Coherent and Network-Aware Tracking of Objects

Chi Zhang Junwen Lai Sumeet Sobti Nitin Garg Fengzhou Zheng
Arvind Krishnamurthy Randolph Wang

Abstract These systems are initially conceived in cluster environ-

ments, where the topology of the network is less of an is-

The abl'lty of tracking the locations of distributed ob- sue. When the network grows |arger and its top0|ogy be-
jects and maintaining cache coherence when they chang®mes more complex, however, the simple manager-based
is crucial for many applications. In this paper, we proposeapproach may become problematic. Attempts at co-locating
an object tracking system that supports strong coherencg manager with one of the data users that it serves can be
semantics and can exploit its awareness of network topolcomplicated by the fact that the best location of the man-
ogy. The network-awareness is especially beneficial in &ger may be unclear in a complex network. Routing all read
wide area network where the system’s ability of confiningand write requests via managers, whose locations can be
routing messages to a smallest possible locality is imporsub-optimal, may not only degrade performance, but also
tant. Experiments with a deployment of the system on gajse the cost of deploying such distributed systems across
real-world Internet overlay show substantial benefits of thehe wide area, as more wide area bandwidth is consumed by

system compared to existing approaches. routing requests involving the managers.
_ Another existing class of solutions is based on dis-
1 Introduction tributed hash tables (DHTSs) [14, 15, 19, 21]. The chief ad-

vantages of this approach are its ability to scale to many

In this paper, we study how to track locations of objectsnodes and the small amount of routing state on any node.
distributed in a network, how to route requests to copies offhere are also some limitations. Indeed, proponents of the
these objects, and how to maintain cache coherence for reagiHT-based approach recognize that there are classes of ap-
ing and writing. We would like to support at least two types plications for which this approach is not appropriate. These
of application semantics: for a read request, we need to lonclude applications that require strict consistency among
catea copy of the data; and for a write request, we may neednany writers or fine-grained control over the physical loca-
to locateall obsolete copies (if any) to invalidate them. tion of data [4].

A typical application for such a system is a shared file The hash algorithms dictate the placement of data and,
system, with which users can cooperatively read/write datgherefore, the higher-level systems lose the flexibility of
across a wide area network. To achieve good performance, haking their own placement decisions with pin-point accu-
is desirable to cache data at arbitrary locations close to dafacy. Data replication in DHT-based system can alleviate
users. Users may sometimes also desire strong (serializablgys difficulty but the replicas only offer limited placement
cache coherence semantics. flexibilities and replication can be costly. Compared to a
manager-based approach, the number of network hops in-
volved in a DHT lookup can be relatively high, especially

One existing class of solutions, which we call thein a system of modest size, where the DHT scalability of
manager-basedpproach, is exemplified by the way one lo- managing host joins and departures is not a crucial issue.
cates data objects in cluster systems such as distributed file While a read-only use of the system requires locating
systems [2, 9, 20], distributed memory systems [6, 10], angust one copy, a read-write use of the system with strong
cluster applications such as scalable email services [16]. Inoherence semantics would require locatfigreplicas. If
these systems, a “manager” is responsible for tracking ththe system allows only a fixed number of replicas residing
current locations of the replicas of an object. Read or writeat locations determined by the hashes, locating these copies
requests are first sent to the manager, which in turn forwardfor invalidation upon writes is easy but read performance
the read requests or sends invalidation messages to the hostay suffer due to lack of caching. On the other hand, if the
which have replicas. To avoid bottlenecks at a single mansystem allows caching at arbitrary locations, the locations
ager, the management of the whole data set is typically disef the replicas are no longer determined by hashes and are
tributed among multiple managers. Each object is mappetherefore difficult to determine. When the scale of the target
to one manager which keeps full record of the copies. Consystem is not massive, these limitations of the DHT-based
sistency of update operations is guaranteed by the single sepproach may be too high a cost to pay.
rialization point, the manager. It is also possible to combine the manager-based and

1.1 Existing Solutions

DHT-based approaches, so the location of the manager Ence on a tree-like routing topology, not the tree-like topol-
decided by the DHT algorithm. The DHT-based approactogy itself. Furthermore, CANTO provides persistence and
provides a scalable way of routing toward managers, andecovery of routing state in case of node failure, while some
the manager-based approach allows arbitrary data locatiorexisting systems only guarantee recovery of topology con-
to be tracked. The lack of network-awareness in the mannectivity.
ager locating mechanism, however, persists; and the amount A property that is missing from the above list is compact
of location state on a manager can be proportional to theouting state on CANTO nodes. CANTO requires per node
product of the number of objects and the number of hosts;outing state that can be proportional to the product of the
a figure that negates a key advantage of the DHT-based sysumber of objects and the number of neighboring nédes
tems, namely, its small routing state. In addition to several state compression techniques that we
Finally, it is worth noting that we do not see the sys- discuss in a later section, CANTO stores most of this rout-
tem that we propose in the rest of the paper as a competing state on disks and uses a memory buffer for caching
tor to DHTs. Instead, it is a network-aware extension ofand write-behind. In effect, CANTO trades disk storage of
the manager-based approach that addresses a class of appating state for reduced usage of wide-area networks and
cations or environments for which DHTs are less suitablebetter performance. We believe that this approach is con-
As we discuss in Section 3.1, there are also ways of comsistent with both hardware technology trends and software
bining DHTs and the proposed system that address sonmerchitecture trends, exemplified by the popularity of sys-

weaknesses of each approach. tems such as web caches and content distribution networks.
. (The amount of routing state should be small compared to
1.2 CANTO Properties the storage devoted to data replication, and unlike CDN-like

We call our object tracking and routing system CANTO applications, CANTO is designed to support coherent read-
(Coherent And Network-aware Tracking of Objects). It haswrite applications.)
the following properties. (1) The system is coherent. It
supports strong serializable consistency semantics. (2) Th2 Algorithm
system is network-aware. For a read request, the system at-
tempts to locate a copy that is “nearby.” When routing to2.1 Network Routing Analogy
all copies of the object,_ such as for invalidation for wrltes, Before we describe the CANTO algorithm, let us con-
the messages are confined to a network area spanning on|

) . Sider Internet host routing as an analogy. We may presentan
those copies. (3) CANTO allows higher-level systems toobject ID (an IP address in this case) to any node in the sys-

make their own arbitrary data placement decisions. (4) Th?em. Even though this node may not “know” the exact loca-

precise routing state f_or a piece of data is not widely d'.s tion of the target, it “knows” where the next-hop destination

persed to every node in the system. Even when the object . :
)) g ~ . ~7IS in order to make progress. An advantage of this approach

location changes drastically, this controlled narrow distribu-, : . ; . ; A

) : . . s that it can exploit topological locality well in certain sit-

tion avoids the need of expensive updates to the routing state .. = | : o

Uations: for example, when an object moves within a small

on every node. .(5) CANTO IS self-synchron!zmg, in that locale, routing table entries of far-away nodes are unlikely to
it preserves the integrity and consistency of its data struc—e disturbed. A disadvantage is that some amount of routing
tures during concurrent read and write operations WithouP :

. . . : .~ “Information needs to be widely disseminated to essentially
resorting to an external locking mechanism or fixed single . . .
o2 . : o every node in the system so any node is capable of routing
serialization points. (6) CANTO is self-recovering in that " . .
. o . . requests for any object. If the location of an object changes
it reconstructs its in-memory routing state from persistent : " .
. . drastically, routing table entries of a large number of nodes
storage and/or neighboring nodes after a crash.

CANTO utilizes a tree-like routing topolody The use may be affected.

