
Modal Proofs As Distributed Programs∗

Limin Jia David Walker
Princeton University

August 31, 2003

Abstract

We develop a new foundation for distributed programming languages by defining an intuitionistic, modal logic
and then interpreting the modal proofs as distributed programs. More specifically, the proof terms for the various
modalities have computational interpretations as remote procedure calls, commands to broadcast computations
to all nodes in the network, commands to use portable code, and finally, commands to invoke computational
agents that can find their own way to safe places in the network where they can execute. We prove some simple
meta-theoretic results about our logic as well as a safety theorem that demonstrates that the deductive rules act
as a sound type system for a distributed programming language.

1 Introduction

One of the characteristics of distributed systems that makes developing robust software for them far more difficult than
developing software for single stand-alone machines is heterogeneity. Different places in the system may have vastly
different properties and resources. For instance, different machines may be attached to different hardware devices,
have different software installed and run different services. Moreover, differing security concerns may see different
hosts providing different interfaces to distributed programs, even when the underlying computational resources are
similar.

In order to model such heterogeneous environments, programming language researchers usually turn to formalisms
based on one sort of process algebra or another. Prime examples include the distributed join calculus [5] and the
ambient calculus [3]. These calculi often come with rich theories of process equivalence and are useful tools for
reasoning about distributed systems. However, a significant disadvantage of starting with process algebras as a
foundation for distributed computing is that they immediately discard the wealth of logical principles that underlie
conventional sequential programming paradigms and that form the sequential core of any distributed computation.

In this paper, we develop a foundation for safe distributed programming, which rather than rejecting the logi-
cal foundations of sequential (functional) programming, extends them conservatively with new principles tuned to
programming in heterogeneous distributed environments. More specifically, we develop an intuitionistic, modal logic
and provide an operational interpretation of the logical proofs as distributed programs. Our logic is conservative over
ordinary intuitionistic propositional logic in the sense that at any given place, all of the propositional tautologies are
provable. Consequently, our correspondence between proofs and programs implies we can safely execute any (closed)
functional program at any place in our distributed programming environment.

We extend these simple intuitionistic proofs with modal connectives and provide computational interpretations
of the connectives as operations for remote code execution:

• Objects with type τ @ z are return values with type τ . They are the results of remote procedure calls from the
place z.

• Objects with type n[τ] are also return values with type τ . However, they are the results of remote procedure
calls that use place-relative rather than absolute addressing. These RPCs send a computation along the link in
the network named n from the current place.

∗This research was supported in part by NSF Career Award CCR-0238328 and DARPA award F30602-99-1-0519.

1

• Objects with type 2 τ are computations that run safely everywhere, and may be broadcast to all places in the
network.

• Objects with type ◊τ are logically equivalent to those objects with type 2 τ , but are treated operationally
simply as portable code that can run everywhere, but is not actually broadcast.

• Objects with type 3τ are computational agents that have internalized the place z where they may execute
safely to produce a value with type τ .

Contributions The central technical contributions of our work may be summarized as follows.

• We develop an intuitionistic, modal logic from first principles following the logical design techniques espoused
by Martin Löf [7] and Frank Pfenning [10, 11]. Our logic is a relative of the hybrid logics, which are discussed
in more detail at the end of the paper (see Section 4).

• The logic obeys a number of simple properties that give evidence it will serve as a solid foundation for distributed
programming languages. In particular, each connective is defined orthogonally to all others; is shown to be
locally sound and complete; and supports the relevant substitution principles.

• This paper concentrates on the natural deduction formulation of the logic due to its correspondence with
functional programs. However, we have also developed a sequent calculus that has cut elimination and shown
that the sequent calculus can prove the same theorems as the natural deduction system.

• We give an operational interpretation of the proofs in our logic as distributed functional programs. We prove
that the logical deduction rules are sound when viewed as a type system for the programming language.

2 A Logic of Places

2.1 Preliminaries

The central purpose of our logic is to facilitate reasoning about heterogeneous distributed systems where different
nodes may have different properties and may contain different resources. Hence, the primary judgment in the logic
not only considers whether a formula is true, but also where it is true. More precisely, each primitive judgment has
the form

`P,N F at z

where F is a formula from the logic and z is a particular place in the system. These places may either be simple
places, p, which are drawn from the set P , or compound places p.n1.nn that specify the relative address of a
place in terms of a simple place p and a path with edges labeled n1, ..., nn. Each edge name is drawn from the set
N . We consider judgments `P,N F at z to have no meaning if FPN(F) ∪ FPN(z) 6⊆ P ∪N where FPN(X) denotes
the set of free places and names that appears in X. We also use FP(X) (FN(X)) to denote the set of free places
(names) in X. In the inference rules to come, we do not generally specify these well-formedness conditions explicitly.
When P and N are unimportant or easy to guess from the context (i.e., most of the time) we omit them from the
judgment and simply write ` F at z.

To gain some intuition about this preliminary set up, consider a network of computers connected in a ring:

-

�
�
�� @

@
@R

���
����HH

HHHHY

�� ��A
�� ��B

�� ��E
�� ��C

�� ��D

2

This picture shows five simple places (A, B, etc.), which may be referenced directly. Alternatively, if we assume
that each arc in the diagram is labeled with the name next, we may refer to B indirectly using the path A.next or
E.next.next.

In another scenario, each of A, B, C might support several virtual machines named VM1, VM2, etc. If the set
N includes names VM1 and VM2 then we can use indirect addressing to build a hierarchy of places by refering to
A.VM1, A.VM2, B.VM1, etc.

In general, each of these computers (A, B, C, etc.) may be attached to different physical devices. For instance,
E may be attached to a printer and B may be attached to a scanner. If sc (“there is a scanner here”) and pt (“there
is a printer here”) are propositions in the logic, we might assert judgments such as ` pt at E and ` sc at B to
describe this situation.

Hypothetical Judgments In order to engage in more interesting reasoning about distributed resources, we must
define hypothetical judgments, facilities for reasoning from hypotheses and the appropriate notion of substitution. To
begin with, hypothetical judgments have the form ∆ `P,N F at z where ∆ is a list of (variable-labeled) assumptions:

contexts ∆ : := · | ∆, x : F at z

We make the usual assumption that no variables are repeated in the context, and whenever adding a new variable
to the context, we implicitly assume it is different from all others (alpha-varying bound variables where necessary
to ensure this invariant holds). In addition, we do not distinguish between contexts that differ only in the order of
assumptions.

Logicians may use hypotheses according to the following inference rule.

∆, x : F at z ` F at z
hyp

Intuitionistic Connectives With the definition of hypothetical judgments in hand, we may proceed to give the
meaning of the usual intuitionistic connectives for truth (>), implication (F1 → F2) and conjunction (F1 ∧ F2) in
terms of their introduction and elimination rules.

∆ ` > at z
>I

∆, F1 at z ` F2 at z

∆ ` F1 → F2 at z
→ I

∆ ` F1 → F2 at z ∆ ` F1 at z

∆ ` F2 at z
→ E

∆ ` F1 at z ∆ ` F2 at z

∆ ` F1 ∧ F2 at z
∧I

∆ ` F1 ∧ F2 at z

∆ ` F1 at z
∧E1

∆ ` F1 ∧ F2 at z

∆ ` F2 at z
∧E2

We also have universal quantifier in our logic. Here, we confine the quantifiers to quantify only over places. We
write ∀p.F , where p ranges over places. The introduction and elimination rules of ∀ are given below.

∆ `P+p,N F at z p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(z)

∆ `P,N ∀p.F at z
∀I

∆ `P,N ∀p.F at z FPN(z′) ⊆ P ∪N

∆ `P,N F [z′ / p] at z
∀E

None of the rules above are at all surprising: Each rule helps explain how one of the usual intuitionistic connectives
operates at a particular place. Hence, if we limit the set of places to a single place “ ” the logic will reduce to ordinary
intuitionistic logic. So far, there is no interesting way to use assumptions at multiple different places, but we will see
how to do that in a moment.

As a simple example, consider reasoning about the action of the printer at place E in the network we introduced
earlier. Let pdf be a proposition indicating the presence of a PDF file waiting to be printed and po be a proposition

3

indicating the presence of a printout. The following derivation demonstrates how we might deduce the presence of a
printout at E. The context ∆ referenced below is

fE : pdf at E, ptrE : pt at E, print : pdf ∧ pt → po at E

This context represents the presence of a PDF file and printer at E as well as some software (a function) installed at
E that will initiate the printing process.

∆ ` pdf ∧ pt → po at E

∆ ` pdf at E ∆ ` pt at E

∆ ` pdf ∧ pt at E

∆ ` po at E

Simple Logical Properties Before continuing further, we should do some preliminary checks on the reasonable-
ness of our definitions. More specifically, following Martin Löf’s [7] and Frank Pfenning’s [10] design principles,
we should check that the elimination rules are locally sound and locally complete with respect to the corresponding
introduction rules for the logic.

Local soundness guarantees that whenever an elimination rule directly follows an introduction rule in a proof,
the two adjacent rules may be eliminated and the conclusion proven in a simpler way. From a proofs-as-programs
perspective, local soundness corresponds to type preservation under a single beta reduction. Local soundness implies
the elimination rules are not too strong for the introduction rules; the elimination rules do not introduce new
information into a proof that was not already there. As an example, we exhibit one case of the local soundness proof
for conjunction through the following proof reduction (⇒r). The second case of the proof is similar to the first,
but involves ∧E2. A calligraphic letter (D1, etc.) in a hypothesis position ranges over arbitrary derivations of the
corresponding conclusion.

D1

∆ ` F1 at z

D2

∆ ` F2 at z

∆ ` F1 ∧ F2 at z
∧I

∆ ` F1 at z
∧E1

⇒r

D1

∆ ` F1 at z

Local completeness guarantees that the elimination rules are not too weak for the introduction rules. This property
implies that the elimination rules can extract sufficient information from an arbitrary proof of the connective to
reconstruct that connective using the introduction rules. From a proofs-as-programs perspective, local completeness
corresponds to type preservation under a single eta-expansion. Here, we present the local expansion (⇒e) that
witnesses the local completeness property for conjunction.

E
∆ ` F1 ∧ F2 at z

⇒e

E
∆ ` F1 ∧ F2 at z

∆ ` F1 at z
∧E1

E
∆ ` F1 ∧ F2 at z

∆ ` F2 at z
∧E2

∆ ` F1 ∧ F2 at z
∧I

Lemma 1
The introduction and elimination rules for truth, conjunction, implication and universal quantifier are locally sound
and complete.

Proof:
In the local reductions and expansions below, we annotate derivations with the word “weakening” to indicate

where we need to use the conventional weakening lemma to prove a particular judgment. These annotations should
not be misinterpreted as applications of a weakening rule as our system contains no such rule.

Local Soundness:

4

D1

∆ `P,N F1 at z

D2

∆ `P,N F2 at z

∆ `P,N F1 ∧ F2 at z
∧I

∆ `P,N F1 at z
∧E1

⇒r

D1

∆ `P,N F1 at z

D
∆, u : F1 at z `P,N F2 at z

∆ `P,N F1 → F2 at z
→ I E

∆ `P,N F1 at z

∆ `P,N F2 at z
→ E

⇒r D [E / u]

D
∆ `P+p,N F at z

∆ `P,N ∀p.F at z
∀I

∆ `P,N F [z′ / p] at z
∀E

⇒r D [z′ / p](p 6∈ FP(∆)∪FP(z))

Local Completeness:

E
∆ `P,N F1 ∧ F2 at z

⇒e

E
∆ `P,N F1 ∧ F2 at z

∆ `P,N F1 at z
∧E1

E
∆ `P,N F1 ∧ F2 at z

∆ `P,N F2 at z
∧E2

∆ `P,N F1 ∧ F2 at z
∧I

E
∆ `P,N F1 → F2 at z

⇒e
∆, F1 at z `P,N F1 at z

hyp E
∆, F1 at z `P,N F1 → F2 at z

weakening

∆, F1 at z `P,N F2 at z
→ E

∆ `P,N F1 → F2 at z
→ I

E
∆ `P,N ∀p.F at z

⇒e

E
∆ `P+q,N ∀p.F at z

weakening

∆ `P+q,N F [q / p] at z
∀E

∆ `P,N ∀q.F [q / p] at z
∀I

�

Local soundness and completeness help check the consistency of the logic at an early stage of development and
can be used to detect fundamental flaws in logical design. For instance, the elimination rules for conjunction are not
locally complete with respect to the following more general introduction rule.

∆ ` F1 at z2 ∆ ` F2 at z3

∆ ` F1 ∧ F2 at z1
∧I Bad

Similarly, generalizing conjunction elimination as follows, without change to the introduction rules, will lead to a
lack of local soundness.

∆ ` F1 ∧ F2 at z2

∆ ` F1 at z1
∧E1 Bad

The lack of local soundness or completeness in these “bad” rules is symptomatic of the fact that they deviate from the
central principle guiding the logic (and therefore language) design: In each case, they allow formulas firmly rooted
at a particular place to implicitly shift to a new place, making the presence of places in the judgment meaningless.
For instance, use of the bad introduction rule allows a formula F1 at z1 to shift to the place z2).

5

D1

∆ ` F1 at z1

D2

∆ ` F2 at z2

∆ ` F1 ∧ F2 at z2
∧I Bad

∆ ` F1 at z2
∧E1

This implicit shift renders attempts to reason about immobile objects (such as our printer) impossible, and hence
is at odds with the design we hope to achieve. In the following sections, however, we add connectives that allow us
to explicitly shift perspective. The explicit shift gives the logician the flexibility to reason about objects at remote
locations, but is completely compatible with our work so far.

2.2 Interplace Reasoning

To reason about relationships between objects located at different places we introduce two modal connectives, one
which describes objects in terms of their absolute location in the system and one that describes objects in terms of
their position relative to the current location.

Absolute Placement We derive our first modal connective by internalizing the judgmental notion that a formula is
true at a particular place, but not necessarily elsewhere. We write this new modal formula as F @ z. The introduction
and elimination rules follow.

∆ ` F at z2

∆ ` F @ z2 at z1
@ I

∆ ` F @ z2 at z1

∆ ` F at z2
@ E

This connective allows us to reason about objects, software or devices “from a distance.” For instance, in our
printer example, it is possible to refer to the printer located at E while reasoning at D; to do so we might assert
∆ ` pt@E at D. Moreover, we can relate objects at one place with objects at another. For instance, in order to
share E’s printer, D needs to have software that can convert local PDF files at D to files that may be used and
print properly at E (perhaps this sofware internalizes some local fonts, inaccessible to E, within the document). An
assumption of the form DtoE : pdf → pdf @E at D would allow us to reason about such software.1 If ∆′ is the
assumption DtoE above together with an assumption fD : pdf at D, the following derivation allows us to conclude
that we can get the PDF file to E. We can easily compose this proof with the earlier one to demonstrate that PDF
files at D can not only be sent to E, but actually printed there.

∆′ ` pdf → pdf @E at D
hyp

∆′ ` pdf at D
hyp

∆′ ` pdf @E at D
→ E

∆′ ` pdf at E
@E

Relative Placement The connective above allows positioning of a formula with respect to an absolute (fully-
determined) place z. A closely related connective, n[F], specifies that an object or resource described by F may be
found by traveling along the edge labeled n when starting from the current place. The introduction and elimination
rules for [] have similar structure to the rules for @ :

∆ ` F at z.n
∆ ` n[F] at z

[]I
∆ ` n[F] at z

∆ ` F at z.n
[]E

The owner of machine D often finds interesting technical reports on the Web that are only distributed in
PostScript. Since E’s printer will only print PDF files, D takes the step of installing Adobe Acrobat and its Distiller
program. Distiller automatically takes PostScript documents that it finds in a local folder called “in,” converts the

1We assume that “@ ” binds tighter than implication or conjunction. When fully parenthesized, the assumption above has the following
form.

