
Coherent and Network-Aware Tracking of Objects

Chi Zhang Junwen Lai Sumeet Sobti Nitin Garg Fengzhou Zheng
Arvind Krishnamurthy Randolph Wang

Abstract

The ability of tracking the locations of distributed ob-
jects and maintaining cache coherence when they change
is crucial for many applications. In this paper, we propose
an object tracking system that supports strong coherence
semantics and can exploit its awareness of network topol-
ogy. The network-awareness is especially beneficial in a
wide area network where the system’s ability of confining
routing messages to a smallest possible locality is impor-
tant. Experiments with a deployment of the system on a
real-world Internet overlay show substantial benefits of the
system compared to existing approaches.

1 Introduction

In this paper, we study how to track locations of objects
distributed in a network, how to route requests to copies of
these objects, and how to maintain cache coherence for read-
ing and writing. We would like to support at least two types
of application semantics: for a read request, we need to lo-
catea copy of the data; and for a write request, we may need
to locateall obsolete copies (if any) to invalidate them.

A typical application for such a system is a shared file
system, with which users can cooperatively read/write data
across a wide area network. To achieve good performance, it
is desirable to cache data at arbitrary locations close to data
users. Users may sometimes also desire strong (serializable)
cache coherence semantics.

1.1 Existing Solutions

One existing class of solutions, which we call the
manager-basedapproach, is exemplified by the way one lo-
cates data objects in cluster systems such as distributed file
systems [2, 9, 20], distributed memory systems [6, 10], and
cluster applications such as scalable email services [16]. In
these systems, a “manager” is responsible for tracking the
current locations of the replicas of an object. Read or write
requests are first sent to the manager, which in turn forwards
the read requests or sends invalidation messages to the hosts
which have replicas. To avoid bottlenecks at a single man-
ager, the management of the whole data set is typically dis-
tributed among multiple managers. Each object is mapped
to one manager which keeps full record of the copies. Con-
sistency of update operations is guaranteed by the single se-
rialization point, the manager.

These systems are initially conceived in cluster environ-
ments, where the topology of the network is less of an is-
sue. When the network grows larger and its topology be-
comes more complex, however, the simple manager-based
approach may become problematic. Attempts at co-locating
a manager with one of the data users that it serves can be
complicated by the fact that the best location of the man-
ager may be unclear in a complex network. Routing all read
and write requests via managers, whose locations can be
sub-optimal, may not only degrade performance, but also
raise the cost of deploying such distributed systems across
the wide area, as more wide area bandwidth is consumed by
routing requests involving the managers.

Another existing class of solutions is based on dis-
tributed hash tables (DHTs) [14, 15, 19, 21]. The chief ad-
vantages of this approach are its ability to scale to many
nodes and the small amount of routing state on any node.
There are also some limitations. Indeed, proponents of the
DHT-based approach recognize that there are classes of ap-
plications for which this approach is not appropriate. These
include applications that require strict consistency among
many writers or fine-grained control over the physical loca-
tion of data [4].

The hash algorithms dictate the placement of data and,
therefore, the higher-level systems lose the flexibility of
making their own placement decisions with pin-point accu-
racy. Data replication in DHT-based system can alleviate
this difficulty but the replicas only offer limited placement
flexibilities and replication can be costly. Compared to a
manager-based approach, the number of network hops in-
volved in a DHT lookup can be relatively high, especially
in a system of modest size, where the DHT scalability of
managing host joins and departures is not a crucial issue.

While a read-only use of the system requires locating
just onecopy, a read-write use of the system with strong
coherence semantics would require locatingall replicas. If
the system allows only a fixed number of replicas residing
at locations determined by the hashes, locating these copies
for invalidation upon writes is easy but read performance
may suffer due to lack of caching. On the other hand, if the
system allows caching at arbitrary locations, the locations
of the replicas are no longer determined by hashes and are
therefore difficult to determine. When the scale of the target
system is not massive, these limitations of the DHT-based
approach may be too high a cost to pay.

It is also possible to combine the manager-based and

1

DHT-based approaches, so the location of the manager is
decided by the DHT algorithm. The DHT-based approach
provides a scalable way of routing toward managers, and
the manager-based approach allows arbitrary data locations
to be tracked. The lack of network-awareness in the man-
ager locating mechanism, however, persists; and the amount
of location state on a manager can be proportional to the
product of the number of objects and the number of hosts,
a figure that negates a key advantage of the DHT-based sys-
tems, namely, its small routing state.

Finally, it is worth noting that we do not see the sys-
tem that we propose in the rest of the paper as a competi-
tor to DHTs. Instead, it is a network-aware extension of
the manager-based approach that addresses a class of appli-
cations or environments for which DHTs are less suitable.
As we discuss in Section 3.1, there are also ways of com-
bining DHTs and the proposed system that address some
weaknesses of each approach.

1.2 CANTO Properties

We call our object tracking and routing system CANTO
(Coherent And Network-aware Tracking of Objects). It has
the following properties. (1) The system is coherent. It
supports strong serializable consistency semantics. (2) The
system is network-aware. For a read request, the system at-
tempts to locate a copy that is “nearby.” When routing to
all copies of the object, such as for invalidation for writes,
the messages are confined to a network area spanning only
those copies. (3) CANTO allows higher-level systems to
make their own arbitrary data placement decisions. (4) The
precise routing state for a piece of data is not widely dis-
persed to every node in the system. Even when the object
location changes drastically, this controlled narrow distribu-
tion avoids the need of expensive updates to the routing state
on every node. (5) CANTO is self-synchronizing, in that
it preserves the integrity and consistency of its data struc-
tures during concurrent read and write operations without
resorting to an external locking mechanism or fixed single
serialization points. (6) CANTO is self-recovering in that
it reconstructs its in-memory routing state from persistent
storage and/or neighboring nodes after a crash.

CANTO utilizes a tree-like routing topology1. The use
of a tree routing topology is by no means new—existing sys-
tems such as Scribe [5] and Globe [3] utilize similar topolo-
gies as well. We explain the detailed secondary differences
between CANTO and these systems in later sections. The
primary difference, however, is the first CANTO property
listed above, namely, that CANTO provides strong cache
coherence semantics when facing concurrent read/write
operations, semantics that publish/subscribe systems or
generic location tracking systems are not designed to pro-
vide. A key technical innovation of CANTO is the opera-
tional details of a protocol that provides for this cache coher-

1We call it a “tree-like” topology because, as we explain in Section 2.3,
it is not exactly a tree.

ence on a tree-like routing topology, not the tree-like topol-
ogy itself. Furthermore, CANTO provides persistence and
recovery of routing state in case of node failure, while some
existing systems only guarantee recovery of topology con-
nectivity.

A property that is missing from the above list is compact
routing state on CANTO nodes. CANTO requires per node
routing state that can be proportional to the product of the
number of objects and the number of neighboring nodes2.
In addition to several state compression techniques that we
discuss in a later section, CANTO stores most of this rout-
ing state on disks and uses a memory buffer for caching
and write-behind. In effect, CANTO trades disk storage of
routing state for reduced usage of wide-area networks and
better performance. We believe that this approach is con-
sistent with both hardware technology trends and software
architecture trends, exemplified by the popularity of sys-
tems such as web caches and content distribution networks.
(The amount of routing state should be small compared to
the storage devoted to data replication, and unlike CDN-like
applications, CANTO is designed to support coherent read-
write applications.)