. . . Unlike routing for conventional Internet hosts, which do
of a tree routing topology is by no means new—existing sys- . : X
. - L not often change their locations drastically and cannot be
tems such as Scribe [5] and Globe [3] utilize similar topolo-,, ~ .. " . : ; -
i ! ;) replicated,” routing for generic objects distributed over the
gies as well. We explain the detailed secondary differences

between CANTO and these systems in later sections. Thréetwork need to contend with these possibilities. A naive

primary difference, however, is the first CANTO property ddoption of an existing ro_utm_g algorlt_hm, such as the I”?k

X . state protocol, may result in high cost incurred by excessive

listed above, namely, that CANTO provides strong cache . :
i . . fouting state propagation, slow convergence toward consis-

i) . : fent distributed routing state, the complexity of managing
operations, semantics that publish/subscribe systems of ; . . :

: : ; ; inconsistency during routing state propagation, and the com-
generic location tracking systems are not designed to pro-

vide. A key technical innovation of CANTO is the opera- 2it s worth noting that Scribe and Pastry [15], the DHT sysigpon
tional details of a protocol that provides for this cache coherwhich Scribe is built, have different amount of routing statvhile Pastry
has minimum DHT routing state, Scribe’s additional state lsa propor-

1we call it a “tree-like” topology because, as we explain ict#m 2.3, tional to the product of the number of objects and the numbewerlay
it is not exactly a tree. “neighbors,” which is no less than that of CANTO.

plexity of coping with routing loops. Despite these disad-
vantages, the topological awareness advantage of the ho
by-hop Internet routing is one that we would like to incor-
porate into CANTO.

2.2 Terms and Data Structures

We define several terms and data structures used by tt
CANTO routing protocol. The precise roles of these terms
should become clearer in subsequent sections. For ea
object tracked by CANTO, there is anchornode. The 5] 5] 5]
object-to-anchor mapping is similar to a “manager map” in
several cluster systems [2, 6, 9, 20] in that it is a relatively
static and compact map that is known to all nodes. In the

basic CANTO algorithm, routing messages (including both \ g::z:\z
requests and replies) travel along edges of a spanning tre © Active
rooted at the anchor. We later discuss the use of more gel

eral topologies. With respect to each object, all nodes fall ir B oaa
one of two categoriesactiveandinactivenodes. Formally, .\A link of the
if a copy of the data is stored on nodg then all nodes be- oanning
tween the anchor andl’ (including the two end points) are A request
active. All nodes that are not active are inactive. On eacl \ message
node, logically, there is one bit associated with each edg \Presence o
and each object. We call this bit @uge bitand the edge B @ ()] (] a fresh copy
bit is one only if there is a copy of the data in the direction () (h) 0)

of that edge pointing away from this node. We call such an

edge &l-bit edge An inactive node has no 1-bit edges. An Figure 1: Example basic CANTO operations.

invariant of the system is that there is always a path of 1-bit
edges leading from the anchor to a replica and it is possiblactive. All edge bits of edges lying on the directional path
to reach all replicas from any active node by following the from the anchor toX are set to one.
directed 1-bit edges. We refer to these edge bits collectively |n Figure (d), node” issues a read request. is an in-
as metadata or routing state. active node so the request is routed toward the anchor. As
. . soon as the message reaches an active hbee route to
2.3 Basic Operations the anchor, the message starts to follow 1-bit edges instead
There are essentially two cases of routing. (1) Startingand is diverted toward a replica at node which sends the
from an active node, one should be able to reach one or afequested data back 6. Note that the data reply need not
replicas of the data by traversing 1-bit edges. (2) Startindollow the spanning tree edges but the metadata reply, which
from an inactive node, one first routes a request toward thés responsible for restoring the invariant, does. Figure (e)
anchor. Once this message encounters an active node shows the resulting tree state, assuming nodes chosen
route, which can be an active node lying on the path betweeto cache locally a copy of the data (which it is not required
the originating node and the anchor or the anchor itselffo). The edge bit of the single edge of nadds newly set,
which is itself active, further routing of the request proceedgointing towardY” (via P), and the edge bit of the single
as in case (1). We now illustrate the basic CANTO routingedge of nod&” is also newly set, pointing toward (also
algorithm using a series of example operations (shown irvia P). NodeY has become active. Note that the CANTO
Figure 1). invariant demands more than simply maintaining a path of
Figure (a) shows the initial state of the spanning tree1-bit edges from the anchor to the replicas: the two repli-
The only active node is the anchor. In Figure (b), ndfle cas in this case also need to point toward each other. The
creates the data. Since it is an inactive node, it sends a writgtility of these extra 1-bit edges would become clear in the
request toward the anchor to inform the rest of the systennvalidation operations to be described next. Also note that
the current location of the data and to invalidate any potenalthough we have chosen to only cache data at leaf nodes in
tial obsolete copies. The first active node encountered bthese examples, CANTO does not intrinsically differentiate
this message is the anchor and since there is no obsoleligaf nodes from interior nodes and data can be cached at any
copy to invalidate, the message terminates there. As the rgaode and tracked by CANTO.
ply message flows back along the same path, edge bits are In Figure (f), nodeY” issues a write requesY’ is an ac-
set to maintain the invariant. Figure (c) shows the resulttive node so the request is multicast to all other replicas to
ing tree state. All nodes betweéhand the anchor are now invalidate them by following the 1-bit edges. A reason for

CANTO to employ a tree topology to route its request and
reply messages is to avoid potential routing loops. Note thg
not all active nodes are involved and the anchor need not a
ways participate in the invalidation process: the 1-bit edge
from the anchor to the common ancestoo&ndY are not D
disturbed in this case. This is why CANTO does more thar|
simply maintaining paths of 1-bit edges from an anchor tg
all the replicas. The fact that it is possible to reatlhrepli-

f

T
.

B
cas fromany active node allows the invalidation messages B @ © B © s o ©
to be confined to a small neighborhood when possible. Thi:
is one of the important differences between CANTO and ® Anchor
some existing routing schemes, such as the one employed O Inactive
OceansStore [8], whose invalidation operations always nee O Active
to reach a “root” node first. (We discuss other differences B oata
in the related work section.) Figure (g) shows the resulting B B B | Akt
tree state. Nod& has become inactive and the edge bits ~ spanning tree
of nodeX, Y, and their common ancestd?, are updated \ v \ messase
to reflect this change. (The algorithm “knows” which edge B 5 % Presence of
bits to clear and which to set by examining the direction ® @ " m m

from which the invalidation messages arrive. For example,
the edge bit orX' — P is cleared as this edge points toward
the anchor, while the edge bit dh — Y is set as this edge
points away from the anchor.) This is in contrast to existing systems, such as some shared
In Figure (h), nodeZ issues a read request. Singds virtual memory systems [10], Scribe [5], and GLS [3],
inactive, it routes the request toward the anchor, which hapwhere the routing topologies are strictly trees. One purpose
pens to be the first active node that the message encountarkthese explicit 1-bit edges is to ensure that messages re-
in this case. From there, the message follows the 1-bit edgesulting from updates (such as publishes, writes, and deletes)
to reach nodé&”, the only replica in the system, which sup- are confined to a network neighborhood that does not nec-
plies the data t&. Figure (i) shows the resulting tree state. essarily have to always include a tree root.
All nodes between (and including) and the anchor are ac- o]
tive as a result of a copy being cachedzat All the edge 2.4 Conflicting Operations

