instance contains copies of the Raz Verifier and hence the soundness is2−γ(j−i)u.

Proving the Smoothness Property

Fix w ∈Wj and two assignmentsb, b′ tow which differ in at least one bit. The projection

πv,w preserves the variables inw, but replaces some clauses by variables. Ifb, b′ differ

79



on a variable inw, their projections underπv,w are still distinct. Otherwise they differ on

some clause, say clauseC0. For a choice of a random neighborv, one replaces at random

(j − i)u clauses out of the(T + j)u clauses inw. With probability1− j−i
T+j ≥ 1− L

T
, the

clauseC0 is not replaced and hence projections ofb, b′ are distinct.

The following lemma states an immediate consequence of the smoothness property.

Lemma 4.2.5 Let 0 ≤ i < j ≤ L andw ∈Wj. Let β ⊆Mj be non-empty andb ∈ β. If

v is a random neighbor ofw of type-i, then with probability1− |β|L/T we have,

∀ b′ ∈ β, b′ 6= b, πv,w(b) 6= πv,w(b′)

Proof: Just apply the previous lemma to everyb′ ∈ β, b′ 6= b and take a union bound.

Proving the Weak Expansion Property

Take anyt = d2
δ
e layersi1 < . . . < it and setsSil ⊆ Wil for 1 ≤ l ≤ t such that

Sil ≥ δ|Wil|. Consider a random walk beginning from a uniformly chosen vertexwit

in layer Wit and proceeding to a vertexwit−1 ∈ Wit−1 chosen uniformly among the

neighbors ofwit. The random walk continues in a similar way to a vertexwit−2 ∈ Wit−2

chosen uniformly among the neighbors ofwit−1 and so on up to a vertex inWi1 . Denote

byEl the indicator variable of the event that the random walk hits a vertex inSil in layer

il. From the regular structure of the multi-layered graph and Property (2) in Theorem

4.2.4, it follows that for everyl, Pr[El] ≥ δ. Moreover, using the inclusion-exclusion

80



principle, we get:

1 ≥ Pr[ ∨tl=1 El] ≥
∑
l

Pr[El]−
∑
l<l′

Pr[El ∧ El′]

≥ d2
δ
e · δ −

(
t

2

)
maxl<l′Pr[El ∧Ei′ ] ≥ 2−

(
t

2

)
maxl<l′Pr[El ∧ El′ ]

which implies

maxl<l′Pr[El ∧El′ ] ≥ 1/
(
t

2

)
≥ δ2

4

Fix l andl′ such that Pr[El ∧ El′ ] ≥ δ2

4 . This says that a random walk beginning in

layeril′ and ending in layeril hits both the setsSil′ andSil with probability at leastδ2/4.

However, such a random walk is same as picking an edge at random from the set of all

edges between layersil′ andil. Thus the fraction of edges between the setsSil′ andSil is

at least a fractionδ2/4 of the total number of edges between layersil′ andil.

4.3 Long Codes overZk and Fourier Analysis

As always, we build a PCP verifier by taking a Label Cover instance and plugging in the

Long Code. In this chapter, we need to use long codes over the ringZk (integers modk)

instead of binary long codes. These codes are defined as a straightforward generalization

of binary long codes.

Long code (overZk) over a domainM is indexed by all functionsg ∈ G where

G := {g | g : M 7→ {1, ω, ω2, . . . , ωk−1}}

81



Hereω is thekth root of unity, i.e.ω = e2πi/k. The long codeB of b ∈M is defined as

B(g) := g(b) ∀ g ∈ G

Consider the space of all “tables”B : G 7→ C . In particular, a long code is one such

table. Consider the charactersχβ whereβ : M 7→ Zk. There is one such character for

everyβ. The characterχβ is a table defined by

χβ(g) :=
∏
y∈M

g(y)β(y)

The characters form an orthonormal basis under the following definition of inner product

of tables. For tablesB1, B2, define

< B1, B2 > :=
1
k|M |

∑
g∈G

B1(g)B2(g) = Eg
[
B1(g)B2(g)

]

It follows that any table can be expanded asB =
∑

β B̂βχβ whereB̂β are the Fourier

coefficients with
∑

β |B̂β|2 = < B,B > . WhenB : G 7→ {1, ω, . . . , ωk−1}, we have∑
β |B̂β|2 = 1. The Fourier coefficients are given by

B̂β = < B,χβ > = Eg
[
B(g)χβ(g)

]
In particular whenβ ≡ 0, the value of the coefficient̂B0 is justEg[B(g)].

82



4.4 Hardness of3-Uniform Hypergraph Coloring

In this section, we prove Theorem 4.1.1. We construct a PCP verifier that expects a proof

over the domainZ3. The verifier reads3 symbols from the proof and accepts if and

only if not all 3 symbols are equal. We let the locations in the proof to be the vertices

of a hypergraph and the tests of the verifier (reading3 locations) to be the edges of the

hypergraph. This defines a3-uniform hypergraph and we prove the desired completeness

and soundness properties.

We reduce the Gap-3SAT-5 instance to an instanceLmulti of the multi-layered smooth

Label Cover given by Theorem 4.2.4. We expect the proof to contain for every vertex

w ∈ Wj, the long codeAw (overZ3) of a supposed label tow. So this long code is over

the domainMj (the set of labels for layerj). Let ω = e2πi/3 be the cube root of unity.

The long code is indexed by all functionsg ∈ Fj where

Fj := {g | g : Mj 7→ {1, ω, ω2}}

The verifier’s action is :

• Pick 0 ≤ i < j ≤ L at random.

• Pick a random vertexw ∈ Wj and its random neighborv ∈ Wi in layer i. Let

πv,w : Mj 7→ Mi be the projection betweenv andw. Let A = Av andB = Aw

be the supposed long codes of labels of verticesv andw. These long codes are

indexed by functionsf ∈ Fi andg ∈ Fj respectively.

83



• Pick random functionsf ∈ Fi, g ∈ Fj. Pick a functionµ ∈ Fj by defining for

everyx ∈Mj

µ(x) :=
{ ω with probability 1/2

ω2 with probability 1/2

• Let h ∈ Fj be defined ash := g · f ◦ πv,w · µ

• Accept if and only if

Not-All-Equal(A(f), B(g), B(h))

Completeness

In a correct proof,A will be the long code of somea ∈ Mi andB will be the long code

of someb ∈Mj, with πv,w(b) = a. In that case

A(f) = f(a), B(g) = g(b),

B(h) = h(b) = g(b)f(πv,w(b))µ(b) = g(b)f(a)µ(b)

HenceA(f), B(g), B(h) cannot all be equal, sinceµ takes values only in the set{ω, ω2}.

Thus the test always accepts a correct proof and the hypergraph is 3-colorable.

4.4.1 Soundness of PCP

We will show that the size of any independent set in the hypergraph is at mostδ fraction

of the size of the whole hypergraph. Note that the hypergraph is a(L + 1)-layered hy-

84



pergraph with hyperedges between every pair of layers. The hypergraph is a weighted

hypergraph. The vertices in the same layer have equal weight. The total weight of all

vertices in any layer is 1
L+1 . Since there areL + 1 layers, the total weight of all vertices

in the hypergraph is1.

Let I be any set of locations in the proof with weightδ. We will show that there is at

least a constant fraction of the tests for which all3 queries lie in the setI. This means

that for any set of vertices with weightδ in the hypergraph, at least a constant fraction of

hyperedges are contained in this set. Hence there is no independent set of sizeδ.

Define tablesAv as follows : For every vertexv,

Av(f) :=
{ 1 if the locationAv(f) ∈ I

0 otherwise

Remark : The tablesAv are0-1 tables whereas the proofs are supposed to be over the

alphabet{1, ω, ω2}. However0-1 tables still make sense in the Fourier analysis and in

fact going to0-1 tables is a trick we exploit.

Call a vertexv “good” if at leastδ/2 fraction of the locations in the tableAv are set

to 1. Equivalently,v is good if the Fourier coefficient̂Av,0 of the tableAv satisfies

Âv,0 ≥ δ/2

By an averaging argument, at leastδ/2 fraction of the verticesv are good. Again

by an averaging argument, in at leastδ/4 fraction of the layers, at leastδ/4 fraction of

the vertices are good. The number of such layers is≥ δ/4 · L ≥ O(1/δ) provided

L > O(1/δ2).

85



By the “weak expansion property” of the multi-layered graph (see Theorem 4.2.4),

there exist two layersi0 < j0 such that at leastδ/4 fraction of the vertices in each of

the two layers are good and the number of edges between the good vertices is at least

δ ′ = Ω(δ2) fraction of the total number of edges between layersi0 andj0. Fix these

layersi0 andj0 for the rest of the proof.

Consider the process of picking a random vertexw from layer j0 and its random

neighborv from layeri0. As noted, with probabilityδ′, bothw andv are good. Denoting

byA = Av andB = Aw, we have

Ev,w
[
Â0B̂

2
0

]
≥ (δ/2)3δ′ = δ′′ (say) (4.1)

Now consider the probability that all three queriesA(f), B(g), B(h) lie in the setI.

Every proof location is1 or 0 depending on whether it is in the setI or not. Hence this

probability is the expectation

Ev,w,f,g,µ
[
A(f)B(g)B(h)

]
which can be expanded using Fourier expansions of tablesA andB as

Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γ χα(f) χβ(g) χγ(gf ◦ πµ)
]

where we denotedπ = πv,w for notational convenience. Note thatβ, γ : Mj0 7→ Z3 and

α : Mi0 7→ Z3. The expression can be written as

Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γ χα(f) χβ(g) χγ(g) χγ(f ◦ π) χγ(µ)
]

=

86



Ev,w,f,g,µ
[ ∑
α,β,γ

ÂαB̂βB̂γ χα(f) χβ−γ(g) χγ(f ◦ π) χγ(µ)
]

This expectation is zero unlessβ = γ. Also χβ(f ◦ π) = χπ3(β)(f) if we let π3(β) :

Mi0 7→ Z3 be a function defined as

For y ∈ Mi0 , π3(β)(y) :=
∑

x∈Mj0 : π(x)=y

β(x) (sum is overZ3)

Hence the expression simplifies to

Ev,w,f,g,µ
[∑
α,β

ÂαB̂
2
β χα−π3(β)(f) χβ(µ)

]

Again, the expression is zero unlessα = π3(β). Defining “cardinality” ofβ as

|β| = |{x | x ∈Mj0 , β(x) 6= 0}|

we getEµ
[
χβ(µ)

]
= (−1

2)|β| (verify !). Thus the expression further simplifies to

Ev,w
[∑

β

Âπ3(β) B̂
2
β (−1

2
)|β|
]

(4.2)

Lemma 4.4.1 The terms in (4.2) withπ3(β) 6= 0 can be bounded in magnitude by2−Ω(u).

Proof: Using a standard argument, we will show that if the terms withπ3(β) 6= 0 have

significant magnitude, then there exists a labeling to the Label Cover vertices in layersi0

andj0 (see Definition 4.2.3) which satisfies a significant fraction of the edges between

87



these layers. Using Cauchy-Schwartz inequality,

∣∣∣Ev,w [∑β:π3(β)6=0 Âπ3(β)B̂
2
β(−1

2)|β|
]∣∣∣

≤ Ev,w

[ √∑
β:π3(β)6=0 |Âπ3(β)|2|B̂β|2(1

2)2|β|
√∑

β |B̂β|2
]

≤
√
Ev,w

[∑
β:π3(β)6=0 |Âπ3(β)|2|B̂β|2 1

|β|

]
(4.3)

Note thatA,B are0-1 tables and thus
∑

α |Âα|2 ≤ 1 and
∑

β |B̂β|2 ≤ 1. The labeling is

defined as follows : For a vertexw ∈ Wj0 , pick β with probability|B̂β|2, pick a random

x ∈Mj0 such thatβ(x) 6= 0 and define label(w) = x. For a vertexv ∈ Wi0, pickα with

probability |Âα|2, pick a randomy ∈ Mi0 such thatα(y) 6= 0 and define label(v) = y.

The summation in (4.3) is precisely the probability thatπ(label(w)) = label(v). This is

bounded byOPT (Lmulti, i0, j0) ≤ 2−Ω(u) as claimed (soundness property in Theorem

4.2.4).

Next, we note that the terms in (4.2) with|β| ≥ logT have magnitude at most

(1
2)log T = 1

T
which can be assumed to be negligible by choosingT large enough.

Thus we are left with terms whereπ3(β) = 0 and|β| ≤ logT . Fix w and consider

the case whenβ 6= 0, i.e. there existsx ∈ Mj0 such thatβ(x) 6= 0. Lemma 4.2.5 shows

that over the choice of a random neighborv, with probability 1− log T · L/T , we have

∀ x′ s.t.β(x′) 6= 0, x 6= x′ we haveπ(x) 6= π(x′)

Whenever this happens,π3(β) 6= 0. Hence the probability thatπ3(β) = 0 is at most

log T ·L
T

which is negligible. Thus the terms withπ3(β) = 0, β 6= 0 and|β| ≤ log T have

88



negligible magnitude. Finally we are left with the single term

Ev,w
[
Â0B̂

2
0

]
which is at leastδ′′ as observed before (Equation (4.1)). Assuming the magnitude of all

the terms neglected to be at mostδ′′/2, it follows that at leastδ′′/2 fraction of the tests

between layersi0 andj0 have all 3 queries in the setI. In particular,I cannot be an

independent set. This completes the proof.

Theorem 4.1.2 is proved by plugging in appropriate super-constant values of the pa-

rametersL, T, u in the analysis. We needL = O(1/δ2), T = O(log(1/δ)/δ7), u =

O(log(1/δ)). The size of the hypergraph produced is roughlyN = nTu37Tu . Choos-

ing δ = (log log n)−1/8 we haveN = nO(log logn) and it is either3-colorable or has no

independent set of sizeδ ≈ (log logN)−1/8.

4.5 Hardness of the Problem NAE3,k

In this section, we prove Theorem 4.1.3. It suffices to construct a PCP verifier that reads

3 symbols from a proof over the alphabetZk, accepts if not all3 symbols are equal, has

perfect completeness and soundnessk2−1
k2 + ε whereε > 0 is an arbitrary constant.

The verifier is based on the construction of the multi-layered Label Cover problem

given by Theorem 4.2.4. However we do not need the “weak expansion property” of this

construction. We make a crucial use of Lemma 4.2.5.

After picking a vertexwj ∈Wj and its neighborwi ∈Wi with a suitable distribution,

the verifier’s test is very similar to the test given in Section 4.4. We use long codes over

Zk. Letω = e2πi/k be the complexkth root of unity.

89



Given an instanceLmulti, the action of the verifier is

• Pick a random vertexwL ∈ WL from the layerL. For i = L,L − 1, L− 2, . . . , 1,

letwi−1 ∈Wi−1 be a random neighbor of the (already chosen) vertexwi ∈Wi.

• Let Ai = Awi be the supposed long code of a supposed label of the vertexwi.

Let Mi be the set of labels for vertices in layerWi. For 0 ≤ i < j ≤ L, let

πi,j = πwi,wj : Mj 7→Mi be the projection function betweenwi andwj.

• Pick 0 ≤ i < j ≤ L at random.

• Pick functionsf : Mi 7→ {1, ω, ω2, . . . , ωk−1}, g : Mj 7→ {1, ω, ω2, . . . , ωk−1} at

random.

• Pick a functionµ : Mj 7→ {ω, ω2} by defining for everyx ∈Mj

µ(x) :=
{ ω with probability 1/2

ω2 with probability 1/2

• Let h : Mj 7→ {1, ω, ω2, . . . , ωk−1} be defined ash := g · (f ◦ πi,j)2 · µ

• Accept if and only if

Not-all-equal(Ai(f), Aj(g), Aj(h))

Completeness

It is easy to see that the test always accepts a correct proof constructed by taking a correct

labeling to the multi-layered Label Cover instanceLmulti and using correct long codes.

90



In a correct proof,Ai, Aj are long codes of some labelsa ∈Mi, b ∈Mj with πi,j(b) = a.

Therefore

Ai(f) = f(a), Aj(g) = g(b), Aj(h) = h(b) = g(b)(f(πi,j(b)))2µ(b) = g(b)f(a)2µ(b)

The three symbols read by the verifier cannot all be equal, sinceµ(b) = ω or ω2.

4.5.1 Soundness of PCP

We will show that if the Gap-3SAT-5 instance is a NO instance, the test accepts with

probability at mostk
2−1
k2 + ε. The following lemma can be easily checked.

Lemma 4.5.1 If x, y, z ∈ {1, ω, ω2, . . . , ωk−1}, then the expression

1− 1
k2

∑
r1+r2+r3=0

xr1yr2zr3 (r1, r2, r3 ∈ Zk)

is 0 if x = y = z and 1 otherwise.

From this lemma, it is clear that the acceptance probability of the verifier is

1− 1
k2

∑
r1+r2+r3=0

EwL,wL−1,... ,w0,
i,j,f,g,µ

[
Ai(f)r1Aj(g)r2Aj(h)r3

]
FixwL, wL−1, . . . , w0, i, j for the time being and consider the expectation overf, g, µ.

For notational convenience, we will drop theE[] notation. Expanding the tablesAr1i , A
r2
j , A

r3
j

by their Fourier expansions, we get

1− 1
k2

∑
r1+r2+r3=0

∑
α,γ,β

Âr1i,αÂ
r2
j,γÂ

r3
j,β · χα(f)χγ(g)χβ(g(f ◦ πi,j)2µ)

91



The expectation overg is zero unlessβ = γ. Letπ = πi,j and letπk(β) be a function

πk(β) : Mi 7→ Zk defined as

∀ y ∈Mi, πk(β)(y) :=
∑

x∈Mj :π(x)=y

β(x) (sum is overZk)

With this definition,χβ((f ◦ π)2) = χ2β(f ◦ π) = χ2πk(β)(f) and hence the expectation

overf is zero unlessα+ 2πk(β) = 0. Thus the acceptance probability is

1− 1
k2

∑
r1+r2+r3=0

∑
β

Âr1i,−2πk(β)Â
r2
j,βÂ

r3
j,β · Eµ[χβ(µ)] (4.4)

Lemma 4.5.2 Let β : M 7→ Zk and pick a functionµ : M 7→ {ω, ω2} by definingµ(x)

to be a uniformly chosen value among the two possible values for everyx ∈ M . Let

|β| := |{x ∈M | β(x) 6= 0}|. Then

• If β = 0, Eµ[χβ(µ)] = 1.

• |Eµ[χβ(µ)]| ≤ (1−Ω( 1
k2 ))|β|

• If k is even and if there existsx0 ∈M such thatβ(x0) = k/2, thenEµ[χβ(µ)] = 0.

Proof: We note that the given expectation is

Eµ[
∏
x∈M

µ(x)β(x)] =
∏
x∈M

Eµ[µ(x)β(x)]

The first claim is obvious. For the second claim, we show that for everyx such that

β(x) 6= 0, the inner expectation has absolute value≤ 1− Ω( 1
k2 ). Let r = β(x). Because

of the wayµ() is defined, the inner expectation is1
2(ωr + ω2r) and the claim follows.

Note also that ifk is even andr = k/2, then this expectation vanishes. This proves the

third claim.

92



Now we analyze different terms in expression (4.4). Similar to Lemma 4.4.1, the

terms with−2πk(β) 6= 0 can be used to define a “good” labeling to layersi andj of

Label Cover instance. Therefore these terms can be assumed to be arbitrarily small in

magnitude. The terms with|β| ≥ O(k2 logT ) have magnitude at most1
T

which is negli-

gible.

Now consider the terms withβ 6= 0,−2πk(β) = 0 and |β| ≤ O(k2 logT ). Using

Lemma 4.2.5, for a fixedwj, over the choice of a random neighborwi, the probability

thatπk(β) = 0 is at mostO(k2 log T )·L
T

which is negligible. Hence these terms can also be

ignored. One intricate detail here is that whenk is even, thanks to third claim in Lemma

4.5.2, we can ignoreβs such that∃ x ∈ M , β(x) = k/2. Suchβs could have been

troublesome : even ifβ 6= 0, it could happen that2β = 0.

Thus we are left with only those terms whereβ = 0. The acceptance probability is

Pr[acc] = 1− 1
k2

∑
r1+r2+r3=0

Âr1i,0Â
r2
j,0Â

r3
j,0 + ε′ (4.5)

whereε′ takes into account the terms neglected. Let

Âi,0 =
k−1∑
l=0

ail · ωl (4.6)

whereail are non-negative real numbers with
∑k−1

l=0 ail = 1. Note thatail is just the

fraction of entries in the tableAi which are equal toωl. It follows that

Âri,0 =
k−1∑
l=0

ail · ωrl

93



Hence the summation in (4.5) can be written as

∑
r1+r2+r3=0

∑
l1,l2,l3

ail1ajl2ajl3ω
r1l1+r2l2+r3l3 =

∑
l1,l2,l3

ail1ajl2ajl3
∑

r1+r2+r3=0

ωr1l1+r2l2+r3l3

The inner summation is0 unlessl1 = l2 = l3 andk2 otherwise. So the sum reduces to

k2
k−1∑
l=0

aila
2
jl

Recall that the verifier first picks verticesWL,WL−1, . . . ,W0 and then picksi, j at

random. Taking expectation over the choice of0 ≤ i, j ≤ L, applying Lemma 4.5.3, and

choosingL large enough, we get

Pr[acc] = 1− E 0≤i<j≤L
[ k−1∑
l=0

aila
2
jl

]
+ ε′

≤ 1− 1
k2 +

2
L

+ ε′ ≤ 1− 1
k2 + 2ε′

Lemma 4.5.3 Let{ail : 0 ≤ i ≤ L; 0 ≤ l ≤ k−1} be a collection of non-negative reals

such that
k−1∑
l=0

ail = 1 ∀ i

Then we have

E 0≤i<j≤L
[ k−1∑
l=0

ail a
2
jl

]
≥ 1
k2 −

2
L

Proof: Let ail = (1 + bil)/k so that
∑k−1

l=0 bil = 0 for everyi. Also −1 ≤ bil ≤ k − 1.

aila
2
jl =

1
k2ail(1 + bjl)2 =

1
k2ail(1 + 2bjl + b2

jl) ≥
1
k2ail(1 + 2bjl)

=
1
k3 (1 + bil)(1 + 2bjl) =

1
k3 (1 + bil + 2bjl + 2bilbjl)

94



Summing overl and noting that
∑k−1

l=0 bil = 0, we get

k−1∑
l=0

aila
2
jl ≥

1
k2 +

2
k3

k−1∑
l=0

bilbjl

Finally, E 0≤i<j≤L
[
bilbjl

]
=

1
2
(
L+1

2

)(( L∑
i=0

bil)2 −
L∑
i=0

b2
il

)
≥ 1

2
(
L+1

2

)(−(L+ 1)(k − 1)2) ≥ −k
2

L

Remark

Lemma 4.5.3 has a very nice interpretation in terms of a randomized scheme of coloring.

Note that the hypergraph we construct hasL+1 layers and there are edges between every

pair of layersi andj. Each edge has one vertex in layeri and two vertices in layerj.

Consider the following scheme of coloring the vertices of the hypergraph withk colors.

Fix non-negative real numbers{ail | 0 ≤ i ≤ L, 0 ≤ l ≤ k − 1} such that for everyi,∑k−1
l=0 ail = 1. Color every vertex in layeri with color l with probabilityail. Clearly, the

fraction of edges that are mono-chromatic is preciselyE 0≤i<j≤L
[∑k−1

l=0 ail a
2
jl

]
.

Lemma 4.5.3 claims thatanysuch randomized scheme of coloring must leave at least

a fraction 1
k2 − o(1) edges mono-chromatic. Now such a claim has to be true since we

want to prove thatanycoloring of the hypergraph must have at least1
k2 − ε fraction of

the edges mono-chromatic ! Equation (4.6) says that the coefficientsÂi,0 correspond to

a randomized scheme of coloring. Thus the Fourier coefficients do have a meaningful

interpretation and not just a part of crazy algebraic calculation !

95



Chapter 5

Hardness of Coloring4-Uniform

Hypergraphs

There is a huge gap between the known algorithmic and hardness results for (Hyper)Graph

Coloring. All known algorithms for coloringk-colorable (hyper)graphs requirenΩ(1) col-

ors wheren is the number of vertices. On the hardness side, in Chapter 3, we obtained a

modest lower bound ofkΩ(log k) colors for graph coloring. Once we move to hypergraphs,

we have reasonable lower bounds : Guruswami et al’sΩ( log logn
log log logn) bound (see [55]) for

coloring4-uniform hypergraphs and our(log logn)Ω(1) bound for coloring3-uniform hy-

pergraphs in Chapter 4. Still, these lower bounds fall way short of the polynomial upper

bound.

In this chapter, we prove a much stronger result. We show hardness of coloringk-

colorable4-uniform hypergraphs with(log n)Ω(k) colors. The function(logn)Ω(k) ex-

ceeds every polylog function ask increases and gives evidence that the right answer for

(hyper)graph coloring problem might be super-polylogarithmic.

96



We introduce a new code called Split Code. This is a length efficient variant of long

code and yields proofs of much smaller size. The code is designed to exploit special

structure of Label Cover instances obtained by parallel repetition. We use Split Codes

over non-boolean domain and make a novel use of this feature.

5.1 Results and Techniques

The main result in this chapter is :

Theorem 5.1.1 There exists an absolute constantc > 0 such that for every fixed in-

tegerp ≥ 5, it is hard to distinguish whether ann-vertex4-uniform hypergraph isp-

colorable or it contains no independent set of (relative) size(log n)−cp unlessNP ⊆

DTIME(2(logn)O(1)). In particular, it is hard to colorp-colorable4-uniform hypergraphs

with (logn)cp colors unlessNP ⊆ DTIME(2(logn)O(1)).

Techniques

We prove Theorem 5.1.1 by constructing a PCP verifier that reads4 symbols from a

proof over alphabetGF (p) and accepts if and only if not all4 symbols are equal. The

hypergraph is constructed by taking the positions in the proof as vertices and the tests of

the verifier as hyperedges.

The main ingredient in the PCP construction is a new code which we call the Split

Code. This is a variation of the long code, but much shorter in length and reduces the

proof size significantly. Split Codes enable us to exploit the special structure of the Label

Cover problem constructed via Raz’s Parallel Repetition Theorem. Recall that Label

Cover problem (Definition 2.3.1) consists of a bipartite graph and asks for a labeling to its

vertices. The labeling is required to satisfy certain constraints given by mapsπ : M 7→ N

97



whereM,N are sets of labels for the two sides of the bipartite graph. The instance of

Label Cover obtained by Parallel Repetition has a “product structure”. For a parametert,

we can assume thatM = M1 ×M2 × . . .Mt, N = N1 ×N2 × . . .Nt andπ is given by

componentwise projectionsπi : Mi 7→ Ni for 1 ≤ i ≤ t.

Using the Split Codes in our construction requires us to employ Split Codes over large

domain i.e.GF (p). We make a novel and essential use of the fact that we are working

over non-boolean domain. The analysis in this chapter is quite simple and it demonstrates

how things become easier once we move to4-uniform hypergraphs instead of graphs or

3-uniform hypergraphs.

The Split Codes can be seen as a general technique for reducing proof size. H˚astad

and Srinivasan [63] use Split Codes to show the following result for Max-3-Lin-2. It is

strengthening of Theorem 2.0.2.

Theorem 5.1.2 [63] There exists a constantγ > 0 such that it is hard to distinguish

between instances of Max-3-Lin-2 where there exists an assignment that satisfies1 −
1

(logn)γ fraction of equations or no assignment can satisfy more than1
2 + 1

2(logn)γ fraction

of equations unlessNP ⊆ DTIME(2(logn)O(1)).

Guruswami et al [55] give a reduction from4-uniform hypergraphs toq-uniform hy-

pergraphs for anyq ≥ 5. One can use this reduction and extend Theorem 5.1.1 to :

Theorem 5.1.3 There exists an absolute constantc > 0 such that for fixed integersp ≥ 5

and q ≥ 4, it is hard to colorp-colorableq-uniform hypergraphs with(log n)cp colors

unlessNP ⊆ DTIME(2(logn)O(1)).

98



5.2 Preliminaries

As mentioned before, we exploit the “product structure” of the Label Cover problem

given by parallel repetition.

5.2.1 Split Label Cover Problem

Definition 5.2.1 Split Label CoverLsplit(G(V,W,E), N,M, {πv,w}, t) is the following

problem : We are given a bipartite graphG = (V,W,E) such that all vertices inV have

the same degree and all vertices inW have the same degree. There is a set of labels

M = M1×M2 . . .×Mt for vertices inW and a set of labelsN = N1×N2 . . .×Nt for

vertices inV . For every edge(v, w) ∈ E, there is a projection functionπv,w : M 7→ N

which is given by componentwise projectionsπv,w = (πv,w,1, . . . , πv,w,t) whereπv,w,i :

Mi 7→ Ni and

πv,w(b1, b2, . . . , bt) = (πv,w,1(b1), . . . , πv,w,t(bt)) ∀ (b1, b2, . . . , bt) ∈M

The goal is to assign a labelingΦ : V 7→ N andΦ : W 7→M such that

∀ (v, w) ∈ E, πv,w(Φ(w)) = Φ(v)

We say that an edge is “satisfied” if this condition holds for that edge. The optimal value

OPT (Lsplit) of the Label Cover problem is the maximum fraction of edges that can be

satisfied by any labeling.