2 Algorithm

2.1 Network Routing Analogy

Before we describe the CANTO algorithm, let us con-
sider Internet host routing as an analogy. We may present an
object ID (an IP address in this case) to any node in the sys-
tem. Even though this node may not “know” the exact loca-
tion of the target, it “knows” where the next-hop destination
is in order to make progress. An advantage of this approach
is that it can exploit topological locality well in certain sit-
uations: for example, when an object moves within a small
locale, routing table entries of far-away nodes are unlikely to
be disturbed. A disadvantage is that some amount of routing
information needs to be widely disseminated to essentially
every node in the system so any node is capable of routing
requests for any object. If the location of an object changes
drastically, routing table entries of a large number of nodes
may be affected.

Unlike routing for conventional Internet hosts, which do
not often change their locations drastically and cannot be
“replicated,” routing for generic objects distributed over the
network need to contend with these possibilities. A naive
adoption of an existing routing algorithm, such as the link
state protocol, may result in high cost incurred by excessive
routing state propagation, slow convergence toward consis-
tent distributed routing state, the complexity of managing
inconsistency during routing state propagation, and the com-

2It is worth noting that Scribe and Pastry [15], the DHT systemupon
which Scribe is built, have different amount of routing state: while Pastry
has minimum DHT routing state, Scribe’s additional state can be propor-
tional to the product of the number of objects and the number of overlay
“neighbors,” which is no less than that of CANTO.

2

plexity of coping with routing loops. Despite these disad-
vantages, the topological awareness advantage of the hop-
by-hop Internet routing is one that we would like to incor-
porate into CANTO.

2.2 Terms and Data Structures

We define several terms and data structures used by the
CANTO routing protocol. The precise roles of these terms
should become clearer in subsequent sections. For each
object tracked by CANTO, there is ananchornode. The
object-to-anchor mapping is similar to a “manager map” in
several cluster systems [2, 6, 9, 20] in that it is a relatively
static and compact map that is known to all nodes. In the
basic CANTO algorithm, routing messages (including both
requests and replies) travel along edges of a spanning tree
rooted at the anchor. We later discuss the use of more gen-
eral topologies. With respect to each object, all nodes fall in
one of two categories:activeandinactivenodes. Formally,
if a copy of the data is stored on nodeX , then all nodes be-
tween the anchor andX (including the two end points) are
active. All nodes that are not active are inactive. On each
node, logically, there is one bit associated with each edge
and each object. We call this bit anedge bitand the edge
bit is one only if there is a copy of the data in the direction
of that edge pointing away from this node. We call such an
edge a1-bit edge. An inactive node has no 1-bit edges. An
invariant of the system is that there is always a path of 1-bit
edges leading from the anchor to a replica and it is possible
to reach all replicas from any active node by following the
directed 1-bit edges. We refer to these edge bits collectively
as metadata or routing state.

2.3 Basic Operations

There are essentially two cases of routing. (1) Starting
from an active node, one should be able to reach one or all
replicas of the data by traversing 1-bit edges. (2) Starting
from an inactive node, one first routes a request toward the
anchor. Once this message encounters an active node en
route, which can be an active node lying on the path between
the originating node and the anchor or the anchor itself,
which is itself active, further routing of the request proceeds
as in case (1). We now illustrate the basic CANTO routing
algorithm using a series of example operations (shown in
Figure 1).

Figure (a) shows the initial state of the spanning tree.
The only active node is the anchor. In Figure (b), nodeX
creates the data. Since it is an inactive node, it sends a write
request toward the anchor to inform the rest of the system
the current location of the data and to invalidate any poten-
tial obsolete copies. The first active node encountered by
this message is the anchor and since there is no obsolete
copy to invalidate, the message terminates there. As the re-
ply message flows back along the same path, edge bits are
set to maintain the invariant. Figure (c) shows the result-
ing tree state. All nodes betweenX and the anchor are now

(f)

A

X Y

P

A

(a) (b)

A

X

A

(c)

X

(g)

X Y

P

A

(d)

A

X Y

P

(e)

A

X Y

P

(h)

Y

A

Z

A Anchor

Inactive

Active

Data

A link of the
spanning
tree

A request
message

Presence of
a fresh copy

(i)

Y

A

Z

Figure 1: Example basic CANTO operations.

active. All edge bits of edges lying on the directional path
from the anchor toX are set to one.

In Figure (d), nodeY issues a read request.Y is an in-
active node so the request is routed toward the anchor. As
soon as the message reaches an active nodeP en route to
the anchor, the message starts to follow 1-bit edges instead
and is diverted toward a replica at nodeX , which sends the
requested data back toY . Note that the data reply need not
follow the spanning tree edges but the metadata reply, which
is responsible for restoring the invariant, does. Figure (e)
shows the resulting tree state, assuming nodeY has chosen
to cache locally a copy of the data (which it is not required
to). The edge bit of the single edge of nodeX is newly set,
pointing towardY (via P), and the edge bit of the single
edge of nodeY is also newly set, pointing towardX (also
via P). NodeY has become active. Note that the CANTO
invariant demands more than simply maintaining a path of
1-bit edges from the anchor to the replicas: the two repli-
cas in this case also need to point toward each other. The
utility of these extra 1-bit edges would become clear in the
invalidation operations to be described next. Also note that
although we have chosen to only cache data at leaf nodes in
these examples, CANTO does not intrinsically differentiate
leaf nodes from interior nodes and data can be cached at any
node and tracked by CANTO.

In Figure (f), nodeY issues a write request.Y is an ac-
tive node so the request is multicast to all other replicas to
invalidate them by following the 1-bit edges. A reason for

3

CANTO to employ a tree topology to route its request and
reply messages is to avoid potential routing loops. Note that
not all active nodes are involved and the anchor need not al-
ways participate in the invalidation process: the 1-bit edges
from the anchor to the common ancestor ofX andY are not
disturbed in this case. This is why CANTO does more than
simply maintaining paths of 1-bit edges from an anchor to
all the replicas. The fact that it is possible to reachall repli-
cas fromany active node allows the invalidation messages
to be confined to a small neighborhood when possible. This
is one of the important differences between CANTO and
some existing routing schemes, such as the one employed by
OceanStore [8], whose invalidation operations always need
to reach a “root” node first. (We discuss other differences
in the related work section.) Figure (g) shows the resulting
tree state. NodeX has become inactive and the edge bits
of nodeX , Y , and their common ancestor,P , are updated
to reflect this change. (The algorithm “knows” which edge
bits to clear and which to set by examining the direction
from which the invalidation messages arrive. For example,
the edge bit onX → P is cleared as this edge points toward
the anchor, while the edge bit onP → Y is set as this edge
points away from the anchor.)

In Figure (h), nodeZ issues a read request. SinceZ is
inactive, it routes the request toward the anchor, which hap-
pens to be the first active node that the message encounters
in this case. From there, the message follows the 1-bit edges
to reach nodeY , the only replica in the system, which sup-
plies the data toZ. Figure (i) shows the resulting tree state.
All nodes between (and including)Z and the anchor are ac-
tive as a result of a copy being cached atZ. All the edge
bits lying on the tree path betweenY andZ are set as the
metadata reply retraces the steps of the request message.

Active nodes maintain dynamic, precise, verbose, and
hop-by-hop information of where the replicas are, while in-
active nodes rely on relatively static, generic, compact, and
direct pointers to anchors. One implication of this differ-
entiation is that the maintenance of the precise routing in-
formation is limited to the nodes that have participated in
operations on the data. This is in contrast to routing proto-
cols such as the link state protocol where some amount of
up-to-date routing state must be disseminated to all nodes.
In a way, CANTO is similar to Mobile IP [12] as it relies
on a relatively static “home” node as the last resort forward-
ing agent, a role that is similar to that of a CANTO anchor.
(Unlike a Mobile IP home node, a CANTO anchor is not
always involved in routing operations, as requests routed to-
ward the anchor by an inactive node may be diverted by an
active node en route.)