bits lying on the tree path betweéhandZ are set as the In previous descriptions, we assume there are no con-
metadata reply retraces the steps of the request message.fjicts in metadata operations. In reality, different users can
Active nodes maintain dynamic, precise, verbose, ancsk to read/write the same object at the same time. From the
hop-by-hop information of where the replicas are, while in-system’s point of view, when the concurrent requests try to
active nodes rely on relatively static, generic, compact, andhange route state along their paths, they may interfere with
direct pointers to anchors. One implication of this differ- each other and ruin the integrity of the routing state. From
entiation is that the maintenance of the precise routing inthe users’ point of view, the read and write operations need
formation is limited to the nodes that have participated into be ordered to ensure consistency. Essentially, these are
operations on the data. This is in contrast to routing protothe two sides of the serialization problem.
cols such as the link state protocol where some amount of We do not use fixed serialization points like managers or
up-to-date routing state must be disseminated to all nodegxternal locks. Instead, we allow the serialization happen at
In a way, CANTO is similar to Mobile IP [12] as it relies dynamic points close to requesters. When a request reaches
on arelatively static “home” node as the last resort forwardq node, the node checks for conflicts with other pending re-
ing agent, a role that is similar to that of a CANTO anchor.quests. (Conflicts happen between read and write, or write
(Unlike a Mobile IP home node, a CANTO anchor is not and write requests for the same object.) If there is a conflict,
always involved in routing operations, as requests routed tathe new request will be blocked until the pending request
ward the anchor by an inactive node may be diverted by afinishes. In case of a “head-on-head” collision, i.e. two
active node en route.) nodes send conflicting requests to each other at the same
We should also note that although we have loosely retime, we break the tie with the topology order. A request
ferred to CANTO routing graphs as “trees,” they are notfrom an “upstream” node (closer to the anchor) gets higher
trees in a strict sense: although tbhedirectedskeletons priority. The “"downstream” request has to wait.
of the routing graphs in Figures 1 are trees, thected Figure 2 gives an example of the conflict resolution.
graphs are more complex—each undirected tree edge magnds a write request toward the anchottries to read the
have zero, one, or two directed 1-bit edges associated with isame object shortly afterY’s request is blocked at node

Figure 2: Example of conflict resolution.

4

G by the request o. In step (e),X’s request runs into of excluding the use of certain links. One potential cause of
another write request frod. Since they collide “head-on- concern is that the tree edges near the anchor may become
head”, we give requesX the green light. After request bottlenecks. This concern, however, is unlikely to be a real
invalidatesZ’s copy, it turns back and releaséss write problem, due to at least two reasons.
andY’s read requests in turnY”’s request will follow the First, although there is only one tree per anchor, there
new bits to reachX’s data. Finally in step (i)Z's request should be many anchors and, therefore, many trees. Edges
clears the copies iX andY'. Besides ensuring routing state unused or lightly used in one tree could be more heav-
integrity, the step by step local serializations above also givély used in another, so the overall utilization of the links
the requests a global serialization ordeofY’, Z. and nodes will probably be well distributed. Second, the
Hop by hop serialization brings up the concern of po-CANTO protocol is designed to allow both read and write
tential deadlock. In the above example, if requ&sgets requests to be satisfied by active nodes at lower levels of the
blocked by request, andZ somehow reache® via an- tree without participation by the anchor.
other invalidation branch and gets blocked, there will be a Nevertheless, the use of a statically determined spanning
deadlock by circular wait. However, this cannot occur intree for routing could be overly restrictive. In this section,
a tree topology. First, the loop-free property ensures thajve examine a simple example technique of enriching the
requestZ cannot reach” without passing node G. Second, topology with more dynamic information and route choices.
the topology order entitles requésto take precedence over |et us consider the example illustrated in Figure 3.
any other request that reaches node G at the same time that Figures 3(a)-(c) show a read request as we have seen in
requestZ does, since it will be an upstream request theregection 2.3. While adhering to the statically determined tree
Generally, the topology order ensures that one request (th&jges correctly locates the object, it may not be the optimal
one closest to the anchor) has higher priority than any othqy\,ay. Note the possible path taking the— F shortcut.
one and thus can always make progress. The remaining panes of Figure 3 show an enhancement
to the basic algorithm. In Figure (d), active nodésand

2.5 Enriching Routing Topologies F sendhint messages to their inactive neighbésandC,

\ Aninactive
y link

&/ A hint
message
Q’ Presence of

\ an active node

(d)

Figure 3: Comparison of routing scenarios with and withoirttledges.

® Anchor informing them about the presence of active neighbor nodes.
Q) Inactive Figure (e) shows the result: nod8sandC storehint bits
© Active
B bata pointing to their active neighbors, and we call the inactive
\ Alink of the links pointing to the active neighbohént edges
active ree Figure (f) shows the alternate path taken by a read re-
A request . A 4
message guest from nodeD: instead of following the statically de-
3 ;"ﬁ:;:‘ccig; termined tree edges, the request is diverted along the dy-

namically formed hint edg€’ — F, toward an active node

F. From an active node, the routing of any request proceeds
as previously described in Section 2.3. This path is shorter
than the one determined by the basic algorithm in Figure (b).
Figure (g) shows the routing state after serving this request.
Note the difference between (c) and (g): the subset of active
nodes and edges connecting them are different. We call the
subtree consisting of active nodes and edges between them
theactive tree In Figure (g), theactive treeis more concen-
trated around the data copies, alleviating the anchor burdens
of routing future requests.

In this sequence of example operations, we have shown
the setting of hint bits as neighboring nodes become active.
The converse, namely the clearing of hint bits, should occur
when active nodes become inactive due to invalidate opera-
tions. To amortize the cost of these propagations, we delay
and send them in batches. As a result, the hint bits can be
out-of-date with respect to the neighboring nodes that they
point to. To cope with inaccurate hint bits, we fall back to
the statically determined default spanning tree edge routes

In the basic CANTO operations discussed above, we inif a message reaches an inactive node after mistakenly fol-
sist on routing protocol messages along edges of a spannin@wing a hint edge.
tree that is statically determined. The tree-topology restric- The flexibility of forming active trees in the dynamic al-
tion guarantees the absence of routing loops at the expengerithm introduces additional complexity. Now the objects

sharing a single anchor no longer share an identical active There are three options for making CANTO routing
tree. For each node, its parent node in the active tree bepraph edges: (1) physical Internet routes (between nodes
comes dynamic instead of being static as in the basic algand their anchors); (2) “unstructured” overlay routes; or (3)
rithm. Recall that in the process of serving a write request;structured” overlay routes, such as the successive lookup
in order to determine whether an edge bit needs to be set drops determined by DHTSs.
cleared, a node needs to “know” whether the request is ar- A cross-product of all the above options produces many
riving on a link pointing toward the anchor or pointing away combinations; of course, not all these are meaningful. We
fromit. This determination is easy under the basic algorithnconsider some of the most obvious combinations.
because the parent node is always static and unique to the Combination A: overlay nodes unstructured man-
anchor. In the case of dynamically constructed active treegger map-based anchor assignmentinstructured overlay
however, we must keep additional state, namely the parefgytes. This is one of the most flexible combinations; and
node of each node for each object. This additional state i has the potential of best performance and least scalabil-
yet another example of the trade-off between keeping extrgy. One can choose to place anchors at strategic locations
state and reducing network usage. in the network to avoid bottlenecks, or move them closer to
In Section 2.1, we have discussed the cost and complexpme clients as access locality is observed. One can include
ity of routing to distributed objects over a general mesh. Thgn the CANTO routing graph more overlay links between
static routing trees discussed in Section 2.3 has less roufpdes that closely share objects, or deliberately avoid some
ing state propagation cost and less complexity. These twgjow links. Section 3.2 gives more scenarios where one
topologies for routing, namely an arbitrary mesh and a statignight want to manipulate node degrees in the CANTO rout-
tree, represent two extremes. The enhancementdiscussedyigy graph. (The investigation of an optimal CANTO rout-
Section 2.5 is an example design point in between, as thgg graph, however, remains an open research question.) In
combination of the active edges and hint edges form a routaddition to better network-awareness, an additional advan-
ing mesh that offers more flexibility than that afforded by thetage of an anchor assignment and routing scheme that is not
static trees. This enhancement, however, is only a relativeljash-based is that “related” data items can share identical or
simple attempt: the single-hop propagation of hint messagesimilar routes and routing state. This results in higher spa-
from active nodes to their inactive neighbors introduces reltjg| |ocality in accesses to data and meta-data, more compact
atively little cost; and routing loops are trivially avoided on routing state, and better routing performance. (We discuss
the resulting mesh. Although this approach appears to prahe management of routing state more fully in Section 3.2).
vide substantial benefits in some Situations, we view thi%ombination A, however, is On|y appropriate for a modest-

enhancement as merely a starting point for ongoing researdjzed system, where the change of node membership is not
into better and more general routing topologies. too frequent.