The following theorem is just a restatement of Theorem 2.3.2, with the extra ob-

servation thatut parallel repetitions can be thought of ast-wise product ofu-parallel

repetitions each.

99



Theorem 5.2.2 There exists an absolute constantγ > 0 such that for all integersu, t,

there exists a reduction from Gap-3SAT-5 formulaφ of sizen to a Split Label Cover

instanceLsplit(G(V,W,E), N,M, {πv,w}, t) such that

1. |V |, |W | ≤ nO(ut)

2. |Mi| = 7u, |Ni| = 2u ∀ 1 ≤ i ≤ t.

3. If φ is a YES instance,OPT (Lsplit) = 1.

4. If φ is a NO instance,OPT (Lsplit) ≤ 2−γut.

5.2.2 The Split Code

Similar to the standard paradigm developed in earlier chapters, our PCP verifier reduces

a Gap-3SAT-5 instance to the Split Label Cover instanceLsplit given by Theorem 5.2.2

and expects the proof to contain encodings of labels of all vertices inV andW . The

previous PCP constructions use the long code whereas we use the Split Code which we

define next.

Let ω be the basicpth root of unity, i.e. ω = e2πi/p. In this chapter, the variables

β, g, b stand for tuples and variablesβi, gi, bi stand for theith components of these tuples

respectively.

Definition 5.2.3 The Split Code (overGF (p)) on a domain

M = M1 ×M2 . . .×Mt

100



is indexed by all tuplesg = (g1, g2, . . . , gt) wheregi : Mi 7→ {1, ω, ω2, . . . , ωp−1}. The

Split CodeB of an elementb ∈M, b = (b1, b2, . . . , bt), bi ∈Mi, is defined as

B(g) :=
t∏
i=1

gi(bi)

The set of all functionsgi : Mi 7→ {1, ω, . . . , ωp−1} is denoted byGi.

Note that the length of the Split Code onM is p|M1|+|M2|+...+|Mt|. On the other hand,

the length of the long code onM will be much larger i.e.p|M | = p|M1|·|M2|·...·|Mt|.

5.2.3 Fourier Analysis of Split Codes

Let G1, . . . ,Gt be as in Definition 5.2.3. Consider the complex vector space of all func-

tions

B : G = G1 × G2 × . . .× Gt 7→ C

where the addition of two functions is defined as pointwise addition. This is a complex

vector space of dimension|G| = p|M1|+|M2|+...+|Mt|. Define an inner product on this space

as

< B1, B2 > =
1
|G|
∑
g∈G

B1(g)B2(g) = Eg[B1(g)B2(g)]

We will identify an orthonormal basis for this vector space. Letβi be a function

βi : Mi 7→ GF (p)

andβ = (β1, β2, . . . , βt) be a tuple. The characterχβ is a functionχβ : G 7→ {1, ω, . . . , ωp−1}

defined as

Forg = (g1, . . . , gt), χβ(g) =
t∏
i=1

∏
xi∈Mi

gi(xi)βi(xi)

101



Lemma 5.2.4 The charactersχβ form an orthonormal basis.

Proof: We clearly have< χβ , χβ > = 1. Forβ = (β1, . . . , βt), γ = (γ1, . . . , γt) and

β 6= γ, there exists an indexi0 and an elementbi0 ∈ Mi0 such thatβi0(bi0) 6= γi0(bi0).

Hence

< χβ, χγ > = Eg1,... ,gt

[
t∏
i=1

∏
xi∈Mi

gi(xi)βi(xi)−γi(xi)
]

=
t∏
i=1

∏
xi∈Mi

Egi
[
gi(xi)βi(xi)−γi(xi)

]
The inner expectation is zero wheni = i0 andxi = bi0 .

Hence every functionB : G 7→ {1, ω, . . . , ωp−1} can be written as

B =
∑
β

B̂βχβ with Parseval’s identity
∑
β

|B̂β|2 = 1

5.2.4 Equality Folding of Split Codes

Recall that the proof for the PCP verifier is supposed to contain Split Codes of labels of

all vertices inV andW in the Label Cover instance.

It turns out that we can identify pairs of indices(g, g′) such that for every correct

Split CodeB on a setM , we haveB(g) = B(g′). So we can identify the indicesg andg′

together which we call the “equality folding”. The positions in the Split Code are going

to be vertices of a hypergraph and this identification corresponds to merging the vertices

for positionsg andg′ into one vertex.

102



Definition 5.2.5 For a functionβi : Mi 7→ GF (p), define

weight(βi) =
∑
x∈Mi

βi(x) (in GF (p))

For a tupleβ = (β1, . . . , βt), let weight(β) =
∑t

i=1weight(βi).

Definition 5.2.6 We call a functionB : G 7→ {1, ω, . . . , ωp−1} equality folded if for

e1, . . . , et ∈ GF (p)

e1 + e2 + . . .+ et = 0 =⇒ B(g1, . . . , gt) = B(ωe1g1, . . . , ω
etgt)

Note that a correct Split Code is always equality folded. The notion of equality fold-

ing forces only equality constraints and it is alright for coloring results. There are other

notions of folding (see for instance Definition 2.4.3) which cannot be used in coloring

results, and in fact this turns out to be the biggest difficulty in proving hardness of hyper-

graph coloring. The following is a crucial consequence of equality folding :

Lemma 5.2.7 If a functionB : G 7→ {1, ω, . . . , ωp−1} is equality folded then ∀ β =

(β1, . . . , βt),

B̂β 6= 0 =⇒ weight(β1) = weight(β2) = . . . = weight(βt)

103



Proof: Let e = (e1, . . . , et) be a vector chosen at random such thate1 +e2 + . . .+et = 0.

There arept−1 choices fore. We have

B̂β = Eg=(g1,... ,gt)

[
B(g1, . . . , gt)χβ(g1, . . . , gt)

]
= 1

pt−1Eg
[∑

eB(ωe1g1, . . . , ω
etgt)χβ(ωe1g1, . . . , ωetgt)

]
= 1

pt−1Eg
[∑

eB(g)χβ(g) ω−
Pt
i=1 ei·weight(βi)

]

As e ranges over all vectors withe1 + e2 + . . . + et = 0, the inner sum is zero unless

weight(β1) = weight(β2) = . . . = weight(βt).

5.3 The PCP Construction

Now we are ready to define the PCP test that proves Theorem 5.1.1 (see Fig. 5.1). The

verifier reads4 symbols over alphabetGF (p) and accepts if and only if not all4 symbols

are equal. The hypergraph is constructed by letting the positions in the proof to be vertices

and tests of the verifier as edges. The PCP has perfect completeness and therefore (in

completeness case) the hypergraph isp-colorable. In soundness case, we show that there

is no large independent set.

Let t = bp−1
3 c andLsplit(G(V,W,E), N,M, {πv,w}, t) be the Split Label Cover in-

stance given by Theorem 5.2.2. The verifier expects the proof to contain Split Codes over

GF (p) of the labels of all verticesw ∈W .

Remark : The verifier does not need encodings of labels of the vertices inV . In earlier

chapters, we had tests that checked consistency between long codes for verticesv, w

wherev ∈ V,w ∈ W . However, here we will check consistency between long codes for

w,w′ ∈ W which have a common neighborv ∈ V . We need to check that the labels of

104



w,w′ project to the same label forv via the respective projection mapsπv,w andπv,w
′
.

This technique was introduced by H˚astad [60] and also used in [55].

It is easy to motivate this technique. Let us say we instead had tests checking consis-

tency between vertices inV andW . Then the hypergraph would split into two layers with

every hyperedge containing vertices from both the layers. Such a hypergraph is clearly

2-colorable and the construction would fail.

v 

w

w’

g

h

g’

h’

Not− All −Equal (B(g), B(g’), C(h), C(h’)) 

Underlying  Label Cover 

Instance 

v, w 

v, w’

B  =  Split Code ( label (w) ) 

C  =  Split Code ( label (w’) ) 

Figure 5.1: PCP for 4-Uniform Hypergraph Coloring

The verifier proceeds as follows :

1. Pick a vertexv ∈ V at random and two of its neighborsw,w′ ∈W at random. Let

B be the supposed Split Code of the supposed label ofw andC be the supposed

Split Code of the supposed label ofw′.

2. Pick random functionsgi, hi : Mi 7→ {1, ω, . . . , ωp−1} andfi : Ni 7→ {1, ω, . . . , ωp−1}

for 1 ≤ i ≤ t. Let g = (g1, . . . , gt), h = (h1, . . . , ht) andf = (f1, . . . , ft).

105



3. Pick functionsµi : Mi 7→ {ω, ω2, ω3} by defining independently for everyx ∈Mi

µi(x) =
{ ω with probability 0.2

ω2 with probability 0.6

ω3 with probability 0.2

Let µ = (µ1, . . . , µt).

4. Define functiong′i : Mi 7→ {1, ω, . . . , ωp−1} by defining for everyx ∈Mi,

g′i(x) = gi(x)fi(πv,w,i(x)) µi(x)

Let g′ = (g′1, . . . , g
′
t). We will use the shortformg′ = g · (f ◦ πv,w) · µ where◦

denotes composition of functions.

5. Define functionsh′i : Mi 7→ {1, ω, . . . , ωp−1} by defining for everyx ∈Mi,

h′i(x) = hi(x)fi(πv,w
′,i(x))

Let h′ = (h′1, . . . , h
′
t). We will use the shortformh′ = h · (f ◦ πv,w′).

6. Accept if and only if

Not-All-Equal(B(g), B(g′), C(h), C(h′))

Picking the functionµ is the most novel aspect of this construction (see soundness anal-

ysis and the proof of Lemma 5.4.3).

106



Completeness and the Number of Random Bits Used

It is easy to see that the test always accepts a correct proof. In a correct proof,B is the

Split Code of the label ofw, sayb = (b1, . . . , bt) andC is the Split Code of the label

of w′, sayc = (c1, . . . , ct). Also v has a labela = (a1, . . . , at) and we have correct

projections i.e.ai = πv,w,i(bi) = πv,w
′,i(ci) for 1 ≤ i ≤ t. HenceB(g) = g(b),

B(g′) = g′(b) = g(b)f(πv,w(b))µ(b) = g(b)f(a)µ(b),

C(h) = h(c), C(h′) = h(c)f(a). So the test will accept providedµ(b) 6= 1, i.e. provided

t∏
i=1

µi(bi) 6= 1

Note thatµi takes values in the set{ω, ω2, ω3}. Hence the left hand side isωr for some

t ≤ r ≤ 3t. Sincep ≥ 3t+ 1, the left hand side6= 1.

Clearly the number of random bits used is at mostO(ut logn+ t 2O(u) log p).

5.4 Soundness Analysis

We prove the following theorem in this section which suffices to prove Theorem 5.1.1

with appropriate choice of parameters.

Theorem 5.4.1 For any setI of δ fraction of vertices in the hypergraph, there areδ4 −

pO(t)2−γut fraction of edges which lie entirely in this set. In particular there is no inde-

pendent set of size2−γut/8 (think oft, p as constants andu as growing).

107



Recall thatI corresponds to a set of locations in the proof. Define a0 − 1 proof in the

follows way : Forw ∈W , letB be the corresponding table. Define

B(g) =
{ 1 if the locationB(g) ∈ I

0 otherwise

Note that the zero Fourier coefficient gives the average value of an encoding. Therefore

B̂0 is the fraction of1s in tableB. This implies that the fraction of1s in the whole proof

isEw[B̂0] and sinceI contains aδ fraction of proof-locations, we have

Ew[B̂0] = δ (5.1)

Consider the process of picking a random hyperedge, which corresponds to the choice

of picking v, w, w′, f, g, h, µ. This edge has4 verticesB(g), B(g′), C(h), C(h′). All 4

vertices fall in the setI if and only if all 4 proof-locations contain bit-value1. Therefore

the fraction of edges contained entirely in setI is

Ev,w,w′,f,g,h,µ
[
B(g)B(g′)C(h)C(h′)

]
We analyze this expression in the following. First we state a couple of easy lemmas which

we prove in Section 5.5.

Definition 5.4.2 For a functionβi : Mi 7→ GP (p), let |βi| = |{x ∈Mi : βi(x) 6= 0}|.

Lemma 5.4.3 For β = (β1, . . . , βt),

Eµ=(µ1,... ,µt) [χβ(µ)] = Q(β) ω2
Pt
i=1 weight(βi)

= Q(β) ω2·weight(β)

108



whereQ(β) is a positive real number satisfying

Q(β) ≤ (1− Ω(
1
p2 ))|β1|+|β2|+...|βt|

Lemma 5.4.4 If B is a real-valued table, then̂B−β = B̂β.

Let us proceed with the analysis. Fixv, w, w′ for the moment. Using Fourier expan-

sions ofB,C we get

Ef,g,h,µ
[ ∑
φ,β,ψ,γ

B̂φB̂βĈψĈγ χφ(g)χβ(g(f ◦ πv,w)µ)χψ(h)χγ(h(f ◦ πv,w′))
]

whereφ = (φ1, φ2, . . . , φt), φi : Mi 7→ GF (p) and similarly forβ, ψ, γ. Simplifying,

Ef,g,h,µ
[ ∑
φ,β,ψ,γ

B̂φB̂βĈψĈγ χφ+β(g)χψ+γ(h)χβ(f ◦ πv,w)χγ(f ◦ πv,w
′
) χβ(µ)

]
The expectation is zero unlessφ = −β andψ = −γ where the equality holds on each of

thet components. For functionβi : Mi 7→ GF (p) and the projectionπv,w,i : Mi 7→ Ni,

defineπv,w,ip : Ni 7→ GF (p) as :

πv,w,ip (a) =
∑

x∈Mi : πv,w,i(x)=a

βi(x) ∀ a ∈ Ni

Let πv,wp (β) = (πv,w,1p (β1), πv,w,2p (β2), . . . , πv,w,tp (βt)). With this definition, it can be

easily verified that

χβ(f ◦ πv,w) = χπv,wp (β)(f), χγ(f ◦ πv,w
′
) = χ

πv,w
′

p (γ)
(f)

109



Hence the expression reduces to

Ef,µ
[∑
β,γ

B̂−βB̂βĈ−γĈγ χ
πv,wp (β)+πv,w

′
p (γ)(f) χβ(µ)

]

The expectation overf is zero unlessπv,wp (β) + πv,w
′

p (γ) = 0. Lemma 5.4.3 gives the

value ofEµ[χβ(µ)]. Also, note thatB,C are0 − 1 tables, hence take only real values.

Therefore we can use Lemma 5.4.4 and get

Ev,w,w′

 ∑
β,γ:πv,wp (β)+πv,w

′
p (γ)=0

|B̂β|2|Ĉγ|2Q(β)ω2·weight(β)


Note that whenweight(β) = 0, the corresponding terms are non-negative real numbers.

Among these terms we retain only the term withβ = γ = 0. Thus the expression is at

least,

Ev,w,w′
[
|B̂0|2|Ĉ0|2

]
− Ev,w,w′

 ∑
β,γ:πv,wp (β)=−πv,w′p (γ),weight(β)6=0

|B̂β|2|Ĉγ|2Q(β)


Note thatB̂0, Ĉ0 are non-negative reals and

Q(β) ≤
t∏
i=1

(1− Ω(
1
p2 ))|βi| ≤

t∏
i=1

O(p2)
1
|βi|

Thus the above expression is at least

Ev,w,w′
[
B̂2

0Ĉ
2
0

]
− pO(t)Ev,w,w′

 ∑
β,γ:πv,wp (β)=−πv,w′p (γ),weight(β)6=0

|B̂β|2|Ĉγ|2
t∏
i=1

1
|βi|



110



We will show that this expression is at leastδ4−pO(t)2−γut. We observe that the first term

corresponds to the fraction of1-bits in the proof and Lemma 5.4.5 shows that it is at least

δ4. The second term can be used to extract a labeling for the Split Label Cover problem

and Lemma 5.4.6 shows that it is at mostpO(t)2−γut.

Lemma 5.4.5Ev,w,w′[B̂2
0Ĉ

2
0 ] ≥ δ4

Proof: Note that after fixingv, we pickw,w′ independently with identical distribution.

Hence

Ev,w,w′[B̂2
0Ĉ

2
0 ] = Ev

[(
Ew
[
B̂2

0

])2
]
≥
(
Ev,w

[
B̂2

0

])2
=
(
Ew

[
B̂2

0

])2

≥
((

Ew
[
B̂0
])2
)2

= δ4

using Equation (5.1).

Lemma 5.4.6 There is a labeling for the Split Label Cover problem satisfying at least

the following fraction of edges :

Ev,w,w′

 ∑
β,γ:πv,wp (β)=−πv,w′p (γ),weight(β)6=0

|B̂β|2|Ĉγ|2
t∏
i=1

1
|βi|


In particular, in soundness case, this expression is at most2−γut, i.e. the soundness

parameter of the Split Label Cover problem.

Proof: For every vertexw ∈ W , we pickβ = (β1, . . . , βt) with probability |B̂β|2 and

define label ofw to be(b1, . . . , bt) where eachbi is a randomly chosen elementxi ∈ Mi

for whichβi(xi) 6= 0. For every vertexv ∈ V , we pick its random neighborw′ ∈W , pick

111



γ = (γ1, . . . , γt) with probability|Ĉγ|2, defineci to be a randomly chosen elementyi ∈

Mi for whichγi(yi) 6= 0 and finally define label ofv to be(πv,w′,1(c1), . . . , πv,w′,t(ct)).

We claim that the fraction of edges satisfied by this labeling is at least the expectation

in the lemma. Note that the summation runs only overβ, γ such thatweight(β) 6= 0. The

tables are equality folded. Thus Lemma 5.2.7 implies that for alli, βi 6= 0, γi 6= 0. Hence

there always existsxi ∈Mi such thatβi(xi) 6= 0 andyi ∈Mi such thatγi(yi) 6= 0. Also,

with probability
∏t

i=1
1
|βi| , it holds that

πv,w,i(bi) = πv,w
′,i(ci) ∀ i

In other wordsπv,w(b1, . . . , bt) = πv,w
′(c1, . . . , ct), i.e.πv,w(label(w)) = label(v) which

is precisely the condition for satisfying an edge(v, w). Hence the claim follows.

5.5 Proofs of Lemmas 5.4.3, 5.4.4 and Theorem 5.1.1

Proof of Lemma 5.4.3

Let us first prove the following lemma.

Lemma 5.5.1 Letβi : Mi 7→ GF (p) and pick functionµi : Mi 7→ {ω, ω2, ω3} where for

everyx ∈ Mi, we defineµi(x) to beω with probability0.2, ω2 with probability0.6 and

ω3 with probability0.2. Then

Eµi [
∏
x∈Mi

µi(x)βi(x)] = Q(βi) ω2·weight(βi)

whereQ(βi) is a positive real number satisfyingQ(βi) ≤ (1−Ω( 1
p2 ))|βi|.

112



Proof: We note that the given expectation is

∏
x∈Mi

Eµi [µi(x)βi(x)]

We show that for everyx such thatβi(x) 6= 0, the inner expectation isω2·βi(x) times a

positive number≤ 1 − Ω( 1
p2 ). Let r = βi(x). Because of the wayµi() is defined, the

inner expectation is

0.2 ωr + 0.6 ω2r + 0.2 ω3r = ω2r(0.6 + 0.2 ωr + 0.2 ω−r)

This complex number isω2r times a positive real number which is maximized whenr = 1

and this maximum value is0.6 + 0.4 cos(2π
p

) = 1− Ω( 1
p2 ).

Now we prove Lemma 5.4.3. Note that

Eµ [χβ(µ)] = Eµ

[
t∏
i=1

∏
xi∈Mi

µi(xi)βi(xi)
]

=
t∏
i=1

Eµi

[ ∏
xi∈Mi

µi(xi)βi(xi)
]

Lemma 5.4.3 now follows from Lemma 5.5.1, with

Q(β) = Q(β1)Q(β2) · · ·Q(βt)

Proof of Lemma 5.4.4

SinceB is real-valued,

B̂−β = Eg
[
B(g)χ−β(g)

]
= Eg

[
B(g)χ−β(g)

]
= Eg

[
B(g)χβ(g)

]
= Eg

[
B(g)χβ(g)

]
= B̂β

113



Proof of Theorem 5.1.1

We havet = bp−1
3 c. Let u = O(log logn). The number of random bits used by the

verifier is

O(ut logn+ t 2O(u) log p) ≤ 2O(u)

The hypergraph constructed has sizeN which is at most exponential in the number of

random bits used by the verifier, sologN ≤ 2O(u).

We know that in completeness case, the hypergraph isp-colorable. By Theorem 5.4.1,

in soundness case, there is no independent set of size2−γut/8 = (logN)−cp for some

absolute constantc > 0.

114



Chapter 6

Hardness of Shortest Vector Problem in

High Lp Norms

Shortest Vector Problem (SVP) is one of the most important problems in complexity

theory. Given a basis for ann-dimensional lattice, the goal is to find the shortest non-

zero vector in the lattice. SVP has applications to relationship between the worst-case and

average-case complexity of problems, breaking and building cryptosystems (!), factoring

rational polynomials and numerous other areas in mathematics and computer science.

Characterizing the hardness of SVP is a major open problem. The famous LLL algorithm

[87] achieves an exponential approximation factor for SVP whereas even NP-hardness

wasn’t known until recently.

In this chapter, we obtain a big improvement in the hardness results known for SVP in

highLp norms (Theorem 6.1.1). Apart from the improved hardness factor, our reduction

is much simpler and direct, much moreelementary, and holds under a weaker complexity

assumption. We believe that our ideas could be applicable in getting any constant factor

hardness in some fixedLp (maybe even inL2) norm.

115



6.1 Result and History of the Problem

An n-dimensional latticeL is a set of vectors{
∑n

i=1 aivi | ai ∈ Z}wherev1, v2, . . . , vn ∈

Rm is a set of independent vectors called the basis for the lattice. The same lattice could

have many bases. Given a basis for ann-dimensional lattice, the Shortest Vector Problem

asks for the shortest non-zero vector in the lattice. The length of the vectors can be

measured in anyLp norm (p ≥ 1) and the corresponding problem is denoted by SVPp.

This problem has a beautiful history and we present some of the results below. For a

more comprehensive list of references and a thorough treatment of the subject, we refer

to Micciancio and Goldwasser’s book [97]. We also recommend Micciancio’s PhD thesis

[95] and an expository article by Kumar and Sivakumar [82].

The Shortest Vector Problem has been studied since the time of Gauss ([49], 1801)

who gave an algorithm for SVP2 in 2-dimensions. The general problem for arbitrary

dimensions was formulated by Dirichlet in 1842. The theory of Geometry of Numbers

by Minkowski [98] deals with the existence of shortest non-zero vectors in lattices. In

a celebrated result, Lenstra, Lenstra and Lovász [87] gave a polynomial time algorithm

for approximating SVP2 within factor 2n/2. This algorithm has numerous applications,

e.g. factoring rational polynomials [87], breaking knapsack-based codes [84], checking

the solvability by radicals [85] and integer programming in a fixed number of variables

([87], [88], [68]). Schnorr [107] improved the approximation factor to2δn for any δ >

0. Since allLp norms are within factor
√
n from theL2 norm, these algorithms give

similar approximations for SVPp for any p. It is a major open problem whether SVP

has polynomial factor approximations that run in polynomial time. Exact computation of

SVP2 in exponential time has also been investigated, for instance [69], [4].

116



In 1981, van Emde Boas [112] proved that SVP∞ is NP-hard and conjectured that the

same is true for anyLp norm. However proving NP-hardness for any finitep (in particular

p = 2) was an embarrassing open problem for long time. A breakthrough result by Ajtai

[2] in 1998 finally showed that SVP2 is NP-hard under randomized reductions. Cai and

Nerurkar [25] improved Ajtai’s result to a hardness of approximation result showing a

hardness factor of(1 + 1
nδ

). Another breakthrough by Micciancio [96] showed that SVPp

is hard to approximate within factor21/p − δ for everyδ > 0.

Showing hardness of approximation results for SVP was greatly motivated by Aj-

tai’s discovery [1] of worst-case to average-case hardness and subsequent construction of

lattice-based public key cryptosystem by Ajtai and Dwork [3]. Ajtai showed that if there

is a randomized polynomial time algorithm for solving SVP2 on a non-negligible fraction

of lattices from a certain natural class of lattices, then there is a randomized polyno-

mial time algorithm for approximating SVP2 on everyinstance within some polynomial

factornc. Ajtai-Dwork’s work gave hope, for the first time, that cryptography could be

based on the (conjectured) worst-case hardness of a problem. Their work implies that if

nc-approximation to SVP2 is hard, then one can construct a secure cryptosystem. The

constantc was noted to be 19 in [23], and brought down to9 + δ by Cai and Nerurkar

[24] and then to4 + δ by Cai [23]. Recently, Regev [104] gave an alternate construction

of a public key cryptosystem based onn1.5-hardness of SVP2 (actually a variant called

unique-SVP2) ! Unfortunately, there are barriers to showing such strong hardness results.

In fact, showing factorn NP-hardness would imply that NP = coNP [83] and showing

factor
√
n/O(logn) NP-hardness would imply that coNP⊆ AM [52].

Another related problem that has received much attention is the Closest Vector Prob-

lem (denoted CVPp) where given a lattice and a vectory, the problem is to find the lattice

vector that is closest toy. In spite of the apparent similarity between SVP and CVP,

117



they turn out to be quite different problems. Indeed, CVPp was shown to be NP-hard

for all p ≥ 1 by van Emde Boas [112]. Arora, Babai, Sweedyk, and Stern [9] used the

PCP machinery to show that approximating CVPp (for all p ≥ 1) within factor2log1−δ n

is hard unless NP⊆ DTIME(npoly(logn)). This was improved to a NP-hardness result

by Dinur, Kindler, and Safra [30] (their result even gives a subconstant value ofδ, i.e.

δ = (log log n)−c for any c < 1
2). Incidently, SVP∞ seems to behave very much like

CVP∞, Dinur [27] shows factorn1/ log logn NP-hardness for both these problems. Thus

for SVP, the casesp =∞ andp <∞ seem to be qualitatively different.

Our Result

In this chapter, we obtain an improved hardness result for SVPp for large (but finite)

values ofp. Specifically we show that

Theorem 6.1.1 For everyε > 0, there is a constantp(ε) such that for all integersp ≥

p(ε), it is NP-hard to approximate SVPp within factor p1−ε under randomized reductions.

This improves the hardness factor21/p − δ by Micciancio [96] for all large values of

p. The result however is only asymptotic and says nothing about small values ofp. The

valuep(ε) depends on a non-explicit constant in Raz’s Parallel Repetition Theorem [103]

(the constantγ in Theorem 2.3.2).

Significance of the result : Apart from the improved hardness factor, we believe that

the result is significant in the following aspects :

1. Very strong hardness results are known for SVP∞, so it is reasonable to expect that

the hardness result gets better asp grows. Our result (p1−ε) supports this intuition,

whereas Micciancio’s result (21/p − δ) goes in the other direction.

118



2. Our result is a direct reduction from 2-Prover Games (or equivalently the Label

Cover problem). Micciancio’s reduction can be seen as an indirect reduction from

2-Prover Games. Lund and Yannakakis [93] reduce 2-Prover Games to the Set

Cover problem. Arora et al [9] reduce Set Cover to CVPp for every finite value

of p. Micciancio reduces CVPp to SVPp by constructing a sophisticated lattice as

a gadget. Constructing this lattice requires many ideas from Ajtai’s reduction. In

contrast to our and Micciancio’s reductions, Ajtai uses a reduction from a much

more elementary problem, namely Subset Sum.

3. Our result holds under the assumption that NP6⊆ ZPP. Ajtai’s and Micciancio’s

reductions require a stronger assumption that NP6⊆ BPP. Our reduction is consid-

erably simpler and might be easier (if possible at all) to derandomize.

On the flip-side, our result doesn’t apply for any small explicit value ofp. Definitely,

the most interesting case isL2 norm, since Ajtai’s worst-case to average-case reduction

is based on hardness of SVP2. However, we think that our result helps in a better un-

derstanding of the Shortest Vector Problem. Considering that even NP-hardness wasn’t

known for any finiteLp norm till 1998, it is interesting that we give a simple and straight-

forward proof.

6.2 Problem Definition and Techniques

We prove Theorem 6.1.1 via a reduction from the Label Cover problem given by Theorem

2.3.2. This is a direct reduction without using long code and with no Fourier analysis.

The reduction is quite simple and the basic idea appears in Section 6.3.

We first redefine the Shortest Vector Problem in a different (but equivalent) manner,

without any reference to lattices.

119



Problem Definition

The problem SVPp is defined as follows : Given a vectorx of integer variablesx =

(x1, x2, . . . , xn) and linear forms{φ1, φ2, . . . , φm} where

φi =
n∑
j=1

bijxj bij ∈ IR

The goal is to find a non-zero integer vectorx which minimizes the following objective

function :

OBJ=
m∑
i=1

|φi(x)|p

Remarks : (1) Think of the basis vectors in the lattice as the columns of the matrix{bij}

and think of the integer variablesxis as the (unknown) coefficients when the shortest

vector is written as an integer linear combination of the basis vectors. (2) We actually

want to minimize OBJ1/p. In order to show a factork-hardness for SVPp, it suffices to

show a factorkp-hardness for the above objective function.

A Nice Technique

Here we describe one of the techniques used in this chapter which could be of independent

interest.

A common problem encountered in showing hardness of SVP is the following : We

desire a reduction from some NP-hard problem, say Label Cover, Set Cover or CVP.