We should also note that although we have loosely re-
ferred to CANTO routing graphs as “trees,” they are not
trees in a strict sense: although theundirectedskeletons
of the routing graphs in Figures 1 are trees, thedirected
graphs are more complex—each undirected tree edge may
have zero, one, or two directed 1-bit edges associated with it.

Figure 2: Example of conflict resolution.

This is in contrast to existing systems, such as some shared
virtual memory systems [10], Scribe [5], and GLS [3],
where the routing topologies are strictly trees. One purpose
of these explicit 1-bit edges is to ensure that messages re-
sulting from updates (such as publishes, writes, and deletes)
are confined to a network neighborhood that does not nec-
essarily have to always include a tree root.

2.4 Conflicting Operations

In previous descriptions, we assume there are no con-
flicts in metadata operations. In reality, different users can
ask to read/write the same object at the same time. From the
system’s point of view, when the concurrent requests try to
change route state along their paths, they may interfere with
each other and ruin the integrity of the routing state. From
the users’ point of view, the read and write operations need
to be ordered to ensure consistency. Essentially, these are
the two sides of the serialization problem.

We do not use fixed serialization points like managers or
external locks. Instead, we allow the serialization happen at
dynamic points close to requesters. When a request reaches
a node, the node checks for conflicts with other pending re-
quests. (Conflicts happen between read and write, or write
and write requests for the same object.) If there is a conflict,
the new request will be blocked until the pending request
finishes. In case of a “head-on-head” collision, i.e. two
nodes send conflicting requests to each other at the same
time, we break the tie with the topology order. A request
from an “upstream” node (closer to the anchor) gets higher
priority. The “downstream” request has to wait.

Figure 2 gives an example of the conflict resolution.X
sends a write request toward the anchor.Y tries to read the
same object shortly after.Y ’s request is blocked at node

4

G by the request ofX . In step (e),X ’s request runs into
another write request fromZ. Since they collide “head-on-
head”, we give requestX the green light. After requestX
invalidatesZ ’s copy, it turns back and releasesZ ’s write
andY ’s read requests in turn.Y ’s request will follow the
new bits to reachX ’s data. Finally in step (i),Z ’s request
clears the copies inX andY . Besides ensuring routing state
integrity, the step by step local serializations above also give
the requests a global serialization order ofX , Y , Z.

Hop by hop serialization brings up the concern of po-
tential deadlock. In the above example, if requestX gets
blocked by requestZ, andZ somehow reachesY via an-
other invalidation branch and gets blocked, there will be a
deadlock by circular wait. However, this cannot occur in
a tree topology. First, the loop-free property ensures that
requestZ cannot reachY without passing node G. Second,
the topology order entitles requestZ to take precedence over
any other request that reaches node G at the same time that
requestZ does, since it will be an upstream request there.
Generally, the topology order ensures that one request (the
one closest to the anchor) has higher priority than any other
one and thus can always make progress.

2.5 Enriching Routing Topologies

A

(a)

X Y

B

CF

D

E

G

A

(b)

X Y

B

CF

D

E

G

A

(d)

X Y

B

CF

D

E

G

A

(e)

X Y

B

CF

D

E

G

A

(g)

X Y

B

CF

D

E

G

A

(f)

X Y

B

CF

D

E

G

A Anchor
Inactive
Active

A request
message
Presence of
a fresh copy

Data

A link of the
active tree

An inactive
link

A hint
message
Presence of
an active node

A

(c)

X Y

B

CF

D

E

G

Figure 3: Comparison of routing scenarios with and without hint edges.

In the basic CANTO operations discussed above, we in-
sist on routing protocol messages along edges of a spanning
tree that is statically determined. The tree-topology restric-
tion guarantees the absence of routing loops at the expense

of excluding the use of certain links. One potential cause of
concern is that the tree edges near the anchor may become
bottlenecks. This concern, however, is unlikely to be a real
problem, due to at least two reasons.

First, although there is only one tree per anchor, there
should be many anchors and, therefore, many trees. Edges
unused or lightly used in one tree could be more heav-
ily used in another, so the overall utilization of the links
and nodes will probably be well distributed. Second, the
CANTO protocol is designed to allow both read and write
requests to be satisfied by active nodes at lower levels of the
tree without participation by the anchor.

Nevertheless, the use of a statically determined spanning
tree for routing could be overly restrictive. In this section,
we examine a simple example technique of enriching the
topology with more dynamic information and route choices.
Let us consider the example illustrated in Figure 3.

Figures 3(a)-(c) show a read request as we have seen in
Section 2.3. While adhering to the statically determined tree
edges correctly locates the object, it may not be the optimal
way. Note the possible path taking theC → F shortcut.

The remaining panes of Figure 3 show an enhancement
to the basic algorithm. In Figure (d), active nodesA and
F sendhint messages to their inactive neighborsB andC,
informing them about the presence of active neighbor nodes.
Figure (e) shows the result: nodesB andC storehint bits
pointing to their active neighbors, and we call the inactive
links pointing to the active neighborshint edges.

Figure (f) shows the alternate path taken by a read re-
quest from nodeD: instead of following the statically de-
termined tree edges, the request is diverted along the dy-
namically formed hint edgeC → F , toward an active node
F . From an active node, the routing of any request proceeds
as previously described in Section 2.3. This path is shorter
than the one determined by the basic algorithm in Figure (b).
Figure (g) shows the routing state after serving this request.
Note the difference between (c) and (g): the subset of active
nodes and edges connecting them are different. We call the
subtree consisting of active nodes and edges between them
theactive tree. In Figure (g), theactive treeis more concen-
trated around the data copies, alleviating the anchor burdens
of routing future requests.

In this sequence of example operations, we have shown
the setting of hint bits as neighboring nodes become active.
The converse, namely the clearing of hint bits, should occur
when active nodes become inactive due to invalidate opera-
tions. To amortize the cost of these propagations, we delay
and send them in batches. As a result, the hint bits can be
out-of-date with respect to the neighboring nodes that they
point to. To cope with inaccurate hint bits, we fall back to
the statically determined default spanning tree edge routes
if a message reaches an inactive node after mistakenly fol-
lowing a hint edge.

The flexibility of forming active trees in the dynamic al-
gorithm introduces additional complexity. Now the objects

5

sharing a single anchor no longer share an identical active
tree. For each node, its parent node in the active tree be-
comes dynamic instead of being static as in the basic algo-
rithm. Recall that in the process of serving a write request,
in order to determine whether an edge bit needs to be set or
cleared, a node needs to “know” whether the request is ar-
riving on a link pointing toward the anchor or pointing away
from it. This determination is easy under the basic algorithm
because the parent node is always static and unique to the
anchor. In the case of dynamically constructed active trees,
however, we must keep additional state, namely the parent
node of each node for each object. This additional state is
yet another example of the trade-off between keeping extra
state and reducing network usage.

In Section 2.1, we have discussed the cost and complex-
ity of routing to distributed objects over a general mesh. The
static routing trees discussed in Section 2.3 has less rout-
ing state propagation cost and less complexity. These two
topologies for routing, namely an arbitrary mesh and a static
tree, represent two extremes. The enhancement discussed in
Section 2.5 is an example design point in between, as the
combination of the active edges and hint edges form a rout-
ing mesh that offers more flexibility than that afforded by the
static trees. This enhancement, however, is only a relatively
simple attempt: the single-hop propagation of hint messages
from active nodes to their inactive neighbors introduces rel-
atively little cost; and routing loops are trivially avoided on
the resulting mesh. Although this approach appears to pro-
vide substantial benefits in some situations, we view this
enhancement as merely a starting point for ongoing research
into better and more general routing topologies.

3 Discussions

3.1 The Making of CANTO Nodes, Anchors, and
Routing Graph Edges

In describing the CANTO algorithm, we have deliber-
ately been vague on issues such as how the anchors are as-
signed and how the CANTO routing graph is formed. There
are several options for addressing these issues and these op-
tions are orthogonal to the workings of the basic CANTO
protocol.