. . Combination B: overlay nodes consistent hashing-
3 Discussions based anchor assignment structured DHT-based routes.
3.1 The Making of CANTO Nodes, Anchors, and _Undgr this combina_tion_, the routing stz_ite is similar (but n_ot
Routing Graph Edges identical) to that maln_talne_d by th_e Scribe publl_sh/subscrlbe
system [5]. (As explained in Section 1, a key difference be-
In describing the CANTO algorithm, we have deliber- (ween CANTO and Scribe is that CANTO provides strong
ately been vague on issues such as how the anchors are @gche coherence semantics.) Combination B has the exact
signed and how the CANTO routing graph is formed. Theregpposite attributes of combination A: it is less flexible, less
are several options for addressing these issues and these gRtwork-aware, less efficient, has less compressible routing
tions are orthogonal to the workings of the basic CANTOgtate (due to randomization of hashing), but can scale to a
protocol. _ _ larger number of nodes. Combination B is the reason that
There are two options for making CANTO nodes: (1) we view CANTO and DHTs as complimentary technolo-
physical routers embedded inside the network; or (2) overgies: the former provides a cache coherence protocol while
lay nodes at the edge of the netwarkTechnologies such the |atter provides scalable anchor assignment and routing.
as “extensible routers” [17] may allow CANTO protocols ~qmbination C: overlay nodes consistent hashing-
to be efficiently implemented in a certain class of physicaly,sed anchor assignment unstructured overlay routes.
routers, while emerging overlay networks [1, 13] provide s combination is a middle-ground between combina-

platforms for the secqnd alternativg. , tions A and B: consistent hashing minimizes data move-
There are two options for assigning CANTO anchors:jent when anchor set membership changes while unstruc-

(1) relatively unstructured “manager maps,” as those eMg,red overlay routes allows flexible construction of network-
ployed in several cluster systems [2, 9, 20, 6, 10, 16]; or (2);yare CANTO routing graphs.

consistent hashing [7], of which DHTs [14, 15, 19, 21] are

Combination D: physical nodes unstructured man-
one class of examples.

ager map-based anchor assignmenphysical routes.In
3Note that “overlays” are more general than DHTSs. environments such as a campus-wide enterprise network,

or a bi-coastal company, where the concerned organiza-
tion may have administrative control over a number of
programmable routers, CANTO may naturally derive its
network-awareness by partially mirroring the physical inter-
connect. Anchor assignment may reflect internal organiza-
tional structures: for example, large chunks of a file system
name space may be “anchored” at nodes near “owner de-
partments.”

@) (b)

Figure 4: Partitioning.

however, can still be a useful hint.
While the above techniques introduce more state for bet-
ter routing, one may sometimes desire the opposite: a re-
On each node, CANTO logically stores a bit for each ob-duction in the amount of routing state on a CANTO node
jectand each network link, denoting whether a replica of theat the expense of less accuracy or less flexibility of routing.
object is present in the direction of that link. The amount ofThis, for example, may allow a CANTO node to cache the
this routing state is therefore proportional to the product ofrouting state of a larger fraction of the objects in its memory,
the number of the objects and the number of the incidenthus speeding up lookups on an individual node. The deci-
links. By allowing arbitrary placement of data objects andsion that one must weigh is whether this local speedup is
tracking their precise locations, CANTO pays the cost ofjustified by the overall distributed cost. We consider several
state storage space to gain the benefits of coherent semanputing state compression techniques and their cost.
tics, reduced network usage, and better performance. This The first technique is to restrict the routing graph topol-
trade-off is a key goal of CANTO. Section 2.5 has given anogy: limiting the maximum number of possible incident
example of managing this trade-off where we use additiona¢dges to a CANTO node. This technique is most relevant
per object state to build better routing topologies that shouldo the case of a CANTO system made of overlay nodes,
result in more savings on network usage. We examine sewhere one has a large degree of freedom choosing an over-
eral additional ways of managing this trade-off. lay topology. Reducing the incident degree of nodes, how-
When a read request arrives at a node, encounteringver, increases the diameter of a routing graph (or the height
multiple 1-bit edges, each of which can lead to a separatef a routing tree) in terms of hops, thus potentially increas-
replica, CANTO must make a choice of which 1-bit edgeing routing overhead.
to forward the request on. So far in our discussions, we The second technique is to restrict the number of repli-
have assumed that we store one bit per object per edge. Thias. Suppose a node has an incident degree ahd we
is sufficient for locating a copy but CANTO does not havedictate that no more thaih <= n <= D of these edges
enough information for locating a “good” copy. A possible can be 1-bit edges, then the number of bits needed to track
enhancement is to store more than one bit of routing stat
per object per link, allowing better “resolution” of differen-
tiation of the “quality” of these replicas. This is analogousreplicas, of course, reduces the effectiveness and flexibility
to the “distance” metric employed in routing protocols suchof caching.
as “distance vector.” The third technique is to move replicas to strategic lo-
There are several complications with this approachcations inside the CANTO routing graph. Note that the
First, to maintain these distance metrics, one needs to prosANTO algorithm allows replicas to be kept at any node.
agate extra messages beyond what is required by the alg@onsider the example routing tree in Figure 1(e). Instead
rithms described earlier. Of course, these distance metriasf keeping two replicas at nodes and Y, we may in-
are merely hints, so the propagation can be delayed amstead keep a single replica at their parént (We assume
batched, and the propagation frequency can be flexibly corthat we store inactive state using compact sparse represen-
trolled. Second, as is the case with Internet routing, how onéations.) This movement reduces the amount of state on all
computes the distance metrics can be a complex questiothree nodes at the expense of a more distant replica for both
Possible factors include the number of network hops (inX andY when they reuse the data.
terms of the number of intermediate CANTO nodes, for ex- We call the fourth technique “partitioning.” Figure 4
ample), latency, and bandwidth. The properties of the objecthows an example. Instead of having a single large rout-
being read (such as its size) may allow CANTO to choose ang tree that encompasses all the nodes in the system (Fig-
better metric. Third, data replies can be sent directly fronure (a)), we partition the nodes inkossubsetsk = 2 in Fig-
the host housing the chosen replica to the original requesteure (b)), and nodes of a single routing tree are always drawn
potentially bypassing the CANTO nodes responsible for forfrom a single partition. Each routing tree or partition is re-
warding the CANTO protocol request and reply messagessponsible for tracking a subset of all data objects. This ap-
and complicating the distance computation on the CANTOproach has several potential advantages. First, we limit the
nodes. The distance metrics computed purely based on thmaximum amount of routing state on any CANTO node to
CANTO protocol messages (instead of the data replies)l/kth of the original maximum. Second, in the original ap-