(pdf → (pdf @ E)) at D

6

documents into PDF and places them in the folder called “out.” D’s new software set up, including routines to copy
PostScript and PDF files to and from the appropriate places can be described by the following context:

distill : in[ps] → out[pdf] at D,
copyIn : ps → in[ps] at D,
copyOut : out[pdf] → pdf at D

These axioms can easily be composed to prove that PostScript files at D can be converted into PDF files at D—just
what the owner of D was hoping to accomplish.

Lemma 2
The modal connectives F @ z and n[F] are locally sound and complete.

Proof: Local reductions and expansions appear in Figure 1. �

Local Soundness:

D
∆ ` F at z1

∆ ` F @ z1 at z2
@ I

∆ ` F at z1
@ E

⇒r

D
∆ ` F at z1

D
∆ ` F at z.n
∆ ` n[F] at z

[]I

∆ ` F at z.n
[]E

⇒r
D

∆ ` F at z.n

Local Completeness:

E
∆ ` F @ z1 at z2

⇒e

E
∆ ` F @ z1 at z2

∆ ` F at z1
@ E

∆ ` F @ z1 at z2
@ I

E
∆ ` n[F] at z ⇒e

E
∆ ` n[F] at z

∆ ` F at z.n
[]E

∆ ` n[F] at z
[]I

Figure 1: Local soundness and completeness for @ and n[]

2.3 Global Reasoning

While our focus is on reasoning about networks with heterogeneous resources, we cannot avoid the fact that certain
propositions are true everywhere. For instance, the basic laws of arithmetic do not change from one machine to
the next, and consequently, we should not restrict the application of these laws to any particular place. Just as
importantly, we might want to reason about distributed applications deployed over a network of machines, all of
which support a common operating system interface. The functionality provided by the operating system is available
everywhere, just like the basic laws of arithmetic, and use of the functionality need not be constrained to one
particular place or another.

7

Global Judgments To support global reasoning, we generalize the judgment considered so far to include a second
context that contains assumptions that are valid everywhere. Our extended judgments have the form

Γ;∆ `P,N F at z

where Γ is a global context and ∆ is the local context we considered previously.

Global Contexts Γ : := · | Γ, x : F
Local Contexts ∆ : := · | ∆, x : F at z

Our extended logic contains two sorts of hypothesis rules, one for using each sort of assumption. L is identical to
the hypothesis rule used in previous sections (modulo the unused global context Γ). G specifies how to use global
hypotheses; they may be placed in any location and used there.

Γ;∆, x:F at z ` F at z
L Γ, x:F ;∆ ` F at z

G

All rules from the previous sections are included in the new system unchanged aside from the fact that Γ is passed
unused from conclusion to premises.

Internalizing Global Truth The modal connective 2 F internalizes the notion that the formula F is true every-
where. If a formula may be proven true at a new place p, which by definition can contain no local assumptions, then
that formula must be true everywhere:

Γ;∆ `P+p,N F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F)

Γ;∆ `P,N 2 F at z
2I

Here, we use P + p to denote the disjoint union P ∪ {p}. If p ∈ P , we consider P + p, and any judgment containing
such notation, to be undefined. The side condition above ensures that p is truly new and that the conclusion of the
rule is well formed in the absence of p.2

If we can prove 2 F , we can assume that F is globally true in the proof of any other formula F ′:

Γ;∆ `P,N 2 F at z Γ, x : F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
2E

Returning to our printing example, suppose node E decides to allow all machines to send it PDF files. In order
to avoid hiccups in the printing process, E intends to distribute software to all machines that allow them to convert
local PDF files to files that will print properly on E’s printer. We might represent this situation with a hypothesis
ToE : 2 (pdf → pdf @E) at E. Now, given a PDF file at any other node q in the network (coded as the assumption
fq : pdf at q), we can demonstrate that it is possible to send a pdf file to E using the following proof where ∆′′

contains assumptions ToE and fq. The global context Γ contains the single assumption ToE′ : pdf → pdf @E.

D

Γ;∆′′ ` pdf → pdf @E at q
G

Γ;∆′′ ` pdf at q
L

Γ;∆′′ ` pdf @E at q
→ E

Γ;∆′′ ` pdf at E
@ E

·;∆′′ ` pdf at E
2 E

where the derivation D =
2If we follow our convention about judgments being meaningless when they contain names or places not contained in the sets P and

N that annotate the judgment, this side condition is unnecessary. Nevertheless, we leave it in for emphasis.

8

·;∆′′ ` 2 (pdf → pdf @E) at E
L

As another simple example, suppose the owner of A tells the system administrator how great Distiller is, and she
installs it on all machines. We can represent the presence of software everywhere using a global context Γ with the
following form.

distill : in[ps] → out[pdf],
copyin : ps → in[ps],
copyout : out[pdf] → pdf

When any machine q uses these globally available assumptions, it processes PDF files in its own local in and out
directories (i.e., at q.in and q.out), rather than in some global, communally decided upon places.

The truth is out there The dual notion of a globally true proposition F is a proposition that is true somewhere,
although we may not necessarily know where. We already have all the judgmental apparatus to handle this new
idea; we need only internalize it in a connective (3F). The introduction rule states that if the formula holds at any
particular place z in the network, then it holds somewhere. The elimination rule explains how we use a formula F
that holds somewhere: We introduce a new place p and assume F holds there.

Γ;∆ `P,N F at z

Γ;∆ `P,N 3F at z′
3I

Γ;∆ `P,N 3F at z Γ;∆, x : F at p `P+p,N F ′ at z′

p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆ `P,N F ′ at z′
3E

Lemma 3
The modal connectives 2 and 3 are locally sound and complete.

Proof: Proofs can be found in Figure 2.3 �

Modal Axioms Possibility and necessity satisfy the following standard modal axioms (taken from Huth and
Ryan [6, p. 284]).

K: ·; · ` 2 (F1 → F2) → (2 F1 → 2 F2) at p
B: ·; · ` F → 2 3F at p
D: ·; · ` 2 F → 3F at p
T: ·; · ` 2 F → F at p
4: ·; · ` 2 F → 2 2 F at p
5: ·; · ` 3F → 2 3F at p

2.4 Properties

To summarize, our logic of places contains the familiar connectives from propositional intuitionistic logic as well as
several modalities for reasoning about software and data distributed across a network:

F : : = > | F1 → F2 | F1 ∧ F2 | ∀p.F | F @ z | n[F] | 2 F | 3F

A summary of the proof rules is in the appendix.
Our proof system satisfies the following substitution properties. The proofs can be found in the Appendix.

Lemma 4 (Substitution)
1. If Γ;∆ `P+p,N F at z then for all z′, FPN(z′) ⊆ (P∪N) implies Γ [z′ / p];∆ [z′ / p] `P,N F [z′ / p] at z [z′ / p]

9

Local Soundness:

D
Γ;∆ `P+q,N F at q

Γ;∆ `P,N 2 F at z
2I E

Γ, u : F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
2E

⇒r E [D / u]

D
Γ;∆ `P,N F at z

Γ;∆ `P,N 3F at z′
3I E

Γ;∆, u : F at q `P+q,N F ′ at z′′

Γ;∆ `P,N F ′ at z′′
3E

⇒r E [z / q] [D / u]

Local Completeness:

Γ;∆ `P,N 2 F at z ⇒e Γ;∆ `P,N 2 F at z

Γ, F ;∆ `P+q,N F at q
G

Γ, F ;∆ `P,N 2 F at z
2I

Γ;∆ `P,N 2 F at z
2E

Γ;∆ `P,N 3F at z ⇒e Γ;∆ `P,N 3F at z

Γ;∆, F at q `P+q,N F at q
L

Γ;∆, F at q `P+q,N 3F at z
3I

Γ;∆ `P,N 3F at z
3E

Figure 2: Local soundness and completeness for 2 , 3

2. If Γ;∆ `P,N F at z and Γ;∆, x : F at z `P,N F ′ at z′ then Γ;∆ `P,N F ′ at z′

3. If Γ;∆ `P+q,N F at q and Γ, x : F ;∆ `P,N F ′ at z′ then Γ;∆ `P,N F ′ at z′

Sequent Calculus and Cut Elimination The local soundness and completeness properties we have presented
earlier are a good aid when debugging initial definitions of connectives. However, they are no substitute for global
properties of the logic. To ensure global consistency of our logic, we have defined a sequent calculus, proven cut
elimination and shown that the sequent calculus is sound and complete with respect to our natural deduction
formulation.

A sequent calculus judgment has the following form.

Γ;∆
P,N
=⇒ F at z

It states that from global resources Γ and local resources ∆, we can reach the goal F at place z in a network with
places P and edges labelled N . We have summarized the sequent calculus rules in the Appendix.

We let the judgment

Γ;∆
P,N
=⇒

−
F at z

denote the valid sequent calculus judgments constructed without using the cut rule. Using Pfenning’s structural
cut elimination technique [9], we are able to prove that the sequent calculus without cut is just as powerful as the
sequent calculus with cut.

Theorem 5 (Cut Elimination)
If Γ;∆

P,N
=⇒ F at z then Γ;∆

P,N
=⇒

−
F at z.

Moreover, the sequent calculus with cut corresponds exactly to the natural deduction style presentation of the
logic.

10

Types τ : : =

b | > | τ1 → τ2 | τ1 ∧ τ2 | ∀p.τ | τ @ z | n[τ] | 2 τ | ◊τ | 3τ

Proof Terms/Programs e : : =

c | x | sync (x) | run (x [z]) | () const/var/>
| λx:τ.e | e1 e2 functions(→)
| 〈 e1 , e2 〉 | πie pairs (∧)
| Λp . e | e [z] polymorphic functions(∀)
| retabs(e, z) | rpcabs(e, z) rpc abs. (@)
| retrel(e, n) | rpcrel(e, z) rpc rel. ([])
| close(λp. e) | bc e1 at z asx in e2 broadcast (2)
| port(λp. e) | pull e1 at z asx in e2 portable (◊)
| agent[e, z] | go e1 at z returnx, p in e2 agents (3)

Figure 3: λrpc Syntax

Theorem 6 (Sequent Soundness and Completeness)
1. If Γ;∆

P,N
=⇒ F at z then Γ;∆ `P,N F at z.

2. If Γ;∆ `P,N F at z then Γ;∆
P,N
=⇒ F at z.

The proofs of the above theorem appears in the Appendix.

3 λrpc: A Distributed Programming Language

The previous section developed an intuitionistic, modal logic capable of concisely expressing facts about the placement
of various objects in a network. Here, we present the proof terms of logic and show how they may be given an
operational interpretation as a distributed programming language that we call λrpc. The logical formulas serve as
types that prevent distributed programs from “going wrong” by attempting to access resources that are unavailable
at the place the program is currently operating.

3.1 Syntax and Typing

Figure 3 presents the syntax of programs and their types, and Figure 4 presents the typing rules for the language,
which are the natural deduction-style proof rules for the logic.

Types and Typing Judgments The types correspond to the formulas of the logic; we use the meta variable τ
rather than F to indicate a shift in interpretation. We also let b range over various base types we might interested
in.

One other change between logic and language is that the language interprets 2 in two different ways. To avoid
confusion, the language has two distinct, but logically identical, types, 2 τ and ◊τ . Analogously, we separate the
logical context Γ into two parts Γ2 and Γ◊ during type checking. Hence the overall type checking judgment has the
following form.

Γ2 ; Γ◊;∆ `P,N e : τ at z

11

Γ2; Γ◊;∆ `P,N c : b at z
const

Γ2; Γ◊;∆, x : τ at z `P,N x : τ at z
L

Γ2, x : τ ; Γ◊;∆ `P,N sync (x) : τ at z
G2

Γ2; Γ◊, x : τ ;∆ `P,N run (x [z]) : τ at z
G◊

Γ2; Γ◊;∆ `P,N () : > at z
>I

Γ2; Γ◊;∆, x : τ1 at z `P,N e : τ2 at z

Γ2; Γ◊;∆ `P,N λx:τ1.e : τ1 → τ2 at z
→ I

Γ2; Γ◊;∆ `P,N e1 : τ1 → τ2 at z Γ2; Γ◊;∆ `P,N e2 : τ1 at z

Γ2; Γ◊;∆ `P,N e1 e2 : τ2 at z
→ E

Γ2; Γ◊;∆ `P,N e1 : τ1 at z Γ2; Γ◊;∆ `P,N e2 : τ2 at z

Γ2; Γ◊;∆ `P,N 〈 e1 , e2 〉 : τ1 × τ2 at z
∧I

Γ2; Γ◊;∆ `P,N e : τ1 × τ2 at z

Γ2; Γ◊;∆ `P,N πie : τi at z
∧E

Γ2; Γ◊;∆ `P+p,N e : τ at z p 6∈ FP (z) ∪ FP (Γ2) ∪ FP (Γ◊) ∪ FP (∆)

Γ2; Γ◊;∆ `P,N Λp . e : ∀p.τ at z
∀I

Γ2; Γ◊;∆ `P,N e : ∀p.τ at z FPN(z′) ⊆ P ∪N

Γ2; Γ◊;∆ `P,N e [z′] : τ [z′ / p] at z
∀E

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N retabs(e, z) : τ @ z at z′
@ I

Γ2; Γ◊;∆ `P,N e : τ @ z at z′

Γ2; Γ◊;∆ `P,N rpcabs(e, z′) : τ at z
@ E

Γ2; Γ◊;∆ `P,N e : τ at z.n

Γ2; Γ◊;∆ `P,N retrel(e, n) : n[τ] at z
[]I

Γ2; Γ◊;∆ `P,N e : n[τ] at z

Γ2; Γ◊;∆ `P,N rpcrel(e, z) : τ at z.n
[]E

Γ2; Γ◊;∆ `P+p,N e : τ at p p 6∈ FP(Γ2) ∪ FP(Γ◊) ∪ FP(∆) ∪ FP(τ)

Γ2; Γ◊;∆ `P,N close(λp. e) : 2 τ at z
2I

Γ2; Γ◊;∆ `P,N e1 : 2 τ at z Γ2, x : τ ; Γ◊;∆ `P,N e2 : τ ′ at z′

Γ2; Γ◊;∆ `P,N bc e1 at z asx in e2 : τ ′ at z′
2E

Γ2; Γ◊;∆ `P+p,N e : τ at p p 6∈ FP(Γ2) ∪ FP(Γ◊) ∪ FP(∆) ∪ FP(τ)

Γ2; Γ◊;∆ `P,N port(λp. e) : ◊τ at z
◊I

Γ2; Γ◊;∆ `P,N e1 : ◊τ at z Γ2; Γ◊, x : τ ;∆ `P,N e2 : τ ′ at z′

Γ2; Γ◊;∆ `P,N pull e1 at z asx in e2 : τ ′ at z′
◊E

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N agent[e, z] : 3τ at z′
3I

Γ2; Γ◊;∆ `P,N e1 : 3τ at z Γ2; Γ◊;∆, x : τ at p `P+p,N e2 : τ ′ at z′ p 6∈ FP(τ ′) ∪ FP(z′)

Γ2; Γ◊;∆ `P,N go e1 at z returnx, p in e2 : τ ′ at z′
3E

Figure 4: λrpc Typing

12

Programs The programs include an unspecified set of constants (c), and the standard introduction and elimination
forms for unit, functions, polymorphic functions and pairs.