There are two options for making CANTO nodes: (1)
physical routers embedded inside the network; or (2) over-
lay nodes at the edge of the network3. Technologies such
as “extensible routers” [17] may allow CANTO protocols
to be efficiently implemented in a certain class of physical
routers, while emerging overlay networks [1, 13] provide
platforms for the second alternative.

There are two options for assigning CANTO anchors:
(1) relatively unstructured “manager maps,” as those em-
ployed in several cluster systems [2, 9, 20, 6, 10, 16]; or (2)
consistent hashing [7], of which DHTs [14, 15, 19, 21] are
one class of examples.

3Note that “overlays” are more general than DHTs.

There are three options for making CANTO routing
graph edges: (1) physical Internet routes (between nodes
and their anchors); (2) “unstructured” overlay routes; or (3)
“structured” overlay routes, such as the successive lookup
hops determined by DHTs.

A cross-product of all the above options produces many
combinations; of course, not all these are meaningful. We
consider some of the most obvious combinations.

Combination A: overlay nodes× unstructured man-
ager map-based anchor assignment× unstructured overlay
routes. This is one of the most flexible combinations; and
it has the potential of best performance and least scalabil-
ity. One can choose to place anchors at strategic locations
in the network to avoid bottlenecks, or move them closer to
some clients as access locality is observed. One can include
in the CANTO routing graph more overlay links between
nodes that closely share objects, or deliberately avoid some
slow links. Section 3.2 gives more scenarios where one
might want to manipulate node degrees in the CANTO rout-
ing graph. (The investigation of an optimal CANTO rout-
ing graph, however, remains an open research question.) In
addition to better network-awareness, an additional advan-
tage of an anchor assignment and routing scheme that is not
hash-based is that “related” data items can share identical or
similar routes and routing state. This results in higher spa-
tial locality in accesses to data and meta-data, more compact
routing state, and better routing performance. (We discuss
the management of routing state more fully in Section 3.2).
Combination A, however, is only appropriate for a modest-
sized system, where the change of node membership is not
too frequent.

Combination B: overlay nodes× consistent hashing-
based anchor assignment× structured DHT-based routes.
Under this combination, the routing state is similar (but not
identical) to that maintained by the Scribe publish/subscribe
system [5]. (As explained in Section 1, a key difference be-
tween CANTO and Scribe is that CANTO provides strong
cache coherence semantics.) Combination B has the exact
opposite attributes of combination A: it is less flexible, less
network-aware, less efficient, has less compressible routing
state (due to randomization of hashing), but can scale to a
larger number of nodes. Combination B is the reason that
we view CANTO and DHTs as complimentary technolo-
gies: the former provides a cache coherence protocol while
the latter provides scalable anchor assignment and routing.

Combination C: overlay nodes× consistent hashing-
based anchor assignment× unstructured overlay routes.
This combination is a middle-ground between combina-
tions A and B: consistent hashing minimizes data move-
ment when anchor set membership changes while unstruc-
tured overlay routes allows flexible construction of network-
aware CANTO routing graphs.

Combination D: physical nodes× unstructured man-
ager map-based anchor assignment× physical routes.In
environments such as a campus-wide enterprise network,

6

or a bi-coastal company, where the concerned organiza-
tion may have administrative control over a number of
programmable routers, CANTO may naturally derive its
network-awareness by partially mirroring the physical inter-
connect. Anchor assignment may reflect internal organiza-
tional structures: for example, large chunks of a file system
name space may be “anchored” at nodes near “owner de-
partments.”

3.2 Managing the Amount of Routing State

On each node, CANTO logically stores a bit for each ob-
ject and each network link, denoting whether a replica of the
object is present in the direction of that link. The amount of
this routing state is therefore proportional to the product of
the number of the objects and the number of the incident
links. By allowing arbitrary placement of data objects and
tracking their precise locations, CANTO pays the cost of
state storage space to gain the benefits of coherent seman-
tics, reduced network usage, and better performance. This
trade-off is a key goal of CANTO. Section 2.5 has given an
example of managing this trade-off where we use additional
per object state to build better routing topologies that should
result in more savings on network usage. We examine sev-
eral additional ways of managing this trade-off.

When a read request arrives at a node, encountering
multiple 1-bit edges, each of which can lead to a separate
replica, CANTO must make a choice of which 1-bit edge
to forward the request on. So far in our discussions, we
have assumed that we store one bit per object per edge. This
is sufficient for locating a copy but CANTO does not have
enough information for locating a “good” copy. A possible
enhancement is to store more than one bit of routing state
per object per link, allowing better “resolution” of differen-
tiation of the “quality” of these replicas. This is analogous
to the “distance” metric employed in routing protocols such
as “distance vector.”

There are several complications with this approach.
First, to maintain these distance metrics, one needs to prop-
agate extra messages beyond what is required by the algo-
rithms described earlier. Of course, these distance metrics
are merely hints, so the propagation can be delayed and
batched, and the propagation frequency can be flexibly con-
trolled. Second, as is the case with Internet routing, how one
computes the distance metrics can be a complex question.
Possible factors include the number of network hops (in
terms of the number of intermediate CANTO nodes, for ex-
ample), latency, and bandwidth. The properties of the object
being read (such as its size) may allow CANTO to choose a
better metric. Third, data replies can be sent directly from
the host housing the chosen replica to the original requester,
potentially bypassing the CANTO nodes responsible for for-
warding the CANTO protocol request and reply messages,
and complicating the distance computation on the CANTO
nodes. The distance metrics computed purely based on the
CANTO protocol messages (instead of the data replies),

(a) (b)

Figure 4: Partitioning.

however, can still be a useful hint.
While the above techniques introduce more state for bet-

ter routing, one may sometimes desire the opposite: a re-
duction in the amount of routing state on a CANTO node
at the expense of less accuracy or less flexibility of routing.
This, for example, may allow a CANTO node to cache the
routing state of a larger fraction of the objects in its memory,
thus speeding up lookups on an individual node. The deci-
sion that one must weigh is whether this local speedup is
justified by the overall distributed cost. We consider several
routing state compression techniques and their cost.

The first technique is to restrict the routing graph topol-
ogy: limiting the maximum number of possible incident
edges to a CANTO node. This technique is most relevant
to the case of a CANTO system made of overlay nodes,
where one has a large degree of freedom choosing an over-
lay topology. Reducing the incident degree of nodes, how-
ever, increases the diameter of a routing graph (or the height
of a routing tree) in terms of hops, thus potentially increas-
ing routing overhead.

The second technique is to restrict the number of repli-
cas. Suppose a node has an incident degree ofD and we
dictate that no more than0 <= n <= D of these edges
can be 1-bit edges, then the number of bits needed to track

the replicas islog
∑n

i=0

(

D
i

)

. Limiting the number of

replicas, of course, reduces the effectiveness and flexibility
of caching.

The third technique is to move replicas to strategic lo-
cations inside the CANTO routing graph. Note that the
CANTO algorithm allows replicas to be kept at any node.
Consider the example routing tree in Figure 1(e). Instead
of keeping two replicas at nodesX and Y , we may in-
stead keep a single replica at their parentP . (We assume
that we store inactive state using compact sparse represen-
tations.) This movement reduces the amount of state on all
three nodes at the expense of a more distant replica for both
X andY when they reuse the data.