3.2 Managing the Amount of Routing State

ﬁ1e replicas idog)", ? . Limiting the number of

proach of encompassing all nodes in a single tree, although H—® ()
each anchor is only associated with a subset of the data be- © © @“‘@
ing tracked, an interior CANTO node may participate in the @) ®)
routing of many “hot” objects that are tracked by different

anchors. Partitioning prevents the possible development of Figure 5: Redundancy.

such bottlenecks. Third, partitioning may reduce the num-
ber of routing hops without compromising CANTO'’s abil-
ity of exploiting topological locality of requests, as long as
nodes within a partition are properly spaced. Of cours

The recovery process starts by reading logs from disk.
After locating the tail of a valid log and reading the counter

vector, the node contacts every neighbor with the counters.
°n neighbor compares the send/receive counters with what it

:EergAsszrl(ljmlt tol h()lwtlﬁrgé ;:an be without comp:o;m;l]ng has, and sends back any log blocks containing larger counter
€ goais. Infne extreme case, Wi quaistotne \aiues. After acquiring logs from all of its neighbors, a node
number of the nodes in the system, each partition becomes

inalet tand th tem d test b c%& replay all the logs to recover the state before the reboot.
zg]lgt(ieogn setandihe system degenerales to a manager-bagy replay purpose, the log entries are actually read/write

operations instead of bit changes.
)) In cases of concurrent failures, the above log transfer
4 Recovery and Reconfiguration process is still used. The guarantee, however, is consis-
. . tent state in the system instead of exact recovery to the state
The goal of the recovery and reconfiguration mechayefore the crash. Two restarting nodes can exchange their

nisms is to ensure consistency of the distributed CANTO,, nter vectors and log blocks. In the end, they will have

r_outing state.. We consider three recovery mechanisms. Thea same view of the state, but some updates before the re-
first copes with a node that has crashed but reboots shortly, may be lost if not logged into persistent storage in any
thereafter. The second employs _re_d_u_ndancyto allow back_u,qode When more nodes are rebooting, the pair-wise log
nodes to take over the re_spon5|t_)|l|t|es of a node that fa”%xchanges continue until every node has received every log
for a more prolonged period of time. In case redundanCy«y it did not have. The system will have consistent state
is absent or not sufficient, we employ a third mechanism ot 455 all nodes after convergence. Before this is done, the

repairing the routing trees to exclude the use of failed ”nkﬁ'ebooting nodes delay the processing of new requests.
and/or nodes.

While CANTO strives to maintain the consistency of the4.2 Redundancy
routing state and uninterrupted routing operations, we note

Y o In the previous section, we discussed how to recover the
that it isnot the responsibility of CANTO to guarantee the

-) : ; o routing state after a node reboots from a crash. CANTO also
rellab|llt)_/ qf thedatathat is being trackeq: instead, it is the uses this mechanism to provide node backups in cases where
responsibility of the systems that are built on top of CANTO e reh oot process can take a long time. Figure 5 shows an
to deudg what levels of data reliability th_ey desire and Wha%xample ofprimary nodesP; and theirbackupsB;. During
mechanisms they should employ to achieve them. normal operationP; periodically sends its log to its backup
B,. If P, crashes, nodés; starts the recovery process by
reading through the log and sending the log counter vectors
A CANTO node maintains its routing state on disks for to the neighbors of?;. After the neighbors send back the
two reasons: first, there might be more state than can fiog entries missing fronB;'s log, B; can replay the logs
in main memory; and second, persistent storage allows and gain full knowledge of;’s routing state. The®; can
CANTO node to “page in” its routing state after a nodetakes overP;'s routing responsibilities.
reboots. It may be too costly to synchronously write state To enable node backup, a single link in Figure (a) is re-
changes to disk, however. For this reason, CANTO bufferplaced by a complete graph linking a pair of primaries and
state changes in memory and logs them to disk in batchdsackups in Figure (b). We do not necessarily need to double
periodically. Though the most recent changes can be loghe number of physical nodes to provide the desired redun-
upon an unplanned reboot, we can recover the state with thgancy: backup nodes in one routing tree or in one part of the
logs from its neighbors. system can be primaries elsewhere. Some of the redundant
CANTO nodes maintain counters for messages they senlihks can be overlay links that share underlying physical
to neighbors. They also keep counters about messages flaiks, although some amount of redundancy in the physical
ceived from neighbors. Since all state changes are assodink topology is still needed to maintain connectivity upon
ated with message exchanges between neighbors, we cahysical link failures. Naturally, it is desirable to designate
determine the current state given the set of message countdrackups that are close to their corresponding primaries. In
that we have sent to and received from the neighbors. Wa simple example in Figure 5(b}; and B could share a
call this set thecounter vectoffor the current state. When single physical node, whil&, and B; could share another
a node writes a log block, the current counter vector is alsghysical node. A failure of nod®; would promptB; to
included. initiate the recovery process and take over the roléof

4.1 Recovery from Unplanned Reboot

tree are divided into two subsets; and.S;. We locate a
new link that reconnects the two subsets. The example in
Figure 6 is general: all cases of severance and reconnec-
tion can be illustrated with a figure similar to this one. Itis
easy to see that the routing state on all the nodes within all
the subtree forests illustrated by the triangles do not need to
change when the tree is reconfigured. This is because the
only way to route into or out of these forests is through the
common forest roots and this fact is not affected by the re-
configuration. In fact, the only nodes that need to have their
state updated are the ones on the cycle that includes both the

Figure 6: Repairing a routing tree. The failed linkg 7 is replaced by . PS50,
N3_4. Each triangle represents a forest of subtrees rooted ahtitte rep- figure.
resented by the circle above the triangle. To see how this state update is accomplished, let us con-

sider N, a “typical” node on the cycle that is if;. We

Routing under this situation may become less efficient bepeged to change the state correspondingtothe directed
cause this single physical node now serves all neighbors qfgge pointing toward the severed link, afig, the directed
the two nodes. However, there should be no interruption ogdge pointing toward the new link. For every objectSin
routing. if it has a 1-bit edge orF;, we need to clear this bit and

The cost of maintaining backup nodes is the bandwidthset the corresponding bit fdt,, to reflect the fact that one
and processing needed for transferring logs from a primarynust route througl, instead ofE; to reach any object in
node to its backups. This overhead is not substantial sincs,. Similarly, for N5, a “typical” node on the cycle that is
the log only records metadata operations, and thus is small 5, for every object inSy, if it has a 1-bit edge ot;, we
The log transfer can occur in the background. There iglear this bit and set the corresponding bit for. We say
a trade-off between the overhead in normal operation angie flip the bits for these objects.
prompt response to failure. The repair process starts/s. For each objectthathas a

If we use a DHT to locate anchors and use overlay hopg -hit edge onV; ¢, the broken link, we include the object in
determined by the DHT algorithm as CANTO routing tree 3 setX . We flip the bits forX at N-. Next, we exclude from
edges (as described in Section 3.1), CANTO may need to al the objects in it that can also be found in the subtree
cooperate with the redundancy mechanism already providegoted atN- (illustrated by the triangle). More precisely,
by the DHT algorithm. For example, in the routing algo- for each object inX, if it has a 1-bit edge on any d¥;'s
rithm of Chord [19], the immediate successorgdfvould incident links excluding the two on the cycle, or if the object
be used for routing if’; failed. CANTO should place the s cached onV- itself, we remove the object fronY. We
corresponding backupB; at those locations. If nod€; call these removed objectmaffected objects av,. Next,
fails, the Chord routing layer will redirect messages destinedy,, transmits the resulting séf to ;. Upon receipt of the
for P; to the backup node, triggering the recovery process. set, we flip the bits forX at N;. We then further remove

. . from X all unaffected objects a¥v; and send the resulting

4.3 Repairing Routing Trees X to N,. The process repeats until it reachég the node

When a physical link fails, it may not be necessary tores_po_nsible for establishing the new link. At the same time,
immediately reconfigure the routing tree: one may be able t& Similar process starts a% and ends aiV,.
find an alternate route (that is either a physical or an overlay ~This recovery process requires the transmission of the
route) that reconnects the end points of the failed link, sdouting state of the “affected” objects on the cycle of “af-
the routing tree can remain functional. This routing tree fected” nodes. This process may occur in the background
however, may no longer be optimal. If the link failure is while foreground routing continues on the old tree using the
long-lasting, one may wish to reconfigure the routing tree tc@lternateNs 4 5,1 7 route to emulate the broken link.
exclude the failed link.