Usually, it is straightforward to construct a set of vectors{v1, v2, . . . , vm} which one

could potentially use as the basis vectors for an instance of SVP. For completeness, there

is a non-zero integer linear combination
∑m

i=1 xivi with short length. This combination

corresponds to a correct labeling to Label Cover or a solution to the Set Cover instance

120



depending on what problem we started with. The combination typically has the property

thatδm of the coefficientsxis are non-zero. Now let us say we want to show the sound-

ness property, i.e. if the NP-hard problem we started with is a NO instance, then there is

no short non-zero integer linear combination. However, typically it so happens that each

of the vectorsvi itself is a short vector. Thus for anyj, settingxj = 1 andxi = 0 for i 6= j

gives a short lattice vector. In general, settingtoo few of xis to non-zero values produces

a short vector. We wish to somehow enforce the condition that many of thexis must be

set to a non-zero value.

We do this by augmenting the vectorsvis by one extra co-ordinateai. Call these

augmented vectorsv′i = (vi, ai) and let them be the basis vectors for an SVP instance.

The set of integers{ai : 1 ≤ i ≤ m} satisfies :

• For any setY ⊆ [m], |Y | = δm, the integers{aj|j ∈ Y } have a non-zero

{0, 1,−1}-linear combination that vanishes.

• For any setZ ⊆ [m], |Z| < δm
20 log(1/δ) , a non-zero{0, 1,−1}-linear combination of

integers{aj|j ∈ Z} cannot vanish.

It can be shown that choosingm random integers from the range[1, 2, . . . , 2δm/2] satisfies

these properties with high probability.

For completeness, sinceδm of thexis are non-zero, one could hope to set them to

appropriate{0, 1,−1} values so that
∑m

i=1 xiai = 0 and the vector
∑m

i=1 xivi is short.

For soundness, assume for the moment thatxis are restricted to take values{0, 1,−1}.

It is clear that if at most δm
20 log(1/δ) of thexis are non-zero, then

∑m
i=1 xiai cannot vanish.

One can apply a huge penalty if this sum (which is the last co-ordinate of the linear

combination
∑m

i=1 xiv
′
i) doesn’t vanish. Thus, we are able to enforce the constraint that

one must set at least δm
20 log(1/δ) of thexis to non-zero value. In general,xis could take

121



arbitrary integer values (not just{0, 1,−1}), but this can be handled as well, as we will

see.

Construction of the set{ai|1 ≤ i ≤ m} is the only place where our reduction is ran-

domized. We would like to remark that Micciancio [96] also needs a gadget to enforce

a similar condition and almost all work in his paper is devoted to constructing this gad-

get. More specifically, his gadget is a sophisticated lattice and he needs to enforce the

condition thatoneparticular coefficientxi0 in the integer linear combination is set to a

non-zero value.

The Label Cover Problem

The reduction is from the Label Cover problem. We need some more notation and an

extra regularity property for Label Cover instances. So we restate Theorem 2.3.2 as

Theorem 6.2.1 There is an absolute constantγ > 0 such that for every integer param-

eter u, it is NP-hard to distinguish between the following two cases : A Label Cover

problemL(G(V,W,E), N,M, {πv,w|(v, w) ∈ E}) has

• OPT (L) = 1 OR

• OPT (L) ≤ 1/Rγ whereR = |M |

We denoteM = [R], N = [S], n = |V |,m = |W | andD to be the degree of every vertex

in V . It can be assumed thatR = 6u, S = 3u, D = 5u andm = (5/2)un. Moreover,

for every edge(v, w), the mapπv,w : [R] 7→ [S] is “regular”, meaning for everyj ∈ [S],

there are exactlyR/S elements in[R] that are mapped toj.

Proof: As shown in [39], there isθ > 0 such that it is NP-hard to tell whether a5-regular

graph is3-colorable or no coloring of its vertices with3 colors can make1 − θ fraction

122



of the edges non-monochromatic. Starting with this gap-problem, one can construct a

2-Prover-1-Round game as follows : Pick a random edge(x, y) of the graph and one of

its endpoints at random (sayx). Ask proverP2 for coloring of the vertices(x, y), his

answer is supposed to be one of the6 valid (non-monochromatic edge-) colorings. Ask

proverP1 for the color ofx, his answer is supposed to be one of the3 colors. Accept if

and only if answers ofP1 andP2 agree on color ofx. It is easy to see that this game has

soundness strictly less than1 and applying Parallel Repetition Theorem gives an instance

of Label Cover with all the properties listed above.

6.3 The Basic Idea in the Reduction

Here we describe the basic idea of the reduction. One needs to fix a lot of technical details

later and we present a complete reduction in Section 6.4. Theorem 6.2.1 gives an instance

of the Label Cover problem specified as

(G(V,W,E), [S], [R], {πv,w}), n = |V |,m = |W |, D = degree(v) ∀ v ∈ V

The intended hardness factor we wish to achieve for SVPp is k1−ε. We will havek =

Rγ/20 andp = O(k). The integer variables of the SVPp will be

{xw,i | w ∈ W, i ∈ [R] }

For a fixedw, letB(w) be the “block” of variables defined as

B(w) = {xw,i | i ∈ [R] }

123



For a vertexv ∈ V , letN(v) ⊆W denote the set of neighbors ofv with |N(v)| = D.

There will be one linear form in SVPp for everyv ∈ V and every sequence(w1, w2, . . . , wS)

wherewj ∈ N(v) for 1 ≤ j ≤ S. The linear form is sum ofR variables, withR/S vari-

ables each from the blockB(wj). The linear form is defined to be :

S∑
j=1

∑
i∈[R]:πv,wj (i)=j

xwj ,i (6.1)

Note that the total number of linear forms isnDS.

Completeness

For completeness, we will show that if there is a labelingA for the label cover problem

satisfying every edge (i.e.OPT (L) = 1), then the problem SVPp has a solution with the

objective function OBJ= nDS. LetA : W 7→ [R], A : V 7→ [S] be such a labeling. For

every edge(v, w) in the Label Cover instance, we haveπv,w(A(w)) = A(v).

Define a solution as

xw,i =
{ 1 if A(w) = i

0 otherwise

Note that there arenDS linear forms of type (6.1). We will show that each of these

linear forms equals1. Note that out of all the variables in the linear form (6.1), exactly

one equals1 and the rest are all0. The non-zero variable isxwj ,i for which j = A(v), i =

A(wj) (Verify ! This is the crux of the reduction).

124



Soundness

We wish to show that if OPT< 1/Rγ for the Label Cover problem, then for any non-zero

integer vectorx = {xw,i}, the objective function OBJ is at least1
2nD

S−kkp. We will

show this only for a restricted class of vectors, i.e. vectorsx = {xw,i} which “arise” out

of labelingsA : W 7→ [R]. Eventually we want this to work forevery non-zero vector

{xw,i}. This involves a lot of technical details and we present the full reduction in Section

6.4. So let us assumeA : W 7→ [R] is an assignment and{xw,i} is the corresponding

vector, i.e.

xw,i =
{ 1 if A(w) = i

0 otherwise

For every vertexv ∈ V , define a set of labelsΨ(v) ⊆ [S] as follows :

Ψ(v) = {πv,w(A(w)) | w ∈ N(v) }

Lemma 6.3.1 For at least half the vertices inV , |Ψ(v)| ≥ k (call such vertices “good”).

Proof: Assume on the contrary that half the vertices inV have|Ψ(v)| ≤ k. Define

label for vertexv to be a random element ofΨ(v). Note that for everyw ∈ N(v),

πv,w(A(w)) ∈ Ψ(v). Therefore with probability1/k, the edge(v, w) is satisfied by this

random labeling tov. Hence there exists a labeling for the Label Cover problem that

satisfies at least a fraction12k of the edges. This is a contradiction since1
2k >

1
Rγ

(recall

thatk = Rγ/20).

For every good vertexv, assume w.l.o.g. that{1, 2, . . . , k} ⊆ Ψ(v). Thus for every

1 ≤ j ≤ k, there existsw∗j ∈ N(v) such thatπv,w
∗
j (A(w∗j )) = j. Hence for any sequence

(w∗1, w∗2, . . . , w∗k, wk+1, . . . , wS) wherewk+1, . . . , wS ∈ N(v) are arbitrary, the linear

form (6.1) is at least equal tok. This contributeskp to the objective function OBJ.

125



Half the vertices are good, hence OBJ≥ n
2D

S−kkp.

Hardness Factor

Note that the objective function isnDS in completeness case and at least1
2nD

S−kkp in

the soundness case. Choosep such that

1
2
nDS−kkp > nDSk(1−ε)p

Thus there is a penalty of a factork(1−ε)p in the soundness case. Noting thatD ≤

R, k = Rγ/20, we see that it suffices to takep = 20k
εγ

. This gives hardness factor ofk1−ε or

p1−ε′ as desired. This completes the basic idea in the reduction. We give the full reduction

in the next section.

6.4 Full Reduction

We again fixk = Rγ/20 and choosep = O(k) later. The intended hardness factor we

wish to achieve for SVPp is k1−ε. The set of integer variables is the same, namely

x = {xw,i | w ∈W, i ∈ [R]}

There will be 4 types of linear forms. These forms are supposed to “handle” different

types of non-zero vectorsx in the soundness case. The exact role of these linear forms

will be clear as we go along.

Type-1 linear forms :

∀ w ∈W, ∀i ∈ [R], xw,i

126



Thus the Type-1 linear forms are just the variables themselves.

Type-2 linear form : ∑
w∈W,i∈[R]

aw,ixw,i

Thus there is only one Type-2 linear form. The coefficientsaw,i in this linear form are

randomly chosen integers from the range[1, 2, ..., 2m/2]. Introducing this linear form is

precisely the technique described in Section 6.2. We want to ensure that for soundness,

one must set “many” of the variablesxw,is to a non-zero value.

Type-3 linear forms :

∀ w ∈W,
R∑
i=1

±xw,i

Thus there are2R Type-3 linear forms for everyw ∈ W . There areR variables in every

form and there is one linear form for every choice of+/− sign.

Type-4 linear forms :

∀ v ∈ V, ∀w1, w2, . . . , wS ∈ N(v),
S∑
j=1

∑
i∈[R]:πv,wj (i)=j

±xwj ,i

There are2RDS linear forms for everyv ∈ V . These are essentially the linear forms used

in Section 6.3, except that now we take all the+/− combinations. Note that there areR

variables in each form.

In the completeness case, Type-2 form will contribute0. Type-1, Type-3 and Type-4

will contribute (at most)m, 2Rm and2RnDS respectively. We multiply the Type-1, Type-

3 and Type-4 forms by appropriate quantitiesC1, C3, C4 so that they contribute equally

127



towards the objective function. More precisely,C1, C3, C4 are chosen so that

Cp
1 m = Cp

3 2Rm = Cp
4 2RnDS

In the soundness case, we will show that any non-zero vectorx = {xw,i} either

produces a non-zero value in Type-2 form or it pays a penalty of factork(1−ε)p for at least

one of the remaining three types.

We multiply Type-2 form by a huge quantity. Thus we incur a huge penalty unless

the Type-2 form vanishes (it will vanish in the completeness case, so we are fine).

Completeness

In the completeness case, letA : W 7→ [R], A : V 7→ [S] be a correct labeling. Let

xw,i =
{ 0, 1 or − 1 if A(w) = i

0 otherwise

The choice of0, 1,−1 for the variables{xw,A(w)} is made such that the Type-2 form

vanishes. We use the Pigeon-Hole principle (suggested by Sanjeev Arora). Consider the

set ofm variables{xw,A(w)}, and the corresponding coefficientsaw,A(w) in the Type-2

form. Consider the2m different sums for all subsets of thesem coefficients. These sums

take integer values in the range[1, 2, 3, . . . ,m2m/2]. Hence sums for two distinct subsets

must be equal, which gives a vanishing{0, 1,−1} linear combination of the integers

aw,A(w).

Now we look at the remaining 3 types.

128



• For Type-1 forms, note that at mostm of the variables are±1, the rest are0. So we

get contribution of at mostm.

• For Type-3 forms, note that for everyw, there is at most one variablexw,i that is

±1. Thus we get contribution of at most2Rm.

• Every Type-4 form is±1 as seen for completeness part in Section 6.3 and it might

even be0 since we “turn off” some of the variablesxw,A(w) to 0. Thus the Type-4

forms contribute at most2RnDS.

6.5 Soundness of the Reduction

The crux of the soundness analysis is as in Section 6.3. However, we have to handle cases

whenxw,is are negative, or very few of them are non-zero. We do this in several stages.

For a vectorx = {xw,i}, let #x denote the number of variables (or coordinates) that

are non-zero. For a block of variablesB(w), let #B(w) denote the number of non-zero

variables in this block.

Handling x with #x ≤ m
20 logR and ‖x‖1 ≥ mR

Suchx are handled by Type-1 forms. Note that when at mostm20 logR coordinates are non-

zero and theL1 norm is at leastmR, thenLp norm is minimized when all the non-zero

coordinates are equal to mR
m/(20 logR) . Hence

∑
w,i

|xw,i|p ≥ (20R logR)p
m

20 logR
≥ Rp/2m ≥ kpm

129



Note that the contribution of Type-1 forms in the completeness case is at mostm. Thus

we get a penalty of factorkp for the Type-1 forms.

Handling x with #x ≤ m
20 logR and ‖x‖1 ≤ mR

These are handled by Type-2 linear form. We show that with high probability, the Type-2

linear formdoes notvanish for any suchx.

The coefficients in this linear form are randomly chosen integers from the range

[1, 2, 3, . . . , 2m/2]. Hence for any non-zero vectorx, the probability that the Type-2 form

vanishes is at most1
2m/2 . We count the number of vectorsx such that#x ≤ m

20 logR and

‖x‖1 ≤ mR. We show that there aren’t too many of them and we can take a union bound.

Number of suchx’s can be bounded by

(
mR
m

20 logR

)
· 2m/(20 logR) ·

(
# non-negative integer solutions to :

y1 + y2 + . . .+ y m
20 logR

≤ mR
)

≤
(
mR
m

20 logR

)
· 2m/(20 logR) mR ·

(
2mR
m

20 logR

)
≤ 22m/5 � 2m/2

Where one uses the fact that

(
M

δM

)
≤ 2H(δ)M ≤ 22δ log(1/δ)M

Avoiding the Problem of Negative or Large Values

In general the variablesxw,i could be positive or negative and could take large integer

values. We will now show that one can as well assume that they take values only0 or

130



1. This is done by averaging over all the+/− linear combinations and this is the reason

why Type-3 and Type-4 forms appear with all possible+/− combinations.

Lemma 6.5.1 Let x1, x2, . . . , xt be t non-zero integers. Letai ∈ {1,−1} be chosen

randomly. Assumep to be an even integer. Then

Ea1,a2,... ,at

[
|

t∑
i=1

aixi|p
]
≥ max{tp−t, tp/2}

Proof: We can expand out the product(
∑t

i=1 aixi)
p and take the expectation of each term

separately. For the terms in which someaixi occurs to an odd power, the expectation is

zero. For the remaining terms, the expectation is at least1. Thus the expectation is

at least the number of terms such that everyaixi occurs to an even power. In other

words, we want to count the number of functionsf : [p] 7→ [t] such that everyj ∈ [t]

has even number of pre-images. Considering functions wheref(1) = f(2), f(3) =

f(4), . . . , f(p − 1) = f(p), we get a bound oftp/2. Another way is to take an arbitrary

functiong : [p− t] 7→ [t] and then “extend” it to a functioñg : [p] 7→ [t] where the values

g̃(p − t + 1), g̃(p − t + 2), . . . , g̃(p) are chosen to make sure that forg̃, every value has

an even number of pre-images. This gives a bound oftp−t.

Lemma 6.5.1 implies that for any set ofR variables, with at leastt of them non-zero,

when summed over all+/− combinations, the contribution to the objective function OBJ

is at least2R max{tp−t, tp/2}.

Handling One More Annoying Case

One more annoying case is when most of the non-zero variables belong to blocksB(w)

such that these blocks themselves have too many non-zero variables. To be precise, we

131



want to avoid the situation where

∑
B(w):#B(w)≥k3

#B(w) ≥ m

40 logR
(6.2)

This case is handled by Type-3 linear forms. By Lemma 6.5.1, for any blockB(w), the

contribution of Type-3 forms towards the objective function is at least2R(#B(w))p/2.

Hence the contribution of blocks in (6.2) is at least,

∑
B(w):#B(w)≥k3

2R(#B(w))p/2

which is minimized when all#B(w) are equal tok3 and there are m
k340 logR of them. Thus

the contribution is at least

2R(k3)p/2
m

k340 logR
� kp2Rm

Note that the contribution in the completeness case is2Rm and therefore one gets a

penalty of factorkp as desired.

Finishing the Proof

After handling all the annoying cases, we can now assume that#x ≥ m
20 logR and that

∑
B(w):#B(w)≥k3

#B(w) ≤ m

40 logR

132



This implies that for at least m
k340 logR = δm verticesw ∈ W , the blockB(w) contains at

least one non-zero variable. Let

W ′ = { w | B(w) contains at least one non-zero variable}

We have|W ′| ≥ δ|W |. Fix one non-zero variable inB(w) for everyw ∈ W ′ and let this

variable bexw,A(w) (thus we get an assignmentA of labels to vertices inW ′).

By an averaging argument, for at leastδ/4 fraction of the verticesv ∈ V , at leastδ/4

fraction of their neighbors are inW ′. Call any such vertexv “good”. For any good vertex

v, let

Ψ(v) = { πv,w(A(w)) | w ∈W ′, w ∈ N(v)}

Lemma 6.5.2 For at most half the good verticesv, |Ψ(v)| ≤ k.

Proof: Assume on the contrary that for half of the good verticesv, |Ψ(v)| ≤ k. Thus for

every such vertexv, we can assign at mostk labels such that for every neighborw ∈ W ′

of v, the labelπv,w(A(w)) is included. Choosing at random, one of the at mostk labels for

every such vertexv, gives a labeling to the Label Cover problem that satisfies following

fraction of edges :

(
1
2
δ

4

)
δ

4
1
k

=
1

32 · 1600(logR)2k7 �
1
Rγ

sincek = Rγ/20

This contradicts Theorem 6.2.1.

Hence we can assume that for at least half of the good verticesv, |Ψ(v)| ≥ k.

For any such vertexv, assume w.l.o.g. that{1, 2, . . . , k} ⊆ Ψ(v). Thus for every

1 ≤ j ≤ k, there existsw∗j ∈ N(v) such thatπv,w
∗
j (A(w∗j )) = j. Hence for any se-

quence(w∗1, w
∗
2, . . . , w

∗
k, wk+1, . . . , wS) wherewk+1, . . . , wS ∈ N(v) are arbitrary, the

133



Type-4 linear form has at leastk non-zero variables. Applying Lemma 6.5.1, we get a

contribution of at least2RDS−kkp−k towards the objective function.

δ/4 fraction of the verticesv are good, hence the objective function is at least

(
δ

8
n)2RDS−kkp−k

Note that the contribution in the completeness case is at most2RnDS. We will choosep

such that
δ

8
n2RDS−kkp−k > 2RnDS · k(1−ε)p

Thus we get a penalty of factork(1−ε)p in the soundness case. Noting thatD ≤ R, k =

Rγ/20, we see that it suffices to takep = 20k
εγ

. This gives hardness factor ofk1−ε or p1−ε′

as desired. This completes the full reduction.

Remark : It is crucial that the soundness parameter of the Label Cover problem is1/Rγ,

i.e. polynomially small in the domain sizeR. Thus we use Raz’s Parallel Repetition

Theorem in a very strong sense, namely, the error goes down exponentially with the

number of repetitions.

134



Chapter 7

Hardness of Vertex Cover ink-Uniform

Hypergraphs

Vertex Cover in a graph is a set of vertices that touches every edge. A trivial algorithm

gives a2-approximation for minimum vertex cover and no better algorithm is known. It

is a major open problem to show a matching lower bound, i.e.2− ε hardness for vertex

cover for everyε > 0. Arora et al [10] show anintegrality gap of 2−ε for a large family

of linear programs for vertex cover, implying that LP-based approaches are unlikely to

give an approximation ratio better than 2.

Hardness of vertex cover is intimately related to a fundamental (and deep) open prob-

lem about PCPs. Showing2− ε hardness for vertex cover is equivalent to showing that

given a graph containing an independent set of (relative) sizeα = 1
2 − ε, it is hard to

find an independent set of sizeε. This is in turn equivalent to constructing a PCP with

completenessα, soundnessε andzero free bits, meaning the verifierknowsthe answer

to every query before reading it ! However, at present we have no clue how to construct

such a PCP, even for any fixed value ofα < 1
2 . Results of Håstad [60] and Dinur,

135



Safra [32] showing7
6 − ε and1.36 hardness respectively, do not give such a PCP. Since

we are stuck on the vertex cover problem, it is natural to consider its generalization to

hypergraphs.

Vertex Cover onk-uniform hypergraphs has an approximation algorithm with ratiok.

The main result in this chapter is an almost tight lower bound ofk − 1 − ε (Theorem

7.1.1) for everyk ≥ 3. We show that it is NP-hard to find an independent set of size

ε in a k-uniform hypergraph that is guaranteed to contain an independent set of size

α = 1 − 1
k−1 − ε. As pointed out, such a result for graphs is open. Our result has

subsequently been used by Chuzhoy et al [26] to show optimalΩ(log∗ n) hardness for

Asymmetrick-Center problem.

PCP in this chapter is analyzed using purely combinatorial methods as opposed to

Fourier methods employed in earlier chapters. We use the Multi-layered Label Cover

problem (Theorem 4.2.4) and biased long code (Definition 7.2.2). In Chapter 8, we show

that the Unique Games Conjecture in fact implies a factork− ε hardness for everyk ≥ 2.

7.1 Results and Techniques

A k-uniform hypergraphH = (V, E) consists of a set of verticesV and a collectionE of

k-element subsets ofV called hyperedges. Avertex coverof H is a subsetS ⊆ V such

that every hyperedge inE intersectsS, i.e. e ∩ S 6= ∅ for eache ∈ E . An independent

set in H is a subset whose complement is a vertex cover, or in other words a subset of

vertices that contains no hyperedge entirely within it. The Ek-Vertex-Cover problem is

the problem of finding a minimum size vertex cover in ak-uniform hypergraph. This

problem is alternatively called the minimum hitting set problem with sets of sizek and

136



it is equivalent to the set cover problem where each element of the universe occurs in

exactlyk sets.

A very simple approximation algorithm is the following: greedily pick a maximal set

of pairwise disjoint hyperedges, take all vertices in the chosen hyperedges and declare it

to be a vertex cover. It is easy to show that this gives a factork approximation algorithm

for Ek-Vertex-Cover. State of the art techniques yield only a tiny improvement, achieving

a k − o(1) approximation ratio [56]. This raises the question whether achieving an

approximation factor ofk − ε for any constantε > 0 could be NP-hard. In this chapter,

we prove the following nearly tight hardness result. It appears in [29].

Theorem 7.1.1 For everyk ≥ 3, Ek-Vertex-Cover is NP-hard to approximate within

factor k − 1− ε for arbitrarily small constantε > 0.

Previous Hardness Results

The vertex-cover problem on hypergraphs where the size of the hyperedges is unbounded

is nothing but the Set-Cover problem. For this problem there is alnn approximation algo-

rithm [91, 67], and a matching(1− o(1)) lnn hardness result due to Feige [37]. The first

explicit hardness result shown for Ek-Vertex-Cover was due to Trevisan [111] who con-

sidered the approximability of bounded degree instances of several combinatorial prob-

lems, and specifically showed an inapproximability factor ofk1/19 for Ek-Vertex-Cover.

Holmerin [66] showed that E4-Vertex-Cover is NP-hard to approximate within2 − ε,

and more recently [65] obtainedk1−ε hardness for Ek-Vertex-Cover and32 − ε hardness

for E3-Vertex-Cover. Goldreich [51] showed a direct ‘FGLSS’-type [38] reduction (in-

volving no use of the long-code, a crucial component in most recent PCP constructions)

attaining a hardness factor of2− ε for Ek-Vertex-Cover for some constantk.

137



Quite surprisingly, Dinur, Guruswami and Khot [28] gave a fairly simple proof ofk
3

hardness result for Ek-Vertex-Cover. The proof takes a combinatorial view of Holmerin’s

construction and instead of Fourier analysis uses some properties of intersecting families

of finite sets. They also give a more complicated reduction that shows a factork− 3− ε

hardness for Ek-Vertex-Cover. The crucial impetus for their work came from the recent

result of Dinur and Safra [32] on the hardness of vertex cover (on graphs), and as in [32]

the notion of biased long codes and some extremal combinatorics play an important role.

In addition to ideas from [32], the factork−3−ε hardness result also exploits the notion

of covering complexity introduced by Guruswami, H˚astad and Sudan [55].

Techniques and Overview of the Reduction

Theorem 7.1.1 is proved using a reduction from the Multi-layered Label Cover problem

in Theorem 4.2.4. The construction in this chapter differs from the constructions in pre-

vious chapters in a crucial way : we take a combinatorial view of the long code and use

theorems from extremal combinatorics instead of the Fourier analysis methods.

As defined in earlier chapters, a long code over domainM is indexed by all boolean

functionsg : M 7→ {−1, 1}. The values of the long code are±1 and the length of the

long code is2|M |. In the combinatorial view of the long code, we let the bits be indexed

by all subsets ofM and the code is{0, 1} valued. An encoding of elementb ∈ M is

defined as follows :

For F ⊆M, the bit indexed byF equals1 if and only if b ∈ F

As we will see, this enables us to view the tests of a PCP verifier as constraints on set-

families and apply powerful machinery of extremal combinatorics. Here is the overview

138



of our reduction. Let

Lmulti(G, {Wi}Li=0, E = ∪0≤i<j≤LEij , {Mi}Li=0, {πv,w}(v,w)∈E)

be an instance of the multi-layered Label Cover with vertices partitioned into layers

W0,W1, . . . ,WL, and a set of edgesEij between layersi andj. The goal is to build

ak-uniform hypergraph fromLmulti with the following properties :

1. If Lmulti (or the underlying Gap-3SAT-5) is a YES instance, then the hypergraph

has an independent set of size1 − 1
k−1 − ε . The size is measured as a fractional

size relative to the size of the whole hypergraph.

2. If Lmulti is a NO instance, then the hypergraph has no independent set of sizeδ.

Hereε, δ can be made arbitrarily small. Vertex cover is just the complement of indepen-

dent set, and therefore the size of the vertex cover is either≤ 1
k−1 + ε or ≥ 1− δ . This

proves that it is NP-hard to approximate vertex cover within factork − 1− ε′.

Caution : The Label Cover instance and the hypergraph built from it, both contain

“vertices” and “edges”. It should be clear from the context what a “vertex” refers to. The

edges of the hypergraph will be called “hyperedges”.

Following our standard recipe, we construct a PCP where the verifier expects as a

proof the long code of the label for every vertexw of Lmulti. We build a hypergraph

as follows : we let the bits in the proof as the vertices of the hypergraph. LetB[w] be

the block of vertices of the hypergraph corresponding to the bits in the long code for

w. Note that ifw ∈ Wi and ifMi is the set of labels for vertices in layeri, then the

blockB[w] contains2|Mi| vertices. There is one vertex for every subset ofMi (recall the

combinatorial view of the long code).

139



For every edge(v, w) ∈ Eij, we define hyperedges of the hypergraph. Every hy-

peredge contains exactlyk vertices, one vertex from the blockB[v] andk − 1 vertices

from the blockB[w]. These hyperedges are supposed to enforce the constraint given by

the projection mapπv,w : Mj 7→ Mi. We will later see the precise manner in which the

hyperedges are defined, but here is an important thing to keep in mind :

Hyperedges are defined to ensure this property : IfLmulti is a YES instance, take a

correct labeling toLmulti and encode the labels with correct long codes. Then the vertices

of the hypergraph that correspond to bits set to1 form an independent set.

Thus, in the completeness case, we can identify a large independent set. Since half of

the bits in a long code are1, this is an independent set of size1
2 . However, we desire an

independent set of size1− 1
k−1−ε and here comes another trick. Instead of giving equal

weight to all the bits in a long code, we define abiased long codewhich gives different

weights to different vertices. With this trick, it can indeed be ensured that the weight of

the1-bits in a long code is1− 1
k−1 − ε.

In soundness case, we show that if there is an independent set of sizeδ, then it is

possible to “decode” the long codes and define a labeling forLmulti that satisfies a good

fraction of edges ofLmulti giving a contradiction. Usually, this would be achieved using

Fourier analysis and using the Fourier coefficients to do the (probabilistic) decoding. We

however do not use Fourier analysis and the decoding relies on results from extremal

combinatorics.

Motivation for using the multi-layered Label Cover : With this overall plan for the

reduction, it is easy to see why we use multi-layered version of Label Cover. The hyper-

graph we build hasL + 1 layers, and there are hyperedges between every pair of layers.

Since there are no hyperedges between vertices of the same layer, every layer is an inde-

pendent set. Now think what would happen if we had only two layers. We would trivially

140



have an independent set of size1
2 (either the left or the right layer). We however want

to claim that in soundness case, there is no independent set of sizeδ and we are thus

doomed. The multi-layered version avoids this pathological case. Theweak expansion

property(see Theorem 4.2.4) is also crucial. If the Label Cover instance had a large set

of vertices with no edges among them, the hypergraph would also have a large set of ver-

tices with no hyperedges among them (i.e. a large independent set). The weak expansion

property avoids this another pathological case.