We call the fourth technique “partitioning.” Figure 4
shows an example. Instead of having a single large rout-
ing tree that encompasses all the nodes in the system (Fig-
ure (a)), we partition the nodes intok subsets (k = 2 in Fig-
ure (b)), and nodes of a single routing tree are always drawn
from a single partition. Each routing tree or partition is re-
sponsible for tracking a subset of all data objects. This ap-
proach has several potential advantages. First, we limit the
maximum amount of routing state on any CANTO node to
1/kth of the original maximum. Second, in the original ap-

7

proach of encompassing all nodes in a single tree, although
each anchor is only associated with a subset of the data be-
ing tracked, an interior CANTO node may participate in the
routing of many “hot” objects that are tracked by different
anchors. Partitioning prevents the possible development of
such bottlenecks. Third, partitioning may reduce the num-
ber of routing hops without compromising CANTO’s abil-
ity of exploiting topological locality of requests, as long as
nodes within a partition are properly spaced. Of course,
there is a limit to how largek can be without compromising
the CANTO goals. In the extreme case, whenk equals to the
number of the nodes in the system, each partition becomes a
singleton set and the system degenerates to a manager-based
solution.

4 Recovery and Reconfiguration

The goal of the recovery and reconfiguration mecha-
nisms is to ensure consistency of the distributed CANTO
routing state. We consider three recovery mechanisms. The
first copes with a node that has crashed but reboots shortly
thereafter. The second employs redundancy to allow backup
nodes to take over the responsibilities of a node that fails
for a more prolonged period of time. In case redundancy
is absent or not sufficient, we employ a third mechanism of
repairing the routing trees to exclude the use of failed links
and/or nodes.

While CANTO strives to maintain the consistency of the
routing state and uninterrupted routing operations, we note
that it is not the responsibility of CANTO to guarantee the
reliability of thedatathat is being tracked: instead, it is the
responsibility of the systems that are built on top of CANTO
to decide what levels of data reliability they desire and what
mechanisms they should employ to achieve them.

4.1 Recovery from Unplanned Reboot

A CANTO node maintains its routing state on disks for
two reasons: first, there might be more state than can fit
in main memory; and second, persistent storage allows a
CANTO node to “page in” its routing state after a node
reboots. It may be too costly to synchronously write state
changes to disk, however. For this reason, CANTO buffers
state changes in memory and logs them to disk in batches
periodically. Though the most recent changes can be lost
upon an unplanned reboot, we can recover the state with the
logs from its neighbors.

CANTO nodes maintain counters for messages they send
to neighbors. They also keep counters about messages re-
ceived from neighbors. Since all state changes are associ-
ated with message exchanges between neighbors, we can
determine the current state given the set of message counters
that we have sent to and received from the neighbors. We
call this set thecounter vectorfor the current state. When
a node writes a log block, the current counter vector is also
included.

P1 P2

P1

B1

P2

B2

(a) (b)

Figure 5: Redundancy.

The recovery process starts by reading logs from disk.
After locating the tail of a valid log and reading the counter
vector, the node contacts every neighbor with the counters.
A neighbor compares the send/receive counters with what it
has, and sends back any log blocks containing larger counter
values. After acquiring logs from all of its neighbors, a node
can replay all the logs to recover the state before the reboot.
For replay purpose, the log entries are actually read/write
operations instead of bit changes.

In cases of concurrent failures, the above log transfer
process is still used. The guarantee, however, is consis-
tent state in the system instead of exact recovery to the state
before the crash. Two restarting nodes can exchange their
counter vectors and log blocks. In the end, they will have
the same view of the state, but some updates before the re-
boot may be lost if not logged into persistent storage in any
node. When more nodes are rebooting, the pair-wise log
exchanges continue until every node has received every log
entry it did not have. The system will have consistent state
across all nodes after convergence. Before this is done, the
rebooting nodes delay the processing of new requests.

4.2 Redundancy

In the previous section, we discussed how to recover the
routing state after a node reboots from a crash. CANTO also
uses this mechanism to provide node backups in cases where
the reboot process can take a long time. Figure 5 shows an
example ofprimary nodesPi and theirbackupsBi. During
normal operation,Pi periodically sends its log to its backup
Bi. If Pi crashes, nodeBi starts the recovery process by
reading through the log and sending the log counter vectors
to the neighbors ofPi. After the neighbors send back the
log entries missing fromBi’s log, Bi can replay the logs
and gain full knowledge ofPi’s routing state. ThenBi can
takes overPi’s routing responsibilities.

To enable node backup, a single link in Figure (a) is re-
placed by a complete graph linking a pair of primaries and
backups in Figure (b). We do not necessarily need to double
the number of physical nodes to provide the desired redun-
dancy: backup nodes in one routing tree or in one part of the
system can be primaries elsewhere. Some of the redundant
links can be overlay links that share underlying physical
links, although some amount of redundancy in the physical
link topology is still needed to maintain connectivity upon
physical link failures. Naturally, it is desirable to designate
backups that are close to their corresponding primaries. In
a simple example in Figure 5(b),P1 andB2 could share a
single physical node, whileP2 andB1 could share another
physical node. A failure of nodePi would promptBi to
initiate the recovery process and take over the role ofPi.

8

2

3

N1
N7

N2

N3

N6

N5

N4

E1

E2

E3

E4

Root

S2

S1

Figure 6: Repairing a routing tree. The failed linkN6,7 is replaced by
N3,4. Each triangle represents a forest of subtrees rooted at thenode rep-
resented by the circle above the triangle.

Routing under this situation may become less efficient be-
cause this single physical node now serves all neighbors of
the two nodes. However, there should be no interruption of
routing.

The cost of maintaining backup nodes is the bandwidth
and processing needed for transferring logs from a primary
node to its backups. This overhead is not substantial since
the log only records metadata operations, and thus is small.
The log transfer can occur in the background. There is
a trade-off between the overhead in normal operation and
prompt response to failure.

If we use a DHT to locate anchors and use overlay hops
determined by the DHT algorithm as CANTO routing tree
edges (as described in Section 3.1), CANTO may need to
cooperate with the redundancy mechanism already provided
by the DHT algorithm. For example, in the routing algo-
rithm of Chord [19], the immediate successors ofPi would
be used for routing ifPi failed. CANTO should place the
corresponding backupsBi at those locations. If nodePi

fails, the Chord routing layer will redirect messages destined
for Pi to the backup node, triggering the recovery process.

4.3 Repairing Routing Trees

When a physical link fails, it may not be necessary to
immediately reconfigure the routing tree: one may be able to
find an alternate route (that is either a physical or an overlay
route) that reconnects the end points of the failed link, so
the routing tree can remain functional. This routing tree,
however, may no longer be optimal. If the link failure is
long-lasting, one may wish to reconfigure the routing tree to
exclude the failed link.

Figure 6 shows an example. In the short run, messages
over the failedN6,7 link can be routed over the alternate
N6,4,3,1,7 route. This rerouting happens transparently to
CANTO and the original routing tree does not have to be
reconfigured to remain functional. In the longer run, how-
ever, it is better to reconfigure the tree to replace theN6,7

link with N3,4. We continue to use this example to illustrate
the tree repair algorithm.

When a link is severed, the nodes of the original routing

tree are divided into two subsets:S1 andS2. We locate a
new link that reconnects the two subsets. The example in
Figure 6 is general: all cases of severance and reconnec-
tion can be illustrated with a figure similar to this one. It is
easy to see that the routing state on all the nodes within all
the subtree forests illustrated by the triangles do not need to
change when the tree is reconfigured. This is because the
only way to route into or out of these forests is through the
common forest roots and this fact is not affected by the re-
configuration. In fact, the only nodes that need to have their
state updated are the ones on the cycle that includes both the
severed link and the new link, namely,N1,2,3,4,5,6,7 in this
figure.