Figure 6 shows an example. In the short run, message5 Implementation and Applications
over the failedNg 7 link can be routed over the alternate
Ne,4,3,1,7 route. This rerouting happens transparently to We have implemented and deployed CANTO as a real
CANTO and the original routing tree does not have to besystem. Most of the algorithms and features we discussed
reconfigured to remain functional. In the longer run, how-above have been implemented, including the static and dy-
ever, it is better to reconfigure the tree to replaceMag namic tree routing algorithms, conflict resolution, and re-
link with N5 4. We continue to use this example to illustrate covery after crashes. The core CANTO routing algorithms
the tree repair algorithm. take up about 5,000 lines of C++ code. Other modules con-

When a link is severed, the nodes of the original routingtain another 5,000 lines. CANTO nodes communicate with

each other via TCP connections. The internal structure of 25 ——— : : —

a CANTO server uses a single process event-driven modelkg

with some helper threads for reading bits from disk when § 20 e

the bitmap cannot fit into main memory. Other parts of the 2 AT

system, like node backup and routing topology repair, are% 15 | e

left for future work.
CANTO is designed as a middle layer for building dis-

tributed applications that require persistent tracking of ob- S £

jects. Possible applications include, but are not limited to, £ g |

wide area read/write storage, multicasting services, and dis€ # CANTO basic —+—

tributed lock managers. We have implemented a distributed” ‘ CANTO AmelS k-

(thousand re

'

virtual disk and a distributed file system on top of CANTO. %08 32 o4 128 256 384
Both run on unmodified Linux with our kernel modules. Concurrency

Our distributed virtual disk uses CANTO to track indi-
vidual blocks. Each virtual block is mapped to a CANTO
object. Clients of the virtual disk use local disks for cache 18
copies. A kernel module exports a disk device driver in- g 16| ek
terface to the Linux kernel. It redirects any disk requests § ., | P
to a user-level daemon, which either feeds back the data if?g | e
the request hits in the cache, or invokes the corresponding
CANTO operation for a miss. The client daemon also re- 2 A
sponds to commands from the CANTO server to forwardor 2 81 A
invalidate a disk block. -

Our distributed file system supports shared read-write se
mantics similar, but not equivalent, to that of a local file
system. We map each file or directory to a CANTO ob- ¥ , | ‘ ‘
ject. Clients cache some files/directories in local storage. 08 32 64 128 256 384
CANTO keeps track of the cached copies in the client ma- Coneurrency
chines and routes a client request to the node(s) with cached
copies, which invalidate and/or forward the object to the re-

quester. domains and another 3 from .net, .org and .gov domains.
File systems provide richer semantics than reads and e configure one CANTO server and one client on each
writes. To support object creation and deletion, CANTOnode. In order to measure performance under different load
provides operations to allocate/deallocate object IDs. Suprevels, we limit the number of outstanding requests a client
porting file attributes can be tricky. It is common to accesscan have. This determines how many concurrent requests
file attributes without touching data and in many cases, likesan be generated at this node. We call this number the re-
“Is -I", the attribute information need not be precise. Soquest queue length or concurrency in the rest of this section.
we allow users to cache file attributes even when the file igJnless otherwise stated, the tests are done with 0-byte data
not in the local cache. To avoid the overhead of trackingg show the metadata routing performance.
attributes separately, we only ensure that attributes are accu- e compare CANTO against two distributed tracking al-
rate when the file is actually cached in the local machine. |fgorithms: xFS style distributed manager [2] and SVM style
cases where this is not sufficient, a user can update her Viemynamic manager [10], both of which use a fully connected
with a special read request that only fetches the attributes.topo|ogy_ We place an anchor/manager at each node. The
Many applications have weaker update semantics reCANTO routing tree is built about 3 to 4 levels deep with an
quirements than strong serializable consistency. Some @jut-degree of 16 at the anchor nodes. We pick such a “fat”
them can be supported in CANTO. For example, sessiolfopology since the links are overlay connections without
semantics can be implemented if the user calls CANTO tghysical hierarchy. Two variants of CANTO are tested—
invalidate other copies at the end of a write session. the basic and dynamic algorithms as described in Section 2.

Figure 7: Throughput under random workloa@)% read.

sal

Throug'hput (thi
N

oL 3 CANTO basic —— |
/ CANTO dynamic ---—---
XFS --%--)

Figure 8: Throughput under random workloa&)% read.

6.1 Throughput of Random Workload

In the first test, we show the performance under a ran-

This section presents results of routing throughput andlom workload. Figure 7 compares the throughput of dif-
latency on a subset of PlanetLab [13]. We use 35 nodeferent algorithms when we increase the number of concur-
distributed in North America (30), Europe (4) and Australiarent requests. The workload has a read-to-write ratio of 9:1.
(1). Among the nodes in North America, 27 are from .eduCANTO outperforms xFS by a significant margin because

6 Experimental Results

10

20 + CANTO basic ——

CANTO dynamic -+
XFS %=
SVM -

Read Latency (milisecond)
Read Latency (milisecond)

Throughput (thousand requests/second)

0 25 50 75 90 100 0 25 50 75 90 100 0 25 50 75 90 100
Locality (%) Locality (%) Locality (%)

(a) Latency unde50% read. (b) Latency undéx0% read. (c)50% read, concurrency 64.

100

35
50 -

a0 |

Throughput (thousand requests/second)
Throughput (thousand requests/second)
Throughput (thousand requests/second)

0 25 50 75 90 100 0 25 50 75 90 100 0 25 50 75 90 100
Locality (%) Locality (%) Locality (%)

(d) 90% read, concurrency 64. (6D% read, concurrency 256. (80% read, concurrency 256.
Figure 9: Throughput and latency under varied locality.