Variables from each different context are used in different ways. As a mnemonic for the different sorts of uses, we
have added some syntactic sugar to the standard proof terms. Uses of local variables from ∆ are just like ordinary
uses of variables in your favorite (call-by-value) functional language so they are left undecorated. Variables in Γ2
refer to computations that have been broadcast at some earlier point. In order to use such a variable, the program
must synchronize with the concurrently executing computation. Hence, we write sync (x) for such uses. Variables
in Γ◊ refer to portable closures. The use of a variable in this context corresponds to running the closure with the
current place z as an argument. Hence, we write run (x [z]) for such uses.

Our first modalities τ @ z has an operational interpretation as a remote procedure call. The introduction form
(retabs(e, z)) constructs a “return value” for a remote procedure call. This “return value” can actually be an arbitrary
expression e, which will be run at the place it is returned to. The elimination form (rpcabs(e, z)) the remote procedure
call itself. It sends the expression e to a remote site where e will be evaluated. If the expression is well-typed, it will
eventually compute a return value that can be run safely at the caller’s place.

The interpretation of n[τ] is quite similar to the interpretation of τ @ z. The main difference is that the return
value retrel(e, n) is constructed for a place that may be found by following the link named n from the the place
where the remote procedure call executes. The elimination form (rpcrel(e, z)) performs the remote procedure call by
sending e to z, when the current place is z.n.

The introduction form for 2 F is close(λp. e). It creates a closure that may be broadcast by the elimination
form (bc e1 at z asx in e2) to every node in the network. More specifically, the elimination form executes e1 at z,
expecting e1 to evaluate to close(λp. e). When it does, the broadcast expression chooses a new universal reference
for the closure, which is bound to x, and sends λp.e to every place in the network where it is applied to the current
place and the resulting expression is associated with its universal reference. Remote procedure calls or broadcasts
generated during evaluation of e2 may refer to the universal reference bound to x, which is safe, since x has been
broadcast everywhere.

Objects of type ◊τ are portable closures; they never contain local references and consequently may be run
anywhere. The elimination form (pull e1 at z asx in e2) takes advantage of this portability by first computing e1 at
z, which should result in a value with the form port(λp. e). Next, it pulls the closure λp.e from z and substitutes
it for x in e2. The typing rules will allow x to appear anywhere, including in closures in e2 that will eventually be
broadcast or remotely executed. Once again, this is safe since e is portable and runs equally well everywhere.

Our last connective 3τ is considered the type of a computational agent that is smart enough to know where
it can go to produce a value with type τ . We introduce such an agent by packaging an expression with a place
where the expression may successfully be run to completion. The elimination form (go e1 at z returnx, p in e2) first
evaluates e1 at z, producing an agent (agent[e, z′]). Next, it commands the agent go to the hidden place z′ and
execute its encapsulated computation there. When the agent has completed its task, it synchronizes with the current
computation and e2 continues with p bound to z′ and x bound to a value that is safe to use at z′.

Simple examples To gain a little more intuition about how to write programs in this language, consider compu-
tational interpretations of some of the proofs from the previous section. The context ∆ referenced below contains
the following assumptions.

fD : pdf at D print : pdf ∧ pt → po at E
fE : pdf at E DtoE : pdf → pdf @E at D
ptrE : pt at E ToE : 2 (pdf → pdf @E) at E

Printing a PDF file (involving local computation only):

·;∆ ` print(fE , ptrE) : po at E

Fetching a PDF file (involving a remote procedure call in which the computation DtoE fD is executed at D):

·;∆ ` rpcabs(DtoE fD, D) : pdf at E

Fetching then printing:
·;∆ ` (λx:pdf.print (x, ptrE))(rpcabs(DtoE fD, D)) : po at E

13

Broadcasting E’s PDF conversion function to all nodes then fetching a PDF file from node q (recall that in general,
uses of these global variables involves synchronizing with the broadcast expression; below the broadcast expression
is a value, but we synchronize anyway):

·;∆, fq : pdf at q ` bcToE at E asToE′ in
rpcabs(sync (ToE′) fq, q) : pdf at E

Broadcasting E’s PDF conversion function to all nodes then fetching a PDF file from multiple nodes (letx = e1 in e2

is an abbreviation for the usual lambda abstraction and application):

·;∆, fC : pdf at C, fB : pdf at B `
bcToE at E asToE′ in
let f1 = rpcabs(sync (ToE′) fD, D) in
let f2 = rpcabs(sync (ToE′) fC , C) in
let f3 = rpcabs(sync (ToE′) fB , B) in
... : τ at E

Another way to manage PDF files is to make them portable. For instance, if C and D contain portable PDF files,
then E can pull these files from their resident locations and print them on its local printer. Remember that portable
values are polymorphic closures that are “run” when used. In this case, the closure simply returns the appropriate
PDF file.

·;∆, fC : ◊pdf at C, fD : ◊pdf at D `
pull fC at C as f′C in
pull fD at D as f′D in
let = print(run (f′C [E]), ptrE) in
let = print(run (f′D [E]), ptrE) in
... : τ at E

3.2 Extensions

References To begin to convince ourselves that our little lambda calculus can be scaled up to the point that it
could serve as a practical distributed programming language, we have examined one of the trickiest but most useful
effectful extensions to the language, mutable references. Our design introduces just the right type structure for the
various modalities to ensure that assignment and dereference of mutable references can only happen locally. In other
words, well-typed programs never attempt an assignment operation at one place, when the ref being assigned to is
stored somewhere else.

The syntax and typing rules for this extension appears below. The main point to note about the typing rules is
that like expressions manipulating unit, pairs and functions, if the expressions manipulating references or recursive
functions are placed at z, then the appropriate subexpressions must also be placed at z.

Syntax:

τ : : = · · · | τ ref
e : : = · · · | ref e | ! e | e1 := e2

Typing:

Γ2; Γ◊;∆ `P,N e : τ at z

Γ2; Γ◊;∆ `P,N ref e : τ ref at z
ref

Γ2; Γ◊;∆ `P,N e : τ ref at z

Γ2; Γ◊;∆ `P,N ! e : τ at z
!

14

Γ2; Γ◊;∆ `P,N e1 : τ ref at z Γ2; Γ◊;∆ `P,N e2 : τ at z

Γ2; Γ◊;∆ `P,N e1 := e2 : > at z
:=

Suppose we have decided to use our network as a distributed database of technical reports and that every node
supports a function db : key → ◊pdf option. We will let τ option be the usual disjoint union type with constructors
None and Some, and destructor case. Now node E can write code for a distributed lookup using key k : ◊key at E.
For clarity in the code below, we do not annotate uses of the global variables with “run” or “sync;” it is trivial to
reconstruct these annotations from the context.

let r : ◊pdf option ref = ref None in
let search : 2> =
close(λp.
pull k at E as k’ in
case (db k’) of
None => ()

| Some f => pull f at p as f’ in
rpc(r := Some (port(λq.f’));

ret((),p),
E))

in bc search at E as in
...

Recursive Functions Recursive functions, written fun f(x : τ1) : τ2 = e, allow us to write some more interesting
programs, add much complexity to the system. The typing rule for recursive functions is given below.

Γ2; Γ◊;∆, f : τ1 → τ2 at z, x : τ1 at z `P,N e : τ2 at z

Γ2; Γ◊;∆ `P,N fun f(x : τ1) : τ2 = e : τ1 → τ2 at z
fun

In the even-odd-sort program in appendix 3.2, we show how to use recursive function to implement synchronization
between processors.

A Longer Example: Distributed Sorting In the section, we encode a parallel sorting algorithm in λrpc. We
assume that base types for integers (int) and booleans (bool) are available. Moreover, the normal arithmetic
operators (+), logical operators (AND, OR and NOT) can be used (infix as appropriate) everywhere with their
natural types:

(* Initial Global Environment:
AND : bool -> bool -> bool
OR : bool -> bool -> bool
NOT : bool -> bool
even : int -> bool
< : int -> int -> bool
== : int -> int -> bool
6= : int -> int -> bool
+ : int -> int -> int
*)

In addition, we assume functions that can convert values with base type located at a particular place into portable
closures. We can rearrange the code so that these conversions are not necessary, but they help make programming
convenient (we actually only use portI in this example).

15

(*
portB : bool -> ◊bool
portI : int -> ◊int
*)

Our sorting algorithm uses n processors, connected in a ring. Each processor is assigned an id in the range 1 to
n and we refer to each processor as Pi where i is its id. Each processor Pi can refer to its successor in the ring as
Pi.next.

Each processor in the ring stores one element of the n-element array to be sorted. The algorithm works by
having each processor perform a series of compare and exchange steps with its neighbors. In each compare-exchange
operation, processor Pi will communicate with its successor: processor Pi+1, and put the smaller of the number it
and its successor store into itself and put the larger into its successor. At even-numbered stages, the processors that
have an even id will invoke the compare-exchange operation. At odd-numbered stages, the processors that have
an odd id will execute the compare-exchange. After n stages, the array will be sorted into ascending order. The
complete λrpc program for a sorting algorithm on 4 processors is given below. Once again, we omit the sync and run
annotations from the syntax of programs.

16

(* Setup global enviroment
lastId : int -- the greatest id number (in this case it is 4)
id : int ref -- store local id number
number : ◊int ref -- store the number to sort
tmp : ◊int ref -- temporary variable to help swap two numbers
stage : int ref -- store local stage number

*)
1 bc close (λp.4) at p1 as lastId in
2 bc close (λp.ref 1) at p1 as id in
3 bc close (λp.ref (port λp.1)) at p1 as number in
4 bc close (λp.ref (port λp.1)) at p1 as temp in
5 bc close (λp.ref 1) at p1 as stage in

(* xChange : 2(T→T) at p1
-- a function closure that is broadcast to every node;

it will be called at the start of each stage.
*)

6 let xChange =
7 close λp.
8 λx:T.

(* Test the parity of local stage number and local id number *)
9 (if ((even(!id) AND even(!stage)) AND (!id 6= lastId)
10 OR ((NOT (even(!id))) AND (NOT (even(!stage)))))
11 then

(* This processor does exchange *)
12 (pull (!number) at p as Num in
13 let smaller =
14 rpc(
15 if (pull (!number) at p.next as localNum in
16 (localNum < Num))
17 then
18 (tmp := !number;
19 number := port(λp.Num);
20 pull (!tmp) at p.next as small in
21 ret (port (λp.small), p))
22 else
23 ret (port (λp.Num), p),
24 p.next)
25 in
26 number := smaller
27 end)
28 else ())

(* Advance local stage number *)
29 stage := (!stage + 1)
30 in

(* xChg : T→T *)
31 bc xChange as xChg in

17

(* setId : ◊int→∀p.T at p1 -- set local id number *)
32 let setId =
33 λx:◊int.
34 pull x at p1 as procId in
35 Λp.rpc((id := procId; ret((), p1)), p)
36 in setId (port λp.1)[p1];
37 setId (port λp.2)[p2];
38 setId (port λp.3)[p3];
39 setId (port λp.4)[p4];
40 end;

(* setNum : ◊int→∀p.T at p1 -- set local number to be sorted *)
41 let setNum =
42 λx:◊int.
43 pull x at p1 as Num in
44 Λp.rpc((number := port λp.Num; ret((), p1)), p)
45 in setNum (port λp.31)[p1]
46 setNum (port λp.56)[p2]
47 setNum (port λp.12)[p3]
48 setNum (port λp.48)[p4]
49 end;

(* stageNum : ◊int ref at p1 -- overall stage number *)
50 let stageNum = ref (port λp.1) in

(* chkStage : ∀p.T→T at p1
-- recursive function to test whether the current stage is finished or not

*)
51 let chkStage =
52 Λp.fun f(x:T):T =
53 if ((pull (!stageNum) as stgNum in
54 rpc(if (!stage == stgNum + 1) then ret(true, p1)
55 else ret(false, p1), p))))
56 then ()
57 else f()

(* sort : T→T at p1 -- main function *)
58 in let fun sort(x:T):T =
59 if (pull (!stageNum) at p1 as stgNum in stgNum == 5) then ()
60 else (bc close (λp.xChg ()) as any in
61 (chkStage[p1])();
62 (chkStage[p2])();
63 (chkStage[p3])();
64 (chkStage[p4])();
65 stageNum := portI (pull (!stageNum) at p1 as stgNum in stgNum + 1);
66 sort();)
67 in sort();
68 end
69 end
70 end;

3.3 Operational Semantics and Safety

To give an operational semantics for our programming language, we deviate from the Curry-Howard tradition that
would suggest using proof simplification as program evaluation. An operational semantics based exclusively on proof

18

simplification would fail to model the action of distributing resources across a network properly. Instead, we develop
a relatively concrete notion of a network, and explicitly allocate processes (expressions) together at different places
in the network. Figure 5 presents the various new syntactic objects we use to specify our operational model.

Networks N : : = (P,N, E,L,M)
Edge functions E : P ×N → P
Process Envs. L : : = · | L, `→ e at p
Stores M : : = · | M,m→ v at p
Values v : : = c | m | λx:τ.e | 〈 v1 , v2 〉 | Λp . e

| fun f(x : τ1) : τ2 = e
| retabs(e, z) | retrel(e, n)
| close(λp. e) | port(λp. e)
| agent[e, z]

RT Terms e : : = · · · | sync (`) | run (λp.e [z]) | m
| sync (rpcabs(`, z))
| sync (rpcrel(`, z))
| sync (bc ` at z asx in e2)
| sync (pull ` at z asx in e2)
| sync 1(go ` at z returnx, q in e)
| sync 2(go ` at z returnx, q in e)

Contexts C : : = [] | C e2 | v1 C
| 〈C , e2 〉 | 〈 v1 , C 〉 | πi C | C [z]
| ref C | C := e1 | v := C | ! C

Figure 5: Syntax of Run-time Structures

Run-time Structures Networks N are 5-tuples consisting of a set of places P , a set of names N , an edge function
E, a distributed process environment L and a distributed storage system M. We have seen places and names before.
The edge function E is a total function from pairs of places and names to places; it is used to interpret relative
addressing. If z is a path consisting of places and names from P and N , we can interpret it using the function E∗:

E∗(p) = p

E∗(z) = p E(p, n) = q

E∗(z.n) = q

We define z1 ≡E z2 to be E∗(z1) = E∗(z2).
The process environment L is a finite partial map from places p in P to process ids to expressions. The distributed

storage system M is a finite partial map from places to mutable storage locations (m) to values v. We write these
partial maps as lists of elements with the form ` → e at p or m → v at p. Whenever we write such a map, we
assume that no pair of place and location (p and `, or p and m) appears in two different components of the map.
We do not distinguish between maps that differ only in the ordering of their elements. L(p)(`) denotes e when
L = L′, `→e at p, and similarly with M(p)(m). We use the notation L\ ` to denote the mapping L with all elements
of the form `→ e at p removed. We emphasize that all elements are removed as there may be one such element at
every place in the network.

In order to give an operational semantics to our programs, a few of the constructs require that we introduce new
expressions (the RT terms in Figure 5) that only occur at run time. For instance, mutable locations can appear in
expressions at run time, but should not appear in unevaluated programs. Other run-time terms are used to represent
expressions, such as the elimination forms for 2 and 3, that are suspended partway through evaluation and are
waiting to synchronize with remotely executing expressions.

The last new bit of notation that we need involves the definition of evaluation contexts C (see Figure 5). These
contexts specify the order of evaluation, which is left to right and call by value. Notice that there are no contexts for
the introduction forms for @ , n[], 2 , ◊ or 3, and consequently evaluation does not proceed under these constructors.

19

Operational Rules The state of a network N = (P,N,E,L,M) evolves according to the operational rules listed
in Figure 3.3. These rules specify a relation with the form L,M 7−→ L′,M′. At any given time L may contain
several concurrently executing expressions at various stages of evaluation. Any of these expressions may be selected
for a single step of evaluation, so the judgment gives rise to a nondeterministic operational semantics. The network
evolves (N 7−→ N ′) if and only if N = (P,N, E,L,M), and N ′ = (P,N, E,L′,M′), and (L,M) 7−→ (L′,M′).

