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Abstract

Certain NP-hard problems like Cligue and MAX-3SAT have resisted all attempts to
find non-trivial approximation. Is there any inherent reason for the apparent inapprox-
imability of these problems ? The discovery of PCP Theorem and subsequent research
have shown that for Clique and MAX-3SAT, any non-trivial approximation is as hard as
finding the exact solution !

In this work, we continue this line of research and show inapproximability of many
fundamental NP-hard problems. These include (Hyper-)Graph Coloring, Shortest Vector
Problem (SVP) in lattices, Hypergraph Vertex Cover, Clique and Chromatic Number of
graphs, and some results based on the Unique Games Conjecture (UGC) that we propose.
Specifically, we show that :
(Hyper-)Graph Coloring : Itis hard to color (i)k-colorable graphs with‘2(°2%) colors,
(i) 3-colorable3-uniform hypergraphs witklog log n)*") colors, and (iii)k-colorable4-
uniform hypergraphs witklog n)**) colors.
SVP : For all large enouglp, it is hard to find the shortest nonzero vector inan
dimensional lattice undel, norm within factorp!—°(\).
Hypergraph Vertex Cover : The vertex cover irk-uniform hypergraphs is hard to
approximate within factok — 1 — o(1) for everyk > 3.
Clique and Chromatic Number of Graphs : Both these problems are hard to approxi-
mate within factor; -+ for some constant < 1.
Consequences of UGC : We propose a conjecture about certain 2-Prover-1-Round
games and show that it implies any constant factor hardness for Min-2SAT-Deletion and
factork — o(1) hardness for vertex cover iruniform hypergraphs for every > 2.

We use the powerful machinery of Probabilistically Checkable Proofs and introduce

many new techniques for constructing and analyzing PCPs.
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Chapter 1

Introduction

A central theme in complexity theory is lower bounds, i.e. results showing that certain
computational problems are provably hard to solve. Many such results are based on
complexity theoretic assumptions like-? NP due to absence of unconditional lower
bounds in general computational models like Turing machine. This work focuses on one
specific class of lower bounds : we show that computing approximate solutions to certain

NP-complete problems is hard.

1.1 Approximability of NP-hard Problems

Many optimization problems of theoretical and practical interest are NP-hard to solve ex-
actly. Designing approximation algorithms is a popular and extensively studied approach
for dealing with NP-completeness. An approximation algorithm with réatio- 1 is a
polynomial time (possibly randomized) algorithm that computes a solutidn for ev-

ery problem instancé such that (i)A(7) < C' - OPT(I) for minimization problems and

(i) A(I) > OPTT(” for maximization problems. Her@ PT'(I) denotes the value of the



optimum solution to the problem instance. We refer to a recent book of Vazirani [113]
for an excellent treatment of the field of approximation algorithms.

It turns out that different NP-hard problems behave very differently in terms of how
well they can be approximated. Let us look at three fundamental problems : MAX-3SAT,
Bin-Packing and Set Cover.

MAX-3SAT : Given a set ofn boolean variables and a set af 3CNF clauses (i.e.
clauses of type VgV 2), find a truth assignment to variables satisfying maximum number
of clauses. If one assigns TRUE or FALSE randomly and independently to every variable,
every clause is satisfied with probabilify Thus a random assignment satisfidsaction

of the clauses in expected sense and it is easy to convert this to a deterministic algorithm
as well. Thus we get a trivial approximation algorithm with ratio

Bin-Packing : Given a set of integer§z;}? , and abin-sizeL, partition the set into
minimum number of sets,, S,, ... ,.S; such thatzmiesl r; < Lforl <[ <t Bin-
packing has an approximation algorithm with ratio- ¢ running in timen®/<*) for
everye > 0 (see [113, Chapter 9]). We say that Bin-Packing haoknomial Time
Approximation Schemar PTAS, meaning + ¢ approximation for every. The running

time of the algorithm depends enbut for every fixed, the running time is polynomial.

Set Cover : Given a ground seX with | X | = n and a collection of subsetg, Ss, ... S,

C X withu* S, = X. The goal is to find a minimum size sub-collecti®n, S;,, . .. , S;,
suchthat),_,S;, = X. A greedy algorithm with approximation ratio» is known, often

taught in a undergraduate class (see [113, Chapter 2]).

Thus MAX-3SAT has a constant factor approximation, Bin-Packing in fact has a
PTAS and for Set Cover the approximation ratio grows as a function of the input size.
In particular, we don’t know of any constant factor approximation for Set Cover. Is there

any inherent reason why these problems behave differently ? Is there a fundamental limi-



tation to designing better algorithms for MAX-3SAT and Set Cover or just that we haven't
been clever enough to find the right algorithm ?

This was a natural and perplexing question, unresolved till early 90’s. Surprisingly,
the answer came via algebraic techniques developed in the study of interactive proofs.
The celebrated PCP Theorem (by Arora, Safra [13] and Arora, Lund, Motwani, Sudan,
Szegedy [12]) states that MAX-3SAT has no PTAS unless P = NP. In other words, MAX-
3SAT (and a bunch of other problems) has a thresholde, such that approximating
the problem better than this threshold is as hard as solving it exactly ! Such results that
rule out the possibility of a good approximation algorithm are caittegbproximability
resultsor hardness resultsThe PCP Theorem has had tremendous impact on the theory
of inapproximability. For instance, subsequent work has shown that for MAX-3SAT and
Set Cover, the simple algorithms mentioned before are in fact optimal-gi amd Inn
are tightapproximability thresholdfor the respective problems.

PCP Theorem can be equivalently stated as a result on proof checking. The theorem
gives a way of specifying proofs for NP-statements such that the proofs capabe
checkedvery efficiently by a probabilistic verifier. The verifier uses a minimal amount
of randomness and reads only a constant number of bits from the proof ! The discov-
ery of the connection between proof checking and inapproximability results (by Feige,
Goldwasser, Loasz, Safra and Szegedy [38]) is one of the most exciting theoretical de-
velopments in the last decade. It demonstrates how complexity theoretic tools can be

used to answer questions arising from algorithm design.



1.2 Work in this Thesis

After the discovery of PCP Theorem, much research has focused on obtaining tight in-
approximability thresholds for NP-hard problems. The hardness results for MAX-3SAT
and Set Cover are excellent examples of the success of PCP techniques. In this thesis, we
continue this line of research and explore hardness of basic problems like Graph Color-

ing, Vertex Cover, Shortest Vector Problem, Cliqgue and Chromatic Number.

(Hyper-)Graph Coloring

A graph is called:-colorable if one can assign one color to every vertex of the graph using
at mostk colors, such that every edge has its endpoints colored with different colors. It
is well-known that3-Colorability of graphs is a NP-hard problem. GiveB-aolorable
graph, how many colors does one need to find a valid coloring in polynomial time ? This
guestion is of great interest in combinatorics and computer science.

The best known algorithm ([70], [18]) coloBscolorable graphs witt)(n?/'4) colors.
The number of colors used is huge (polynomial in number of vertices), and even such a
modest guarantee relies on sophisticated combinatorics and semidefinite programming.
The hardness results are not satisfactory either : all we know is it is NP-hard td3eolor
colorable graphs with colors [72] and for large enougdh it is hard to colork-colorable
graphs withk?/2 colors [47]. In this thesis, we make a remarkable progress on this prob-
lem. We show that it is NP-hard to colbfcolorable graphs witk‘2(°2%) colors; the first
superpolynomial bound for this problem as a functio ¢Theorem 3.1.1). The resultis
based on a PCP construction where the verifier is highly query-efficient and has perfect

completeness. The goal of this line of work would be to show NP-hardness of coloring



3-colorable graphs with any constant number of colors; such a result however seems out
of reach of the current techniques.

Given this state of affairs, it is natural to ask whether strong hardness results can
be shown for coloring hypergraphs. Ingauniform hypergraph, every edge is a size-

g subset of vertices (thus graphs &reiniform hypergraphs). A hypergraph is called
k-colorable if its vertices can be colored with at mastolors so that every edge is
non-monochromatic, i.e. for every edge, not all its vertices get the same colog- For
uniform hypergraphs witly > 3, even2-Colorability is NP-hard. Foy > 3,k > 2,
algorithms for coloring-colorableg-uniform hypergraphs with*() colors are known
(e.g. [81]). It came as a surprise when Guruswanastidd, Sudan [55] were able to show
that it is hard to colog-colorable4-uniform hypergraphs witm(blg"ﬁ;%) colors. For
k-colorable4-uniform hypergraphs, we improve this bound(teg 7)) colors which
exceeds every polig n) function ask grows (Theorem 5.1.1). This gives an evidence
that for (hyper)graph coloring, the right answer might be super-polylogarithmic.

What happens foB-uniform hypergraphs ? Guruswami et al's techniques do not
extend to3-uniform hypergraphs. We introduce a new technique calliedti-layered
Smooth Label CovefTheorem 4.2.4) and settle tBeuniform case. We show that it is
hard to color3-colorable3-uniform hypergraphs witlilog log 7)™ colors (Theorem
4.1.1). We also obtain new results for a variation of coloring problem where one is
required to use a fixed number of colors and maximize the number of non-monochromatic
edges. This question has been resolved for graphdg-amiform hypergraphs whereas

we settle the3-uniform case (Theorem 4.1.3).



Shortest Vector Problem

An n-dimensional lattic& is a set of vector$) """ | a,v; | a; € Z} wherevy, vy, ... v, €
R™ is a set of independent vectors called the basis for the lattice. The same lattice could
have many bases. Given a basis fonatimensional lattice, the Shortest Vector Problem
asks for the shortest non-zero vector in the lattice. The length of the vectors can be
measured in any, norm (p > 1) and the corresponding problem is denoted by SVP

SVP is one of the most beautiful problems with connections to worst-case to average-
case reduction, breaking and building cryptosystems (!), factoring rational polynomials
and numerous other areas in mathematics and computer science. We refer to Chapter 6
for the history and significance of this problem. A polynomial time algorithm achieving
2°(")_approximation to SVP is known (the famous LLL Algorithm [87] and improvement
by [107]). This is a rather weak approximation guarantee and it is a major open ques-
tion whether a polynomial factor approximation exists. SVB long since known to
be NP-hard whereas fgr < oo, even NP-hardness wasn’t known until recently. In a
breakthrough result, Ajtai [2] showed NP-hardness of S¥Rd then Micciancio [96]
showed factor2!/? — o(1) inapproximability result for SVR Both these results use a
randomized reduction and hold under assumptiorZNBPP.

In this thesis, we show factet —°() hardness for SVFfor all sufficiently large values
of p (Theorem 6.1.1). Apart from the improved hardness factor, our reduction is much
simpler and direct, much mosdementaryand holds under the weaker assumptiond\NP
ZPP. We believe that our ideas could be applicable in getting any constant factor hardness

in some fixedZ, (maybe even irl,) norm.



Hypergraph Vertex Cover

Vertex Cover in a graph is a set of vertices that touches every edge in the graph. Finding
minimum vertex cover is a basic NP-hard problem. A greedy algorithm with approxima-
tion ratio2 is well-known and in spite of a great deal of efforts, no better approximation

is known. The problem is known to haugegrality gapof 2 for a wide class of linear
programs (see [10]) suggesting that LP-based approach is unlikely to give a better ap-
proximation. It is believed (though some might disagree) that facieindeed optimal.
Showing2 — o(1) hardness for vertex cover is equivalent to a fundamental open question
regarding PCPs witkero free bitsand seems to be a first step towards Graph Coloring
problem. The best hardness knowrn i86 due to Dinur and Safra [32] and the current
techniques seems to have stuck on this important problem.

Therefore it is natural to investigate the generalization of vertex covesuiform
hypergraphs withk > 3. A factor k£ approximation algorithm follows easily and no
better algorithm is known. Trevisan [111] showkd'® hardness for this problem and
Holmerin ([66], about the same time as our work) showed(!) hardness. In this thesis,
we show that vertex cover irruniform hypergraphs is hard to approximate within factor
k —1—o(1) for everyk > 3 (Theorem 7.1.1). The result is almost optimal.

Our reduction introduces a new technique called Multi-layered Label Cover (Theorem
4.2.4), also used in proving hardnesssainiform hypergraph coloring. Vertex Cover on
k-uniform hypergraphs can be viewed as a special case of Set Cover. Our reduction has
an important feature not shared by Set Cover reductions known earlier, viz. lrathe
case almost all sets are required to cover the universe. Our result has subsequently been

used in showing optimdR(log™ n) hardness for Asymmetric-Center Problem [26].



Unique Games Conjecture and its Consequences

Though we make significant progress on Coloring and Vertex Cover for hypergraphs, we
seem to be stuck on these problems for graphs. Towards the end of this thesis, we set
out to investigate the limitations of current techniques and possible directions for future
research.

We propose a conjecture about certain 2-Prover-1-Round games (Conjecture 8.1.1)
and show that it implies any constant factor hardness for Min-2SAT-Deletion and factor
k — o(1) hardness for vertex cover iruniform hypergraphs for every > 2 (Theorems
8.3.1 and 9.0.2 respectively). In particular, the conjecture would settle the Vertex Cover
problem on graphs and therefore, also take an important step towards Graph Coloring
problem. The conjecture can be motivated as follows. We are given a system of linear
equations mog wherep is a constant, every equation contains two variables and there
exists an assignment that satisfies almost all equations. Is it possible to find, in poly-
nomial time, an assignment that satisfeeBaction of equations wheré is a constant
independent op ? Intuitively, the answer should be NO and roughly speaking, that is
what the conjecture is all about.

A typical PCP verifier is constructed by composition of two verifiers, an Outer Verifier
and an Inner Verifier. The outer verifier is essentially a 2P1R game. The Unique Games
Conjecture states existence of a new outer verifier. It can be used in conjunction with an
appropriate inner verifier to prove desired hardness results.

We also present a semidefinite programming based algorithm (Theorem 8.1.2) that
sheds some light on the truth of this conjecture. We believe that research directed towards

resolving our conjecture would be very fruitful.



Clique and Chromatic Number of Graphs

A cligue in a graph is a set of vertices such that all of them are pairwise connected by
an edge. Finding maximum clique size in a graph is a fundamental NP-hard problem.
An approximation algorithm with ratia is trivial : just output one vertex as a clique.
The best known algorithm does only slightly better, achieving a ratf(@((?jgg—n) [21]. A
polynomial time computable function called Li&sz #-function was conjectured to give
v/n approximation to MaxClique. This was disproved by Feige [36] who showedthat
function has approximation ratio as bad gs7i—;. In a breakthrough result,astad [59]
in fact showed that for any > 0, approximating MaxClique within factot'~< is hard
unless NP = ZPP. Hardness results for MaxClique are equivalent to constructing PCPs
with so-calledow amortized free bit complexifgee Theorem 3.1.4). Roughly speaking,
this parameter measures the trade-off between number of queries and error probability of
a PCP verifier. ld$tad was able to construct a verifier with arbitrarily low amortized free
bit complexity and this impliesa!~< hardness for MaxClique.

Even aftern!=¢ hardness result, it is still interesting to pin-point the exact hardness
of MaxClique. Specifically, i% the right answer ? This question was also raised
by Srinivasan [109]. Trevisan [111] showed facgg{’ﬁﬁk) hardness for MaxClique on
degreek-graphs £ thought of as a constant). Is it possible to interpolate this result all
the way Uptos /= ? In this thesis, we take a step towards resolving this question.
We show a hardness factor g+ for somey < 1 (Theorem 10.1.2). Previously,
Engebretsen and Holmerin [33] showed a hardness fagtof. -

Our result is proved via a new PCP construction based on Hadamard Code (as opposed
to popular long code). Hadamard codes are much shorter in length and yield proofs of
much smaller size. We then apply a technique caRatidomized PCPSection 10.5)

and show-2-~ hardness for approximating the Chromatic Number of a graph. Earlier

2(log n)Y
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Feige, Kilian [40] and Engebretsen, Holmerin [33] showed hardness factor6fand
soman v respectively. They obtain randomized versions of PCPs based on long
code. Our construction is much simpler.

Our results for clique and chromatic number differ in notation from the rest of the

thesis and therefore, we present them towards the end of the thesis.

1.2.1 Organization of Thesis

In Chapter 2, we present the basic tools and definitions used in constructing probabilistic
proof systems (PCPs). We also present a PCP construction duestadH¥hich serves

as a prototype for many of the constructions in this thesis. Each of the results mentioned
above appears as a separate chapter. Each chapter can be read more or less independently,
using certain results from previous chapters as a black-box. In the beginning of every
chapter, we state the problem definition, previous results, and high level techniques. In

Chapter 11, we conclude with a list of open problems and directions for future research.

1.3 The PCP Theorem

We give a formal statement of the PCP Theorem in this section. The next section gives a
brief history of work on interactive proofs and program checking that culminated in this
beautiful result.

A common and very fruitful approach in complexity theory is to identify a class of
problems and show that they are equivalent in terms of their computational complex-
ity. An excellent example is the theory of NP-completeness where one shows that all
NP-complete problems are equivalent in terms of polynomial time computability. In in-

approximability theory, first such result was obtained by Papadimitriou and Yannakakis

10



[101]. They identified a class called MAX-SNP; many natural problems like Vertex
Cover, MAX-3SAT and MAX-CUT are complete problems for this class. They showed
that either all MAX-SNP-complete problems have PTAS (ile+ ¢ approximation for
everye > 0) or none of them does. Thus as far as the existence of PTAS is concerned,
all MAX-SNP-complete problems are equivalent. However, the question whether MAX-
SNP-complete problems have PTAS’s was left open. The question was resolved by the
PCP Theorem which showed that MAX-3SAT and therefore every MAX-SNP-complete
problem has no PTAS unless P = NP. This result, proved by Arora, Safra [13] and Arora,

Lund, Motwani, Sudan and Szegedy [12] can be stated as :

Theorem 1.3.1 (PCP Theorem, [13], [12]) There is a polynomial time reduction from
SAT (and hence from any NP problem) to MAX-3SAT mapping an ins{aot8AT to
an instance) of MAX-3SAT such that :

e If ¢ is satisfiable, so ig), i.e. OPT(¢) = 1.

e If ¢ is not satisfiable, then no assignment/tsatisfies more than a fractionof

the clauses, i.eOPT(¢) < s.

HereO PT(v) is the maximum fraction of clauses that can be satisfied by any assignment
ands < 1is an absolute constant. In particular, it;P-hard to approximate MAX-3SAT

within factor .

Thus it is possible to transform 3SAT formulae so that satisfiable formulae remain
satisfiable and unsatisfiable ones becighly unsatisfiableln other words, an error in
the formula, if present, spreads everywhere (giving a hint that error correcting codes are
used to prove the theorem). As indicated before, PCP Theorem can be stated equivalently
as a result on proof checking. Before we do that, let us look at the classic definition of

NP.

11



Definition 1.3.2 NP is defined to be the class of languadesvhich have the following

kind of proof system : There is a deterministic, polynomial-time vefifiaith access to
inputz and a stringll which is supposedly a proof showing that L. The length of

IT is polynomially bounded in the length of The verifier reads the proof, performs a
polynomial time checking procedure and accepts or rejects. The proof system has these

properties :

(Completeness :)x € L = 3 proof II suchthat V(II) = accept

(Soundness:) x ¢ L = V proofsll, V(1) = reject
In other words,x € L if and only if there exists a proof that the verifier accepts.

The PCP Theorem gives a new characterization of NP as the class of languages that
have a proof system where the verifier is probabilistic and allowed to read only a few bits
from the proof (instead of reading the whole proof). Let us first give a general definition

of such a class of languages (see Fig. 1.1).

Input X Pr oof TT

“ tr 1

g(n) query bits

Verifier Accept / Reject

L '

r(n) random bits

Figure 1.1: PCP Verifier

Definition 1.3.3 Let PCP, ;[r(n), ¢(n)] be the class of languagdswhich have the fol-
lowing kind of proof system : The verifigt is probabilistic and uses onhy(n) random

bits wheren = |z| is the size of input. The verifier has access to a prbdbepending on

12



the choice of its random coins, the verifier reads afily) bits from the proof and then

accepts or rejects. It satisfies :

(Completeness 1) =€ L =  dproof Il such that Pr[V acceptdl] > ¢
(Soundness) : x¢ L = VY proofsll, Pr[V acceptd]] < s

1 > ¢ > s > 0 are called the completeness and soundness parameters respectively. If

¢ = 1, the proof system is said to have perfect completeness.

Remark : It is implicit in the definition that the running time of the verifier and size
of the proof is at mostax(2°7 ™) poly(n)). Since the verifier has only ™ differ-

ent “runs” and reads only(n) bits in each run, the number of distinct proof locations
accessed is at mogtn)2'™. Thus the bound on the proof size makes sense. Also,
since there are onby (™ different runs, it is reasonable to demand that the verifier spends
20(() time to figure out which bits to read and what his acceptance criterion should be

for each run.

The PCP Theorem can now be stated as :

Theorem 1.3.4 (PCP Theorem)
NP = PCPL%[O(logn), O(1)]

The verifier is polynomial time and the proof is of polynomial size.

Thus PCP Theorem states that NP-statements have proofs that can be checked using
only logarithmic randomness and reading only a constant number of bits from the proof!
For a correct statement, there exists a proof that is always accepted. For a false statement,

no proof is accepted with probability more ti‘@t Thus any proof of a false statement
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must be wrong almost everywhere and reading a few bits suffices to catch such cheating
proofs. Theorem 1.3.4 appears quite counter-intuitive and mystical. However, it is easy
to see that it follows from Theorem 1.3.1. Assuming Theorem 1.3.1, we will show that

every language in NP has a probabilistic proof system with appropriate parameters. Let

L € NP. The PCP verifier proceeds as follows :

1. Given inputz, transform it in poly-time to a SAT formula. This is possible since

SAT is NP-complete.

2. Using themagic reductionfrom Theorem 1.3.1, transfori to an instance) of

MAX-3SAT.
3. Expect as a proof, an assignment to variables. in
4. Check the proof as below :

e Pick a clause (say Vv y V z) at random from the set of all clausesyin
¢ Read the values of variablesy, z from the proof.

e Accept if and only if the values af, y, =z satisfy the clause.

Now let us verify that this proof system has the right parameterns.=f|z|, then|y| =
poly(n) and hence the verifier needs oiilylog n) random bits to pick a random clause.
The verifier reads only bits from the proof which is a constant. For completeness
condition, note that it € L, then¢ is satisfiable and so ig. If we take a satisfying
assignment ta) as a proof, then the verifier accepts with probabilityFor soundness
condition, note that it ¢ L, then¢ is not satisfiable. Hence no assignmenptsatisfies
more than a fraction of the clauses and consequently, no proof makes the verifier accept
with probability more thars. The soundness parametecan be brought down té) by

running the checking procedure a constant number of times.
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The other direction (i.e. Theorem 1.3.4 implies Theorem 1.3.1) is also easy and can

be found in [8, page 12].

1.4 Research Leading to PCP Theorem

The roots of PCP theorem go back to the Interactive Proofs introduced by Goldwasser,
Micali, Rackoff [53] and Arthur-Merlin games introduced by Babai [14]. Both these
proof systems feature a polynomial time probabilistic verifier interacting with an all-
powerful adversary called prover. Techniques from program checking due to Blum,
Kannan [19], Lipton [89] and Blum, Luby, Rubinfeld [20], as well as ideas about rep-
resenting logical formulae with polynomials (Lund, Fortnow, Karloff, Nisan [92] and
Shamir [108]) were used to show surprising results that IP = PSPACE ( [92], [108]) and
MIP = NEXPTIME (Babai, Fortnow, Lund [15]). The result MIP = NEXPTIME was
scaled dowrio NP C PCP[O(logn loglogn), O(lognloglogn)| by Feige, Goldwasser,
Lovasz, Safra and Szegedy [38]. They also observed the connection between PCPs and
inapproximability, showing a strong inapproximability result for Clique. The PCP the-
orem was proved in a sequence of two papers by Arora, Safra [13] and Arora, Lund,

Motwani, Sudan, Szegedy [12].

1.5 Progress after PCP Theorem

PCP Theorem has given a tremendous boost to the theory of inapproximability. Hardness
results (in many cases optimal) are now known for a variety of optimization problems.

In this section, we point out some high-level techniques used to prove such results. The
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list of results stated here is by no means comprehensive, we give only a few examples to
illustrate each technique.

Theorem 1.3.1 gives a “gap” instance of MAX-3SAT (let us call it Gap-3SAT). A
general method to prove hardness of some other proHllésrio give a “gap-preserving”
reduction from Gap-3SAT to the problem Let us assumd is a minimization problem.

A gap-preserving reduction is a poly-time reduction that maps an instaot@ap-3SAT

to an instancd of problemA with the following property :
e (Completeness:) If is satisfiable, the@PT (1) < d

e (Soundness :) If no more than a fractierof clauses ofy are satisfiable, then

OPT(I) > Cd.

Such a reduction implies that it is NP-hard to approximéteithin factorC. 1

As a bottomline, all hardness results are essentially gap-preserving reductions from
Gap-3SAT. These reductions are often complicated, involving a sequence of reductions.
The first step is to “amplify the gap” of the Gap-3SAT instance using Raz’s Parallel Rep-
etition Theorem [103]. This gives a 2-Prover-1-Round game which can be equivalently
viewed either as (i) the Label Cover problem defined by Arora et al [9] (see Definition
2.3.1) or as (ii) PCPs where the verifier reads two symbols from the proof and the symbols
come from a (big) alphabet of constant size.

Label Cover problem is a cleanly defined combinatorial problem and abstracts out
the essential properties of 2-Prover games. Therefore we find it convenient to work with

this problem in this thesis and use it as a canonical problem to reduce from for most of

IMany variants of gap-preserving reduction are defined,lexgeductions [101] in the definition of class
MAX-SNP and E-reductions [73] used to relate classes APX and MAX-SNP. Here we give a somewhat
non-rigorous definition that suffices for most purposes.
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the hardness results. We classify techniques for showing hardness results into four broad

categories :

(1) Direct Reduction from Label Cover

Examples in this category include

e (1—¢)Inn hardness for Set Cover by Feige [37], building on the work of Lund and
Yannakakis [93].

e Hardness of Closest Vector Problem and Closest Codeword Problem by Arora,

Babai, Stern and Sweedyk [9].
e Hardness of Shortest Vector Problem in this thesis (Chapter 6 and [78]).

e Q(log> “n) hardness for Group Steiner Tree by Halperin and Krauthgamer [57].
This introduces a new technique of building a gadget from an integrality gap ex-

ample for a natural linear program.

(2) Using Long Codes and Fourier Analysis

Many results, most notably results on constraint satisfaction problems (CSPs), fall into
this category. These results are proved using a framework developed in the proof of PCP
Theorem and then by Bellare, Goldreich, Sudan [16] aastét] ([59], [60]). The idea is

that the verifier expects as a proof, encodings of labels for the Label Cover problem and
then runs some tests to check consistency between these encodings. An encoding scheme
calledLong Codewas introduced in [16] and &stad introduced the powerful technique

of analyzing tests with Fourier analysis. A detailed presentation of this methodology

appears in Chapter 2. Examples include
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e Hastad's:'~< hardness for Clique [59]% — ¢ hardness for MAX-3SAT, an@ — ¢
hardness for Max-Lin-2 [60].

e Hardness of booleal-CSPs by Samorodnitsky and Trevisan [106].

e Hardness of coloring-uniform hypergraphs by Guruswami,astad and Sudan

[55].

e Hardness of coloring-uniform and4-uniform hypergraphs in this thesis (Chapters

4,5 and [75], [76] respectively).

e Hardness of Vertex Cover ozuniform hypergraphs by Holmerin [66].

(3) Using Combinatorial View of Long Code

This technique was introduced in Dinur and Safra’s paper [32]. The idea is to take a
combinatorial view of the Long Code and use instead of Fourier analysis, theorems from
extremal combinatorics and sensitivity analysis of boolean functions. Sensitivity analysis
itself relies on Fourier analysis, so there is no strict distinction between this technique

and technique in Categofg). Examples include,
e 1.36-hardness result for Vertex Cover by Dinur and Safra [32].

e k—1—¢ hardness for Vertex Cover @gruniform hypergraphs in this thesis (Chapter

7 and [29]).

e Hardness of coloring-uniform hypergraphs by Dinur, Regev and Smyth [31].
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(4) Reductions from Problems in Previous Categories

Here we include results obtained by a reduction from problems whose hardness is proved
using the above three techniques. One typically uses clever gap-preserving gadgets. The
techniques are varied, problem-dependent and often quite involved. It is beyond the scope

of this thesis to give a survey of these techniques. Examples include,
e £ — ¢ hardness for MAX-CUT by ldtad [60], via a reduction from MaseLin-2.

° %g — ¢ hardness for Asymmetric TSP by Papadimitriou and Vempala [100], via a

reduction from Max3-Lin-2.

e Q(log" n)-hardness for Asymmetric-Center by Chuzhoy et al [26], via a reduction

from Hypergraph Vertex Cover.

e /2 — e hardness for Shortest Vector Problentinnorm by Micciancio [96], via a

reduction from Closest Vector Problem.
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Chapter 2

A Framework for Building PCPs

Techniques in this thesis can be best viewed in context of a general framework for de-
signing PCPs with only a few query bits. In general form, the framework goes back to
the proof of PCP Theorem by Arora, Safra [13] and Arora et al [12]. Some of the key
ideas in their work are composition of verifiers and different encoding schemes. Bellare,
Goldreich and Sudan [16] invented the Long Code which was then used to a great effect
by Hastad ([59], [60]). In this chapter, we explain this framework by presenting a com-
plete proof of Histad's3-Bit PCP. In the rest of the thesis, we extend the framework in
many ways, using new verifiers and codes at various levels.

We present the following result in this chapter.

Theorem 2.0.1 (Hastad's3-Bit PCP [60])
Ve d>0, NP = PCPPQ%M[O(Iog n), 3|

In other words NP has a probabilistic poly-time verifier that uses logarithmic random-

ness, reads bits from the proof, has completenesd — ¢ and soundness % + 6 where
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€, 6 can be made arbitrarily small. Moreover, the verifier accepts if and only iBthis

read from the proof satisfy a linear predicate.

Let us say we have proved this theorem. Now let the bits in the proof correspond
to (unknown) boolean variables so that a proof corresponds to a boolean assignment to
these variables. For a fixed choice of the random coins, the verifier Belits from
the proof, sayr,y,z and accepts ifandonly it ®y@® 2z = 0(orz @y & z = 1).

Write down polyn) such equations for all possible choices(®flogn) random coins.
The correspondence between proofs and boolean assignments shows that the probability
of accepting a proof equals the fraction of equations satisfied by an assignment. Using

completeness and soundness properties given by Theorem 2.0.1, we get :

Theorem 2.0.2 Let Max3-Lin-2 be the following problem : Given a system of linear
equations mo@, each equation containingvariables, find an assignment that satisfies
maximum number of equations. Then for every > 0, there is a poly-time reduction

from any languagd. € NP to Max-3-Lin-2 such that :

e The reduction maps inputto an instancd’ of Max-3-Lin-2.
e If z € L, thenl" has an assignment that satisfies- ¢ fraction of equations.

e If x & L, then no assignment fosatisfies more than a fractioéfhL 6 of equations.

In particular, it is NP-hard to approximate Max-Lin-2 within factor2 — e. This result

is tight since a random assignment to variables satisfies half the equations.

It is now clear how constructing a specific PCP implies a hardness result for a con-
straint satisfaction problem. The constraints (in this case linear) correspond to the accep-
tance predicate of the verifier and the hardness factor equals the ratio between complete-

ness and soundness parameters.
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2.1 Plan for Building 3-Bit PCP

The overall plan for proving Theorem 2.0.1 is as follows (see Fig 2.1) : We start with the
PCP Theorem (Theorem 1.3.1) which shows hardness of Gap-3SAT. A simple 2-Prover-
1-Round game is constructed from Gap-3SAT and then the gap is amplified using Raz’s
Parallel Repetition Theorem. This results in a 2-Prover-1-Round game where the provers’
answers are of constant size, the game has perfect completeness and very low soundness.

The answers are from an alphabet of siz&°(") wheres is the soundness of the 2-Prover

game.
Basic 2-Prover-1-Round game 2-Prover-1-Round Game OR

PCP Theorem and Outer / Raz Verifier

NP = PCP[ O(log n), 0(1)] Raz’s Parallel Repetition Thm

Gap-3SAT is hard
y X
| :
! |

Encoding Symbols
Inner Verifier i o(1)
0o(1)

Encoded Proof
Query 2 symbols x, y

Accept iff P(x,y)
Completeness 1, soundnessO

ENC'(y) ENC'() To check : ENC’(x), ENC’'(y) are correct encodings ;
! | a b X,y satisfy predicate P(x,y)
c

Hastad's Test : Read a,b,c
Accept iff a+b+c =0 mod2

Analyze with Fourier Analysis

Figure 2.1: Overview of dstad’s 3-Bit PCP

The 2-Prover game can be easily converted to a PCP where the verifier reads only 2

symbols from the proof, has perfect completeness and sounéinBss verifier demands
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provers’ answers to all possible questions as a written proof. Instead of asking questions
to provers and receiving answers, the verifier reads off these answers from the written
proof. The completeness/soundness properties follow from the properties of the 2-Prover
game. This verifier is usually referred to as the “Outer Verifier” or “Raz Verifier”.

Now the trouble is that the Outer Verifier reads symbols from a huge alphabet (of
size1/6°M) and our goal is to construct a verifier that reads jusits. This is achieved
by expecting as a proof, encodings of provers’ answers instead of the answers them-
selves. We fix an encoding sche®@/C' (which is most often the Long Code). The new
verifier, usually referred to as the “Inner Verifier”, asks for the encoditig&” (x) for
answerse of the provers. The Outer Verifier would read two answerg and accept if
a certain predicaté(x, y) is satisfied. The Inner Verifier however has access to strings
ENC'(z), ENC'(y) which he expects to be the encoding®d’C(z), ENC(y) respec-
tively. A crucial point is that a cheating proof could contain striig§C’ (x), ENC'(y)
which might be arbitrary strings and may have nothing to do with the correct encodings.
It is verifier’s task to guard against such cheating proofs. The verifier needs to verify the

following in a probabilistic sense :

e ENC'(z), ENC'(y) are “close” to the true encodingsNC'(z), ENC(y) respec-

tively. This is referred to as théodeword Test
e P(z,y)is satisfied. This is referred to as tBensistency Test

This task looks hopeless given the restriction that the verifier is allowed to read only
3 bits from ENC'(z), ENC'(y). The beauty of lstad’s construction lies in combining
these tasks in one singbebit test and analyze the test with Fourier Analysis. It can be
shown that if the test accepts with probability little more tHarthen there is a way to

“decode” the string&ZNC’(z), ENC’(y) and define provers’ answers which make the
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verifier in the 2P1R protocol accept with a decent probability. However, this would be a
contradiction, provided the 2P1R game was chosen to have very low soundness.

In the following sections, we carry out this high level plan to prove Theorem 2.0.1. We
define a problem called the Label Cover problem which is an equivalent way of looking
at 2-Prover games. The PCPs in this thesis are described in terms of the Label Cover

problem; we find it easier for the sake of presentation. Let us restate the PCP Theorem :

Theorem 2.1.1 There exists an absolute constance< 1 such that it is NP-hard to
distinguish satisfiable 3SAT formulae (YES instances) from those where only a fraction
¢ of the clauses can be satisfied by any assignment (NO instances). This formula has
a regular structure, i.e. any clause is of length exactly 3 and any variable appears in
exactly 5 clauses. We call the instances of 3SAT given by this theorem as instances of

Gap-3SAT-5.

Remark : Compared to Theorem 1.3.1, we have an extra requirement that the 3SAT
formula has a regular structure. This is easy to achieve, see e.g. [37]. This property is

usually convenient, but not essential.

2.2 The 2-Prover 1-Round Game

Definition 2.2.1 A 2P1R game&,,,,,.(V, W, N, M, D, Q) consists of a probabilistic veri-

fier V4,1, and two provers?; and P.
e V W are sets of questions the verifier can ask the two provers respectively.
e N, M are sets of provers’ answers. sirategyof the proversisamap : V —

N, ®: W — M.
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e Q:V xWxNx M {0,1} is the acceptance predicate of the verifier.
e D is a probability distribution ord” x W.

The verifier picks a pair of questioris, w) € V' x W with distribution D and sends
questionsv, w to proversP;, P, respectively. The provers return answerg&), ®(w)
according to their strategy. The verifier accepts if and oni@ (b, w, ®(v), ®(w)) = 1.

The value of the game is defined to be the maximum probability with which the provers

can make the verifier accept over all possible prover strategies.

We build a basic 2P1R game from a Gap-3SAT-5 formuléth variables{z,, =, ... , z,}
and clause$Cy, Csy, ... ,Cp}.

Basic2-Prover Game

1. The verifier chooses a clausg uniformly at random and a variablg uniformly

at random, appearing ifi,. The verifier sends; to proverP; andC, to proverp.

2. The verifier receives a value fat, from P, and a satisfying assignment for the
clauseC), from P,. The verifier accepts if and only if the value foy agrees with

the assignment t@;..