CANTO can locate copies close to requesters without alits local cache hit rate. CANTO also benefits from lower
ways going to a remote manager. However, under a writeeonsumption of aggregate throughput. The dynamic man-
heavy workload, there are few copies of each object in theger algorithm labeled as SVM yields much lower through-
system and the CANTO advantage will diminish. Figure 8put until locality reaches nearli00%. This algorithm al-
shows results from such a workload of equal humber ofows the ownership of an object to move around the nodes
reads and writes. xFS can be viewed as a degenerated casmessing the object. However, to locate the manager, a re-
of CANTO where the routing tree is only 1 level tall. This quest may have to traverse several links determined by pre-
is an example that one should consider access patterns wheious accesses. In cases of random accesses across a wide
building CANTO routing trees. area, the link traversal can be very expensive. When geo-
))) graphic locality is100%, the ownership of an object is con-
6.2 Performance with Geographic Locality fined to nodes in a much smaller area, closer to the LAN
It is not uncommon that users geographically closer toenvironment it was designed for.
each other will access more of the same files than widely.
separated users. This test is designed to explore the pefrs-'3
formance of different object tracking schemes under geo-
graphic locality. The 35 nodes are divided into 8 groups In this experiment, we explore the impact of paging the
according to their locations. Nodes in the same group shaneuting bitmap from disk when the bitmap does not fit into
a working set of objects. We say accesses have logality main memory. Due to limitations of the testbed, we cannot
when a node accesses the local working set (as opposed iton a test with enough objects to create a bitmap larger than
an object chosen randomly from the whole set) with probathe 512MB main memory. So we enforce an artificial mem-
bility p. ory hit rate to bitmap accesses. When the access misses,
Figures 9(a)-(b) show the change in read latency whemve emulate the paging process by randomly reading a byte
we increase the locality in the workload. These tests arérom a 1GB disk file. Here we show the results under the
done with light workload so that the latency reflects the timeworkload with read-to-write ratio of 9:1.
for individual read requests with minimal queuing delay. In Figure 10 shows the individual request latency under
both cases, the CANTO variants exhibit much lower latencylight load. In this case, the frequency of disk access shows
indicating shorter request paths. little impact, because disk latency is much lower than net-
The advantage of topology-awareness is also reflected iwork latency.
the other four throughput graphs. When the locality in work- Figure 11 shows throughput results under heavy work-
loads improves, throughputin CANTO increases faster thafoad. When the bitmap hit rate is low, the performance
it does in XFS, because CANTO enjoys the additional benis actually decided by the throughput of reading data from
efit of reading from closer copies, while XFS only improvesdisks. Since xFS places all metadata on the manager node,

Performance When Reading Routing State
From Disk

11

180 : : : : 60 —

160 - ==
50
140 -

120 40

00+ T e

g
S =
E B fememenneneneaea S é
§ 80 E’
r >
5 60| s
5]
@ 40 L
20 | CANTO basic —— |
CANTO dynamic ---—---
o ‘ ‘ ‘ XFS k- o L XFS - ‘ ‘ ‘
(0] 20 40 60 80 100 (0] 20 40 60 80 100
Bit hit rate Locality(%)
Figure 10: Latency vs. bit hit raté30% read and concurrency 1. Figure 12: Latency on the Rocketfuel topology.
700 T
CANTO —+—

10 b T XFS ot
600 |

500 -
400
300 -

200 -

Throughput (thousand requests/second)
Throughput(thousand requests/sec)

100 £

CANTO basic —+—
CANTO dynamic ---—---

o))) XFS ---- o 1))))
o] 20 40 60 80 100 o] 20 40 60 80 100
Bit hit rate Locality(%)
Figure 11: Throughput vs. bit hit ratéd0% read and concurrency 64. Figure 13: Throughput on the Rocketfuel topology.

it requires fewer_bitmap accesses than CANTO does in the- A \To and DHT-based routing are orthogonal technolo-
hop-by-hop routing, so more xFS requests can be sevediog iy that CANTO can add cache coherence to DHT-
When the bitmap hit rate increases, CANTO provides bette

h h he disk i | he botl K If ased routing, one should not always rely on DHT-based
t_roug putas the diskis ho onger the bottleneck. mor outing: in situations where appropriate, CANTO should
disks are used to store routing state, the bottleneck in dis

;) . chieve better performance with more aggressive exploita-
accesses can be alleviated even when the bitmap hit rate 4§ . ¢ - ~vork-awareness than that is possible with DHT-
low.

based routing. To isolate this effect, we compare the fol-
; ; lowing publish/subscribe simulations based on the Rocket-
6.4 Simulation Results of a Larger Topology fuel topology. The first is based on a modified version of
We ran simulations to test the routing performance inCANTO (that provides publish/subscribe semantics without
a larger topology built using data collected by Rocket-the strict serialization in the original system) embedded in
fuel [18], which maps the topology of ISP router connec-the Rocketfuel routers and using physical Rocketfuel routes.
tions. The topology consists of 315 routers and 1,944 linksThe CANTO routing trees, therefore, partially mirrors the
between them. We model the CPU processing time, diskphysical interconnect. The second is Scribe running on Pas-
latency and network communications in the simulator. try. We use the optimal Pastry algorithm to build the Scribe
Figures 12 and 13 compare the performance of the baouting tables. We place a client next to each Rocketfuel
sic CANTO algorithm and xFS in the Rocketfuel topology. router. Each client subscribes to and unsubscribes from a
We place a CANTO/XFS node in each router. CANTO runstotal of 10,000 subjects, with a zipf distributioa & 1.0).
on the physical topology, while xFS uses overlay connecThe average number of subscriptions per client is 117. The
tions for the all-to-all communication between its nodes. Ascurves labeled “CANTO” and “Scribe” in Figure 14 show
in previous tests, the workloads have geographic localitthe publishing latency of the two simulated systems under
from 0% to 100%. 95% of the accesses are read requestsvaried locality factors (as explained in Section 6.2). We see
CANTO shows a significant advantage over xFS in both lathat although Pastry has its own means for accounting for
tency and throughput. locality, it can be limited. As the amount of locality in pub-
))] lish/subscribe operations increases, CANTO shows greater
6.5 Comparison with DHT-Based Routing relative benefit because it confines messages to smaller areas
Section 3.1 gives several options for assigning CANTOSPanning only the subscribers and publishers.
anchors and deciding CANTO routing graphs. Although Section 2.3 explains that the use of explicit 1-bit edges

12

140 ‘ ‘ ‘ CANTO with 100Mbps ethernet. We used a total of 160,000 files,

120K CANTO e each 8KB in size, in the tests.
= T
§ i Test step Time (seconds)
£ Each node create 47
5 1000 directories
g Each node create
e 20,000 files 1024
é Each node randomly 86.9
. read/write 20,000 files :

o ‘ ‘ ‘ ‘ Each node sequentially 1640
o] 0.2 0.4 0.6 0.8 1 read all files

Locality

Table 1: File system performance.
Figure 14: Publishing performance vs. subscription logali

in CANTO (that may point both toward and away from an-

chors) allows update-related messages to be confined to nét- Related Work

work neighborhoods that do not have to include the anchors.

As a corollary, publish messages can go from publishersto We have already discussed the relationships among

subscribers without necessarily involving any root (anchorynanager-based systems [2, 9, 20, 6, 10, 16], DHTs [14, 15,

nodes. If we disable this feature and force publish messagéd, 21], and CANTO in Section 1. Most of the manager-

to be always routed through the anchors first, the curve labased cluster systems owe similarities to the data location

beled “CANTO anchor” shows the resulting degradation. mechanisms explored in the original shared virtual mem-
o ory (SVM) work [10]. One of the alternatives examined in

6.6 Application Performance the SVM system is the “dynamic distributed manager algo-

We have implemented two applications of CANTO: a rithm” with “distributed copy sets.” Under this algorithm,
distributed virtual disk and a distributed file system, both ofthe location of the data is tracked by a tree of processors
which provide cache coherence for read/write sharing (Sedooted at an owner processor. All tree edges are bidirec-

tion 5). tional. Any node in the tree can locate a copy of the data
o to satisfy read requests. Invalidations must start at the root
cANARTO basic and propagate downward to reach all nodes. If hints fail to