To see how this state update is accomplished, let us con-
siderN2, a “typical” node on the cycle that is inS1. We
need to change the state corresponding toE1, the directed
edge pointing toward the severed link, andE2, the directed
edge pointing toward the new link. For every object inS2,
if it has a 1-bit edge onE1, we need to clear this bit and
set the corresponding bit forE2, to reflect the fact that one
must route throughE2 instead ofE1 to reach any object in
S2. Similarly, for N5, a “typical” node on the cycle that is
in S2, for every object inS1, if it has a 1-bit edge onE3, we
clear this bit and set the corresponding bit forE4. We say
we flip the bits for these objects.

The repair process starts atN7. For each object that has a
1-bit edge onN7,6, the broken link, we include the object in
a setX . We flip the bits forX atN7. Next, we exclude from
X all the objects in it that can also be found in the subtree
rooted atN7 (illustrated by the triangle). More precisely,
for each object inX , if it has a 1-bit edge on any ofN7’s
incident links excluding the two on the cycle, or if the object
is cached onN7 itself, we remove the object fromX . We
call these removed objectsunaffected objects atN7. Next,
N7 transmits the resulting setX to N1. Upon receipt of the
set, we flip the bits forX at N1. We then further remove
from X all unaffected objects atN1 and send the resulting
X to N2. The process repeats until it reachesN3, the node
responsible for establishing the new link. At the same time,
a similar process starts atN6 and ends atN4.

This recovery process requires the transmission of the
routing state of the “affected” objects on the cycle of “af-
fected” nodes. This process may occur in the background
while foreground routing continues on the old tree using the
alternateN6,4,3,1,7 route to emulate the broken link.

5 Implementation and Applications

We have implemented and deployed CANTO as a real
system. Most of the algorithms and features we discussed
above have been implemented, including the static and dy-
namic tree routing algorithms, conflict resolution, and re-
covery after crashes. The core CANTO routing algorithms
take up about 5,000 lines of C++ code. Other modules con-
tain another 5,000 lines. CANTO nodes communicate with

9

each other via TCP connections. The internal structure of
a CANTO server uses a single process event-driven model,
with some helper threads for reading bits from disk when
the bitmap cannot fit into main memory. Other parts of the
system, like node backup and routing topology repair, are
left for future work.

CANTO is designed as a middle layer for building dis-
tributed applications that require persistent tracking of ob-
jects. Possible applications include, but are not limited to,
wide area read/write storage, multicasting services, and dis-
tributed lock managers. We have implemented a distributed
virtual disk and a distributed file system on top of CANTO.
Both run on unmodified Linux with our kernel modules.

Our distributed virtual disk uses CANTO to track indi-
vidual blocks. Each virtual block is mapped to a CANTO
object. Clients of the virtual disk use local disks for cache
copies. A kernel module exports a disk device driver in-
terface to the Linux kernel. It redirects any disk requests
to a user-level daemon, which either feeds back the data if
the request hits in the cache, or invokes the corresponding
CANTO operation for a miss. The client daemon also re-
sponds to commands from the CANTO server to forward or
invalidate a disk block.

Our distributed file system supports shared read-write se-
mantics similar, but not equivalent, to that of a local file
system. We map each file or directory to a CANTO ob-
ject. Clients cache some files/directories in local storage.
CANTO keeps track of the cached copies in the client ma-
chines and routes a client request to the node(s) with cached
copies, which invalidate and/or forward the object to the re-
quester.

File systems provide richer semantics than reads and
writes. To support object creation and deletion, CANTO
provides operations to allocate/deallocate object IDs. Sup-
porting file attributes can be tricky. It is common to access
file attributes without touching data and in many cases, like
“ls -l”, the attribute information need not be precise. So
we allow users to cache file attributes even when the file is
not in the local cache. To avoid the overhead of tracking
attributes separately, we only ensure that attributes are accu-
rate when the file is actually cached in the local machine. In
cases where this is not sufficient, a user can update her view
with a special read request that only fetches the attributes.

Many applications have weaker update semantics re-
quirements than strong serializable consistency. Some of
them can be supported in CANTO. For example, session
semantics can be implemented if the user calls CANTO to
invalidate other copies at the end of a write session.

6 Experimental Results

This section presents results of routing throughput and
latency on a subset of PlanetLab [13]. We use 35 nodes
distributed in North America (30), Europe (4) and Australia
(1). Among the nodes in North America, 27 are from .edu

0

5

10

15

20

25

08 32 64 128 256 384

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Concurrency

CANTO basic
CANTO dynamic

xFS

Figure 7: Throughput under random workload,90% read.

0

2

4

6

8

10

12

14

16

18

08 32 64 128 256 384

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Concurrency

CANTO basic
CANTO dynamic

xFS

Figure 8: Throughput under random workload,50% read.

domains and another 3 from .net, .org and .gov domains.
We configure one CANTO server and one client on each

node. In order to measure performance under different load
levels, we limit the number of outstanding requests a client
can have. This determines how many concurrent requests
can be generated at this node. We call this number the re-
quest queue length or concurrency in the rest of this section.
Unless otherwise stated, the tests are done with 0-byte data
to show the metadata routing performance.

We compare CANTO against two distributed tracking al-
gorithms: xFS style distributed manager [2] and SVM style
dynamic manager [10], both of which use a fully connected
topology. We place an anchor/manager at each node. The
CANTO routing tree is built about 3 to 4 levels deep with an
out-degree of 16 at the anchor nodes. We pick such a “fat”
topology since the links are overlay connections without
physical hierarchy. Two variants of CANTO are tested—
the basic and dynamic algorithms as described in Section 2.

6.1 Throughput of Random Workload

In the first test, we show the performance under a ran-
dom workload. Figure 7 compares the throughput of dif-
ferent algorithms when we increase the number of concur-
rent requests. The workload has a read-to-write ratio of 9:1.
CANTO outperforms xFS by a significant margin because

10

0

50

100

150

200

0 25 50 75 90 100

R
ea

d
La

te
nc

y
(m

ili
se

co
nd

)

Locality (%)

0

20

40

60

80

100

120

140

160

0 25 50 75 90 100

R
ea

d
La

te
nc

y
(m

ili
se

co
nd

)

Locality (%)

0

5

10

15

20

0 25 50 75 90 100

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Locality (%)

CANTO basic
CANTO dynamic

xFS
SVM

(a) Latency under50% read. (b) Latency under90% read. (c)50% read, concurrency 64.

0

10

20

30

40

50

0 25 50 75 90 100

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Locality (%)

0

5

10

15

20

25

30

35

0 25 50 75 90 100

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Locality (%)

0

20

40

60

80

100

0 25 50 75 90 100

T
hr

ou
gh

pu
t (

th
ou

sa
nd

 r
eq

ue
st

s/
se

co
nd

)

Locality (%)

(d) 90% read, concurrency 64. (e)50% read, concurrency 256. (f)90% read, concurrency 256.

Figure 9: Throughput and latency under varied locality.

CANTO can locate copies close to requesters without al-
ways going to a remote manager. However, under a write-
heavy workload, there are few copies of each object in the
system and the CANTO advantage will diminish. Figure 8
shows results from such a workload of equal number of
reads and writes. xFS can be viewed as a degenerated case
of CANTO where the routing tree is only 1 level tall. This
is an example that one should consider access patterns when
building CANTO routing trees.

6.2 Performance with Geographic Locality

It is not uncommon that users geographically closer to
each other will access more of the same files than widely
separated users. This test is designed to explore the per-
formance of different object tracking schemes under geo-
graphic locality. The 35 nodes are divided into 8 groups
according to their locations. Nodes in the same group share
a working set of objects. We say accesses have localityp
when a node accesses the local working set (as opposed to
an object chosen randomly from the whole set) with proba-
bility p.

Figures 9(a)-(b) show the change in read latency when
we increase the locality in the workload. These tests are
done with light workload so that the latency reflects the time
for individual read requests with minimal queuing delay. In
both cases, the CANTO variants exhibit much lower latency,
indicating shorter request paths.