Most of the formal rules have been described informally in the previous subsection, so we will only make a few
points here. First, notice that we have two special rules sync and run to handle synchronization with broadcast
expressions and execution of portable code. Second, the ordinary sequential programming language constructs
(functions, pairs, references, etc.) operate identically to the way they operate in ordinary sequential programming
languages. Third, each of the modalities has two or more rules to describe their evaluation. Typically, the first
rule causes the elimination form for a modality to spawn an expression at a remote node and then to move into a
state in which it waits to synchronize with that expression. The second (or third) rule performs the appropriate
synchronization and allows evaluation to continue.

Γ2; ·;∆ `P,N,E e : τ at z′ z′ ≡E z

Γ2; ·;∆ `P,N,E e : τ at z
Equiv

Γ2; ·;∆, ` : τ at z `P,N,E ` : τ at z
LRT

Γ2, ` : τ ; ·;∆ `P,N,E sync (`) : τ at z
G2 RT

Γ2; ·;∆ `P+p,N,E e : τ at p

Γ2; ·;∆ `P,N,E run (λp.e [z]) : τ at z
G◊RT

Γ2; ·;∆,m : τ at z `P,N,E m : τ ref at z
Lref

Γ2; ·;∆ `P,N,E ` : n[τ] at z

Γ2; ·;∆ `P,N,E sync (rpcrel(`, z)) : τ at z.n
[]RT

Γ2; ·;∆ `P,N,E ` : τ @ z at z′

Γ2; ·;∆ `P,N,E sync (rpcabs(`, z′)) : τ at z
@ RT

Γ2; ·;∆ `P,N,E ` : 2 τ at z Γ2, x : τ ; ·;∆ `P,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync (bc ` at z asx in e2) : τ ′ at z′
2RT

Γ2; ·;∆ `P,N,E ` : ◊τ at z Γ2;x : τ ;∆ `P,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync (pull ` at z asx in e2) : τ ′ at z′
◊RT

Γ2; ·;∆ `P,N,E ` : 3τ at z Γ2; ·;∆, x : τ at q `P+q,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync 1(go ` at z returnx, q in e2) : τ ′ at z′
3RT1

Γ2; ·;∆ `P,N,E ` : τ at z Γ2; ·;∆, x : τ at q `P+q,N,E e2 : τ ′ at z′

Γ2; ·;∆ `P,N,E sync 2(go ` at z returnx, q in e2) : τ ′ at z′
3RT2

Figure 6: λrpc Runtime Typing Rules

Typing for Run-time Structures To carry out our safety proof for the language, we use the standard Progress
and Preservation techniques, which require that we be able to show that the network is well-typed at every step
in evaluation. In order to do so, we need to generalize the form of the typing judgment to take acount of the

20

way that relative naming is interpreted by the network’s edge function E. The generalized judgment has the form
Γ2; Γ◊;∆ `P,N,E e : τ at z. None of the typing rules in the previous sections change, aside from propagating E
from conclusions to premises. However, we add the rules from Figure 6 to give types to the intermediate forms of
expression. Figure 7 gives the well-formedness conditions for the network as a whole.

∆m `P,N,E L : Γ2; ·;∆i

∆m `P,N,E · : ·; ·; · (Empty-L)

∆m `P,N,E L : Γ2; ·;∆i

Γ2; ·;∆i,∆m `P,N,E e : τ at p

∆m `P,N,E L, ` → e at p : Γ2; ·;∆i, ` : τ at p (Local-L)

∆m `P,N,E L\` : Γ2; ·;∆i

Γ2; ·;∆i,∆m `P,N,E L(p)(`) : τ at p for all p ∈ P

∆m `P,N,E L : Γ2, ` : τ ; ·;∆i (Global-L)

Γ2; ·;∆ `P,N,E M : ∆m

Γ2; ·;∆ `P,N,E · : · (Empty-M)

Γ2; ·;∆ `P,N,E M : ∆′
m

Γ2; ·;∆ `P,N,E v : τ at p

Γ2; ·;∆ `P,N,E M, m → v at p : ∆′
m,m : τ at p (Local-M)

` N : Γ2; ·;∆;P ;N

∆m `P,N,E L : Γ2; ·;∆i Γ2; ·;∆i,∆m `P,N,E M : ∆m

` (P,N,E,L,M) : Γ2; ·;∆i,∆m;P ;N (Network)

Figure 7: λrpc Network Typing

Type Safety The type system is sound with respect to our operational semantics for distributed program evalua-
tion. The proofs of Preservation and Progress theorems, stated below, is in the Appendix.

Theorem 7 (Preservation)
If ` N : Γ2; ·;∆;P ;N and N 7−→ N ′ then there exists Γ′

2 and ∆′ such that ` N ′ : Γ′
2; ·;∆′;P ;N .

Theorem 8 (Progress)
If ` N : Γ2; ·;∆;P ;N then either

• N 7−→ N ′, or

• N = (P,N, E,L,M) and for all places p in P , and for all ` in Dom(L(p)), L(p)(`) is a value.

21

L,M 7−→ L′,M′

sync OS
L, `′ → C [sync (`)] at p, ` → v at p,M
7−→ L, `′ → C [v] at p, ` → v at p,M

runOS
L, ` → C [run (λp.e [z])] at q,M
7−→ L, ` → C [e [z / p]] at q,M

→ OS
L, ` → C [(λx:τ.e) v] at p,M
7−→ L, ` → C [e [v / x]] at p,M

∧OS
L, ` → C [πi〈 v1 , v2 〉] at p,M
7−→ L, ` → C [vi] at p,M

∀OS
L, ` → C [Λp . e [z]] at p0,M
7−→ L, ` → C [e [z / p]] at p0,M

@ OS1
L, ` → C [rpcabs(e, z)] at p,M
7−→ L, ` → C [sync (rpcabs(`1, z))] at p, `1 → e at p1,M
where E∗(z) = p1

@ OS2
L, ` → C [sync (rpcabs(`1, z))] at p, `1 → retabs(e, z1) at p1,M
7−→ L, ` → C [e] at p, `1 → retabs(e, z1) at p1,M
where E∗(z) = p1 E∗(z1) = p

[]OS1
L, ` → C [rpcrel(e, z)] at p,M
7−→ L, ` → C [sync (rpcrel(`1, z))] at p, `1 → e at q,M
where E∗(z) = q

[]OS2
L, ` → C [sync (rpcrel(`1, z))] at p, `1 → retrel(e, n) at q,M
7−→ L, ` → C [e] at p, `1 → retrel(e, n) at q,M
where E∗(z) = q

2OS1
L, ` → C [bc e1 at z asx in e2] at p0,M
7−→ L, ` → C [sync (bc `1 at z asx in e2)] at p0, `1 → e1 at p1,M
where E∗(z) = p1

2OS2

L, ` → C [sync (bc `1 at z asx in e2)] at p0, `1 → close(λp. e) at p1,M
7−→ L, ` → C [e2 [`2 / x]] at p0, `1 → close(λp. e) at p1,
{ `2 → e [q / p] at q } (∀q ∈ P),M
where E∗(z) = p1

◊OS1
L, ` → C [pull e1 at z asx in e2] at p,M
7−→ L, ` → C [sync (pull `1 at z asx in e2)] at p, `1 → e1 at p1,M
where E∗(z) = p1

◊OS2
L, ` → C [sync (pull `1 at z asx in e2)] at p, `1 → port(λp. e) at p1,M
7−→ L, ` → C [e2 [λp.e / x]] at p, `1 → port(λp. e) at p1,M
where E∗(z) = p1

3OS1
L, ` → C [go e1 at z returnx, q in e2] at p0,M
7−→ L, ` → C [sync 1(go `1 at z returnx, q in e2)] at p0, `1 → e1 at p1,M
where E∗(z) = p1

3OS2

L, ` → C [sync 1(go `1 at z returnx, q in e2)] at p0, `1 → agent[e, z1] at p1,M
7−→ L, ` → C [sync 2(go `2 at z1 returnx, q in e2)] at p0, `1 → agent[e, z1] at p1,
`2 → e at p2,M
where E∗(z) = p1, E∗(z1) = p2

3OS3
L, ` → C [sync 2(go `1 at z returnx, q in e2)] at p0, `1 → v at p1,M
7−→ ` → C [e2 [z / q] [v / x]] at p0, `1 → v at p1,M
where E∗(z) = p1

Figure 8: λrpc Operational Semantics-1

22

L,M 7−→ L′,M′

fun OS
L, ` → C [v1 v] at p,M
7−→ L, ` → C [e [v1, v / f, x]] at p,M
where (v1 = fun f(x : τ1) : τ2 = e)

ref OS
L, ` → C [ref v] at p,M
7−→ L, ` → C [m] at p,M, m → v at p
(m /∈ Dom(M))

!OS
L, ` → C [! m] at p,M, m → v at p
7−→ L, ` → C [v] at p,M, m → v at p

:= OS
L, ` → C [m := v] at p,M, m → v′ at p
7−→ L, ` → C [()] at p,M, m → v at p

Figure 9: λrpc Operational Semantics-2

4 Discussion

Extensions and Variations This paper presents a solid foundation on which to build a distributed functional
programming language. However, in terms of language design, it is only the beginning. A few interesting extensions
and variations are discussed briefly below.

• Values everywhere. Our interpretation of 2 involves either broadcasting a closure or substituting a closure into
local code. In each case, there is some computational overhead to manage the closure: Either we synchronize
or we run the closure when it gets used. To avoid this overhead, we could place a value restriction on the
expression in the introduction form for 2. One possibility that is definitely not an option is evaluating eagerly
under 2 before broadcasting or substitution: In the presence of references (and almost certainly other effects),
this evaluation strategy is unsound.

• Dynamic network evolution. The current work assumes that the set of network places and the network topology
is fixed. While this is a reasonable assumption for some distributed programming environments, others allow
the topology to evolve. An interesting challenge for future work is to extend our logic and language with
features that express evolution. We believe that the new name connectives developed in the context of nominal
logics [12, 8] may be of help here.

• Synchronous and asynchronous variations. Just as ordinary sequential programming languages may be defined
with different evaluation strategies (call-by-value, call-by-name, call-by-need), it appears possible to develop
different operational interpretations of the modal connectives in which execution is more or less synchronized.
For instance, when defining the operation of the 2 -connective, we could wait until all broadcast expressions
have completed evaluation before proceeding with the evaluation of the second expression e2. Likewise, remote
procedure calls are synchronized: Evaluation does not proceed until they have received the return value, even
though the following computation does not necessarily require the value immediately. In the future, we plan
to explore these nuances in greater detail.

Related Work Hybrid logics are an old breed of logic that date back to Arthur Prior’s work in the 1960s [13]. As
in our logic, they mix modal necessity and possibility with formulas such as F @ z that are built from pure names.
More recently, researchers have developed a rich semantic theory for these logics and studied both tableau proofs and
sequents; many resources on these topics and others are available off the hybrid logics web page.3 However, work on
hybrid logics is usually carried out in a classical setting and we have not found an intuitionistic, natural deduction
style proof theory like ours that can serve as a foundation for distributed functional programming languages.

Cardelli and Gordon’s ambient logic [2] highlights the idea that modalities for possibility and necessity need not
only be interpreted temporally, but can also be interpreted spatially, and this abstract idea was a central influence in

3See http://www.hylo.net.

23

our work. However, at a more technical level, the ambient logic is entirely different from the logic we develop here:
The ambient logic has a widely different set of connectives, is classical as opposed to intuitionistic, and is defined
exclusively by a sequent calculus rather than by natural deduction. Moreover, it does not serve as a type system for
ambient programs; rather, it is a tool for reasoning about them.

Another major influence on our work is Pfenning and Davies’ judgmental reconstruction of modal logic [11],
which is developed in accordance with Martin Löf’s design patterns for type theory [7]. Pfenning and Davies go
on to interpret modal necessity temporally (as opposed to spatially) in their work on staged computation [4]. One
obvious technical difference between our logic and theirs is that our logic is founded on local judgments that include
the specific place where a proposition is true whereas theirs do not.

The judgments ` F at z also appear in our own recent work with Ahmed [1], where we combine the modal
connective n[τ] with substructural connectives to reason about region-based memory management in a proof-carrying
code setting.

Concurrently with this research, members of the CMU Concert Project have begun to build a programming
language for grid computing. They have had similar insights as us with respect to the roll that modal logics may
play in developing a foundation for distributed computing.4 More specifically, they interpret objects with type 2 τ
as jobs that may be injected into the grid and run anywhere. This interpretation is more similar to our portable
code than our broadcast code. In their application domain, every node is assumed to contain identical resources,
so they are investigating type systems derived from pure modal logics (they have an interpretation for diamond as
well) rather than hybrid logics like the one we have presented here. Consequently, they have not investigated the
connectives we use for remote procedure call (F @ p and n[F]).

References

[1] A. Ahmed, L. Jia, and D. Walker. Reasoning about hierarchical storage. In IEEE Symposium on Logic in
Computer Science, pages 33–44, Ottawa, Canada, June 2003.

[2] L. Cardelli and A. Gordon. Anytime, anywhere: Modal logics for mobile ambients. In Twenty-Seventh ACM
Symposium on Principles of Programming Languages, pages 365–377. ACM Press, Jan. 2000.

[3] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, June 2000.

[4] R. Davies and F. Pfenning. A modal analysis of staged computation. Journal of the ACM, 48(3):555–604, 2001.

[5] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents. In 7th International
Conference on Concurrency Theory (CONCUR’96), volume 1119 of Lecture Notes in Computer Science, pages
406–421, Pisa, Italy, Aug. 1996. Springer.

[6] M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge
University Press, Cambridge, England, 2000.

[7] M. Löf. On the meanings of the logical constants and the justifications of the logical laws. Technical Report 2,
University of Siena, 1985.

[8] D. Miller and A. Tiu. A proof theory for generic judgments. In IEEE Symposium on Logic in Computer Science,
pages 118–127, Ottawa, Canada, June 2003.

[9] F. Pfenning. Structural cut elimination I. intuitionistic and classical logic. Information and Computation,
157(1/2):84–141, Mar. 2000.

[10] F. Pfenning. Logical frameworks. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
chapter 16, pages 977–1061. Elsevier Science and MIT Press, 2001.

[11] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science, 11:511–540, 2001.

4Personal communication, Robert Harper and Frank Pfenning, June 2003.

24

[12] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and computation, 2003. To
appear.

[13] A. Prior. Past, present and future. Oxford University press, 1967.

25

Appendix

This appendix sketches the proofs of the important properties stated in the body of the paper. When the proofs are
particularly straightforward, we simply state the proof methodology. When the proofs are more involved, we outline
the most interesting cases and omit the cases that can easily be reconstructed by the reader.