Note that the strategy aP; is just an assignment to variables@f Let us say this
assignment satisfies a fractignof the clauses. Then for every clauSesatisfied by the
assignmentP,’s answer could be consistent with the assignment. However, if a dause
is unsatisfied, thef, has to flip the value of at least one variabl€imand then the verifier
will catch this “cheating” with probability /3. Thus the optimal strategy convinces the
verifier with probabilityc’ + (1 — ¢)2 = (2+ ¢)/3. It follows that if ¢ is a YES instance

of Gap-3SAT-5, the provers have a strategy with valueompleteness) and otherwise
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the optimal strategy of provers has value at m@st ¢)/3 < 1 (soundness) whereis

the constant from Theorem 2.1.1.

Parallel Repetition and Raz Verifier

One can reduce the soundness of this game by running the vetiiinees in parallel. We
call the new verifier Raz Verifier. In this new game, the verifier picks a setafuses

at random, sayy = {C; | i = 1,2, ... ,u}, and asks>, to give a satisfying assignment
to these clauses. For everythe verifier picks a variable; at random from the clause
C;. Letv = {x;]i = 1,2,... ,u} be the set of these variables. The verifier aBk$o
give an assignment to the set The verifier accepts if and only if the answers of the
two provers agree on the set of variabledf we denoter *'* to be the projection that
maps an assignment toto its sub-assignment tq the verifier accepts if and only if the
answer ofP, is o and the answer aP; is 7 " (o).

Clearly, if the Gap-3SAT-5 formula is a YES instance, then provers have a strategy
to make the verifier accept with probability(completeness). The Parallel Repetition
Theorem of Raz [103] gives the soundness property. It shows that if Gap-3SAT-5 instance
is a NO instance, no strategy can make the verifier accept with probability moré‘than

for some absolute constafit < 1. Let us formulate this result for future reference.

Theorem 2.2.21f only a fractionc < 1 of the clauses op can be simultaneously satis-
fied, then no strategy @f, and P, can make the verifier accept with probability greater

thand!. Hered. < 1is a constant that only depends an
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2.3 The Label Cover Problem

For the sake of presentation, it is easier to work with a problem called Label Cover prob-
lem instead of 2P1R games. We follow the Label Cover terminology throughout this

thesis.

Definition 2.3.1 A Label Cover problent (G(V, W, E), N, M, {=x""|(v,w) € E}) con-

sists of a regular bipartite grapldz(V, W, E) with bipartition V, W. Every vertex in

V' is supposed to get a label from a s®tand every vertex it/ is supposed to get

a label from a setM. With every edgév, w) € FE, there is associated a “projec-
tion” 7> . M — N. For an assignment of labels to the vertices of the graph, that
is for a function® : V — N, ® : W — M, an edge(v, w) is said to be satisfied if

7 (P(w)) = ®(v). The goalis to find an assignment of labels that maximizes the num-
ber of satisfied edges. We defin#7'(L) to be the maximum fraction of edges satisfied

by any labeling.

It is clear that the Label Cover problem is the same as a 2P1R game (see Definition
2.2.1). TakeV, W as the sets of questions to be asked to the provers/ as the sets of
possible answers$y, w) € E as the pairs of questions to be asked to the proversyatid
as the acceptance predicate of the verifier. Using this correspondence, Theorem 2.2.2 can

be restated as :

Theorem 2.3.2 There is an absolute constafnt> 0 such that for every integer param-
eter u, it is NP-hard to distinguish between the following two cases : A Label Cover

problemZ(G(V. W, E), N, M, {=x*"}) with |M| = 7" |N| = 2* has
e OPT(L)=1 OR
e OPT(L) <27
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It can be assumed th&t(V, W) is a regular bipartite graph where every vertexiinhas

degrees” and every vertex il has degre&®.

2.4 Long Codes and Fourier Analysis

The long code was introduced by Bellare et al [16] and the use of Fourier analysis in PCP
setting was initiated by &ktad. In this section, we gives the basics of long codes and
their Fourier analysis. As will be clear later, it is convenient to work with bits vatuéd

instead of{0, 1} with the correspondende— 1, 1 +— —1.

Definition 2.4.1 The long code over a finite domaivl is indexed by all functions :

M — {—1,1}. The long codd3 of an elemeny € M is given by

B(g):=g(y) ¥V g:Mw—{-1,1}

LetG :={g|g: M — {—1,1}}. Consider the space of all “table® : G — IR. In
particular, a long code is one such table. Consider the charagtersere C M. There

is one such character for evesy The characteg is a table defined by

xs(9) == [ 9(w)

yeB

The following identities are easily checked,

Lemma 2.4.2For 3,7 C M andg,h: M — {—1,1},

e xs(gh) = xs(9)xs(h)

e x3(9)x~(9) = xsa,(g) whereA denotes the symmetric difference of sets.
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e Eyxs(g))=11if =0 and 0 otherwise.

For tablesB,, B,, define their inner product as

< BBy > = s S Bi9)Balo) = By [Bi(9)Balo)]

geg

Let us check that the characters form an orthonormal basis under this definition of inner
product. The number of characters2i¢! which equals the dimension of the space of

tables. They are orthonormal because,

<X Xy > = Eylxs(9)xy(9)]
= Eylxpa,(9)]

= 1if g=»v and 0 if g#~

It follows that any table can be expandedias- } ;- ,, Bgxs WhereB; are the Fourier
coefficients with) - ; \§ﬁ|2 = < B, B > (Parseval's identity). WheB : G — {—1,1},

we have}; |J§ﬁ\2 = 1. The Fourier coefficients are given by

Bs =< B, x5 > = E,[B(9)xs(9)]

1+Bg
2

WhenB : G — {—1, 1}, itis clear thatB agrees with the character functigp on
fraction of inputs. Thus a Fourier coefficient is a measure of how dibisdo a character
function. When3 = 0, the value of the coefficiens, is justE,[B(g)].

The following lemma introduces a notion called “folding” which turns out to be cru-

cial in the analysis.

Definition 2.4.3 A table B is folded if B(—g) = —B(g) for anyg.
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Lemma 2.4.4If B is folded andéﬁ # 0 then|g| is odd and in particulars is a non-

empty set.

Proof:

~

Bs = E4[B(9)xs(9)] = E4[B(—=9)xs(—9)]
- E

W[(=B(9) [[(—9w))] = —(=1) E,[B(g)xs(9)] = —(—1)"'Bs

yep

ThusEg = 0 unlesgj| is odd. n

To make sure that an arbitrary table is folded we access the table as follows. For
each pair(g, —g) we choose (in some arbitrary but fixed way) one representativeis|f
chosen, then the value of the table requireg mtaccessed as usual by readiBgy). If
the value at-¢ is required themB(g) is read and the result is negated.—§ is chosen
from the pair, the procedures are reversed.

We need one more lemma that relates boolean functions on damamfunctions
on domainN via a projection mapr : M — N. Letf : N — {—1,1} and(f o) :

M — {—1,1} be defined as

(fom)(y)=f(rly) VyeM

Forasets C M, letw() C N denote the projected set

m(B) = A{n(y) |y € M}
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Also define a set»(3) C () as the set of elements of that have an odd number of

pre-images ir3. To be precise,

m(f) ={re N|{yef|n(y) ==}|is odd }

Lemma2.4.5 xs(fom) = xm@(f)

2.5 Hastad's 3-Bit PCP

In this section, we describe the 3-Bit PCP. Overall plan for the construction has already
been outlined in Section 2.1. For some intuition behind our construction and a general
approach for PCP design, see Sections 2.5.1 and 2.6.

The verifier starts with an instang®G/(V, W, E'), N, M, {=*'}) of the Label Cover
problem given by Theorem 2.3.2. He expects as a proof, the long code of the label of
everyv € V andw € W in a supposedly correct labeling th These long codes are
assumed to be folded. The verifier picks an etlgev) of Label Cover at random. Let
A, B be supposed long codes of labelsofv respectively. The verifier has to check that
A, B are indeed correct long codes and they encode labelsV,b € M respectively,

with 7% (b) = a. The verifier checks the proof as follows (see Fig. 2.2) :
1. Pick arandomw € W and its random neighbaere V. Letn = n** : M — N be
the corresponding projection map.

2. Let A, B be the supposed long codes of labelsvadnd w resp. Recall thaB3
is indexed by all functiong : M — {—1,1} and A is indexed by all functions

f:N—{-1,1}.
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Figure 2.2: Label Cover, Long Code and 3-Bit PCP

3. Pick a random functiog : M — {—1,1} and a random functiotf : N —

(~1,1}.

4. Pick a functiornu : M — {—1, 1} by defining independently for evegye M,

@) { 1 with probability 1 — ¢
wly) =
—1 with probability ¢

Thusy() is a function that is-1 on about fraction of inputs chosen randomly.

5. Leth: M — {—1,1} be a function where for every € M, we define

In other wordsh = g(f o 7)p.
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6. Read bitsA(f), B(g), B(h) from the proof. Accept if and only if

A(f)B(g)B(h) =1

Remark : In {0, 1} notation, the verifier's test isl(f) ® B(g) @ B(h) = 0 which is

indeed a linear test.

2.5.1 Completeness

We show that the completeness of this test is €. In a correct labeling t, let a, b
be labels ofv, w respectively, withr(b) = a. In a correctly encoded proof{, B are
long codes ofi, b respectively and thereforé(f) = f(a), B(g) = g(b), and B(h) =
h(b) = g(b) f(m(b))(b) = g(b) f(a)u(b). Thus the test accepts provideth) = 1 which
happens with probability — .

Let us see the intuition behind such a test. We want to test consistency between
tablesA and B. The test reads one bit from table and two bits from table3, say
A(f),B(g), B(h). The test is required to be linear, so the acceptance predicate should
be A(f)B(g)B(h) = 1. Designing a test means specifying a distribution with which the
triple (f, g, h) is picked. Completeness condition requires thd? ifs long code ofany
y € M and A is long code ofr(y), then the test should accept with probabilityor
close tol). In this caseA(f) = f(n(y)), B(g) = 9(y), B(h) = h(y) and we require that
f(m(y)g(y)h(y) = 1. In other wordsh = g(f o ).

The reason for introducing error functign) is quite subtle. Let us say= g(f o).

We will show that the test would accept with probabilitgven if B is not a long code.
Fix xo € N and letA be long code of,. Let 3 C M be any set with odd cardinality such

that all elements off map toz, under projectionr. Let B = yz. Note that if|5] = 1
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then B would be a long code. So whé#| is “large”, B is interpreted as being “far” from

any long code. The test accepts because

A(f)B(g)B(h) = f(zo)xs(gh) = f(xo) [ [9w)h(y) = (o) [ [ 9w)a(w) f(x(y)) =1

yeB yeB

since|| is odd. Thus the test with = ¢(f o 7) fails. We need to somehow enforce the
condition thatg is singleton, or at least of “small” size. The error functjof) achieves
exactly this.

So we leth = g(f o m)u. We will see that if the test accepts with probabil%tyr 0,

then Fourier coefficients of tablesand B satisfy :

> ABi(1-207>5
o, B:a=ma(p)
The conditiomy = 75 (3) captures consistency betwe#nB and this is precisely the role
of f o 7 in the test. Role of:() is to introduce the factofl — 2¢)!°l. Thus terms with
18] > O(+log(1/6)) contribute only negligible amount, so one can as well assume that
the sum is restricted t6 with smaller size. The idea of introducing) is almost a magic
trick. One loses perfect completeness, but it enables us to holima the soundness

analysis.

2.5.2 Soundness

Now we show that if the test accepts with probabilitys, then there exists an assignment
of labels toL that satisfies a fractiote5? of the edges. Thus if we choose the parameter
v of Theorem 2.3.2 large enough so that* < 4¢6?, it follows that the soundness of the

verifier is at mosg + 6.
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The idea is to write the probability of acceptance as the following arithmetic expres-

sion :

1+ A(f)B(g)B(h)]

Priaccept= Eyuw f.0.u] 5

2.1)

Note that when the test accepts, the expression inside the bracket equa®qual®
otherwise. Therefore, Riccept is the expectation of this expression over the random

choices made by the verifier. It follows that iffRecept > 1 + ¢, then

By, tou A(F)B(9)B(h)] > 6

We write the tables! and B as their Fourier expansions, i.e.

Af) =D Awxalf)  Blo)=_ Baxslg)  B(h)=>_ Byx,(h)

aCN BCM ~CM

Where/Ala, Eﬁ, EV are Fourier coefficients. Substituting,

Evvafvgvu[ Z A\aﬁﬂﬁvxa(f)x,@(g)xv(hﬂ >0

B,y

Using Lemmas 2.4.2 and 2.4.5,

XA (R) = X7 (9(f o ™)) = x5 () x5 (f 0 T) x5 (1) = X (9) X () (F ) X7 ()

Thus we get

A~ o~

Bowsonl Y AaBsByXa(F)X5(9)X(0)Xmat) (F)x2(1)] >
a,B,y
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which can be simplified to

Eyutgul Y AaBsB:Xaam) (F)Xoa(9)x: ()] > 6 (2.2)
o, By

By Lemma 2.4.2, the expectatidfi,[ysa-(g)] vanishes unlesSAy = 0, i.e. unless
B = ~. Similarly, the expectation ovef vanishes unless = m»(). Also E,[x,(¢)] =

(1 — 2¢)1! by the following lemma.
Lemma 2.5.1 E,[x,(n)] = (1 — 2¢)hl

Proof:

= E[[ew)] =[] Eulnw)] = (1 —2¢)"

yeY yeY
since, for every, we haveu(y) = 1 with probability1 — e andu(y) = —1 with proba-

bility e. .

Thus Equation (2.2) can be written as
By [ Y Anyp) B3(1—20)7] > 6 (2.3)
B

Using Cauchy-Schwartz inequality and the fact tHat- 2¢)2° < (e72¢)281 = ¢~4l8l <

> AnpBs(1—2¢)71 - By
5

\/ZA? B2(1 — 2¢) 25\/232}

\/Z Afra(ﬁ)Bg(‘lGﬁ)l] SinceZBg =1
3

B

IA
=
2

IN
=
g
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Again applying Cauchy-Schwartz, we get

> 4e6? (2.4)

UUJ

Zsz(ﬂ Bﬂ‘m

Now consider the following (randomized) way of assigning labels to vertices dior
everyw € W, let B be the supposed long code forin the proof. Pick the Fourier
coefficient3 with probability B2, pick an elemeng € 3 at random and define lakel) =

y. Similarly, for everyv € V, let A be the supposed long code forin the proof.

Pick the Fourier coefficient: with probability Eg, pick an element: € « at random

and define lab¢l) = z. Inequality (2.4) says that there is a good chance that we will
havea = m(F) and after pickingr € «, with chancel/|3| pick y €  such that

m(y) = z. Thus the expected fraction of edges of the Label Cover instance satisfied by
this (randomized) labeling is at leas®?. Hence the Label Cover instance has a labeling

that satisfies this much fraction of edges, completing the proof.

2.6 A General Approach to PCP Design

We use the proof of BiStad’s 3-Bit PCP to illustrate some general principles for designing
PCPs.

The acceptance predicate for a PCP test is tailor-made for the target problem for which
we desire a hardness of approximation result. For example, to show hardness 8f Max-
Lin-2, we designed a test with predicatet y & =z = 0. This is a predicate with arity
three and a binary alphabet. In general, the arity and alphabet size could be arbitrary. The

following table gives acceptance predicates for some well-known problems.
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Problem Predicate Alphabet Size | Folding
MAX-2SAT xVy 2 YES
MAX-3SAT xVyVz 2 YES
MAX-CUT x#y 2 NO
MAX-k-CUT x#y k NO
3-Colorability of graphs| x« # y 3 NO
2-Colorability of Not-All-Equal(z, y, z, w) | 2 NO
4-uniform hypergraphs

Vertex cover in graphs | z Vy 2 NO

Acceptance predicates for NP-hard problems

Thus the choice of acceptance predicate is straightforward. The most intricate part is
designing the actual test. One needs to check consistency between two longl@des
B. More specifically, one needs to check tHaaind B encode labela andb respectively
such thatr(b) = « for some given mapr. The test corresponds to selecting bits from
tablesA andB in an appropriate way. Choice of these bits is dictated by the completeness
requirement, namely that a correct proof be accepted with probabi(ity close tol).
In the 3-Bit PCP, we designed a verifier that reads three Ait§), B(g), B(h). As seen
in Section 2.5.1, the completeness requirement suggests tiadefined ag(f o 7).
Then a counter-example is presented to motivate the use of error fupglioasulting
in imperfect completeness. Some applications however require perfect completeness,
e.g. hypergraph coloring results require that in completeness easegjedge is non-
monochromatic. In such applications, our test must accept with probability

For the soundness analysis, we begin by arithmetizing the acceptance probability of
the verifier as in Equation (2.1). We plug in Fourier expansions, do straightforward sim-
plifications and get Equation (2.3). We use such an equation to extract some meaning-
ful consistency between tablesand B. The error functioru() introduces the factor

(1 — 2¢)/81 that effectively allows us to ignorgs with large size. Applying Cauchy-
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Schwartz and Parseval’s identity, we get Equation (2.4). Finally, we define a randomized
labeling that shows consistency betweeand B.

Overall, in addition to some intuitive ideas, one also needs playing around with
Fourier coefficients and a trial-and-error approach. One needs to go back and forth be-
tween the definition of functiong, g, h and the resulting Fourier expressions, and finally
arrive at the right test. Sometimes, one also needs the outer Label Cover instance to
have some special properties and such instances must be constructed (e.g multi-layered
smooth label cover in Theorem 4.2.4). Itis also helpful to come up with counter-examples
or cheating proof strategies. We cite a couple of such counter-examples below.

Note thata, S picked in the randomized labeling are guaranteed to be non-empty
sets. This is because folding ensures (Lemma 2.4.4) that the coeffidigris are zero.
However, folding is not only a clever trick, it is necessary. The verifier réduits x, y, =
and accepts ifyz = 1. If one sets all bits in the proof to, then the test would always
accept. Folding ensures that—f) = —A(f). Hence the test of the verifier is actually
2'y'z" = 1 wherex’,y/, 2/ are either variables or their negations. Similarly, for showing
hardness of MAX-3SAT, one designs a test with predicatey Vv z. But because of
folding, the test is actually’ v 3/ v 2’ wherex’, ', 2’ are positive or negative literals. In
some applications like hypergraph coloring however, we cannot use folding. The reason
is that folding introduces constraints saying “if vertexs colored blue, then vertex
must be colored red” ; such constraints cannot be enforced for coloring problems. In fact,
inability to use folding turns out to be the biggest difficulty in showing hardness results
for hypergraph coloring.

The use of error functiop() is another subtlety worth noting. Technically speaking,
it allows us to ignore contribution gfs with large size. But at a deeper level, something

like this is necessary. The error functipfl) results in imperfect completeness and the
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resulting system of linear equations has no assignment that sasifexguations. One
can always find a satisfying assignment (by Gaussian elimination) in polynomial time if
one exists. Hence imperfect completeness is necessary for NP-hardness results for linear
predicates. In Chapter 3, we design a non-liriehit test with perfect completeness.

In order to apply Parseval’ identity, name}zﬂ Eg = 1, one needs the coefficient
Eﬁ in a squared form. This is achieved by reading bits from tableB. At least one
bit must be read from tabld, and therefore the test reads three bits. Let us see why we
cannot build &-bit test. It would require us to read one bit framand one bit from
B which gives instead of Equation (2.3), something @%ﬁ:a:m(m Eaﬁg. We cannot
apply Parseval, and in fact, this sum could potentially have large negative value. Thus
we do not know how to analyze PCPs with only two queries; Fourier methods seem to
fail. This is also a reason why we cannot prove good hardness results for vertex cover
and coloring of graphs. We can however construct PCPs with three or more queries and
show corresponding results for hypergraphs. Instead of just using Parseval, one could po-
tentially use deeper results from Fourier analysis. In Chapter 8 and 9, we use Bourgain’s
Theorem and Friedgut’'s Theorem and constedbit PCPs that yield hardness results for
vertex cover in graphs and Min-2SAT-Deletion. However, these PCPs rely on a certain

conjecture and it is an open problem to construct them unconditionally.

2.7 Techniques in this Thesis

In this section, we briefly mention some of the techniques developed in the thesis. We
introduce new techniques at all levels of PCP design, namely, the Label Cover problem
(or Outer Verifier), the encoding scheme and the PCP test (or Inner Verifier). There are

several other problem-dependent techniques that we do not mention here.
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Label Cover

The Label Cover instances given by Theorem 2.3.2 are not adequate for some applica-
tions, e.g. showing hardness®tiniform hypergraph coloring. The bipartite structure of

the Label Cover instance turns out to be a bottleneck. The hypergraph constructed from
such an instance also has bipartite structure and hence awmjsrabale.

In Chapter 4, we build the state of the art outer verifier which we call Multi-layered
Smooth Label Cover (Theorem 4.2.4). We use it to prove hardness of cosunigorm
hypergraphs (Chapter 4) and hardness of vertex cover in hypergraphs (Chapter 7). We
believe that this verifier would have many applications in future.

In Chapter 8, we make a conjecture about existence of a new outer verifier. The con-
jecture has highly non-trivial implications, namely, optimal hardness results for Vertex

Cover and Min-2SAT-Deletion.

Encoding Schemes

We make an extensive use of long code. Different tests for checking a long code are
designed and analyzed using Fourier analysis. Checking whether a given string is a cor-
rect long code is same as checking whether a boolean function (given as a truth-table)
depends on only one input coordinate. Therefore, theorems about Fourier spectrum of
boolean functions have a natural place in PCP analysis. We use two such theorems, The-
orem 8.3.2 due to Bourgain and Theorem 9.3.5 due to Friedgut.

In Chapters 4 and 5, we use long codes over non-boolean domains. This allows us to
design some tests where analogous tests in the boolean case seem to fail.

For some applications however, long code turns out to be too inefficient in terms of its

length. We instead use codes with much shorter length : in Chapter 10, we use Hadamard
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Code and in Chapter 5, we introduce Split Code. We develop Fourier analysis techniques

for these codes as well.

PCP Tests

We develop a variety of new tests depending on specific application. In Chapter 3, we
use &-bit non-linear test and extend it in a query-efficient manner to a PCP with optimal
amortized query complexity and perfect completeness. In Chapter 4 (Chapter 5 resp.), we
use a test that reads three (four resp.) queries and accepts if and only if not all symbols
are equal. This test is used to show hardness of col@dagiform (4-uniform resp.)
hypergraphs.

In Chapter 7 and 9, we use a combinatorial view of long code and show hardness
results for (hyper)graph vertex cover. In the (hyper)graphs we construct, the (hyper)edges
can be thought of as PCP tests. The constructions are analyzed using techniques from

extremal combinatorics and Friedgut's Theorem.
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Chapter 3

A Query Efficient PCP and Hardness of

Graph Coloring

Graph Coloring is one of the most fundamental (and frustrating) problems in combina-
torics and computer science. A graph is call€éecolorable if every vertex can be as-
signed one color from a set @&f colors so that endpoints of every edge receive different
colors. Given aK-colorable graph for a constahit > 3, one seeks a polynomial time
algorithm to color the graph using few colors. Best known algorithms use a huge number
of colors, i.e.n*Y) colors where: is the number of vertices in the graph. On the hardness
side however, we only know that it is NP-hard to cobecolorable graphs with colors
and K -colorable graphs with roughli/2 colors for all large enougk.

In this chapter, we make a significant progress on this frustrating problem. We show
that it is NP-hard to colok -colorable graphs witti(°e %) colors for all large enough
K, obtaining the first superpolynomial lower bound for this problem (Theorem 3.1.1). It
gives a strong evidence that perhaps it is NP-hard to dglaolorable graphs witlany

constant number of colors. The result is based on a PCP verifier that is very efficient
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in terms of the trade-off between the number of queries and the soundness parameter.
The verifier achieveperfect completenesa feature not shared by similar constructions
known before. We also introduce a technique calRahdomized Label Covavhich

could be useful to obtain further results on graph coloring.

3.1 Definitions, Results and Techniques

The main result in this chapter is :

Theorem 3.1.1[74] For sufficiently large constantd<, it is NP-hard to color aK-

log K)

colorable graph withix (e %) colors. The result holds on graphs with deggde’

There is a huge gap between known algorithmic and hardness results for graph col-
oring. On the algorithmic side, Blum and Karger [18] give an algorithm to coldr a
colorable graph witl®)(n?/1*) colors whereas Karger et al [70] give an algorithm to color
a K-colorable graph witt)(n'—3/(5+1)) colors. On the hardness side, Garey and John-
son [48] show that if for every there exists an algorithm to colorfé-colorable graph
with 2K — 6 colors, then P = NP. But they do not specify an intefiefor which it is
NP-hard to color &’-colorable graph witl2 X’ — 6 colors. Lund and Yannakakis [93]
show that for every constanit, there exists a constaif(C') such that it is NP-hard to
color a K (C')-colorable graph wittC' - K(C') colors. Khanna et al [72] show that for
every K > 3, it is NP-hard to color a-colorable graph with’ = K + 2| %] — 1
colors. Firer [47] shows the following result which was so far asymptotically the best

result (definition ofamortized free bit complexigppears next).

Theorem 3.1.21f NP has a PCP verifier with logarithmic randomness and amortized

free bit complexityf, then for every constanrt > 0, for all sufficiently large constants
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o . 14— )
K, it is hard to color aK-colorable graph withK’ = K me=(i+27.2) " colors assuming

NP + ZPP.

Using current PCPs with arbitrarily low amortized free bit complexity, this theorem gives
K' = K32~ It was an open problem (also raised by Khanna et al [72]) whether one can
replaceK’ by a superpolynomial function d&. Theorem 3.1.1 resolves this question.

Our result is based on construction of a new verifier (Theorem 3.1.5) that is efficient in

terms of itsamortized query complexipndamortized free bit complexity

Definition 3.1.3 A verifier is said to have free bit complexifyif there is a subset of
gueries read by the verifier such that the answer to every other query is determined by

the answers to this subset of queries (if the verifier is to accept).

For example, tdStad’'s3-bit verifier reads3 bits (z,y, z) and accepts if and only if
r®ydz=0(0rxdyadz = 1). This verifier has free bit complexi®/since the answers
for bits x, y automatically fix the answer to the hitif the verifier is to accept.

If a verifier queries; bits of which f are free and has soundnesshen theamortized

query complexityg and theamortized free bit complexity’ are defined as

q
log(1/s)’

q:

The amortized free bit complexity is an important parameter for showing hardness of
approximating clique (or equivalently independent set). The reason is that in the funda-
mental connection between PCPs and inapproximability of clique (see [38]), the size of
the FGLSS graph produced grows with paramégteThe soundness parameter on the
other hand gives a “gap” between the clique sizes in completeness and soundness case.
Thus the trade-off betweefiand s turns out to be crucial. The following result appears

in [16].
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Theorem 3.1.41f NP has a PCP verifier that uses logarithmic randomness, has com-
pleteness> % and amortized free bit complexify then assumingyP ¢ BPP, no poly-
nomial time algorithm can approximate clique size inawertex graph within factor

S . . .
ni+7 . Heree > 0 is an arbitrarily small constant.

In this chapter, we construct the following PCP verifier that appears in a papersteddi®

and Khot [62].

Theorem 3.1.5 For every integek, NP has a PCP verifier that queries: + %2 bits of

which4k bits are free, has perfect completeness and soundness a2miost.

Theorem 3.1.5 gives a verifier that hiag 6 amortized query complexity ardamor-
tized free bit complexity for an arbitrarily smail The verifier is optimal in both the
parameters and in particular we get an alternate proofastatf’s [59]:'~< hardness re-
sult for Clique. Such a verifier was already constructed by Samorodnitsky and Trevisan
[106], but their verifier loses perfect completeness and this seems to be essential for their
proof. For many reasons it is preferable to have perfect completeness. Firstly, it is natural
to have a proof system where a correct proof of a correct theorem is always accepted.
Secondly, perfect completeness is sometimes essential to obtain further results. Some
inapproximability results for problems such as coloring often make essential use of per-
fect completeness and when using a given PCP as a submodule in future PCPs, perfect
completeness, to say the least, simplifies matters.

Several results in the past have focused on achieving PCPs with perfect completeness
and this task often turns out to be much harder than obtaining corresponding PCPs with-
out this property. For instance,asfad shows that MAX-3SAT is hard to approximate
within ratio% — €. This result follows from his 3-Bit PCP construction (Theorem 2.0.1)

using a simple gadget that reduces Makin-2 to MAX-3SAT. To extend this result to
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satisfiable instances however requires a new construction and a technically much more
complicated proof.

Our result is based on a basic non-linear test which rg&&its (b, bo, b3, by, bs) from
the proof and accepts ifi = by ® b3 ® (by A bs). We would like to emphasize that
PCP with a linear predicate cannot achieve perfect completeness. We call this constraint
Tri-Sum-And and let MAX-TSA be the problem of satisfying maximum number of such

constraints. We have the following theorem.

Theorem 3.1.6 For anye > 0, itis NP-hard to distinguish satisfiable instances of Max-

TSA from those where one can satisfy only a frac%ielne of the constraints.

Note that this is tight for MAX-TSA since a random assignment satisfies half the
constraints. We then iterate this basic test in a way similar to Samorodnitsky and Trevisan
iterate the basi-bit test by Histad. The iterated test suffices to prove Theorem 3.1.5. A
standard reduction from PCPs to constraint satisfaction problems implies the following

theorem :

Theorem 3.1.7 Boolean constraint satisfaction problem énvariables is hard to ap-

proximate within rati2*~°(v% on satisfiable instances.

Techniques

We prove Theorem 3.1.6 by designing an appropriate PCP verifier thatégtdfrom
the proof. Denote this test by MAX-TSA, bs, b3, by, bs) Which accepts if and only if
by = by © by ® (by A bs). Think of bo, b3, by, b5 as free bits andl; as depending on them.
The test has perfect completeness and soundness esselntl‘ﬁhjs test is then iterated
in a query efficient way to prove Theorem 3.1.5. The iterated test first reads addet of

free bits, sayS. Then it reads:? more bits, say{vi|1 < i < k?} and conducts the basic
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test MAX-TSAQ:, bs, b, b, bi) whereby, b%, b5, b € S are the free bits already read. It
accepts if and only if alk? basic tests accept. A very surprising result of Samorodnitsky
and Trevisan [106] shows that théggtests behave as independent tests, each test reduces
the soundness by a factg)rand thus the iterated test has soundness essentiafly

However the analysis of both the basic test and the iterated test are rather technical.
The result on graph coloring is proved using the iterated test as a black-box, so one could
read that result without going through cumbersome analysis of PCP tests.

The graph coloring result is shown by invoking the following fundamental connection
between PCPs and independent sets in graphs by Feige et al [38] : If there is a PCP that
has near-perfect completenegg$ree bits and soundnessthen there is a reduction from
this PCP to a graph (called FGLSS graph) such that (i) in completeness case, the graph
contains an independent set of (fractional) $iz€and (i) in soundness case, there is no
independent set of size Using the PCP of Theorem 3.1.5, we see that in the soundness
case, the FGLSS graph has no independent set ofsfzé! and therefore needd”-!
colors to color it. On the other hand, in completeness case, we have a large independent
set (of size2=*). We might hope to have®® such independent sets that cover the
whole graph so that the graphd8(*)-colorable. An independent set in FGLSS graph
corresponds to a proof for PCP, which in turn corresponds to a labeling to Label Cover
instance. Therefore we need to ensure that the underlying Label Cover instance has
manycorrect labelings. A simple technique calledndomized Label Covatlows us to
achieve this (see Section 3.4.2).

Here is a simple example that motivates the randomization technique. Let us say
we have a satisfiable SAT formula Now we add some dummy variables doand
construct a new formula, keeping exactly the same clauses. NpWwas (at least) one

satisfying assignment but has many satisfying assignments since the dummy variables
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of ¢ can be assigned arbitrary values. This (trivial) construction is the essence of the
randomization technique. We have to apply a similar construction to the Label Cover

problem. Things get a bit complicated since we have to look at the iterated test, combine
it with the randomization technique and the FGLSS graph. We also need to prune a small

portion of the FGLSS graph.

Graphs Vs Hypergraphs

In subsequent chapters, we will see strong hardness results for coloring hypergraphs.
These results are shown by a completely different approach. To show hardness of coloring
g-uniform hypergraphs, we construct a PCP that readgmbols from the proof and
accepts if not all symbols are equal. This ig-guery PCP with a specific acceptance
predicate. Then we let the symbols (locations) in the proof to be vertices of a hypergraph
and the tests of the verifier as the edges of the hypergraph; Bo8, Fourier methods
can be applied and the PCP can be analyzed in a rather straightforward way.

However, graphs correspond to the case 2, i.e. PCPs with two queries. Currently
we do not know how to analyzzquery PCPs with Fourier methods. Thus the difference
between graphs and hypergraphs is rooted in the power of PCPs with two or more queries.
The only connection we know between PCPs and independent sets in graphs is the FGLSS

connection.

3.2 Basictest

In this section, we describe our basibit test with the acceptance predicate as MAX-
TSA. LetL = (G(V,W, E),N, M,{x"*}) be an instance of the Label Cover problem

given by Theorem 2.3.2. Recall tha¥| = 2%, | M| = 7* and the soundnessis™". For
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bitsa,b € {—1,1}, leta A b denote the logical AND of, b where—1 represents logical
TRUE andl represents logical FALSE.

The action of the verifieVs,,;, is :

1. Pick a random vertew € W and its random neighbar € V. Let7® = 7n%% :

M — N be the corresponding projection function.

2. Let A, B be the supposed long codes of labelsyofy in the proof. These long
codes are assumed to be folded (Ué—f) = —A(f)).

3. Choose two random functiopsg’ € G and and two random functions ' € F

where

g:{g‘g:M'_){_lvl}}v f:{flf:N'_){_lvl}}

4. Define a functiorh € G ash = g(f om)(¢' A (f' o)), i.e. by setting for each
y e M,
h(y) = g)f (W) (g'(y) A (7 (y)))

5. Accept if and only if

We have the basic completeness lemma.

Lemma 3.2.1 The completeness of the basic test is 1.
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Proof: In a correct proof,A, B are long codes of labels € N,b € M resp. with
7(b) = a. HenceB(h) = h(b) and similarly for the other involved functions. The

completeness now follows from the definition/af n

The major work is involved in establishing the soundness.

Lemma 3.2.2 If the verifier in the basic test accepts with probability+- 6) /2 then there
exists a labeling for the Label Cover instan€ehat satisfie$“(!) fraction of edges, i.e.
OPT(L) > §°M., In particular, the soundness of the verifier is at mdst ) /2 provided

the parameter: of the Label Cover problem in Theorem 2.3.2 satisfied < §°0),

Proof: The acceptance probability of the verifier is

1+ B(h)B(g)A(f)(B(g') NA(f"))

Priaccept= E, w1190 5

]

The hypothesis of the lemma implies that
Evw,t.7.99B(h)B(g)A(f)(B(g") N A(f)] = 6. (3.1)
Fix v, w, f' andg’ and let us study
Eyq[B(h)B(g)A(f)]-

Replacing each function by its Fourier expansion we see that this equals (we denote

fom, ffomby f, f resp. whenever the meaning is clear)

> BsBaAaEyglxs (f9(f' A g))xs(9)xa(F)]
B1,B2,a
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The expectation ovey is zero unlesg; = (5, = [ and expectation ovef is zero unless
mo(8) = « (definitions of sets () andm,(3) appear before Lemma 2.4.5).

Thus the expression equals

> BiAnexs(f A ).
3

Hence we need to analyze

Epgxs(f' Ng)(B(g) NA))].

We haver A b = (1 + a + b — ab) and using this we should analyze

Elxs(f' N Elxs(f' Ag")B(9)], Elxs(f' Ag)A(S)], andElxs(f A g') B(g)A(S)].

Fix the value off’ and letd’ = {y |y € 8 A f'(w(y)) = —1}. Observe that
Eylxs(f' A g = Ef[[ [/ (x) A g W))] = Eg[]] ¢()] (=0 unless?’ = 0)
yep yep’

Similarly, the third expected value isunless3’ = () while the second and the fourth
expected values equﬂ% and ég/A( f"), respectively. The probability, over the choice

of £ that3' is empty is2~1"®|, Cauchy-Schwartz inequality implies

Ep [1Byl] = 2773 |Bsneria
aCn(B)

1/2
< wa)/z(z ggml(a)> < o112 (3.2)

aCnr(B)
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This implies that we get an overall upper bound on the left hand side of (3.1) as

Eyuw | Y B2 |Ary )| (27701 4 20172
B

< By | Y Bi|Amy| 21770121 (3.3)

B

and hence this expression is at ledstWe use this to establish a good labeling for the
Label Cover instance. We first establish that some parts of the given sum are small. We

have the following lemma from [60].

Lemma 3.2.3 There is a constant > 0 such that the Label Cover instance given by
Theorem 2.3.2 has the following additional property : For everg W, ands C M, if

v is a randomly chosen neighbor efand= = 7%, then

E[|m(B)7'] <[]

The value: = % is acceptable.

Let S5 = (4(6 + 2logé~")/6)'/ and consider any} of size at leastSs. Since
E[|n(8)|7'] < §/(4(6 + 2log6~1)), we conclude that the probability that(3)| <
(6 + 21log 6~1) is bounded by /4. Thus for any sucls we have

o
E [21- 1712} < =
| J<2+

0
2

> >

and hence discarding terms wittof size at leasb; in (3.3) still keeps a sum of expected
value at least /2.