The advantage of topology-awareness is also reflected in
the other four throughput graphs. When the locality in work-
loads improves, throughput in CANTO increases faster than
it does in xFS, because CANTO enjoys the additional ben-
efit of reading from closer copies, while xFS only improves

its local cache hit rate. CANTO also benefits from lower
consumption of aggregate throughput. The dynamic man-
ager algorithm labeled as SVM yields much lower through-
put until locality reaches nearly100%. This algorithm al-
lows the ownership of an object to move around the nodes
accessing the object. However, to locate the manager, a re-
quest may have to traverse several links determined by pre-
vious accesses. In cases of random accesses across a wide
area, the link traversal can be very expensive. When geo-
graphic locality is100%, the ownership of an object is con-
fined to nodes in a much smaller area, closer to the LAN
environment it was designed for.

6.3 Performance When Reading Routing State
From Disk

In this experiment, we explore the impact of paging the
routing bitmap from disk when the bitmap does not fit into
main memory. Due to limitations of the testbed, we cannot
run a test with enough objects to create a bitmap larger than
the 512MB main memory. So we enforce an artificial mem-
ory hit rate to bitmap accesses. When the access misses,
we emulate the paging process by randomly reading a byte
from a 1GB disk file. Here we show the results under the
workload with read-to-write ratio of 9:1.

Figure 10 shows the individual request latency under
light load. In this case, the frequency of disk access shows
little impact, because disk latency is much lower than net-
work latency.

Figure 11 shows throughput results under heavy work-
load. When the bitmap hit rate is low, the performance
is actually decided by the throughput of reading data from
disks. Since xFS places all metadata on the manager node,

11

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

R
ea

d
La

te
nc

y
(m

ilis
ec

on
d)

Bit hit rate

CANTO basic
CANTO dynamic

xFS

Figure 10: Latency vs. bit hit rate.90% read and concurrency 1.

0

2

4

6

8

10

0 20 40 60 80 100

Th
ro

ug
hp

ut
 (t

ho
us

an
d

re
qu

es
ts

/s
ec

on
d)

Bit hit rate

CANTO basic
CANTO dynamic

xFS

Figure 11: Throughput vs. bit hit rate.90% read and concurrency 64.

it requires fewer bitmap accesses than CANTO does in the
hop-by-hop routing, so more xFS requests can be served.
When the bitmap hit rate increases, CANTO provides better
throughput as the disk is no longer the bottleneck. If more
disks are used to store routing state, the bottleneck in disk
accesses can be alleviated even when the bitmap hit rate is
low.

6.4 Simulation Results of a Larger Topology

We ran simulations to test the routing performance in
a larger topology built using data collected by Rocket-
fuel [18], which maps the topology of ISP router connec-
tions. The topology consists of 315 routers and 1,944 links
between them. We model the CPU processing time, disk
latency and network communications in the simulator.

Figures 12 and 13 compare the performance of the ba-
sic CANTO algorithm and xFS in the Rocketfuel topology.
We place a CANTO/xFS node in each router. CANTO runs
on the physical topology, while xFS uses overlay connec-
tions for the all-to-all communication between its nodes. As
in previous tests, the workloads have geographic locality
from 0% to 100%. 95% of the accesses are read requests.
CANTO shows a significant advantage over xFS in both la-
tency and throughput.

6.5 Comparison with DHT-Based Routing

Section 3.1 gives several options for assigning CANTO
anchors and deciding CANTO routing graphs. Although

0

10

20

30

40

50

60

0 20 40 60 80 100

La
te

nc
y(

m
illi

se
co

nd
)

Locality(%)

CANTO
xFS

Figure 12: Latency on the Rocketfuel topology.

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Th
ro

ug
hp

ut
(th

ou
sa

nd
 re

qu
es

ts
/s

ec
)

Locality(%)

CANTO
xFS

Figure 13: Throughput on the Rocketfuel topology.

CANTO and DHT-based routing are orthogonal technolo-
gies in that CANTO can add cache coherence to DHT-
based routing, one should not always rely on DHT-based
routing: in situations where appropriate, CANTO should
achieve better performance with more aggressive exploita-
tion of network-awareness than that is possible with DHT-
based routing. To isolate this effect, we compare the fol-
lowing publish/subscribe simulations based on the Rocket-
fuel topology. The first is based on a modified version of
CANTO (that provides publish/subscribe semantics without
the strict serialization in the original system) embedded in
the Rocketfuel routers and using physical Rocketfuel routes.
The CANTO routing trees, therefore, partially mirrors the
physical interconnect. The second is Scribe running on Pas-
try. We use the optimal Pastry algorithm to build the Scribe
routing tables. We place a client next to each Rocketfuel
router. Each client subscribes to and unsubscribes from a
total of 10,000 subjects, with a zipf distribution (α = 1.0).
The average number of subscriptions per client is 117. The
curves labeled “CANTO” and “Scribe” in Figure 14 show
the publishing latency of the two simulated systems under
varied locality factors (as explained in Section 6.2). We see
that although Pastry has its own means for accounting for
locality, it can be limited. As the amount of locality in pub-
lish/subscribe operations increases, CANTO shows greater
relative benefit because it confines messages to smaller areas
spanning only the subscribers and publishers.

Section 2.3 explains that the use of explicit 1-bit edges

12

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

Pu
bl

is
hi

ng
 L

at
en

cy
 (m

ilis
ec

on
d)

Locality

CANTO
CANTO anchor

Scribe

Figure 14: Publishing performance vs. subscription locality.

in CANTO (that may point both toward and away from an-
chors) allows update-related messages to be confined to net-
work neighborhoods that do not have to include the anchors.
As a corollary, publish messages can go from publishers to
subscribers without necessarily involving any root (anchor)
nodes. If we disable this feature and force publish messages
to be always routed through the anchors first, the curve la-
beled “CANTO anchor” shows the resulting degradation.

6.6 Application Performance

We have implemented two applications of CANTO: a
distributed virtual disk and a distributed file system, both of
which provide cache coherence for read/write sharing (Sec-
tion 5).

 0

 10

 20

 30

 40

 50

 60

0% 50% 90%

Ba
nd

w
id

th
 (M

B/
s)

Locality

CANTO basic
CANTO dynamic

xFS

Figure 15: Bandwidth of distributed virtual disk.

Figure 15 presents the aggregate bandwidth achieved by
the distributed virtual disk under a workload with read-to-
write ratio of 9:1 and queue length 64. We vary the geo-
graphic locality as defined in Section 6.2. There are 100,000
data blocks of 4,096 bytes each. Since we do not have
root access to PlanetLab machines, we employ a user level
implementation instead of the kernel disk driver. The re-
sults show the benefit of topology-awareness provided by
CANTO.

Table 1 gives the file system test results. The test has
several steps, each addressing different types of operations.
The numbers indicate the time used to complete each step.
This test was run on an 8-node LAN cluster. The ma-
chines are 1GHz Pentiums with 1GB memory, connected

with 100Mbps ethernet. We used a total of 160,000 files,
each 8KB in size, in the tests.

Test step Time (seconds)

Each node create
1000 directories

4.7

Each node create
20,000 files

102.4

Each node randomly
read/write 20,000 files

86.9

Each node sequentially
read all files

1640

Table 1: File system performance.