A Logical Properties

A.1 Natural Deduction

Summary of Natural Deduction Rules

Γ;∆, F at z `P,N F at z
L

Γ, F ;∆ `P,N F at z
G

Γ;∆ `P,N () : > at z
>I

Γ;∆, F1 at z `P,N F2 at z

Γ;∆ `P,N F1 → F2 at z
→ I

Γ;∆ `P,N F1 → F2 at z Γ;∆ `P,N F1 at z

Γ;∆ `P,N F2 at z
→ E

Γ;∆ `P,N F1 at z Γ;∆ `P,N F2 at z

Γ;∆ `P,N F1 ∧ F2 at z
∧I

Γ;∆ `P,N F1 ∧ F2 at z

Γ;∆ `P,N F1 at z
∧E1

Γ;∆ `P,N F1 ∧ F2 at z

Γ;∆ `P,N F2 at z
∧E2

Γ;∆ `P+p,N F at z p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(z)

Γ;∆ `P,N ∀p.F at z
∀I

Γ;∆ `P,N ∀p.F at z FPN(z′) ⊆ P ∪N

Γ;∆ `P,N F [z′ / p] at z
∀E

Γ;∆ `P,N F at z.n

Γ;∆ `P,N n[F] at z
[]I

Γ;∆ `P,N n[F] at z

Γ;∆ `P,N F at z.n
[]E

Γ;∆ `P,N F at z

Γ;∆ `P,N F @ z at z′
@ I

Γ;∆ `P,N F @ z at z′

Γ;∆ `P,N F at z
@ E

Γ;∆ `P+p,N F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F)

Γ;∆ `P,N 2 F at z
2I

Γ;∆ `P,N 2 F at z Γ, F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
2E

Γ;∆ `P,N F at z

Γ;∆ `P,N 3F at z′
3I

26

Γ;∆ `P,N 3F at z Γ;∆, F at p `P+p,N F ′ at z′

p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆ `P,N F ′ at z′
3E

Lemma 9 (Strengthening and Weakening)
1. If Γ;∆ `P+p,N F at z and p 6∈ FP (Γ) ∪ FP (∆) ∪ FP (F) ∪ FP (z) then Γ;∆ `P,N F at z.

2. If Γ;∆ `P,N F at z then Γ;∆ `P+p,N F at z.

Proof: By induction on the depth of the given derivation. �

Lemma 4 Substitutioin

1. If Γ;∆ `P+p,N F at z then for all z′, FPN(z′) ⊆ (P∪N) implies Γ [z′ / p];∆ [z′ / p] `P,N F [z′ / p] at z [z′ / p]

2. If Γ;∆ `P,N F at z and Γ; ∆, x : F at z `P,N F ′ at z′ then Γ;∆ `P,N F ′ at z′

3. If Γ;∆ `P+q,N F at q and Γ, x : F ;∆ `P,N F ′ at z′ then Γ;∆ `P,N F ′ at z′

Proof:

1. By induction on the depth of the derivation D = Γ; ∆ `P+p,N F at z

case: L

(1) D = Γ;∆, F at z `P+p,N F at z
L premise

(2) Γ [z′ / p];∆ [z′ / p], F [z′ / p] at z [z′ / p] `P,N F [z′ / p] at z [z′ / p] L

case: G

(1) D = Γ, F ;∆ `P+p,N F at z
G premise

(2) Γ [z′ / p], F [z′ / p];∆ [z′ / p] `P,N F [z′ / p] at z [z′ / p] G

case: []I

(1) D =

D1

Γ;∆ `P+p,N F at z.n

Γ;∆ `P+p,N n[F] at z
[]I premise

(2) Γ [z′ / p];∆ [z′ / p] `P,N F [z′ / p] at z.n [z′ / p] I.H. on D1

(3) Γ [z′ / p];∆ [z′ / p] `P,N n[F [z′ / p]] at z [z′ / p] []I on (2)

(4) Γ [z′ / p];∆ [z′ / p] `P,N n[F] [z′ / p] at z [z′ / p] n[F [z′ / p]] = n[F] [z′ / p]

case: 2I

(1) D =

D1

Γ;∆ `P+p+q,N F at q
(2)

q 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F)

Γ;∆ `P+p,N 2 F at z
2I

premise

27

(3) Γ [z′ / p];∆ [z′ / p] `P+q,N F [z′ / p] at q [z′ / p] I.H. on D1

(4) q [z′ / p] = q q 6= p

(5) Γ [z′ / p];∆ [z′ / p] `P,N 2 (F [z′ / p]) at z [z′ / p] 2I on (3),(4)

(6) Γ [z′ / p];∆ [z′ / p] `P,N (2 F) [z′ / p] at z [z′ / p] 2 (F [z′ / p]) = (2 F) [z′ / p]

case: ∀E

(1) D =

D1

Γ;∆ `P+q,N ∀p.F at z
(2)

FPN(z′) ⊂ (P + q) ∪N

Γ;∆ `P+q,N F [z′ / p] at z
∀E

premise

(3) Γ [z′′ / q];∆ [z′′ / q] `P,N (∀p.F) [z′′ / q] at z [z′′ / q] I.H. on D1

(4) (∀p.F) [z′′ / q] = ∀p.(F [z′′ / q]) p 6∈ FP (z′′)

(5) FPN(z′ [z′′ / q]) ⊂ P ∪N Definition of substitution

(6) Γ [z′′ / q];∆ [z′′ / q] `P,N F [z′′ / q] [z′ [z′′ / q] / p] at z [z′′ / q] ∀E on (3),(4),(5)

(7) F [z′′ / q] [z′ [z′′ / q] / p] = F [z′ [z′′ / q] / p] [z′′ / q] p 6∈ FP (z′′), q 6∈ FP (z′)

(8) F [z′ [z′′ / q] / p] [z′′ / q] = F [z′ / p] [z′′ / q] Definition of substitution

(9) Γ [z′′ / q];∆ [z′′ / q] `P,N F [z′ / p] [z′′ / q] at z [z′′ / q] (6), (7), (8)

2. By induction on the depth of the derivation E = Γ; ∆, x : F at z `P,N F ′ at z′

case: L
(1) E = Γ;∆, F at z `P,N F at z

L premise

(2) D = Γ; ∆ `P,N F at z premise

(3) Γ; ∆ `P,N F at z D

case: G
(1) E = Γ, F ′;∆, F at z `P,N F ′ at z′

G premise

(2) D = Γ, F ′;∆ `P,N F at z premise

(3) Γ, F ′;∆ `P,N F ′ at z′ G

3. By induction on the depth of the derivation E = Γ, x : F ;∆ `P,N F ′ at z′

case: L

28

(1) E = Γ, F ;∆, F ′ at z′ `P,N F ′ at z′
L premise

(2) D = Γ; ∆ `P+q,N F at q premise

(3) Γ;∆, F ′ at z′ `P,N F ′ at z′ L

case: G
(1) E = Γ, F ;∆ `P,N F at z

G premise

(2) D = Γ; ∆ `P+q,N F at q premise

(3) Γ [z / q];∆ [z / q] `P+q,N F [z / q] at z [z′ / q] Substitution Lemma (4.1)

(4) Γ;∆ `P,N F at z q 6∈ FP (Γ) ∪ FP (∆) ∪ FP (F), (3), strengthening

�

A.2 Sequent calculus

Summary of Sequent Calculus Rules

Γ;∆, F at z
P,N
=⇒ F at z

L-INIT
Γ, F ;∆

P,N
=⇒ F at z

G-INIT

Γ, F ;∆, F at z
P,N
=⇒ F ′ at z′

Γ, F ;∆
P,N
=⇒ F ′ at z′

COPY

Γ;∆
P,N
=⇒ > at z

>R

Γ;∆, F1 at z
P,N
=⇒ F2 at z

Γ;∆
P,N
=⇒ F1 → F2 at z

→ R
Γ;∆

P,N
=⇒ F1 at z Γ;∆, F2 at z

P,N
=⇒ F ′ at z′

Γ;∆, F1 → F2 at z
P,N
=⇒ F at z′

→ L

Γ;∆
P,N
=⇒ F1 at z Γ;∆

P,N
=⇒ F2 at z

Γ;∆
P,N
=⇒ F1 ∧ F2 at z

∧R

Γ;∆, F1 at z
P,N
=⇒ F at z′

Γ;∆, F1 ∧ F2 at z
P,N
=⇒ F at z′

∧L1
Γ;∆, F2 at z

P,N
=⇒ F at z′

Γ;∆, F1 ∧ F2 at z
P,N
=⇒ F at z′

∧L2

Γ;∆
P+p,N
=⇒ F at z p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(z)

Γ;∆
P,N
=⇒ ∀p.F at z

∀R

Γ;∆, F [z1 / p] at z
P,N
=⇒ F ′ at z′

Γ;∆,∀p.F at z
P,N
=⇒ F ′ at z′

∀L

29

Γ;∆
P,N
=⇒ F at z.n

Γ;∆
P,N
=⇒ n[F] at z

[]R
Γ;∆, F at z.n

P,N
=⇒ F ′ at z′

Γ;∆, n[F] at z
P,N
=⇒ F ′ at z′

[]L

Γ;∆
P,N
=⇒ F at z

Γ;∆
P,N
=⇒ F @ z at z′

@ R
Γ;∆, F at z

P,N
=⇒ F ′ at z′′

Γ;∆, F @ z at z′
P,N
=⇒ F ′ at z′′

@ L

Γ;∆
P+p,N
=⇒ F at p p 6∈ FP(Γ) ∪ FP(∆) ∪ FP(F)

Γ;∆
P,N
=⇒ 2 F at z

2R
Γ, F ;∆

P,N
=⇒ F ′ at z′

Γ;∆,2 F at z
P,N
=⇒ F ′ at z′

2L

Γ;∆
P,N
=⇒ F at z

Γ;∆
P,N
=⇒ 3F at z′

3R
Γ;∆, F at p

P+p,N
=⇒ F ′ at z′ p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆,3F at z
P,N
=⇒ F ′ at z′

3L

Γ;∆
P,N
=⇒ F at z Γ;∆, F at z

P,N
=⇒ F ′ at z′

Γ;∆
P,N
=⇒ F ′ at z′

L-Cut

Γ;∆
P+q,N
=⇒ F at q Γ, F ;∆

P,N
=⇒ F ′ at z′

Γ;∆
P,N
=⇒ F ′ at z′

G-Cut

Lemma 10 (Strengthening)
If Γ;∆

P+p,N
=⇒ F at z , p 6∈ FP (Γ) ∪ FP (∆) ∪ FP (F) ∪ FP (z) then Γ;∆

P,N
=⇒ F at z.

Proof: By induction on the depth of the derivation Γ;∆
P+p,N
=⇒ F at z. �

Lemma 11
If Γ;∆

P+p,N
=⇒ F at z then Γ [z′ / p];∆ [z′ / p]

P+p,N
=⇒ F [z′ / p] at z [z′ / p]

Proof: By induction on the depth of the derivation Γ;∆
P+p,N
=⇒ F at z. �

Lemma 12 (Completeness of sequent calculus)
If Γ;∆ `P,N F at z then Γ;∆

P,N
=⇒ F at z.

Proof: By induction on the depth of the derivation E = Γ;∆ `P,N F at z.
If E ends with an introduction rule, then we can invoke I.H. directly.
If E ends with an elimination rule, first we invoke I.H., then apply the corresponding left rule in sequent calculus,
last, we use cut rules to generate the proof in sequent calculus. We will show a few cases below.

case: L

(1) E = Γ;∆, x : F at z `P,N F at z premise

(2) Γ;∆, x : F at z
P,N
=⇒ F at z L-INIT

case: @ E

(1) E =
E ′

Γ;∆ `P,N F @ z at z′

Γ;∆ `P,N F at z

premise

30

(2) Γ;∆
P,N
=⇒ F @ z at z′ I.H. on E ′

(3) Γ;∆, F at z
P,N
=⇒ F at z L-INIT

(4) Γ;∆, F @ z at z′
P,N
=⇒ F at z @ L, (3)

(5) Γ;∆
P,N
=⇒ F at z L-cut on (2),(4)

case: 2E

(1) E =
E1

Γ;∆ `P,N 2 F at z

E2

Γ, F ;∆ `P,N F ′ at z′

Γ;∆ `P,N F ′ at z′
premise

(2) Γ;∆
P,N
=⇒ 2 F at z I.H. on E1

(3) Γ, F ;∆
P,N
=⇒ F ′ at z′ I.H. on E2

(4) Γ;∆,2 F at z
P,N
=⇒ F ′ at z′ 2L on (3)

(5) Γ;∆
P,N
=⇒ F ′ at z′ L-cut on (2),(4)

case: 3E

(1) E =
E1

Γ;∆ `P,N 3F at z

E2

Γ;∆, F at p `P+p,N F ′ at z′

Γ;∆ `P,N F ′ at z′
premise

(2) Γ;∆
P,N
=⇒ 3F at z I.H. on E1

(3) Γ;∆, F at p
P+p,N
=⇒ F ′ at z′ I.H. on E2

(4) Γ,3F at z;∆
P,N
=⇒ F ′ at z′ 3L on (3)

(5) Γ;∆
P,N
=⇒ F ′ at z′ L-cut on (2),(4)

�

Lemma 13 (Soundness of sequent calculus)
If Γ;∆

P,N
=⇒ F at z then Γ;∆ `P,N F at z .

Proof: By induction on the depth of the derivation D = Γ; ∆
P,N
=⇒ F at z.

If D ends with a right rule, then we can invoke I.H. directly.
If D ends with a left rule, first we invoke I.H., then apply the corresponding elimination rule in natrual deduction,
last, we use substitution lemam to generate the proof in natural deduction. For cut rules, we can apply substitution
lemma directly.
We will show a few cases below.

31

case: L-INIT

(1) D = Γ; ∆, F at z
P,N
=⇒ F at z premise

(2) Γ;∆, x : F at z `P,N F at z L

case: COPY

(1) D =

D1

Γ, F ;∆, F at z
P,N
=⇒ F ′ at z′

Γ, F ;∆
P,N
=⇒ F ′ at z′

premise

(2) Γ, F ;∆, F at z `P,N F ′ at z′ I.H. on D1

(3) Γ, F ;∆ `P,N F at z G

(4) Γ, F ;∆ `P,N F ′ at z′ Substitution lemma(Lemma 4), (2),(3)

case: @ L

(1) D =

D1

Γ;∆, F at z
P,N
=⇒ F ′ at z′′

Γ;∆, F @ z at z′
P,N
=⇒ F ′ at z′′

premise

(2) Γ;∆, F at z `P,N F ′ at z′′ I.H. on D1

(3) Γ;∆, F @ z at z′ `P,N F @ z at z′ L

(4) Γ; ∆, F @ z at z′ `P,N F at z @ E on (3)

(5) Γ; ∆, F @ z at z′ `P,N F ′ at z′′ Substitution lemma (Lemma 4),(2),(4)

case: 2L

(1) D =

D1

Γ, F ;∆
P,N
=⇒ F ′ at z′

Γ;∆,2 F at z
P,N
=⇒ F ′ at z′

premise

(2) Γ, F ;∆ `P,N F ′ at z′ I.H. on D1

(3) Γ;∆,2 F at z `P,N 2 F at z L

(4) Γ;∆,2 F at z `P,N F ′ at z′ 2E on (2), (3)

case: 3L

(1) D =

D1

Γ;∆, F at p
P+p,N
=⇒ F ′ at z′

Γ;∆,3F at z
P,N
=⇒ F ′ at z′

premise

32

(2) Γ;∆, F at p `P+p,N F ′ at z′ I.H. on D1

(3) Γ;∆,3F at z `P,N 3F at z L

(4) Γ;∆,3F at z `P,N F ′ at z′ 2E on (2),(3)

case: L-Cut

(1) D =

D1

Γ;∆
P,N
=⇒ F at z

D2

Γ;∆, F at z
P,N
=⇒ F ′ at z′

Γ;∆
P,N
=⇒ F ′ at z′

premise

(2) Γ;∆ `P,N F at z I.H. on D1

(3) Γ;∆, F at z `P,N F ′ at z′ I.H. on D2

(4) Γ;∆ `P,N F ′ at z′ Substitution lemma(Lemma 15) on (2),(3)

�

Lemma 14 (Cut elimination)
1. If Γ;∆

P,N
=⇒

−
F at z and Γ;∆, F at z

P,N
=⇒

−
F ′ at z′ then Γ;∆

P,N
=⇒

−
F ′ at z′

2. If Γ;∆
P+p,N
=⇒

−
F at p and Γ, F ;∆

P,N
=⇒

−
F ′ at z then Γ;∆

P,N
=⇒

−
F ′ at z

Proof: By induction on the structure of the cut formula F and the given derivations. We represent the given

derivations as D = Γ; ∆
P,N
=⇒

−
F at z, E = Γ; ∆, F at z

P,N
=⇒

−
F ′ at z′ and D′ = Γ; ∆

P+q,N
=⇒

−
F at q, E ′ =

Γ, F ;∆
P,N
=⇒

−
F ′ at z′. We can use the induction hypothesis whenever F or D/D′ or E/E ′ is smaller. If F remains

the same, we can use induction hypothesis 1 in the proof of 2, but when we use 2 in the proof 1, either F or D or E
must be smaller.