Furthermore sincg B’g = 1 we can discard any term wiﬂh@m(ﬂ)\ < /4 and not
reduce the sum by more thapi. We conclude that the sum which is the right hand side
of (3.3) is at least /4 even if we restrict summation 16 of size at mosts and such that

|Arys)| > 6/4.
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Now consider the following randomized labeling for vertices/iil of the Label
Cover problem. For every € W, let B be the supposed long code of labetafChoose
3 C M with probability B2, pick a randomy € 3 and define labély) = 1. Similarly
for everyv € V, let A be the supposed long code of labelwof Choosen C N with
probability A2, pick a random: € « and define labél) = z. We note that sincel, B
are folded, by Lemma 2.4.4, the setand selected by this procedure are nonempty.

The fraction of edges satisfied by this labeling is at least

Ev,w

> BRA, 518 |_1] (3.4)
5

If we restrict summation t¢3| < Ss and|f1,,2(m| > 6/4, expression (3.4) is at least

S5 '6/4 By [ >, BéAm(ﬂ)]

B51B1<Ss,| Ay ()| >6/4

By the above reasoning, this expected value is at l€astand we get a lower bound

S51(6/4)? onOPT(L). This completes the proof of the lemma. n

The basic testreads 5 bits , b, b3, by, b5) from the proof and checks whethigb, b (b4 A
bs) = 1 which is same a&, = b, @ b3 & (by A bs) in {0, 1} notation. Theorem 3.1.6 now
follows by a standard procedure of replacing the bits in the proof by variables and asking

for a proof that maximizes the acceptance probability.

3.3 The lterated Test (Almost Disjoint Sets Test)

Now we prove Theorem 3.1.5. We extend our basic test in a query efficient way. The ver-

ifier which we callV,;; is given a Label Cover instaneG(V, W, E), N, M, {n""}).
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The action of the verifier is :
e Pickv € V and pickk functions(f;);_, andk functions(f;)%_, all from F.
e Pickk neighbors o from W, say(w;)y_,, andk pairs of functiongg;, g;) from G.

e Perform the basic test fdrf;, f7, g, g;) for all triples (4, j, 1) for whichi + j + 1 =

0 modk. Specifically, let

hiji = gufi(f; N g1)

and test if

Bi(hij) Bi(gr) A(f:) (A(f}) A Bi(gy)) = 1 (3.5)

Remark : Note that one could potentially carry out the test for all tripleg, /), but
we do it only fork? triples (4, j,1) with i + 5 + [ = 0 mod k. This set of triples has
the property that any two triples intersect in at most one point (hence the alamost
disjoint sets te$t This property is crucial as we want to show that theseests behave
as if they were independent tests.

The following theorem proves Theorem 3.1.5. The iterated test is analyzed using
Hastad and Wigderson’s [64] method which gives a simpler analysis of Samorodnitsky

and Trevisan's PCP [106].

Theorem 3.3.1The iterated test has completenasand soundnesg** + § provided
277 < §°M), In particular, the soundness & **! providedu = O(k?). The test

queries4k + k? bits of whichdk are free.

55



Proof of Theorem 3.3.1

The completeness follows from that of the basic test and we need to analyze the sound-
ness. LetZ, denote the set of triple@, j,!) withi + j + 1 = 0 mod k. Let Acc(i, j,1)
be a variable that indicates whether the test given by the tfipfel) accepts, taking the

valuel if it does and—1 otherwise. Note that in fact
Acc(i, j,1) = Bi(hij)) Bi(g0) A(fi) (A(f) A Bilg;))

Consider

[1 “HAED g 5o T Acini (36)

(iv.jvl)GZO SCZg (ivjvl)ES

This number equalsif the test accepts and isotherwise and thus its expected value
is the probability that the test accepts. The expectation is over the choice A%,
(s (o g1, 9D

The term withS = () is 1 and to establish the theorem it is sufficient to establish that
any other term is bounded By Let T's be the expected value of the term corresponding
to S. We go on to define a labeling for the Label Cover instance which satisfies a fraction
1T5|°™M of edges.

Suppose thatio, jo,lo) € S and let us fix the values of;, i # i, [}, j # jo and
(wr, g1, g;) for i # Iy in such away as not to decrea%g|. Consider any tripl¢i, j, 1) € S
other thar(iy, jo, lo). Itintersectsiy, jo, lo) in at most one place. if# iy, j # jo, # lo,
after the fixings, Acgi, j, ) reduces to a constatl. Similarly, if i = ig, j # jo, ! # lo,
Acc(i, j,1) reduces toX ( f;,) whereX is some function of;,. An important point is that

X depends only on the choice of If i # iy, j = jo,l # lo, Acc(, j,1) reduces to some
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functionY (f; ) depending only on. Finally if i # io, j # jo,1 = lo, Acc(i, j, ) reduces
to some functior?(g;,, 9;,) depending both ony;, ando.

On the other hand, usingA y = ”ﬂﬂ one can write

1+ A(f},) + B (91,) — A(f},) Bio (91,
2

ACC(iO?jO? ZO) = Blo(hiojolo)Blo(glo)A(fio) '

Altogether we can writ@s as a sum oft terms of the form

Blo (hiojolo)A/(fio)A”(fjl'o)c(glmgl/o) (37)

each with a coefficient/2. Here A’, A", C' are boolean functions that “absorb” all the
functions of typeX, Y, Z respectively. We again stress thétand A” only depend on
and hence can be used to define a labeling fds,, is the original long code fow;, and
hence is useful to define a labeling fof,. Finally C'is a Boolean function that depends
on bothv andw;, and is not useful to define a labeling.

Let us now discard the indices for readability and write (3.7) as

B(h)A'(f)A"(f)C(9,9)

We want to compute the expected value of this expression over random choigeg ,of

g andg’. Expanding all factors except’( ") by the Fourier transform we get

> ALBsC o Elxa(F)Xxa(gf (F' A g))x4(9)xy () A ()] (3.8)

a,B,7,7Y

Now taking the expected value ovérwe see that unless = () the term is zero.

Similarly we need? = ~, and fixing f’ we see that unlesg = g N7 !(f'~*(-1)) we
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also get a zero expected value. Thus the expression reduces to
Y A BaCsgnmii-1 - A" (f): (3.9)
s

We have

| Ep[Coprmrrrcip A" < Ep[ICspmm1(s-1(-1pl |

< 27O NG e (o)
a'Cr(B)

PN B G PR,

o' Cr(B)

1/2

IN

Substituting this estimate into (3.9) and using Cauchy-Schwartz inequalityaverget

the upper estimate

1/2

1/2 1/2
N2 A12 —|m (B ~¥2 N2 A12 —|m (B
(z Bz 2 ) (2%) < (z B2 2 )
16 16}

/8751

for | Ts|. The rest of the proof now follows along the same lines as for the basic test. We

define the same labeling and the analysis is almost identical. We omit the detalils.

3.4 Hardness of Graph Coloring

We prove Theorem 3.1.1 in this section. We give a reduction from the PCP véfifier
in Section 3.3 to a grapty such that : in completeness case, the graph can be colored
with K colors and in soundness case, the graph n&éds: ) colors to color it. We use

a modification of the verifieV.;;; and use Theorem 3.3.1. We also use the fundamental
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connection between PCPs and independent sets in graphs, discovered by Feige et al [38].

We first describe their construction that builds a graph from any PCP verifier.

Definition 3.4.1 An accepting patterm for a PCP verifier is a pairr = (S, v) such that

for some choice of the random string,is the set of query bits read by the verifier and

v is a setting of these bits for which the verifier would accept. The set of all accepting
patterns is denoted by. A proof I is said to be consistent with a pattern= (.5, v) if

the values of bits in proofl corresponding to the se&t matchw.

3.4.1 The FGLSS Graph

Given a PCP verifiet/,., that uses- random bits andf free bits, we define the cor-
responding FGLSS grapfy as follows (Fig. 3.1). The vertices of this graph are all
accepting patterns = (.S, v). There is an edge between two patteffisy) and(S’, V')

if the setsS, S’ have a bit in common and »/ assign different values to this bit, i.e. if
these patterns are conflicting. Note that there is oné& sdtqueries for every choice of
the random string used by the verifier and there2drsettingsy such that(.S, v) is an
accepting pattern. So the FGLSS graph|idgs= 2"/ vertices. It is convenient to group
the vertices int®@” groups, one group for every random string. Each group congdins

vertices which form a clique.

The important property of the FGLSS graph is the following : For a prhafonsider
the set of patterns that are consistent with this proof. This set consists of one pattern for
every random string on which the verifier accepts. Since these patterns are consistent with

the proofll, they are non-conflicting and hence form an independent set in the FGLSS
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r =# random bits used

Each group f = # free bits

is a clique

vertices = accepting patterns (S, \/ 2f vertices in each group

edges = conflict between patterns

Figure 3.1: FGLSS Graph

graph. We call this independent dgt Its size is given by

|In| = # random strings for which prooflis accepted

= 2" .(acceptance probability for prodil ) (3.10)

Conversely, an independent set in the FGLSS graph gives a proof whose acceptance
probability is proportional to the size of this independent set, as given by the above equa-
tion. Thus there is a one-to-one correspondence between proofs for the verifier and inde-
pendent sets in the FGLSS graph.

Now consider the verifieV,;;; described in Section 3.3. Its soundness is at most
2-k*+1 Equation (3.10) implies that the size of a maximum independent set in the corre-

sponding FGLSS graph is at ma&st 2~*°+1. Since every independent set is “small”, the
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graph needs lots of colors to color it. Specifically, we need at least

‘G| or+s or ik _ ok?+4k—1

or . 9—k2>+1 - or . 9—k2+1 - or . 9—k?+1

colors to color the FGLSS graph.

We investigate the completeness case next. We would like to show that the graph can
be colored with a small number of colors, or equivalently it can be covered by a small
number of independent sets. This is not necessarily true for the FGLSS graph constructed
from the verifierV,;;, so we need to construct a new verifier which we &al}, ;.

Note that an independent set in FGLSS graph corresponds to a correct proof, which
in turn, corresponds to a correct labeling of the Label Cover instancehus, in order
to have many independent sets in the FGLSS graph, we need to have many correct label-
ings to the Label Cover instance. The following construction gives a new instérofe
Label Cover from the original instana&with the extra property that it has many correct

labelings.

3.4.2 Randomized Label Cover

Definition 3.4.2 Given a Label Cover instancé = (G(V, W, E), N, M, {7""}), and a
finite setZ, the randomized Label Cover instan€e= (G(V, W, E), N', M", {=n"""}) is

defined as follows.
e M'=MxZ, N =NxZ

e For (v,w) € E, and the projection map”* : M — N, the new projection map

v . M’ — N'is defined as

7U((b,2)) = (1), 2) ¥ (bz) € M =M x Z
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To summarize£’ has the same set of vertices and edges.aslowever, the label
sets are nowM x Z and N x Z. The new projection maps are same as the previous
projection maps on the first coordinate and identity on the second coordinate. Thus the

second coordinate is “dummy”. The following properties are obvious.

Lemma 3.4.3If £’ is randomized Label Cover instance obtained frénand a set”,

then
e OPT(L') = OPT(L).

e Ifalabelingd : V. +— N, ®: W — M is a correct labeling forZ (i.e. labeling
that satisfies every edge), then for eveyye 7, the labelingd’ : V +— N’ @' :

W — M’ is a correct labeling forZ’. The labelingd’ is defined as

In particular, a correct labeling ofC gives|Z| correct labelings ofZ’ for different

choices ot.

3.4.3 Pruning FGLSS Graph and Proof of Theorem 3.1.1

The idea is to construct a new verifigr,,,; that works as follows : Given a Label Cover
instanceL, first construct a randomized Label Cover instaitand then run the verifier
Vessi (from Section 3.3) or’. We chooseZ| = 20k,

Recall that in the completeness case, therg areifferent labelings taC’ and hence
there are several correct proofs (i.e. proofs accepted with probabjilione prooflI(z)
for every choice oz € Z. Each of these correct proofs corresponds to an independent

set of size2". We may expect that these independent sets cover the FGLSS graph. This

62



essentially turns out to be the case : they cover all but a tiny portion of the FGLSS graph.
This tiny portion can be identified beforehand and thrown away. Thus the remaining
FGLSS graph can be colored with a small numl2f)(of colors. The next definition
helps us identify this “bad” portion of the FGLSS graph. Recall that the vertices of the
FGLSS graph correspond to the verifier's choice of the tables3,, ... , B;) and the
functions (f;, f1, 91, 9))iju=12...k- The functionsf;, f/ are now on the domait’ =

N x Z and the functiong;, g; are now on the domain/’ = M x Z.

We will identify some of the choices of the functions as “bad”.

Definition 3.4.4 A choice of functionsf;, fisan, 9])iji=12,. kIS called good if

Ya€ N, Vby,by,...,bp €M, Vaec{-1,1}* 3zec Zsuch that

r = (fl(av Z)vf{(av Z)v s 7fk:(a7 Z)vflg(av Z)vgl(blaz)vgi(blvz)v s 79k(bkvz)7gl,c(bkvz))

Lemma 3.4.5If |Z| = 2°, then the probability that a choice of functions, fisa1,9))

is not good is< 272" providedk is large enough.

Proof: Fix z,a,by,... b, Notethat(f;, f;, g, g;) are defined by setting valugel with

eqgual probability at every point independently. So for eveey 7, the probability that

x 7£ (fl(av Z)vf{(av Z)v s 7fk:(a7 Z)vfl::(av Z)vgl(blvz)vgi(blvz)v s 79k(bkvz)7gl,c(bkvz))

is 1 — 2%, The probability that this holds for every e Z is (1 — 2-4)?"" < 2-2",
Now we take a union bound over all choicesofi, (b;)%_,. There are** choices forr,
|N| = 2* choices fora, and|M| = 7* choices for each oy, bo, ... b;. Thus the total
number of choices i8°**) andu = O(k?) (see Theorem 3.3.1). It follows that a choice

ok—1

of functions is not good with probability at magt2* +O0¢*+*) < 2~

63



We remove the vertices in the FGLSS graph which correspond to a bad choice of
functions and call the remaining graph as thedified FGLSS grapBy Lemma 3.4.5,
the fraction of vertices removed is very small. So in the soundness case, we still need at
least2*” colors to color the modified FGLSS graph.

In the completeness case, consider any veftex) of the modified FGLSS graph
where S corresponds to a set of querie$A(f;)}i_,, {A(f))}i—1, {Bi(g1), Bi(g) }i)
andv is some setting of these bits. In a correct prddfz) for verifier V,.,.4, the tables

A, B; are long codes of some labéls =), (b;, z). Hence

A(fi) = fila, 2), A(fjl-) = fjl-(aa z), Bi(g1) = ai(bi, 2), Bi(g1) = gi(bu; 2) (3.11)

In the modified FGLSS graph, we are guaranteed that for some choicelod bits in
(3.11) match the bit-pattern (by Definition 3.4.4). Thus the independent sets corre-
sponding to the proof§ll(z)},c, cover every vertex of the modified FGLSS graph and
hence it can be colored witly| = 2°* colors.

Thus the modified FGLSS graph can either be colored %ittcolors or requireg*”
colors to color it. Takings’ = 2°* proves Theorem 3.1.1. It is easy to see that the FGLSS

O(log K)

graph has degree at ma3t

64



Chapter 4

Hardness of Coloring3-Uniform

Hypergraphs

Coloring3-colorable graphs is one of the most important open problems in combinatorics
and computer science. The current best algorithms ([18], [70]) requ(iné/**) colors
wheren is the number of vertices in the graph. On the other hand, we only know that it is
NP-hard to coloB-colorable graphs with colors [72]. Current techniques seem to have
stuck on this problem and therefore it is natural to study its generalization to hypergraphs.
In this chapter, we obtain first strong hardness result for coloshugiform hy-
pergraphs. We show that it is hard to colbcolorable3-uniform hypergraphs with
(loglogn)®™ colors. In terms of techniques, our main contribution is construction of
a new PCP outer verifier, which we call Multi-layered Smooth Label Cover (Theorem
4.2.4). ltis also used in Chapter 7 for showing hardness of Hypergraph Vertex Cover.
This verifier represents the state of the art outer verifier and could have many other appli-

cations in future.
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Hardness results were earlier known for coloritagniform hypergraphs (see [55])
and we overcome the hurdles involved in extending these resulisutaform hyper-
graphs. Hardness results for graph coloring however seem out of reach of current tech-
niques. We point out a fundamental difference between graphs and hypergraphs that

sheds some light on the difficulty in attacking graph coloring problem.

4.1 Definitions, Results and Techniques

A g-uniform hypergrapi{ = (V, £) consists of a set of verticds and a set of edges

E. Every edges € £ is a sizeg subset of the set of vertices (so graphs Zteniform
hypergraphs). A hypergraph is said tobeolorable if the vertices can be colored with

k colors so that for every edge, not all its vertices have the same color. We consider both,

the minimization and maximization versions of hypergraph coloring problem.

Minimization Version : In the minimization version (also called Approximate Coloring
problem), we are given/colorable hypergraph whekegs a small constant and we seek
an algorithm to color the hypergraph with as few colors as possible. It is well-known
that it is NP-hard to tess-colorability of graphs whereas Légz [90] showed that it
is NP-hard to tesk-colorability of 3-uniform hypergraphs. The best known algorithms
for (hyper)graph coloring are summarized in Table 1. Explicit algorithms are known
only for 2-colorable3-uniform hypergraphs. However, it is a folklore result that for any
q > 3,k > 2, one can colok-colorableg-uniform hypergraphs in polynomial time with
ne@*) colors for some constantq, k) < 1.

A big open problem is whethe&-colorable graphs are hard to color with constantly
many colors. Surprisingly, Guruswami et al [55] were able to show such a result for

4-uniform hypergraphs. They showed hardness of coloioglorable4-uniform hy-
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Holds for

Colors with

Blum, Karger [18]

3-colorable graphs

O(n3/1*) colors

Karger et al [70]

k-colorable graphs,

k>3

O(n'~7+1) colors;

Improvements by Halperin et al [58

—_

Krivelevich et al [81]

hypergraphs

2-colorable3-uniform

O(n'/%) colors

Table 1 : Known algorithmic results for (hyper)graph coloring.

Holds for Hardness of coloring | Assumption
with
Khanna et al [72] 3-colorable graphs 4 colors P# NP
Khot [74] k-colorable graphs, | £0°g%) colors P+£NP
Chapter 3 all sufficiently largek
Guruswami et al | 2-colorable4-uniform | constantly many colorg P # NP
[55] hypergraphs
Guruswami et al | 2-colorabled-uniform | Q(25%0) colors | NP ¢
[55] hypergraphs DTIME(n©oglogn)y
Khot [76] k-colorable4-uniform | (log n)* colors, NP ¢Z
Chapter 5 hypergraphsk > 5 ¢ > 0 absolute constant DTIME(2(es)°")
Khot [75] 3-colorable3-uniform | constantly many colors P # NP
This chapter hypergraphs
Khot [75] 3-colorable3-uniform | (loglogn)!/® colors NP ¢
This chapter hypergraphs DTIME(n©Uoglogn)y
Dinur et al [31] | 2-colorable3-uniform | constantly many colors P # NP
hypergraphs
Dinur etal [31] | 2-colorable3-uniform | (loglogn)'/3 colors NP ¢
hypergraphs DTIME(2(og)°™)

Table 2 : Known hardness results for (hyper)graph coloring.
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pergraphs with constantly many colors. A question left open by Guruswami et al [55]
was whether similar hardness result holds 3arniform hypergraphs. We answer this

question positively by proving that :

Theorem 4.1.1 For every constand > 0, it is NP-hard to distinguish whether am-
vertex3-uniform hypergraph is$-colorable or it contains no independent set of size
In particular, it is NP-hard to color3-colorable 3-uniform hypergraphs with constantly

many colors.

Independent set in a hypergraph is defined as a set of vertices such that no edge lies
entirely within this set. In a properly colored hypergraph, the vertices colored with the
same color form an independent set. Thus saying that a hypergraph contains no indepen-
dent set of sizén is stronger than saying it cannot be colored witfé colors. The above
theorem implies that given a hypergraph that contains an independent set(©f:sj2¢
in this case), it is hard to find an independent set of &izéor any constané > 0. Such
a result was first proved in [76] and [66] faruniform hypergraphs. Obtaining a similar
result for graphs is a major open problem and is equivalent to constructing PCPs with
zero free bits, completene®g1) and arbitrarily low soundness. There is no such PCP
characterization for independent sets in hypergraphs. Thus one outcome of the work on
hypergraph coloring is to point out the fundamental difference between graphs and hy-
pergraphs. Guruswami et al's paper [55] gave hope that techniques for hypergraphs might
eventually be used for graphs, but evidence from subsequent work has been negative.

Under a stronger complexity assumption thaa RP, we show the following stronger

hardness result.

Theorem 4.1.2 Assuming\NP ¢ DTIME(n®Ueslem) it is hard to color a3-colorable

3-uniform hypergraph om vertices with(log log n)'/® colors.
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Maximization Version : In the maximization version of the hypergraph coloring prob-

lem, we are given g-uniform hypergraph ank different colors. The goal is to assign one

color to every vertex so as to maximize the number of edges that are non-monochromatic.
One can also think of the maximization version as a constraint satisfaction problem

(CSP) on the Not-All-Equal predicate. The vertices of the hypergraph are variables of the

CSP and the edges are constraints of the CSP. Since the hyperggaphifisrm, every

constraint is defined o variables. Assignment of colors to the vertices corresponds to

assigning every variable a value from a domain of gizé constraint is satisfied iff all

its variables areot assigned the same value, or equivalently, the corresponding edge is

non-monochromatic. We call this CSP to be the problem NAEThe optimum of the

CSP is the maximum fraction of the constraints that can be satisfied by any assignment.
Note that assigning every variable a random value from the/sidemain satisfies

(1 — =) fraction of the constraints. The problem NA is said to have &andom

Threshold Propertyf it is NP-hard to do strictly better than assigning random values, or

more specifically, if it is NP-hard to distinguish whether the optimum>isl — ¢ or

< 1— = + ¢ for arbitrarily smalle > 0.

NAE. . : For graphsq{ = 2), the casé& = 2 corresponds to the MAX-CUT problem and
Goemans and Williamson [50] give an algorithm that performs strictly better than taking
a random cut. Frieze and Jerrum [46] extend this algorithnkfor 3 colors. Thus the
problem NAE ; does nohave the random threshold property for dny 2.

NAE, : Hastad [60] showed that for the problem NAE, a gap(1, £ + ¢) is hard, i.e.

this problem has the random threshold property. It is implicit in his work that NABAS

the random threshold property for every> 2. This result was the basic starting point

for the hypergraph coloring result of Guruswami et al [55].
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NAE;, : Quite interestingly, Zwick [115] showed that for the problem NAE there
exists an algorithm that does strictly better than the random assignment. This seemed
to be a stumbling block in extending Guruswami et al's techniqué&suniform hyper-
graphs. In this chapter, we resolve the only remaining case i.e.s\NMgh £ > 3. We

show that

Theorem 4.1.3 For everyk > 3, the problenNAE 5, has the random threshold prop-
erty on satisfiable instances. In particular, it is NP-hard to distinguish whetha+ a
uniform hypergraph is$-colorable or any coloring of the vertices withcolors has at
most% + € fraction of the edges non-monochromatic. Here 0 is an arbitrarily small

constant.

Equivalent Formulation in terms of PCPs

We prove Theorem 4.1.1 and 4.1.3 by constructing a suitable PCP. We construct a PCP
verifier that expects a proof over the ternary don#&jrtor k-ary domairz,,). The verifier

reads3 symbols from the proof and accepts if and only if notaalymbols are equal.

We let the locations in the proof to be the vertices of a hypergraph and the tests of the
verifier (reading3 locations) to be the edges of the hypergraph. This defil3esraform
hypergraph. In completeness case, we show that there exists a proof that the verifier
always accepts and hence the hypergraphdslorable. In soundness case, we show
that the hypergraph has no independent set of 8izeThis proves Theorem 4.1.1. We

also show in soundness case that the probability of acceptance of the verifier is at most
s + ¢ which proves Theorem 4.1.3. For the latter result, we need to construct a somewhat

different PCP so that it works for eveky> 3.
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Remark : Guruswami et al [55] use a technique callsering complexityo analyze
their PCP. The hypergraph they construct indeed has no independent setof, dizg
this fact cannot be proven using covering complexity method. This was proved using a

more direct approach by Holmerin [66].

Techniques

The main technique in this chapter is construction of a new version of Label Cover prob-
lem which we call Multi-layered Smooth Label Cover problem.

Motivation for multi-layered structure : The Label Cover problem defined in Theorem
2.3.2 has a bipartite structure, i.e. the underlying graph has two layers2-Tayered
structure turns out to be a bottle-neck in showing certain hardness of approximation re-
sults. Let us say we want to prove Theorem 4.1.1. As explained before, this is equivalent
to building a3-query PCP with Not-All-Equal predicate. Consider such a PCP built from

a 2-layered Label Cover problem. In this PCP, the proof naturally splits into two parts.
Verifiers that can be built using current techniques are forced to read one query from the
left part and two queries from the right part. When a hypergraph is constructed from such
a PCP, the hypergraph also splits into two layers and every hyperedge has one vertex in
left layer and two vertices in the right layer. Coloring all vertices in each layer with the
same color gives a propercoloring of the hypergraph. Thus the hypergraph is always
2-colorable and the construction is doomed.

In the multi-layered version of Label Cover problem, the underlying graph has many
layers and between every pair of layers, we have an instance of the usual Label Cover
problem. A hypergraph built from a multi-layered version has many layers and there are
hyperedges between every pair of layers. Thus the “cheating strategy” described above

breaks down with the multi-layered construction.
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Motivation for smoothness : Significance of smoothness property is rather technical in
nature. Smoothness refers to the property of the mé&fisin the definition of the Label
Cover problem (Definition 2.3.1). In general, these maps are many-to-one maps. As we
will see in Chapter 8, one possible direction for getting hardness results for some open
problems (e.g. Min-2SAT-Deletion, Vertex Cover), is to show hardness of Label Cover
instances with the property that the maps’ are bijections. In other words, we would

like to have, for every edg@, w), and every pair of distinct labelst’ € M,

R(B) £ 5 ()

A simple and powerful technique in this chapter is to get a weaker analogue of the above
property. We will show hardness of Label Cover instances where the nidpsre

“smooth”. For everyw € W and every pair of distinct labelst’ € M, we have

Pr, [ (b) # 7" (V)] ~ 1

Thus over the choice of a random neighborugfthe projections of labelg andd’ are
distinct with high probability. The significance of this property will be evident only when
we get to the analysis. We build Label Cover instances with both the properties : multi-
layered structure and smoothness.

Remark : The idea of multi-layered Label Cover is from Dinur et al [29] and the
smoothness property is from Khot [75]. The latter paper combines the two ideas and that

is what we present in this chapter.
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Comparison with Dinur et al’'s Work :

Dinur, Regev and Smyth [31] obtained a better hardness result for col®imgorm
hypergraphs, and our work was partly influenced by their result. They show hardness
of coloring 2-colorable3-uniform hypergraphs with constantly many colors. However
their construction has large independent sets (in fact independent sets §j siad in

this respect, their result is weaker than Theorem 4.1.1. Both results use the multi-layered
Label Cover problem. We, in addition, use smoothness property and Fourier analysis
whereas Dinur et al make a clever use of Kneser graphs and their construction is more
combinatorial in nature. It is interesting that they are able to get a hardness result for
2-colorable3-uniform hypergraphs even though the problem NAEloesnot have the
random threshold property. It would be nice, if possible, to obtain a Fourier analysis

based proof of their result.

4.2 Constructing Multi-layered Smooth Label Cover

4.2.1 Achieving Smoothness Property

Let us first focus on achieving smoothness property. We will later present a combined
construction that achieves both smoothness and multi-layered structure.

We modify the 2-Prover-1-Round game (i.e. Raz’s Verifier) in Section 2.2 in the fol-
lowing way : The verifier is given an instangeof Gap-3SAT-5. Let:, T' be parameters.
The verifier picks randomly a set’ of u clauses and a set of u variables as before;
variables inv” include one variable from each clauseuifi Then he picks a set” of T'u

clauses at random. He asks the second prover to give a satisfying assignment to the set
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w = w'Uw"” and asks the first prover to give a satisfying assignment to the-set Uw".
The verifier accepts if and only if the answers of the two provers agree on the set

The clauses inv” are “dummy” in some sense. For a fixed, the game is simply
a copy of the 2P1R game in Raz’s verifier. Thus this modified game also has soundness
24, Fix the setw of (T 4 1)u clauses, hence fixing the question asked to the second
prover. The question asked to the first prover can be equivalently viewed as picking a
random subset’ C w of u clauses and taking one variable from each claus€ giving
a set of variables’. The question to the first proveris= v’ U (w \ w’). Let7*" be the
projection that maps an assignment to theus#t its sub-assignment to the set

The following lemma gives a crucial property of this construction.

Lemma 4.2.1 (Smoothness property) For fixedw and any two distinct assignments
bl, b2 to w,
1

Pr, wvvw(bl)#wvvw(@)] > 1-

Proof: The assignments,, b, differ on at least one claugg, € w. Note thatw' is a
random subset of with |w'| = v and|w| = (T + 1)u. Hence with probabilityl — -
over the choice of the set’, Cy ¢ w’ and consequentlg, € v. Whenever this happens,

the sub-assignments bf, b, to the set are distinct. "

In terms of the Label Cover problem, we can restate Theorem 2.3.2 with the additional

smoothness property given by Lemma 4.2.1.

Theorem 4.2.2 There is an absolute constant> 0 such that for all integer parameters

w andT, it is NP-hard to distinguish between the following two cases : A Label Cover
problemL(G(V, W, E), N, M, {z**|(v,w) € E}) with [M| = 77+ |N| = 2u7Tu

has

e OPT(L)=1 OR
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e OPT(L) <27

The Label Cover instance has the following “smoothness property”. For evesy\V,

andby, by € M, by # by, if v is a randomly chosen neighbor of then

It can be assumed th&t(V, W, E) is a regular bipartite graph where every vertexlii

has degred” V") 3* and every vertex iV’ has degreé*.

4.2.2 Definition of Multi-layered Label Cover Problem

Set of labels

I
I
I
I
I
I
Layer O Layer 1 Layer i Layer j Layer L

Figure 4.1: Multi-layered Label Cover
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Definition 4.2.3 A multi-layered Label Cover instance (see Fig. 4.1)

‘Cmulti(Ga {Wi}iL:07 E = U0§i<j§LEij7 {Mi}iL:07 {’/Tuw}(v,w)EE)

has the following description G is a graph whose vertices are partitioned into+ 1
layers. The layers are numbered franto L and the set of vertices in layeis ;. For
0 <1< j <L, letE;; denote the set of edges between layersdj. The graph between
every pair of layers in a regular bipartite graph. There are no edges between vertices of
the same layer.

The goal is to assign labels to vertices of this graph. Verticé ilayer are supposed
to get labels from a se¥/;. Forv € W;,w € W; such that < j, (v, w) € E;;, there is a
projection mapr®" : M; — M.

An assignment of labeis : W; — M, assigns one label for every vertex in the graph.

The assignment is said to satisfy an edgev) if

Let OPT (L1, 1, J) denote the maximum fraction of edges satisfied between layers

and; by any labeling.

The following theorem states the construction of the multi-layered smooth Label Cover

problem.

Theorem 4.2.4 There is a poly-time reduction from Gap-3SAT-5 to a multi-layered Label

Cover problem

‘Cmulti(Ga {Wi}iL:m E = U0§i<j§LEij7 {Mi}z‘L:m {’/Tv’w}(U,w)GE)
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and parameterd’, v with these properties (think @ > L > 1 andu as independent

parameter) :
1. |M;| = 2E=Dur(T+i)u for every) < i < L.

2. Fori < j < kandw; € W;,w; € W;,wy, € Wy, if (w;, w;) € Eyj, (wj, wy,) € Ej,
then (w;, wy) € Ej. In fact for anyw, € Wy, selecting its random neighbor in
layeri is same as first selecting its random neighbgin layer j and then selecting
arandom neighbor ab; in layeri. This property can be generalized to arlgyers
i1 <9 < ...1;. Foravertexw;, € W,,, selecting its random neighbor in layaris

same as successively selecting verticgs, € W;, ,w;, , € Wi, ,,...w;,; € Wy,

t—17

wherew;, ., is a random neighbor ab;, forl =t¢,t —1,... 2.

3. (Completeness) : If Gap-3SAT-5 instance is a YES instance (i.e. satisfiable), then

there exists a labeling that satisfies every edgé,pf;.

4. (Soundness) : If Gap-3SAT-5 instance is a NO instance (i.e. no more than a con-
stant fraction of clauses are satisfiable), thOPT (L, i,7) < 277070 <
277", Here~ is an absolute constant same as Theorem 2.3.2.

5. (Smoothness Property) :

LetO0 <i < j < Landw € W;. Letb, b/ € M; be two distinct labels ta. If

v € W; is a random neighbor ab in layeri, then

Pr, [7"(b) = 7" (V)] <

N

6. (Weak Expansion Property) :
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Consider anyt layers numbered, < i, < ... < i; wheret = [2/6]. Choose
any setsS;, C W, with |S;,| > 6|W;,| for 1 <[ < t. Then there exist two layers
numbered; andi; such that the number of edges between thegetnd.S; , is at

least a fractiony? /4 of the total number of edges between the layeasid ;..

4.2.3 The Main Construction

In this section, we prove Theorem 4.2.4. Let a Gap-3SAT-5 instance be given by Theorem
2.1.1. The variables will be denoted by, x5, ... and the clauses by, Cs,.... LetT

andu be integer parameters.

Defining Layers and Vertices for L,

For 0 < i < L, a types vertex corresponds to the union of a set 6f— i)u variables

and a set of 7" + ¢)u clauses. LetV; be the set of of all typé-vertices.

Remark : A type- vertex is union of a set of variables and a set of clauses. The fact
that the components asetsand nottuplesis important. By definition, there is no order

associated with elements of a set.

Defining Edges Between Pairs of Layers

For 0 < i < j < L, letv € W, be a neighbor ofv € W; if one can obtairv by
replacing(j — i)u clauses{C, | [ = 1,2,..,(j — ¢)u} in w by (j — i)u variables
{z; |1 =1,2,...,( — i)u} such that the variable, is contained in the clausg, for

1<1<(G—i)u
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Forw € W;, a random neighbor ob in layer: is obtained by choosingj — i)u
clauses at random from thi& + j)u clauses inv and replacing each clause by one of the

variables appearing in that clause picked at random.

Defining Sets of Labels

A vertexv € W; contains(L — i)u variables and7" + i)u clauses and thus a total of
(L —i)u+ 3(T +i)u variables. A label to vertex is an assignment to the$e — i)u +
3(T + ¢)u variables such that the assignment satisfies all the claused &t }/; denote
the set of all satisfying assignmentsite W; with |M;| = 2(E-Dur(T+iu,

If v is a type¢ neighbor of a type- vertexw, then every satisfying assignment:to
can be restricted to a satisfying assignment.td_et the mapr** : M, — M, denote

this operation of taking a sub-assignment/restriction.

Regularity, Completeness and Soundness

Since the Gap-3SAT-5 instance is regular, it is clear that the bipartite graph between every
pair of layersi¥; andWV; is regular. Also, Property (2) of Theorem 4.2.4 follows from the
way we define edges between two layers.

Completeness is clear. For soundness, we note that between every pair of layers, we
have an instance of the smooth 2P1R game described in Section 4.2.1. As noted there,

this instance contains copies of the Raz Verifier and hence the soundfe¥sig".

Proving the Smoothness Property

Fix w € W, and two assignments?t’ to w which differ in at least one bit. The projection

% preserves the variables in, but replaces some clauses by variables, #f differ
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on a variable inv, their projections under”" are still distinct. Otherwise they differ on

some clause, say clausg. For a choice of a random neighbgrone replaces at random

(J — #)u clauses out of th€T" + j)u clauses inv. With probabilityl — 7= > 1 — L, the

clauseC is notreplaced and hence projectionshof’ are distinct.

The following lemma states an immediate consequence of the smoothness property.

Lemma4.25Let0 <i < j < Landw € W,. Let 8 C M; be non-empty anbd € 3. If

v is a random neighbor ab of types, then with probabilityl — |5|L/7T we have,

VU €B, W £b, T (b) £ 7 ()

Proof: Just apply the previous lemmato evéryg 5,0 # band take aunionbound. =

Proving the Weak Expansion Property

Take anyt = (%} layersi; < ... < i, and setsS;, € W, for 1 < [ < t such that
S;, > 6|W,;,|. Consider a random walk beginning from a uniformly chosen veutgx

in layer W;, and proceeding to a vertex € W;,_, chosen uniformly among the

neighbors ofw;,. The random walk continues in a similar way to a veriex, € W;, ,
chosen uniformly among the neighborswaf_, and so on up to a vertex i¥;,. Denote

by £, the indicator variable of the event that the random walk hits a vert€y in layer

i;. From the regular structure of the multi-layered graph and Property (2) in Theorem

4.2.4, it follows that for every, PriE;] > 6. Moreover, using the inclusion-exclusion

80



principle, we get:

1>Pivi_, B > PiE] - ) PiE A Ey

l <l

2 t t
=1-6— (2) max.,yPrE; A Ey] > 2 — (2) max,PrE; A\ Ey|

2(5

which implies

t\ _ 6
ma)@<l/Pr[El N EI’] > 1/(2) > Z

Fix [ and!’ such that H#; A Ey] > % This says that a random walk beginning in
layeri; and ending in laye; hits both the sets; , andS;, with probability at least* /4.
However, such a random walk is same as picking an edge at random from the set of all
edges between layeis andi;. Thus the fraction of edges between the sgtsands;, is

at least a fractio? /4 of the total number of edges between laygrandy;.