Location of the Gap

Our hardness result has the gap between sizes of the vertex cover at the “strongest” lo-

cation. Specifically, to prove a factork − 1 − ε′ hardness we show that it is hard to

distinguish betweenk-uniform hypergraphs that have a vertex cover of size1
k−1 + ε from

those whose minimum vertex cover has size at least1 − δ. This result is stronger than

a gap of aboutk − 1 achieved, for example, between vertex covers of size1(k−1)2 and

1
k−1 . In fact, by adding dummy vertices, our result implies that for anyc < 1 it is NP-

hard to distinguish between hypergraphs that have a vertex cover of sizec
k−1 + ε from

those whose minimum vertex-cover has size at leastc. Put another way, our result shows

that fork-uniform hypergraphs fork ≥ 3, there is a fixedα such that for arbitrarily small

δ > 0, it is NP-hard to find an independent set of sizeδ even if the hypergraph is promised

to contain an independent set of sizeα. Such a result is not known for graphs and seems

out of reach of current techniques (the recent1.36 hardness result for vertex cover on

graphs due to Dinur and Safra [32], for example, shows that it is NP-hard to distinguish

between cases when the graph has an independent set of size0.38 and when there is no

independent set of size0.16).

141



Remark : Theorem 7.1.1 was used by Chuzhoy et al [26] to showΩ(log∗ n) hardness

for Asymmetrick-Center problem. It is important for their result that our theorem gives

a gap at the right location.

7.2 Biased Long Code and Intersecting Families

Definition 7.2.1 For a bias parameter0 < p < 1, and a ground setM , the weight of a

setF ⊆M is

µMp (F ) := p|F | · (1− p)|M\F |

WhenM is clear from the context, we writeµp instead ofµMp . The weight of a family

F of subsets ofM (i.e.F ⊆ 2M ) is

µp(F) :=
∑
F∈F

µp(F )

The weight of a subset is precisely the probability of obtaining this subset when one picks

every element inM independently with probabilityp.

Definition 7.2.2 For 0 < p < 1, a p-biased long code over domainM is indexed by all

subsetsF ⊆ M . The bitF has a weightµMp (F ) attached to it. The value of the bitF in

the long code of an elementb ∈M is 1 if b ∈ F and 0 otherwise.

For a long code of some elementb ∈M , if F is the family of all setsF corresponding

to 1-bits in the long code (i.e. all setsF such thatb ∈ F ), thenµMp (F) = p.

Let [n] = {0, 1, . . . , n− 1} and2[n] = {F | F ⊆ [n]}.

Definition 7.2.3 A family F ⊆ 2[n] is called s-wise t-intersecting if for everys sets

F1, . . . , Fs ∈ F , we have

|F1 ∩ . . . ∩ Fs| ≥ t

142



We are interested in bounding the size of such families, and for this purpose it is

useful to introduce the notion of a left-shifted family. Performing an(i, j)-shift on a

family consists of replacing the elementj with the elementi in all setsF ∈ F such

that j ∈ F , i 6∈ F and(F \ {j}) ∪ {i} 6∈ F . A left-shifted family is a family which

is invariant with respect to(i, j)-shifts for any1 ≤ i < j ≤ n. For any familyF , by

iterating the(i, j)-shift for all 1 ≤ i < j ≤ n we eventually get a left-shifted family

which we denote byS(F). The following simple lemma summarizes the properties of

the left-shift operation (see [54], p. 1298, Lemma 4.2):

Lemma 7.2.4 For any familyF ⊆ 2[n], there exists a one-to-one and onto mappingτ

fromF to S(F) such that|F | = |τ(F )| for everyF ∈ F . In other words, left-shifting a

family maintains its size and the size of the sets in the family. Moreover, ifF is ans-wise

t-intersecting family then so isS(F).

The next lemma states that a subsetF in a left-shifteds-wise t-intersecting family

cannot be “sparse” on all of its prefixesF ∩ [t+ js] ∀ j ≥ 0.

Lemma 7.2.5 ([54], p. 1311, Lemma 8.3)Let F be a left-shifteds-wise t-intersecting

family. Then, for everyF ∈ F , there exists aj ≥ 0 with |F ∩ [t+ sj]| ≥ t+ (s− 1)j.

The following is the main lemma of this section. It shows that for anyp < s−1
s

,

a family with non-negligibleµp-weight cannot bes-wise t-intersecting for sufficiently

larget.

Lemma 7.2.6 For anyδ, s, p with p < s−1
s

, there exists at = t(δ, s, p) such that for any

s-wiset-intersecting familyF ⊆ 2[n], µp(F) < δ.

Proof: Let F be ans-wise t-intersecting family wheret will be determined later. Ac-

cording to Lemma 7.2.4,S(F) is alsos-wiset-intersecting andµp(S(F)) = µp(F). By

143



Lemma 7.2.5, for everyF ∈ S(F), there exists aj ≥ 0 such that|F ∩ [t + sj]| ≥

t+ (s− 1)j. We can therefore boundµp(S(F)) from above by the probability that such

a j exists for a random set chosen according to the distributionµp.

Let θ = s−1
s
− p. Then, for anyj ≥ 0, Pr[ |F ∩ [t+ sj]| ≥ t+ (s− 1)j ] is at most

Pr[ |F ∩ [t+ sj]| − p(t+ sj) ≥ θ(t+ sj) ] ≤ e−2(t+sj)θ2

using Chernoff bound. Summing over allj ≥ 0, we get

µp(S(F)) ≤
∑
j≥0

e−2(t+sj)θ2
= e−2tθ2

/(1− e−2sθ2
)

which is smaller thanδ for large enought.

7.3 The Hypergraph Construction

We are now ready to prove Theorem 7.1.1. The overall plan for the proof is already

outlined in Section 7.1.

Let Lmulti(G, {Wi}Li=0, E =
⋃
i<j Eij, {Mi}Li=0, {πv,w}(v,w)∈E) be an instance of the

multi-layered Label Cover given by Theorem 4.2.4. Fixk ≥ 3 and arbitrarily small

ε, δ > 0. Define the bias parameterp = 1 − 1
k−1 − ε. We present a construction of a

k-uniform hypergraphH.

144



Defining Vertices of Hypergraph

The set of vertices of the hypergraphH is defined to be

{(w,F ) | w ∈Wi, F ⊆Mi, 0 ≤ i ≤ L}

For a fixedw ∈Wi, the block of verticesB[w] is defined to be

B[w] := {(w,F ) | F ⊆Mi}

The weight of the vertices inside the blockB[w] is according toµMi
p , i.e. the weight of

a vertex(w,F ), F ⊆ Mi is proportional toµMi
p (F ) = p|F |(1 − p)|Mi\F | as in Defini-

tion 7.2.1. For every layeri, all blocksB[w] for w ∈ Wi have the same total weight and

the total weight of each layer is1
L+1 . Formally, the weight of a vertex(w,F ) for w ∈Wi

is given by
1

L+ 1
1
|Wi|

µMi
p (F )

Thus the total weight of all vertices in the hypergraph is equal to1.

It is clear that the vertices in blockB[w] correspond to the bits in the biased long code

for the label ofw.

Defining Hyperedges

Let 0 ≤ i < j ≤ L be any two layers andv ∈ Wi, w ∈ Wj be adjacent vertices in these

layers, i.e.(v, w) ∈ Eij. Let πv,w : Mj 7→Mi be the corresponding projection map.

We define hyperedges between vertices in blocksB[v] andB[w] as follows : every

hyperedge hask vertices, one vertex from the blockB[v] andk − 1 vertices from the

145



blockB[w]. ForI ⊆Mi andF1, F2, . . . , Fk−1 ⊆Mj, we define

(
(v, I), (w,F1), (w,F2), . . . , (w,Fk−1)

)
to be a hyperedge if and only if

I ∩ πv,w
(
∩k−1
l=1 Fl

)
= ∅ (7.1)

The hyperedges are defined to ensure that there is a large independent set in completeness

case, as will be clear next.

Completeness

Assume thatLmulti is a YES instance andΦ : Wi 7→ Mi for 0 ≤ i ≤ L be the labeling

of its vertices. We will show that if these labels are encoded using correct biased long

codes, then the hypergraph vertices corresponding to1-bits in the long codes form an

independent set. Specifically let

IS(H) := {(w,F ) |w ∈Wi, F ⊆Mi, Φ(w) ∈ F, 0 ≤ i ≤ L }

We claim thatIS(H) is an independent set in the hypergraph. Suppose on the contrary

that this is not the case. Therefore, there existk vertices inIS(H) that form a hyperedge.

Let these vertices be

(v, I), (w,F1), (w,F2), . . . (w,Fk−1) wherev ∈Wi, w ∈Wj, I ⊆Mi, Fl ⊆Mj

146



By definition ofIS(H), we have

Φ(v) ∈ I, Φ(w) ∈ ∩k−1
l=1 Fl

Also, sinceΦ is a correct labeling, we haveπv,w(Φ(w)) = Φ(v) and therefore

Φ(v) ∈ I ∩ πv,w
(
∩k−1
l=1 Fl

)
In particular, this intersection is non-empty which contradicts the way hyperedges are

defined (see Equation (7.1)).

The weight of the independent setIS(H) is p = 1− 1
k−1 − ε since the weight of all

the1-bits of ap-biased long code isp. We now turn to the soundness of the construction.

7.4 Soundness of the Construction

We show that ifLmulti is a NO instance, thenH has no independent set of sizeδ. Suppose

on the contrary thatIS(H) is an independent set of sizeδ. We will obtain a labeling to

two layersi0, j0 of the Label Cover instance that satisfies a significant fraction of edges

between these layers. Soundness property of Theorem 4.2.4 then gives a contradiction.

By an averaging argument, there are at leastδ/2 fraction of verticesw of Label Cover

for which at leastδ/2 fraction of the vertices in blockB[w] are inIS(H). Call suchw’s

good. Thus defining

F [w] := {F | (w,F ) ∈ IS(H)}

we have

w is good if and only if µp(F [w]) ≥ δ/2

147



Again, by an averaging argument, there are at leastδ/4 fraction of the Label Cover

layers0-through-L which contain at leastδ/4 fraction of goodw-vertices. By theweak

expansion propertyof the multi-layered Label Cover instance (Theorem 4.2.4), ifL ≥

O(1/δ2), there are two layersi0, j0 such that (fix these layers for the rest of the proof) :

• At leastδ/4 fraction of vertices in layersi0, j0 are good. LetY ⊆Wi0 , X ⊆ Wj0 be

the sets of good vertices with|Y | ≥ δ|Wi0 |/4, |X| ≥ δ|Wj0|/4. Also, letN = Mi0

andM = Mj0 be the sets of labels for layersi0, j0 respectively.

• The number of Label Cover edges betweenX andY is at leastδ2/64 fraction of

the total number of edges between layersi0, j0.

For anyw ∈ X, the set familyF [w] is a family withµp-weight at leastδ/2. According

to Lemma 7.2.6, there existst = t( δ2 , k − 1, p) and k − 1 setsFw,1, Fw,2, . . . , Fw,k−1 ∈

F [w] that intersect in less thant labels. Let

C[w] :=
k−1⋂
l=1

Fw,l with C[w] ⊆M, |C[w]| ≤ t

C[w] will be the set of candidate labels forw.

In the following we define an assignment of labelsΦ to the vertices inX andY such

that many of the Label Cover edges between them are satisfied. Forw ∈ X, define its

labelΦ(w) to be a random label from the setC[w]. Forv ∈ Y , we choose a label

Φ(v) := maximizera ∈ N |{w ∈ X | a ∈ πv,w(C[w]) }|

i.e., the label that is contained in the largest number of projections ofC[w] wherew

ranges over all vertices inX such that(v, w) is an edge of Label Cover.

Before continuing, we need the following simple lemma :

148



Lemma 7.4.1 Let A1, . . . , An be a collection ofn sets of size at mostm such that no

element is contained in more thanh sets. Then, there are at least n
1+(h−1)m ≥

n
hm

disjoint

sets in this collection.

Proof: We prove by induction onn that there are at least n
1+(h−1)m disjoint sets in the

collection. The claim holds trivially forn ≤ 1 + (h − 1)m. Otherwise, consider all the

sets that intersectA1. Since no element is contained in more thanh sets, the number of

such sets (includingA1) is at most1 + (h− 1)m. Removing these sets we get, by using

the induction hypothesis, a collection that containsn−1−(h−1)m
1+(h−1)m = n

1+(h−1)m − 1 disjoint

sets. We conclude the induction step by addingA1 to the disjoint sets.

Consider a vertexv ∈ Y and a vertexw ∈ X such that(v, w) is an edge of Label

Cover. SinceIS(H) is an independent set, there is no hyperedge of the form

((v, I), (w,Fw,1), . . . , (w,Fw,k−1) for any I ∈ F [v]

Therefore, everyI ∈ F [v] must intersectπv,w(∩k−1
l=1 Fw,l) = πv,w(C[w]) (recall the defi-

nition of hyperedges, Equation (7.1)). Now consider the family of projectionsπv,w(C[w])

for all w ∈ X such that(v, w) is an edge of Label Cover. Letq denote the maximum

number of disjoint sets inside this family. Note that every disjoint set reduces the weight

of the vertices inF [v] by a factor of1− (1− p)t. Because the weight ofF [v] is at least

δ
2 , we obtain thatq is at mostlog( δ2)/ log(1 − (1 − p)t). Claim 7.4.1 implies that there

exists a label forv that is contained in at least a fraction

1
t log( δ2)/ log(1− (1− p)t)

149



of the projectionsπv,w(C[w]). Therefore, the expected fraction of Label Cover edges

satisfied betweenX andY is at least

1
t2 log( δ2)/ log(1− (1− p)t)

Now at leastδ2/64 fraction of edges between layersi0, j0 are betweenX andY . Thus we

get a labeling for layersi0, j0 satisfying a significant fraction of edges. As usual, choosing

the soundness parameter of Label Cover small enough (i.e. choosing the parameteru in

Theorem 4.2.4 large enough) suffices for a contradiction.

150



Chapter 8

Unique Games Conjecture and its

Consequences

The discovery of PCP Theorem and subsequent powerful PCP constructions have led

to (in many cases optimal) hardness of approximation results for various optimization

problems, such as MaxClique [59], MAX-3SAT [60] and Set Cover [37]. However PCP

techniques haven’t been successful in obtaininggood hardness results for some prob-

lems like Vertex Cover and Min-2SAT-Deletion. In this chapter, we try to identify some

promising new directions for attacking these problems.

We propose a conjecture called Unique Games Conjecture (Conjecture 8.1.1) that

states existence of an outer verifier different from all known ones. The conjecture has

strong implications. It implies any constant factor hardness for Min-2SAT-Deletion (The-

orem 8.3.1) and optimal2 − ε hardness for Vertex Cover (Theorem 9.0.2). These impli-

cations are highly non-trivial and rely on difficult Fourier analysis results, namely, Bour-

gain’s Theorem and Friedgut’s Theorem.

151



We emphasize that identifying verifiers with right properties has been crucial in PCP

literature. For example, Bellare and Sudan [17] noted that a verifier withlow amortized

free bit complexityis sufficient to given1−ε hardness for MaxClique. Bellare et al [16]

later showed that such a verifier is in fact necessary and then H˚astad [60] was able to

construct one such verifier.

We view our conjecture as more of a question, in that we don’t have an intuition

one way or the other. We also explore some simple ideas for proving and refuting the

conjecture and describe why they don’t work.

8.1 Conjecture, its Motivation and Results

All PCP constructions today (with the possible exception of [32]) follow the basic paradigm

of composing a so-called “outer verifier” with an “inner verifier”. Most of recent research

has focused on improving the quality of the inner verifier. Many sophisticated inner ver-

ifiers have been constructed (see [59], [60], [106], [55], and previous chapters of this

thesis) based on long codes and Fourier analysis techniques. However the outer verifier

has remained untouched. All PCP constructions use the same outer verifier, namely the

Raz Verifier (or the Label Cover problem) obtained by parallel repetition of a 2-Prover-1-

Round protocol for Gap-3SAT. The soundness property of this verifier is given by Raz’s

Parallel Repetition Theorem.

In this chapter, we show that one promising approach to attack problems for which

PCP techniques have failed so far, is to construct an outer verifier with “better properties”.

The Raz Verifier is a 2-Prover-1-Round game (see Section 2.2) with the following crucial

properties :

152



1. For arbitrarily smallδ > 0, it is NP-hard to determine whether the value of the

game is1 or at mostδ.

2. The answers of the provers are from a domain of sizek wherek is a constant

depending onδ.

3. The answer of the second prover uniquely determines the answer of the first prover.

One might expect Property (3) to be even stronger, i.e. the answer of the second

prover uniquely determines the answer of the first prover and vice versa. In fact such

games have been considered in literature before ([43], [35]) and they are called “unique

games”. However, to the best of our knowledge, the question whether unique 2-prover

games (with (1− ζ, δ) gap in their value) are powerful enough to capture NP hasn’t been

considered before. This question is precisely the focus of this chapter and we make the

following (rather bold) conjecture :

Conjecture 8.1.1 (The Unique Games Conjecture :) For arbitrarily small constants

ζ, δ > 0, there exists a constantk = k(ζ, δ) such that it is NP-hard to determine whether

a unique 2-prover game with answers from a domain of sizek has value at least1− ζ or

at mostδ.

Remark : One can trivially determine whether a unique 2-prover game has value1.

Therefore the gap in the above conjecture is (1− ζ, δ) as opposed to the gap (1, δ) in the

Raz Verifier. In other words, NP-hard unique games must lose perfect completeness.

We show that a positive resolution of this conjecture would have many interesting

consequences. We use the 2-prover game given by the conjecture as an outer PCP verifier

and build appropriate inner verifiers to prove the following results :

153



1. Let Max-2-Lin-2 be a problem where we are given a system of linear equations

modulo2, each equation containing exactly2 variables. The goal is to find an

assignment that satisfies maximum number of equations.

We show that the Unique Games Conjecture implies : For every1
2 < t < 1, for all

sufficiently smallε > 0, it is NP-hard to distinguish between instances of Max-2-

Lin-2 where either there exists an assignment satisfying at least1 − ε fraction of

equations or no assignment satisfies more than1− εt fraction of equations.

This hardness result is tight since the algorithm of Goemans and Williamson [50]

for Max-2-Lin-2, on an instance with optimum1 − ε , produces a solution with

value 1−O(
√
ε).

2. A reduction from Max-2-Lin-2 to 2SAT gives (1 − ε, 1 − εt) gap for 2SAT for

any 1
2 < t < 1. As a corollary, it is NP-hard to approximate Min-2SAT-Deletion

(also called Min-2CNF-Deletion) within any constant factor. On the algorithmic

side, Zwick’s algorithm [116], on a 2SAT instance with optimum1 − ε produces

an assignment with value1 − O(ε1/3). Klein et al [80] giveO(logn log log n)

approximation for Min-2SAT-Deletion.

3. Assuming the Unique Games Conjecture, we also show that vertex cover on graphs

is NP-hard to approximate within factor2−ε for any constantε > 0. In fact, vertex

cover onk-uniform hypergraphs is NP-hard to approximate within factork − ε for

everyk ≥ 2.

In light of such interesting consequences of the Unique Games Conjecture, we think

it is an important open problem to prove or disprove it. In this chapter, we also present a

semi-definite programming based algorithm that gives the following theorem :

154



Theorem 8.1.2 There exists a (poly-time) algorithm such that given a unique 2-prover

game with value1− ε and answers from a domain of sizek, it finds prover strategies that

make the verifier accept with probability1−O(k2ε1/5
√

log(1
ε
)).

Andersson et al [7] proved a similar result for the problem Max-2-Lin-p, where the con-

straints are linear equations modp with every equation containing exactly 2 variables.

Such constraints have theuniqueness propertysince the value to one variable in the equa-

tion uniquely determines the value to the second variable. Our algorithm is simpler and

more general than that of Andersson et al.

Theorem 8.1.2 shows that if the Unique Games Conjecture is true, the domain size

requiredk = k(ζ, δ) must be at least 1
ζ1/10 . A trivial boundk ≥ 1

δ
also holds, since the

provers can choose their answers uniformly at random from the domain of sizek and

make the verifier accept with probability1
k
.

Overview of the Chapter

We prove hardness of Max-2-Lin-2 and Theorem 8.1.2 in this chapter. These results and

formulation of the Unique Games Conjecture appear in [77]. For proving hardness of

Vertex Cover, we need to state a stronger form of the Unique Games Conjecture and show

that the stronger form in fact follows from the original form. This result and hardness of

Vertex Cover appear in [79] and we present them in the next chapter.

8.2 Unique Label Cover Problem

As always, we work with the Label Cover problem instead of 2-prover games. We first

define a weighted version of the Label Cover problem with an additional property that

the projection maps are bijections (i.e. permutations).

155



The Weighted Unique Label Cover Problem

Definition 8.2.1 A weighted unique Label Cover problemL(G(V,W ),M, {πv,w}, {pvw})

consists of a complete bipartite graphG(V,W ), with bipartitionV,W . An edge(v, w)

has a weightpvw with
∑

v,w pvw = 1. Every vertex inV ∪W is supposed to get a label

from a setM . With every edge(v, w) there is associated a bijectionπv,w : M →M . For

an assignmentΦ of labels to the vertices of the graph, that is for a functionΦ : V ∪W →

M , an edge(v, w) is said to be satisfied ifπv,w(Φ(w)) = Φ(v). The goal is to find an as-

signment of labels that maximizes the total weight of satisfied edges. We defineOPT (L)

to be the maximum weight of edges satisfied by any labeling.

The instances of Label Cover given by Theorem 2.3.2 have|M | � |N | and the pro-

jectionsπv,w : M → N are highly many-to-one (this many-to-one-ness increases as

soundness parameter decreases). The PCP constructions in this chapter need a very strin-

gent condition that the projections be bijections. It is clear that the Unique Label Cover

problem corresponds to a Unique 2-Prover Game. Hence the Unique Games Conjecture

can be restated as :

Conjecture 8.2.2 (The Unique Games Conjecture :) For arbitrarily small constants

ζ, δ > 0, there exists a constantk = k(ζ, δ) such that it is NP-hard to determine whether

a weighted unique Label Cover instance with label sets of sizek (i.e. |M | = k) has

optimum at least1− ζ or at mostδ.

156



8.3 Hardness of Max-2-Lin- 2

In this section we present a proof of the following theorem.

Theorem 8.3.1 The Unique Games Conjecture implies that for every1
2 < t < 1, for all

sufficiently small constantsε > 0, it is NP-hard to distinguish between the instances of

Max-2-Lin-2, where the fraction of satisfied equations is at least1− ε or at most1− εt.

In particular, Min-2SAT-Deletion is hard to approximate within any constant factor.

This result is essentially due to H˚astad [61]. He proposed a test for checking a

long code and analyzed it using Bourgain’s recent theorem [22] on Fourier spectrum

of boolean functions, which itself was inspired by a question raised by H˚astad. Our con-

tribution is to introduce the Unique Games Conjecture and to show that H˚astad’s test can

be extended to test the consistency between two long codes. This gives a PCP verifier

that makes a linear test on2 query bits, has completeness1− ε and soundness1− εt.

Following the standard paradigm, the PCP verifier takes the unique Label Cover in-

stanceL guaranteed by Conjecture 8.2.2 and expects the proof to contain, for all vertices

v ∈ V andw ∈W , the long codes of labels ofv andw. These long codes are assumed to

be folded, i.e.A(−f) = −A(f) (see Definition 2.4.3 and Lemma 2.4.4).

The verifier picks an edge of Label Cover and checks that the labels along this edge

satisfy the corresponding bijection. There is a technical issue of how an edge is picked.

Let pv =
∑

w pvw. That is if an edge is picked with a probability equal to its weight,

pv is the probability that the left endpoint isv. Let Ψv : W → [0, 1] be defined as

Ψv(w) = pvw
pv

. That isΨv(w) is the conditional probability that the right endpoint of an

edge isw given that the left endpoint isv.

157



Action of the verifier :

1. Pickv ∈ V with probabilitypv. Let A be the (supposed) long code of the (sup-

posed) label ofv.

2. Pick a random functionf : M → {−1, 1} and a “perturbation function”µ : M →

{−1, 1}. For eachx ∈ M , µ(x) = 1 with probability1 − ε andµ(x) = −1 with

probabilityε.

3. With probability1
2 each, select one of the following actions :

(a) (Codeword test) Accept if and only if A(f) = A(fµ)

(b) (Consistency test) Pick a vertexw ∈W with the distributionΨv. LetB be the

(supposed) long code of the (supposed) label ofw andπ = πv,w : M → M

be the bijection betweenv andw. Accept if and only if

A(f) = B(f ◦ π)

wheref ◦ π denotes the composition of functions.

Remark : Håstad proposed and analyzed the codeword test. We propose the consistency

test and show that H˚astad’s analysis can be extended to check consistency provided the

Unique Games Conjecture is true.

Completeness

It is easy to see that the completeness of the test is1− ζ+ε
2 where the outer Label Cover

instance has completeness1− ζ. The test may fail due to 2 reasons : (1) The edge(v, w)

picked by the verifier may be an unsatisfied edge of the Label Cover instance which

158



happens with probabilityζ. In this case, the consistency test fails. (2) In a correct proof,

A is a long code of somea ∈ M . The codeword test fails whenµ(a) = −1 which

happens with probabilityε.

The claim about the completeness follows. Note that by the Unique Games Conjec-

ture,ζ can be assumed to be arbitrarily small.

8.3.1 Bourgain’s Theorem and Soundness Analysis

Recall that any supposed long codeA has Fourier expansion

A =
∑
α⊆M

Âαχα

A is a correct long code if there isx ∈M such thatÂ{x} = 1, i.e. its Fourier spectrum is

entirely concentrated on a singleton set. A long code can be viewed as a boolean function

on {−1, 1}M that depends on exactly one coordinate. We use the following theorem of

Bourgain [22]. Roughly speaking, it says that if Fourier spectrum of a boolean function

is concentrated on sets of small size, then the function is essentially determined by a few

coordinates. The theorem was motivated by H˚astad’s codeword test (i.e.A(f) = A(fµ))

for checking long code.

Theorem 8.3.2 LetA be any boolean function (for instance a supposed long code) and

k > 0 an integer. Then for every12 < t < 1, there exists a constantct > 0 such that

If
∑

α : |α|>k

Â2
α < ctk

−t then
∑

α : | bAα|≤ 1
10 4−k2

Â2
α <

1
100

159



We intend to show that the soundness of the PCP is1 − Ω(εt). The probability of

acceptance of the verifier is clearly

Pr[acc] =
1
2
Ev,f,µ

[
1 +A(f)A(fµ)

2
+ Ew

[
1 +A(f)B(f ◦ π)

2

]]

Using the Fourier expansionA =
∑

α Âαχα we get

Ef,µ[A(f)A(fµ)] = Ef,µ[
∑
α1,α2

Âα1Âα2χα1(f)χα2(f)χα2(µ)]

The expectation overf is non-zero only ifα1 = α2 = α. AlsoEµ[χα(µ)] = (1− 2ε)|α|.

Hence

Ef,µ[A(f)A(fµ)] =
∑
α

Â2
α(1− 2ε)|α|

Using the Fourier expansionB =
∑

β B̂βχβ, we have

Ef,µ[A(f)B(f ◦ π)] = Ef,µ[
∑
α,β

ÂαB̂βχα(f)χβ(f ◦ π)χβ(µ)] (8.1)

We have

χβ(f ◦ π) =
∏
x∈β

f(π(x)) =
∏

y∈π(β)

f(y) = χπ(β)(f)

Substituting this in (8.1) and taking expectation overf , we see that the expectation is

non-zero only ifα = π(β). Sinceπ is a bijection,β = π−1(α). Thus (8.1) can be written

as

Ef,µ[A(f)B(f ◦ π)] =
∑
α

ÂαB̂π−1(α)(1− 2ε)|α|

160



Hence the probability of acceptance is

Pr[acc] = 1
2 + 1

4Ev

[∑
α Â

2
α(1− 2ε)|α| +

∑
α ÂαEw

[
B̂π−1(α)

]]
= 1

2 + 1
4Ev[Rv + Tv]

If this probability is≥ 1 − 1
8ctε

t wherect is as in Theorem 8.3.2, we haveEv[Rv +

Tv] ≥ 2 − 1
2ctε

t. This implies that over the choice ofv, with probability at least12 ,

Rv+Tv ≥ 2−ctεt. Fix any such “good”v. We haveRv ≥ 1−ctεt andTv ≥ 1−ctεt > 1
2 .