The cases we have to consider fall into to the following 5 categories.
Initial Cuts: One of the two premises is an initial sequent. In this case, the cut can be eliminated directly.

Principal Cuts: The last rule used in derivation D is the right rule for introducing the connective in cut formula
F and the last rule in derivation E is the left rule for that connective. In this case, we use the induction hypothesis
on a smaller cut formuas.

Copy Cut: Derivation E ′ ends in COPY rule. In this case, we appeal to induction hypothesis 1 with the same cut
formula F .

Left Commutative Cuts: In the last rule of D/D′, the cut formula F remains the same. In this case, we can use
induction hypothesis with the same cut formula, but smaller D/D′.

Right Commutative Cuts: In the last rule of E/E ′, the cut formula F remains the same. In this case, we can use
the induction hypothesis with the same cut formual, but smaller E/E ′.

Initial Cuts

33

Case: D is L-INIT rule.

D = Γ;∆, u : F at z
P,N
=⇒

−
F at z

L-INIT

E = Γ;∆, u : F at z, v : F at z
P,N
=⇒

−
F ′ at z′

Γ;∆, u : F at z
P,N
=⇒

−
F ′ at z′ E [u / v]

Case: D is G-INIT rule.

D = Γ, F ;∆
P,N
=⇒

−
F at z

G-INIT

E = Γ, F ;∆, F at z
P,N
=⇒

−
F ′ at z′

Γ, F ;∆
P,N
=⇒

−
F ′ at z′ Copy rule on E

Case: E ′ is G-INIT rule, D′ is arbitrary derivation.

E ′ = Γ, F ;∆
P,N
=⇒

−
F at z

G-INIT

D′ = Γ; ∆
P+q,N
=⇒

−
F at q premise

(1) Γ [z / q];∆ [z / q]
P+q,N
=⇒

−
F [z / q] at q [z / q] Lemma 11

(2) Γ;∆
P,N
=⇒

−
F at z (1), q 6∈ FP (Γ) ∪ FP (∆) ∪ FP (F), strengthening

Principal Cuts

Case: cut formula F = F1 @ z1

D =

D1

Γ;∆
P,N
=⇒

−
F1 at z1

Γ;∆
P,N
=⇒

−
F1 @ z1 at z

@ R

E =

E1

Γ;∆, F1 at z1
P,N
=⇒

−
F ′ at z′

Γ;∆, F1 @ z1 at z
P,N
=⇒

−
F ′ at z′

@ L

Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(1) on D1, E1, F1 @ z1

Case: cut formula F = 2 F1

D =

D1

Γ;∆
P+p,N
=⇒

−
F1 at p

Γ;∆
P,N
=⇒

−
2 F1 at z

2R

34

E =

E1

Γ, F1;∆
P,N
=⇒

−
F ′ at z′

Γ;∆,2 F1 at z
P,N
=⇒

−
F ′ at z′

2L

Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(2) on D1, E1, F1

Case: cut formula F = 3F1

D =

D1

Γ;∆
P,N
=⇒

−
F1 at z

Γ;∆
P,N
=⇒

−
3F1 at z′

3R

E =

E1

Γ;∆, F1 at p
P+p,N
=⇒

−
F ′ at z′

(1)
p 6∈ FP(F ′) ∪ FP(z′)

Γ;∆,3F1 at z
P,N
=⇒

−
F ′ at z′

3L

(2) Γ [z / p];∆ [z / p], F1 [z / p] at p [z / p]
P+p,N
=⇒

−
F ′ [z / p] at z′ [z / p] Lemma 11 on E1

(3) Γ;∆, F1 at z
P+p,N
=⇒

−
F ′ at z′ (2), (1), strengthening

(4) Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(1) on D1, (3), F1

Left Commutative Cuts

Case: D ends with @ L rule, E is arbitrary derivation.

D =

D1

Γ;∆, F ′ at z′
P,N
=⇒

−
F at z

Γ;∆, F ′ @ z′ at z′′
P,N
=⇒

−
F at z

@ L

E = Γ;∆, u : F ′ @ z′ at z′′, F at z
P,N
=⇒

−
F1 at z1 Premise

(1) Γ;∆, u : F ′ @ z′ at z′′, F ′ at z′
P,N
=⇒

−
F1 at z1 I.H.(1) on D1, E , F

(2) Γ;∆, u : F ′ @ z′ at z′′, v : F ′ @ z′ at z′′
P,N
=⇒

−
F1 at z1 @ L on (1)

(3) Γ;∆, u : F ′ @ z′ at z′′
P,N
=⇒

−
F1 at z1 (2) [u / v]

Case: D ends with 2L rule, E is arbitrary derivation.

D =

D1

Γ, F ′;∆
P,N
=⇒

−
F at z

Γ;∆,2 F ′ at z′
P,N
=⇒

−
F at z

2L

E = Γ;∆, u : 2 F ′ at z′, F at z
P,N
=⇒

−
F1 at z1 Premise

35

(1) Γ, F ′;∆′, u : 2 F ′ at z′
P,N
=⇒

−
F1 at z1 I.H.(1) on D1, E , F

(2) Γ;∆, u : 2 F ′ at z′, v : 2 F ′ at z′
P,N
=⇒

−
F1 at z1 2L on (1)

(3) Γ;∆, u : 2 F ′ at z′
P,N
=⇒

−
F1 at z1 (2) [u / v]

Case: D ends with 3L rule, E is arbitrary derivation.

D =

D1

Γ;∆, F ′ at p
P+p,N
=⇒

−
F at z

Γ;∆,3F ′ at z′
P,N
=⇒

−
F at z

3L

E = Γ;∆, u : 3F ′ at z′, F at z
P,N
=⇒

−
F1 at z1 Premise

(1) Γ;∆, u : 3F ′ at z′, F ′ at p
P+p,N
=⇒

−
F1 at z1 I.H.(1) on D1, E , F ′

(2) Γ;∆, u : 3F ′ at z′, v : 3F ′ at z′
P,N
=⇒

−
F1 at z1 3L on (1)

(3) Γ;∆, u : 3F ′ at z′
P,N
=⇒

−
F1 at z1 (2) [u / v]

Case: D ends with Copy rule, E is arbitrary derivation.

D =

D1

Γ, F ′;∆, F ′ at z′
P,N
=⇒

−
F at z

Γ, F ′;∆
P,N
=⇒

−
F at z

COPY

E = Γ, F ′;∆, F at z
P,N
=⇒

−
F1 at z1 Premise

(1) Γ, F ′;∆, F ′ at z′
P,N
=⇒

−
F1 at z1 I.H.(1) on D1, E , F

(2) Γ, F ′;∆
P,N
=⇒

−
F1 at z1 COPY rule on (1)

Case: D′ ends with @ L rule, E ′ is arbitrary derivation.

D′ =

D′
1

Γ;∆, F ′ at z′
P+p,N
=⇒

−
F at p

Γ;∆, F ′ @ z′ at z′′
P+p,N
=⇒

−
F at p

@ L

E = Γ, F ;∆, u : F ′ @ z′ at z′′
P,N
=⇒

−
F1 at z1 Premise

(1) Γ;∆, u : F ′ @ z′ at z′′, F ′ at z′
P,N
=⇒

−
F1 at z1 I.H.(2) on D′

1, E ′, F

36

(2) Γ;∆, u : F ′ @ z′ at z′′, v : F ′ @ z′ at z′′
P,N
=⇒

−
F1 at z1 @ L on (1)

(3) Γ;∆, u : F ′ @ z′ at z′′
P,N
=⇒

−
F1 at z1 (2) [u / v]

Right Commutative Cuts

Case: Derivation D is arbitrary, E ends with a @ R rule.

E =

E1

Γ;∆, F at z
P,N
=⇒

−
F ′ at z′

Γ;∆, F at z
P,N
=⇒

−
F ′ @ z′ at z′′

@ R

D = Γ; ∆
P,N
=⇒

−
F at z Premise

(1) Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(1) on D, E1, F

(2) Γ;∆
P,N
=⇒

−
F ′ @ z′ at z′′ @ R rule on (1)

Case: Derivation D′ is arbitrary, E ′ ends with a @ R rule.

E ′ =

E ′1
Γ, F ;∆

P,N
=⇒

−
F ′ at z′

Γ, F ;∆
P,N
=⇒

−
F ′ @ z′ at z′′

@ R

D′ = Γ; ∆
P+p,N
=⇒

−
F at p Premise

(1) Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(2) on D′, E ′1, F

(2) Γ;∆
P,N
=⇒

−
F ′ @ z′ at z′′ @ R rule on (1)

Copy Cut

Case: Derivation D′ is arbitrary, E ′ ends with a COPY rule.

E ′ =

E ′1
Γ, F ;∆, F at z

P,N
=⇒

−
F ′ at z′

Γ, F ;∆
P,N
=⇒

−
F ′ at z′

COPY

D′ = Γ; ∆
P+p,N
=⇒

−
F at p Premise

(1) Γ;∆, F at z
P,N
=⇒

−
F ′ at z′ I.H.(2) on D′, E ′1, F

(2) Γ [z / p];∆ [z / p]
P+p,N
=⇒

−
F [z / p] at p [z / p] Lemma 11, D′

37

(3) Γ;∆
P,N
=⇒

−
F at z p 6∈ FP (Γ) ∪ FP (∆) ∪ FP (F)

(4) Γ;∆
P,N
=⇒

−
F ′ at z′ I.H.(1) on (3), (1), F

�

38

B λrpcSafety properties

Lemma 15 (Substitution)
1. If D = Γ2; Γ◊;∆ `P,N,E e : τ at z and E = Γ2; Γ◊;∆, x : τ at z `P,N,E e1 : τ ′ at z′ then Γ2; Γ◊;∆ `P,N,E

e1 [e / x] : τ ′ at z′

2. If Γ2; Γ◊;∆ `P+p,N,E e : τ at z and FPN(z1) ⊆ P ∪ N and p 6∈ {p | ∃n.(p, n) ∈ Dom(E)}
then Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E e [z1 / p] : τ [z1 / p] at z [z1 / p]

3. If Γ2; Γ◊;∆ `P+p,N,E e : τ at p (p 6∈ FP(Γ2) ∪ FP(Γ◊) ∪ FP(∆) ∪ FP(τ)) and Γ2; Γ◊, x : τ ;∆ `P,N,E e1 :
τ ′ at z′ then Γ2; Γ◊;∆ `P,N,E e1 [λp.e / x] : τ ′ at z′

Proof:

1. By induction on the depth of the derivation Γ2; Γ◊;∆, x : τ at z `P,N,E e1 : τ ′ at z′

case: L

(1) E = Γ2; Γ◊;∆, x : τ at z `P,N,E x : τ at z premise

(2) e1 = x premise

(3) e1 [e / x] = e (2)

(4) D = Γ2; Γ◊;∆ `P,N,E e : τ at z premise

(5) Γ2; Γ◊;∆ `P,N,E e1 [e / x] : τ at z D, (3)

case: → I

(1) E =
E1

Γ2; Γ◊;∆, x : τ at z, y : τ1 at z′ `P,N,E e2 : τ2 at z′

Γ2; Γ◊;∆, x : τ at z `P,N,E λy:τ1.e2 : τ1 → τ2 at z′
premise

(2) {y} ∩ (FV (e) ∪ x ∪ Dom(∆) ∪ Dom(Γ2) ∪ Dom(Γ◊)) = φ assumption(We can always α rename y)

(3) e1 = λy:τ1.e2 premise

(4) e1 [e / x] = λy:τ1.e2 [e / x] (2)

(5) Γ2; Γ◊;∆, y : τ1 at z′ `P,N,E e2 [e / x] : τ2 at z′ I.H on E1

(6) Γ2; Γ◊;∆ `P,N,E λy:τ1.e2 [e / x] : τ1 → τ2 at z′ (5), → I

(7) Γ2; Γ◊;∆ `P,N,E e1 [e / x] : τ1 → τ2 at z′ (6), (4)

case: → E

(1) E =
E1

Γ2; Γ◊;∆, x : τ at z `P,N,E e1 : τ1 → τ2 at z′
E2

Γ2; Γ◊;∆, x : τ at z `P,N,E e2 : τ1 at z′

Γ2; Γ◊;∆, x : τ at z `P,N,E e1e2 : τ2 at z′
premise

39

(2) e′1 = e1e2 premise

(3) e′1 [e / x] = e1 [e / x]e2 [e / x] Definition

(4) Γ2; Γ◊;∆ `P,N,E e1 [e / x] : τ1 → τ2 at z′ I.H on E1

(5) Γ2; Γ◊;∆ `P,N,E e2 [e / x] : τ2 at z′ I.H on E2

(6) Γ2; Γ◊;∆ `P,N,E e1 [e / x]e2 [e / x] : τ2 at z′ (4), (5), → E

(7) Γ2; Γ◊;∆ `P,N,E e′1 [e / x] : τ2 at z′ (6), (3)

2. By inductin on the depth of the derivation Γ2; Γ◊;∆ `P+p,N,E e : τ at z

case: L

(1) Γ2; Γ◊;∆, x : τ at z `P+p,N,E x : τ at z premise

(2) e = x premise

(3) e [z1 / p] = x (2)

(4)
Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p], x : τ [z1 / p] at z [z1 / p]
`P,N,E x : τ [z1 / p] at z [z1 / p]

L

(5)
Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p], x : τ [z1 / p] at z [z1 / p]
`P,N,E e [z1 / p] : τ [z1 / p] at z [z1 / p]

(3),(4)

case: 2I

(1) E =

E1

Γ2; Γ◊;∆ `P+q+p,N,E e1 : τ at p

Γ2; Γ◊;∆ `P+q,N,E close(λp. e1) : 2 τ at z

premise

(2) e = close(λp. e1) premise

(3) e [z1 / q] = close(λp. e1 [z1 / q]) z1 6= p

(4) Γ2 [z1 / q]; Γ◊ [z1 / q];∆ [z1 / q] `P+p,N,E e1 [z1 / q] : τ [z1 / q] at p [z1 / q] I.H. on E1

(5) Γ2 [z1 / q]; Γ◊ [z1 / q];∆ [z1 / q] `P+p,N,E e1 [z1 / q] : τ [z1 / q] at p (4), p 6= q

(6) Γ2 [z1 / q]; Γ◊ [z1 / q];∆ [z1 / q] `P,N,E close(λp. e1 [z1 / q]) : 2 τ [z1 / q] at z [z1 / q] 2I, (5)

(7) Γ2 [z1 / q]; Γ◊ [z1 / q];∆ [z1 / q] `P,N,E e [z1 / q] : 2 τ [z1 / q] at z [z1 / q] (3),(6)

case: 2E

(1) E =
E1

Γ2; Γ◊;∆ `P+p,N,E e1 : 2 τ1 at z′
E2

Γ2, x:τ1; Γ◊;∆ `P+p,N,E e2 : τ at z

Γ2; Γ◊;∆ `P+p,N,E bc e1 at z asx in e2 : τ at z

premise

40

(2) e = bc e1 at z asx in e2 premise

(3) e [z1 / p] = bc e1 [z1 / p] asx in e2 [z1 / p] Definition

(4) Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E e1 [z1 / p] : 2 τ1 [z1 / p] at z′ [z1 / p] I.H. on E1