4.3 Long Codes ovelZ; and Fourier Analysis

As always, we build a PCP verifier by taking a Label Cover instance and plugging in the
Long Code. In this chapter, we need to use long codes over theZifigtegers mod)

instead of binary long codes. These codes are defined as a straightforward generalization
of binary long codes.

Long code (ovek,) over a domainV/ is indexed by all functiong € G where

G={g|g: M~ {1,w,w2,... ,wk_l}}
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Herew is thek! root of unity, i.e.w = ¢*™/*, The long codeB of b € M is defined as
B(g) :=g(b) Vgeg

Consider the space of all “table®? : G — C . In particular, a long code is one such
table. Consider the characteys whereg : M — Z,. There is one such character for

every3. The charactex is a table defined by

xs(9) = [ 9(w)*¥

yeM

The characters form an orthonormal basis under the following definition of inner product

of tables. For table®;, B,, define

< By, By > := ﬁ Z Bl(g)m = E, [31(9)32(9)]

geg

It follows that any table can be expandedias= ), Eﬁxﬁ WhereEﬂ are the Fourier
coefficients with 3, | Bs|* = < B,B >. WhenB : G — {1,w,... ,w*"'}, we have

Y5 \§ﬁ|2 = 1. The Fourier coefficients are given by

By =< B,xs > = E,[B(9)xs(9)]

In particular when3 = 0, the value of the coefficiert, is justE,[B(g)].
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4.4 Hardness of3-Uniform Hypergraph Coloring

In this section, we prove Theorem 4.1.1. We construct a PCP verifier that expects a proof
over the domair¥;. The verifier read$ symbols from the proof and accepts if and
only if not all 3 symbols are equal. We let the locations in the proof to be the vertices
of a hypergraph and the tests of the verifier (readingcations) to be the edges of the
hypergraph. This defines3auniform hypergraph and we prove the desired completeness

and soundness properties.

We reduce the Gap-3SAT-5 instance to an instaf)gg;; of the multi-layered smooth
Label Cover given by Theorem 4.2.4. We expect the proof to contain for every vertex
w € Wj, the long coded,, (overZs;) of a supposed label to. So this long code is over
the domain)/; (the set of labels for layej). Letw = >/ be the cube root of unity.

The long code is indexed by all functiops= F; where
Fi={g|lg: M~ {l,w,w’}}

The verifier's action is :
e Pick0 <i < j < L atrandom.

e Pick a random vertex» € W, and its random neighbar € W; in layeri. Let
7" . M; — M; be the projection betweemandw. Let A = A, andB = A,
be the supposed long codes of labels of verticemdw. These long codes are

indexed by functiong’ € F; andg € F; respectively.
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e Pick random functiong € F;,g € F,. Pick a functionu € F; by defining for

everyr € M;

w with probability 1/2
plx) = {

w? with probability 1/2

o Leth € F,bedefinedash :=g- forvv . pu

e Accept if and only if
Not-All-Equal(A(f), B(g), B(h))

Completeness

In a correct proofA will be the long code of some € M; and B will be the long code

of someb € M;, with 7% (b) = a. In that case

HenceA(f), B(g), B(h) cannot all be equal, singetakes values only in the séb, w?}.

Thus the test always accepts a correct proof and the hypergraph is 3-colorable.

4.4.1 Soundness of PCP

We will show that the size of any independent set in the hypergraph is atnrastion

of the size of the whole hypergraph. Note that the hypergraph Is-a1)-layered hy-
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pergraph with hyperedges between every pair of layers. The hypergraph is a weighted
hypergraph. The vertices in the same layer have equal weight. The total weight of all
vertices in any layer isL%. Since there aré + 1 layers, the total weight of all vertices
in the hypergraph is.

Let Z be any set of locations in the proof with weightWe will show that there is at
least a constant fraction of the tests for which3atjueries lie in the sef. This means
that for any set of vertices with weightin the hypergraph, at least a constant fraction of

hyperedges are contained in this set. Hence there is no independent sebof size

Define tablesA, as follows : For every vertex,

1if the locationA,(f) € Z
A1) = { o

0 otherwise

Remark : The tablesA, are0-1 tables whereas the proofs are supposed to be over the
alphabet{1,w,w?}. However0-1 tables still make sense in the Fourier analysis and in
fact going to0-1 tables is a trick we exploit.

Call a vertexv “good” if at leastd/2 fraction of the locations in the tablé, are set

to 1. Equivalently, is good if the Fourier coefficieniwo of the tableA, satisfies
Avo > 6/2

By an averaging argument, at lea#st fraction of the vertices are good. Again
by an averaging argument, in at leégt fraction of the layers, at leasy4 fraction of
the vertices are good. The number of such layers is/4 - L > O(1/6) provided
L > 0(1/6%.

85



By the “weak expansion property” of the multi-layered graph (see Theorem 4.2.4),
there exist two layerg, < j, such that at least/4 fraction of the vertices in each of
the two layers are good and the number of edges between the good vertices is at least
6’ = Q(6?%) fraction of the total number of edges between layigrand j,. Fix these
layersiy andj, for the rest of the proof.

Consider the process of picking a random vertetrom layer j, and its random
neighborv from layeriy. As noted, with probability’, bothw andv are good. Denoting

by A= A,andB = A,, we have
E,uw[AB2] > (6/2)°6 = §" (say) (4.1)

Now consider the probability that all three queridsf), B(g), B(h) lie in the setZ.
Every proof location id or 0 depending on whether it is in the séor not. Hence this

probability is the expectation

Eyw,f.g. [A(f)B(g)B(h)]

which can be expanded using Fourier expansions of tabkasd B as
Eyugnl Y AaBsB, Xalf) X5(9) X+(@F 0 7p1)]
.8,y

where we denoted = 7 for notational convenience. Note thaty : M;, — Zs and

a: M;, — Zs3. The expression can be written as

Evw ton Y AaBsBy Xalf) x5(9) x+(9) Xo(F o) x4 ()] =

a,Byy
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Ev,w,f,g,u[ Z A\agﬂﬁv Xa(f) Xﬂ—’Y(g) X’Y(f © 7T) X’Y(M)}

B,y
This expectation is zero unlegs= ~. Also x3(f o ™) = Xy (f) if we let w5(5) :

M,;, — Z3 be afunction defined as

Forye M, m(B)y):= Y  Blz) (sum is ovelZs)

zEMj, : m(x)=y

Hence the expression simplifies to

Ev,w,f,g,u [ Z A\aB\[Q—} Xa—ﬂg(ﬂ)(f) Xﬂ(u)}
a,B

Again, the expression is zero unless- 3(3). Defining “cardinality” of 5 as

6] = {z | = € Mjy, B(x) # 0}

we getE, [xs(n)] = (—3) (verify !). Thus the expression further simplifies to

~ =~ 1
ol D Anye) B3 (=3)"] (42)
B

Lemma 4.4.1 The terms in (4.2) with;(3) # 0 can be bounded in magnitude Ry,

Proof: Using a standard argument, we will show that if the terms witt) # 0 have
significant magnitude, then there exists a labeling to the Label Cover vertices indayers

and j, (see Definition 4.2.3) which satisfies a significant fraction of the edges between
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these layers. Using Cauchy-Schwartz inequality,

Eyw [Zﬂw 7r3(ﬂ)B (_%)W‘”
Bu | /S Ao PIB PGP /5, 1Bl

\/Ev,w |:Z,8;7r3(,8)7£0 |A7T3(ﬂ) |2‘Bﬂ|2ﬁ:| (43)

IN

IN

Note thatA, B are0-1 tables and thu§", | 4,2 < 1 and} |Bs|2 < 1. The labeling is
defined as follows : For a vertex € W, pick 3 with probability|§g|2, pick a random

x € M,, such that(x) # 0 and define lab¢lv) = . For a vertexw € W, pick o with
probability| A, |2, pick a randomy € M;, such thaia(y) # 0 and define labél) = y.
The summation in (4.3) is precisely the probability théabelw)) = labelv). This is
bounded byO PT'(L i, 0, jo) < 274 as claimed (soundness property in Theorem

4.2.4). .

Next, we note that the terms in (4.2) witff| > log7T have magnitude at most
(%)logT = % which can be assumed to be negligible by choo§ingrge enough.

Thus we are left with terms wherg(3) = 0 and|5| < log7'. Fix w and consider
the case wheg # 0, i.e. there exists € M, such thati(x) # 0. Lemma 4.2.5 shows

that over the choice of a random neighbowith probability 1 — logT - L/T , we have
Va'st.pB(z') #0, x # 2 we haver(z) # n(z)

Whenever this happens;(3) # 0. Hence the probability that;(5) = 0 is at most
e 'L which is negligible. Thus the terms with(3) = 0, 3 # 0 and|3| < log T have
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negligible magnitude. Finally we are left with the single term

~ o~

By [AoBg]

which is at least” as observed before (Equation (4.1)). Assuming the magnitude of all
the terms neglected to be at maé&y2, it follows that at least” /2 fraction of the tests
between layers, and j, have all 3 queries in the s&t In particular,Z cannot be an
independent set. This completes the proof.

Theorem 4.1.2 is proved by plugging in appropriate super-constant values of the pa-
rametersL, T,u in the analysis. We neefi = O(1/6%),T = O(log(1/6)/67),u =
O(log(1/6)). The size of the hypergraph produced is roughly= n”“37"". Choos-
ing & = (loglogn)~/® we haveN = n®Uoele™) and it is either3-colorable or has no

independent set of size~x (loglog N)~'/,

4.5 Hardness of the Problem NAE,

In this section, we prove Theorem 4.1.3. It suffices to construct a PCP verifier that reads
3 symbols from a proof over the alphali&g, accepts if not alB symbols are equal, has
perfect completeness and soundr(i%gé + e wheree > 0 is an arbitrary constant.

The verifier is based on the construction of the multi-layered Label Cover problem
given by Theorem 4.2.4. However we do not need the “weak expansion property” of this
construction. We make a crucial use of Lemma 4.2.5.

After picking a vertexv; € W, and its neighbow; € W, with a suitable distribution,
the verifier’s test is very similar to the test given in Section 4.4. We use long codes over

Z:. Letw = e*™/F be the complex!” root of unity.
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Given an instancg,,,....;, the action of the verifier is

e Pick a random vertew; € W, fromthe layerL. Fori = L, L —1,L —2,... ,1,

letw; 1 € W;_, be arandom neighbor of the (already chosen) vertex ;.

o Let A, = A,, be the supposed long code of a supposed label of the vertex
Let M; be the set of labels for vertices in layBf;. For0 < i < j < L, let

md = v . M; — M; be the projection function between andw;.
e Pick0 <i < j < Latrandom.

e Pick functionsf : M; — {1,w,w? ... ,w* '} ¢g: M; — {l,w,w? ... 0" 1} at

random.

e Pick a functiory : M; — {w,w?} by defining for every: € M

(@) { w with probability 1/2
wx) =
w? with probability 1/2

o Leth: M; — {l,w,w? ... ,w" '} be defined ash :=g- (f o m™)? - p

e Accept if and only if

Not-all-equal 4;(f), A;(g), A;(h))

Completeness

It is easy to see that the test always accepts a correct proof constructed by taking a correct

labeling to the multi-layered Label Cover instantg,;;; and using correct long codes.
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In a correct proofA;, A; are long codes of some labels M;, b € M; with 77 (b) = a.

Therefore

Ai(f) = f(a), Aj(g) = g(b), A;(h) = h(b) = g(b)(f (x"(6)))*1(b) = g(b) f(a)*u(b)

The three symbols read by the verifier cannot all be equal, gifige= w or w?.

45.1 Soundness of PCP

We will show that if the Gap-3SAT-5 instance is a NO instance, the test accepts with

probability at mosf“z—;1 + €. The following lemma can be easily checked.

Lemma4.5.11f z,y,2 € {1,w,w? ... w* 1}, then the expression

1
1— 5 E "y (r1,re, 73 € Zg)
r1+r2+r3=0

is 0 ifz =y =zand 1 otherwise.

From this lemma, it is clear that the acceptance probability of the verifier is

1

l-0 > oy LA ()™ A (g) Ay ()]
r1+ra+r3=0 R
Fixwr, w1, ... ,wy,1,jforthe time being and consider the expectation gver ..

For notational convenience, we will drop thg| notation. Expanding the tablely', A, A%

by their Fourier expansions, we get

1 Ar1 Ar2 AT — 3.7
L= > D ALARAY xa(Nxs(9)xs@(f o))

ri+r2+r3=0 a,v,8
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The expectation overy is zero unlesg = . Letr = «*/ and letr;,(3) be a function

m(B) : M; — Zj, defined as

Vye M, mB)(y) = B(x) (sum is overZ;)

zEMj:m(z)=y

With this definition,xs((f o m)?) = x25(f © ™) = Xx2r, (5 (f) @nd hence the expectation

over f is zero unless + 2 () = 0. Thus the acceptance probability is

1 Ar Ara AT
L= D D A 0 ATsATs Eulxs(u)] (4.4)
r1+ra+r3=0 g

Lemma4.5.2Let3 : M — Z; and pick a function: : M — {w,w?} by definingu(x)
to be a uniformly chosen value among the two possible values for everyl/. Let

6] := {z € M| 5(z) # 0}|. Then
o If 3=0, E,[xs(n)] =1.
o [Eulxs(u)]l < (1—Q(z)"
e If kis even and if there exists € M such that3(z,) = k/2, thenE, [xs(n)] = 0.
Proof: We note that the given expectation is
EJ]] @)@ = 11 Eulu(2)"™]
zeM zeM

The first claim is obvious. For the second claim, we show that for evesych that
B(z) # 0, the inner expectation has absolute vaiue — (). Letr = 3(z). Because
of the way () is defined, the inner expectationjéw” + w?") and the claim follows.
Note also that ifc is even and- = k/2, then this expectation vanishes. This proves the

third claim. -
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Now we analyze different terms in expression (4.4). Similar to Lemma 4.4.1, the
terms with—2m, () # 0 can be used to define a “good” labeling to layeend ; of
Label Cover instance. Therefore these terms can be assumed to be arbitrarily small in
magnitude. The terms witf| > O(k?log T') have magnitude at most which is negli-
gible.

Now consider the terms with # 0, —2m,(8) = 0 and|3| < O(k*logT). Using
Lemma 4.2.5, for a fixeav;, over the choice of a random neighboy, the probability
thatm,(5) = 0 is at mostw which is negligible. Hence these terms can also be
ignored. One intricate detail here is that whiers even, thanks to third claim in Lemma
4.5.2, we can ignorgs such that3 = € M, f(x) = k/2. Suchgs could have been

troublesome : even i # 0, it could happen th&tg = 0.

Thus we are left with only those terms whete= 0. The acceptance probability is

1 PPN
Prlacd =1 — 2 E AL AT AT + ¢ (4.5)
r1+rz+r3=0

wheree’ takes into account the terms neglected. Let
i,0 = Qg - (4-6)

wherea; are non-negative real numbers w@f;ol a; = 1. Note thata; is just the

fraction of entries in the tabld; which are equal ta/'. It follows that
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Hence the summation in (4.5) can be written as

rili+rola+rsls rili+rala+rsl
E E ity Ay Qg 22T = E ity Ay Qg E W'

T1+7’2+T3:0 l1,l2,l3 ll,lg,lg 7‘1-‘1—7’2-‘1—7’3:0

The inner summation i8 unless; = I, = I3 andk? otherwise. So the sum reduces to

k—1
2 2
k g i@y
1=0

Recall that the verifier first picks verticé®;, W, _1, ..., W, and then picks, j at
random. Taking expectation over the choic®af i, ; < L, applying Lemma 4.5.3, and

choosingL large enough, we get

k-1
Pracd =1 — E0§i<j§L[Zaila§l} +¢
1=0

1 2 1

Lemma4.5.3 Let{a; : 0 <i < L; 0 <l < k—1} beacollection of non-negative reals

such that
k—1

Zail:1 %)

=0

Then we have
k—1

1
E0§i<j§L[Zail a?l} > 7z
1=0

1o

Proof: Leta; = (1+ by)/k so thath;o1 by = 0 for everyi. Also —1 <b; <k —1.
2 _ 1 bi)? ! by +b%) > L 20
aqaj = p5aa(l+bn)” = maa(l + 26 +bj) = aa(l +2b;)
1 1
= E(l + b)) (14 2by) = F(l + b + 2bj; + 2b;;b;1)
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Summing ovei and noting tha}_\— ' b; = 0, we get

k-1 | 9 kol
> ayadl, > =t > bubj
=0 =0

Finally, E o<icj<i[bubj] = ﬁ ((Z ba)® — Z b3)
1 bR
> g (s 01 > <

Remark

Lemma 4.5.3 has a very nice interpretation in terms of a randomized scheme of coloring.
Note that the hypergraph we construct lias 1 layers and there are edges between every
pair of layersi andj. Each edge has one vertex in layeand two vertices in layey.
Consider the following scheme of coloring the vertices of the hypergraphiwatiors.
Fix non-negative real numbefs;; | 0 < i < L, 0 <1 < k — 1} such that for every,

f:ol a; = 1. Color every vertex in layerwith color ! with probabilitya;;. Clearly, the
fraction of edges that are mono-chromatic is precisey<; <z, [ Zf;ol a;l a?l] .

Lemma 4.5.3 claims thanysuch randomized scheme of coloring must leave at least

a fraction;; — o(1) edges mono-chromatic. Now such a claim has to be true since we
want to prove thaainy coloring of the hypergraph must have at Ieé;;t— e fraction of
the edges mono-chromatic ! Equation (4.6) says that the coeﬁic@gteorrespond to

a randomized scheme of coloring. Thus the Fourier coefficients do have a meaningful

interpretation and not just a part of crazy algebraic calculation !
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Chapter 5

Hardness of Coloring4-Uniform

Hypergraphs

There is a huge gap between the known algorithmic and hardness results for (Hyper)Graph
Coloring. All known algorithms for coloring-colorable (hyper)graphs requir€™ col-
ors wheren is the number of vertices. On the hardness side, in Chapter 3, we obtained a
modest lower bound gf*(°¢*) colors for graph coloring. Once we move to hypergraphs,
we have reasonable lower bounds : Guruswami el&b(l%g‘)ﬁjgo%) bound (see [55]) for
coloring4-uniform hypergraphs and o(iog log n)*(") bound for coloring3-uniform hy-
pergraphs in Chapter 4. Still, these lower bounds fall way short of the polynomial upper
bound.

In this chapter, we prove a much stronger result. We show hardness of calering
colorable4-uniform hypergraphs wittflog n)**) colors. The function(log n)**) ex-

ceeds every polylog function &sincreases and gives evidence that the right answer for

(hyper)graph coloring problem might be super-polylogarithmic.
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We introduce a new code called Split Code. This is a length efficient variant of long
code and yields proofs of much smaller size. The code is designed to exploit special
structure of Label Cover instances obtained by parallel repetition. We use Split Codes

over non-boolean domain and make a novel use of this feature.

5.1 Results and Techniques

The main result in this chapter is :

Theorem 5.1.1 There exists an absolute constant- 0 such that for every fixed in-
tegerp > 5, it is hard to distinguish whether an-vertex4-uniform hypergraph ig-
colorable or it contains no independent set of (relative) giog n)~ unlessNP C
DTIME(2(s™ ™) In particular, it is hard to colorp-colorable4-uniform hypergraphs

with (log n)?? colors unless\P C DTIME(2(esm°™),

Techniques

We prove Theorem 5.1.1 by constructing a PCP verifier that réaglgnbols from a

proof over alphabet:F'(p) and accepts if and only if not all symbols are equal. The
hypergraph is constructed by taking the positions in the proof as vertices and the tests of
the verifier as hyperedges.

The main ingredient in the PCP construction is a new code which we call the Split
Code. This is a variation of the long code, but much shorter in length and reduces the
proof size significantly. Split Codes enable us to exploit the special structure of the Label
Cover problem constructed via Raz's Parallel Repetition Theorem. Recall that Label
Cover problem (Definition 2.3.1) consists of a bipartite graph and asks for a labeling to its

vertices. The labeling is required to satisfy certain constraints given by maps — N
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where M, N are sets of labels for the two sides of the bipartite graph. The instance of
Label Cover obtained by Parallel Repetition has a “product structure”. For a parameter
we can assume thatl = M; x M, x ... M;, N = N; x Ny x ... N, andr is given by
componentwise projections : M; — N; for 1 <i <'t.

Using the Split Codes in our construction requires us to employ Split Codes over large
domain i.e.GF(p). We make a novel and essential use of the fact that we are working
over non-boolean domain. The analysis in this chapter is quite simple and it demonstrates
how things become easier once we moveé-imiform hypergraphs instead of graphs or
3-uniform hypergraphs.

The Split Codes can be seen as a general technique for reducing proof astad H®
and Srinivasan [63] use Split Codes to show the following result for Btaia-2. It is

strengthening of Theorem 2.0.2.

Theorem 5.1.2[63] There exists a constant > 0 such that it is hard to distinguish
between instances of MaxLin-2 where there exists an assignment that satisfies
1

Mo fraction of equations or no assignment can satisfy more Qwanﬁ fraction

of equations unlesSP C DTIME(2(esm°™),

Guruswami et al [55] give a reduction frofauniform hypergraphs tg-uniform hy-

pergraphs for any > 5. One can use this reduction and extend Theorem 5.1.1to :

Theorem 5.1.3 There exists an absolute constant 0 such that for fixed integegs> 5
andq > 4, itis hard to colorp-colorable g-uniform hypergraphs wittilog n)°” colors

unlessNP C DTIME(2(esm ™y,
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5.2 Preliminaries

As mentioned before, we exploit the “product structure” of the Label Cover problem

given by parallel repetition.

5.2.1 Split Label Cover Problem

Definition 5.2.1 Split Label CoverL,,;(G(V, W, E), N, M,{x"*},t) is the following
problem : We are given a bipartite graggh = (V, W, E') such that all vertices iv" have
the same degree and all verticeslin have the same degree. There is a set of labels
M = M, x M, ...x M, for vertices inlW and a set of label&/ = N; x N, ... x N, for
vertices inV/. For every edgév, w) € E, there is a projection function”* : M — N
which is given by componentwise projectiofis’ = (7vw! ... 7vwt) wheregv®:

Mi = NZ al‘ld

’/Tv’w(bl, bg, . 7bt) = (’/Tv’w’l(bl), . ,’/Tv’w’t(bt)) i (bl, bz, . ,bt) eM

The goal is to assign a labeling : V — N and® : W — M such that

V(v,w) e E, 7P w))=>(v)

We say that an edge is “satisfied” if this condition holds for that edge. The optimal value
OPT (L) of the Label Cover problem is the maximum fraction of edges that can be

satisfied by any labeling.

The following theorem is just a restatement of Theorem 2.3.2, with the extra ob-
servation that.t parallel repetitions can be thought of asvise product ofu-parallel

repetitions each.
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Theorem 5.2.2 There exists an absolute constant> 0 such that for all integers, t,
there exists a reduction from Gap-3SAT-5 formulaf sizen to a Split Label Cover

instancel,;;.(G(V. W, E), N, M, {w*"},t) such that
1. |V, |[W| < nOd)
2. |M;| =T |N;j| =2V 1 <i<Ht.
3. If ¢ isa YES instanc&) PT' (L) = 1.

4. If ¢ is a NO instanceQ) PT (Lpir) < 277

5.2.2 The Split Code

Similar to the standard paradigm developed in earlier chapters, our PCP verifier reduces
a Gap-3SAT-5 instance to the Split Label Cover instafigg, given by Theorem 5.2.2
and expects the proof to contain encodings of labels of all verticés amd V. The
previous PCP constructions use the long code whereas we use the Split Code which we
define next.

Let w be the basigp! root of unity, i.e. w = €2>™/P. In this chapter, the variables
3, g, b stand for tuples and variablgs, ¢;, b; stand for the* components of these tuples

respectively.

Definition 5.2.3 The Split Code (ove F'(p)) on a domain

M:M1XM2...><Mt
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is indexed by all tuples = (g1, g2, - .. , g;) Whereg; : M; — {1,w,w? ... ,wP~}. The
Split CodeB of an element € M, b = (by,bs,... ,b;), b; € M;, is defined as

B(g) = H 9i(bi)

The set of all functiong; : M; — {1,w, ... ,wP~'} is denoted byj;.

Note that the length of the Split Code af is p!*I+IM:l+--+M:] - On the other hand,

the length of the long code al will be much larger i.ep!™l = plMil-IMaf-.|Mi]

5.2.3 Fourier Analysis of Split Codes

LetGy,...,G; be as in Definition 5.2.3. Consider the complex vector space of all func-
tions

B:G=G xGx...xG—C

where the addition of two functions is defined as pointwise addition. This is a complex
vector space of dimensidg| = pl*1+1Mzl+-+IMil | Define an inner product on this space
as

<Bl,BQ>:

> Bil9)Ba(g) = Ey[Bi(9)Ba(9)]

geg

1
4
We will identify an orthonormal basis for this vector space. Bgbe a function

Bi « M — GF(p)

andg = (B, B2, . .. , 0;) be atuple. The charactgg is a functionys : G — {1, w,... ,wP '}

defined as

t

i=1 x;EM;
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Lemma 5.2.4 The characterg s form an orthonormal basis.

Proof: We clearly have< xz,x3 >= 1. Forg = (61,...,06), v = (n,...,7) and
B # v, there exists an indei and an element;, € M;, such that3;, (b;,) # i, (bi,)-

Hence

t
<XBs Xy > = Egl,...,gt H H gz(fl,’z)ﬂl(ml)_%(%)

i=1 x,eM;

t
_ H H E,, [gi(xi)ﬂi(ﬂ»’i)—%(wi)]

i=1 x,€M;

The inner expectation is zero whee- io andx; = b;,. n

0

Hence every functio3 : G — {1,w, ... ,wP~1} can be written as

B =Y Bgxs with Parseval'sidentity ) ~|Bs|* =1
E E

5.2.4 Equality Folding of Split Codes

Recall that the proof for the PCP verifier is supposed to contain Split Codes of labels of
all vertices inV” andWV in the Label Cover instance.

It turns out that we can identify pairs of indicég, ¢’) such that for every correct
Split CodeB on a setM, we haveB(g) = B(g¢'). So we can identify the indicesandg’
together which we call the “equality folding”. The positions in the Split Code are going
to be vertices of a hypergraph and this identification corresponds to merging the vertices

for positionsg andg’ into one vertex.
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Definition 5.2.5 For a functiong; : M; — GF(p), define

weight(8;) = Y Bi(x) (in GF(p))

zEM;
Foratuples = (3i,...,53), let weight(8) = >__, weight(S3;).
Definition 5.2.6 We call a functionB : G — {1,w,...,wP'} equality folded if for
el,..., e € GF(p)

eptes+...+e¢=0 = B(g,...,9) = Bwq1,... ,w")

Note that a correct Split Code is always equality folded. The notion of equality fold-
ing forces only equality constraints and it is alright for coloring results. There are other
notions of folding (see for instance Definition 2.4.3) which cannot be used in coloring
results, and in fact this turns out to be the biggest difficulty in proving hardness of hyper-

graph coloring. The following is a crucial consequence of equality folding :

Lemma 5.2.7 If a functionB : G — {1,w,...,wP '} is equality folded thenV =
(ﬁla s 7Bt)a

Eg #0 = weight(p) = weight(B2) = ... = weight(F;)
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Proof: Lete = (ey, ... ,e;) be avector chosen atrandom such thates+...+¢; = 0.

There arep'~! choices fore. We have

~

Bﬂ = Eg=(gl,---,gt) |:B(gl7 e 7gt)Xﬂ(gla e 7gt)i|

— #Eg [Ze B(w g, ... ,w%g)xs(wergr, ... ,wetgt)]

= e B [Ze B(g)xs(g) w™ == ei-weigh“ﬁi)]

As e ranges over all vectors withy + e + ... + e; = 0, the inner sum is zero unless

weight(B1) = weight(5y) = ... = weight (). n

5.3 The PCP Construction

Now we are ready to define the PCP test that proves Theorem 5.1.1 (see Fig. 5.1). The
verifier readst symbols over alphabét F'(p) and accepts if and only if not allsymbols
are equal. The hypergraph is constructed by letting the positions in the proof to be vertices
and tests of the verifier as edges. The PCP has perfect completeness and therefore (in
completeness case) the hypergrapfté®lorable. In soundness case, we show that there
is no large independent set.

Lett = 21| and Ly (G(V, W, E), N, M, {z"*},t) be the Split Label Cover in-
stance given by Theorem 5.2.2. The verifier expects the proof to contain Split Codes over

GF(p) of the labels of all vertices € .

Remark : The verifier does not need encodings of labels of the vertic&s im earlier
chapters, we had tests that checked consistency between long codes for vertices
wherev € V,w € W. However, here we will check consistency between long codes for

w,w’ € W which have a common neighbore V. We need to check that the labels of
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w,w' project to the same label far via the respective projection map$® and >’
This technique was introduced byabtad [60] and also used in [55].

It is easy to motivate this technique. Let us say we instead had tests checking consis-
tency between vertices i andi¥. Then the hypergraph would split into two layers with
every hyperedge containing vertices from both the layers. Such a hypergraph is clearly

2-colorable and the construction would fail.

Underlying Label Cover

Instance .
Ol :/_/_ _
O ////
P W | B = Split Code ( label (w))
O ~ \iv‘;;f;’ ] g T g’T
v 07l - amm——- oW C = SplitCode (label w))
U w i i
O h h
T N Not- All ~Equal (B(9), B(g), C(h), C(h’))
O-. STl

Figure 5.1: PCP for 4-Uniform Hypergraph Coloring

The verifier proceeds as follows :

1. Pick a vertex € V' at random and two of its neighbous w' € W at random. Let

B be the supposed Split Code of the supposed label ahdC' be the supposed
Split Code of the supposed labelwof.

2. Pickrandom functiong, h; : M; — {1, w,... ,wP 1}andf; : N; — {1,w,... 0P 1}

for1 <i<t Letg=1(g1,...,9:), h="(h1,... ,hy)andf = (fi,..., f).
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3. Pick functionsgy; : M; — {w,w? w3} by defining independently for evenye M;

w with probability 0.2
pulw) = { w* with probability 0.6
w? with probability 0.2

Let:u = (/‘Lh s 7Mt)'

4. Define functiory! : M; — {1,w, ... ,wP~'} by defining for everyr € M;,

gi(x) = gi() film*(2)) ()

Letg" = (g1,--.,9;). We will use the shortforng’ = ¢ - (f o 7*") -  whereo

denotes composition of functions.

5. Define functions, : M; — {1,w,... ,wP~'} by defining for every: € M;,
hi(x) = hi(x) fo(r" ()

Leth' = (R),...,h;). We will use the shortform’ = h - (f o 7).

6. Accept if and only if

Not-All-Equal(B(g), B(g'), C(h), C(h'))

Picking the functionu is the most novel aspect of this construction (see soundness anal-

ysis and the proof of Lemma 5.4.3).
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Completeness and the Number of Random Bits Used

It is easy to see that the test always accepts a correct proof. In a correctBrisahe
Split Code of the label ofv, sayb = (b,...,b;) andC is the Split Code of the label
of w', sayc = (c1,...,¢). Alsow has a labeb = (aq,... ,a;) and we have correct

projections i.ea; = 7" (b;) = w*"i(¢;) for 1 < i < t. HenceB(g) = g(b),

C(h) = h(c),C(h') = h(c) f(a). So the test will accept providedb) # 1, i.e. provided
Hﬂi(bz') #1

Note thatu; takes values in the sétv, w? w?}. Hence the left hand side is” for some

t <r < 3t. Sincep > 3t + 1, the left hand side~ 1.

Clearly the number of random bits used is at M@t logn + t 2°) log p).

5.4 Soundness Analysis

We prove the following theorem in this section which suffices to prove Theorem 5.1.1

with appropriate choice of parameters.

Theorem 5.4.1 For any setZ of ¢ fraction of vertices in the hypergraph, there are—
pPW2-7ut fraction of edges which lie entirely in this set. In particular there is no inde-

pendent set of siz&7*/# (think oft, p as constants and as growing).
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Recall thatZ corresponds to a set of locations in the proof. Defile-al proof in the

follows way : Forw € W, let B be the corresponding table. Define

1 if the location B(g) € T
B(g) = { _
0 otherwise

Note that the zero Fourier coefficient gives the average value of an encoding. Therefore
B, is the fraction ofls in tableB. This implies that the fraction dfs in the whole proof

is E,,[By] and sinceZ contains & fraction of proof-locations, we have
E,[Bo) = § (5.1)

Consider the process of picking a random hyperedge, which corresponds to the choice
of picking v, w,w’, f, g, h, n. This edge had verticesB(g), B(¢'),C(h),C(h'). All 4
vertices fall in the sef if and only if all 4 proof-locations contain bit-value Therefore

the fraction of edges contained entirely in $as

Ev,w,w/,f,g,h,,u [B(Q)B(g/)g(h)C(h/)]

We analyze this expression in the following. First we state a couple of easy lemmas which
we prove in Section 5.5.

Definition 5.4.2 For a functiong; : M; — GP(p), let|3;| = |[{z € M; : §;(x) # 0}|.
Lemma5.4.3For 5= (04,...,0),
B Dip(0)] = Q(B) w? iz weioht(3)

_ Q(ﬂ) w2-weight(ﬁ)
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whereQ(/3) is a positive real number satisfying

Q) < (1- Q(Z%))ﬂlHﬂer...mt

Lemma 5.4.4If B is a real-valued table, theB_; = B.

Let us proceed with the analysis. Rixw,w’ for the moment. Using Fourier expan-

sions of B, C' we get
Epganl D BsBsCuCy xo(9)xalg(f o 7 )u)xu()x, (A(f o )]
NCRTR
wherep = (¢1, o, ..., ¢), d; : M; — GF(p) and similarly forg, ¢, . Simplifying,
Ergnul Y BsBoCuCy Xo4s(9)Xwsn(Wxs(f 0 1)y (f 0 7" x5(1)]
NCRTR

The expectation is zero unlegs= — 3 andy) = —~ where the equality holds on each of
thet components. For functiofi; : M; — GF(p) and the projectior?* : M; — Nj,

definer)™" : N; — GF(p) as:

T (a) = > Bi(r) Yac€N;

TEM; : VWit (z)=a

Let 70(3) = (7o (B1), 72 (Ba), ..., ™" (B;)). With this definition, it can be

easily verified that

X,@(f © ﬂ—vﬂw) - XﬂZ’w(ﬂ)(f)v Xv(f © TrU?w,) =X v’w,(W) (f)

Tp
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Hence the expression reduces to

Ef,u [ ﬂz BfﬁBﬁCf'yC'y Xﬂzﬁw(ﬂ)_i_ﬂzﬂ'ﬂ(v)(f) Xﬁ(u)}
7’Y

The expectation ovef is zero unless>"(8) + 72 (y) = 0. Lemma 5.4.3 gives the
value of £, [xs(1)]. Also, note thatB, C' are0 — 1 tables, hence take only real values.

Therefore we can use Lemma 5.4.4 and get

By Z ‘éﬂ|2‘67‘2Q(ﬂ)w2'weight(ﬂ)
Bormy ™ (B (3)=0

Note that whenveight(3) = 0, the corresponding terms are non-negative real numbers.
Among these terms we retain only the term with= v = 0. Thus the expression is at

least,

Ev,w,w’ [|BO|2‘CO|2] - Ev,w,w/ Z ‘Bﬂ|2‘C’Y‘QQ(6)
By ™ (B)=—mp"" (7)weight(8)#0

Note that§0, 50 are non-negative reals and

t t
L5 1
Q) <[[a-aE) <T[owY
i=1 p i=1 |BZ‘
Thus the above expression is at least
~ A~ . . t 1

Ev,w,w’ [Bgcg] _ po(t)Ev,w,w’ Z ‘Bﬂ‘Q‘C’yF H W
=1 117

By (B)=—m5"" (7),weight(8)#0
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We will show that this expression is at least- p°®2-7*, We observe that the first term
corresponds to the fraction ofbits in the proof and Lemma 5.4.5 shows that it is at least
5%. The second term can be used to extract a labeling for the Split Label Cover problem

and Lemma 5.4.6 shows that it is at mpSt?) 274,
Lemma 5.4.5 E, ,, ., [ B2C?] > &*

Proof: Note that after fixing, we pickw, w’" independently with identical distribution.

Hence

e BACE) = £ | (B(B3])] = (B [B8])" = (. [B4]

using Equation (5.1). .

Lemma 5.4.6 There is a labeling for the Split Label Cover problem satisfying at least

the following fraction of edges :
UL |
By o, Z |Bﬁ‘2|C'Y|ZHW
By (B)=—mp™ (7),weight(8)#0 =t

In particular, in soundness case, this expression is at Mo%t!, i.e. the soundness

parameter of the Split Label Cover problem.

Proof: For every vertexo € W, we pick3 = (5, .., ;) with probability|1§ﬁ|2 and
define label ofw to be(by, ... , b;) where eaclb; is a randomly chosen elemente M;

for which 3;(x;) # 0. For every vertex € V, we pick its random neighbas’ € T, pick
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v = (",...,7) with probability|@|2, definec; to be a randomly chosen elemepte
M; for which;(y;) # 0 and finally define label of to be(7"""!(cy), ... , 7" *(c,)).