XFS ==

50 locate a node in the tree, the system resorts to broadcasts to

satisfy requests. The system runs in a cluster environment
that has a simple topology and the tree is formed strictly
based on the sequence of operations performed on the data.
A goal of CANTO is to build a network-aware object track-
ing system for a more complex topology. The routing tree
nodes in CANTO can be routers that do not necessarily ini-
. 0 / tiate requests on their own and the shape of the routing tree
o) % /i .
0% 50% 90% is formed based on the network topology. In terms of de-
Locality tails, the CANTO routing tree edges are not uniformly bidi-
rectional: instead, the invariant in CANTO is that there is
a path of directed 1-bit edges leading from any active node
Figure 15 presents the aggregate bandwidth achieved iy all other active nodes (with the anchor being one of the
the distributed virtual disk under a workload with read-to- active nodes). This invariant allows CANTO to more fully
write ratio of 9:1 and queue length 64. We vary the geo-exploit topological locality so, for example, unlike existing
graphic locality as defined in Section 6.2. There are 100,008ystems, invalidation messages do not need to always reach
data blocks of 4,096 bytes each. Since we do not havan anchor or a manager, nor does CANTO need to resort to
root access to PlanetLab machines, we employ a user levbfoadcast mechanisms.
implementation instead of the kernel disk driver. The re- We have already discussed the Globe [3] and Scribe [5]
sults show the benefit of topology-awareness provided bgystems. Objects in Globe are mobile but, unlike those in
CANTO. CANTO, are unchangeable. Scribe implements DHT-based
Table 1 gives the file system test results. The test hapublish/subscribe. In contrast, CANTO provides cache co-
several steps, each addressing different types of operatiortserence for read/write operations.
The numbers indicate the time used to complete each step. OceanStore [8], a wide-area storage system, proposes a
This test was run on an 8-node LAN cluster. The ma-two-level lookup process: a fast “local” lookup may fail and
chines are 1GHz Pentiums with 1GB memory, connecteds followed up with a slower and more restrictive “global”

40

30 [

Bandwidth (MB/s)

20 [

10 -

Figure 15: Bandwidth of distributed virtual disk.

13

lookup. These two stages are based on different algorithmsig]
CANTO employs a single lookup algorithm that seeks to
both exploit locality and retain placement flexibility.

Invalidations in OceanStore, publishes in Scribe, and ob-
ject movements in Globe are performed in a way analo-
gous to that employed by the SVM system described above
and they all must reach a root node. To the extent possi{9l
ble, CANTO strives to isolate invalidation messages within
a topological locality without always resorting to a root.
CANTO copes with persistence, recovery, and reconfigura[- 0l
tion of routing state, issues not necessarily fully addressedl
in the above systems.

Ivy is a read-write file system built on top of a DHT- [11]
based storage system [11]. Instead of tracking the locations
of the fresh data, the system searches the logs of all writers.
The system is designed to work for a relatively small number
of writers and the system has a relatively loose coherencg?
semantics. (13]

8 Conclusions

In this paper, we show the importance of network topol—[14]

ogy awareness in building object tracking and routing fa-
cilities in a wide area network. We have presented an obps)
ject tracking system that possesses both strong coherence
semantics and network topology awareness. Experiments
with a deployment of the system on a real-world Internet
overlay show substantial benefits of the system compared 146!
existing approaches.

References
1

[17]

ANDERSON D. G., BALAKRISHNAN, H., KAAWHOEK, M. F.,
AND MORRIS, R. Resilient Overlay Networks. IRroc. of the Eigh-
teenth Symposium on Operating Systems Princii@esober 2001).

ANDERSON, T., DAHLIN, M., NEEFE J., RTTERSON, D.,
RosELLI, D., AND WANG, R. Serverless Network File Systems.
ACM Transactions on Computer Systemsté-eb. 1996), 41-79.

BAGGIO, A., BALLINTIN, G., VAN STEEN, M., AND TANEN-
BAUM, A. S. Efficient tracking of mobile objects in GlobeThe
Computer Journal 445 (2001), 340-353.

BALAKRISHNAN, H., DRUSCHEL P., HELLERSTEIN, J.,
KAASHOEK, M. F., KARGER, D., KARP, R., KuBlATOWICZ,
J., Liskov, B., MAZIERES, D., MORRIS, R., SHENKER, S.,
AND STOICA, |I. The IRIS ITR proposal. http://iris.Ics.mit.edu/-
proposal.html, 2002.

(18]
(2]

(3]
[19]

(4]

[20]

[5] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., , AND ROW-
STRON, A. Scribe: A large-scale and decentralized applicatevel
multicast infrastructure.lEEE Journal on Selected Areas in Com-
munications (JSAC) (Special issue on Network Support fdtidast

Communications) 2@ (October 2002).

FEELEY, M. J., MORGAN, W. E., RGHIN, F. P., KaRLIN, A. R.,
LEVY, H. M., AND THEKKATH, C. A. Implementing Global Mem-
ory Management in a Workstation Cluster. MRroc. of the 15th
ACM Symposium on Operating Systems PrincifiEcember 1995),
pp. 201-212.

KARGER, D., LEHMAN, E., LEIGHTON, F. T., LEVINE, M.,
LEWIN, D., AND PANIGRAHY, R. Consistent hashing and random
trees: Distributed caching protocols for relieving hot tspon the
world wide web. InProc. 29th STOCpp. 654—663.

[21]

(6]

(7]

14

KusliaTowiCcz, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI, R., RHEA, S., WEATHER-
SPOON H., WEIMER, W., WELLS, C.,AND ZHAO, B. OceanStore:
An Architecture for Global-Scale Persistent Storage. Plnceed-
ings of the Ninth International Conference on Architectusapport
for Programming Languages and Operating Systems (ASPL@$20
(November 2000).

LEE, E. K., AND THEKKATH, C. E. Petal: Distributed Virtual
Disks. InSeventh International Conference on Architectural Suppor
for Programming Languages and Operating Systédwtober 1996),
pp. 84-92.

L1, K., AND HUDAK, P. Memory coherence in shared virtual mem-
ory systems. ACM Transactions on Computer Systems4qNov.
1989), 321-359.

MUTHITACHAROEN, A., MORRIS, R., GL, T. M., AND CHEN,
B. Ilvy: A Read/Write Peer-to-Peer File System. Rroc. of the
Fifth Symposium on Operating Systems Design and Impletienta
(December 2002).

] PERKINS, C. RFC 2002: IP mobility support, Oct. 1996.

PETERSON L., ANDERSON T., CULLER, D.,AND ROSCOE T. A
Blueprint for Introducing Disruptive Technology into thetérnet. In
Proc. First Workshop on Hot Topics in Networks (HotNet@agtober
2002).

RATNASAMY, S., RRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable networlersc. ACM
SIGCOMM 200%(August 2001), pp. 161-172.

ROWSTRON A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-pgmstesns. In
Proc. IFIP/ACM International Conference on Distributed sBms
Platforms (MiddlewareYNovember 2001), pp. 329-350.

SAITO, Y., BERSHAD, B., AND LEVY, H. Manageability, Avail-
ability and Performance in Porcupine: A Highly Scalablesingt
Mail Service. ACM Transactions on Computer Systems 3§Au-
gust 2000), 298-332.

SPALINK, T., KARLIN, S., FETERSON L., AND GOTTLIEB, Y.
Building a Robust Software-Based Router Using Network &sec
sors. InProc. of the Eighteenth Symposium on Operating Systems
Principles(October 2001).

SPRING, N., MAHAJAN, R., AND WETHERALL, D. Measuring
ISP topologies with rocketfuel. IRroceedings of the ACM SIG-
COMM 2002 Conference on Applications, Technologies, Aechi
tures, and Protocols for Computer Communications (SIGCO8AY
(New York, Aug. 19-23 2002), vol. 32, 4, ACM Press, pp. 133%-14

STOICA, |., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. IfProc. ACM SIGCOMM 200{Au-
gust 2001).

THEKKATH, C. A., MANN, T.,AND LEE, E. K. Frangipani: A Scal-
able Distributed File System. IRroceedings of the ACM Sixteenth
Symposium on Operating Systems Princii{@st. 1997).

ZHAO, B., KuBlaTowicz, J., AND JOSEPH A. An infrastruc-
ture for fault-tolerant wide-area location and routing. cileRep.
UCB/CSD 01/1141, University of California at Berkeley, Af2001.