1− ctεt ≤ Rv ≤
∑

α : |α| ≤ ε−1

Â2
α + e−2

∑
α : |α| > ε−1

Â2
α

=⇒
∑

α : |α| > ε−1

Â2
α < ctε

t (8.2)

Takingk = ε−1 in Theorem 8.3.2, we get

∑
α : | bAα| ≤ 1

10 4−k2

Â2
α <

1
100

(8.3)

Now we use the fact thatTv > 1
2 . Call α “good” if α ⊆ M is nonempty,|α| ≤ ε−1

and|Âα| ≥ 1
104−k2

. We will show that the contribution of badα’s to Tv is small. First of

all, since the tables are folded,̂Aα = 0 when|α| is even (see Lemma 2.4.4). In particular

Âα = 0 whenα is empty. Also

161



∣∣∣∣∣∣
∑

α : |α|>ε−1

ÂαEw[B̂π−1(α)]

∣∣∣∣∣∣ ≤
√ ∑

α : |α|>ε−1

Â2
α

√∑
α

∣∣∣Ew[B̂π−1(α)]
∣∣∣2

≤
√ ∑

α : |α|>ε−1

Â2
α <

√
ctεt

where we used (8.2). Similarly we use (8.3) and show that the contribution ofα’s such

that |Âα| ≤ 1
104−k2

to Tv is at most 1
10 . This implies thatTv when restricted to goodα’s,

still remains at least14 . We have

Ew

[∑
α

Â2
αB̂

2
π−1(α)

1
|α|

]
≥ ε Ew

 ∑
α good

Â2
αB̂

2
π−1(α)

 (8.4)

≥ ε
1

100
4−2k2

Ew

 ∑
α good

B̂2
π−1(α)


≥ ε

1
100

4−2k2
Ew

 ∣∣∣∣∣∣
∑

α good
ÂαB̂π−1(α)

∣∣∣∣∣∣
2 

≥ ε
1

100
4−2k2

∣∣∣∣∣∣Ew
 ∑
α good

ÂαB̂π−1(α)

 ∣∣∣∣∣∣
2

≥ ε
1

100
4−2k2 1

16

The expression on the second-last line is justTv restricted to goodα’s which we

showed to be at least1
4 . Note that we are assuming thatv is good itself, which holds with

probability 1
2 .

Now we define a labeling for the Label Cover instance as follows : For a good vertex

v ∈ V , pick α with probability Â2
α, pick a random element ofα and define it to be the

162



label ofv. For any vertexw ∈ W , pick β with probabilityB̂2
β, pick a random element of

β and define it to be the label ofw.

It is easy to see that the weight of the edges satisfied by this labeling equals the

expression (8.4). Label ofv will be defined to be a random elementx ∈ α and the label

of w will be defined to be a random elementy ∈ π−1(α). With probability 1
|α| it holds

thatπ(y) = x and the edge(v, w) in the Label Cover instance is satisfied.

Since the expression (8.4) is at leastΩ(ε4−2k2), we get a labeling that satisfies edges

of total weightΩ(ε4−2k2). However this contradicts the fact thatOPT (L) ≤ δ if δ was

chosen sufficiently small (see Conjecture 8.2.2). This shows that the soundness is at most

1− 1
8ctε

t wheret > 1
2 is arbitrary, proving Theorem 8.3.1.

Remark : A simple gadget(x⊕ y = 0 7→ x∨ y, x∨ y) reduces Max-2-Lin-2 to 2SAT

and implies a (1− ε, 1− εt) gap for 2SAT for anyt > 1
2 .

8.4 Proof of Theorem 8.1.2

In this section we prove Theorem 8.1.2. Instead of unique 2-prover games, we work in a

more general setting of constraint satisfaction problems with uniqueness property.

Problem : We are given a setX of n variables which take values from the set[k] =

{1, 2, . . . , k}. For every pair(u, v) of variables, there is a “constraint” which is a bijec-

tion πu,v : [k]→ [k]. This constraint has a weightwuv with
∑

(u,v) wuv = 1.

For an assignmentA : X → [k] to the variables, a constraint on the pair(u, v) is

satisfied, ifπu,v(A(u)) = A(v). The goal is to find an assignment that maximizes the

total weight of satisfied constraints.

Algorithm : We use a semidefinite program from Feige and Lovasz’s paper [43] and

augment it with a suitable rounding procedure. Let us first formulate the problem as a

163



quadratic integer program. For every variableu ∈ X, let u1, u2, . . . , uk be auxiliary

variables taking 0-1 values. Place the following constraints :

u2
1 + u2

2 + . . . u2
k = 1 ∀ u ∈ X (8.5)

uiuj = 0 ∀ u ∈ X and∀ i 6= j (8.6)

We intend that if an assignment assigns the valuei0 ∈ [k] to a variableu, thenui0 = 1

andui = 0 ∀i 6= i0. This would satisfy the constraints (8.5), (8.6). These constraints

imply that for every pair(u, v) of variables

uivj ≥ 0 ∀ i, j (8.7)∑
1≤i,j≤k

uivj = 1 (8.8)

It is easy to see that the goal is to maximize the following function subjected to the above

constraints.

∑
(u,v)

wuv(u1vπ(1) + u2vπ(2) + . . . ukvπ(k)) where π = πu,v (8.9)

Now we consider the semidefinite programming relaxation of the problem. We allow

the variables(u1, . . . , uk) to be vectors in a high dimensional space (inkn-dimensional

space to be precise) and the constraints (8.5)-(8.8) replaced by the constraints :

164



~u1 · ~u1 + ~u2 · ~u2 + . . .+ ~uk · ~uk = 1 ∀ u ∈ X (8.10)

~ui · ~uj = 0 ∀ u ∈ X ∀ i 6= j (8.11)

~ui · ~vj ≥ 0 ∀ u, v ∈ X ∀ i, j (8.12)∑
1≤i,j≤k

~ui · ~vj = 1 ∀ u, v ∈ X (8.13)

The goal is to maximize the following function subjected to the above constraints :

∑
(u,v)

wuv(~u1 · ~vπ(1) + . . .+ ~uk · ~vπ(k)) where π = πu,v (8.14)

Observation : In any feasible solution of the SDP, for any two variablesu, v, we have

from the constraints (8.10), (8.11) and (8.13),

‖
k∑
i=1

~ui‖ = ‖
k∑
j=1

~vj‖ = 1 and (
k∑
i=1

~ui) · (
k∑
j=1

~vj) = 1

This implies that
∑k

i=1 ~ui =
∑k

j=1 ~vj. We denote~s =
∑k

i=1 ~ui which is the same for all

variablesu and‖~s‖ = 1.

We solve the semidefinite program and construct an assignment using the following

rounding procedure.

• Choose a vector~r from the normal distribution, i.e. choose every coordinate of~r

from the distributionN(0, 1) independently.

• By replacing~r by−~r if needed, assume that~r · ~s ≥ 0.

165



• Construct the following assignmentA : for every variableu, let

A(u) = i0 where ~r · ~ui0 = max
1≤i≤k

(~r · ~ui)

We prove the following theorem which is sufficient to prove Theorem 8.1.2.

Theorem 8.4.1 If there exists an assignment that satisfies constraints with total weight

1 − ε, then the above algorithm produces an assignment that satisfies constraints with

expected weight1−O(k2ε1/5
√

log(1
ε
)).

Proof: Let αuv =
∑

1≤i≤k ~ui · ~vπ(i), π = πu,v which is the part of the SDP objective

function (8.14) corresponding to the constraint on(u, v). By the hypothesis, the SDP has

a solution with value at least1−ε implying that there exist vectors(~ui)u∈X,i∈[k] satisfying

∑
(u,v)

wuvαuv ≥ 1− ε

=⇒
∑

αuv≥1− 1
2 ε

4/5

wuv ≥ 1− 2ε1/5

Fix any(u, v) with αuv ≥ 1− 1
2ε

4/5. We will show that we haveπu,v(A(u)) = A(v) with

probability1−O(k2ε1/5
√

log(1
ε
)). Let π = πu,v for simplicity. The intuition behind the

proof is simple. ifαuv = 1, the SDP constraints (8.10-8.13) imply that~ui = ~vπ(i) ∀ i ∈

[k]. Thus for any vector~r, if ~r · ~ui is maximized for indexi0, then~r · ~vj is maximized at

indexπ(i0). Hence the rounding procedure will assignA(u) = i0, andA(v) = π(i0),

satisfying the constraint.

We however haveαuv ≥ 1 − 1
2ε

4/5 and it takes some effort to translate the intuition

into a rigorous proof. We proceed to prove several simple lemmas.

Lemma 8.4.2 ‖~ui − ~vπ(i)‖ ≤ ε2/5 ∀ i ∈ [k].

166



Proof:

1− 1
2
ε4/5 ≤

∑
i

~ui · ~vπ(i) ≤
∑
i

‖~ui‖‖~vπ(i)‖

≤
∑
i

‖~ui‖2 + ‖~vπ(i)‖2

2
= 1

=⇒ ‖~ui‖2 + ‖~vπ(i)‖2

2
− ~ui · ~vπ(i) ≤

1
2
ε4/5 ∀ i

=⇒ ‖~ui − ~vπ(i)‖2 ≤ ε4/5 ∀ i

Lemma 8.4.3 If Y is distributed asN(0, 1),

Pr [|Y | > γ] ≤ e
−γ2

2

Proof: Standard inequality.

Lemma 8.4.4 With probability1−O(k2ε1/5
√

log(1
ε
)), components of~r along the direc-

tions of vectors

{~ui}i∈[k], {~ui − ~uj}i6=j, {~ui − ~vπ(i)}i∈[k]

have magnitude in the range

[
ε1/5
√

log(
1
ε
),

√
log(

1
ε
)
]

Proof: This follows from the fact that~r is distributed in a spherically symmetric manner

and hence its component along any direction is distributed asN(0, 1). Hence for any unit

167



vector~t,

Pr

[
|~r · ~t| < ε1/5

√
log(

1
ε
)

]
< 2ε1/5

√
log(

1
ε
)

Pr

[
|~r · ~t| >

√
log(

1
ε
)

]
<
√
ε

where the first inequality is trivial and the second follows from Lemma 8.4.3. Now

we take a union bound along theO(k2) directions specified in the statement of this

lemma.

Lemma 8.4.5 With probability1− 10kε1/5
√

log(1
ε
), the component of~r along~s, that is

|~r · ~s|, is at least5kε1/5
√

log(1
ε
).

Proof: Trivial.

Thus except with probability1 − O(k2ε1/5
√

log(1
ε
)), we can assume that~r satisfies hy-

pothesis of Lemma 8.4.4 and Lemma 8.4.5. Under this assumption, we prove the follow-

ing three lemmas. Leti0 ∈ [k] be such that ~r · ~ui0 = max1≤i≤k ~r · ~ui.

Lemma 8.4.6 ‖~ui0‖ ≥ 5ε1/5.

Proof: (
∑k

i=1 ~ui) · ~r = ~s · ~r ≥ 5kε1/5
√

log(1
ε
) by Lemma 8.4.5 andi0 is the index that

maximizes~r · ~ui. Hence~r · ~ui0 ≥ 5ε1/5
√

log(1
ε
). But by Lemma 8.4.4, the component of

~r along~ui0 has magnitude at most
√

log(1
ε
). This implies that‖~ui0‖ ≥ 5ε1/5.

Lemma 8.4.7 ∀ j 6= i0, ~r · ~uj ≤ ~r · ~ui0 − 5ε2/5
√

log(1
ε
)

168



Proof:

~r · ~ui0 − ~r · ~uj = |~r · ~ui0 − ~r · ~uj|

= |~r · (~ui0 − ~uj)|

≥ ‖~ui0 − ~uj‖ ε1/5
√

log(1
ε
) by Lemma 8.4.4

≥ ‖~ui0‖ ε1/5
√

log(1
ε
) Since~ui0 ⊥ ~uj

≥ 5ε2/5
√

log(1
ε
) by Lemma 8.4.6

Lemma 8.4.8 ∀ i, |~r · ~ui − ~r · ~vπ(i)| ≤ ε2/5
√

log(1
ε
)

Proof:

|~r · ~ui − ~r · ~vπ(i)| = |~r · (~ui − ~vπ(i))|

≤
√

log(1
ε
) ‖~ui − ~vπ(i)‖ by Lemma 8.4.4

≤
√

log(1
ε
)ε2/5 by Lemma 8.4.2

Now we will show that

~r · ~vπ(i0) = max
1≤j≤k

(~r · ~vj) (8.15)

This would imply that the assignmentA given by the rounding procedure assignsA(u) =

i0, A(v) = π(i0) and the constraint on the pair(u, v) is satisfied.

Let j 6= i0 be any index. By Lemma 8.4.8 and Lemma 8.4.7,

~r · ~vπ(j) ≤ ~r · ~uj + ε2/5
√

log(
1
ε
) ≤ ~r · ~ui0 − 4ε2/5

√
log(

1
ε
)

169



Also by Lemma (8.4.8) we have

~r · ~vπ(i0) ≥ ~r · ~ui0 − ε2/5
√

log(
1
ε
)

It follows that

~r · ~vπ(i0) > ~r · ~vπ(j) ∀ j 6= i0

finishing the proof of (8.15) and Theorem 8.4.1.

8.5 Conclusion

It seems quite difficult to prove (or disprove) the Unique Games Conjecture. Proving

the conjecture is equivalent to constructing a PCP that reads 2 symbols and accepts if and

only if these symbols satisfy a bijective constraint. However the current tools appear quite

weak for constructing PCPs that read 2 symbols. Parallel repetition of a unique game

is a unique game and one might hope to amplify the soundness by parallel repetition.

However we do not have a hard instance of a unique game to begin with. Theorem

8.1.2 shows that if the Unique Games Conjecture is true, the domain sizek(ζ, δ) ≥
1

ζ1/10 , thus the domain size would play a crucial role. On the other hand, disproving the

conjecture may require an algorithm that gives a theorem similar to Theorem 8.1.2 and

whose performance is independent of the domain sizek.

A less ambitious goal (than proving the Unique Games Conjecture) would be to show

that the value of a unique 2-prover game with domain sizek is hard to approximate within

factor f(k) wheref(k) → ∞ ask → ∞. The only known results are constant factor

hardness for Max-2-Lin-2 by Håstad [60] and for Max-2-Lin-p by Andersson et al [7].

170



One can also consider the following relaxation of the uniqueness property. We say

that a 2-prover game has “d-to-1 property” if the answer of the second prover uniquely

determines the answer of the first prover and for every answer of the first prover, there are

at mostd answers for the second prover for which the verifier would accept. We assume

d to be a fixed integer andd ≥ 2. Consider the following conjecture :

Conjecture 8.5.1 (d-to-1 Conjecture : ) For arbitrarily small constantδ > 0, there

exists a constantk = k(δ) such that it is NP-hard to determine whether a 2-prover game

with d-to-1 property and answers from a domain of sizek has value1 or at mostδ.

Note that in contrast with the Unique Games Conjecture, we can hope for perfect

completeness in thed-to-1 Conjecture (d ≥ 2). One can use some of the techniques from

Dinur and Safra’s paper [32] to show that thed-to-1 Conjecture implies the following

results (we omit the proofs from this thesis) :

1. For arbitrarily smallε, δ > 0, it is hard to find an independent set of sizeδn in a

graph which is guaranteed to have an independent set of size(1− 1
21/d − ε)n. This

implies a PCP with zero free bits, completenessΩ(1) and arbitrarily low soundness.

The best known algorithm (see [6]), given a graph containing an independent set of

linear size, finds an independent set of only sublinear size.

2. From the above result, it follows that if 2-to-1 Conjecture is true, it would imply
√

2− ε hardness for Vertex Cover which is better than the factor1.36 by Dinur and

Safra. In fact, Dinur and Safra do use an analog of 2-to-1 property.

171



Chapter 9

Hardness of Vertex Cover Based on

Unique Games Conjecture

One of the major open problems in the field of inapproximability is whether vertex cover

is hard to approximate within factor2−ε for everyε > 0. This is known to be equivalent

to a fundamental question about PCPs withzero free bits. The best known hardness is

1.36 due to Dinur and Safra [32] and the current techniques seem inadequate to prove

2 − ε hardness result. An integrality gap of2 − ε is known for a large class of linear

programs (see [10]).

In this chapter, we take a step towards resolving this question. We show2−ε hardness

for vertex cover assuming the Unique Games Conjecture presented in Chapter 8. We

show the following result that appears in [79].

Theorem 9.0.2 Assuming the Unique Games Conjecture, vertex cover ink-uniform hy-

pergraphs is NP-hard to approximate within factork − ε for everyk ≥ 2 andε > 0 is

an arbitrarily small constant.

172



An algorithm with factork approximation is known for vertex cover ink-uniform hy-

pergraphs and hence this result is optimal. In Chapter 7, we showed factork − 1 − ε

hardness for this problem.

An important contribution of our work is to define a stronger form of the Unique

Games Conjecture and show that it actually follows from the original form. The stronger

form could be useful to obtain further consequences of the Unique Games Conjecture.

9.1 Techniques

The reduction in this chapter can be divided into two parts. In the first part, we state a

stronger form of the Unique Games Conjecture and show that it is actually equivalent

to the original form (Theorem 9.2.2). Recall that the Unique Games Conjecture states

that it is NP-hard to distinguish whether a unique 2-prover game has value close to1

or arbitrarily small. The stronger form states that the NP-hardness holds even with the

following stronger requirement in completeness case : we require that the provers have a

strategy such that over the choice of the question to the first prover, with probability close

to 1, the verifier accepts foreveryquestion to the second prover.

We believe that this stronger form would be useful in our understanding of the unique

games conjecture and an eventual resolution of this conjecture.

The second part of our reduction combines this conjecture with the combinatorial

methods presented in Chapter 7. The reduction is roughly the same, constructing ak-

uniform hypergraph from (strong unique) 2-prover game. We expect as a proof long

codes of prover’s answers. We let the bits in long code to be vertices of the hypergraph

and define hyperedges to enforce consistency between provers’ answers (or labels to La-

bel Cover instance). The uniqueness property of the 2-prover game is crucial in our

173



construction. We show that the hypergraph either has an independent set of size1− 1
k
−ε

or has no independent set of sizeδ where ε, δ are arbitrarily small.

We employ several tools from Dinur and Safra’s paper [32] including biased long

code, Friedgut’s Theorem on sensitivity of boolean functions and theorems in extremal

set theory (see Section 9.3).

Motivation for Friedgut’ Theorem : Recall that in the combinatorial view of the long

code, the code is indexed by all setsF ⊆M . A long code ofb ∈M is defined by setting

the bitF to 1 if and only if b ∈ F . Let us build a graphG as follows : its vertices are all

setsF ⊆M and(F1, F2) is an edge if and only ifF1 ∩ F2 = ∅.

Note that an independent set inG corresponds to a family of pairwise intersecting

sets. If we take a long code ofb ∈ M and take the family of all sets containingb, it is an

independent set of size12 (of sizep for ap-biased long code). This is a large independent

set that is completely determined byoneelement, namelyb. Friedgut’s Theorem is a

strong converse to this fact. It says that any maximal independent set (which is necessarily

a monotone family) with significant size is essentially determined by a few elements.

Thus any independent set of significant size can be “decoded” to give a small number

of elements that determine it. We use this theorem in soundness analysis and show that

if the graph contains an independent set of sizeδ, then one can take the corresponding

decoded elements as candidate labels to Label Cover instance.

9.2 Constructing the Strong Label Cover

We state a stronger form of the Unique Games Conjecture (Conjecture 8.2.2) and show

that it is actually equivalent to the original form.

174



Notation

Recall the definition of weighted unique Label Cover instance (Definition 8.2.1). The

instance is given asL(G(V,W ),M, {πv,w}, {pvw}). We need some extra notation.

• Let p(L) =
∑

v,w pvw andp(L) is not necessarily required to be1. OPT (L) is

defined as the maximum weight that can be satisfied by any labelingΦ.

• Forv ∈ V , let p(L, v) =
∑

w∈W pvw.

• For an assignment of labelsΦ, letpΦ(L) be the weight of edges satisfied by labeling

Φ. Forv ∈ V , let pΦ(L, v) be the weight of edges incident onv satisfied byΦ.

The Unique Games Conjecture can be restated as :

Conjecture 9.2.1 (Unique Games Conjecture :) For anyζ, γ > 0, there exists a constant

|M | such that the following is NP-hard. Given a Unique-LCL with label setM and

p(L) = 1, distinguish between the case where there exists a labelingΦ such thatpΦ(L) ≥

1− ζ and the case where for any labelingΦ, pΦ(L) ≤ γ.

Stronger Form

A Strong Label Cover (Strong-LC)L = (G(V,W,E), {πv,w}) is defined as follows.

We are given a bipartite graphG(V,W,E) possibly with parallel edges in which all left

degrees are equal to some constantd. In addition, there exists a bijectionπv,w for each

edge(v, w) ∈ E. A labeling and the edges satisfied by it are defined as before. In this

section we prove the following theorem:

Theorem 9.2.2 Assuming Conjecture 9.2.1, for anyζ, γ > 0, there exist constants|M |, d

such that the following is NP-hard. Given a Strong-LC with label setM and left degrees

d, distinguish between these cases :

175



• There exists a labeling in which for at least1− ζ fraction of verticesv ∈ V , every

edge incident onV is satisfied.

• No labeling satisfies more thanγ fraction of the edges.

We begin with two lemmas. The first modifies the Unique-LC so that allv ∈ V

have the same weight. The second lemma rounds the edge weights. The proofs are very

technical and they could be safely skipped.

Lemma 9.2.3 Assuming Conjecture 9.2.1, for anyζ, γ, β > 0, there exists a constant

|M | such that the following is NP-hard. Given a Unique-LCL with label setM and the

property that∀v ∈ V, p(L, v) = 1, distinguish between the case where there exists a

labelingΦ such that for1− β fraction ofv ∈ V , pΦ(L, v) > 1− ζ and the case where

for any labelingΦ at mostβ fraction ofv ∈ V havepΦ(L, v) > γ.

Proof: Consider a Unique-LCL′ = (G′(V ′,W ′),M ′, {π′v,w}, {p′vw}) as given by Con-

jecture 9.2.1 with parametersζ ′, γ′ which will be chosen later. Also, letl be a large

enough constant. The Unique-LCL = (G(V,W,E), {πv,w}) is defined as follows. Let

W = W ′. The setV includesk(v) copies of eachv ∈ V ′, v(1), . . . , v(k(v)) wherek(v) is

defined asbl · |V ′| · p(L′, v)c. For everyv ∈ V ′, w ∈ W andi ∈ [k(v)] we defineπv
(i),w

asπ′v,w and the weightpv(i),w asp′vw/p(L′, v). Notice thatp(L, v) = 1 for all v ∈ V and

that(l − 1)|V ′| ≤ |V | ≤ l|V ′|.

We first prove the completeness part. Given a labelingΦ′ toL′ that satisfies edges of

weight at least1− ζ ′, consider the labelingΦ defined asΦ(v(i)) = Φ′(v). The weight of

176



edges satisfied byΦ is:

∑
v∈V

pΦ(L, v) =
∑
v∈V ′

k(v) · pΦ′(L′, v)/p(L′, v) ≥∑
v∈V ′

l|V ′| · pΦ′(L′, v)−
∑
v∈V ′

pΦ′(L′, v)/p(L′, v) ≥

l|V ′|(1− ζ ′)− |V ′| = l|V ′|(1− ζ ′ − 1
l
) ≥ l|V ′|(1− 2ζ ′) ≥ |V |(1− 2ζ ′)

for large enoughl. This implies that for at least1 −
√

2ζ ′ of vertices inV , pΦ(L, v) ≥

1−
√

2ζ ′. Hence, by choosing a small enoughζ ′, we get that at least1−β of the vertices

v ∈ V satisfypΦ(L, v) ≥ 1− ζ.

We now prove the soundness part. Assume we are given a labelingΦ toL for which

at leastβ fraction ofv ∈ V havepΦ(L, v) > γ. Without loss of generality we can assume

that for everyv ∈ V ′, the labelingΦ(v(i)) is the same for alli. That is because the

constraints betweenv(i) and vertices inW are the same for alli ∈ [k(v)]. We define the

labelingΦ′ asΦ′(v) = Φ(v(1)). The weight of edges satisfied byΦ′ is:

∑
v∈V ′

pΦ′(L′, v) ≥ 1
l|V ′|

∑
v∈V ′

k(v) · pΦ′(L′, v)/p(L′, v) =

1
l|V ′|

∑
v∈V

pΦ(L, v) ≥ 1
l|V ′|β|V |γ ≥

l − 1
l
βγ > γ′,

for small enoughγ′.

Lemma 9.2.4 Assuming Conjecture 9.2.1, for anyζ, γ, β > 0, there exists a constant

|M | such that the following is NP-hard. We are given a Unique-LCL with label setM

and the properties that∀v ∈ V, p(L, v) = 1 and that there exists an integerα = O(|W |)

such that the weightpvw is multiple of1
α

for all v ∈ V ,w ∈W . The goal is to distinguish

between the case where there exists a labelingΦ such that1 − β of theV -vertices have

177



pΦ(L, v) > 1− ζ and the case where for any labelingΦ at mostβ of theV -vertices have

pΦ(L, v) > γ.

Proof: Let L′ = (G′(V ′,W ′), {π′v,w}, {p′vw}) be a Unique-LC as in Lemma 9.2.3 with

parametersζ2 ,
γ
2 , β. Let l be a large enough integer and defineα = l|W |. The Unique-LC

L = (G(V,W ), {πv,w} {pvw}) hasV = V ′, W = W ′, πv,w = π′v,w and the weights

{pvw} are defined as follows. Fix an arbitraryw0 ∈ W . For everyv ∈ V we would

like to round the weightspvw down to the nearest multiple of1
α
. In order to maintain the

propertyp(L, v) = 1, we slightly increasepvw0 . More formally, for everyv ∈ V and

w 6= w0 the weightpvw is defined asbαp′vwc/α. Also, for everyv ∈ V , pvw0 in defined as

1−
∑

w∈W\{w0} pvw. Notice that forw 6= w0, pvw ≤ p′vw and thatpvw0 ≤ p′vw0
+ |W |/α =

p′vw0
+ 1

l
.

Assume that there exists a labelingΦ to L′ in which 1 − β of theV ′-vertices have

pΦ(L′, v) > 1− ζ
2 . Then, inL, the same labeling satisfies that for1− β of theV -vertices

pΦ(L, v) > 1 − ζ
2 − |W | ·

1
l|W | > 1 − ζ for large enoughl. Also, a labelingΦ to L

in which β of theV -vertices havepΦ(L, v) > γ satisfies thatβ of theV ′-vertices have

pΦ(L′, v) > γ − 1
l
> γ

2 for large enoughl.

Proof: [ of Theorem 9.2.2]LetL′ = (G′(V ′,W ′), {π′v,w}, {p′vw}) be a Unique-LC as in

Lemma 9.2.4 with parametersζ ′, γ′, β′ which will be chosen later. We define the Strong-

LC L = (G(V,W,E), {πv,w}) as follows. The set of verticesW equalsW ′. Let d be an

integer that will be determined later. For eachv ∈ V ′ and each sequence(w1, . . . , wd) of

W -vertices we createΠd
i=1αp

′
vwi

new vertices inV (notice that this number is integral).

Each of these vertices is connected tow1, . . . , wd with the mapsπ′v,w1 , . . . , π′v,wd. The

178



total number of vertices created from eachv ∈ V ′ is

∑
(w1,... ,wd)∈W d

Πd
i=1αp

′
vwi

= αd(
∑
w∈W

p′v,w)d = αd

sincep(L′, v) = 1. Hence,|V | = αd|V ′|. Also note thatL might contain parallel edges.

We first prove the completeness part. Assume thatΦ′ is a labeling toL′ such that

1−β′ of theV ′-vertices havepΦ′(L′, v) > 1− ζ ′. Let Φ be the labeling toL assigning to

each of the vertices created fromv ∈ V ′ the valueΦ′(v) and for eachw ∈ W the value

Φ′(w). Consider a vertexv ∈ V ′ such thatpΦ′(L′, v) > 1− ζ ′ and letWv denote the set

of verticesw ∈ W such that the edge(v, w) is satisfied. Then the number of vertices in

V that are connected only to vertices inWv is

∑
(w1,... ,wd)∈(Wv)d

Πd
i=1αp

′
vwi

= αd(
∑
w∈Wv

p′vw)d ≥ αd(1− ζ ′)d

Therefore, the total number of vertices inV all of whose incident edges are satisfied by

Φ is at least

αd(1− ζ ′)d(1− β′)|V ′| = (1− ζ ′)d(1− β′)|V | > (1− ζ)|V |

for small enoughζ ′ andβ′.

We now prove the soundness part. Assume that no labelingΦ′ toL′ has more thanβ′

of theV ′-vertices withpΦ′(L′, v) > γ′. Let Φ be a labeling toL and defineΦ′ as follows.

For eachw ∈ W let Φ′(w) = Φ(w). For v ∈ V ′ defineΦ′(v) as the label inM that

maximizespΦ′(L′, v). Forv ∈ V ′ andi ∈ M , let Sv,i =
∑
p′vw where the sum is taken

over allw ∈ W such thatπ′v,w(Φ′(w)) = i. Then notice thatpΦ′(L′, v) = maxi Sv,i.

Hence, for at least1− β′ of theV ′-vertices,Sv,i < γ′ for all i ∈M . Fix a vertexv ∈ V ′

179



for whichSv,i < γ′ for all i ∈ M . Consider the subsetZv ⊆ W d of tuples(w1, . . . , wd)

such that for alli ∈ M there exists at most onej for whichπ′v,wj(Φ′(wj)) = i. A vertex

in V created from such a tuple will have at most one satisfied edge. The number of such

vertices created fromv as above is

∑
(w1,... ,wd)∈Zv

Πd
i=1αp

′
vwi

= αd
∑

(w1,... ,wd)∈Zv

Πd
i=1p

′
vwi

Notice that since
∑

w∈W p′vw = 1, this defines a probability measure onW . Also note

that the sum above is exactly the probability that a tuple(w1, . . . , wd) is inZv where each

element of the tuple is chosen according to this probability. Hence, the sum is at least

1 · (1− γ′) · (1− 2γ′) . . . (1− (d− 1)γ′) ≥ (1− dγ′)d > 1− γ
2 for small enoughγ′. The

number of satisfied edges inΦ is therefore at most

αd · β′ · |V ′| · d+ αd(1− β′)|V ′|[(1− γ

2
) · 1 +

γ

2
· d] =

|V |(β′d+ (1− β′)(1− γ

2
) + (1− β′)γ

2
d) < γ|V |d = γ|E|

for a small enoughβ′ and a large enoughd.