We claim that the fraction of edges satisfied by this labeling is at least the expectation
in the lemma. Note that the summation runs only gver such thatveight(3) # 0. The
tables are equality folded. Thus Lemma 5.2.7 implies that far gJl £ 0, ~; # 0. Hence
there always exists; € M; such that3;(z;) # 0 andy; € M, such thaty;(y;) # 0. Also,
with probability [T._, ﬁi it holds that

ﬂ_v,w,i(bi) _ ’7va Z(Cz) Vi

In other wordst®®(by, ... b)) = 7% (cy,... ,¢;), i.e. 7 (labelw)) = labelv) which

is precisely the condition for satisfying an edgew). Hence the claim follows. n

5.5 Proofs of Lemmas 5.4.3, 5.4.4 and Theorem 5.1.1

Proof of Lemma 5.4.3

Let us first prove the following lemma.

Lemma5.5.1Lets; : M; — GF(p) and pick functionu; : M; — {w,w? w?*} where for
everyr € M;, we defingu;(z) to bew with probability 0.2, w? with probability0.6 and
w? with probability(0.2. Then

E, H pi(2) 5@ = Q(3;) wweisht(Bi)

zeM;

whereQ(/3;) is a positive real number satisfyin@(5;) < (1 Q(]%))W.
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Proof: We note that the given expectation is

I Builpi(a)™@)

rEM;
We show that for every: such thatg;(z) # 0, the inner expectation s> times a
positive numberK 1 — Q(}%). Letr = f;(x). Because of the way;() is defined, the

inner expectation is
02w +0.6w" +02w" =w”(0.6+02w" +0.2w™")

This complex number is?" times a positive real number which is maximized whea 1

)=1-Q(L). .

and this maximum value &6 + 0.4 cos( -

Nl

Now we prove Lemma 5.4.3. Note that

Ey, [Xﬂ(:u)] = E,

t

= HEM

=1

1111 m(scz-)ﬂi(m]

i=1 x,eM;

H ui(xi)ﬁi(xi)]

T, €EM,;

Lemma 5.4.3 now follows from Lemma 5.5.1, with

Q(B) = Q(B)RQ(B) - - Q(B)

Proof of Lemma 5.4.4

SinceB is real-valued,

B_s = E,[B(9)x—5(9)] = E,[B(9)x—5(9)] = E,[B(9)xs(9)] = E,[B(9)xs(9)] = Bs



Proof of Theorem 5.1.1

We havet = |21]. Letu = O(loglogn). The number of random bits used by the
verifier is

O(utlogn +t 2°® log p) < 2°W

The hypergraph constructed has si¥ewhich is at most exponential in the number of
random bits used by the verifier, g N < 20,

We know that in completeness case, the hypergraptt@orable. By Theorem 5.4.1,
in soundness case, there is no independent set oRsizé&® = (log V)~ for some

absolute constant> 0.
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Chapter 6

Hardness of Shortest VVector Problem in

High L, Norms

Shortest Vector Problem (SVP) is one of the most important problems in complexity
theory. Given a basis for am-dimensional lattice, the goal is to find the shortest non-
zero vector in the lattice. SVP has applications to relationship between the worst-case and
average-case complexity of problems, breaking and building cryptosystems (!), factoring
rational polynomials and numerous other areas in mathematics and computer science.
Characterizing the hardness of SVP is a major open problem. The famous LLL algorithm
[87] achieves an exponential approximation factor for SVP whereas even NP-hardness
wasn’t known until recently.

In this chapter, we obtain a big improvement in the hardness results known for SVP in
high L, norms (Theorem 6.1.1). Apart from the improved hardness factor, our reduction
is much simpler and direct, much malementaryand holds under a weaker complexity
assumption. We believe that our ideas could be applicable in getting any constant factor

hardness in some fixeld, (maybe even irl,) norm.
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6.1 Result and History of the Problem

An n-dimensional lattic& is a set of vector§) """ | a,v; | a; € Z} wherevy, vy, ... v, €

R™ is a set of independent vectors called the basis for the lattice. The same lattice could
have many bases. Given a basis fonatimensional lattice, the Shortest Vector Problem
asks for the shortest non-zero vector in the lattice. The length of the vectors can be
measured in any.,, norm (p > 1) and the corresponding problem is denoted by SVP
This problem has a beautiful history and we present some of the results below. For a
more comprehensive list of references and a thorough treatment of the subject, we refer
to Micciancio and Goldwasser’s book [97]. We also recommend Micciancio’s PhD thesis

[95] and an expository article by Kumar and Sivakumar [82].

The Shortest Vector Problem has been studied since the time of Gauss ([49], 1801)
who gave an algorithm for S\V\An 2-dimensions. The general problem for arbitrary
dimensions was formulated by Dirichlet in 1842. The theory of Geometry of Numbers
by Minkowski [98] deals with the existence of shortest non-zero vectors in lattices. In
a celebrated result, Lenstra, Lenstra andd4sav{87] gave a polynomial time algorithm
for approximating SVP within factor 2"/2. This algorithm has numerous applications,
e.g. factoring rational polynomials [87], breaking knapsack-based codes [84], checking
the solvability by radicals [85] and integer programming in a fixed number of variables
([87], [88], [68]). Schnorr [107] improved the approximation factor2td for any§ >
0. Since allL, norms are within factok/n from the L, norm, these algorithms give
similar approximations for SVPfor any p. It is a major open problem whether SVP
has polynomial factor approximations that run in polynomial time. Exact computation of

SVPR, in exponential time has also been investigated, for instance [69], [4].
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In 1981, van Emde Boas [112] proved that SYR NP-hard and conjectured that the
same is true for an¥,, norm. However proving NP-hardness for any finitgn particular
p = 2) was an embarrassing open problem for long time. A breakthrough result by Ajtai
[2] in 1998 finally showed that S\V\Hs NP-hard under randomized reductions. Cai and
Nerurkar [25] improved Ajtai’s result to a hardness of approximation result showing a
hardness factor dfl + -5). Another breakthrough by Micciancio [96] showed that $VP

is hard to approximate within facta'/? — 6 for everys > 0.

Showing hardness of approximation results for SVP was greatly motivated by Aj-
tai's discovery [1] of worst-case to average-case hardness and subsequent construction of
lattice-based public key cryptosystem by Ajtai and Dwork [3]. Ajtai showed that if there
is a randomized polynomial time algorithm for solving S\ a non-negligible fraction
of lattices from a certain natural class of lattices, then there is a randomized polyno-
mial time algorithm for approximating S\,\Ron everyinstance within some polynomial
factornc. Ajtai-Dwork’s work gave hope, for the first time, that cryptography could be
based on the (conjectured) worst-case hardness of a problem. Their work implies that if
nc-approximation to SVPis hard, then one can construct a secure cryptosystem. The
constantc was noted to be 19 in [23], and brought downda- 6 by Cai and Nerurkar
[24] and then tod + 6 by Cai [23]. Recently, Regev [104] gave an alternate construction
of a public key cryptosystem based ah’-hardness of SVP(actually a variant called
unique-SVR) ! Unfortunately, there are barriers to showing such strong hardness results.
In fact, showing factorn, NP-hardness would imply that NP = coNP [83] and showing
factor/n/O(logn) NP-hardness would imply that coNPAM [52].

Another related problem that has received much attention is the Closest Vector Prob-
lem (denoted CVF) where given a lattice and a vectarthe problemis to find the lattice

vector that is closest tg. In spite of the apparent similarity between SVP and CVP,
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they turn out to be quite different problems. Indeed, CWRs shown to be NP-hard

for all p > 1 by van Emde Boas [112]. Arora, Babai, Sweedyk, and Stern [9] used the
PCP machinery to show that approximating G\fr all p > 1) within factor2los' " n

is hard unless NEZ DTIME(n??(°g™), This was improved to a NP-hardness result
by Dinur, Kindler, and Safra [30] (their result even gives a subconstant valdgi .

6 = (loglogn)~ for anyc < 3). Incidently, SVR, seems to behave very much like

CVP,,, Dinur [27] shows factor!/glee» NP-hardness for both these problems. Thus

for SVP, the cases = oo andp < oo seem to be qualitatively different.

Our Result

In this chapter, we obtain an improved hardness result for,S@Plarge (but finite)

values ofp. Specifically we show that

Theorem 6.1.1 For everye > 0, there is a constani(e) such that for all integerp >

p(e), itis NP-hard to approximate SVRvithin factor p'~< under randomized reductions.

This improves the hardness fact@t’? — § by Micciancio [96] for all large values of
p. The result however is only asymptotic and says nothing about small valyesrae
valuep(e) depends on a non-explicit constant in Raz's Parallel Repetition Theorem [103]

(the constant in Theorem 2.3.2).

Significance of the result : Apart from the improved hardness factor, we believe that

the result is significant in the following aspects :

1. Very strong hardness results are known for SYBo it is reasonable to expect that
the hardness result gets bettepagows. Our result;{! —€) supports this intuition,

whereas Micciancio’s resul2{/? — ¢) goes in the other direction.
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2. Our result is a direct reduction from 2-Prover Games (or equivalently the Label
Cover problem). Micciancio’s reduction can be seen as an indirect reduction from
2-Prover Games. Lund and Yannakakis [93] reduce 2-Prover Games to the Set
Cover problem. Arora et al [9] reduce Set Cover to G\fér every finite value
of p. Micciancio reduces CV/Pto SVP, by constructing a sophisticated lattice as
a gadget. Constructing this lattice requires many ideas from Ajtai’s reduction. In
contrast to our and Micciancio’s reductions, Ajtai uses a reduction from a much

more elementary problem, namely Subset Sum.

3. Our result holds under the assumption that JIZPP. Ajtai’s and Micciancio’s
reductions require a stronger assumption thatZ?NBPP. Our reduction is consid-

erably simpler and might be easier (if possible at all) to derandomize.

On the flip-side, our result doesn’t apply for any small explicit valug.oDefinitely,

the most interesting case is norm, since Ajtai’'s worst-case to average-case reduction

is based on hardness of SYPHowever, we think that our result helps in a better un-
derstanding of the Shortest Vector Problem. Considering that even NP-hardness wasn't
known for any finiteL,, norm till 1998, it is interesting that we give a simple and straight-

forward proof.

6.2 Problem Definition and Techniques

We prove Theorem 6.1.1 via a reduction from the Label Cover problem given by Theorem
2.3.2. This is a direct reduction without using long code and with no Fourier analysis.
The reduction is quite simple and the basic idea appears in Section 6.3.

We first redefine the Shortest Vector Problem in a different (but equivalent) manner,

without any reference to lattices.
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Problem Definition

The problem SVPis defined as follows : Given a vectar of integer variablesx =

(1,23, ... ,z,) and linear formq ¢y, ¢, . .. , ¢, } Where
¢i = Zbijxj bij € ]R
j=1

The goal is to find a non-zero integer vectowhich minimizes the following objective

function :

OBJ= ) [¢i(x)[’
i=1

Remarks : (1) Think of the basis vectors in the lattice as the columns of the mgityik

and think of the integer variablegs as the (unknown) coefficients when the shortest
vector is written as an integer linear combination of the basis vectors. (2) We actually
want to minimize OBY?. In order to show a factok-hardness for SVP it suffices to

show a factok?”-hardness for the above objective function.

A Nice Technique

Here we describe one of the techniques used in this chapter which could be of independent
interest.

A common problem encountered in showing hardness of SVP is the following : We
desire a reduction from some NP-hard problem, say Label Cover, Set Cover or CVP.
Usually, it is straightforward to construct a set of vectérs, v, ... ,v,,} which one
could potentially use as the basis vectors for an instance of SVP. For completeness, there
is a non-zero integer linear combinatidn;” , z;v; with short length. This combination

corresponds to a correct labeling to Label Cover or a solution to the Set Cover instance
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depending on what problem we started with. The combination typically has the property
thatém of the coefficients;;s are non-zero. Now let us say we want to show the sound-
ness property, i.e. if the NP-hard problem we started with is a NO instance, then there is
no short non-zero integer linear combination. However, typically it so happens that each
of the vectors); itself is a short vector. Thus for apysettingz; = 1 andx; = 0for¢ # j
gives a short lattice vector. In general, settiiog few of x;S to non-zero values produces
a short vector. We wish to somehow enforce the condition that many aof $haust be
set to a non-zero value.

We do this by augmenting the vectars by one extra co-ordinaig. Call these
augmented vectors = (v;, a;) and let them be the basis vectors for an SVP instance.

The set of integers$a; : 1 <i < m} satisfies :

e For any sety’ C [m], |Y| = 6m, the integers{a;|j € Y} have a non-zero

{0, 1, —1}-linear combination that vanishes.

e ForanysetZ C [m], |Z| < WM anon-zerd0, 1, —1}-linear combination of

integers{a;|j € Z} cannot vanish.

It can be shown that choosimgrandom integers from the ranfie 2, . . . , 2°/2] satisfies
these properties with high probability.

For completeness, sinéen of the z;s are non-zero, one could hope to set them to
appropriate{0, 1, —1} values so tha} " | x;a; = 0 and the vectop ", z;v; is short.

For soundness, assume for the momentittsare restricted to take valug® 1, —1}.
It is clear that if at mosﬁ(l/é) of thez;s are non-zero, thel'" | x;a; cannot vanish.
One can apply a huge penalty if this sum (which is the last co-ordinate of the linear

combination) ", z;v}) doesn't vanish. Thus, we are able to enforce the constraint that

one must set at Iea% of the z;s to non-zero value. In general;s could take
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arbitrary integer values (not ju$0, 1, —1}), but this can be handled as well, as we will
see.

Construction of the sdfta;|1 < i < m} is the only place where our reduction is ran-
domized. We would like to remark that Micciancio [96] also needs a gadget to enforce
a similar condition and almost all work in his paper is devoted to constructing this gad-
get. More specifically, his gadget is a sophisticated lattice and he needs to enforce the
condition thatone particular coefficient:;, in the integer linear combination is set to a

non-zero value.

The Label Cover Problem

The reduction is from the Label Cover problem. We need some more notation and an

extra regularity property for Label Cover instances. So we restate Theorem 2.3.2 as

Theorem 6.2.1 There is an absolute constant> 0 such that for every integer param-
eter u, it is NP-hard to distinguish between the following two cases : A Label Cover

problemZ(G(V, W, E), N, M, {m""|(v,w) € E}) has
e OPT(L)=1 OR
e OPT(L)<1/R” whereR = |M|

We denoté/ = [R], N = [S],n = |V|,m = |W|and D to be the degree of every vertex
in V. It can be assumed thdt = 6%, S = 3, D = 5 andm = (5/2)"n. Moreover,
for every edgév, w), the mapr™ : [R] — [S] is “regular”, meaning for every; € [S],

there are exactly?/.S elements inR] that are mapped tg.

Proof: As shown in [39], there i8 > 0 such that it is NP-hard to tell whethebaegular

graph is3-colorable or no coloring of its vertices withcolors can maké — ¢ fraction
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of the edges non-monochromatic. Starting with this gap-problem, one can construct a
2-Prover-1-Round game as follows : Pick a random €dge) of the graph and one of

its endpoints at random (say. Ask proverP; for coloring of the verticegz, y), his
answer is supposed to be one of thealid (non-monochromatic edge-) colorings. Ask
prover P, for the color ofz, his answer is supposed to be one of Stmlors. Accept if

and only if answers oP; and P, agree on color of. It is easy to see that this game has
soundness strictly less tharand applying Parallel Repetition Theorem gives an instance

of Label Cover with all the properties listed above. n

6.3 The Basic Idea in the Reduction

Here we describe the basic idea of the reduction. One needs to fix a lot of technical details
later and we present a complete reduction in Section 6.4. Theorem 6.2.1 gives an instance

of the Label Cover problem specified as

GV, W, E),[S], [R]AA7"*}),  n=[V],m=|W[, D =degregu)VveV

The intended hardness factor we wish to achieve for S¥R!~¢. We will havek =

RY/?° andp = O(k). The integer variables of the SyRiill be

{Tp;|weW,ielR]}

For a fixedw, let B(w) be the “block” of variables defined as

B(w) = {ww; |1 € [R] }
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Foravertexw € V, let N(v) C W denote the set of neighborsofvith | N(v)| = D.
There will be one linear form in SVHor everyv € V and every sequence;, wo, . .. ,ws)
wherew; € N(v) for 1 < j < S. The linear form is sum oR variables, withR /S vari-

ables each from the block(w,). The linear form is defined to be :

S
o> m (6.1)

J=1 4€[R]:m™"i (i)=j

Note that the total number of linear formsni®?.

Completeness

For completeness, we will show that if there is a labelihépr the label cover problem
satisfying every edge (i.€)PT'(L) = 1), then the problem SV/Fhas a solution with the
objective function OBJ=nD?. Let A: W +— [R], A:V ~ [S] be such a labeling. For
every edgév, w) in the Label Cover instance, we have" (A(w)) = A(v).
Define a solution as
1 if Aw)=1i
Lw,i = {
0 otherwise
Note that there are D linear forms of type (6.1). We will show that each of these
linear forms equald. Note that out of all the variables in the linear form (6.1), exactly
one equald and the rest are all. The non-zero variable is,,, ; for which j = A(v),i =

A(w;) (Verify ! This is the crux of the reduction).
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Soundness

We wish to show that if OPk 1/R” for the Label Cover problem, then for any non-zero
integer vectox = {z,,}, the objective function OBJ is at leaSt D~ *k?. We will
show this only for a restricted class of vectors, i.e. veckots {z,, ;} which “arise” out

of labelingsA : W — [R]. Eventually we want this to work foevery non-zero vector
{zw.:}. Thisinvolves a lot of technical details and we present the full reduction in Section
6.4. So let us assumé : W — [R] is an assignment anf,, ;} is the corresponding

vector, i.e.
1 if Aw)=1i
Lw,i = {

0 otherwise

For every vertex € V, define a set of labelg(v) C [S] as follows :
Y(v) = {7""(A(w)) |w € N(v) }

Lemma 6.3.1 For at least half the vertices ilf, | ¥ (v)| > k (call such vertices “good”).

Proof: Assume on the contrary that half the verticesiirhave |V (v)| < k. Define
label for vertexv to be a random element df(v). Note that for everyw € N(v),
T (A(w)) € ¥(v). Therefore with probabilityl /£, the edggv, w) is satisfied by this
random labeling ta. Hence there exists a labeling for the Label Cover problem that
satisfies at least a fractiof of the edges. This is a contradiction singe> = (recall
thatk = RV/?0). -

For every good vertex, assume w.l.o.g. thdtl,2,... ,k} C ¥(v). Thus for every
1 < j <k, there existsv; € N(v) such thabr”’“’éf(A(wj)) = j. Hence for any sequence
(wi,wh, ... Wi Wt1, ..., wg) Wherewgq,... ,ws € N(v) are arbitrary, the linear

form (6.1) is at least equal ta This contributes? to the objective function OBJ.
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Half the vertices are good, hence OB% D*~*k>.

Hardness Factor

Note that the objective function isD* in completeness case and at legsD>*£” in

the soundness case. Chopsaich that

lnDS*kkp > nDSE0-9p
2

Thus there is a penalty of a factbf' ) in the soundness case. Noting thHat<
R,k = R"/?° we see that it suffices to take= % This gives hardness factor bf < or
p'~< as desired. This completes the basic idea in the reduction. We give the full reduction

in the next section.

6.4 Full Reduction

We again fixk = R?/?° and choose = O(k) later. The intended hardness factor we

wish to achieve for SVPis k'~¢. The set of integer variables is the same, namely
x = {zw; | w e W,i € [R]}

There will be 4 types of linear forms. These forms are supposed to “handle” different
types of non-zero vectoss in the soundness case. The exact role of these linear forms

will be clear as we go along.

Type-1 linear forms :

VweW, Vi €[R], Loy i
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Thus the Type-1 linear forms are just the variables themselves.

Type-2 linear form :

E aw,ixw,i

weW,i€[R)
Thus there is only one Type-2 linear form. The coefficients in this linear form are
randomly chosen integers from the rarf@e2, ..., 2/2]. Introducing this linear form is
precisely the technique described in Section 6.2. We want to ensure that for soundness,

one must set “many” of the variables ;s to a non-zero value.
Type-3 linear forms : .
YweW, Z =t A
Thus there aré” Type-3 linear forms for every € 1. There areR variables in every
form and there is one linear form for every choicetof— sign.
Type-4 linear forms :

Vo eV, Ywy,ws,... ,ws € N(v), Z Z +1y,

J=1 i€[Rl:m”™ (i)=j

There are?D* linear forms for every € V. These are essentially the linear forms used
in Section 6.3, except that now we take all thé— combinations. Note that there ake

variables in each form.

In the completeness case, Type-2 form will contributdype-1, Type-3 and Type-4
will contribute (at most)n, 2%m and2fn.D® respectively. We multiply the Type-1, Type-

3 and Type-4 forms by appropriate quantit@&s C3, C; so that they contribute equally
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towards the objective function. More precisely, Cs, C, are chosen so that
C?m = C% 28m = C¥ 28n D"

In the soundness case, we will show that any non-zero vecter {z,,;} either
produces a non-zero value in Type-2 form or it pays a penalty of factor? for at least
one of the remaining three types.

We multiply Type-2 form by a huge quantity. Thus we incur a huge penalty unless

the Type-2 form vanishes (it will vanish in the completeness case, so we are fine).

Completeness

In the completeness case, et W — [R], A : V +— [S] be a correct labeling. Let

0,l1or —1 if A(w)=1
xwi:{

0 otherwise

The choice of0, 1, —1 for the variables{z,, 4.} is made such that the Type-2 form
vanishes. We use the Pigeon-Hole principle (suggested by Sanjeev Arora). Consider the
set of m variables{z,, 1)}, and the corresponding coefficients 4., in the Type-2

form. Consider the™ different sums for all subsets of thesecoefficients. These sums

take integer values in the ran{je 2, 3, . .. , m2™/2]. Hence sums for two distinct subsets
must be equal, which gives a vanishifig, 1, —1} linear combination of the integers

Aoy, A(w) -

Now we look at the remaining 3 types.
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e For Type-1 forms, note that at mostof the variables are-1, the rest ar@. So we

get contribution of at most.

e For Type-3 forms, note that for evey, there is at most one variahlg, ; that is

+1. Thus we get contribution of at mazfm.

e Every Type-4 form ist1 as seen for completeness part in Section 6.3 and it might
even bed since we “turn off” some of the variables, 4., to 0. Thus the Type-4

forms contribute at moX*nD?.

6.5 Soundness of the Reduction

The crux of the soundness analysis is as in Section 6.3. However, we have to handle cases

whenz,, ;S are negative, or very few of them are non-zero. We do this in several stages.
For a vectox = {z,,;}, let #x denote the number of variables (or coordinates) that

are non-zero. For a block of variabl&§w), let # B(w) denote the number of non-zero

variables in this block.

Handling x with #x < and x|y > mR

201 gR

Suchx are handled by Type-1 forms. Note that when at st coordinates are non-
zero and the.; norm is at leastn R, thenL, norm is minimized when all the non-zero

coordinates are equal {361 Hence
g R)’

> RP2m, > kPm

> |awal” > (20R1og R)?

w,i

m
20log R
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Note that the contribution of Type-1 forms in the completeness case is atimo&tus

we get a penalty of factde” for the Type-1 forms.

Handling x with #x < 550 and [[x[l; < mR

These are handled by Type-2 linear form. We show that with high probability, the Type-2
linear formdoes nowanish for any suck.

The coefficients in this linear form are randomly chosen integers from the range
[1,2,3,...,2™2]. Hence for any non-zero vectay the probability that the Type-2 form

vanishes is at mosﬁt,i—p. We count the number of vectoxssuch that#x < and

2017:gR
|x|l1 < mR. We show that there aren’t too many of them and we can take a union bound.

Number of suchx’s can be bounded by

m

R L .
( mn ) . gm/(0log R) <# non-negative integer solutions to :
20log R

Nty +...+y_m_ <mR>

20log R —

- ( mR ) _om/(010gR) o (sz) < 225 mi?

20log R 20log R

Where one uses the fact that

oM ) — -

Avoiding the Problem of Negative or Large Values

In general the variables,, ; could be positive or negative and could take large integer

values. We will now show that one can as well assume that they take value8 only
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1. This is done by averaging over all the/— linear combinations and this is the reason

why Type-3 and Type-4 forms appear with all possible- combinations.

Lemma 6.5.1 Let 2, x5, ... ,x; bet non-zero integers. Lei; € {1,—1} be chosen

randomly. Assumgto be an even integer. Then

> max{tP~, t*/?}

t
Ee 0, [‘ Z a;v|”
=1

Proof: We can expand out the prodd@ﬁz1 a;x; )P and take the expectation of each term
separately. For the terms in which some; occurs to an odd power, the expectation is
zero. For the remaining terms, the expectation is at leasthus the expectation is
at least the number of terms such that evegy; occurs to an even power. In other
words, we want to count the number of functiofs [p] — [t] such that every € [¢]
has even number of pre-images. Considering functions wligre = f(2), f(3) =
f4),...,f(p—1) = f(p), we get a bound of”/2. Another way is to take an arbitrary
functiong : [p — t] — [t] and then “extend” it to a functiof : [p] — [t] where the values
gp—t+1),9(p—t+2),...,g(p) are chosen to make sure that fprevery value has

an even number of pre-images. This gives a bound of n

Lemma 6.5.1 implies that for any set Bfvariables, with at leastof them non-zero,
when summed over alf /— combinations, the contribution to the objective function OBJ

is at leasR” max{tP~, t7/2},

Handling One More Annoying Case

One more annoying case is when most of the non-zero variables belong to Blacks

such that these blocks themselves have too many non-zero variables. To be precise, we
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want to avoid the situation where

m
> #Bw) > prog 6.2)

B(w):#B(w)>k3

This case is handled by Type-3 linear forms. By Lemma 6.5.1, for any bijek), the
contribution of Type-3 forms towards the objective function is at l@&dgt: B (w))?/2.

Hence the contribution of blocks in (6.2) is at least,

> 28 #Bw)

B(w):#B(w)>k3

which is minimized when alit B(w) are equal t&:* and there ares 5.5 of them. Thus

the contribution is at least

(AP s proR
B e r > 2

Note that the contribution in the completeness cas2’is and therefore one gets a

penalty of factork? as desired.

Finishing the Proof

After handling all the annoying cases, we can now assume#hat ﬁ and that

m
>, #Bw) < 40log R

B(w):#B(w)>k3
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This implies that for at least = om verticesw € W, the blockB(w) contains at

m
40log R

least one non-zero variable. Let

W' ={w| B(w) contains at least one non-zero varigble

We have|lW’| > 6§|WW|. Fix one non-zero variable iB(w) for everyw € W’ and let this
variable ber,, (., (thus we get an assignmedtof labels to vertices ifl’”’).

By an averaging argument, for at leagtt fraction of the vertices € V, at least /4
fraction of their neighbors are ’. Call any such vertex “good”. For any good vertex
v, let

V(v) = {7 (Aw)) |we W, we N(v)}
Lemma 6.5.2 For at most half the good vertices |V (v)| < k.

Proof: Assume on the contrary that for half of the good vertiee® (v)| < k. Thus for
every such vertex, we can assign at mostlabels such that for every neighbere W’
of v, the labelr”*(A(w)) is included. Choosing at random, one of the at midabels for
every such vertex, gives a labeling to the Label Cover problem that satisfies following

fraction of edges :

1661 1 .
24) 4% E=ou i L — RV/20
(2 4) 4k  32-1600(log R)%k" > R since R

This contradicts Theorem 6.2.1. "

Hence we can assume that for at least half of the good verticé®(v)| > k.
For any such vertex, assume w.l.o.g. tha{l,2,... ,k} C ¥(v). Thus for every
1 < j <k, there existav; € N(v) such thabr”’w§(A(w;)) = j. Hence for any se-

quence(w;, ws, ... , Wy, W41, ... ,ws) Wherewgq,... ,ws € N(v) are arbitrary, the
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Type-4 linear form has at leastnon-zero variables. Applying Lemma 6.5.1, we get a
contribution of at least® D*~*kP—* towards the objective function.

/4 fraction of the vertices are good, hence the objective function is at least

)
(gn)2" D%t
8
Note that the contribution in the completeness case is at 2¥add”. We will choosep
such that

énQRDS‘kk”‘k > 28p DS . f-op
8

Thus we get a penalty of factéf'~<” in the soundness case. Noting that< R k =
RY/?°, we see that it suffices to tale= % This gives hardness factor bf— or p'—¢

as desired. This completes the full reduction.

Remark : Itis crucial that the soundness parameter of the Label Cover problet®is
i.e. polynomially small in the domain sizR. Thus we use Raz’s Parallel Repetition
Theorem in a very strong sense, namely, the error goes down exponentially with the

number of repetitions.
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Chapter 7

Hardness of Vertex Cover ink-Uniform

Hypergraphs

Vertex Cover in a graph is a set of vertices that touches every edge. A trivial algorithm
gives a2-approximation for minimum vertex cover and no better algorithm is known. It
is a major open problem to show a matching lower bound,4.e.¢ hardness for vertex
cover for every > (. Arora et al [10] show amtegrality gap of 2—¢ for a large family
of linear programs for vertex cover, implying that LP-based approaches are unlikely to
give an approximation ratio better than 2.

Hardness of vertex cover is intimately related to a fundamental (and deep) open prob-
lem about PCPs. Showing — ¢ hardness for vertex cover is equivalent to showing that

given a graph containing an independent set of (relative) size 1 — ¢, it is hard to

2
find an independent set of size This is in turn equivalent to constructing a PCP with
completeness, soundness andzero free bitsmeaning the verifieknowsthe answer
to every query before reading it ! However, at present we have no clue how to construct
such a PCP, even for any fixed value of < 1. Results of Histad [60] and Dinur,

2
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Safra [32] showing% — ¢ and1.36 hardness respectively, do not give such a PCP. Since
we are stuck on the vertex cover problem, it is natural to consider its generalization to
hypergraphs.

Vertex Cover ork-uniform hypergraphs has an approximation algorithm with ratio
The main result in this chapter is an almost tight lower bound:of 1 — ¢ (Theorem
7.1.1) for everyk > 3. We show that it is NP-hard to find an independent set of size
e in a k-uniform hypergraph that is guaranteed to contain an independent set of size
a=1- ﬁ — €. As pointed out, such a result for graphs is open. Our result has
subsequently been used by Chuzhoy et al [26] to show opfilfiak™ n) hardness for
Asymmetrick-Center problem.

PCP in this chapter is analyzed using purely combinatorial methods as opposed to
Fourier methods employed in earlier chapters. We use the Multi-layered Label Cover

problem (Theorem 4.2.4) and biased long code (Definition 7.2.2). In Chapter 8, we show

that the Unique Games Conjecture in fact implies a fatter hardness for every > 2.

7.1 Results and Techniques

A k-uniform hypergrapt = (V, £) consists of a set of verticasand a collectiorf of
k-element subsets of called hyperedges. #ertex coveof H is a subset C V such

that every hyperedge ifi intersectsS, i.e. e NS # () for eache € £. An independent
setin H is a subset whose complement is a vertex cover, or in other words a subset of
vertices that contains no hyperedge entirely within it. TiheMertex-Cover problem is

the problem of finding a minimum size vertex cover it-aniform hypergraph. This

problem is alternatively called the minimum hitting set problem with sets of/saed
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it is equivalent to the set cover problem where each element of the universe occurs in
exactlyk sets.

A very simple approximation algorithm is the following: greedily pick a maximal set
of pairwise disjoint hyperedges, take all vertices in the chosen hyperedges and declare it
to be a vertex cover. It is easy to show that this gives a factapproximation algorithm
for Ek-Vertex-Cover. State of the art techniques yield only a tiny improvement, achieving
a k — o(1) approximation ratio [56]. This raises the question whether achieving an
approximation factor ofk — ¢ for any constant¢ > 0 could be NP-hard. In this chapter,

we prove the following nearly tight hardness result. It appears in [29].

Theorem 7.1.1For everyk > 3, Ek-Vertex-Cover is NP-hard to approximate within

factor k — 1 — e for arbitrarily small constant > 0.

Previous Hardness Results

The vertex-cover problem on hypergraphs where the size of the hyperedges is unbounded
is nothing but the Set-Cover problem. For this problem theré&is.approximation algo-

rithm [91, 67], and a matching — o(1)) Inn hardness result due to Feige [37]. The first
explicit hardness result shown fokB/ertex-Cover was due to Trevisan [111] who con-
sidered the approximability of bounded degree instances of several combinatorial prob-
lems, and specifically showed an inapproximability factok8t® for Ek-Vertex-Cover.
Holmerin [66] showed that EVertex-Cover is NP-hard to approximate withia — e,

and more recently [65] obtainéd ¢ hardness for E-Vertex-Cover ant% — ¢ hardness

for E3-Vertex-Cover. Goldreich [51] showed a direct ‘FGLSS’-type [38] reduction (in-
volving no use of the long-code, a crucial component in most recent PCP constructions)

attaining a hardness factor @f— ¢ for Ek-Vertex-Cover for some constakht
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Quite surprisingly, Dinur, Guruswami and Khot [28] gave a fairly simple proo§ of
hardness result for=Vertex-Cover. The proof takes a combinatorial view of Holmerin’s
construction and instead of Fourier analysis uses some properties of intersecting families
of finite sets. They also give a more complicated reduction that shows a faetd — ¢
hardness for E-Vertex-Cover. The crucial impetus for their work came from the recent
result of Dinur and Safra [32] on the hardness of vertex cover (on graphs), and as in [32]
the notion of biased long codes and some extremal combinatorics play an important role.
In addition to ideas from [32], the factdr— 3 — ¢ hardness result also exploits the notion

of covering complexity introduced by Guruswamistad and Sudan [55].

Techniques and Overview of the Reduction

Theorem 7.1.1 is proved using a reduction from the Multi-layered Label Cover problem
in Theorem 4.2.4. The construction in this chapter differs from the constructions in pre-
vious chapters in a crucial way : we take a combinatorial view of the long code and use
theorems from extremal combinatorics instead of the Fourier analysis methods.

As defined in earlier chapters, a long code over doméiis indexed by all boolean
functionsg : M — {—1,1}. The values of the long code atel and the length of the
long code i2/"I. In the combinatorial view of the long code, we let the bits be indexed
by all subsets of\/ and the code i§0, 1} valued. An encoding of elemehte M is

defined as follows :
For FF C M, the bit indexed byF' equalsl if and only if be F

As we will see, this enables us to view the tests of a PCP verifier as constraints on set-

families and apply powerful machinery of extremal combinatorics. Here is the overview
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of our reduction. Let

‘Cmulti(Ga {Wi}iL:07 E = U0§i<j§LEij7 {Mi}iL:07 {ﬂ—uw}(v,w)EE)

be an instance of the multi-layered Label Cover with vertices partitioned into layers
Wo, Wi, ..., Wy, and a set of edgeB;; between layers andj. The goal is to build

a k-uniform hypergraph front,,,..;;; with the following properties :

1. If £, (or the underlying Gap-3SAT-5) is a YES instance, then the hypergraph
has an independent set of size- .= — ¢ . The size is measured as a fractional

size relative to the size of the whole hypergraph.
2. If L. 1s @ NO instance, then the hypergraph has no independent set 6f size

Heree, 6 can be made arbitrarily small. Veertex cover is just the complement of indepen-
dent set, and therefore the size of the vertex cover is eiih%LL1 +eor>1-—6.This

proves that it is NP-hard to approximate vertex cover within fadter 1 — ¢'.

Caution : The Label Cover instance and the hypergraph built from it, both contain
“vertices” and “edges”. It should be clear from the context what a “vertex” refers to. The

edges of the hypergraph will be called “hyperedges”.

Following our standard recipe, we construct a PCP where the verifier expects as a
proof the long code of the label for every vertexof £,,...;. We build a hypergraph
as follows : we let the bits in the proof as the vertices of the hypergraphBLe} be
the block of vertices of the hypergraph corresponding to the bits in the long code for
w. Note that ifw € W; and if M; is the set of labels for vertices in laygrthen the
block B[w] contains2/™:! vertices. There is one vertex for every subsetbf(recall the

combinatorial view of the long code).
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For every edgév, w) € E;;, we define hyperedges of the hypergraph. Every hy-
peredge contains exactlyvertices, one vertex from the blodR[v] andk — 1 vertices
from the blockB[w]. These hyperedges are supposed to enforce the constraint given by
the projection map”* : M, — M;. We will later see the precise manner in which the
hyperedges are defined, but here is an important thing to keep in mind :

Hyperedges are defined to ensure this property £,Jf..:; is @ YES instance, take a
correct labeling taZ,,,..;; and encode the labels with correct long codes. Then the vertices
of the hypergraph that correspond to bits set ttmrm an independent set.

Thus, in the completeness case, we can identify a large independent set. Since half of
the bits in a long code ark this is an independent set of si?eHowever, we desire an
independent set of sizé— ﬁ — e and here comes another trick. Instead of giving equal
weight to all the bits in a long code, we definbiased long codevhich gives different
weights to different vertices. With this trick, it can indeed be ensured that the weight of
the1-bits in a long code isl — 15 — .

In soundness case, we show that if there is an independent set @f, $iem it is
possible to “decode” the long codes and define a labeling fgy;; that satisfies a good
fraction of edges of,,,..;;; giving a contradiction. Usually, this would be achieved using
Fourier analysis and using the Fourier coefficients to do the (probabilistic) decoding. We
however do not use Fourier analysis and the decoding relies on results from extremal

combinatorics.