7 Related Work

We have already discussed the relationships among
manager-based systems [2, 9, 20, 6, 10, 16], DHTs [14, 15,
19, 21], and CANTO in Section 1. Most of the manager-
based cluster systems owe similarities to the data location
mechanisms explored in the original shared virtual mem-
ory (SVM) work [10]. One of the alternatives examined in
the SVM system is the “dynamic distributed manager algo-
rithm” with “distributed copy sets.” Under this algorithm,
the location of the data is tracked by a tree of processors
rooted at an owner processor. All tree edges are bidirec-
tional. Any node in the tree can locate a copy of the data
to satisfy read requests. Invalidations must start at the root
and propagate downward to reach all nodes. If hints fail to
locate a node in the tree, the system resorts to broadcasts to
satisfy requests. The system runs in a cluster environment
that has a simple topology and the tree is formed strictly
based on the sequence of operations performed on the data.
A goal of CANTO is to build a network-aware object track-
ing system for a more complex topology. The routing tree
nodes in CANTO can be routers that do not necessarily ini-
tiate requests on their own and the shape of the routing tree
is formed based on the network topology. In terms of de-
tails, the CANTO routing tree edges are not uniformly bidi-
rectional: instead, the invariant in CANTO is that there is
a path of directed 1-bit edges leading from any active node
to all other active nodes (with the anchor being one of the
active nodes). This invariant allows CANTO to more fully
exploit topological locality so, for example, unlike existing
systems, invalidation messages do not need to always reach
an anchor or a manager, nor does CANTO need to resort to
broadcast mechanisms.

We have already discussed the Globe [3] and Scribe [5]
systems. Objects in Globe are mobile but, unlike those in
CANTO, are unchangeable. Scribe implements DHT-based
publish/subscribe. In contrast, CANTO provides cache co-
herence for read/write operations.

OceanStore [8], a wide-area storage system, proposes a
two-level lookup process: a fast “local” lookup may fail and
is followed up with a slower and more restrictive “global”

13

lookup. These two stages are based on different algorithms.
CANTO employs a single lookup algorithm that seeks to
both exploit locality and retain placement flexibility.

Invalidations in OceanStore, publishes in Scribe, and ob-
ject movements in Globe are performed in a way analo-
gous to that employed by the SVM system described above
and they all must reach a root node. To the extent possi-
ble, CANTO strives to isolate invalidation messages within
a topological locality without always resorting to a root.
CANTO copes with persistence, recovery, and reconfigura-
tion of routing state, issues not necessarily fully addressed
in the above systems.

Ivy is a read-write file system built on top of a DHT-
based storage system [11]. Instead of tracking the locations
of the fresh data, the system searches the logs of all writers.
The system is designed to work for a relatively small number
of writers and the system has a relatively loose coherence
semantics.

8 Conclusions

In this paper, we show the importance of network topol-
ogy awareness in building object tracking and routing fa-
cilities in a wide area network. We have presented an ob-
ject tracking system that possesses both strong coherence
semantics and network topology awareness. Experiments
with a deployment of the system on a real-world Internet
overlay show substantial benefits of the system compared to
existing approaches.

References

[1] A NDERSON, D. G., BALAKRISHNAN , H., KAAWHOEK , M. F.,
AND MORRIS, R. Resilient Overlay Networks. InProc. of the Eigh-
teenth Symposium on Operating Systems Principles(October 2001).

[2] A NDERSON, T., DAHLIN , M., NEEFE, J., PATTERSON, D.,
ROSELLI, D., AND WANG, R. Serverless Network File Systems.
ACM Transactions on Computer Systems 14, 1 (Feb. 1996), 41–79.

[3] BAGGIO, A., BALLINTIJN , G., VAN STEEN, M., AND TANEN-
BAUM , A. S. Efficient tracking of mobile objects in Globe.The
Computer Journal 44, 5 (2001), 340–353.

[4] BALAKRISHNAN , H., DRUSCHEL, P., HELLERSTEIN, J.,
KAASHOEK, M. F., KARGER, D., KARP, R., KUBIATOWICZ ,
J., LISKOV, B., MAZIERES, D., MORRIS, R., SHENKER, S.,
AND STOICA, I. The IRIS ITR proposal. http://iris.lcs.mit.edu/-
proposal.html, 2002.

[5] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., , AND ROW-
STRON, A. Scribe: A large-scale and decentralized application-level
multicast infrastructure.IEEE Journal on Selected Areas in Com-
munications (JSAC) (Special issue on Network Support for Multicast
Communications) 20, 8 (October 2002).

[6] FEELEY, M. J., MORGAN, W. E., PIGHIN , F. P., KARLIN , A. R.,
LEVY, H. M., AND THEKKATH , C. A. Implementing Global Mem-
ory Management in a Workstation Cluster. InProc. of the 15th
ACM Symposium on Operating Systems Principles(December 1995),
pp. 201–212.

[7] K ARGER, D., LEHMAN , E., LEIGHTON, F. T., LEVINE, M.,
LEWIN, D., AND PANIGRAHY, R. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the
world wide web. InProc. 29th STOC, pp. 654–663.

[8] K UBIATOWICZ , J., BINDEL , D., CHEN, Y., CZERWINSKI, S.,
EATON, P., GEELS, D., GUMMADI , R., RHEA, S., WEATHER-
SPOON, H., WEIMER, W., WELLS, C.,AND ZHAO, B. OceanStore:
An Architecture for Global-Scale Persistent Storage. InProceed-
ings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS2000)
(November 2000).

[9] L EE, E. K., AND THEKKATH , C. E. Petal: Distributed Virtual
Disks. InSeventh International Conference on Architectural Support
for Programming Languages and Operating Systems(October 1996),
pp. 84–92.

[10] L I , K., AND HUDAK , P. Memory coherence in shared virtual mem-
ory systems. ACM Transactions on Computer Systems 7, 4 (Nov.
1989), 321–359.

[11] MUTHITACHAROEN, A., MORRIS, R., GIL , T. M., AND CHEN,
B. Ivy: A Read/Write Peer-to-Peer File System. InProc. of the
Fifth Symposium on Operating Systems Design and Implementation
(December 2002).

[12] PERKINS, C. RFC 2002: IP mobility support, Oct. 1996.

[13] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T. A
Blueprint for Introducing Disruptive Technology into the Internet. In
Proc. First Workshop on Hot Topics in Networks (HotNets-I)(October
2002).

[14] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND

SHENKER, S. A scalable content-addressable network. InProc. ACM
SIGCOMM 2001(August 2001), pp. 161–172.

[15] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proc. IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware)(November 2001), pp. 329–350.

[16] SAITO , Y., BERSHAD, B., AND LEVY, H. Manageability, Avail-
ability and Performance in Porcupine: A Highly Scalable Internet
Mail Service. ACM Transactions on Computer Systems 18, 3 (Au-
gust 2000), 298–332.

[17] SPALINK , T., KARLIN , S., PETERSON, L., AND GOTTLIEB, Y.
Building a Robust Software-Based Router Using Network Proces-
sors. InProc. of the Eighteenth Symposium on Operating Systems
Principles(October 2001).

[18] SPRING, N., MAHAJAN , R., AND WETHERALL, D. Measuring
ISP topologies with rocketfuel. InProceedings of the ACM SIG-
COMM 2002 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications (SIGCOMM-02)
(New York, Aug. 19–23 2002), vol. 32, 4, ACM Press, pp. 133–146.

[19] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN , H. Chord: A Scalable Peer-to-peer Lookup Ser-
vice for Internet Applications. InProc. ACM SIGCOMM 2001(Au-
gust 2001).

[20] THEKKATH , C. A., MANN , T., AND LEE, E. K. Frangipani: A Scal-
able Distributed File System. InProceedings of the ACM Sixteenth
Symposium on Operating Systems Principles(Oct. 1997).

[21] ZHAO, B., KUBIATOWICZ , J., AND JOSEPH, A. An infrastruc-
ture for fault-tolerant wide-area location and routing. Tech. Rep.
UCB/CSD 01/1141, University of California at Berkeley, April 2001.

14