9.3 Tools from Sensitivity Analysis of Boolean Functions

We restate definitions from Section 7.2. For a universeM , let 2M denote its power set,

i.e. the family of all subsets ofM . For abias parameter0 < p < 1, the weightµMp (F )

of a setF is defined as

µMp (F ) := p|F |(1− p)|M\F |

180



We will omit the superscriptM when it is clear which universe we are talking about. The

weight of a familyF ⊆ 2M is defined as

µp(F) :=
∑
F∈F

µp(F ).

Note that the bias parameter defines a distribution on2M , where a subset is picked by

independently picking every element inM with probabilityp. We denote this distribution

by µMp .

9.3.1 Friedgut’s ‘Core’ Theorem

For a familyF ⊆ 2M , an elementσ ∈M and a bias parameterp, we define theinfluence

of the element on the familyas

InfluenceMp (F , σ) := PrF∈µMp
[
exactly one ofF ∪ {σ}, F \ {σ} is in F

]
.

As before, the superscript will often be omitted. The average sensitivity of a family is

defined as sum of the influences of all elements.

asp(F) :=
∑
σ∈M

Influencep(F , σ).

Definition 9.3.1 A familyF ⊆ 2M is called a core-family with a coreC ⊆ M if there

exists a familyH ⊆ 2C such that

∀ F ∈ 2M , F ∈ F if and only if F ∩ C ∈ H.

181



A family F ⊆ 2M is calledmonotoneif F ∈ F andF ⊆ F ′ impliesF ′ ∈ F . The

following well-known lemma states that the weight of a monotone family is an increasing

function of the bias parameter.

Lemma 9.3.2 If F ⊆ 2M is monotone andp ≥ q, thenµMp (F) ≥ µMq (F).

Russo-Margulis’ Theorem in fact states that the weight of a monotone family is a

continuous and differentiable function of the bias parameter and the derivative equals the

average sensitivity of the family.

Theorem 9.3.3 ([94], [105]) For a monotone familyF ⊆ 2M

dµq(F)
dq

∣∣∣
q=p

= asp(F)

Applying this Theorem and the Mean Value Theorem from analysis, we obtain

Lemma 9.3.4 LetF ⊆ 2M be a monotone family and0 ≤ p < p + ε ≤ 1. Then there

existsp′ ∈ (p, p+ ε) such thatasp′(F) ≤ 1
ε
.

Proof: The Mean Value Theorem guarantees existence ofp′ ∈ (p, p+ ε) such that

asp′(F) =
dµq(F)
dq

∣∣∣
q=p′

=
µp+ε(F)− µp(F)

ε
≤ 1
ε

Friedgut’s Theorem [44] states that any family with low average sensitivity is essen-

tially a core family. To be precise,

Theorem 9.3.5 [44] Let F ⊆ 2M , 0 < p < 1 be a bias parameter,η be an accuracy

parameter andk = asp(F). Then there exists a core familŷF with coreC ⊆ M such

that

182



• Size ofC is a constant that depends only onp, k, η. In fact |C| ≤ c
k/η
p wherecp

depends only onp.

• µp(F∆F̂) ≤ η where ∆ denotes the symmetric difference of two families.

Combining Lemma 9.3.4 and Theorem 9.3.5, we get :

Theorem 9.3.6 Let p be a bias parameter,ε > 0 be a constant andη be an “accuracy

parameter”. LetF ⊆ 2M be a monotone family. Then there existsp′ ∈ (p, p + ε) and a

core familyF̂ ⊆ 2M with a coreC ⊆M such that

• asp′(F) ≤ 1
ε
.

• The size ofC is a constant that depends only onp, ε, η.

• µp′(F∆F̂) < η

Lemma 9.3.7 LetF ⊆ 2M be a monotone family. LetT be a set of elements such that

for every elementσ ∈ T , Influencep(F , σ) < η. Define a subfamilyF ′ ⊆ F as

F ′ := {F | F ∈ F , F \ T ∈ F}.

Then for any0 < p < 1 we have

µp(F ′) ≥ µp(F)− η |T | (min(p, 1− p))−|T |.

Proof: A similar proof appears in [32]. Consider the family

F ′′ := {F ∈ 2M\T | F ∪ T ∈ F , F /∈ F}.

183



It can be seen that

µMp (F)− µMp (F ′) ≤ µM\Tp (F ′′).

For any setF ∈ F ′′ there must exist someD ⊆ T and an elementσ ∈ T such that

F ∪ D ∪ {σ} ∈ F but F ∪ D /∈ F . Hence, any setF ∈ F ′′ contributes at least

µ
M\T
p (F ) · min(p, 1 − p)|T | to the influence of oneσ ∈ T . It remains to notice that the

total influence of elements inT is at most|T | · η.

The following lemma can be found as Lemma A.4 in [28].

Lemma 9.3.8 Let ε > 0 be an arbitrarily small constant and definep = 1− 1
k
− ε to be

the bias parameter. Then, for a sufficiently large universeM , the following holds. For

anyF ⊆ 2M such thatµp(F) ≥ 1− 1
k

there existk sets in the familyF whose intersection

is empty.

9.4 Reduction to Vertex Cover ink-Uniform Hypergraphs

LetL = (G(V,W,E), {πv,w}) be an instance of Strong-LC given by Theorem 9.2.2 with

parametersζ, γ which will be chosen later. We will reduce this instance to an Independent

Set problem onk-uniform hypergraphs. The vertices of the hypergraph we construct are

weighted. One can obtain an unweighted hypergraph by using standard techniques (see

[32]). The hypergraph will either contain an independent set of weight1− 1
k
− 2ε or no

independent set of weightδ whereε, δ can be made arbitrarily small. In the following we

fix ε andδ and letp = 1− 1
k
− ε be the bias parameter.

184



9.4.1 Construction of the Hypergraph

The set of vertices of the hypergraph will correspond to the bits of the long codes of labels

assigned to vertices inV . Namely, the set of vertices is defined to beV × 2M . A vertex

is a pair(v, F ) wherev ∈ V is a vertex of the Strong-LC andF ∈ 2M is a subset ofM .

We define theblockof verticesB[v] for v ∈ V as

B[v] := {(v, F ) | F ⊆M}

The weight of a vertex(v, F ) is defined to be

weight(v, F ) :=
1
|V | · µ

M
p (F )

Thus the sum of weights of all vertices in the hypergraph equals1.

Now we define the edges of the hypergraph. For any two edges(v1, w), (v2, w) ∈ E

with common endpoint inW , and corresponding projectionsπv1,w, πv2,w, we define the

following (hyper-)edges between the blockB[v1] and the blockB[v2]:

{
{(v1, I), (v2, F1), (v2, F2), . . . , (v2, Fk−1)}

∣∣∣ (πv1,w)−1(I) ∩ (πv2,w)−1(∩k−1
i=1Fi) = ∅

}
.

We say that these edges correspond to the pair of edges(v1, w), (v2, w). Notice that every

edge contains exactlyk vertices, one vertex from the blockB[v1] and k − 1 vertices

from the blockB[v2]. Also note that we can have edges betweenB[v1] andB[v2] that

correspond to more than one pair of edges. This can be as a result of parallel edges in

G(V,W,E) or as a result of severalw-vertices to which bothv1 andv2 are connected.

185



Completeness

Assume that the Strong-LC instanceL has a labelingΦ in which at least1 − ζ fraction

of theV -vertices have all their edges satisfied. LetV0 be the set of all such vertices with

|V0| ≥ (1− ζ)|V |. We claim that the following is an independent set:

IS = {(v, F ) | v ∈ V0, Φ(v) ∈ F}.

Consider any edge{(v1, I), (v2, F1), . . . , (v2, Fk−1)} and let(v1, w) and(v2, w) be the

pair of edges it corresponds to. Assume towards contradiction that all its vertices are in

IS. Clearly, this implies thatv1, v2 ∈ V0 andΦ(v1) ∈ I, Φ(v2) ∈ ∩k−1
i=1Fi. Also, since all

edges incident to bothv1 andv2 are satisfied byΦ, we have

πv1,w(Φ(w)) = Φ(v1), πv2,w(Φ(w)) = Φ(v2)

Therefore,Φ(w) ∈ (πv1,w)−1(I) ∩ (πv2,w)−1(∩k−1
i=1 Fi). In particular, this implies that

(πv1,w)−1(I) ∩ (πv2,w)−1(∩k−1
i=1Fi) 6= ∅ and we reach a contradiction by recalling the

construction of the edges.

Note that with the bias parameterp = 1 − 1
k
− ε, for everyv ∈ V0 the weight of the

setIS ∩B[v] is exactlyp times the total weight of vertices inB[v]. Hence

weight(IS) = (1− ζ) · (1− 1
k
− ε) ≥ 1− 1

k
− 2ε

sinceζ can be chosen to be arbitrarily small.

186



9.4.2 Soundness

Now assume that there is no labeling to the Strong-LC instanceL that satisfies even aγ

fraction of the edges. We will show that the hypergraph contains no independent set of

sizeδ. Assume towards contradiction that the hypergraph contains an independent setIS

of sizeδ. For everyv ∈ V , let

F [v] = {F | F ⊆M, (v, F ) ∈ IS}

Let V ∗ be the set of verticesv such thatµMp (F [v]) ≥ δ/2, i.e., a weight of at leastδ/2

of the total weight in the blockB[v] belongs to the independent setIS. By an averaging

argument, we have|V ∗| ≥ δ|V |/2.

We will associate a “small” set of labelsL[v] ⊆ M for everyv ∈ V ∗ such that this

labeling satisfies a weaker notion of consistency. More precisely we prove that

Lemma 9.4.1 GivenIS and V ∗ as above, there exists a constanth = h(k, ε, δ) and

non-empty sets of labelsL[v] ⊆M for everyv ∈ V ∗ such that

• ∀ v ∈ V ∗, |L[v]| ≤ h

• For every two edges(v1, w), (v2, w), sharing the same endpointw, we have

(πv1,w)−1(L[v1]) ∩ (πv2,w)−1(L[v2]) 6= ∅.

This is the main technical lemma in the analysis and we prove it in the next section.

Let us see how this lemma is sufficient to arrive at a contradiction. The idea is to define

one label for every vertex inV ∪W such that this labeling satisfies more than aγ fraction

of the edges.

187



We will try to satisfy only those edges which are incident toV ∗. This is aδ/2 fraction

of all the edges since|V ∗| ≥ δ|V |/2 and the bipartite graphG(V,W,E) is left regular.

LetW ∗ be the set of vertices inW which have an edge with some vertex inV ∗. For every

w ∈W ∗, fix v(w) to be one vertex inV ∗ with whichw has an edge. Define

L[w] := (πv(w),w)−1(L[v(w)])

We claim that for every edge(v, w) with v ∈ V ∗ andw ∈W ∗ we have,

πv,w(L[w]) ∩ L[v] 6= ∅.

Whenv = v(w) this is clearly true and otherwise, it follows from Lemma 9.4.1.

Now consider the following probabilistic way of defining one label for every vertex in

V ∗∪W ∗. Forv ∈ V ∗ (resp.w ∈W ∗), define its labelΦ(v) (resp.Φ(w)) to be a randomly

picked element ofL[v] (resp.L[w]). For each edge(v, w) with v ∈ V ∗ andw ∈ W ∗,

the setsπv,w(L[w]) andL[v] intersect and both sets have size at mosth. Therefore, with

probability1/h2, we haveπv,w(Φ(w)) = Φ(v) and the edge is satisfied. Therefore, the

expected fraction of satisfied edges is at leastδ/(2h2) and hence there must exist one

labeling that satisfies these many edges. Choosing the parameterγ < δ/(2h2) gives a

contradiction.

188



9.4.3 Proof of Lemma 9.4.1

The setL[v] for v ∈ V ∗ will be constructed from the familyF [v]. Roughly speaking,

the setL[v] will be the core of the familyF [v] along with all elements which have non-

negligible influence onF [v].1 Recall that forv ∈ V ∗, we haveµMp (F [v]) ≥ δ/2.

Let η > 0 be a sufficiently small accuracy parameter which will be fixed later. Ap-

plying Theorem 9.3.6, we get

Lemma 9.4.2 For everyv ∈ V ∗, there exists a real numberp[v] ∈ (1− 1
k
− ε, 1− 1

k
− ε

2)

and a core-familyF̂ [v] ⊆ 2M with coreC[v] such that

• The average sensitivityasp[v](F [v]) ≤ 2
ε
.

• The size ofC[v] is at mosth0 which is a constant depending only onk, ε, η, δ.

• µMp[v]( F [v] ∆ F̂ [v]) < η and in particularµMp[v](F̂ [v]) ≥ δ/4 providedη < δ/4.

Let η′ > 0 be a threshold parameter which will be chosen later. For everyv ∈ V ∗, we

identify a set of elements Infl[v] ⊆ M \ C[v] that have non-negligible influence on the

family F [v], i.e.,

Infl[v] = {σ ∈M \ C[v] | Influencep[v](F [v], σ) ≥ η′}.

SinceF [v] has average sensitivity at most2
ε

and the average sensitivity is simply the sum

of influences of all the elements, it follows that the size of Infl[v] is at most 2
η′ε which is a

constant. Finally, we define the setL[v] as

L[v] := C[v] ∪ Infl[v]. (9.1)

1In [32], this set is referred to as theextended core.

189



Clearly,L[v] has size at mosth := h0 + 2
η′ε .

To finish the proof of Lemma 9.4.1, it remains to show that for every pair of edges

(v1, w), (v2, w), we have(πv1,w)−1(L[v1]) ∩ (πv2,w)−1(L[v2]) 6= ∅. Note thatπv1,w, πv2,w

are bijections and w.l.o.g. we can assume them to be identity maps. Thus we need to

show thatL[v1] ∩ L[v2] 6= ∅. It will be clear how the proof would work in the general

case.

We will assume on the contrary thatL[v1] ∩ L[v2] = ∅ and reach a contradiction

by exhibiting an edge{(v1, I), (v2, Fi)k−1
i=1 } all of whose vertices are in the supposed

independent setIS. Let us begin with a lemma (admittedly the proof is cumbersome and

could be skipped).

Lemma 9.4.3 There existsU0 ⊆ C[v1] such that definingM ′ := M \ (C[v1] ∪ C[v2])

andH[v1] ⊆ 2M ′ as

H[v1] := {H | H ∈ 2M
′
, U0 ∪H ∈ F [v1] }

we haveµM
′

p[v1](H[v1]) ≥ 1− 8η/δ.

Proof: The assumptionL[v1] ∩ L[v2] = ∅ along with Equation (9.1) gives

C[v1] ∩ C[v2] = ∅, C[v2] ∩ Infl[v1] = ∅.

This implies that every element ofC[v2] has influence at mostη′ on the familyF [v1]. Let

F ′[v1] ⊆ F [v1] be a family defined as

F ′[v1] := {F | F ∈ F [v1], F \ C[v2] ∈ F [v1]}.

190



Applying Lemma 9.3.7, we get

µMp[v1](F ′[v1] ∆ F [v1]) < η′ |C[v2]| (min(p[v1], 1− p[v1]))−|C[v2]| ≤

η′ h0 (min(p[v1], 1− p[v1]))−h0 ≤ η

by choosingη′ small enough. It follows that

µMp[v1](F̂ [v1] \ F ′[v1]) ≤ µMp[v1](F ′[v1] ∆ F̂ [v1]) < 2η.

We would like to find a setU0 ⊆ C[v1] in the core familyF̂ [v1] such that the two families

obtained by taking only the sets in̂F [v1] andF ′[v1] whose intersection withC[v1] is U0

are very close. We have,

2η > µMp[v1](F̂ [v1] \ F ′[v1]) = PrD∈µM
p[v1]

[D ∈ F̂ [v1] \ F ′[v1]] =∑
U⊆C[v1]

PrD∈µM
p[v1]

[D ∩ C[v1] = U andD ∈ F̂ [v1] \ F ′[v1]]
{1}
=

∑
U⊆C[v1], U∈ bF [v1]

µ
C[v1]
p[v1] (U) Pr

D∈µM\C[v1]
p[v1]

[ (U ∪D) /∈ F ′[v1] ]

where{1} holds sinceF̂ [v1] is a core family and hence depends only onC[v1]. Since

µ
C[v1]
p[v1] ({U ⊆ C[v1] | U ∈ F̂ [v1]}) ≥ δ/4 this implies that there existsU0 ⊆ C[v1],

U0 ∈ F̂ [v1] such that Pr
D∈µM\C[v1]

p[v1]
[ (U0 ∪D) /∈ F ′[v1] ] < 2η/(δ/4). In other words, if

we defineG as{D ⊆M \ C[v1] | U0 ∪D ∈ F ′[v1]}, thenµM\C[v1]
p[v1] (G) > 1− 8η/δ.

Finally, notice thatG does not depend onC[v2]. Hence, the family

H[v1] := {H |H ⊆M ′ = M \ (C[v1] ∪ C[v2]), H ∈ G }

191



satisfiesµM
′

p[v1](H[v1]) = µ
M\C[v1]
p[v1] (G) > 1− 8η/δ, as required.

Analogous to Lemma 9.4.3 we have by symmetry,

Lemma 9.4.4 There existV0 ⊆ C[v2] such that definingM ′ := M \ (C[v1]∪C[v2]) and

H[v2] ⊆ 2M ′ as

H[v2] := {H |H ∈ 2M
′
, V0 ∪H ∈ F [v2] }

we haveµM
′

p[v2](H[v2]) ≥ 1− 8η/δ.

Let p∗ := 1 − 1
k
− ε

2 . Note thatH[v1] andH[v2] are both monotone subfamilies of

2M ′. Therefore, according to Lemma 9.3.2,µM
′

p∗ (H[v1]) ≥ µM
′

p[v1](H[v1]) ≥ 1− 8η/δ and

similarly for v2. Hence, the intersection of the familiesH[v1] andH[v2] satisfies

µM
′

p∗ (H[v1] ∩H[v2]) ≥ 1− 16η/δ > 1− 1
k

by pickingη small enough. Hence, Lemma 9.3.8 implies that there exist setsH1, H2, . . . , Hk ∈

H[v1] ∩H[v2] such that

∩ki=1Hi = ∅.

In particular,H1, H2, . . . , Hk−1 ∈ H[v2] andHk ∈ H[v1].

Now defineI = U0 ∪ Hk andFi = V0 ∪ Hi for 1 ≤ i ≤ k − 1. By definition of

the familiesH[v1],H[v2], we have,I ∈ F [v1], Fi ∈ F [v2] for 1 ≤ i ≤ k − 1. Thus

{(v1, I), (v2, Fi)k−1
i=1 } are vertices in the supposed independent set and they form an edge

since

I ∩
(
∩k−1
i=1 Fi

)
= ∩ki=1Hi = ∅.

This completes the proof.

192



Chapter 10

Hardness of Clique and Chromatic

Number

Hardness results for clique are central to the theory of inapproximability. The seminal

paper of Feige, Goldwasser, Lovász, Safra and Szegedy [38] obtained first hardness result

for clique, and established the connection between PCPs and inapproximability. A long

sequence of work (see [38], [13], [12], [17], [16], [59]) finally culminated in H˚astad’s

result that clique is hard to approximate within factorn1−ε.

In this chapter, we further improve the hardness factor ton2(logn)γ for some constant

γ < 1. This takes us one step closer to the right answer for clique. The result is also

interesting in light of Feige’s result [36] on Lovászθ-function and Trevisan’s result [111]

on hardness of clique on bounded degree graphs.

We also obtain a similar hardness result for a related problem of finding the chromatic

number of a graph. Main technique in this chapter is a Hadamard Code (as opposed to

long code) based PCP which yields proofs of much smaller size. The result for chromatic

number is shown via a technique calledRandomized PCPintroduced in [40]. It is much

193



easier to apply this technique to PCPs in this chapter than earlier PCPs like H˚astad’s

clique PCP [59].

10.1 Results and Techniques

The problem of finding the maximum size of a clique in ann-vertex graph is a well-

studied NP-hard problem. The best known (polynomial time) approximation algorithm

(see [21]) for MaxClique achieves an approximation ratio ofO( n
log2 n

) which suggests that

this problem might be very hard to approximate. The first step towards proving strong

inapproximability result for MaxClique was taken in a seminal paper by Feige et al. [38]

who discovered the connection between PCPs and inapproximability of MaxClique. They

were able to show a hardness factor of2log1−ε n for an arbitrarily small constantε > 0.

The discovery of PCP Theorem ([12], [13]) implied that MaxClique is inapproximable

within factornc for some constantc > 0 unless NP = ZPP.

Bellare and Sudan [17] defined an important parameter of PCPs calledamortized free

bit complexity(recall Definition 3.1.3) and showed that

Theorem 10.1.1 If NP has a PCP verifier that uses logarithmic randomness, has com-

pleteness≥ 1
2 and amortized free bit complexityf , then assumingNP 6⊆ BPP, no poly-

nomial time algorithm can approximate clique size in ann-vertex graph within factor

n
1

1+f
−ε

. Hereε > 0 is an arbitrarily small constant.

They constructed PCPs with3 amortized free bits and obtained a hardness factor ofn1/4−ε

for clique. This was improved ton1/3−ε by Bellare et al [16].

In his breakthrough result, H˚astad [59] proved ann1−ε inapproximability factor for

MaxClique. He obtained a PCP verifier that achieves amortized free bit complexityδ for

194



arbitrarily small constantδ > 0. A simpler and alternate proof of this result was obtained

by Samorodnitsky and Trevisan [106] which was further simplified recently by H˚astad

and Wigderson [64]. These verifiers are based on linearity testing algorithms and make

a clever use ofrecycling of querieswhose study was initiated by Trevisan [110]. They

simultaneously achieveδ amortized free bits and1 + δ amortized query bitswhich is

optimal. In Chapter 3 of this thesis, we saw such a verifier which in addition achieves

perfect completeness.

Results

Feige [36] showed that one natural idea for approximating maximum clique-size, the

polynomial time computable Lov́asz’s θ-function, has approximation ratio as bad as

n
2O(
√

logn) . Arguably, Lov́asz’sθ-function might provide the “best” approximation guaran-

tee, so it is conceivable that n
2O(
√

logn) hardness factor could be shown for MaxClique. This

intuition is supported by Trevisan’s [111] k
2O(
√

log k) hardness for clique in degree-k graphs

(k thought of as a constant). Can this result be interpolated all the way upton
2O(
√

logn) ?

As a step towards resolving this question, we show that

Theorem 10.1.2 It is hard to approximate MaxClique in polynomial time within factor

n

2(logn)1−γ for some constantγ > 0 unlessNP ⊆ ZPTIME(2(logn)O(1)).

Chromatic number of a graph is defined to be the minimum number of colors needed

to color the graph. It is NP-hard to find the chromatic number exactly (even to test if a

graph is3-colorable). Feige and Kilian [40] introduced a technique calledRandomized

PCPsand applied this technique to H˚astad’s clique PCP [59] to show that :

Theorem 10.1.3 It is hard to approximate chromatic number of a graph in polynomial

time within factorn1−ε for any constantε > 0 unlessNP= ZPP.

195



Note that approximating chromatic number is different from Graph Coloring problem

considered in Chapter 3. In the latter problem, we are given a graph with aconstant

chromatic number and we desire a coloring using few colors.

Randomizing H˚astad’s PCP is rather tedious. On the other hand, the PCP we construct

in this chapter is very easy to randomize and also gives a stronger hardness factor. We

prove that :

Theorem 10.1.4 It is hard to approximate chromatic number of a graph in polynomial

time within factor n

2(logn)1−γ for some constantγ > 0 unless NP⊆ ZPTIME(2(log n)O(1)).

Engebretsen and Holmerin [33] obtained n
2O(logn/

√
log logn) hardness factor for both

clique and chromatic number, using Samorodnitsky and Trevisan’s PCP [106]. Our im-

provement comes from a new PCP construction based on Hadamard codes.

Techniques

Most PCPs are based on the following standard paradigm. First construct theRaz Verifier

(see Section 2.2) by parallel repetition of a basic 2-prover 1-round protocol for Gap-3SAT

and then expect the provers’ answers in some encoded form. In these constructions, one

of the provers is supposed to return an assignment to a set of clauses and it is necessary

to restrict his answer to asatisfyingassignment to the clauses. This is achieved using

one of the two methods : First, define long code over the domain of (only) satisfying

assignments. Second, define long code over the domain of all assignments and use a

technique calledconditioningor folding [60]. Both methods require the use of Long

Code due to non-linearity of 3SAT predicate. However the long code is extremely redun-

dant. It encodes au-bit string by a22u-bit string and requires too much randomness to

196



check it probabilistically. This turns out to be a barrier in improving hardness result for

MaxClique.

In this chapter, we present a PCP verifier based on Hadamard code which encodes a

u-bit string by a2u-bit string and allows a more randomness efficient checking. We start

with a Raz Verifier obtained by parallel repetition of a basic 2-prover 1-round protocol

for Max-3-Lin-2 (see Theorem 2.0.2). This problem features a linear predicate on3 bits.

It turns out that the Hadamard code is powerful enough to fold overlinear constraints

and we can use Hadamard code instead of the long code. Apart from using a different

code, our verifier is constructed and analyzed along the same lines as [106]. However our

construction yields proofs of much smaller size.

Hardness of chromatic number is proved using a technique calledRandomized PCP

introduced by Feige and Kilian [40]. Usually, the completeness condition of PCP requires

existence of one correct proof. This proof corresponds to a large independent set in the

FGLSS graph. We now make a stronger demand : we require a collection of proofs such

that the corresponding independent sets cover every vertex in FGLSS graph almost uni-

formly. Randomized PCPs allow us to achieve this property. This gives a FGLSS graph

with low fractional chromatic number. Advantage of working with fractional chromatic

number is that this parameter is multiplicative under inclusive graph product. The re-

duction consists of taking a multiple self-product of the FGLSS graph and then taking a

random induced subgraph of appropriate size. The reduction appears in [40] and we give

only a brief sketch in this chapter.

Overview of the Chapter :

Section 10.2 gives necessary background. Section 10.3 gives our main PCP construction.

The hardness result for MaxClique follows directly from our PCP construction and it

197



is proved in Section 10.4. Section 10.5 introduces randomized PCPs and Section 10.6

proves hardness result for chromatic number.

10.2 Preliminaries

This section explains some of the technical tools used in this chapter. Our goal is to con-

struct PCPs based on Hadamard codes as opposed to long codes used in earlier chapters.

Fourier analysis of Hadamard codes and corresponding notation is somewhat different.

Hadamard codes are defined using linear functions, so we need to use an underlying

NP-hard problem that features linear constraints, namely Max-3-Lin-2.

We restate Theorem 2.0.2 in a form convenient to us. We call an instanceΓ of Max-

3-Lin-2 regular if every equation contains exactly3 variables and every variable appears

in exactly the same number (say7) of equations. We call the instanceΓ given by the

following theorem as an instance of Max-3-Lin-2(ε).

Theorem 10.2.1There exists an absolute constantµ < 1 such that, for arbitrarily small

constantε > 0, there exists a polynomial time reduction from a 3SAT formulaφ with

n variables to a regular Max-3-Lin-2 instanceΓ with N variables such that : Ifφ is

satisfiable, there exists an assignment to variables inΓ that satisfies1 − ε fraction of

equations. Ifφ is unsatisfiable, no assignment can satisfy more thanµ fraction of the

equations. Moreover, the reduction can achieveε = 1
(logN)β for some constantβ > 0

if we allow the running time of the reduction andN to be slightly superpolynomial, i.e.

nO(log logn).

Remark : Theorem 2.0.2 actually gives a gap of1 − ε versus 1
2 + δ whereε, δ are

arbitrarily small. However the instance given by this reduction is not regular. It can be

198



made regular in a similar manner as in the proof of Theorem 10.2 in [11, Chapter 10].

The soundness suffers in this regularization process, but is still bounded away from1.

10.2.1 The Raz Verifier

As in earlier chapters, our construction makes use of theRaz Verifierwhich we define

next. However we use a Raz Verifier based on Max-3-Lin-2(ε) rather than the standard

one based on Gap-3SAT.

The Raz Verifier is obtained by parallel repetition of a basic 2-prover-1-round protocol

and then expecting the provers’ answers as a written proof. We directly describe the final

construction. LetΓ be an instance of Max-3-Lin-2(ε) given by Theorem 10.2.1 andu be

an integer parameter. The verifier expects to have two proofsP andQ, where proofP is

supposed to contain for every setv of u variables, au-bit stringP (v) giving the values

of these variables in some (global) assignment. The proofQ is supposed to contain for

every setw of u equations, a3u-bit stringQ(w) giving the values of the3u variables

occurring in theseu equations. We will also denote byw the set of these3u variables.

The Raz Verifier works as follows : It randomly picks variablesv = (xi)ui=1 and then

picks equationsw = (Ci)ui=1 where equationCi is chosen randomly from the constantly

many equations containing variablexi. It reads the bit-stringsP (v) andQ(w) respec-

tively. Let π be the projection from3u-bit strings tou-bit strings which corresponds to

restricting an assignment to the setw to an assignment to the setv. The verifier accepts

if and only if both these tests are satisfied :

• (Linear constraints test : )Q(w) satisfies all equations(Ci)ui=1.