Motivation for using the multi-layered Label Cover : With this overall plan for the
reduction, it is easy to see why we use multi-layered version of Label Cover. The hyper-
graph we build had. + 1 layers, and there are hyperedges between every pair of layers.
Since there are no hyperedges between vertices of the same layer, every layer is an inde-

pendent set. Now think what would happen if we had only two layers. We would trivially
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have an independent set of siﬂeither the left or the right layer). We however want

to claim that in soundness case, there is no independent set of arm we are thus
doomed. The multi-layered version avoids this pathological case.wEa# expansion
property(see Theorem 4.2.4) is also crucial. If the Label Cover instance had a large set
of vertices with no edges among them, the hypergraph would also have a large set of ver-
tices with no hyperedges among them (i.e. a large independent set). The weak expansion

property avoids this another pathological case.

Location of the Gap

Our hardness result has the gap between sizes of the vertex cover at the “strongest” lo-
cation. Specifically, to prove a factok — 1 — ¢ hardness we show that it is hard to
distinguish betweeh-uniform hypergraphs that have a vertex cover of s,gi%e+ e from

those whose minimum vertex cover has size at ldast$. This result is stronger than

a gap of aboutk — 1 achieved, for example, between vertex covers of %f:’lﬁ and

ﬁ. In fact, by adding dummy vertices, our result implies that for any 1 it is NP-

hard to distinguish between hypergraphs that have a vertex cover of-§jze- ¢ from

those whose minimum vertex-cover has size at leaBtut another way, our result shows
that for k-uniform hypergraphs fok > 3, there is a fixedv such that for arbitrarily small

6 > 0, itis NP-hard to find an independent set of sizven if the hypergraph is promised

to contain an independent set of sizeSuch a result is not known for graphs and seems
out of reach of current techniques (the receélst hardness result for vertex cover on
graphs due to Dinur and Safra [32], for example, shows that it is NP-hard to distinguish
between cases when the graph has an independent set 6f3siznd when there is no

independent set of siZe16).
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Remark : Theorem 7.1.1 was used by Chuzhoy et al [26] to skifisg” n) hardness
for Asymmetrick-Center problem. It is important for their result that our theorem gives

a gap at the right location.

7.2 Biased Long Code and Intersecting Families

Definition 7.2.1 For a bias parametef < p < 1, and a ground sed/, the weight of a
setl’ C M is

A (F) = pfT (1 — )M

Whenl/ is clear from the context, we writg, instead of M;” . The weight of a family

F of subsets o/ (i.e. F C 2M)is

1p(F) =D pp(F)

FeF

The weight of a subset is precisely the probability of obtaining this subset when one picks

every element i/ independently with probability.

Definition 7.2.2 For 0 < p < 1, ap-biased long code over domaivi is indexed by all
subsets” C M. The bit/" has a weighj,)’ (F) attached to it. The value of the hitin
the long code of an elemeht Mis1 if b € FF and 0 otherwise.

For a long code of some eleménk M, if F is the family of all set$” corresponding

to 1-bits in the long code (i.e. all sefs such that € F), then,)! (F) = p.
Let[n] = {0,1,... ,n—1}and2 = {F | F C [n]}.

Definition 7.2.3 A family 7 C 2 is called s-wise t-intersecting if for everys sets
Fi,...,F, € F,we have

|FiN...NF| >t
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We are interested in bounding the size of such families, and for this purpose it is
useful to introduce the notion of a left-shifted family. Performing(ary)-shift on a
family consists of replacing the elementwith the element in all setsF € F such
thatj € F,1 ¢ Fand(F \ {j}) U{i} € F. A left-shifted family is a family which
is invariant with respect t@, j)-shifts for anyl < i < j < n. For any familyF, by
iterating the(, j)-shift for all 1 < ¢ < j < n we eventually get a left-shifted family
which we denote bys(F). The following simple lemma summarizes the properties of

the left-shift operation (see [54], p. 1298, Lemma 4.2):

Lemma 7.2.4 For any familyF C 2", there exists a one-to-one and onto mapping
from F to S(F) such thai F'| = |7(F')| for everyF' € F. In other words, left-shifting a
family maintains its size and the size of the sets in the family. Moreoyersiain s-wise

t-intersecting family then so iS(F).

The next lemma states that a subsein a left-shifteds-wise t-intersecting family

cannot be “sparse” on all of its prefixésn [t + js] Vj > 0.

Lemma 7.2.5 ([54], p. 1311, Lemma 8.3).et F be a left-shiftecs-wise ¢-intersecting

family. Then, for every’ € F, there exists g@ > O with |F N [t + sj]| >t + (s — 1)j.

The following is the main lemma of this section. It shows that for any %1
a family with non-negligibleu,-weight cannot be-wise t-intersecting for sufficiently

larget.

Lemma 7.2.6 For anyé, s, p with p < %1 there exists & = (6, s, p) such that for any

s-wiset-intersecting familyr C 2, 11, (F) < 6.

Proof: Let F be ans-wise t-intersecting family where will be determined later. Ac-

cording to Lemma 7.2.45(F) is alsos-wiset-intersecting angi,(S(F)) = p,(F). By
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Lemma 7.2.5, for every’ € S(F), there exists g > 0 such that /' N [t + sj]| >
t+ (s — 1)j. We can therefore bound,(S(F)) from above by the probability that such
aj exists for a random set chosen according to the distribytion

Letd = ==L — p. Then, foranyj > 0, Pr{ |F N [t + sj]| > ¢t + (s — 1);j ] is at most
P |F N[t + sj]| — p(t +s7) > 0(t + 5§) | < e 20+
using Chernoff bound. Summing over gl 0, we get

n(S(F)) < D_e 2D = 2 (1 — 72

J=0

which is smaller thai for large enough. n

7.3 The Hypergraph Construction

We are now ready to prove Theorem 7.1.1. The overall plan for the proof is already
outlined in Section 7.1.

Let Lo (G, {Wi o, E = U;; Eijs {Mi} <o, {m"" } ww)cz) be an instance of the
multi-layered Label Cover given by Theorem 4.2.4. Eix> 3 and arbitrarily small
€,6 > 0. Define the bias parameter = 1 — ﬁ — ¢. We present a construction of a

k-uniform hypergrapht.
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Defining Vertices of Hypergraph

The set of vertices of the hypergraphis defined to be
{(w, F)|lweW;, FCM,;, 0<i<L}
For a fixedw € W;, the block of vertices3|w] is defined to be
Blw] :={(w, F) | F € M;}

The weight of the vertices inside the bloéKw] is according tmé”i, i.e. the weight of
a vertex(w, F), F C M; is proportional topl'i(F) = p!fl(1 — p)M\FI as in Defini-
tion 7.2.1. For every layer, all blocks B[w] for w € W; have the same total weight and
the total weight of each layer |1§}1 Formally, the weight of a verteko, F') for w € W;

is given by
11,
— i(F
eyt )

Thus the total weight of all vertices in the hypergraph is equal to
It is clear that the vertices in blodk[w] correspond to the bits in the biased long code

for the label ofw.

Defining Hyperedges

Let0 < i < j < L be any two layers and € W;, w € W, be adjacent vertices in these
layers, i.e.(v,w) € E;;. Letn”" : M, — M, be the corresponding projection map.
We define hyperedges between vertices in bldgkg and Bw] as follows : every

hyperedge has vertices, one vertex from the blodk[v] andk — 1 vertices from the
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block Blw]. ForI C M; andFy, Fs, ... , Fy_1 C M;, we define

((v,1), (w, F), (w,F),...,(w,Fy_1)) to be a hyperedge if and only if

In " (N R)=0 (7.1)

The hyperedges are defined to ensure that there is a large independent set in completeness

case, as will be clear next.

Completeness

Assume that’,,.;;; is a YES instance andt : W; — M, for 0 < i < L be the labeling
of its vertices. We will show that if these labels are encoded using correct biased long
codes, then the hypergraph vertices correspondinghibs in the long codes form an

independent set. Specifically let
ISH) ={(w, F)|lweW;,, FCM,;, ®(w)e F,0<i<L}

We claim that/.S(’H) is an independent set in the hypergraph. Suppose on the contrary
that this is not the case. Therefore, there exigtrtices in/.S(H) that form a hyperedge.

Let these vertices be

(’U,[), (’LU,Fl), (’LU,FQ), ce (w,kal) wherev € Wi,w S Wj,[ - MZ,E - Mj
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By definition of 1.S(H), we have
d(v) €, d(w) € N-'F
Also, sinced is a correct labeling, we have" (®(w)) = ®(v) and therefore
d(v)e In 7 (M R)

In particular, this intersection is non-empty which contradicts the way hyperedges are
defined (see Equation (7.1)).
The weight of the independent sef(H) isp = 1 — ﬁ — € since the weight of all

the1-bits of ap-biased long code is. We now turn to the soundness of the construction.

7.4 Soundness of the Construction

We show thatifz,,,.;;; is a NO instance, theH has no independent set of sizeéSuppose
on the contrary thatS(H) is an independent set of size We will obtain a labeling to
two layersiy, jo of the Label Cover instance that satisfies a significant fraction of edges
between these layers. Soundness property of Theorem 4.2.4 then gives a contradiction.
By an averaging argument, there are at lé#8tfraction of verticesv of Label Cover
for which at least /2 fraction of the vertices in blockB|w] are in/.S(H). Call suchw’s
good. Thus defining
Flw]:={F|(w,F) e IS(H)}

we have

w is good if and only if pp(Flw]) > 6/2
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Again, by an averaging argument, there are at |éastfraction of the Label Cover
layers0-through4. which contain at least/4 fraction of goodw-vertices. By theveak
expansion propertpf the multi-layered Label Cover instance (Theorem 4.2.4), it

O(1/6%), there are two layers, j, such that (fix these layers for the rest of the proof) :

e Atleasts/4 fraction of vertices in layers), j, are good. Let” C W, , X C W, be
the sets of good vertices with"| > 6|W;,|/4, | X| > 6|W;,|/4. Also, letN = M;,

andM = M, be the sets of labels for layeis j, respectively.

e The number of Label Cover edges betweerandY is at least? /64 fraction of

the total number of edges between laygrg,.

Foranyw € X, the set familyF|w] is a family with,-weight at least /2. According
to Lemma 7.2.6, there exists= t(2,k — 1,p) and k — 1 setsF, 1, Fy 2, ..., Fuj1 €

Flw] that intersect in less tharabels. Let
k-1
Clw] == (Fus  with Clw] C M, |Clw]| <t
=1

Clw] will be the set of candidate labels for.
In the following we define an assignment of lab@l$o the vertices inX andY” such
that many of the Label Cover edges between them are satisfiedv EoX, define its

label ®(w) to be a random label from the s€fw]. Forv € Y, we choose a label
®(v) ;= maximizer, c v {w € X |a € 7 (Clw]) }|

i.e., the label that is contained in the largest number of projectiors[@f wherew
ranges over all vertices i such thatv, w) is an edge of Label Cover.

Before continuing, we need the following simple lemma :
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Lemma7.4.1Let A,,..., A, be a collection ofn sets of size at most such that no
element is contained in more tharsets. Then, there are at Ieaﬁc(hﬁm > ;- disjoint

sets in this collection.

Proof: We prove by induction om that there are at Iea§f(h"m disjoint sets in the
collection. The claim holds trivially forn. < 1 4 (h — 1)m. Otherwise, consider all the
sets that intersect;. Since no element is contained in more thasets, the number of

such sets (includingl,) is at mostl + (h — 1)m. Removing these sets we get, by using

the induction hypothesis, a collection that contaia (_}ff;)zm = m — 1 disjoint
sets. We conclude the induction step by addingo the disjoint sets. .

Consider a vertex € Y and a vertexv € X such that(v, w) is an edge of Label

Cover. Sincd S(H) is an independent set, there is no hyperedge of the form
(v, 1), (w, Fyp1),...,(w,Fyr—1) forany Ie Flv]

Therefore, every € F[v] must intersect* (N F, ;) = 7% (Clw]) (recall the defi-
nition of hyperedges, Equation (7.1)). Now consider the family of projectifi$C[w])

for all w € X such that(v,w) is an edge of Label Cover. Lgtdenote the maximum
number of disjoint sets inside this family. Note that every disjoint set reduces the weight
of the vertices inF[v] by a factor ofl — (1 — p)’. Because the weight of[v] is at least

¢, we obtain thay is at mostlog(2)/log(1 — (1 — p)*). Claim 7.4.1 implies that there

exists a label fop that is contained in at least a fraction

1
tlog(g)/log(l - (1 -=p)})
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of the projectionsr®™(Clw]). Therefore, the expected fraction of Label Cover edges

satisfied betweeX andY is at least

1
12 log(g)/log(l - (1 =p)")

Now at least? /64 fraction of edges between layers j, are betweerX andY’. Thus we
get a labeling for layerg), j, satisfying a significant fraction of edges. As usual, choosing
the soundness parameter of Label Cover small enough (i.e. choosing the parameter

Theorem 4.2.4 large enough) suffices for a contradiction.
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Chapter 8

Unique Games Conjecture and its

Consequences

The discovery of PCP Theorem and subsequent powerful PCP constructions have led
to (in many cases optimal) hardness of approximation results for various optimization
problems, such as MaxClique [59], MAX-3SAT [60] and Set Cover [37]. However PCP
techniques haven’t been successful in obtairgngd hardness results for some prob-
lems like Vertex Cover and Min-2SAT-Deletion. In this chapter, we try to identify some
promising new directions for attacking these problems.

We propose a conjecture called Unique Games Conjecture (Conjecture 8.1.1) that
states existence of an outer verifier different from all known ones. The conjecture has
strong implications. It implies any constant factor hardness for Min-2SAT-Deletion (The-
orem 8.3.1) and optim& — ¢ hardness for Vertex Cover (Theorem 9.0.2). These impli-
cations are highly non-trivial and rely on difficult Fourier analysis results, namely, Bour-

gain’s Theorem and Friedgut's Theorem.
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We emphasize that identifying verifiers with right properties has been crucial in PCP
literature. For example, Bellare and Sudan [17] noted that a verifierlaramortized
free bit complexitys sufficient to given!= hardness for MaxClique. Bellare et al [16]
later showed that such a verifier is in fact necessary and tlzestakl 760] was able to
construct one such verifier.

We view our conjecture as more of a question, in that we don’t have an intuition
one way or the other. We also explore some simple ideas for proving and refuting the

conjecture and describe why they don’t work.

8.1 Conjecture, its Motivation and Results

All PCP constructions today (with the possible exception of [32]) follow the basic paradigm
of composing a so-called “outer verifier” with an “inner verifier”. Most of recent research
has focused on improving the quality of the inner verifier. Many sophisticated inner ver-
ifiers have been constructed (see [59], [60], [106], [55], and previous chapters of this
thesis) based on long codes and Fourier analysis techniques. However the outer verifier
has remained untouched. All PCP constructions use the same outer verifier, namely the
Raz Verifier (or the Label Cover problem) obtained by parallel repetition of a 2-Prover-1-
Round protocol for Gap-3SAT. The soundness property of this verifier is given by Raz’s
Parallel Repetition Theorem.

In this chapter, we show that one promising approach to attack problems for which
PCP techniques have failed so far, is to construct an outer verifier with “better properties”.
The Raz Verifier is a 2-Prover-1-Round game (see Section 2.2) with the following crucial

properties :
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1. For arbitrarily small > 0, it is NP-hard to determine whether the value of the

game isl or at most.

2. The answers of the provers are from a domain of gizeherek is a constant

depending on.

3. The answer of the second prover uniquely determines the answer of the first prover.

One might expect Property (3) to be even stronger, i.e. the answer of the second
prover uniquely determines the answer of the first prover and vice versa. In fact such
games have been considered in literature before ([43], [35]) and they are called “unique
games”. However, to the best of our knowledge, the question whether unique 2-prover
games (with{ — ¢, 6) gap in their value) are powerful enough to capture NP hasn’t been
considered before. This question is precisely the focus of this chapter and we make the

following (rather bold) conjecture :

Conjecture 8.1.1 (The Unique Games Conjecture :) For arbitrarily small constants
¢, 6 > 0, there exists a constahkt= k((, §) such that it is NP-hard to determine whether
a unique 2-prover game with answers from a domain of silzas value at least — { or

at mosto.

Remark : One can trivially determine whether a unique 2-prover game has value
Therefore the gap in the above conjecturelis-(C, ) as opposed to the gap, ¢) in the

Raz Verifier. In other words, NP-hard unique games must lose perfect completeness.

We show that a positive resolution of this conjecture would have many interesting
consequences. We use the 2-prover game given by the conjecture as an outer PCP verifier

and build appropriate inner verifiers to prove the following results :

153



1. Let Max2-Lin-2 be a problem where we are given a system of linear equations
modulo 2, each equation containing exactlyvariables. The goal is to find an

assignment that satisfies maximum number of equations.

We show that the Unique Games Conjecture implies : For eyeryt < 1, for all
sufficiently smalle > 0, it is NP-hard to distinguish between instances of Max-
Lin-2 where either there exists an assignment satisfying at least fraction of

equations or no assignment satisfies more than fraction of equations.

This hardness result is tight since the algorithm of Goemans and Williamson [50]
for Max-2-Lin-2, on an instance with optimum — ¢ , produces a solution with

value 1 — O(y/e).

2. A reduction from Max2-Lin-2 to 2SAT gives { — ¢,1 — ¢') gap for 2SAT for
any% < t < 1. As a corollary, it is NP-hard to approximate Min-2SAT-Deletion
(also called Min-2CNF-Deletion) within any constant factor. On the algorithmic
side, Zwick’s algorithm [116], on a 2SAT instance with optimurm- ¢ produces
an assignment with value — O(¢'/?). Klein et al [80] giveO(logn loglogn)

approximation for Min-2SAT-Deletion.

3. Assuming the Unique Games Conjecture, we also show that vertex cover on graphs
is NP-hard to approximate within fact®r ¢ for any constant > 0. In fact, vertex
cover onk-uniform hypergraphs is NP-hard to approximate within faéter ¢ for

everyk > 2.

In light of such interesting consequences of the Unique Games Conjecture, we think
it is an important open problem to prove or disprove it. In this chapter, we also present a

semi-definite programming based algorithm that gives the following theorem :
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Theorem 8.1.2 There exists a (poly-time) algorithm such that given a unique 2-prover
game with valué — ¢ and answers from a domain of sizgit finds prover strategies that

make the verifier accept with probability— O (k?¢'/® /log(1)).

Andersson et al [7] proved a similar result for the problem Néxin-p, where the con-
straints are linear equations mpdvith every equation containing exactly 2 variables.
Such constraints have th@iqueness propersince the value to one variable in the equa-
tion uniquely determines the value to the second variable. Our algorithm is simpler and
more general than that of Andersson et al.

Theorem 8.1.2 shows that if the Unique Games Conjecture is true, the domain size
requiredk = k((,6) must be at Ieasgﬁ. A trivial boundk > 1 also holds, since the
provers can choose their answers uniformly at random from the domain of sind

make the verifier accept with probabili%y

Overview of the Chapter

We prove hardness of MaLin-2 and Theorem 8.1.2 in this chapter. These results and
formulation of the Unique Games Conjecture appear in [77]. For proving hardness of
Vertex Cover, we need to state a stronger form of the Unique Games Conjecture and show
that the stronger form in fact follows from the original form. This result and hardness of

Vertex Cover appear in [79] and we present them in the next chapter.

8.2 Unique Label Cover Problem

As always, we work with the Label Cover problem instead of 2-prover games. We first
define a weighted version of the Label Cover problem with an additional property that

the projection maps are bijections (i.e. permutations).
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The Weighted Unique Label Cover Problem

Definition 8.2.1 A weighted unique Label Cover problet(G(V, W), M, {7"*},{pww})
consists of a complete bipartite gragi(V, W), with bipartition V, 1. An edge(v, w)
has a weighp,,, with ZW pww = 1. Every vertex in/ U W is supposed to get a label
from a set)/. With every edgév, w) there is associated a bijectiort* : M — M. For
an assignmen of labels to the vertices of the graph, that is for a funcionlV UW —
M, an edggv, w) is said to be satisfied if"* (®(w)) = ®(v). The goal is to find an as-
signment of labels that maximizes the total weight of satisfied edges. We(dEfii{&)

to be the maximum weight of edges satisfied by any labeling.

The instances of Label Cover given by Theorem 2.3.2 hawe> | N| and the pro-
jectionsn® : M — N are highly many-to-one (this many-to-one-ness increases as
soundness parameter decreases). The PCP constructions in this chapter need a very strin-
gent condition that the projections be bijections. It is clear that the Unique Label Cover
problem corresponds to a Unique 2-Prover Game. Hence the Uniqgue Games Conjecture

can be restated as :

Conjecture 8.2.2 (The Unique Games Conjecture :) For arbitrarily small constants
¢, 6 > 0, there exists a constaht= k((, 6) such that it is NP-hard to determine whether
a weighted unique Label Cover instance with label sets of/si@e. |M| = k) has

optimum at least — ¢ or at mosts.
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8.3 Hardness of Max2-Lin-2

In this section we present a proof of the following theorem.

Theorem 8.3.1 The Unique Games Conjecture implies that for every ¢ < 1, for all
sufficiently small constants> 0, it is NP-hard to distinguish between the instances of
Max-2-Lin-2, where the fraction of satisfied equations is at lelaste or at mostl — ¢’.

In particular, Min-2SAT-Deletion is hard to approximate within any constant factor.

This result is essentially due toasfad [61]. He proposed a test for checking a
long code and analyzed it using Bourgain’s recent theorem [22] on Fourier spectrum
of boolean functions, which itself was inspired by a question raisedastad. Our con-
tribution is to introduce the Uniqgue Games Conjecture and to show thetaH'S test can
be extended to test the consistency between two long codes. This gives a PCP verifier
that makes a linear test @query bits, has completeneks- ¢ and soundnesk— ¢'.

Following the standard paradigm, the PCP verifier takes the unique Label Cover in-
stancel guaranteed by Conjecture 8.2.2 and expects the proof to contain, for all vertices
v € V andw € W, the long codes of labels ofandw. These long codes are assumed to
be folded, i.e A(—f) = —A(f) (see Definition 2.4.3 and Lemma 2.4.4).

The verifier picks an edge of Label Cover and checks that the labels along this edge
satisfy the corresponding bijection. There is a technical issue of how an edge is picked.
Letp, = >, pww. Thatis if an edge is picked with a probability equal to its weight,
py IS the probability that the left endpoint is Let ¥, : W — [0,1] be defined as
U, (w) = B, ThatisW,(w) is the conditional probability that the right endpoint of an

edge isw given that the left endpoint is.
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Action of the verifier :

1. Pickv € V with probabilityp,. Let A be the (supposed) long code of the (sup-

posed) label of.

2. Pick arandom functiori : M — {—1, 1} and a “perturbation functiony : M —
{-1,1}. For eache € M, u(z) = 1 with probabilityl — e andu(z) = —1 with

probabilitye.
3. With probability; each, select one of the following actions :

(a) (Codeword test) Acceptif and only if A(f) = A(fu)

(b) (Consistency test) Pick a vertexc 1/ with the distribution,. Let B be the
(supposed) long code of the (supposed) label @ndr = 7% : M — M

be the bijection betweemandw. Accept if and only if
A(f) = B(fom)

wheref o m denotes the composition of functions.

Remark : Hastad proposed and analyzed the codeword test. We propose the consistency

test and show that &tad’s analysis can be extended to check consistency provided the

Unigue Games Conjecture is true.

Completeness

It is easy to see that the completeness of the te]sH% where the outer Label Cover
instance has completendss (. The test may fail due to 2 reasons : (1) The e@dgev)

picked by the verifier may be an unsatisfied edge of the Label Cover instance which
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happens with probability. In this case, the consistency test fails. (2) In a correct proof,
A is a long code of some € M. The codeword test fails whem(a) = —1 which
happens with probability.

The claim about the completeness follows. Note that by the Unique Games Conjec-

ture,( can be assumed to be arbitrarily small.

8.3.1 Bourgain’s Theorem and Soundness Analysis

Recall that any supposed long caddnas Fourier expansion

A= Z Eaxa
aCM

A'is a correct long code if there ise M such thatAy,, = 1, i.e. its Fourier spectrum is
entirely concentrated on a singleton set. A long code can be viewed as a boolean function
on {—1,1}* that depends on exactly one coordinate. We use the following theorem of
Bourgain [22]. Roughly speaking, it says that if Fourier spectrum of a boolean function
is concentrated on sets of small size, then the function is essentially determined by a few
coordinates. The theorem was motivated kastdd's codeword test (i.el(f) = A(fu))

for checking long code.

Theorem 8.3.2 Let A be any boolean function (for instance a supposed long code) and

k > 0 an integer. Then for everé/ < t < 1, there exists a constant > 0 such that

N . 1
E 2 —t E 2
If Aa < Ct]{,' then Aa < m

a: o>k a: \Ea\gl—lo4—k2
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We intend to show that the soundness of the PCR is Q(¢'). The probability of

acceptance of the verifier is clearly

st — L1, [ AL g [LEAD DU o)

Using the Fourier expansiofi= ) Eaxa we get

Er[AHA ] = Epl D Aay vy Xon (F)Xon (F)Xas (12)

1,02

The expectation ovef is non-zero only if; = ay = . Also E,,[xa(p)] = (1 — 2¢)le.

Hence

Es A ZA2 Ia\

Using the Fourier expansiaBl = 3~ By, we have

Ep JA(f)B(f om)] = B> AaBaxa(f)xs(f o m)xs(i)] (8.1)
a,B

We have

s(fom)=][rx@) = ] f@ =xx0(f)

zef yen(B)
Substituting this in (8.1) and taking expectation oyemwe see that the expectation is
non-zero only if = 7(3). Sincer is a bijection,3 = 7' («). Thus (8.1) can be written

as

Er [A(f)B(f o) ZA B )'a‘
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Hence the probability of acceptance is

Pracd = &+ 18, [T, B0 - 20+ 2, 4., [Brva]|

= % + iEv[Rv + Tv]

If this probability is> 1 — ¢c,e' whereg, is as in Theorem 8.3.2, we hav& (R, +
T, > 2— %ctet. This implies that over the choice of with probability at Ieas%,

R,+T, > 2—c.'. Fixany such “good?. We haveR, > 1—c,e' andT, > 1—ce’ > 3.

1—ce <R, < Z gi +e7? Z gi

a:lal <el a:lal > et

= Y A < (8.2)

a:lal > et
Takingk = ¢! in Theorem 8.3.2, we get
S &2 <L (8.3)
~ « 100 '
a:|Aq] < 1_1047k2

Now we use the fact that, > 1. Call a “good” if o« C M is nonempty|o| < e
and\ﬁa| > 1—104*’“2. We will show that the contribution of bagls to 7, is small. First of
all, since the tables are folded,, = 0 when|a| is even (see Lemma 2.4.4). In particular

A, = 0whena is empty. Also
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—~ ~ —~ ~ 2
Z AaEw [Bﬂfl(a)] < Z A?X \/Z ‘EUJ[Bﬂfl(a)]
a: |al>e1 a: |al>e 1 e’
Z 121\3 < Ve
a:|al>e !

where we used (8.2). Similarly we use (8.3) and show that the contributiais glich

IN

that|ﬁa| < 1—104—"72 to 7, is at most:. This implies thafl,, when restricted to good'’s,

still remains at Ieas}. We have

12 N2
Be | A, mw] > eBo| Y ABla (8.4)
« good
Lo n2
> eqsd T B | Y Braw
|« good
r 2
1 —2]€2 o
> e o4 B > AuBra
« good
2
1 2 ~ =~
> — 47\ E A, B.-1
= 6100 w Z aPr—1(a)
« good

> ety l
- 100 16
The expression on the second-last line is jlistrestricted to goodv’s which we
showed to be at Iea§t Note that we are assuming thais good itself, which holds with
probability .
Now we define a labeling for the Label Cover instance as follows : For a good vertex

v € V, pick a with probabilityﬁi, pick a random element @f and define it to be the
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label ofv. For any vertexv € W, pick 3 with probability§2, pick a random element of
(£ and define it to be the label aof.

It is easy to see that the weight of the edges satisfied by this labeling equals the
expression (8.4). Label af will be defined to be a random element « and the label
of w will be defined to be a random elemente 7~!(«a). With plrobabilityri| it holds
thatw(y) = x and the edgév, w) in the Label Cover instance is satisfied.

Since the expression (8.4) is at le@t4~2*"), we get a labeling that satisfies edges
of total weightQ(e4~2**). However this contradicts the fact thatPT'(£) < 6 if § was
chosen sufficiently small (see Conjecture 8.2.2). This shows that the soundness is at most

1 — £¢4e” wheret > 1 is arbitrary, proving Theorem 8.3.1.

Remark : A simple gadgetlz®y=0— ZVy, xV7y) reduces Maxt-Lin-2 to 2SAT

and impliesa [ —¢,1 —¢') gap for 2SAT for any > 1.

8.4 Proof of Theorem 8.1.2

In this section we prove Theorem 8.1.2. Instead of unique 2-prover games, we work in a

more general setting of constraint satisfaction problems with uniqueness property.

Problem : We are given a sekX of n variables which take values from the $&f =
{1,2,...,k}. For every pair(u, v) of variables, there is a “constraint” which is a bijec-
tion7* : [k] — [k]. This constraint has a weight,, with 3, ) w., = 1.

For an assignmen# : X — [k] to the variables, a constraint on the pdit, v) is
satisfied, ifr*"(A(u)) = A(v). The goal is to find an assignment that maximizes the

total weight of satisfied constraints.

Algorithm : We use a semidefinite program from Feige and Lovasz’s paper [43] and

augment it with a suitable rounding procedure. Let us first formulate the problem as a
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guadratic integer program. For every variable= X, let uy, uo,... ,u; be auxiliary

variables taking 0-1 values. Place the following constraints :

uitui+...oup=1 YueX (8.5)

We intend that if an assignment assigns the vajue [k| to a variableu, thenu,, = 1
andu; = 0 Vi # iy. This would satisfy the constraints (8.5), (8.6). These constraints

imply that for every paifu, v) of variables

1<4,5<k

It is easy to see that the goal is to maximize the following function subjected to the above

constraints.
Z W (U1Vr(1) + U2Ur(2) + - .. UkVr(r)) Wherem = 7" (8.9)
(u,v)

Now we consider the semidefinite programming relaxation of the problem. We allow
the variablegu, ... ,ux) to be vectors in a high dimensional spacekindimensional

space to be precise) and the constraints (8.5)-(8.8) replaced by the constraints :
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> od-ti=1 YuveX (8.13)
1<i,j<k

The goal is to maximize the following function subjected to the above constraints :
> wulily - Tray + - -+ Gk - Tary) Where 7 = 7 (8.14)
(u,v)

Observation : In any feasible solution of the SDP, for any two variahles, we have
from the constraints (8.10), (8.11) and (8.13),
k

k k k
INal=1gl=1  and (@) 5 =1
i=1 j=1 =

i=1 j=1

This implies thay "}, @; = >_"_, #;. We denotes' = "7, @; which is the same for all
variablesu and||s]| = 1.

We solve the semidefinite program and construct an assignment using the following

rounding procedure.

e Choose a vector from the normal distribution, i.e. choose every coordinaté€ of

from the distributionV (0, 1) independently.

e By replacing” by —7if needed, assume that 5> 0.
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e Construct the following assignmeut: for every variable:, let

A(U) =1y where 7- ’Jio = 1I£13<)§€(7? ﬁl)
YA

We prove the following theorem which is sufficient to prove Theorem 8.1.2.

Theorem 8.4.1If there exists an assignment that satisfies constraints with total weight

1 — ¢, then the above algorithm produces an assignment that satisfies constraints with
expected weight — O(k%¢'/% | /log()).

Proof: Letay, = > ;o Ui - Uriy, ™ = " which is the part of the SDP objective
function (8.14) corresponding to the constraintanv). By the hypothesis, the SDP has

a solution with value at least— ¢ implying that there exist vecto(s/; ) .c x ic[x) Satisfying

Zwuvauv Z ]- — €

(uv)
— Z Wyp > 1 — 2¢1/5

Oy >1— L e4/5
Fix any (u, v) with a,,, > 1 — 1¢*/>. We will show that we have™"(A(u)) = A(v) with
probabilityl — O(k?¢'/? /log(1)). Letr = = for simplicity. The intuition behind the
proof is simple. ife,, = 1, the SDP constraints (8.10-8.13) imply that= v, V¢ €
[k]. Thus for any vector, if 7 «; is maximized for index,, then: - v; is maximized at
index(iy). Hence the rounding procedure will assidiiu) = iy, and.A(v) = 7 (i),
satisfying the constraint.

We however havey,, > 1 — 1¢*/® and it takes some effort to translate the intuition

into a rigorous proof. We proceed to prove several simple lemmas.
Lemma 8.4.2 ||4; — Ur(;)l| < €5 Vi€ [k].
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Proof:

1 N - — —
11— 564/5 < Zuz * Ur(i) < Z ||ul||||v77(l)||

11> + )| |17
< Z 5 =1

— 2
ill” =+ | Un L 1 .
]| QHU ol — iy Ty < 564/5 Vi

— ||ﬁi_777r(i)||2 S 64/5 Y1

Lemma 8.4.3If Y is distributed asV (0, 1),

PrY|>9] <ez
Proof: Standard inequality. n

Lemma 8.4.4 With probabilityl — O(k%!/? /log(2)), components af along the direc-

tions of vectors

{4 iy, {8 — W5 Fizg, {8 — Uni) Ficpy

have magnitude in the range

[ fiog(, e ]

Proof: This follows from the fact thaf is distributed in a spherically symmetric manner

and hence its component along any direction is distributéd(@s1). Hence for any unit
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vectort,

1 1
Pr [|Fﬂ < e”ﬂ/log(z)] < 265 log(z)

Pr [|F-ﬂ> log(l)] < Ve

€
where the first inequality is trivial and the second follows from Lemma 8.4.3. Now

we take a union bound along th&(k?) directions specified in the statement of this

lemma. n

Lemma 8.4.5 With probabilityl — 10ke'/® /log(L), the component ofalongs, that is
|7 5, is at leastske!/®, /log(2).
Proof: Trivial. .

Thus except with probability — O(k%¢'/? /log(1)), we can assume thatsatisfies hy-
pothesis of Lemma 8.4.4 and Lemma 8.4.5. Under this assumption, we prove the follow-

ing three lemmas. Let € [k be such that 7 @, = max;<;<j 7 - U;.
Lemma 8.4.6 ||i;, || > 5¢'/°.

Proof: (YF ;) -7 =&-7 > 5ke'/? /log(1) by Lemma 8.4.5 and), is the index that

maximizes™- @;. Hencer - @;, > 5¢'/°, /log(%). But by Lemma 8.4.4, the component of

7 alongi;, has magnitude at mosflog(1). This implies thaf|a;, || > 5¢'/°. .

Lemma 8.4.7V j # iy, 7 i; < 7+, — 5¢/%y [log(L)
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Proof:

AVARRN AV

v

Lemma8.4.8VYi, |7 4, —7- U,

Proof:

iy, — iij]| €'/ /log(%) by Lemma 8.4.4

;|| €/°1/1log()  Sincei;, L

5¢2/5\/log(f) by Lemma 8.4.6

< 4 /log(%) ||i; — Unpy|| by Lemma 8.4.4
< 4/log()e¥> by Lemma 8.4.2
|
Now we will show that
T+ Un(i) = Max (7 - vj) (8.15)

1<j<k

This would imply that the assignmedtgiven by the rounding procedure assighs:) =

io, A(v) = m(ip) and the constraint on the pdir, v) is satisfied.

Let j # iy be any index. By Lemma 8.4.8 and Lemma 8.4.7,

T Un() ST U

1 1
+ 62/51/10g(z) < il — 4€X° log(z)
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Also by Lemma (8.4.8) we have

1
' Tntig) 2 7+ Wiy — €74 [log(~)

It follows that

- ﬁﬂ(io) > 7. Uﬂ'(j) V] 75 io

finishing the proof of (8.15) and Theorem 8.4.1. n

8.5 Conclusion

It seems quite difficult to prove (or disprove) the Unique Games Conjecture. Proving
the conjecture is equivalent to constructing a PCP that reads 2 symbols and accepts if and
only if these symbols satisfy a bijective constraint. However the current tools appear quite
weak for constructing PCPs that read 2 symbols. Parallel repetition of a unique game
is a uniqgue game and one might hope to amplify the soundness by parallel repetition.
However we do not have a hard instance of a unique game to begin with. Theorem
8.1.2 shows that if the Unique Games Conjecture is true, the domairk&jzé) >
41%, thus the domain size would play a crucial role. On the other hand, disproving the
conjecture may require an algorithm that gives a theorem similar to Theorem 8.1.2 and
whose performance is independent of the domain/size

A less ambitious goal (than proving the Uniqgue Games Conjecture) would be to show
that the value of a unique 2-prover game with domain siehard to approximate within

factor f(k) where f(k) — oo ask — oo. The only known results are constant factor

hardness for Max-Lin-2 by Hastad [60] and for Ma®-Lin-p by Andersson et al [7].
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One can also consider the following relaxation of the uniqueness property. We say
that a 2-prover game hag-to-1 property” if the answer of the second prover uniquely
determines the answer of the first prover and for every answer of the first prover, there are
at mostd answers for the second prover for which the verifier would accept. We assume

d to be a fixed integer and > 2. Consider the following conjecture :

Conjecture 8.5.1 (d-to-1 Conjecture : ) For arbitrarily small constant > 0, there
exists a constant = k(6) such that it is NP-hard to determine whether a 2-prover game

with d-to-1 property and answers from a domain of siZeas valuel or at most.