(5) Γ2 [z1 / p], x:τ1 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E e2 [z1 / p] : τ [z1 / p] at z [z1 / p] I.H. on E2

(6) Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E bc e1 [z1 / p] asx in e2 [z1 / p] : τ [z1 / p] at z [z1 / p] 2E, (4), (5)

(7) Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E e : τ [z1 / p] at z [z1 / p] (3),(6)

case: Equiv

(1) E =
E1

Γ2; Γ◊;∆ `P+p,N,E e : τ at z′ z′ ≡E z

Γ2; Γ◊;∆ `P+p,N,E e : τ at z

premise

(2) Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P+p,N,E e [z1 / p] : τ [z1 / p] at z′ [z1 / p] premise

(3) z [z1 / p] ≡E z′ [z1 / p]
if p 6∈ FP (z) then z [z1 / p] ≡E z′ [z1 / p]
else z = z′ = p in this case, z [z1 / p] ≡E z′ [z1 / p]

(4) Γ2 [z1 / p]; Γ◊ [z1 / p];∆ [z1 / p] `P,N,E e [z1 / p] : τ [z1 / p] at z [z1 / p] equiv, (3)

3. By induction on the depth of the typing derivation of Γ2; Γ◊, x : τ ;∆ `P,N,E e1 : τ ′ at z′

case: G◊

(1) Γ2; Γ◊, x : τ ;∆ `P,N,E run (x [z]) : τ at z premise

(2) e1 = run (x [z]) premise

(3) e1 [λp.e / x] = run (λp.e [z]) (2)

(4) Γ2; Γ◊;∆ `P+p,N,E e : τ at p premise

(5) Γ2; Γ◊;∆ `P+p,N,E run (λp.e [z]) : τ at z runRT , (4)

(6) Γ2; Γ◊;∆ `P+p,N,E e1 [λp.e / x] : τ at z (5),(3)

�

Definition (Context Typing) Γ2; Γ◊;∆ `P,N C : (τ, τ ′) at z ctx if and only if Γ2; Γ◊;∆, [] : τ at z `P,N C :
τ ′ at z.

Lemma 16 (Context Properties)
1. if Γ2; Γ◊;∆ `P,N,E C [e] : τ ′ at z and Γ2; Γ◊;∆ `P,N,E e : τ at z then Γ2; Γ◊;∆ `P,N,E C : (τ, τ ′) at z ctx.

2. if Γ2; Γ◊;∆ `P,N,E C : (τ, τ ′) at z ctx and Γ2; Γ◊;∆ `P,N,E e : τ at z then Γ2; Γ◊;∆ `P,N,E C [e] : τ ′ at z.

41

3. if Γ2; Γ◊;∆ `P,N,E C [e] : τ ′ at z then exists τ such that Γ2; Γ◊;∆ `P,N,E e : τ at z.

Proof:

1. By induction on the typing derivation of Γ2; Γ◊;∆ `P,N,E C [e] : τ ′ at z.

2. By induction on the typing derivation of Γ2; Γ◊;∆ `P,N,E C : (τ, τ ′) at z ctx.

3. By induction on the structure of C.

�

Lemma 17 (Canonical Forms)
• if Γ2; Γ◊;∆ `P,N,E v : b at z then v = c

• if Γ2; Γ◊;∆ `P,N,E v : > at z then v = ()

• if Γ2; Γ◊;∆ `P,N,E v : τ1 ∧ τ2 at z then v = 〈 v1 , v2 〉

• if Γ2; Γ◊;∆ `P,N,E v : τ1 → τ2 at z then either v = λx:τ1.e or v = (fun f(x : τ1) : τ2 = e)

• if Γ2; Γ◊;∆ `P,N,E v : n[τ] at z then v = retrel(e, n)

• if Γ2; Γ◊;∆ `P,N,E v : 2 τ at z then v = close(λp. e)

• if Γ2; Γ◊;∆ `P,N,E v : ◊τ at z then v = port(λp. e)

• if Γ2; Γ◊;∆ `P,N,E v : τ @ z1 at z then v = retabs(e, z1)

• if Γ2; Γ◊;∆ `P,N,E v : 3τ at z′ then v = agent[e, z]

Proof: By induction the typing derivation. �

Lemma 18
1. if ∆m `P,N,E L : Γ2, ` : τ ; ·;∆i

then for all p ∈ P , Γ2; ·;∆i,∆m `P,N,E L(p)(`) : τ at p .

2. if ∆m `P,N,E L : Γ2; ·;∆i, ` : τ at p
then Γ2; ·;∆i,∆m `P,N,E L(p)(`) : τ at p

Proof: By induction on the structure of L. �

Lemma 19
if Γ2; ·;∆ `P,N,E M : ∆′

m,m : τ at p

then Γ2; ·;∆ `P,N,E M(p)(m) : τ at p.

Proof: By induction on the structure of M. �

Lemma 20 (Decomposition)
if Γ2; Γ◊;∆ `P,N,E e : τ at z and there is no variable binding in Γ2, Γ◊ and ∆ then

• e is a value or

• e = C [sync (`)]

• e = C [run (λp.e1 [z1])] or

42

• e = C [(λx:τ.e1) v] or

• e = C [Λp . e′ [z′1]]

• e = C [(fun f(x : τ1) : τ2 = e1) v] or

• e = C [πi〈 v1 , v2 〉] or

• e = C [rpcrel(e1, n)] or

• e = C [sync (rpcrel(`, z1))] or

• e = C [rpcabs(e1, z1)] or

• e = C [sync (rpcabs(`, z2))] or

• e = C [bc e1 at z1 asx in e2] or

• e = C [sync (bc ` at z1 asx in e2)] or

• e = C [pull e1 at z1 asx in e2] or

• e = C [sync (pull ` at z1 asx in e2)] or

• e = C [go e1 at z1 returnx, p in e2] or

• e = C [sync 1(go ` at z1 returnx, p in e2)] or

• e = C [sync 2(go ` at z1 returnx, p in e2)] or

• e = C [ref v] or

• e = C [! m] or

• e = C [m := v]

Proof: By induction on the structure of e. �

Lemma 21 (Network Ordering)
if ∆m `P,N,E L : Γ2; Γ◊;∆i then either

1. for all p ∈ P , for all ` ∈ L(p), L(p)(`) = v Or

2. L = L1, ` → e at p,L2 such that ∆m `P,N,E L : Γ′
2; Γ◊;∆′

i,
Γ′

2; Γ◊;∆m,∆′
i `

P,N,E e : τ at p and for all p ∈ P , for all ` ∈ L1(p), L1(p)(`) = v

Proof: By induction on the depth of the typing derivation of ∆m `P,N,E L : Γ2; Γ◊;∆i. �

Lemma 22
if ` N : Γ2; ·;∆i,∆m;P ;N , then there is no variable binding in Γ2, Γ◊, ∆i and ∆m.

Proof: By induction on the depth of the typing derivation of ` N : Γ2; ·;∆i,∆m;P ;N . �

Theorem 23 (Progress)
if ` N : Γ2; ·;∆i,∆m;P ;N , N = (P,N, E,L,M) then either

1. ∀p ∈ P , ∀` ∈ Dom(L(p)) L(p)(`) is a value. Or

2. ∃N ′ such that N 7−→ N ′

43

Proof:

By induction on the structure of L

(1) ` N : Γ2; ·;∆i,∆m;P ;N , premise

(2) ∆m `P,N,E L : Γ2; ·;∆i inversion on Network rule

(3) Γ2; ·;∆i,∆m `P,N,E M : ∆m inversion on Network rule

(4a) for all p ∈ P , for all ` ∈ L(p), L(p)(`) = v the conclusion follows Lemma 21

Or

(4b) L = L1, ` → e at p,L2 Lemma 21

(5b) ∆m `P,N,E L : Γ′
2; Γ◊;∆′

i Lemma 21

(6b) Γ′
2; Γ◊;∆m,∆′

i `
P,N,E e : τ at p Lemma 21

(7b) for all p ∈ P , for all ` ∈ L1(p), L1(p)(`) = v Lemma 21

(8b) By Lemma Decomposion (Lemma 20) and (6b), consider the following cases

case: syncRT

(9b) e = C [sync (`′)] assumption

(10b) Γ′
2; Γ◊;∆m,∆′

i `
P,N,E sync (`′) : τ ′ at p Lemma 16.3, (6b)

(11b) Γ′
2 = Γ′

2, `′ : τ ′ inversion of typing rule G2

(12b) L1(p)(`′) = v Lemma 18, (7b)

(13b) L′ = L1, ` → C [v] at p,L2 syncRT , (4b), (9b), (12b)

(14b) N 7−→ N ′ (13b)

case: @RT

(9b) e = C [sync (rpcabs(`′, z1))] Assumption

(10b) Γ′
2; ·;∆′

i,∆m `P,N,E C [sync (rpcabs(`′, z1))] : τ at p (6b),(9b)

(11b) Γ′
2; ·;∆′

i,∆m `P,N,E sync (rpcabs(`′, z1)) : τ ′ at p Lemma 16.3, (10b)

(12b) ∆′
i = ∆′′

i , `′ : τ ′ @ zp at p1 (zp ≡E p, p1 ≡E z1) inversion of @RT, (11b)

44

(13b) L1(p1)(`′) = v, v = retabs(e′, zp) Lemma 18, (12b), (7b),Lemma cononical form

(14b) L′ = L1, ` → C [e′] at p,L2 (4b), (9b), (12b), (13b), @RT2

�

Lemma 24
if ∆m `P,N,E L, ` → e at p : Γ2; Γ◊;∆i then either

1. ∆i = ∆i1, ` : τ at p, ∆i2,
Γ2 = Γ21,Γ22

L, ` → e at p = L1, ` → e at p,L2,
∆m `P,N,E L1 : Γ21; Γ◊;∆i1,
Γ21; Γ◊;∆i1,∆m `P,N,E e : τ at p

2. ∆i = ∆i1,∆i2,
Γ2 = Γ21, ` : τ,Γ22,
L, ` → e at p = L1, { `→ ep at p }(∀p ∈ P),L2,

∆m `P,N,E L1 : Γ21; Γ◊;∆i1

and for all p ∈ P,Γ21; Γ◊;∆i1,∆m `P,N,E

L(p)(`) : τ at p

Proof: By induction on the structure of L.

case: Local − L1

(1) E =

E1

∆m `P,N,E L′ : Γ2; ·;∆′
i

E2

Γ2; ·;∆′
i,∆m `P,N,E e′ : τ ′ at p′

∆m `P,N,E L′, `′ → e′ at p′ : Γ2; ·;∆′
i, `

′ : τ ′ at p′
assumption

(2) L, ` → e at p = L′, `′ → e′ at p′ assumption

(3) L′ = L′′, ` → e at p (2)

(4a) L′ = L′1, ` → e at p,L′2 I.H. on (3),E1

(5a) ∆′
i = ∆i1, ` : τ at p, ∆i2 I.H. on (3),E1

(6a) Γ2 = Γ21,Γ22 I.H. on (3),E1

(7a) Γ21; ·;∆i1,∆m `P,N,E e : τ at p I.H. on (3),E1

(8a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 I.H. on (3),E1

(9a) L, ` → e at p = L′1, ` → e at p,L′2, `′ → e′ at p′ (2a)(4a)

(10a) ∆i = ∆i1, ` : τ at p, ∆i2, `
′ : τ ′ at p′ (5a)

OR

(4b) L′ = L′1, { `→ e at p },L′2 I.H. on (3),E1

(5b) Γ2 = Γ21, ` : τ,Γ22 I.H. on (3),E1

45

(6b) ∆′
i = ∆i1,∆i2 I.H. on (3),E1

(7b) Γ21; ·;∆i1,∆m `P,N,E e : τ at p for all p ∈ P I.H. on (3),E1

(8b) ∆m `P,N,E L′1 : Γ21; ·;∆i1 I.H. on (3),E1

(9b) L, ` → e at p = L′1, { `→ e at p },L′2, `′ → e′ at p′ (2)(4b)

(10b) ∆i = ∆i1∆i2, `
′ : τ ′ at p′ (5b)

case: Local − L2

(1) E =
E1

∆m `P,N,E L : Γ2; ·;∆i

E2

Γ2; ·;∆i,∆m `P,N,E e : τ at p

∆m `P,N,E L, ` → e at p : Γ2; ·;∆i, ` : τ at p

assumption

(2) conclusion 1 follows

case: Global − L similiar to the above case

�

Lemma 25
if Γ2; Γ◊;∆ `P,N,E M, m → v at p : ∆′

m,

then

∆′
m = ∆′

m1,m : τ at z,
M, m → v at p = M1, m → v at p,M2,

Γ2; Γ◊;∆ `P,N,E M1 : ∆′
m1,

Γ2; Γ◊;∆ `P,N,E v : τ at p,

Proof: Similiar to the previous Lemma. �

Lemma 26 (L Weakening)
if ∆m `P,N,E L : Γ2; Γ◊;∆i

∆m `P,N,E L′ : Γ2,Γ′
2; Γ◊;∆i,∆′

i

∆m `P,N,E L,L1 : Γ2,Γ21; Γ◊;∆,∆i1

then ∆m `P,N,E L′,L1 : Γ2,Γ′
2,Γ21; Γ◊;∆i,∆′

i,∆i1

Proof: By induction on the structure of L1 �

Theorem 27 (Preservation)
If ` N : Γ2; ·;∆;P ;N and N 7−→ N ′ then there exists Γ′

2, and ∆′ such that ` N ′ : Γ2,Γ′
2; ·;∆,∆′;P ;N .

Proof: By induction on the step relationship.