• (Projection/Consistency test :)P (v) = π(Q(w)), i.e. values of variables(xi)ui=1 in

P (v) andQ(w) are the same.

199



Completeness of the Raz Verifier is≥ (1 − ε)u ≥ 1 − εu. This is because if there is an

assignment that satisfies1− ε fraction of the equations, both the proofsP andQ can be

consistent with this assignment. With probability(1 − ε)u, all the equations(Ci)ui=1 are

satisfied and the verifier accepts. When at mostµ < 1 fraction of the equations inΓ are

satisfiable, the soundness can be upper bounded by Raz’s Parallel Repetition Theorem.

Theorem 10.2.2There exists an absolute constantClin < 1 such that the soundness of

the Raz Verifier for Max-3-Lin-2(ε) is at mostCu
lin.

10.2.2 Fourier Analysis

We use Fourier analysis for Hadamard codes as opposed to the Fourier analysis for long

codes. Note the difference in notation : for example,α now denotes a vector whereas

earlierα denoted a subset of the domain over which long code was defined.

Consider the vector space of all functionsA : IFu
2 → IR where addition of two func-

tions is defined as pointwise addition. The dimension of this space is2u. Define an inner

product on this vector space as follows.

< A1, A2 >=
1
2u
∑
a∈IFu

2

A1(a) · A2(a)

We will identify an orthonormal basis w.r.t. this inner product. A functionA : IFu
2 →

{1,−1} is called linear ifA(x⊕ y) = A(x) ·A(y), where⊕ denotes vector addition over

IF2. There are precisely2u linear functions. For everyα ∈ IFu
2, there is a functionχα

defined by

χα(a) = (−1)a·α ∀ a ∈ IFu
2

We have following easy lemmas.

200



Lemma 10.2.3 For α, α′ ∈ IFu
2 χα(a) · χα′(a) = χα⊕α′(a)

Lemma 10.2.4 For α ∈ IFu
2

Ea[χα(a)] =
{ 1 if α = 0

0 if α 6= 0

It follows from these lemmas that the set of all linear functions is an orthonormal basis.

Thus any functionA : IFu
2 → {−1, 1} can be uniquely expressed asA =

∑
α Âαχα

whereÂα are itsFourier coefficientsgiven by

Âα =
1
2u
∑
a∈IFu

2

A(a) · χα(a)

The Fourier coefficients satisfy Parseval’s identity
∑

α Â
2
α = 1.

A projection functionπ : IF3u
2 → IFu

2 is a function that maps vectors inIF3u
2 to some

fixedu coordinates. Fora ∈ IFu
2, let π−1(a) denote the unique vectorc ∈ IF3u

2 such that

π(c) = a and the coordinates ofc other than those projected byπ are0.

10.2.3 Hadamard Codes, their Decoding and Folding

Using the standard paradigm, our PCP verifier will expect an encoding of the proof sup-

plied to the Raz Verifier. Specifically, we use Hadamard codes which we define next.

Definition 10.2.5 Hadamard code ofp ∈ IFu
2 is the 2u-bit string {χp(a)}a∈IFu

2
. We

denote it byHadamard(p).

Recall that the stringy = Q(w) read by the Raz Verifier is supposed to satisfy a set

of u linear constraints. Let these constraints be :h1 · y = ζ1, . . . , hu · y = ζu where

h1, . . . , hu ∈ IF3u
2 andζ1, . . . , ζu ∈ IF2. We called this the linear constraints test.

201



Folding : We use a technique calledfolding that enables the verifier to ignore the linear

constraints test.

Suppose thatB is Hadamard code ofy andy satisfies the constraints mentioned above.

Let H be the linear subspace spanned by the vectorsh1, . . . , hu. Then for any vectorb

and any vectorh ∈ H, h = ⊕ρihi, we have

B(b⊕h) = (−1)y·(b⊕h) = (−1)y·b·(−1)y·
P
i ρihi = B(b)·(−1)

P
i ρiy·hi = B(b)·(−1)

P
i ρiζi

Motivated by this observation, for an arbitrary functionB : IF3u
2 → {1,−1}, we define

another functionB′ as :

For b = vb ⊕i ρihi, ρ1, . . . , ρu ∈ IF2, B′(b) = B(vb) · (−1)
P

i ρiζi

wherevb denotes the lexicographically smallest vector in the set of vectorsb ⊕ H (the

group theoretic coset ofH). We callB′ a folding ofB over the linear constraints. A

crucial consequence of folding is :

Lemma 10.2.6 If B̂′β 6= 0, thenβ must satisfy the linear constraints, i.e.hi · β = ζi ∀ i.

Proof: Consider any particular constrainthi · y = ζi. By definition,

B̂′β =
1

23u

∑
b

B′(b) · χβ(b) =
1

23u+1

∑
b

(B′(b) · χβ(b) +B′(b⊕ hi) · χβ(b⊕ hi))

=
1

23u+1

∑
b

B′(b) · χβ(b)(1 + (−1)ζiχβ(hi))

This sum is zero unlesshi · β = ζi. Thusβ satisfies all the constraints if̂B′β 6= 0.

202



We can use appropriate access mechanism to force a functionB to be folded. When

the verifier wants to read a bitB(b), it readsB(vb) instead and calculates the value of

B(b) from it. Thus we can assume that theB-tables in the proof are folded over respective

linear constraints.

We will eventually show that if our PCP verifier accepts the encoded proofs with

a good probability, then these proofs can be decoded to construct proofs(P,Q) which

the Raz Verifier accepts with a good probability. Decoding of a tableB givesβ with

probabilityB̂2
β. (Since

∑
β B̂

2
β = 1, this defines a valid probability distribution). Folding

ensures that anyβ given by this decoding procedure satisfies the linear constraints on

Q(w). Thus folding enables us to forget about the linear constraints test and focus only

on the projection test while analyzing our PCP construction.

We point out again that the previous PCP constructions use Gap-3SAT as the underly-

ing NP-hard problem where the constraints are non-linear and one cannot use Hadamard

codes.

10.3 The Main PCP Construction and Analysis

We now define and analyze our PCP verifier which we callVlin. Apart from the use of

Hadamard code, it is similar to Samorodnitsky and Trevisan’s verifier [106] and analyzed

in a similar manner.

The verifierVlin is given an instanceΓ of Max-3-Lin-2(ε). As mentioned before, it

expects to have proofs(P ′, Q′) which are Hadamard encodings of proofs(P,Q) for the

Raz Verifier. SoP ′(v) (Q′(w)) is now supposed to contain the Hadamard code of string

P (v) (Q(w)). The verifierVlin proceeds as follows :

203



1. Pick a setv of u variables at random andk sets(wj)kj=1 independently, where each

setwj is picked in a similar manner as the Raz Verifier. Letπj be the projection

function betweenwj andv.

2. LetA be the supposed Hadamard code ofP (v) andBj be the supposed Hadamard

code ofQ(wj) in the proof. TablesBj are assumed to be folded over respective

linear constraints.

3. Picka1, . . . , ak ∈ IFu
2 andb1, . . . , bk ∈ IF3u

2 randomly.

4. Accept if and only if for1 ≤ i, j ≤ k

A(ai)Bj(bj) = Bj(π−1
j (ai)⊕ bj) (10.1)

Recall that for a projectionπ : IF3u
2 → IFu

2 anda ∈ IFu
2 , π−1(a) is the unique vector

c ∈ IF3u
2 such thatπ(c) = a and the coordinates ofc other than those projected byπ are

0. It can be easily checked that for any linear functionχβ , β ∈ IF3u
2 , we have

χβ(π−1(a)) = χπ(β)(a)

We will prove the following theorem giving the properties of the verifierVlin.

Theorem 10.3.1The verifierVlin for Max-3-Lin-2(ε) instanceΓ withN variables

• Usesr = u logN +O(ku) random bits.

• Queries2k + k2 bits from the proof withf = 2k free bits.

• Has completeness at least1− εku.

204



• Has soundness2−k2 + δ providedCu
lin < δ2.

Proof: The claims about the number of random bits and the number of query bits are

clear. After reading the2k bits {A(ai), Bj(bj)}ki,j=1, the answers of the remainingk2

queries are uniquely determined by Equation (10.1). Hence the number of free bits is

2k. For the completeness, we know that the instanceΓ has an assignment satisfying1− ε

fraction of the equations. Consider a proof which is consistent with this assignment and is

encoded using correct Hadamard codes. The verifier picksku equations in total and each

equation is picked uniformly at random. So with probability1 − εku, all the equations

are satisfied. In the constructed proof,A is a Hadamard code of somex ∈ IFu
2 andBj is

a Hadamard code of someyj ∈ IF3u
2 with πj(yj) = x. Thus for all1 ≤ i, j ≤ k

Bj(π−1
j (ai)⊕ bj) = (−1)yj ·π

−1
j (ai) ⊕ yj ·bj

= (−1)πj(yj)·ai · (−1)yj ·bj

= (−1)x·ai ·Bj(bj)

= A(ai)Bj(bj)

Thus the test accepts with probability1− εku. The main task is to prove soundness. We

will show that if the soundness is2−k2 + δ then there exist proofs(P,Q) which the Raz

Verifier accepts with probabilityδ2. This will contradict the fact that the Raz Verifier has

soundness at mostCu
lin (see Theorem 10.2.2).

LetAcc(i, j) = A(ai)Bj(bj)Bj(π−1
j (ai)⊕ bj) and consider the following expression

k∏
i,j=1

1 +Acc(i, j)
2

205



Clearly, this expression is1 if the test accepts and0 otherwise. So the acceptance proba-

bility of the verifier is expectation of this expression over the choice ofv, {ai}ki=1, {wj, bj}kj=1.

Expanding out the product, the acceptance probability is given by

1
2k2

∑
S⊆[k]×[k]

TS where TS = E v,w1,... ,wk;
a1,... ,ak,b1,... ,bk

 ∏
(i,j)∈S

Acc(i, j)


If this probability is≥ 2−k2 + δ, there exists a nonempty setS ⊆ [k]× [k] such that

TS ≥ δ. The following ingenious lemma by Samorodnitsky and Trevisan [106] enables

us to assume thatS is of the form[2] × [d] for some1 ≤ d ≤ k. We provide a proof of

this lemma to make our presentation self-contained.

Lemma 10.3.2 If TS ≥ δ for some non-empty setS ⊆ [k] × [k], thenT[2]×[d] ≥ δ2 for

some1 ≤ d ≤ k.

Proof: Suppose without loss of generality that(1, 1) ∈ S and(1, 2), . . . (1, d) are other

pairs inS with the first coordinate1. We fix v, w1, . . . , wk for the time being. Let

us divide our random choice of(ai, bj)ki,j=1 intoX given by the choice of(a1, b1), andY

given by the choice of the rest. LetS1 be the subset ofS containing(1, 1), (1, 2) . . . (1, d).

Then

EX,Y [
∏

(i,j)∈S

Acc(i, j)] = EX,Y [
d∏
j=1

Acc(1, j) ·
∏

(i,j)∈S\S1

Acc(i, j)] =

EX,Y [F (X, Y )G(Y )] = EY [EX [F (X, Y )]G(Y )]

for some functionsF andG with values in{−1, 1}. Applying Cauchy-Schwartz inequal-

ity this can be bounded by

√
EY [(EX [F (X, Y )])2]

√
EY [G(Y )2] ≤

√
EY [(EX [F (X, Y )])2] =

206



√
EY [EX1 [F (X1, Y )] · EX2 [F (X2, Y )]] =

√
EX1,X2,Y [F (X1, Y ) · F (X2, Y )]

whereX1, X2 are identically distributed asX and are independent. However the term

F (X1, Y ) · F (X2, Y ) is equal to

d∏
j=1

Acc(1, j) ·
d∏
j=1

Acc(2, j) =
∏

(i,j)∈S′=[2]×[d]

Acc(i, j)

Considering expectation overv, w1, . . . , wk we get

δ ≤ TS = Ev,w1,... ,wk

EX,Y [
∏

(i,j)∈S

Acc(i, j) ]


≤ Ev,w1,... ,wk

√EX,Y [
∏

(i,j)∈S′
Acc(i, j)]


≤

√
Ev,w1,... ,wk,X,Y [

∏
(i,j)∈S′

Acc(i, j)] =
√
TS′

We first consider the case whenS = [2]× [d] andd is even. In this case

TS = E

[
2∏
i=1

d∏
j=1

A(ai)Bj(bj)Bj(π−1
j (ai)⊕ bj)

]

In this productA(a1), A(a2) andBj(bj) appear an even number of times. Since these

values are±1, the product reduces to

TS = E

∏
j∈[d]

Bj(π−1
j (a1)⊕ bj)Bj(π−1

j (a2)⊕ bj)



207



We substitute the following Fourier expansions

Bj(π−1
j (a1)⊕ bj) =

∑
βj

B̂jβjχβj(π
−1
j (a1)⊕ bj)

=
∑
βj

B̂jβjχπj(βj)(a1)χβj(bj)

Bj(π−1
j (a2)⊕ bj) =

∑
γj

B̂jγjχπj(γj)(a2)χγj(bj)

where we used the fact thatχβ(π−1(a)) = χπ(β)(a). Expanding and using Lemma 10.2.3

we get

TS =
∑

βj ,γj ,j∈[d]

∏
j∈[d]

B̂jβjB̂jγj E

χ⊕jπj(βj)(a1) · χ⊕jπj(γj )(a2) ·
∏
j∈[d]

χβj⊕γj(bj)


Taking expectation overbj, from Lemma 10.2.4, we see that the terms in this summa-

tion are non-zero only ifβj = γj ∀ j. Taking expectation overa1, we see that we have

nonzero terms only if⊕j∈[d]πj(βj) = 0. We conclude that

δ2 ≤ TS = Ev,w1,... ,wd

 ∑
βj : ⊕j∈[d]πj(βj)=0

d∏
j=1

B̂2
jβj

 (10.2)

The case whenS = [2]× [d] andd is odd is similar. In this case we have

TS = E

A(a1)A(a2)
∏
j∈[d]

Bj(π−1
j (a1)⊕ bj)Bj(π−1

j (a2)⊕ bj)



208



Using Fourier expansions ofA,B1, . . . , Bd and simplifying, we get

δ2 ≤ TS = Ev,w1,... ,wd

 ∑
α, βj : α=⊕j∈[d]πj(βj)

Â2
α

d∏
j=1

B̂2
jβj

 (10.3)

Now we define proofs (P,Q) for the Raz Verifier as follows. For a setw, pickβ with

probabilityB̂2
β and defineQ(w) = β. For a setv, pick sets(wj)dj=2 at random and pick

(βj)dj=2 with probability
∏d

j=2 B̂
2
jβj

. If d is even, defineP (v) = ⊕dj=2πj(βj). If d is odd,

pick α with probabilityÂ2
α and defineP (v) = α⊕dj=2 πj(βj).

We claim that the acceptance probability of the Raz Verifier on these proofs (expected

over construction of(P,Q)) is precisely the expressions in (10.2) or (10.3). Consider

expression (10.2).Q(w1) will be defined to beβ1 with probability B̂2
1β1

. After picking

(w2, . . . , wd), P (v) will be defined to be⊕dj=2πj(βj) with probability
∏d

j=2 B̂
2
jβj

. The

condition⊕j∈[d]πj(βj) = 0 is equivalent to the conditionπ1(β1) = ⊕dj=2πj(βj), i.e.

π1(Q(w1)) = P (v). Thus expression (10.2) can be rewritten as

δ2 ≤ Ev,w1 [ Pr[ π(Q(w1)) = P (v) ] ]

where the probability is taken over the construction of the proofs(P,Q). The condition

π(Q(w1)) = P (v) is precisely the condition when the Raz Verifier accepts and the claim

follows. The expression (10.3) corresponding to the case whend is odd can be handled

similarly.

Thus there exists at least one choice of proofs(P,Q) which is accepted by the Raz

Verifier with probability at leastδ2 concluding the proof of Theorem 10.3.1.

As an immediate consequence of Theorem 10.3.1 we get

209



Theorem 10.3.3For any constantsε, δ > 0, NP has probabilistically checkable proof

systems where the verifier uses logarithmic randomness, has completeness1 − ε, amor-

tized query complexity1 + δ and amortized free bit complexityδ.

This theorem was first proved by Samorodnitsky and Treivsan [106]. This result is

optimal since PCPs with amortized query complexity less than1 can recognize languages

only in BPP [16, Lemma 10.6].

10.4 Improved Inapproximability Result for MaxClique

In this section, we prove Theorem 10.1.2. We use the verifierVlin from Theorem 10.3.1

with superconstant values of parametersu, k and subconstant value ofε as given by The-

orem 10.2.1.

We construct a PCP verifier for 3SAT as follows : Using Theorem 10.2.1, we trans-

form given 3SAT formula to an instanceΓ of Max-3-Lin-2(ε) with ε = 1
(logN)β and

N = nO(log logn). Then we use Theorem 10.3.1 to construct a PCP verifier forΓ with

parameters :

• ε = 1
(logN)β , u = 1

2(logN)3β/4, k = (logN)β/4, f = 2k

• r ≤ (logN)1+3β/4

• c ≥ 1− εku ≥ 1/2

• δ = 2−k2
, s ≤ 2 · 2−k2

. The choice ofu, k ensures thatCu
lin < δ.

Finally we use a well-known connection between PCPs and hardness of approximat-

ing clique size, discovered by Feige et al [38]. Their reduction reduces a PCP to a graph

which is well-known as the FGLSS graph. A brief description of this reduction appears in

210



Section 3.4.1. Zuckerman [114] augmented the FGLSS reduction by a gap-amplification

technique based on dispersers. The following theorem is implicit in [114] and [16] and

can be found explicitly in [33, Lemma 6.3].

Theorem 10.4.1 If there is a PCP verifier for 3SAT usingr random bits,f free query

bits, completenessc and soundnesss, then for anyR > r andD = (R + 2)/ log(1/s),

there is a randomized reduction from a 3SAT formulaφ to a graphG withN ′ = 2R+Df

vertices such that : Ifφ is satisfiable, with probability2/3, G has a clique of size at

leastcD2R/2 and if φ is unsatisfiable, with probability2/3, maximum clique size inG

is at most2r. This reduction runs in time polynomial inN ′ and the running time of the

verifier.

We takeR = r(logN)β/4. Note thatN = nO(log logn), D = (R+2)/(k2−1), f = 2k,

N ′ = 2R+Df ≤ 22R ≤ 22 (logN)1+3β/4+β/4 ≤ 2(logn)O(1)
. Clearly, no polynomial time

algorithm can distinguish whether the graphG with N ′ vertices has maximum clique

size at leastcD2R/2 or at most2r unless NP⊆ BPTIME(2(log n)O(1)
). Thus under this

complexity assumption, no polynomial time algorithm can approximate MaxClique in a

graph withN ′ vertices within factorN ′α where

α =
log(cD2R/2)− log(2r)

logN ′
≥
R − 1− R+2

k2−1 − r
R+ (R+2)2k

k2−1

= 1−
(R+2)2k
k2−1 + 1 + r + R+2

k2−1

R+ (R+2)2k
k2−1

≥

1−
(R+2)2k
k2−1 + 1 + r + R+2

k2−1

R
≥ 1−O(

r

R
) ≥ 1−O(

1
(logN)β/4

) ≥ 1− 1
(logN ′)γ

for someγ > 0. This proves Theorem 10.1.2 assuming NP6⊆ BPTIME(2(log n)O(1)). One

can use techniques from [33, Section 6.2, Theorem 6.16] to get the same result under the

assumption NP6⊆ ZPTIME(2(logn)O(1)). But this improvement is minor and we omit the

details.

211



10.5 Randomized PCPs and Chromatic Number

Feige and Kilian [40] introduced the idea ofRandomized PCPsto prove their hardness

result for approximating chromatic number of a graph. We apply their technique to the

PCP system constructed in Section 10.3 to obtain an improved result. Randomizing this

system is easier than randomizing earlier PCP systems based on Long codes. First we

give some basic definitions, the first one just restates Definition 3.4.1.

Definition 10.5.1 An accepting patternτ for a PCP verifier is a pairτ = (S, ν) such

that for some choice of the random string,S is the set of query bits read by the verifier

andν is a setting of these bits for which the verifier would accept. The set of all accepting

patterns is denoted byT . A proof Π is said to be consistent with a patternτ = (S, ν) if

the values of bits in proofΠ corresponding to the setS matchν.

Definition 10.5.2 A languageL has a randomized PCP system with parameters(r, f, ρ, s),

if there is a probabilistic polynomial time verifierV that can check membership proofsΠ

for languageL usingr random bits,f free query bits and satisfies :

• Soundness condition :x 6∈ L =⇒ ∀ proofsΠ, Pr [ V acceptsΠ ] ≤ s

• Covering condition : Ifx ∈ L, there exists a collection of proofs{Π1,Π2, . . . }with

a probability distribution on these proofs such that

∀ τ ∈ T , Pri [ Πi is consistent withτ ] ≥ ρ

The parameterρ is called the covering parameter.

Covering condition basically says that one can have a distribution on proofs such

that every accepting pattern is “covered” with probabilityρ. In FGLSS graphG0, this

212



translates to a distribution on independent sets such that every vertex is covered with

probabilityρ. In other words, thefractional chromatic numberχf(G0) (and therefore the

chromatic numberχ(G0)) of the FGLSS graph is at most1/ρ.

Feige and Kilian [40] showed the following connection between randomized PCPs

and hardness of approximating chromatic number of a graph. This theorem is obtained

by taking inclusive graph product of the FGLSS graph and then taking a random induced

subgraph of appropriate size. Since the statement of this theorem does not appear explic-

itly in their paper, we provide a brief sketch of the proof.

Theorem 10.5.3 If there is RPCP system for 3SAT with parameters(r, f, ρ, s), then for

any integerh, there is a randomized reduction from a 3SAT formulaφ to a graphG′ with

N ′ = (2f/s)h vertices such that : Ifφ is satisfiable,χ(G′) ≤ 2 lnN ′
ρh

and ifφ is unsatisfi-

able, with probability1/2, χ(G′) ≥ N ′

h2r+f . This reduction runs in time polynomial inN ′

and the running time of the verifier.

Proof: We will first apply Lemma 2 from [40]. The notations can be translated as

R 7→ 2r, e 7→ s, ρ 7→ ρ, A 7→ 2r+f . This lemma reduces the RPCP system to the

FGLSS graphG0 that has2r+f vertices and satisfies :

• (Completeness/Covering condition)χf(G0) ≤ 1
ρ
.

• (Soundness) α(G0) ≤ s2r.

Hereα(G0) is the size of maximum independent set in graphG0 andχf(G0) is the frac-

tional chromatic number ofG0 (see [40, Definition 1]).

The final graphG′ is obtained by taking the inclusive graph product ([40, Definition

2]) Gh
0 and then randomly taking its vertex induced subgraph of sizeN ′ = ( |G0|

s2r )h =

(2f
s

)h. We apply Lemma 1 from [40] with the translationG 7→ G0, G
′ 7→ G′, k 7→

213



h, C 7→ s2r. Thus in the completeness case,

χ(G′) ≤ (1 + ln |G′|) χf(G′) [40,Equation 1]

≤ (1 + ln |G′|) (χf(G0))h [40, Lemma 1]

≤ 2 lnN ′

ρh

In the soundness case we haveα(G0) ≤ s2r. Lemma 1 from [40] implies that with

high probabilityα(G′) ≤ h|G0|. Hence

χ(G′) ≥ |G′|
α(G′)

≥ |G′|
h|G0|

=
N ′

h2r+f

This completes the proof of Theorem 10.5.3.

We also need the following theorem which we prove in Section 10.7.

Theorem 10.5.4There exists an absolute constantµ < 1 such that for any constant

ε > 0, there is a polynomial time reduction from a 3SAT formulaφ with n variables

to a regular Max-3-Lin-2 instanceΓ with N variables such that ifφ is unsatisfiable, at

mostµ fraction of equations inΓ can be satisfied and ifφ is satisfiable, there exists a

set of assignmentsA = {σ1, σ2, . . . } for Γ such that every equation inΓ is satisfied

by at least(1 − ε) fraction of assignments inA. We callΓ an instance of “coverable”

Max-3-Lin-2(ε).

Moreover this reduction can achieveε = 1
(logN)β for some constantβ > 0 if we allow

N and the running time of the reduction to be slightly superpolynomial i.enO(log logn).

214



10.6 Randomized PCP for Coverable Max-3-Lin- 2(ε)

A randomized PCP for coverable Max-3Lin(ε) is obtained by a simple modification of

the verifierVlin in Section 10.3.

The Randomization Technique : Let (P,Q) be the proofs provided to the Raz Verifier.

We construct a new verifierVrand as follows. The verifierVrand has access to proofs

(P̂ , Q̂) where for some fixedl-bit stringx, P̂ (v) is supposed to contain Hadamard code

of the (u + l)-bit stringP (v) ◦ x andQ̂(w) is supposed to contain Hadamard code of

the (3u + l)-bit stringQ(w) ◦ x (◦ denotes concatenation of strings). The stringx acts

as a dummy string. Recall that the covering condition in Definition 10.5.2 requires a

collection of proofs instead of one single proof. The purpose of the dummy stringx

is precisely to generate different proofs. Different choices of the stringx give different

proofs. This idea is very similar to theRandomized Label Coverproblem in Section 3.4.2.

If π : IF3u
2 → IFu

2 is the projection betweenw andv, we define a new projection

functionπ′ in the following way : π′ : IF3u+l
2 → IFu+l

2 is defined by setting for every

β ∈ IF3u
2 , η ∈ IFl

2, π′(β ◦ η) = π(β) ◦ η.

The new verifierVrand has access to proofs(P̂ , Q̂) and it works in almost identical

manner as the verifierVlin. Its action is :

1. Pick setsv, w1, . . . , wk and corresponding projectionsπ1, . . . , πk. Construct new

projection functionsπ′1, . . . , π
′
k.

2. LetA = P̂ (v) andBj = Q̂(wj) for 1 ≤ j ≤ k.

3. Pick vectorsa1, . . . , ak ∈ IFu+l
2 andb1, . . . , bk ∈ IF3u+l

2 . Write them asai = a′i ◦a′′i
andbi = b′i ◦ b′′i wherea′′i andb′′i arel-bit vectors.

215



4. If {a′′i , b′′i : 1 ≤ i ≤ k} are linearly dependent, then reject. Otherwise accept iff

A(ai) ·Bj(bj) = Bj(π′−1
j (ai)⊕ bj) ∀ i, j

Theorem 10.6.1The RPCP system with verifierVrand for coverable Max-3-Lin-2(ε) in-

stanceΓ withN variables

• Usesr = u logN +O(ku) random bits and2k free query bits.

• Covering parameterρ ≥ 2−(2k+1) providedεku ≤ 1/2.

• Soundnesss ≤ 2−k2+1 providedu = Ω(k2).

Proof: We note that{a′′i , b′′i } is a collection of2k vectors randomly chosen from a space

of dimensionl. We takel = u � k and the probability that they are linearly dependent

is negligible. So henceforth we ignore this issue.

SinceVrand works in a similar manner asVlin, the soundness analysis forVlin can be

applied. Therefore the soundness ofVrand is bounded by2−k2 + δ providedCu
lin < δ2.

Takingδ = 2−k2
andu = Ω(k2) ensures that the soundness is at most2−k2+1.

Now we prove that this PCP system has good covering properties. For a (global)

assignmentσ to the instanceΓ, letσ(v) denote the assignment to variables in setv under

σ. We define proofs(P̂σ,x, Q̂σ,x) corresponding to an assignmentσ and a fixedl-bit string

x whereP̂σ,x(v) contains Hadamard code of the(u + l)-bit stringσ(v) ◦ x andQ̂σ,x(w)

contains Hadamard code of the(3u + l)-bit stringσ(w) ◦ x. Consider the collection of

proofs

{ (P̂σ,x, Q̂σ,x) | x ∈ {0, 1}l, σ ∈ A} (10.4)

216



whereA is a set of assignments such that every equation inΓ is satisfied by at least1− ε

fraction of assignments inA (see Theorem 10.5.4). We consider the uniform probability

distribution on these proofs.

Consider any patternτ for the verifierVrand. This pattern corresponds to some fixed

setting of the bits(A(a1), . . . , A(ak), B1(b1), . . . , Bk(bk)) whereA = Hadamard(σ(v)◦

x), Bj = Hadamard(σ(wj) ◦ x). By definition of the Hadamard codes, the values of

these bits in the proof(P̂σ,x, Q̂σ,x) are (in{0,1} notation)

(a′1 · σ(v)⊕ a′′1 · x, . . . , a′k · σ(v)⊕ a′′k · x, b′1 · σ(w1)⊕ b′′1 · x, . . . , b′k · σ(wk)⊕ b′′k · x)

(10.5)

Since{a′′i , b′′i : 1 ≤ i ≤ k} are linearly independent, ifx is a random string from{0, 1}l,

the bit pattern (10.5) matches every2k bit string with probability1/22k. On the other

hand, ifσ ∈ A is chosen randomly, with probability1 − εku, all equations in(wj)kj=1

will be satisfied. It follows that a randomly chosen proof from (10.4) is consistent with

the patternτ with probability≥ (1 − εku)/22k ≥ 1/22k+1. This shows that the RPCP

system has a good covering parameter.

10.6.1 Improved Inapproximability Result for Chromatic Number

We construct a RPCP system for 3SAT as follows. Using Theorem 10.5.4, we transform a

3SAT instanceφ to a coverable Max-3-Lin-2(ε) instanceΓ withN = nO(log logn) variables

andε = 1
(logN)β . Using Theorem 10.6.1, a RPCP system with the following parameters

is constructed.