Note that in contrast with the Unique Games Conjecture, we can hope for perfect
completeness in théto-1 Conjectured > 2). One can use some of the techniques from
Dinur and Safra’s paper [32] to show that tti¢o-1 Conjecture implies the following

results (we omit the proofs from this thesis) :

1. For arbitrarily smalk, 6 > 0, it is hard to find an independent set of sizein a
graph which is guaranteed to have an independent set oﬁ]siz% — €)n. This
implies a PCP with zero free bits, completen@és) and arbitrarily low soundness.
The best known algorithm (see [6]), given a graph containing an independent set of

linear size, finds an independent set of only sublinear size.

2. From the above result, it follows that if 2-to-1 Conjecture is true, it would imply
V2 — e hardness for Vertex Cover which is better than the fattt6 by Dinur and

Safra. In fact, Dinur and Safra do use an analog of 2-to-1 property.
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Chapter 9

Hardness of Vertex Cover Based on

Unique Games Conjecture

One of the major open problems in the field of inapproximability is whether vertex cover
is hard to approximate within factar— e for everye > 0. This is known to be equivalent
to a fundamental question about PCPs wzéno free bits The best known hardness is
1.36 due to Dinur and Safra [32] and the current techniques seem inadequate to prove
2 — e hardness result. An integrality gap ®f ¢ is known for a large class of linear
programs (see [10]).

In this chapter, we take a step towards resolving this question. WeZzhewardness
for vertex cover assuming the Uniqgue Games Conjecture presented in Chapter 8. We

show the following result that appears in [79].

Theorem 9.0.2 Assuming the Unique Games Conjecture, vertex coveruniform hy-
pergraphs is NP-hard to approximate within factér— ¢ for everyk > 2 ande > 0 is

an arbitrarily small constant.
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An algorithm with factork approximation is known for vertex cover frruniform hy-
pergraphs and hence this result is optimal. In Chapter 7, we showed factot — ¢
hardness for this problem.

An important contribution of our work is to define a stronger form of the Unique
Games Conjecture and show that it actually follows from the original form. The stronger

form could be useful to obtain further consequences of the Unique Games Conjecture.

9.1 Techniques

The reduction in this chapter can be divided into two parts. In the first part, we state a

stronger form of the Unique Games Conjecture and show that it is actually equivalent

to the original form (Theorem 9.2.2). Recall that the Uniqgue Games Conjecture states

that it is NP-hard to distinguish whether a unique 2-prover game has value clase to

or arbitrarily small. The stronger form states that the NP-hardness holds even with the

following stronger requirement in completeness case : we require that the provers have a
strategy such that over the choice of the question to the first prover, with probability close

to 1, the verifier accepts faveryquestion to the second prover.

We believe that this stronger form would be useful in our understanding of the unique
games conjecture and an eventual resolution of this conjecture.

The second part of our reduction combines this conjecture with the combinatorial
methods presented in Chapter 7. The reduction is roughly the same, construkting a
uniform hypergraph from (strong unique) 2-prover game. We expect as a proof long
codes of prover’'s answers. We let the bits in long code to be vertices of the hypergraph
and define hyperedges to enforce consistency between provers’ answers (or labels to La-

bel Cover instance). The uniqgueness property of the 2-prover game is crucial in our
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construction. We show that the hypergraph either has an independent set DLs,ﬁzee
or has no independent set of siveshere ¢, 6 are arbitrarily small.

We employ several tools from Dinur and Safra’s paper [32] including biased long
code, Friedgut’s Theorem on sensitivity of boolean functions and theorems in extremal

set theory (see Section 9.3).

Motivation for Friedgut’ Theorem :  Recall that in the combinatorial view of the long
code, the code is indexed by all séts_ M. A long code ofh € M is defined by setting

the bitF'tolifand only ifb € F. Let us build a grapld: as follows : its vertices are all

setsF' C M and(F}, F,) is an edge if and only if; N Fy, = ().

Note that an independent setdhcorresponds to a family of pairwise intersecting
sets. If we take a long code bfe M and take the family of all sets containihgit is an
independent set of siz%(of sizep for ap-biased long code). This is a large independent
set that is completely determined bye element, namely. Friedgut’'s Theorem is a
strong converse to this fact. It says that any maximal independent set (which is necessarily
a monotone family) with significant size is essentially determined by a few elements.
Thus any independent set of significant size can be “decoded” to give a small number
of elements that determine it. We use this theorem in soundness analysis and show that
if the graph contains an independent set of gizthen one can take the corresponding

decoded elements as candidate labels to Label Cover instance.

9.2 Constructing the Strong Label Cover

We state a stronger form of the Uniqgue Games Conjecture (Conjecture 8.2.2) and show

that it is actually equivalent to the original form.

174



Notation

Recall the definition of weighted unique Label Cover instance (Definition 8.2.1). The

instance is given a8(G(V, W), M, {m""}, {p,w }). We need some extra notation.

e Letp(L) = >, ., puw andp(L) is not necessarily required to he OPT(L) is

defined as the maximum weight that can be satisfied by any labgling
e ForveV, |etp(£, U) = ZwEW Pow-

e For an assignment of labels letps (L) be the weight of edges satisfied by labeling

®. Forv € V, letpe (L, v) be the weight of edges incident orsatisfied byd.
The Unigue Games Conjecture can be restated as :

Conjecture 9.2.1 (Unique Games Conjecture :) Foragyy > 0, there exists a constant
|M| such that the following is NP-hard. Given a Unique-I8with label set)d/ and
p(L) = 1, distinguish between the case where there exists a labélgwch thaps (L) >

1 — ¢ and the case where for any labelidg ps (L) < 7.

Stronger Form

A Strong Label Cover (Strong-LCE = (G(V, W, E),{x"*}) is defined as follows.

We are given a bipartite graghi(V, W, E') possibly with parallel edges in which all left
degrees are equal to some constanin addition, there exists a bijectiart:* for each
edge(v,w) € E. A labeling and the edges satisfied by it are defined as before. In this

section we prove the following theorem:

Theorem 9.2.2 Assuming Conjecture 9.2.1, for agyy > 0, there exist constan{d/|, d
such that the following is NP-hard. Given a Strong-LC with labeldeand left degrees

d, distinguish between these cases :
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e There exists a labeling in which for at lealst- ¢ fraction of vertices € V, every

edge incident ol is satisfied.

¢ No labeling satisfies more thanfraction of the edges.

We begin with two lemmas. The first modifies the Unique-LC so that all V
have the same weight. The second lemma rounds the edge weights. The proofs are very

technical and they could be safely skipped.

Lemma 9.2.3 Assuming Conjecture 9.2.1, for agyy, 5 > 0, there exists a constant

| M| such that the following is NP-hard. Given a Unique-Gwvith label set\/ and the
property thatvv € V, p(L,v) = 1, distinguish between the case where there exists a
labeling® such that for1 — 5 fraction ofv € V, ps(L,v) > 1 — ¢ and the case where

for any labelingd at most3 fraction ofv € V havepe (L, v) > 7.

Proof: Consider a Unique-L&' = (G'(V',W'), M, {="*}, {p.,}) as given by Con-
jecture 9.2.1 with parameterd,+ which will be chosen later. Also, ldtbe a large
enough constant. The Unique-LC= (G(V, W, E), {m"*}) is defined as follows. Let
W = W'. The setV includesk(v) copies of eaclhy € V/, vV ... v*®) wherek(v) is
defined ag! - |V'| - p(£',v)]. For everyv € V', w € W andi € [k(v)] we definer”"”»
as7'”" and the weighp, ,, asp,,,/p(L’,v). Notice thatp(L,v) = 1 forallv € V and
that(l — 1)|V’| < |V| < 1|V'].

We first prove the completeness part. Given a labelihtp £’ that satisfies edges of

weight at least — ¢’, consider the labeling defined asb(v¥) = @ (v). The weight of
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edges satisfied b¥ is:

ZP@(ﬁ v Z k(v) - por (L', 0)/p(L,v) >

veV veV’
S UV par(Lv) = > par(L,0)/p(Lv) >
veV’ veV’

V(1= ¢) = [V = V] = ¢ = 3) > V|1 - 2¢) > V(1 - 2¢)

for large enoughi. This implies that for at least — /2(’ of vertices inV, ps(L,v) >
1 —+/2({’. Hence, by choosing a small enougfhwe get that at leadt— /3 of the vertices
v e V satisfype(L,v) > 1 —(.

We now prove the soundness part. Assume we are given a laldetimg@ for which
at leasts fraction ofv € V haveps (L, v) > ~. Without loss of generality we can assume
that for everyv € V', the labeling®(v®) is the same for ali. That is because the
constraints betweerl®) and vertices itV are the same for all € [k(v)]. We define the

labeling®’ as®’'(v) = ®(v™"). The weight of edges satisfied by is:

> pa(Lv) = i Z k(v) - par (L, 0)/p(L0) =

UEV’ UEV’
l
\% R
l\V’\ chp > l|v,|ﬁ\ >y sy,
for small enoughy'. n

Lemma 9.2.4 Assuming Conjecture 9.2.1, for agy~, 3 > 0, there exists a constant
| M| such that the following is NP-hard. We are given a UniqueA @ith label set)/
and the properties thatv € V, p(£,v) = 1 and that there exists an integer= O(|W|)
such that the weight,,,, is multiple ofé forallv € V,w € W. The goal is to distinguish

between the case where there exists a labelirgych thatl — 3 of theV/-vertices have
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pe(L,v) > 1 — ¢ and the case where for any labelidgat mosts of theV/ -vertices have

po(L,v) > 7.

Proof: Letl = (G"(V',W’), {=""} {p,,}) be a Unique-LC as in Lemma 9.2.3 with
parameteré, 7, 3. Letl be alarge enough integer and define- [|1V|. The Unique-LC
L= (GV, W) {r""} {pw}) hasV = V', W = W', 7»* = 7/* and the weights
{pww} are defined as follows. Fix an arbitrary, € W. For everyv € V we would
like to round the weightg,,, down to the nearest multiple %f. In order to maintain the
propertyp(L,v) = 1, we slightly increase,,,,. More formally, for everyv € V and
w # wy the weightp,,, is defined asap),, | /«. Also, for everyv € V, p,., in defined as
1= ew\ {uo) Pow- Notice that forw 7 wo, puw < pj,, and thapuw, < pl,, +|W|/a =
Py + 7

Assume that there exists a labelifigto £’ in which 1 — § of the V/'-vertices have
po(L v) >1— % Then, inLZ, the same labeling satisfies that for 5 of theV-vertices
pa(L,v) > 1 —§ — W] mm > 1 - for large enoughi. Also, a labeling® to £
in which g of the VV-vertices haves (£, v) > ~ satisfies thats of the V’-vertices have

po(L',v) >~ — 1 > 1 for large enough. .

Proof: [of Theorem 9.2.2]Let L' = (G'(V', W), {=""*},{p.,}) be aUnique-LC asin
Lemma 9.2.4 with paramete(s ~/, 5’ which will be chosen later. We define the Strong-
LC £ = (G(V,W, E),{r""}) as follows. The set of verticd$” equalsi¥’. Letd be an
integer that will be determined later. For each V' and each sequenc¢e, . .. , w,) of
W-vertices we creatél{_, ap,,, new vertices i/ (notice that this number is integral).

Each of these vertices is connecteduq. . . , wy with the maps™*1, ..., 7n’"%4. The

178



total number of vertices created from each V' is

> nhap,, =a() P, =af
(WL e wg) EW wew
sincep(L’,v) = 1. Hence|V| = a?|V’|. Also note thatC might contain parallel edges.
We first prove the completeness part. Assume fiat a labeling tol’ such that

1 — ' of theV’-vertices haveqs (L', v) > 1 — ('. Let® be the labeling ta assigning to
each of the vertices created frame 1’ the valued’(v) and for eachv € 1 the value
¢’(w). Consider a vertex € V' such thape (£, v) > 1 — ¢’ and letWV, denote the set
of verticesw € W such that the edg@, w) is satisfied. Then the number of vertices in

V that are connected only to verticeslin, is

S OLap, =a() ] Pl = a1 =)
(wl,...,wd)e(Wv)d weWy
Therefore, the total number of verticeslinall of whose incident edges are satisfied by

® is at least
a1 =)A=V =01 =) =-)V]> 1=V

for small enouglt’ andj'.

We now prove the soundness part. Assume that no labelibg £ has more thap’
of theV’-vertices withpg/ (L', v) > 7. Let ® be a labeling taC and defined’ as follows.
For eachw € W let &'(w) = ®(w). Forv € V' defined’(v) as the label in}/ that
maximizespe/ (L', v). Forv € V' andi € M, letS,; = > p,, where the sum is taken
over allw € W such thatr"*(®'(w)) = i. Then notice thape (L', v) = max; S,;.

Hence, for at least — 3’ of theV’-vertices,S,; < ' forall i € M. Fix a vertexv € V'
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for which S, ; < +/ for alli € M. Consider the subsét, C W of tuples(wy, . .. ,wy)
such that for ali € M there exists at most oryefor which 7% (&' (w,)) = i. A vertex
in V created from such a tuple will have at most one satisfied edge. The number of such

vertices created from as above is

E : d / _.d § : /
Hizl&pvwi = izlpvwi

(Wi, wq)EZy (Wi,... , wq)EZy

Notice that sincé_, ., p.., = 1, this defines a probability measure @n. Also note

we
that the sum above is exactly the probability that a tdple . . . , w,) isin Z, where each
element of the tuple is chosen according to this probability. Hence, the sum is at least
1-(1=v)-(1-29)...(1=(d—=1)) > (1—dy)* > 1 — % for small enoughy’. The

number of satisfied edges inis therefore at most

o BV d (L= V(L= 5) 1+ 5 d) =

2 2
VI3 + (1= 8)(1 =)+ (1= F)gd) <VId=|E|
for a small enought’ and a large enough n

9.3 Tools from Sensitivity Analysis of Boolean Functions

We restate definitions from Section 7.2. For a univevéglet 2/ denote its power set,
i.e. the family of all subsets of/. For abias parametef) < p < 1, the Weightuj,”(F)
of a setF' is defined as

py! (F) = pfl(1 = p) ¥

180



We will omit the superscripd/ when it is clear which universe we are talking about. The

weight of a family.F C 2 is defined as

1p(F) =Y 1p(F):

FeF

Note that the bias parameter defines a distributio?Bnwhere a subset is picked by

independently picking every elementi with probabilityp. We denote this distribution

byué”.

9.3.1 Friedgut’s ‘Core’ Theorem

For a family.F C 2™, an element € M and a bias parametgr we define thénfluence

of the element on the famifs
Influence, (F, o) := Py, [exactly one of FU {o}, F\ {o} is in F].

As before, the superscript will often be omitted. The average sensitivity of a family is

defined as sum of the influences of all elements.

as,(F) := Z Influence, (F, o).

oceM

Definition 9.3.1 A family F C 2™ is called a core-family with a cor€ C M if there

exists a family/ C 2¢ such that

VFEe2M FeFifandonlyif FNCeH.
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A family F C 2M is calledmonotondf F ¢ F andF' C F' impliesF’ € F. The
following well-known lemma states that the weight of a monotone family is an increasing

function of the bias parameter.
Lemma 9.3.2If F C 2" is monotone ang > ¢, thenu)'(F) > p' (F).

Russo-Margulis’ Theorem in fact states that the weight of a monotone family is a
continuous and differentiable function of the bias parameter and the derivative equals the

average sensitivity of the family.

Theorem 9.3.3 ([94], [105]) For a monotone familyF C 2M

d,Uq (‘7:)
dq q=p

= asy(F)

Applying this Theorem and the Mean Value Theorem from analysis, we obtain

Lemma 9.3.4 Let 7 C 2™ be a monotone family antl < p < p + ¢ < 1. Then there

existsp’ € (p,p + €) such thats, (F) < L.

Proof: The Mean Value Theorem guarantees existenge ef(p, p + ¢) such that

oy (7) = gD = ool

<

A | =

Friedgut’'s Theorem [44] states that any family with low average sensitivity is essen-

tially a core family. To be precise,

Theorem 9.3.5[44] Let F C 2™, 0 < p < 1 be a bias parameter; be an accuracy
parameter and: = as,(F). Then there exists a core famify with coreC' C M such

that
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e Size ofC' is a constant that depends only pnk, 7. In fact |C] < c’;/" wherec,

depends only op.
. up(]-"A]?) < nwhere A denotes the symmetric difference of two families.
Combining Lemma 9.3.4 and Theorem 9.3.5, we get :

Theorem 9.3.6 Let p be a bias parametet, > 0 be a constant ang be an “accuracy
parameter”. LetF C 2 be a monotone family. Then there exists (p,p + ¢) and a

core familyjE C 2M with a coreC' C M such that

o as,(F) <

a =

e The size o€ is a constant that depends only pr, 7.
. ,up/(.'FAj':) <n

Lemma 9.3.7 Let 7 C 2™ be a monotone family. L&t be a set of elements such that

for every element € T, Influence,(F, o) < n. Define a subfamily¥’ C F as
F ={F|FeF, F\TeF}
Then for any) < p < 1 we have
pp(F') 2 p1p(F) = |T| (min(p, 1 — p))~'".
Proof: A similar proof appears in [32]. Consider the family

Fl={Fec2M\T|FUTcF, F¢F)
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It can be seen that

i (F) = il (F) < T ()

For any setF' € F” there must exist som® C T and an element € T such that
FUDU{c} € FbutFUD ¢ F. Hence, any sef’ € F” contributes at least
" (F) - min(p, 1 — p)/”! to the influence of one € T'. It remains to notice that the

total influence of elements ifi is at mos{7'| - . n

The following lemma can be found as Lemma A.4 in [28].

Lemma 9.3.8 Lete > 0 be an arbitrarily small constant and defipe= 1 — % —etobe
the bias parameter. Then, for a sufficiently large unive¥$éethe following holds. For
anyF C 2M such tha, (F) > 1—% there exist: sets in the familyF whose intersection

is empty.

9.4 Reductionto Vertex Cover ink-Uniform Hypergraphs

LetL = (G(V,W, E),{x""}) be an instance of Strong-LC given by Theorem 9.2.2 with
parameters, v which will be chosen later. We will reduce this instance to an Independent
Set problem ork-uniform hypergraphs. The vertices of the hypergraph we construct are
weighted. One can obtain an unweighted hypergraph by using standard techniques (see
[32]). The hypergraph will either contain an independent set of degh% — 2e¢0rno
independent set of weightwheree, 56 can be made arbitrarily small. In the following we

fix eandd and letp = 1 — % — ¢ be the bias parameter.
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9.4.1 Construction of the Hypergraph

The set of vertices of the hypergraph will correspond to the bits of the long codes of labels
assigned to vertices ii. Namely, the set of vertices is defined toloe< 2. A vertex
is a pair(v, F') wherev € V is a vertex of the Strong-LC ankl € 2" is a subset of//.

We define thévlockof verticesB[v] forv € V' as
B} :==A{(v, F) | F € M}
The weight of a vertexv, F) is defined to be

. 1
weight(v, F) := v b (F)

Thus the sum of weights of all vertices in the hypergraph equals
Now we define the edges of the hypergraph. For any two edges ), (ve, w) € E
with common endpoint if}’, and corresponding projections™ 7v2*, we define the

following (hyper-)edges between the bloBkv, | and the blockB[vs]:
{00, 1), (02, ), (v, Bo), o (v Fe)} | (67) 7N (D) 0 (6) 7 O R = 0

We say that these edges correspond to the pair of édges), (v-, w). Notice that every
edge contains exactly vertices, one vertex from the blodk[v;| andk — 1 vertices
from the blockB[v,]. Also note that we can have edges betwédn,| and Blv,| that
correspond to more than one pair of edges. This can be as a result of parallel edges in

G(V, W, E) or as a result of several-vertices to which both, andv, are connected.
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Completeness

Assume that the Strong-LC instan€ehas a labelingp in which at leasti — ¢ fraction
of the V-vertices have all their edges satisfied. Lgbe the set of all such vertices with

Vol > (1 —¢)|V|. We claim that the following is an independent set:
IS ={(v,F) |v eV, ®(v) € F}.

Consider any edgé(vs, I), (va, F1), ... , (v, F_1)} and let(vy, w) and (vy, w) be the
pair of edges it corresponds to. Assume towards contradiction that all its vertices are in
78. Clearly, this implies that,, v, € Vy and®(v,) € I, ®(v,) € N F;. Also, since all

edges incident to bothy andv, are satisfied byp, we have

Therefore,®(w) € (7")~1(I) N (7)Y (N F). In particular, this implies that
(rve)~HI) N (7e2w)Y(NEZF) # 0 and we reach a contradiction by recalling the
construction of the edges.

Note that with the bias parameter= 1 — % — ¢, for everyv € 1, the weight of the

setZS N Bv] is exactlyp times the total weight of vertices iB[v]. Hence
, 1 1
WeIgh(ZS) = (1= ) (1= =) 21— —2¢

since¢ can be chosen to be arbitrarily small.
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9.4.2 Soundness

Now assume that there is no labeling to the Strong-LC instanitet satisfies evena
fraction of the edges. We will show that the hypergraph contains no independent set of
sized. Assume towards contradiction that the hypergraph contains an independasit set

of sized. For everyv € V, let

Flo] = {F|FC M, (v, F) € IS}

Let V* be the set of vertices such thatu)' (F[v]) > §/2, i.e., a weight of at least/2
of the total weight in the blociB[v] belongs to the independent ge8. By an averaging
argument, we havg’™*| > 6|V|/2.

We will associate a “small” set of labelgv] C M for everyv € V* such that this

labeling satisfies a weaker notion of consistency. More precisely we prove that

Lemma 9.4.1 GivenZS and VV* as above, there exists a constant= h(k,e, ) and

non-empty sets of labelgv] C M for everyv € V* such that
e VueV* |Lp]| <h

e For every two edge&;, w), (v2, w), sharing the same endpoiat we have

()" (Lfva]) O (7)) 7 (Lve]) # 0.

This is the main technical lemma in the analysis and we prove it in the next section.
Let us see how this lemma is sufficient to arrive at a contradiction. The idea is to define
one label for every vertex il UW such that this labeling satisfies more thapfeaction

of the edges.
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We will try to satisfy only those edges which are incidentto This is a5/2 fraction
of all the edges sincg’*| > ¢|V|/2 and the bipartite grapt'(V, W, E) is left regular.
Let W* be the set of vertices i which have an edge with some verteXin. For every

w € W*, fix v(w) to be one vertex iv* with which w has an edge. Define

L[w] := (") (L[v(w)))

We claim that for every edge, w) with v € V* andw € W* we have,

7% (L{w]) N Lv] # 0.

Whenv = v(w) this is clearly true and otherwise, it follows from Lemma 9.4.1.

Now consider the following probabilistic way of defining one label for every vertex in
V*UW™*. Forv € V* (resp.w € W*), define its labed (v) (resp.®(w)) to be arandomly
picked element of.[v] (resp. L[w]). For each edgév,w) with v € V* andw € W*,
the setsr**(L[w]) and L[v] intersect and both sets have size at ntostherefore, with
probability 1/42, we haver**(®(w)) = ®(v) and the edge is satisfied. Therefore, the
expected fraction of satisfied edges is at leg$2h?) and hence there must exist one
labeling that satisfies these many edges. Choosing the parametef/(2h?) gives a

contradiction.
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9.4.3 Proofof Lemma9.4.1

The setL[v] for v € V* will be constructed from the family-[v]. Roughly speaking,
the setZ[v] will be the core of the familyF[v] along with all elements which have non-
negligible influence ot [v].! Recall that fon € V*, we haveu,)’ (F[v]) > 6/2.

Letn > 0 be a sufficiently small accuracy parameter which will be fixed later. Ap-

plying Theorem 9.3.6, we get

Lemma 9.4.2 For everyv € V*, there exists a real numbefv] € (1—1 —¢,1— 1 — %)

and a core-familyF[v] C 2 with coreC[v] such that
e The average sensitivityis,j,(F[v]) < 2.
e The size o€[v] is at mosth, which is a constant depending only bre, n, 6.
o W (FllA F[v]) < npandin particularué‘fv](f[v]) > §/4 providedn < §/4.

Letn’ > 0 be a threshold parameter which will be chosen later. For every*, we
identify a set of elements Irifl] C M \ C|v] that have non-negligible influence on the

family F[v], i.e.,
Infljv] = {o € M\ C[v] | Influencey(F[v],0) > n'}.

SinceF[v] has average sensitivity at mésand the average sensitivity is simply the sum
of influences of all the elements, it follows that the size ofjirik at most% which is a

constant. Finally, we define the g&l| as

Lv] := C[v] U Infl[v]. (9.1)

In [32], this set is referred to as tlextended core
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Clearly, L[v] has size at most := ho + -

To finish the proof of Lemma 9.4.1, it remains to show that for every pair of edges
(v1,w), (v, w), we have(w+) "1 (L[vy]) N (792%) 1 (L[vy]) # (. Note thatrvvw, gvzw
are bijections and w.l.o.g. we can assume them to be identity maps. Thus we need to
show thatZL[v,] N L[vy] # 0. It will be clear how the proof would work in the general
case.

We will assume on the contrary thafv;] N L[vy] = 0 and reach a contradiction
by exhibiting an edgd(vy, ), (vs, F})%- '} all of whose vertices are in the supposed
independent sé&LS. Let us begin with a lemma (admittedly the proof is cumbersome and

could be skipped).

Lemma 9.4.3 There existd/y C Cluv;| such that defining/’ := M \ (C[v,] U C[vs])

andH[v,] C 2M" as
Hiv | ={H|He2™ UyUH e Flv)] }

we haveu)! (H[vi]) > 1 — 8n/6.

Proof: The assumptior.[v;] N L{vy] = () along with Equation (9.1) gives
Cloi ] NClwy] =0, Clug] NInfl[vy] = 0.

This implies that every element 6f[v;] has influence at most on the familyF|v,]. Let

F'[v1] C Flv1] be a family defined as

F'lo)) :={F | F € Fln], F\ Clva] € Flui]}.
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Applying Lemma 9.3.7, we get

N%;l}(]:’[vl] A Flvi]) < 1 |Clvg]| (min(p[vq], 1 —p[vl]))*‘c[m” <

1 ho (min(plvy], 1 = ples])) ™ <
by choosing;’ small enough. It follows that
sty (Flor] \ Flon]) < pf (Flor1] A Flun]) < 2n.

We would like to find a set/, C C[v;] in the core familyZ[v;] such that the two families
obtained by taking only the sets ﬁ[vl] andF’[v,] whose intersection with'[v,] is Uy

are very close. We have,

2 > gl (Floa] \ Fllen]) = Prog [D € Floa] \ Flunl] =

> Prpcu [DNClu) =UandD € Fluy] \ Flor]] ¥
UCClvi] m

Z pSl Uy P ancwn[(UUD) ¢ Flo] ]

plv1] Dep,
UCC[v1], UEF[v1]
where {1} holds sinceF[v,] is a core family and hence depends only@p]. Since
uﬁg}”j]({U C Cluy] | U € Fluy]}) > 6/4 this implies that there exists, C C[uv],
Uy € Flvy] such that PJSGMM\CM[ (UyUD) ¢ F'lui] ] < 2n/(6/4). In other words, if
plv1]
we defineG as{D C M \ Cvi] | Uy U D € F'[v1]}, thenuﬁfv\f[””(g) >1—8n/é.

Finally, notice thaty does not depend afi[v,]. Hence, the family

Hv]:={H|HCM =M\ (Clvi]UC|ws]), He G}
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satisfiegi)l (H[v1]) =l {"(G) > 1 — 8n/5, as required. .

Analogous to Lemma 9.4.3 we have by symmetry,

Lemma 9.4.4 There exist|, C C|uvy] such that defining/’ := M \ (Clv,] U C[vs]) and
H[vy] C 2M" as

Hvy] = {H |H € 2™ Vo UH € Flvy] }
we haveup[v (H[v2]) > 1 —8n/6.

Letp* :=1—

= — <. Note thatH([v;] andH[UQ] are both monotone subfamilies of
2M'. Therefore, according to Lemma 9.3:2! (H[v]) > ,up[ }(H[vl]) >1-8n/6and
similarly for v,. Hence, the intersection of the famllléqm] and’H[v.] satisfies

/ 1
pa (] NH[w]) > 1 —16n/6 > 1 — T

by pickingn small enough. Hence, Lemma 9.3.8 implies that there existselds, ... , H, €
H[v1] N H[vy] such that
ﬂf:lHi = 0.

In particular,Hy, Hs, ... , Hy_1 € H[vs] and Hy, € Hvy].
Now definel = Uy U H, andF; = Vo U H; for 1 < i < k — 1. By definition of
the familiesH|v, |, H[v2], we have,] € Fluv], F; € Flwg) forl < ¢ < k —1. Thus
{(v1, 1), (vo, F;)¥=!'} are vertices in the supposed independent set and they form an edge
since

Im(mf;fF) e H; = 0.

This completes the proof.
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Chapter 10

Hardness of Cliqgue and Chromatic

Number

Hardness results for clique are central to the theory of inapproximability. The seminal
paper of Feige, Goldwasser, Lisz, Safra and Szegedy [38] obtained first hardness result
for clique, and established the connection between PCPs and inapproximability. A long
sequence of work (see [38], [13], [12], [17], [16], [59]) finally culminated iastid’s
result that clique is hard to approximate within factére.

In this chapter, we further improve the hardness factojp;; for some constant
~v < 1. This takes us one step closer to the right answer for clique. The result is also
interesting in light of Feige’s result [36] on Laszd-function and Trevisan’s result [111]
on hardness of clique on bounded degree graphs.

We also obtain a similar hardness result for a related problem of finding the chromatic
number of a graph. Main technique in this chapter is a Hadamard Code (as opposed to
long code) based PCP which yields proofs of much smaller size. The result for chromatic

number is shown via a technique calledndomized PCihtroduced in [40]. Itis much
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easier to apply this technique to PCPs in this chapter than earlier PCPsd#tad$’
clique PCP [59].

10.1 Results and Techniques

The problem of finding the maximum size of a clique insawvertex graph is a well-
studied NP-hard problem. The best known (polynomial time) approximation algorithm
(see [21]) for MaxClique achieves an approximation rati@offong) which suggests that

this problem might be very hard to approximate. The first step towards proving strong
inapproximability result for MaxClique was taken in a seminal paper by Feige et al. [38]
who discovered the connection between PCPs and inapproximability of MaxClique. They
were able to show a hardness factort#' " for an arbitrarily small constant > 0.

The discovery of PCP Theorem ([12], [13]) implied that MaxClique is inapproximable

within factorn® for some constant > 0 unless NP = ZPP.

Bellare and Sudan [17] defined an important parameter of PCPs eatledized free

bit complexity(recall Definition 3.1.3) and showed that

Theorem 10.1.11f NP has a PCP verifier that uses logarithmic randomness, has com-
pleteness> % and amortized free bit complexify then assumingyP ¢ BPP, no poly-
nomial time algorithm can approximate clique size inrawertex graph within factor

R S . . .
ni+7 . Heree > 0 is an arbitrarily small constant.

They constructed PCPs wittamortized free bits and obtained a hardness factot/df¢

for clique. This was improved to'/3—< by Bellare et al [16].

In his breakthrough result, astad [59] proved an'—< inapproximability factor for

MaxClique. He obtained a PCP verifier that achieves amortized free bit compidwity
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arbitrarily small constant > 0. A simpler and alternate proof of this result was obtained

by Samorodnitsky and Trevisan [106] which was further simplified recently dstad

and Wigderson [64]. These verifiers are based on linearity testing algorithms and make
a clever use ofecycling of queriesvhose study was initiated by Trevisan [110]. They
simultaneously achievé amortized free bits andl + 6 amortized query bitswhich is
optimal. In Chapter 3 of this thesis, we saw such a verifier which in addition achieves

perfect completeness.

Results

Feige [36] showed that one natural idea for approximating maximum clique-size, the

polynomial time computable La@sz's #-function, has approximation ratio as bad as

SoE Arguably, Lowsz'sf-function might provide the “best” approximation guaran-

tee, so it is conceivable thgs J—; hardness factor could be shown for MaxClique. This

intuition is supported by Trevisan’s [11% hardness for clique in degrdegraphs
SEn)

(k thought of as a constant). Can this result be interpolated all the way-ggte— ?

As a step towards resolving this question, we show that

Theorem 10.1.21t is hard to approximate MaxClique in polynomial time within factor

for some constant > 0 unlessN P C ZPT1M E(20sm°™),

__n_
2(log n)l—=7

Chromatic number of a graph is defined to be the minimum number of colors needed
to color the graph. It is NP-hard to find the chromatic number exactly (even to test if a
graph is3-colorable). Feige and Kilian [40] introduced a technique caRashdomized
PCPsand applied this technique toaldfad’s cligue PCP [59] to show that :

Theorem 10.1.31t is hard to approximate chromatic number of a graph in polynomial

time within factorm!'~< for any constant > 0 unlessNP = ZPP,
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Note that approximating chromatic number is different from Graph Coloring problem
considered in Chapter 3. In the latter problem, we are given a graph waitmstant
chromatic number and we desire a coloring using few colors.

Randomizing HStad’s PCP is rather tedious. On the other hand, the PCP we construct
in this chapter is very easy to randomize and also gives a stronger hardness factor. We

prove that :

Theorem 10.1.41t is hard to approximate chromatic number of a graph in polynomial

time within factor-—2-— for some constant > 0 unless NFC ZPTIME(2(ls W),
(logn)1

Engebretsen and Holmerin [33] obtaingg——= hardness factor for both
clique and chromatic number, using Samorodnitsky and Trevisan’s PCP [106]. Our im-

provement comes from a new PCP construction based on Hadamard codes.

Techniques

Most PCPs are based on the following standard paradigm. First constréRazhéerifier

(see Section 2.2) by parallel repetition of a basic 2-prover 1-round protocol for Gap-3SAT
and then expect the provers’ answers in some encoded form. In these constructions, one
of the provers is supposed to return an assignment to a set of clauses and it is necessary
to restrict his answer to satisfyingassignment to the clauses. This is achieved using
one of the two methods : First, define long code over the domain of (only) satisfying
assignments. Second, define long code over the domain of all assignments and use a
technique callectonditioningor folding [60]. Both methods require the use of Long
Code due to non-linearity of 3SAT predicate. However the long code is extremely redun-

dant. It encodes a-bit string by a22"-bit string and requires too much randomness to
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check it probabilistically. This turns out to be a barrier in improving hardness result for
MaxClique.

In this chapter, we present a PCP verifier based on Hadamard code which encodes a
u-bit string by a2“-bit string and allows a more randomness efficient checking. We start
with a Raz Verifier obtained by parallel repetition of a basic 2-prover 1-round protocol
for Max-3-Lin-2 (see Theorem 2.0.2). This problem features a linear predicaiéas.

It turns out that the Hadamard code is powerful enough to fold twear constraints

and we can use Hadamard code instead of the long code. Apart from using a different
code, our verifier is constructed and analyzed along the same lines as [106]. However our
construction yields proofs of much smaller size.

Hardness of chromatic number is proved using a technique daiedomized PCP
introduced by Feige and Kilian [40]. Usually, the completeness condition of PCP requires
existence of one correct proof. This proof corresponds to a large independent set in the
FGLSS graph. We now make a stronger demand : we require a collection of proofs such
that the corresponding independent sets cover every vertex in FGLSS graph almost uni-
formly. Randomized PCPs allow us to achieve this property. This gives a FGLSS graph
with low fractional chromatic numberAdvantage of working with fractional chromatic
number is that this parameter is multiplicative under inclusive graph product. The re-
duction consists of taking a multiple self-product of the FGLSS graph and then taking a
random induced subgraph of appropriate size. The reduction appears in [40] and we give

only a brief sketch in this chapter.

Overview of the Chapter :

Section 10.2 gives necessary background. Section 10.3 gives our main PCP construction.

The hardness result for MaxClique follows directly from our PCP construction and it
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is proved in Section 10.4. Section 10.5 introduces randomized PCPs and Section 10.6

proves hardness result for chromatic number.

10.2 Preliminaries

This section explains some of the technical tools used in this chapter. Our goal is to con-
struct PCPs based on Hadamard codes as opposed to long codes used in earlier chapters.
Fourier analysis of Hadamard codes and corresponding notation is somewhat different.
Hadamard codes are defined using linear functions, so we need to use an underlying
NP-hard problem that features linear constraints, namely BAhix-2.

We restate Theorem 2.0.2 in a form convenient to us. We call an insfaotklax-
3-Lin-2 regular if every equation contains exacilyariables and every variable appears
in exactly the same number (sd@y of equations. We call the instan€egiven by the

following theorem as an instance of Maxtin-2(e).

Theorem 10.2.1There exists an absolute constant 1 such that, for arbitrarily small
constante > 0, there exists a polynomial time reduction from a 3SAT formulaith
n variables to a regular Max3-Lin-2 instancel’ with N variables such that : It is
satisfiable, there exists an assignment to variableF that satisfiesl — ¢ fraction of
equations. If¢ is unsatisfiable, no assignment can satisfy more fhdraction of the

equations. Moreover, the reduction can achieve for some constant > 0

1
(log N)B
if we allow the running time of the reduction adto be slightly superpolynomial, i.e.

nO(log log n) )

Remark : Theorem 2.0.2 actually gives a gap of— ¢ versus ; + & wheree, § are

arbitrarily small. However the instance given by this reduction is not regular. It can be
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made regular in a similar manner as in the proof of Theorem 10.2 in [11, Chapter 10].