(1) ∆m `P,N,E L : Γ2; ·;∆i inversion of Netowrk typing rule

(2) Γ2; ·;∆i,∆m `P,N,E M : ∆m inversion of Netowrk typing rule

46

case: syncOS

(3) L = L1, `′ → C [sync (`)] at p, ` → v at p assumption

(4) L′ = L1, `′ → C [v] at p, ` → v at p (3),syncOS

(5a) ∆i = ∆i1, `
′ : τ at p, ∆i2 (3),(1), Lemma 24

(5.1a) Γ2 = Γ21,Γ22 (3),(1), Lemma 24

(6a) L = L′1, `′ → C [sync (`)] at p,L′2 (3),(1), Lemma 24

(7a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

(8a) Γ21; ·;∆i1,∆m `P,N,E C [sync (`)] : τ at p (3),(1), Lemma 24

(9a) Γ21; ·;∆i1,∆m `P,N,E sync (`) : τ ′ at p Lemma 16.3, (8a)

(10a) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p ctx Lemma 16.1, (8a), (9a)

(11a) Γ21 = Γ′
21, ` : τ ′ inversion of G2 rule, (9a)

(12a) L′1(p)(`) = e′ Lemma 18, (11a), (7a)

(13a) Γ′
21; ·;∆i1,∆m `P,N,E e′ : τ ′ at p Lemma 18, (11a), (7a)

(14a) e′ = v (p, `) is unique

(15a) Γ21; ·;∆i1,∆m `P,N,E C [v] : τ at p Lemma 16.2, (10a), (13a), (14a)

(16a) ∆m `P,N,E L′1, `′ → C [v] at p : Γ21; ·;∆i1, `
′ : τ at p Local-L (15a),(7a)

(17a) ∆m `P,N,E L′1, `′ → C [sync (`)] at p : Γ21; ·;∆i1, `
′ : τ at p Local-L, (7a), (8a)

(18a) ∆m `P,N,E L′1, `′ → C [v] at p,L′2 : Γ2; ·;∆i Lemma 26, (16a), (17a), (6a), (5a), (5.1a), (1)

(19a) ∆m `P,N,E L′ : Γ2; ·;∆i (18a), (4)
Or

(5b) ∆i = ∆i1,∆i2 (3),(1), Lemma 24

(5.1b) Γ2 = Γ21, `
′ : τ,Γ22 (3),(1), Lemma 24

(6b) L = L′1, { `′ → eq at q },L′2 (3),(1), Lemma 24

47

(7b) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

(8.1b) Γ21; ·;∆i1,∆m `P,N,E eq : τ at q, for all q ∈ P (3),(1), Lemma 24

(8b) Γ21; ·;∆i1,∆m `P,N,E C [sync (`)] : τ at p (8.1b) special case at node p

(9b) Γ21; ·;∆i1,∆m `P,N,E sync (`) : τ ′ at p Lemma 16.3, (8b)

(10b) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p ctx Lemma16.1, (8b), (9b)

(11b) Γ21 = Γ′
21, ` : τ ′ inversion of G2 rule, (9b)

(12b) L′1(p)(`) = e′ Lemma 18, (11b), (7b)

(13b) Γ′
21; ·;∆i1,∆m `P,N,E e′ : τ ′ at p

(14b) e′ = v (p, `) is unique

(15b) Γ21; ·;∆i1,∆m `P,N,E C [v] : τ at p Lemma 16.2, (10b), (13b), (14b)

(16b) ∆m `P,N,E L′1, { `′ → eq at q } : Γ21, `
′ : τ ; ·;∆i1 Global-L, (7b), (8.1b)

(17b) ∆m `P,N,E L′1, `′ → C [v] at p,
{ `′ → eq at q }(for all q ∈ P and q 6= p) : Γ21, `

′ : τ ; ·;∆i1 Global-L (15b),(7b)

(18b) ∆m `P,N,E L′1, `′ → C [v] at p,
{ `′ → eq at q }(for all q ∈ P and q 6= p),L′2

: Γ2; ·;∆i

Lemma 26,
(16b), (17b),(6b),
(5b), (5.1b), (1)

(19b) ∆m `P,N,E L′ : Γ2; ·;∆i (18b), (4)

case: []OS2

(3) L = L1, ` → C [sync (rpcrel(`1, z))] at p, `1 → retrel(e, n) at q,M assumption

(4) L′ = L1, ` → C [e] at p, `1 → retrel(e, n) at q,M (3),[]OS2

(4.1) E∗(z) = q (3),[]OS2

(5a) ∆i = ∆i1, ` : τ at p, ∆i2 (3),(1), Lemma 24

(5.1a) Γ2 = Γ21,Γ22 (3),(1), Lemma 24

(6a) L = L′1, ` → C [sync (rpcrel(`1, z))] at p,L′2 (3),(1), Lemma 24

(7a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

48

(8a) Γ21; ·;∆i1,∆m `P,N,E C [sync (rpcrel(`1, z))] : τ at p (3),(1), Lemma 24

(9a) Γ21; ·;∆i1,∆m `P,N,E sync (rpcrel(`1, z)) : τ ′ at p Lemma 16.3, (8a)

(10a) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p ctx Lemma 16.1, (8a), (9a)

(11.1a) Γ21; ·;∆i1,∆m `P,N,E `1 : n[τ ′] at z (9a), inversion of []RT rule

(11.2a) p ≡E z.n (9a),(11.1a), []OS

(11a) ∆i1 = ∆′
i1, `1 : n[τ ′] at q inversion of L rule, (11.1a), (4.1)

(12a) L′1(q)(`1) = e′ Lemma 18, (11a), (7a)

(13a) Γ21; ·;∆′
i1,∆m `P,N,E e′ : n[τ ′] at q Lemma 18, (11a), (7a)

(14a) e′ = retrel(e, n) (q, `1) is unique

(15.1a) Γ21; ·;∆′
i1,∆m `P,N,E e : τ ′ at zq.n inversion of [] rule

(15.2a) zq ≡E q inversion of [] rule

(15.3a) zq.n ≡E p (15.2a),(4.1), (11.2a)

(15.4a) Γ21; ·;∆′
i1,∆m `P,N,E e : τ ′ at p Equiv, (15.3a),(15.1a)

(15a) Γ21; ·;∆i1,∆m `P,N,E C [e] : τ at p Lemma 16.2, (10a), (15.4a)

(16a) ∆m `P,N,E L′1, ` → C [e] at p : Γ21; ·;∆i1, ` : τ at p Local-L (15a),(7a)

(17a) ∆m `P,N,E L′1, ` → C [sync (rpcrel(`1, z))] at p : Γ21; ·;∆i1, ` : τ at p Local-L, (7a), (8a)

(18a) ∆m `P,N,E L′1, ` → C [e] at p,L′2 : Γ2; ·;∆i Lemma 26, (16a), (17a), (6a), (5a), (5.1a), (1)

(19a) ∆m `P,N,E L′ : Γ2; ·;∆i (18a), (4)
Or (b) case is similiar to (a) case

case: 2OS2

(3) L = L1, ` → C [sync (bc `1 at z asx in e2)] at p0, `1 → close(λp. e) at p1 assumption

(4) L′ = L1, ` → C [e2 [`2 / x]] at p0, `1 → close(λp. e) at p1,
{ `2 → e [q / p] at q } (∀q ∈ P) (3),2OS2

(4.1) E∗(z) = p1 (3),2OS2

49

(5a) ∆i = ∆i1, ` : τ at p0,∆i2 (3),(1), Lemma 24

(5.1a) Γ2 = Γ21,Γ22 (3),(1), Lemma 24

(6a) L = L′1, ` → C [sync (bc `1 at z asx in e2)] at p0,L′2 (3),(1), Lemma 24

(7a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

(8a) Γ21; ·;∆i1,∆m `P,N,E C [sync (bc `1 at z asx in e2)] : τ at p0 (3),(1), Lemma 24

(9a) Γ21; ·;∆i1,∆m `P,N,E sync (bc `1 at z asx in e2) : τ ′ at p0 Lemma 16.3, (8a)

(10a) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p0 ctx Lemma 16.1, (8a), (9a)

(11.1a) Γ21; ·;∆i1,∆m `P,N,E `1 : 2 τ1 at z (9a), inversion of 2RT rule

(11.2a)Γ21, x : τ1; ·;∆i1,∆m `P,N,E e2 : τ ′ at p0 (9a), inversion of 2RT rule

(11a) ∆i1 = ∆′
i1, `1 : 2 τ1 at p1 inversion of L rule, (11.1a), (4.1)

(12a) L′1(p1)(`1) = e′ Lemma 18, (11a), (7a)

(13a) Γ21; ·;∆′
i1,∆m `P,N,E e′ : 2 τ1 at p1 Lemma 18, (11a), (7a)

(14a) e′ = close(λp. e) (p1, `1) is unique

(15.1a) Γ21; ·;∆′
i1,∆m `P+p,N,E e : τ1 at p inversion of 2I rule

(15.2a) p 6∈ FP(Γ21) ∪ FP(∆′
i1) ∪ FP(∆m) ∪ FP(τ1) inversion of 2I rule

(15.3a) Γ21; ·;∆′
i1,∆m `P,N,E e [q / p] : τ1 at q (for all q ∈ P) Lemma15.2 (15.1), strenghtening, (15.2a)

(15.4a) ∆m `P,N,E L′1, { `2 → e [q / p] at q } (∀q ∈ P) : Γ21, `2 : τ1; ·;∆i1 Global-L, (7a), (15.3a)

(15.5a) Γ21, `2 : τ1; ·;∆i1,∆m `P,N,E e2 [`2 / x] : τ ′ at p0 substitution lemma

(15a) Γ21, `2 : τ1; ·;∆i1,∆m `P,N,E C [e2 [`2 / x]] : τ at p0 Lemma 16.2, (10b),(15.5a)

(16a) ∆m `P,N,E L′1, { `2 → e [q / p] at q } (∀q ∈ P),
` → C [e2 [`2 / x]] at p0

: Γ21, `2 : τ1; ·;∆i1, ` : τ at p0 Local-L (15a),(7a)

(17a) ∆m `P,N,E L′1, ` → C [sync (bc `1 at z asx in e2)] at p0 : Γ21; ·;∆i1, ` : τ at p0 Local-L, (7a), (8a)

(18a) ∆m `P,N,E L′1, { `2 → e [q / p] at q } (∀q ∈ P),
` → C [e2 [`2 / x]] at p0,L′2

: Γ2, `2 : τ1; ·;∆i

Lemma 26,
(16a), (17a), (6a),
(5a), (5.1a), (1)

50

(19a) ∆m `P,N,E L′ : Γ2; ·;∆i (18a), (4)
Or (b) case is similiar to (a) case

case: ◊OS2

(3) L = L1, ` → C [sync (pull `1 at z asx in e2)] at p0, `1 → port(λp. e) at p1 assumption

(4) L′ = L1, ` → C [e2 [port(λp. e) / x]] at p0, `1 → port(λp. e) at p1 (3),◊OS2

(4.1) E∗(z) = p1 (3),◊OS2

(5a) ∆i = ∆i1, ` : τ at p0,∆i2 (3),(1), Lemma 24

(5.1a) Γ2 = Γ21,Γ22 (3),(1), Lemma 24

(6a) L = L′1, ` → C [sync (pull `1 at z asx in e2)] at p0,L′2 (3),(1), Lemma 24

(7a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

(8a) Γ21; ·;∆i1,∆m `P,N,E C [sync (pull `1 at z asx in e2)] : τ at p0 (3),(1), Lemma 24

(9a) Γ21; ·;∆i1,∆m `P,N,E sync (pull `1 at z asx in e2) : τ ′ at p0 Lemma 16.3, (8a)

(10a) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p0 ctx Lemma 16.1, (8a), (9a)

(11.1a) Γ21; ·;∆i1,∆m `P,N,E `1 : ◊τ1 at z (9a), inversion of ◊RT rule

(11.2a)Γ21;x : τ1;∆i1,∆m `P,N,E e2 : τ ′ at p0 (9a), inversion of ◊RT rule

(11a) ∆i1 = ∆′
i1, `1 : ◊τ1 at p1 inversion of LOS rule, (11.1a), (4.1)

(12a) L′1(p1)(`1) = e′ Lemma 18, (11a), (7a)

(13a) Γ21; ·;∆′
i1,∆m `P,N,E e′ : ◊τ1 at p1 Lemma 18, (11a), (7a)

(14a) e′ = port(λp. e) (p1, `1) is unique

(15.1a) Γ21; ·;∆′
i1,∆m `P+p,N,E e : τ1 at p inversion of ◊I rule

(15.2a) p 6∈ FP(Γ21) ∪ FP(∆′
i1) ∪ FP(∆m) ∪ FP(τ1) inversion of ◊I rule

(15.3a) Γ21; ·;∆i1,∆m `P,N,E e2 [port(λp. e) / x] : τ ′ at p0 Lemma 15.3, (11.2a), (15.1a)

(15a) Γ21; ·;∆i1,∆m `P,N,E C [e2 [port(λp. e) / x]] : τ at p0 Lemma 16.2, (10a), (15.3a)

51

(16a) ∆m `P,N,E L′1, ` → C [e2 [port(λp. e) / x]] at p0 : Γ21; ·;∆i1, ` : τ at p0 Local-L (15a),(7a)

(17a) ∆m `P,N,E L′1, ` → C [sync (pull `1 at z asx in e2)] at p0 : Γ21; ·;∆i1, ` : τ at p0 Local-L, (7a), (8a)

(18a) ∆m `P,N,E L′1, ` → C [e2 [port(λp. e) / x]] at p0,L′2 : Γ2; ·;∆i

Lemma 26,
(16a), (17a), (6a),

(5a), (5.1a), (1)

(19a) ∆m `P,N,E L′ : Γ2; ·;∆i (18a), (4)
Or (b) case is similiar to (a) case

case: 3OS3

(3) L = L1, ` → C [sync 2(go `1 at z returnx, q in e2)] at p0, `1 → v at p1 assumption

(4) L′ = L1, ` → C [e2 [z / q] [v / x]] at p0, `1 → v at p1 (3),3OS3

(4.1) E∗(z) = p1 (3),3OS3

(5a) ∆i = ∆i1, ` : τ at p0,∆i2 (3),(1), Lemma 24

(5.1a) Γ2 = Γ21,Γ22 (3),(1), Lemma 24

(6a) L = L′1, ` → C [sync 2(go `1 at z returnx, q in e2)] at p0,L′2 (3),(1), Lemma 24

(7a) ∆m `P,N,E L′1 : Γ21; ·;∆i1 (3),(1), Lemma 24

(8a) Γ21; ·;∆i1,∆m `P,N,E C [sync 2(go `1 at z returnx, q in e2)] : τ at p0 (3),(1), Lemma 24

(9a) Γ21; ·;∆i1,∆m `P,N,E sync 2(go `1 at z returnx, q in e2) : τ ′ at p0 Lemma 16.3, (8a)

(10a) Γ21; ·;∆i1,∆m `P,N,E C : (τ ′, τ) at p0 ctx Lemma 16.1, (8a), (9a)

(11.1a) Γ21; ·;∆i1,∆m `P,N,E `1 : τ1 at z (9a), inversion of 3RT2 rule

(11.2a)Γ21; ·;∆i1, x : τ1 at q, ∆m `P+q,N,E e2 : τ ′ at p0 (9a), inversion of 3RT2 rule

(11.3a) q 6∈ FP(Γ21) ∪ FP(∆′
i1) ∪ FP(∆m) ∪ FP(τ1) inversion of 3RT2 rule

(11a) ∆i1 = ∆′
i1, `1 : τ1 at p1 inversion of L rule, (11.1a), (4.1)

(12a) L′1(p1)(`1) = e′ Lemma 18, (11a), (7a)

(13a) Γ21; ·;∆′
i1,∆m `P,N,E e′ : τ1 at p1 Lemma 18, (11a), (7a)

(14a) e′ = v (p1, `1) is unique

52

(15.1a)Γ21; ·;∆i1, x : τ1 at z,∆m `P,N,E e2 [z / q] : τ ′ at p0
(9a), Lemma 15.2, (11.2a),
(11.3a), strengthening

(15.2a) Γ21; ·;∆′
i1,∆m `P,N,E v : τ1 at z Equiv, (13a), (4.1)

(15.3a) Γ21; ·;∆i1,∆m `P,N,E e2 [z / q] [v / x] : τ ′ at p0 Lemma 15.1, (15.1a), (15.2a)

(15a) Γ21; ·;∆i1,∆m `P,N,E C [e2 [z / q] [v / x]] : τ at p0 Lemma 16.2, (10a), (15.3a)

(16a) ∆m `P,N,E L′1, ` → C [e2 [z / q] [v / x]] at p0 : Γ21; ·;∆i1, ` : τ at p0 Local-L (15a),(7a)

(17a) ∆m `P,N,E L′1, ` → C [sync 2(go `1 at z returnx, q in e2)] at p0 : Γ21; ·;∆i1, ` : τ at p0
Local-L,
(7a), (8a)

(18a) ∆m `P,N,E L′1, ` → C [e2 [z / q] [`2 / x]] at p0,L′2 : Γ2; ·;∆i Lemma 26, (16a), (17a), (6a), (5a),
(5.1a), (1)

(19a) ∆m `P,N,E L′ : Γ2; ·;∆i (18a), (4)
Or (b) case is similiar to (a) case

�

53