• u = (logN)3β/4, k = (logN)β/4

• r ≤ (logN)1+3β/4

217



• Covering parameterρ ≥ 2−(2k+1) and the number of free bitsf = 2k

• Soundnesss ≤ 2−k2+1

Note that the running time of the verifier andN is slightly superpolynomial. Now we

apply the reduction given by Theorem 10.5.3 withh = (logN)1+β. The size of the graph

produced isN ′ = (2f/s)h = 2h(2k+k2−1) ≤ 2(logn)O(1)
. The gap in the chromatic number

is N ′ρh

h2r+f ·2 lnN ′ which can be expressed asN ′α where

α =
logN ′ − h log(1

ρ
)− log h− r − f − 1− log(lnN ′)

logN ′
≥ 1−O(

h log(1
ρ
)

logN ′
)

≥ 1−O(
hk

h(2k + k2 − 1)
) ≥ 1−O(

1
k

) ≥ 1− 1
(logN ′)γ

for someγ > 0. This proves Theorem 10.1.3 assuming NP6⊆ coRTIME(2(log n)O(1)
)

which is equivalent to the assumption NP6⊆ ZPTIME(2(logn)O(1)
).

10.7 Proof of Theorem 10.5.4

We first sketch H˚astad’s reduction from Gap-3SAT to Max-3-Lin-2 (which appears in

Chapter 2). H˚astad’s verifier, which we callV3bit, has access to a Gap-3SAT instanceφ.

For every setv of u variables, the verifier expects the long code ofσ(v) and for every

setw of u clauses, it expects a long code ofσ(w) whereσ is some global satisfying

assignment. Hereσ(v), σ(w) are bit-strings of lengthu and3u respectively.

The action ofV3bit is :

1. Pick a setv of u variables at random and a setw of u clauses, clausei containing

variablei for 1 ≤ i ≤ u.

218



2. Pick functionsf : {0, 1}u 7→ {−1, 1} andg : {0, 1}3u 7→ {−1, 1} uniformly at

random.

3. Pick anerror functionµ : {0, 1}3u 7→ {−1, 1} where for everyy ∈ {0, 1}3u, µ(y)

is set to1 with probability1− ε′ andµ(y) is set to−1 with probabilityε′.

4. LetA be the supposed long code ofσ(v) in the proof andB be the supposed long

code ofσ(w) in the proof. Letπ : {0, 1}3u 7→ {0, 1}u be the projection function

that restricts assignments tow to assignments tov.

5. Defineh : {0, 1}3u 7→ {−1, 1} as

h(y) = g(y) · f(π(y)) · µ(y) ∀ y ∈ {0, 1}3u

The verifier accepts if and only if

A(f)B(g)B(fgµ) = 1 (10.6)

We state H˚astad’s result in a form convenient to us :

Theorem 10.7.1The verifierV3bit has completeness1− ε′ and soundness0.6 provided

u ≥ C0 log(1/ε′) whereC0 is some large absolute constant. The proof size is at most

nO(u)223u
wheren is the size of the Gap-3SAT instance.

Remark : The long codes are supposed to befolded over trueandconditioned upon

3SAT predicates, but this is irrelevant for our purpose.

We note that if a proof contains correct long codes and is consistent with a satisfying

assignmentσ to Gap-3SAT formulaφ, then equation (10.6) is satisfied if and only if

µ(σ(w)) = 1.

219



This reduction produces a weighted instanceΓ of Max-3-Lin-2 where the variables

correspond to bits in the proof and there is one equation of the form (10.6) corresponding

to every tuple(A,B, f, g, µ) chosen by the verifier. (equation (10.6) is a linear equation

modulo 2 in{0, 1} notation ). The equation corresponding to the tuple(A,B, f, g, µ) has

weight equal to the probability with which this tuple is picked by the verifier. For any

assignment to the variables inΓ, the weight of the equations satisfied by this assignment

is equal to the probability with which the corresponding proof is accepted by the verifier.

The sizeN of the instanceΓ is polynomial in the proof size, i.e.N ≤ nC1u224u
for some

constantC1.

Proof: (Of Theorem 10.5.4) We modify the verifierV3bit using an idea similar to

the randomization technique used in section 10.6. The new verifier expects the proof to

contain long codes of stringsσ(v) ◦ x andσ(w) ◦ x for some fixedl-bit stringx. The

projection function is modified accordingly. The verifier proceeds in a similar way, but

now we havef : {0, 1}u+l → {−1, 1} andg, µ, h : {0, 1}3u+l → {−1, 1}.

We modify the instanceΓ by deleting all equations corresponding to tuples(A,B, f, g, µ)

whereµ fails to satisfy the following condition :

∀ y ∈ {0, 1}3u, Prz∈{0,1}l [ µ(y ◦ z) = −1 ] ≤ 2ε′ (10.7)

For everyy ∈ {0, 1}3u, there are2l strings of the formy ◦ z. We will setµ(y ◦ z) = −1

with probabilityε′ independently for ally ◦ z. Using Chernoff bound, we can show that

if l = u = Ω(log(1/ε′)), the probability that an error functionµ does not satisfy (10.7) is

negligible compared toε′. Thus the weight of the deleted equations is negligible and we

ignore it from the analysis. H˚astad’s soundness analysis also applies to this new verifier

220



implying that if φ is unsatisfiable, the maximum weight of the equations satisfied is at

most0.6.

For the covering condition, we consider the assignmentsσx to Γ given by proofs

corresponding to a fixed satisfying assignmentσ for φ and a choice ofl-bit stringx. As

x ranges over alll-bit strings, we get different assignments toΓ.

An equation corresponding to the tuple(A,B, f, g, µ), whereB is the long code of

σ(w) ◦ x, is satisfied providedµ(σ(w) ◦ x) = 1. This happens for at least1− 2ε′ fraction

of x’s sinceµ satisfies condition (10.7). Thus every equation is satisfied by at least1−2ε′

fraction of assignments in the set{σx | x ∈ {0, 1}l}.

Takingε = 2ε′ and transformingΓ to aregularMax-3-Lin-2 instance proves Theorem

10.5.4. The theorem also holds with a subconstant value ofε provided we allow the

reduction to run in superpolynomial time. We takeu = C2 log logn for a suitable constant

C2 so thatnC1u = 224u
. With this choice we haveN ≤ nC1u224u = 22·24u

and thus

logN ≤ 2 · 24u. By Theorem 10.7.1, we can achieveε′ = 2−u/C0 ≤ 1
(logN)β for some

β > 0. We also note thatN ≤ n2·C1u = nO(log logn).

221



Chapter 11

Conclusion

More than decade’s work by several researchers has resulted in the beautiful theory of

inapproximability. Optimal hardness results are now known for many fundamental prob-

lems. However many important problems still remain open. In this chapter, we list some

of them and point out some directions for future research.

11.1 Open Problems

These open problems are listed without any specific order (and with personal bias towards

their importance). A more comprehensive list appears in Vazirani’s book [113, Chapter

30].

1. Vertex Cover : Show2− ε hardness. The best known hardness is1.36 [32]. How

about vertex cover onk-uniform hypergraphs, is factork−ε hard ? Factork−1−ε

hardness is known [29].

2. Graph Coloring : Show that3-colorable graphs are hard to color with constantly

many colors. How aboutO(logn) colors ? Currently, we know that3-colorable

222



graphs can be colored (in poly-time) with̃O(n3/14) colors [18] and it is NP-hard to

color them with4 colors [72].

3. Independent Set : In our opinion, before making any progress on vertex cover

and graph coloring, it is important to show the following result : Show that there

exists a constantα such that for anyδ > 0, it is NP-hard to find an independent

set of (relative) sizeδ in a graph that is guaranteed to contain an independent set

of sizeα. Showing2− ε hardness for vertex cover means proving this result with

α = 1
2 − ε. Such a result is equivalent to constructing a PCP with zero free bits,

completenessα and soundness at mostδ as shown in [16].

4. Min-2SAT-Deletion : Show any constant factor hardness. Currently, a con-

stant factor hardness is known (that follows from H˚astad’s corresponding result

for MAX-2SAT) andO(logn log logn) approximation is known [80].

5. Graph Min Bisection, Sparsest Cut, Densest Subgraph, Bipartite Clique :

Show that these problems do not have a PTAS (unless of course P = NP). The best

known approximation algorithms for these problems achieve ratiosO(log2 n) (see

[42]), O(logn) (see [86]),O(n1/3) (see [41]) andO(n1/2) (folklore) respectively.

6. Asymmetric TSP : It hasO(logn) approximation [45] and117
116−ε hardness [100].

A 4/3 integrality gap example is known for a natural LP.

7. Shortest Vector Problem inL2 norm : It has2o(n) approximation ([87], [107])

and
√

2 − ε hardness [96]. Show any constant factor hardness. Does an approxi-

mation within polynomial factor exist ? Show any constant factor hardness inLp

norm for some fixed value of1 ≤ p <∞.

223



8. Max Acyclic Subgraph : It has 66
65 − ε hardness [99] and no algorithm better than

trivial 2-approximation is known.

9. Edge Disjoint Paths (Network Congestion Minimization) : Approximation

within ratio O( logn
log logn) is known [102] and a matching integrality gap example

is known (attributed to Leighton). A hardness factor2 is known (it just follows

from hardness of finding two edge disjoint paths between two pairs of terminals).

Show any constant factor hardness.

10. Bin-Packing : Is it hard to find a bin-packing usingOPT + 1 bins ? How about

any additive constant ? The best algorithm usesOPT + log2(OPT ) bins [71].

It would be interesting to find new inapproximability thresholds for natural problems.

Recently two such tight thresholds were shown :Ω(log2 n) for Group Steiner Tree on

trees [57] andΩ(log∗ n) for Asymmetrick-Center [26]. Apart from showing hardness

results for specific problems, it would be nice to relate approximability of different prob-

lems and get some reasonable classification.

11.2 Future Directions

Current techniques seem to have reached their limits for problems like Vertex Cover and

Graph Min Bisection. Recently, two new approaches have been proposed. The first is the

Unique Games Conjecture presented in this thesis and the second is Feige’s hypothesis

about hardness of Random 3SAT.

224



11.2.1 Unique Games Conjecture

As seen in this thesis, this conjecture implies2 − ε hardness for Vertex Cover and any

constant factor hardness for Min-2SAT-Deletion. Assuming a stronger form of this con-

jecture (with additional assumption that the underlying bipartite graph of unique 2-prover

game is an expander), one can show any constant factor hardness for Graph Min Bisec-

tion.

11.2.2 Feige’s Hypothesis about Random 3SAT

A random 3SAT formula with densityC is obtained by pickingm = Cn clauses uni-

formly at random from the set of all possible clauses onn variables. Arefuting proce-

dure is a procedure that says YES on satisfiable 3SAT formulae and says YES/NO on

unsatisfiable instances. Note that for largeC, almost every 3SAT formula is unsatisfiable.

Feige’s Hypothesis: For all large constantsC, there is no poly-time refuting procedure

that says NO on a constant fraction (say 50%) of unsatisfiable 3SAT formulae picked with

densityC.

Feige [34] shows that this hypothesis implies that there is no PTAS for Graph Min

Bisection, Bipartite Clique, Densest Subgraph and Catalog Segmentation. The idea is

that when a 3SAT formula is picked at random, then an appropriate reduction to a graph

problem will give a random-looking graph (and hence a graph with expansion proper-

ties). Following Feige’s paper, Alekhnovich [5] has shown interesting results based on

(conjectured) hardness of random system of linear equations.

225



Bibliography

[1] M. Ajtai. Generating hard instances of lattice problems. InProc. 28th ACM Sym-
posium on the Theory of Computing, pages 99–108, 1996.

[2] M. Ajtai. The shortest vector problem in L2 is NP-hard for randomized reductions.
In Proc. 30th ACM Symposium on the Theory of Computing, pages 10–19, 1998.

[3] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case
equivalence. InProc. 29th ACM Symposium on the Theory of Computing, pages
284–293, 1997.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice
vector problem. InProc. of the 33rd ACM Symposium on the Theory of Computing,
pages 601–610, 2001.

[5] M. Alekhnoivh. More on average case vs approximation complexity. InProc. 44th
IEEE Symposium on Foundations of Computer Science, 2003.

[6] N. Alon and N. Kahale. Approximating the independence number via theθ-
function. Technical Report, Tel Aviv University, 1995.

[7] G. Andersson, L. Engebretsen, and J. Hastad. A new way of using semidefinite
programming with applications to linear equations mod p.Journal of Algorithms,
39(2):162–204, 2001.

[8] S. Arora.Probabilistic checking of proofs and the hardness of approximation prob-
lems. Ph.D. thesis, UC Berkeley, 1994.

[9] S. Arora, L. Babai, J. Stern, and E. Sweedyk. The hardness of approximate op-
tima in lattices, codes and systems of linear equations.Journal of Computer and
Systems Sciences, 54:317–331, 1997.

[10] S. Arora, B. Bollobas, and L. Lov́asz. Proving integrality gaps without knowing
the linear program. InProc. 43rd IEEE Foundations of Computer Science, 2002.

[11] S. Arora and C. Lund.Approximation Algorithms for NP-hard Problems, editor :
D. Hochbaum. PWS Publishing, 1996.

226



[12] S. Arora, C. Lund, R. Motawani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems.Journal of the ACM, 45(3):501–555,
1998.

[13] S. Arora and S. Safra. Probabilistic checking of proofs : A new characterization
of NP. Journal of the ACM, 45(1):70–122, 1998.

[14] L. Babai. Trading group theory for randomness. InProc. 17th ACM Symposium
on Theory of Computing, pages 421–429, 1985.

[15] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-
prover interactive protocols. pages 113–121, 1988.

[16] M. Bellare, O. Goldreich, and M. Sudan. Free bits, PCPs and non-approximability.
Electronic Colloquium on Computational Complexity, Technical Report TR95-024,
1995.

[17] M. Bellare and M. Sudan. Improved non-approximability results. InProc. 26th
ACM Symposium on Theory of Computing, pages 184–193, 1994.

[18] A. Blum and D. Karger. AnÕ(n3/14) coloring algorithm for 3-colorable graphs.
Information Processing Letters, 61:49–53, 1997.

[19] M. Blum and S. Kannan. Designing programs that check their work. InProc. 21st
ACM Symposium on Theory of Computing, pages 86–97, 1989.

[20] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications
to numerical problems. InProc. 22nd ACM Symposium on Theory of Computing,
pages 73–83, 1990.

[21] R. Boppana and M. Halld´orsson. Approximating maximum independent sets by
excluding subgraphs. In J. R. Gilbert and R. Karlsson, editors,Proc. 92nd Scandi-
navian Workshop on Algorithm Theory, volume 447, pages 13–25, 1990.

[22] J. Bourgain. On the distribution of the Fourier spectrum of boolean functions.
manuscript.

[23] J. Cai. Applications of a new transference theorem to Ajtai’s connection factor. In
Proc. 14th IEEE Conference on Computational Complexity, 1999.

[24] J. Cai and A. Nerurkar. An improved worst-case to average-case connection for
lattice problems. InProc. 38th IEEE Symposium on Foundations of Computer
Science, 1997.

227



[25] J. Cai and A. Nerurkar. Approximating the SVP to within a factor(1 + 1/dimε) is
NP-hard under randomized reductions. InProc. 13th IEEE Conference on Com-
putational Complexity, pages 151–158, 1998.

[26] J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer, and
S. Naor. Asymmetric k-center islog∗ n-hard to approximate.Personal communi-
cation.

[27] I. Dinur. Approximating SVP∞ to within almost polynomial factors is NP-hard.
In Proc. 4th Italian Conference on Algorithms and Complexity, volume LNCS :
1767. Springer, 2000.

[28] I. Dinur, V. Guruswami, and S. Khot. Vertex cover onk-uniform hypergraphs is
hard to approximate within factor(k − 3− ε). Electronic Colloquium on Compu-
tational Complexity, Technical Report TR02-027, 2002.

[29] I. Dinur, V. Guruswami, S. Khot, and O. Regev. A new multilayered PCP and the
hardness of hypergraph vertex cover. InProc. 34thth ACM Symposium on Theory
of Computing, 2002.

[30] I. Dinur, G. Kindler, and S. Safra. Approximating CVP to within almost-
polynomial factors is NP-hard. InProc. 39th IEEE Symposium on Foundations
of Computer Science, 1998.

[31] I. Dinur, O. Regev, and C. Smyth. The hardness of 3-uniform hypergraph coloring.
In Proc. 43rd IEEE Symposium on Foundations of Computer Science, 2002.

[32] I. Dinur and S. Safra. The importance of being biased. InProc. 34th Annual ACM
Symposium on Theory of Computing, 2002.

[33] L. Engebretsen and J. Holmerin. Towards optimal lower bounds for clique and
chromatic number.Electronic Colloquium on Computational Complexity (ECCC),
(TR01-003), 2001.

[34] U. Feige. Relations between average case complexity and approximation com-
plexity. In Proc. 34th ACM Symposium on Theory of Computing.

[35] U. Feige. Error reduction - the state of the art.Technical Report CS95-32, Weiz-
mann Institute of Technology, 1995.

[36] U. Feige. Randomized graph products, chromatic numbers, and the lovász θ-
function. InProc. 27th ACM Symposium on Theory of Computing, pages 635–640,
1995.

228



[37] U. Feige. A threshold oflnn for approximating set cover.Journal of the ACM,
45(4):634–652, 1998.

[38] U. Feige, S. Goldwasser, L. Lov´asz, S. Safra, and M. Szegedy. Interactive proofs
and the hardness of approximating cliques.Journal of the ACM, 43(2):268–292,
1996.

[39] U. Feige, M. Halldorsson, and G. Kortsarz. Approximating the domatic number.
In Proc. 32nd ACM Symposium on Theory of Computing, pages 134–143, 2000.

[40] U. Feige and J. Kilian. Zero knowledge and the chromatic number. InProc.
11thIEEE Conference on Computational Complexity, pages 278–287, 1996.

[41] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem.Algorithmica,
29(3):410–421, 2001.

[42] U. Feige and R. Krauthgamer. A polylogarithmic approximation of the minimum
bisection. InProc. 41st IEEE Symposium on Foundations of Computer Science,
pages 105–115, 2000.

[43] U. Feige and L. Lov́asz. Two-prover one-round proof systems, their power and
their problems. InProc. 24th Annual ACM Symposium on Theory of Computing,
pages 733–744, 1992.

[44] E. Friedgut. Boolean functions with low average sensitivity depend on few coor-
dinates.Combinatorica, 18(1):27–35, 1998.

[45] A. Frieze, G. Galbiati, and F. Maffioli. On the worst-case performance of some
algorithms for the asymmetric traveling salesman problem.Networks, 12:23–39,
1982.

[46] A. Frieze and M. Jerrum. Improved approximation algorithms for MAX k-CUT
and MAX BISECTION.Algorihmica, 18:67–81, 1997.

[47] M. Fürer. Improved hardness results for approximating the chromatic number. In
Proc. 36th IEEE Sumposium on Foundations of Computer Science, pages 414–421,
1995.

[48] M. R. Garey and D. S. Johnson. The complexity of near-optimal graph coloring.
Journal of the ACM, 23:43–49, 1976.

[49] C. Gauss. Disquisitiones arithmeticae (leipzig, 1801 : art. 171). Yale Univ. Press.
English translation by A.A. Clarke, 1966.

229



[50] M. Goemans and D. Williamson. 0.878 approximation algorithms for MAX-CUT
and MAX-2SAT. InProc. 26th ACM Symposium on Theory of Computing, pages
422–431, 1994.

[51] O. Goldreich. Using the FGLSS-reduction to prove inapproximability results for
minimum vertex cover in hypergraphs.Electronic Colloquium on Computational
Complexity, Technical Report TR01-102, 2001.

[52] O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice
problems. InProc. 30th ACM Symposium on the Theory of Computing, pages 1–9,
1998.

[53] S. Goldwasser, S. MIcali, and C. Rackoff. The knowledge complexity of interac-
tive proofs.SIAM Journal on Computing, 18:186–208, 1989.

[54] R. L. Graham, M. Gr¨otschel, and L. Lov´asz, editors.Handbook of combinatorics,
volume 1, 2. Elsevier Science B.V., Amsterdam, 1995.

[55] V. Guruswami, J. Hastad, and M. Sudan. Hardness of approximate hypergraph
coloring. In Proc. 41st IEEE Symposium on Foundations of Computer Science,
pages 149–158, 2000.

[56] E. Halperin. Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. InProc. 11th ACM-SIAM Symposium on Discrete
Algorithms, pages 329–337, 2000.

[57] E. Halperin and R. Krauthgamer. Polylogarithmic inapproximability. InProc. 35th
ACM Symposium on Theory of Computing, 2003.

[58] E. Halperin, R. Nathaniel, and U. Zwick. Coloringk-colorable graphs using
smaller palettes. InProc. 12th ACM-SIAM Symposium on Discrete Algorithms,
pages 319–326, 2001.

[59] J. Hastad. Clique is hard to approximate withinn1−ε. In Proc. 37th IEEE Sympo-
sium on Foundations of Computer Science, pages 627–636, 1996.

[60] J. Hastad. Some optimal inapproximability results. InProc. 29th ACM Symposium
on Theory of Computing, pages 1–10, 1997.

[61] J. Hastad. On a protocol possibly useful for MIN-2SAT.manuscript, 2001.

[62] J. Hastad and S. Khot. Query efficient PCPs with perfect completeness. InProc.
42nd IEEE Symposium on Foundations of Computer Science, 2001.

[63] J. Hastad and V. Srinivasan. On the advantage over a random assignment. InProc.
34th ACM Symposium on Theory of Computing, 2002.

230



[64] J. Hastad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.
In Proc. 16th IEEE Conference on Computational Complexity, 2001.

[65] J. Holmerin. Improved inapproximability results for vertex cover on k-uniform
hypergraphs. InProc. 29th International Colloquium on Automata, Languages
and Programming, pages 1005–1016, 2002.

[66] J. Holmerin. Vertex cover on 4-regular hyper-graphs is hard to approximate within
2− ε. In Proc. 34th ACM Symposium on Theory of Computing, 2002.

[67] D. S. Johnson. Approximation algorithms for combinatorial problems.Journal of
Computer and System Sciences, 9:256–278, 1974.

[68] R. Kannan. Improved algorithms for integer programming and related lattice prob-
lems. InProc. 15th ACM Symposium on Theory of Computing, pages 193–206,
1983.

[69] R. Kannan. Minkowski’s convex body theorem and integer programming.Mathe-
matics of Operations Research, 12:415–440, 1987.

[70] D. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidef-
inite programming. InProc. 35th IEEE Symposium on Foundations of Computer
Science, pages 2–13, 1994.

[71] N. Karmarkar and R. Karp. An efficient approximation scheme for the one-
dimensional bin packing problem. InProc. 23rd IEEE Symposium on Foundations
of Computer Science, pages 312–320, 1982.

[72] S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic
number. InProc. 2nd Israel Symposium on Theory and Computing Systems, ISTCS,
pages 250–260, 1993.

[73] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus compu-
tational views of approximability. InProc. 35th IEEE Symposium on Foundations
of Computer Science, pages 819–830, 1994.

[74] S. Khot. Improved inapproximability results for maxclique, chromatic number and
approximate graph coloring. InProc. 42nd IEEE Annual Symposium on Founda-
tions of Computer Science, 2001.

[75] S. Khot. Hardness of coloring3-colorable3-uniform hypergraphs. InProc. 43rd
IEEE Symposium on Foundations of Computer Science, 2002.

[76] S. Khot. Hardness rsults for approximate hypergraph coloring. InProc. 34th ACM
Symposium on Theory of Computing, 2002.

231



[77] S. Khot. On the power of unique 2-prover 1-round games. InProc. 34th ACM
Symposium on Theory of Computing, 2002.

[78] S. Khot. Hardness of approximating the shortest vector problem in high Lp norms.
In Proc. 44th IEEE Symposium on Foundations of Computer Science, 2003.

[79] S. Khot and O. Regev. Vertex cover might be hard to approximate to within2− ε.
In Proc. 18th IEEE Conference on Computational Complexity, 2003.

[80] P. Klein, S. Plotkin, S. Rao, and E. Tardos. Approximation algorithms for steiner
and directed multicuts.Journal of Algorithms, 22(2):241–269, 1997.

[81] M. Krivelevich, R. Nathaniel, and B. Sudakov. Approximating coloring and max-
imum independent set in 3-uniform hypergraphs. InProc. 12th ACM-SIAM Sym-
posium on Discrete Algorithms, 2001.

[82] R. Kumar and D. Sivakumar. Complexity of SVP - A reader’s digest. In L. Hemas-
paandra, editor,SIGACT News, Complexity Theory Column, volume 32(3). 2001.

[83] J. Lagarias, H. Lenstra, and C. Schnorr. Korkine-Zolotarev bases and successive
minima of a lattice and its reciprocal lattice.Combinatorica, 10:333–348, 1990.

[84] J. Lagarias and A. Odlyzko. Solving low-density subset sum problems.Journal of
the ACM, 32(1):229–246, 1985.

[85] S. Landau and G. Miller. Solvability of radicals is in polynomial time.Journal of
Computer and Systems Sciences, 30(2):179–208, 1985.

[86] T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms.Journal of the ACM, 46:787–832, 1999.

[87] A. Lenstra, H. Lenstra, and L. Lovász. Factoring polynomials with rational coef-
ficients.Mathematische Ann., 261:513–534, 1982.

[88] H. Lenstra. Integer programming with a fixed number of variables.Tech. Report
81-03, Univ. of Amsterdam, 1981.

[89] R. Lipton. Efficient checking of computations. InProc. 6th Symposium on Theo-
retical Aspects of Computer Science, 1989.

[90] L. Lovász. Coverings and colorings of hypergraphs. InProc. 4th Southeast-
ern Conf. on Combinatorics, Graph Theory and Computing, pages 3–12. Utilitas
Mathematica Publishing, Winnipeg, 1973.

[91] L. Lovász. On the ratio of optimal integral and fractional covers.Discrete Mathe-
matics, 13:383–390, 1975.

232



[92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive
proof systems.Journal of the ACM, 39(4):859–868, 1992.

[93] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems.Journal of the ACM, 41:960–981, 1999.

[94] G. Margulis. Probabilistic characteristics of graphs with large connectivity.Prob-
lemy Peredaci Informacii, 10(2):101–108, 1974.

[95] D. Micciancio.On the hardness of the shortest vector problem. PhD Thesis, MIT,
1998.

[96] D. Micciancio. The shortest vector problem is NP-hard to approximate to within
some constant. InProc. 39th IEEE Symposium on Foundations of Computer Sci-
ence, 1998.

[97] D. Micciancio and S. Goldwasser.Complexity of Lattice Problems, A Crypto-
graphic Perspective. Kluwer Academic Publishers, 2002.

[98] H. Minkowski. Geometrie der zahlen. Tuebner, 1910.

[99] A. Newman. Approximating the maximum acyclic subgraph. Masters’ Thesis,
MIT, 2000.

[100] C. Papadimitriou and S. Vempala. On the approximability of the traveling sales-
man problem. InProc. 32nd ACM Symposium on the Theory of Computing, 2000.

[101] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complex-
ity classes.Journal of Computer and Systems Sciences, 43:425–440, 1991.

[102] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably
good algorithms and algorithmic proofs.Combinatorica, 7(4).

[103] R. Raz. A parallel repetition theorem.SIAM J. of Computing, 27(3):763–803,
1998.

[104] O. Regev. New lattice based cryptographic constructions. InProc. 35th ACM
Symposium on the Theory of Computing, 2003.

[105] L. Russo. An approximate zero-one law.Z. Wahrsch. Verw. Gebiete, 61(1):129–
139, 1982.

[106] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal
amortized query complexity. InProc. 32nd ACM Symposium on Theory of Com-
puting, pages 191–199, 2000.

233



[107] C. Schnorr. A hierarchy of polynomial-time basis reduction algorithms. InProc.
of Conference on Algorithms, pages 375–386, 1985.

[108] A. Shamir. IP = PSPACE.Journal of the ACM, 39(4):869–877, 1992.

[109] A. Srinivasan. The value of strong inapproximability results for clique. InProc.
32nd ACM Symposium on Theory of Computing, pages 144–152, 2000.

[110] L. Trevisan. Recycling queries in PCPs and in linearity tests. InProc. 30th ACM
Symposium on Theory of Computing, 1998.

[111] L. Trevisan. Non-approximability results for optimization problems on bounded
degree instances. InProc. 33rd ACM Symposium on Theory of Computing, pages
453–461, 2001.

[112] P. van Emde Boas. Another NP-complete problem and the complexity of comput-
ing short vectors in a lattice.Tech. Report 81-04, Mathematische Instiut, Univ. of
Amsterdam, 1981.

[113] V. V. Vazirani. Approximation Algorithms. Springer, 2001.

[114] D. Zuckerman. On unapproximable versions of NP-complete problems.SIAM J.
on Computing, pages 1293–1304, 1996.

[115] U. Zwick. Approximation algorithms for constraint satisfaction problems involv-
ing at most three variables per constraint. InProc. 9th ACM-SIAM Symposium on
Discrete Algorithms, pages 201–210, 1998.

[116] U. Zwick. Finding almost satisfying assignments. InProc. 30th ACM Symposium
on Theory of Computing, pages 551–560, 1998.

234