The soundness suffers in this regularization process, but is still bounded away.from

10.2.1 The Raz Verifier

As in earlier chapters, our construction makes use ofRae Verifierwhich we define
next. However we use a Raz Verifier based on M&xn-2(e) rather than the standard
one based on Gap-3SAT.

The Raz Verifier is obtained by parallel repetition of a basic 2-prover-1-round protocol
and then expecting the provers’ answers as a written proof. We directly describe the final
construction. Lef" be an instance of Mag-Lin-2(¢) given by Theorem 10.2.1 andbe
an integer parameter. The verifier expects to have two pBard(), where proofP is
supposed to contain for every sebf « variables, a:-bit string P(v) giving the values
of these variables in some (global) assignment. The pibf supposed to contain for
every setw of u equations, &u-bit string Q(w) giving the values of th&u variables
occurring in these: equations. We will also denote lhythe set of thesgu variables.

The Raz Verifier works as follows : It randomly picks variabtes (z;)¥ , and then
picks equationsy = (C;)_, where equatiot’; is chosen randomly from the constantly
many equations containing varialte It reads the bit-string®(v) and Q(w) respec-
tively. Let = be the projection fron3u-bit strings tou-bit strings which corresponds to
restricting an assignment to the seto an assignment to the set The verifier accepts

if and only if both these tests are satisfied :
e (Linear constraints test :(Q)(w) satisfies all equation&™;)!_,.

¢ (Projection/Consistency testB(v) = 7(Q(w)), i.e. values of variablege;)_; in

P(v) andQ(w) are the same.
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Completeness of the Raz Verifierds(1 — ¢)* > 1 — eu. This is because if there is an
assignment that satisfiels— ¢ fraction of the equations, both the prodfsand( can be
consistent with this assignment. With probability— ¢)*, all the equation$C;)¥_, are
satisfied and the verifier accepts. When at most 1 fraction of the equations ifi are

satisfiable, the soundness can be upper bounded by Raz’s Parallel Repetition Theorem.

Theorem 10.2.2There exists an absolute constar}, < 1 such that the soundness of
the Raz Verifier for Max-Lin-2(¢) is at mostC}:

lin*

10.2.2 Fourier Analysis

We use Fourier analysis for Hadamard codes as opposed to the Fourier analysis for long
codes. Note the difference in notation : for examplenow denotes a vector whereas
earliera denoted a subset of the domain over which long code was defined.

Consider the vector space of all functioAs IF'} — IR where addition of two func-
tions is defined as pointwise addition. The dimension of this spae Befine an inner

product on this vector space as follows.

< Ay Ay >= Qiu;; Ai(a) - As(a)

We will identify an orthonormal basis w.r.t. this inner product. A functibn IFj —
{1,—1} is called linear ifA(x & y) = A(z) - A(y), whered denotes vector addition over
IF,. There are precisely* linear functions. For every € IF}, there is a functiory,
defined by

Xo(a) = (=1)"" Va ey

We have following easy lemmas.
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Lemma 10.2.3Fora, o’ € Fy  xo(a) - X (2) = Xaga' (2)

Lemma 10.2.4For o € IF}

1 if a=0
Elxal@) ={
0 if a#0
It follows from these lemmas that the set of all linear functions is an orthonormal basis.
Thus any function4d : IF5 — {—1,1} can be uniquely expressed ds= ) Eaxa

whereA,, are itsFourier coefficientgiven by

The Fourier coefficients satisfy Parseval’s identiy A2 =1,

A projection functionr : IF3* — TFY is a function that maps vectors IiS" to some
fixed v coordinates. Fou € Iy, let 7—!(a) denote the unique vectere TF3" such that

7(¢) = a and the coordinates afother than those projected hyare0.

10.2.3 Hadamard Codes, their Decoding and Folding

Using the standard paradigm, our PCP verifier will expect an encoding of the proof sup-

plied to the Raz Verifier. Specifically, we use Hadamard codes which we define next.

Definition 10.2.5 Hadamard code ofp € Iy is the 2“-bit string {x,(a) }scry. We

denote it byH adamard(p).

Recall that the stringg = Q(w) read by the Raz Verifier is supposed to satisfy a set
of u linear constraints. Let these constraints ble >y = (1,... ,h, -y = (, Where

hi,... h, € F3*and(y,. .. ¢, € IF,. We called this the linear constraints test.
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Folding : We use a technique callédliding that enables the verifier to ignore the linear
constraints test.

Suppose thaB is Hadamard code gfandy satisfies the constraints mentioned above.
Let H be the linear subspace spanned by the vedtars . , h,. Then for any vectob

and any vectoh € H, h = ®p;h;, we have
B(b@h) = (—1)v 8 — (—1)pb.(—1)yEirihi — B(b).(—1)%iP¥ i = B(p)-(—1)%i P

Motivated by this observation, for an arbitrary functin: IF3* — {1, —1}, we define

another functiomB’ as :
For b = v, ®; pihi, p1,...,pu € IFy, B’(b) _ B(Vb) . (_1)Eipi§

wherew, denotes the lexicographically smallest vector in the set of veétard? (the
group theoretic coset aff). We call B’ a folding of B over the linear constraints. A

crucial consequence of folding is :
Lemma 10.2.6 If §’ﬁ # 0, thens must satisfy the linear constraints, i/fe.- 3 = (; V i.

Proof: Consider any particular constrailat- y = ¢;. By definition,

By = 50 S B0) x60) = gz DB xs(0) + B0 he) (0 h)

= s S B0 w1+ (~1)xs(h)

This sum is zero unlegs - 5 = (;. Thus( satisfies all the constraintsfi‘\’ﬁ # 0. n
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We can use appropriate access mechanism to force a fungtiorbe folded. When
the verifier wants to read a bi¢(b), it readsB(v,) instead and calculates the value of
B(b) fromit. Thus we can assume that tBetables in the proof are folded over respective
linear constraints.

We will eventually show that if our PCP verifier accepts the encoded proofs with
a good probability, then these proofs can be decoded to construct graa@ds which
the Raz Verifier accepts with a good probability. Decoding of a tdblgives 5 with
probabilityﬁg. (Since)_, §§ = 1, this defines a valid probability distribution). Folding
ensures that anyg given by this decoding procedure satisfies the linear constraints on
Q(w). Thus folding enables us to forget about the linear constraints test and focus only
on the projection test while analyzing our PCP construction.

We point out again that the previous PCP constructions use Gap-3SAT as the underly-
ing NP-hard problem where the constraints are non-linear and one cannot use Hadamard

codes.

10.3 The Main PCP Construction and Analysis

We now define and analyze our PCP verifier which we Bgll. Apart from the use of
Hadamard code, it is similar to Samorodnitsky and Trevisan’s verifier [106] and analyzed
in a similar manner.

The verifierV;, is given an instanc€ of Max-3-Lin-2(¢). As mentioned before, it
expects to have proofd”’, ') which are Hadamard encodings of pro6f3 () for the
Raz Verifier. SoP’(v) (Q'(w)) is now supposed to contain the Hadamard code of string

P(v) (Q(w)). The verifierV;, proceeds as follows :
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1. Pick a sev of u variables at random aridsets(w;)%_, independently, where each
setw, is picked in a similar manner as the Raz Verifier. ketbe the projection

function betweenv; andw.

2. Let A be the supposed Hadamard code’¢t) and B; be the supposed Hadamard
code of@(w;) in the proof. TablesB; are assumed to be folded over respective

linear constraints.
3. Pickay, ... ,ar € FY andby, ... , by € IF3" randomly.

4. Acceptifandonlyifforl <i,j <k

Aai) Bj(b;) = Bj(m; ' (a:) & by) (10.1)

Recall that for a projection : IF3* — IFY anda € IFy, 7 !(a) is the unique vector
c € TF3" such thatr(c) = a and the coordinates efother than those projected hyare

0. It can be easily checked that for any linear functign § € IF3", we have

We will prove the following theorem giving the properties of the veriiigy,.
Theorem 10.3.1The verifierV,;, for Max-3-Lin-2(¢) instancel” with NV variables

e Usesr = ulog N + O(ku) random bits.

e Queries2k + k? bits from the proof withf = 2k free bits.

e Has completeness at least ¢ku.
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e Has soundness ** + § providedC < §2.

lin

Proof: The claims about the number of random bits and the number of query bits are
clear. After reading thek bits {A(a;), B;(b;)};,—,, the answers of the remainirig
gueries are uniquely determined by Equation (10.1). Hence the number of free bits is
2k. For the completeness, we know that the instdnbas an assignment satisfyihg- e
fraction of the equations. Consider a proof which is consistent with this assignment and is
encoded using correct Hadamard codes. The verifier picksjuations in total and each
equation is picked uniformly at random. So with probability- eku, all the equations

are satisfied. In the constructed prodfjs a Hadamard code of somec I} and B, is

a Hadamard code of some € IF3" with 7;(y;) = . Thusforalll <4,j <k

Bj (le(ai) D b]) = (—1)91'”]-_1((11‘) b y;b;
= (—Dmlwle. (—1)uhs
— (_1)1-(11' . B_](b_])

= A(a;)Bj(b))

Thus the test accepts with probability- ek«. The main task is to prove soundness. We
will show that if the soundness &5*° + § then there exist proofsP, Q) which the Raz
Verifier accepts with probability?. This will contradict the fact that the Raz Verifier has

soundness at most:,, (see Theorem 10.2.2).
Let Acc(i,j) = A(ai)Bj(bj)Bj(wj‘l(ai) @ b;) and consider the following expression

ﬁ 1+ Acc(i, 7)
2

ij=1
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Clearly, this expression isif the test accepts antlotherwise. So the acceptance proba-
bility of the verifier is expectation of this expression over the choiag 6, };_,, {w;, b;}i_;.

Expanding out the product, the acceptance probability is given by

Z Ts where Tg = Ea e o [ H Acc(i, j :|
SC[k x | k] (i,9)eS

If this probability is> 27+ + §, there exists a nonempty s&tC [k] x [k] such that
Ts > 6. The following ingenious lemma by Samorodnitsky and Trevisan [106] enables
us to assume thét is of the form[2] x [d] for somel < d < k. We provide a proof of

this lemma to make our presentation self-contained.

Lemma 10.3.21f Ty > & for some non-empty sét C [k] x [k], thenTiy .y > 62 for

somel <d < k.

Proof: Suppose without loss of generality tHat 1) € S and(1,2),...(1,d) are other
pairs in S with the first coordinatel. We fix v, wy,... ,w; for the time being. Let
us divide our random choice 64, b;); ;_, into X given by the choice ofa,, b;), andY’
given by the choice of the rest. L&t be the subset of containing(1,1), (1,2)...(1,d).
Then

EX,Y[ H ACC(Zvj)] = EX,Y[HACC(lvj) ' H ACC(Z,])] -
(i,)€S J=1 (4,5)€S\S1
Exy[F(X,Y)G(Y)] = Ey[Ex[F(X,Y)]G(Y)]

for some functiong” andG with values in{—1, 1}. Applying Cauchy-Schwartz inequal-

ity this can be bounded by

VEY[(Bx[F(X, V)]V Ey[G(Y))] < VEy[(Bx[F(X,Y))])?] =
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\/EY[EX1 [F(le Y)] ’ EX2 X27 \/EX1 X2,V le Y) ’ F(X27 Y)]

where X, X, are identically distributed a¥ and are independent. However the term

F(X1,Y)- F(X,,Y)isequal to

HAcc(l,j) . HACC(2,j) = H Ace(i, §)

(1,4)€S8'=[2]x[d]

Considering expectation overwy, ... ,w; we get
o S TS — Ev,wl,...,wk EX,Y[ H ACC(Zvj)]
(i,5)€S
< Bouneoa | [ Exyl [] Accl, )]
L (1,5)e8’
S Ev,wl,...,wk,X,Y[ H ACC(Zaj)] = TS’
(4,5)€8’

We first consider the case whén= [2] x [d] andd is even. In this case

2 d

LT 1] At B; (b)) B;(; " (@) @ b))

i=1j=1

Ts = FE

In this productA(a;), A(az) and B;(b;) appear an even number of times. Since these

values aret1, the product reduces to

Ts— HB Cll @b)B( ;1(a2)@bj)
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We substitute the following Fourier expansions

Bj(m; () @ b;) = ZBM]X@ ar) @ by)

= ZngjXWj(,an(al)Xﬂj(bj)
Bj

Bj(”fl(@) Db;) = Z B X ) (@2) X, (b5)

Vi

where we used the fact thgg(7~'(a)) = xx(3)(a). Expanding and using Lemma 10.2.3

we get
Z H BjﬂijWj B X@jﬂj(ﬂj)( ) X@jmi(v;) H Xﬂy@%
Bivid€ld]  jeld] J€ld]

Taking expectation ovér;, from Lemma 10.2.4, we see that the terms in this summa-
tion are non-zero only iff; = +; V j. Taking expectation over;, we see that we have

nonzero terms only if5;c47;(3;) = 0. We conclude that

8 < Ts=Eypuy,. g > H i (10.2)

Bj: ®je[am; (B5)=0J=1

The case whel§ = [2] x [d] andd is odd is similar. In this case we have

Ts = E | Aa)A(a2) [ [ Bi(m; ' (a1) @ by) B;(w; (a2) @ by)

JEld]
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Using Fourier expansions of, By, ... , B, and simplifying, we get

82 < Ts = By, ug > A2 ﬁﬁfﬁj (10.3)
a, Bj: a=@,cami(B;)  I=1

Now we define proofsk, Q) for the Raz Verifier as follows. For a set pick 3 with
probabilityﬁg and define)(w) = (. For a sew, pick sets(w;)¢_, at random and pick
(8;)9—, with probability]"[;’:2 Efﬂj. If d is even, define’(v) = ©_,7;(5;). If dis odd,
pick o with probability A2 and defineP(v) = « DIy m;(5)).

We claim that the acceptance probability of the Raz Verifier on these proofs (expected
over construction of P, )) is precisely the expressions in (10.2) or (10.3). Consider
expression (10.2)Q(w, ) will be defined to be3; with probabilityﬁfﬁl. After picking
(ws, ... ,wqg), P(v) will be defined to bea?_,;(/3;) with probability [T{_, B2, . The
condition ®;¢(g7;(3;) = 0 is equivalent to the condition;(3;) = @f_,m;(5;), i.e.

m(Q(wy)) = P(v). Thus expression (10.2) can be rewritten as
8 < By, [Pl 7(Q(w1)) = P(v)]]

where the probability is taken over the construction of the prosfs)). The condition
m(Q(wy)) = P(v) is precisely the condition when the Raz Verifier accepts and the claim
follows. The expression (10.3) corresponding to the case whemdd can be handled
similarly.

Thus there exists at least one choice of prdd?sQ)) which is accepted by the Raz

Verifier with probability at least? concluding the proof of Theorem 10.3.1. n

As an immediate consequence of Theorem 10.3.1 we get
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Theorem 10.3.3For any constants, 6 > 0, NP has probabilistically checkable proof
systems where the verifier uses logarithmic randomness, has completenesamor-

tized query complexity 4+ 6 and amortized free bit complexity

This theorem was first proved by Samorodnitsky and Treivsan [106]. This result is
optimal since PCPs with amortized query complexity less thean recognize languages

only in BPP [16, Lemma 10.6].

10.4 Improved Inapproximability Result for MaxClique

In this section, we prove Theorem 10.1.2. We use the veififierfrom Theorem 10.3.1
with superconstant values of parameters and subconstant value efs given by The-
orem 10.2.1.

We construct a PCP verifier for 3SAT as follows : Using Theorem 10.2.1, we trans-
form given 3SAT formula to an instande of Max-3-Lin-2(e) with ¢ = m and

N = pOUoglogn)  Then we use Theorem 10.3.1 to construct a PCP verifier foith

parameters :

(log N)*/4, k= (log N)/*, f = 2k

1
2

r < (log N)+30/4

c>1—eku>1/2

§=2"%  s<2.27% The choice ofi, k ensures thaf'

lin

< 6.

Finally we use a well-known connection between PCPs and hardness of approximat-
ing clique size, discovered by Feige et al [38]. Their reduction reduces a PCP to a graph

which is well-known as the FGLSS graph. A brief description of this reduction appears in
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Section 3.4.1. Zuckerman [114] augmented the FGLSS reduction by a gap-amplification
technique based on dispersers. The following theorem is implicit in [114] and [16] and

can be found explicitly in [33, Lemma 6.3].

Theorem 10.4.11f there is a PCP verifier for 3SAT usingrandom bits,f free query
bits, completenessand soundness, then for anyR > r and D = (R + 2)/log(1/s),
there is a randomized reduction from a 3SAT formul® a graphG with N’ = 28+D/
vertices such that : If is satisfiable, with probabilit2/3, G has a clique of size at
leastcP2% /2 and if ¢ is unsatisfiable, with probabilitg /3, maximum clique size i6"
is at most2”. This reduction runs in time polynomial iN’ and the running time of the
verifier.

We takeR = r(log N)?/*. Note thatN = nOUoglen) D = (R4-2)/(k*—1), f = 2k,
N’ = 2RtDI < 92R < 92 (log N)!T30/H0/4 - o(lgm)®®  Clearly, no polynomial time
algorithm can distinguish whether the graghwith N’ vertices has maximum clique
size at least”2%/2 or at most2” unless NPC BPTIME(2(e™"). Thus under this
complexity assumption, no polynomial time algorithm can approximate MaxClique in a

graph withN’ vertices within factorV'® where

_log(cP2?/2) —log(2n) R—1-g@ti-r G 14+ 3
- / = (R+2)2k - (R+2)2k =
(R+2)2k R+2
+1+r+
1 — k- ’“2—121—0(1)21—0(¥)21—;
R R (log N)B/4 (log N*)v

for somey > 0. This proves Theorem 10.1.2 assuming MFBPTIME(2(°sm°")_ One
can use techniques from [33, Section 6.2, Theorem 6.16] to get the same result under the
assumption NRZ ZPTIME(Q(“’%")O(”). But this improvement is minor and we omit the

details.
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10.5 Randomized PCPs and Chromatic Number

Feige and Kilian [40] introduced the idea Bandomized PCP® prove their hardness
result for approximating chromatic number of a graph. We apply their technique to the
PCP system constructed in Section 10.3 to obtain an improved result. Randomizing this
system is easier than randomizing earlier PCP systems based on Long codes. First we

give some basic definitions, the first one just restates Definition 3.4.1.

Definition 10.5.1 An accepting pattern for a PCP verifier is a pairr = (.S, v) such

that for some choice of the random stringjs the set of query bits read by the verifier
andv is a setting of these bits for which the verifier would accept. The set of all accepting
patterns is denoted by . A proof I is said to be consistent with a pattern= (.5, v) if

the values of bits in proofl corresponding to the se&t matchw.

Definition 10.5.2 A languagel has arandomized PCP system with parameters, p, s),
if there is a probabilistic polynomial time verifiéf that can check membership prodfs

for languagel usingr random bits,f free query bits and satisfies :

e Soundness condition:: ¢ L —> V proofsll, Pr [V acceptdl| < s
e Covering condition : Ifr € L, there exists a collection of proof$l,, I1,, . .. } with

a probability distribution on these proofs such that

YV r €7, Pr;[1II;is consistent with | > p

The parametep is called the covering parameter.

Covering condition basically says that one can have a distribution on proofs such

that every accepting pattern is “covered” with probabilityln FGLSS graph‘,, this
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translates to a distribution on independent sets such that every vertex is covered with
probability p. In other words, théractional chromatic numbey ((Gy) (and therefore the
chromatic numbex(G,)) of the FGLSS graph is at mosf p.

Feige and Kilian [40] showed the following connection between randomized PCPs
and hardness of approximating chromatic number of a graph. This theorem is obtained
by taking inclusive graph product of the FGLSS graph and then taking a random induced
subgraph of appropriate size. Since the statement of this theorem does not appear explic-

itly in their paper, we provide a brief sketch of the proof.

Theorem 10.5.3If there is RPCP system for 3SAT with parameterd, p, s), then for
any integerh, there is a randomized reduction from a 3SAT formuta a graphG’ with
N’ = (27 /s)" vertices such that : I§ is satisfiabley (G’) < 21’% and if ¢ is unsatisfi-
able, with probabilityl /2, x(G’) > % This reduction runs in time polynomial i’

and the running time of the verifier.

Proof: We will first apply Lemma 2 from [40]. The notations can be translated as
R+ 2" e s, pr p, A 2t/ This lemma reduces the RPCP system to the

FGLSS graplG that ha2"+/ vertices and satisfies :

e (Completeness/Covering condition)y (Gg) < %

e (Soundness) a(Gy) < 527,

Herea(G)) is the size of maximum independent set in graghand x ¢(Go) is the frac-
tional chromatic number af, (see [40, Definition 1]).

The final graph’ is obtained by taking the inclusive graph product ([40, Definition

2]) G% and then randomly taking its vertex induced subgraph of 8ize= (‘G0|)h =

s27

(%)h. We apply Lemma 1 from [40] with the translatign — Gy, G — G’k —
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h,C — s2". Thus in the completeness case,

W@) < (1+|G)x(¢) (40 Equation 1

< (1+In|G) (Xf(GO))h [40,Lemma 1]
2In N’
oh

In the soundness case we hav&s,) < s2". Lemma 1 from [40] implies that with

high probabilitya(G") < h|G,|. Hence

Gl _ 16 _ N
(G = h|Go| ~ h2r+T

x(G) >

This completes the proof of Theorem 10.5.3. .

We also need the following theorem which we prove in Section 10.7.

Theorem 10.5.4There exists an absolute constant< 1 such that for any constant
e > 0, there is a polynomial time reduction from a 3SAT formalavith »n variables
to a regular Max3-Lin-2 instancel’ with N variables such that i is unsatisfiable, at
mostyu fraction of equations ii’ can be satisfied and i is satisfiable, there exists a
set of assignmentd = {oy,09,...} for I such that every equation ifi is satisfied
by at least(1 — ¢) fraction of assignments inl. We calll’ an instance of “coverable”
Max-3-Lin-2(e).

Moreover this reduction can achieve- %N)ﬁ for some constant > 0 if we allow

(log

N and the running time of the reduction to be slightly superpolynomiald&slosn),
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10.6 Randomized PCP for Coverable Max3-Lin- 2(¢)

A randomized PCP for coverable Max-3Lih(s obtained by a simple modification of

the verifierV,;,, in Section 10.3.

The Randomization Technique : Let (P, Q)) be the proofs provided to the Raz Verifier.
We construct a new verifiev,,,; as follows. The verifiel,,,; has access to proofs
(P, Q) where for some fixedbit stringz, P(v) is supposed to contain Hadamard code
of the (u + {)-bit string P(v) o z and Q(w) is supposed to contain Hadamard code of
the (3u + 1)-bit string Q(w) o = (o denotes concatenation of strings). The stringcts

as a dummy string. Recall that the covering condition in Definition 10.5.2 requires a
collection of proofs instead of one single proof. The purpose of the dummy string
is precisely to generate different proofs. Different choices of the strigiye different

proofs. This idea is very similar to tiRandomized Label Coveroblem in Section 3.4.2.

If = : F3" — IFy is the projection betweem andv, we define a new projection
function 7’ in the following way : ' : IF2*™ — TF3* is defined by setting for every
B e, nelFy, n'(Bon) =n(B)on.

The new verifierV,..,,q has access to proot§3, @) and it works in almost identical

manner as the verifiéry,,,. Its action is :

1. Pick sets, wy, ... ,w, and corresponding projections, ... , m,. Construct new

projection functionsr, . .. , 7.
2. LetA = P(v) andB; = @(wj) for 1 <j<k.

3. Pick vectorsiy, ... ,a; € IFy™ andby, ... b, € IF3*™. Write them asi; = a/o0a”

andb; = b, o b/ wherea! andb arel-bit vectors.
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4. If {a},b] : 1 <i <k} are linearly dependent, then reject. Otherwise accept iff

1771

Ala;) - Bj(b;) = Bj(w " (a;) ® b;) Vi, j

Theorem 10.6.1 The RPCP system with verifi&f,,, for coverable Max3-Lin-2(e) in-

stancel” with N variables
e Usesr = ulog N + O(ku) random bits an@k free query bits.
e Covering parametep > 2~V providedeku < 1/2.

e Soundness < 27%*1 providedu = Q(k?).

Proof: We note thafa/, b/} is a collection ok vectors randomly chosen from a space
of dimensionl. We takel = u > k and the probability that they are linearly dependent
is negligible. So henceforth we ignore this issue.

SinceV,..,q works in a similar manner dg;,,, the soundness analysis fgg,, can be
applied. Therefore the soundnesslgf,,; is bounded b)@*’“2 + & providedC}: < 6.
Takingd = 2% andu = Q(k?) ensures that the soundness is at ot

Now we prove that this PCP system has good covering properties. For a (global)
assignment to the instancé, leto(v) denote the assignment to variables imsahder
o. We define proof$1307x, @M) corresponding to an assignmendnd a fixed-bit string
= whereP, , (v) contains Hadamard code of the + {)-bit string o (v) o 2 and Q. (w)
contains Hadamard code of th&u + [)-bit stringo(w) o . Consider the collection of

proofs

{(Pra, Qua) | z€{0,1}, 0 € A} (10.4)
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whereA is a set of assignments such that every equatidnignsatisfied by at leagt— ¢
fraction of assignments i (see Theorem 10.5.4). We consider the uniform probability
distribution on these proofs.

Consider any pattern for the verifierV,.,,4. This pattern corresponds to some fixed
setting of the bit$A(ay), ... , A(ax), B1(b1), - .. , Bi(by)) whereA = Hadamard(o(v)o
x), B; = Hadamard(o(w;) o z). By definition of the Hadamard codes, the values of

these bits in the proqfﬁ,,yx, @U,a;) are (in{0,1} notation)

(@) -o(w)@al z,... ;a,-c(v)Day -z, by -o(w) B -z, ... b clw)®b - x)

(10.5)

Since{a/,b! : 1 < i < k} are linearly independent, if is a random string frorg0, 1}¢,
the bit pattern (10.5) matches evexy bit string with probability1/22¢. On the other
hand, ifoc € A is chosen randomly, with probability — eku, all equations ir(wj)ﬁfz1

will be satisfied. It follows that a randomly chosen proof from (10.4) is consistent with
the pattern- with probability > (1 — eku)/2% > 1/2%*1. This shows that the RPCP

system has a good covering parameter. .

10.6.1 Improved Inapproximability Result for Chromatic Number

We construct a RPCP system for 3SAT as follows. Using Theorem 10.5.4, we transform a
3SAT instance) to a coverable Ma%-Lin-2(e) instancd” with N = n©(gloen) yvariables
ande = m Using Theorem 10.6.1, a RPCP system with the following parameters

is constructed.
e u = (log N)*/* k= (log N)°/*
o 7 < (log N)'+38/4
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e Covering parameter > 2~ ¥+ and the number of free bits= 2k
e Soundness < 2 +1

Note that the running time of the verifier andis slightly superpolynomial. Now we
apply the reduction given by Theorem 10.5.3 with- (log V). The size of the graph

produced isV’ = (2 /s)h = 2h@k+k*—1) < 9(esn)®™ The gap in the chromatic number

is hzﬁ% which can be expressed 28" where
B log N’ —hlog(%) —logh—r—f—1—log(InN’) 10 hlog(%)
“= log N’ - log N’
hk 1 1
>1-0 >1-0(-) 21— ————
- (h(2k+k2 — 1)) - (k) - (log N')

for somey > 0. This proves Theorem 10.1.3 assuming MRCORTIMEQ(leem ™y

which is equivalent to the assumption NPZPTIME(200s My,

10.7 Proof of Theorem 10.5.4

We first sketch HStad’s reduction from Gap-3SAT to M&xkin-2 (which appears in
Chapter 2). HStad’s verifier, which we calls,;;, has access to a Gap-3SAT instarnce
For every set of u variables, the verifier expects the long codes¢f) and for every
setw of u clauses, it expects a long code «fw) whereo is some global satisfying

assignment. Here(v), o(w) are bit-strings of lengtlh and3u respectively.

The action ofi/5; IS :

1. Pick a sev of u variables at random and a setof « clauses, clausecontaining

variable; for 1 < i < w.
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. Pick functionsf : {0,1}* — {—1,1} andg : {0,1}** — {—1,1} uniformly at

random.

. Pick anerror functiony : {0,1}3* +— {—1,1} where for every € {0,1}%%, u(y)

is set tol with probabilityl — ¢ andu(y) is set to—1 with probabilitye’.

. Let A be the supposed long codea(fv) in the proof andB be the supposed long
code ofg(w) in the proof. Letr : {0,1}%* — {0,1}“ be the projection function

that restricts assignmentsdoto assignments to.

. Defineh : {0,1}3* +— {—1,1} as

hy)=g(y) - f(x(y)) - wly) Yye {01}

The verifier accepts if and only if

A(f)B(9)B(fgn) =1 (10.6)

We state HiStad’s result in a form convenient to us :

Theorem 10.7.1The verifierVs,;; has completeneds— ¢ and soundnes$.6 provided

u > Cylog(1/€") whereCy is some large absolute constant. The proof size is at most

nOwW22™ wheren is the size of the Gap-3SAT instance.

Remark : The long codes are supposed tofbkled over trueand conditioned upon

3SAT predicatesut this is irrelevant for our purpose.

We note that if a proof contains correct long codes and is consistent with a satisfying

assignment to Gap-3SAT formulap, then equation (10.6) is satisfied if and only if

plo(w)) = 1.
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This reduction produces a weighted instaihcef Max-3-Lin-2 where the variables
correspond to bits in the proof and there is one equation of the form (10.6) corresponding
to every tuple(A, B, f, g, 1) chosen by the verifier. (equation (10.6) is a linear equation
modulo 2 in{0, 1} notation ). The equation corresponding to the tupleB, f, g, 1) has
weight equal to the probability with which this tuple is picked by the verifier. For any
assignment to the variableslih the weight of the equations satisfied by this assignment
is equal to the probability with which the corresponding proof is accepted by the verifier.
The sizeN of the instancé” is polynomial in the proof size, i.6V < n©“22™ for some

constant’;.

Proof: (Of Theorem 10.5.4) We modify the verifierls,;; using an idea similar to
the randomization technique used in section 10.6. The new verifier expects the proof to
contain long codes of strings(v) o = ando(w) o x for some fixed-bit stringx. The
projection function is modified accordingly. The verifier proceeds in a similar way, but
now we havef : {0,1}** — {—1,1} andg, u, b : {0, 1} — {—1,1},

We modify the instancE by deleting all equations corresponding to tuglésB, f, g, i)

wherey fails to satisfy the following condition :
v ye {07 1}311,7 PrzE{O,l}l [/‘L(y o Z) =—1 ] < 2¢ (107)

For everyy € {0, 1}, there are2! strings of the formy o z. We will setu(y o 2) = —1

with probability ¢’ independently for ally o z. Using Chernoff bound, we can show that
if | =u=Q(log(1/€¢)), the probability that an error functigndoes not satisfy (10.7) is
negligible compared tg. Thus the weight of the deleted equations is negligible and we

ignore it from the analysis. &ttad’s soundness analysis also applies to this new verifier
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implying that if ¢ is unsatisfiable, the maximum weight of the equations satisfied is at
most0.6.

For the covering condition, we consider the assignmentso I' given by proofs
corresponding to a fixed satisfying assignmerior ¢ and a choice of-bit stringz. As
x ranges over all-bit strings, we get different assignmentdto

An equation corresponding to the tuglé, B, f, g, 1), whereB is the long code of
o(w) o x, is satisfied provideg(o(w) o ) = 1. This happens for at least- 2¢’ fraction
of z’s sinceu satisfies condition (10.7). Thus every equation is satisfied by atllead’
fraction of assignments in the sgt, | x € {0,1}'}.

Takinge = 2¢’ and transformingd’ to aregularMax-3-Lin-2 instance proves Theorem
10.5.4. The theorem also holds with a subconstant valuepsbvided we allow the
reduction to run in superpolynomial time. We take- C; log log n for a suitable constant

24u

(s, so thatn®1v = 22" With this choice we havev < nC1u92™ — 222" gnd thus

log N < 2-2". By Theorem 10.7.1, we can achieve= 2/ < ;i for some

3 > 0. We also note thav < n?¢1u = pOoglogn),
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Chapter 11

Conclusion

More than decade’s work by several researchers has resulted in the beautiful theory of
inapproximability. Optimal hardness results are now known for many fundamental prob-
lems. However many important problems still remain open. In this chapter, we list some

of them and point out some directions for future research.

11.1 Open Problems

These open problems are listed without any specific order (and with personal bias towards
their importance). A more comprehensive list appears in Vazirani’s book [113, Chapter

30].

1. Vertex Cover : Show2 — ¢ hardness. The best known hardnessis [32]. How
about vertex cover okh-uniform hypergraphs, is factér— e hard ? Factok — 1 —¢

hardness is known [29].

2. Graph Coloring : Show thaB-colorable graphs are hard to color with constantly

many colors. How aboub(logn) colors ? Currently, we know tha&tcolorable
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graphs can be colored (in poly-time) with(n3/1*) colors [18] and it is NP-hard to

color them with4 colors [72].

3. Independent Set : In our opinion, before making any progress on vertex cover
and graph coloring, it is important to show the following result : Show that there
exists a constant such that for any > 0, it is NP-hard to find an independent
set of (relative) sizé in a graph that is guaranteed to contain an independent set
of sizea. Showing2 — ¢ hardness for vertex cover means proving this result with

1

a = 5 — €. Such aresult is equivalent to constructing a PCP with zero free bits,

completeness and soundness at mastas shown in [16].

4. Min-2SAT-Deletion : Show any constant factor hardness. Currently, a con-
stant factor hardness is known (that follows fronastid’s corresponding result

for MAX-2SAT) andO(log n log log n) approximation is known [80].

5. Graph Min Bisection, Sparsest Cut, Densest Subgraph, Bipartite Clique:
Show that these problems do not have a PTAS (unless of course P = NP). The best
known approximation algorithms for these problems achieve ratjbsg® n) (see

[42]), O(logn) (see [86]),0(n'/?) (see [41]) and)(n'/?) (folklore) respectively.

6. Asymmetric TSP : It hasO(log n) approximation [45] andit — e hardness [100].

A 4/3 integrality gap example is known for a natural LP.

7. Shortest Vector Problem in L, norm : It has2°™ approximation ([87], [107])
and\/2 — e hardness [96]. Show any constant factor hardness. Does an approxi-
mation within polynomial factor exist ? Show any constant factor hardness in

norm for some fixed value ot < p < occ.
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8. Max Acyclic Subgraph : Ithas2 — ¢ hardness [99] and no algorithm better than

trivial 2-approximation is known.

9. Edge Disjoint Paths (Network Congestion Minimization) : Approximation

within ratio O(log’ign) is known [102] and a matching integrality gap example
is known (attributed to Leighton). A hardness factois known (it just follows
from hardness of finding two edge disjoint paths between two pairs of terminals).

Show any constant factor hardness.

10. Bin-Packing : Is it hard to find a bin-packing usingP7" + 1 bins ? How about
any additive constant ? The best algorithm uSé¥l" + log*(OPT) bins [71].

It would be interesting to find new inapproximability thresholds for natural problems.
Recently two such tight thresholds were showfi(log® n) for Group Steiner Tree on
trees [57] and2(log" n) for Asymmetrick-Center [26]. Apart from showing hardness
results for specific problems, it would be nice to relate approximability of different prob-

lems and get some reasonable classification.

11.2 Future Directions

Current techniques seem to have reached their limits for problems like Vertex Cover and
Graph Min Bisection. Recently, two new approaches have been proposed. The firstis the
Unigue Games Conjecture presented in this thesis and the second is Feige’s hypothesis

about hardness of Random 3SAT.
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11.2.1 Unique Games Conjecture

As seen in this thesis, this conjecture implies- ¢ hardness for Vertex Cover and any
constant factor hardness for Min-2SAT-Deletion. Assuming a stronger form of this con-
jecture (with additional assumption that the underlying bipartite graph of unique 2-prover
game is an expander), one can show any constant factor hardness for Graph Min Bisec-

tion.

11.2.2 Feige’s Hypothesis about Random 3SAT

A random 3SAT formula with densitg' is obtained by pickingn = Cn clauses uni-
formly at random from the set of all possible clausesnovariables. Arefuting proce-
dure is a procedure that says YES on satisfiable 3SAT formulae and says YES/NO on

unsatisfiable instances. Note that for laégealmost every 3SAT formula is unsatisfiable.

Feige’s Hypothesis: For all large constant§', there is no poly-time refuting procedure
that says NO on a constant fraction (say®®f unsatisfiable 3SAT formulae picked with

densityC'.

Feige [34] shows that this hypothesis implies that there is no PTAS for Graph Min
Bisection, Bipartite Clique, Densest Subgraph and Catalog Segmentation. The idea is
that when a 3SAT formula is picked at random, then an appropriate reduction to a graph
problem will give a random-looking graph (and hence a graph with expansion proper-
ties). Following Feige’s paper, Alekhnovich [5] has shown interesting results based on

(conjectured) hardness of random system of linear equations.
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