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Abstract

Shared overlay nodes such as the ones in PlanetLab [5] enabled
a new perspective on overlays, in which a user can subscribe
to arbitrary overlays, each of which implements some network
service on behalf of the user’s applications. We have designed
and implemented a general-purpose mechanism to transparently
divert packets belonging to designated applications onto service
overlays, and we demonstrated how our mechanism can be used
to divert packets from applications like

�)$	$���
*�	�+��
,��-�$.�
onto

a RON-based [1] routing overlay.

1 Introduction

Overlays are gaining popularity as a vehicle for deploy-
ing network services. Examples include resilient transport
[1], distributed object location [6, 7, 10], peer-to-peer stor-
age [4, 8], and multicast [2, 3]. Most of these services
behave in the same way: participants collectively and co-
operatively implement some service for the benefit of all
overlay members.

This paper proposes a new perspective on such overlay
networks. Provided there are multiple service overlays that
implement their own network services on shared overlay
nodes, we let users subscribe to arbitrary service overlays
in a way that is transparent to applications they are running.

In our design, we made a clear distinction between desk-
top and overlay nodes. A desktop is a user’s machine that
subscribes to a service overlay. Desktops are usually under
full control of the user. All privileged operations, such as
loading kernel modules and setting up firewall rules, are
allowed on desktop machines. On the other hand, over-
lay nodes are shared, protected, and restricted, intermedi-
ate resources, where privileged operations are prohibited,
or modified to be restricted or protected in some way. We
made use of protected RAW socket machanism avaliable
on our overlay nodes.

This paper explores the idea of transparently diverting
designated packets onto arbitrary service overlays. By im-
plementing an example routing overlay service based on
RON [1] on PlanetLab [5], we have identified a general-
purpose mechanism that allows users to connect their desk-
tops to arbitrary service overlays, with both client and
server applications unaware of the existence of the service
overlay. In addition, by turning RON into an overlay ser-
vice, we are able to scale RON to a larger number of client
nodes, and allow thin clients to access the service as well.

2 Example Service Overlays

Routing in the today’s Internet has several limitations: it is
slow to switch to a redundant path in the event of failure,
and it fails to take application requirements (e.g., band-
width, latency, loss) into account when selecting routes.
RON attempts to solve these problems by forming a small
clique of end-system nodes, and measuring link properties
among them frequently.

We propose a small variant of this model, in which the
RON functionality is moved onto a set of dedicated over-
lay nodes, such as PlanetLab [5] and each end-system as-
sociates itself with a nearby overlay node. This effectively
allows RON to aggregate traffic on behalf of a larger col-
lection of end-systems. It also means RON can support
thinner end-systems, for example mobile nodes that can-
not afford the measurement burden RON imposes.

Although we used RON as a routing algorithm in our
routing service overlay, our diverting mechanism is generic
enough to accommodate other routing service overlays that
use different routing algorithms, such as end-system multi-
cast or DHT-based routing. Moreover, the diverting mech-
anism could be applicable to many other types of ser-
vice overlays that take advantage of intermediate overlay
nodes to perform transparent add-on services (e.g., video
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transcoding) along an end-to-end path.

3 Divert Mechanism

This section describes our general scheme to divert pack-
ets through service overlays by illustrating the case of a
routing overlay. Although the discussion may sometimes
sound specific to routing service overlays, we believe the
diverting scheme is applicable to general service overlays.
Figure 1 gives a high-level view of our diverting mecha-
nism.

Desktops (Clients)
− App (unaware of overlay)
− Shim

Overlay Exit

Server 
− App
(unaware of overlay)

PlanetLab Nodes

Firewall(s)

Overlay Entry

Figure 1: Overview
A shim running on the desktop intercepts packets that

the client application sends, and diverts them to an overlay
entry node. This node then routes the packets through the
overlay to an exit node, which forwards the packet to the
application server. We also intercept the returning packets
from the server, forward them through the overlay, back
to the desktop shim, and finally to the client application.
Note that client and server applications are both unaware
of the routing service overlay. Although desktops may be
behind firewalls, we assume that overlay nodes all lie in
the Internet.

3.1 Architecture

As shown in Figure 2, our divert architecture has two com-
ponents: a desktop shim (DS) and a service access module
(SAM). The DS runs as a separate process on the desktop
where the client application is running, and upon request,
is dynamically bound to the client application. A SAM
module is linked into the service overlay code running on
each overlay node. For a given session, the SAM at the en-
try and exit overlay nodes play a role. We define a service
access protocol (SAP) that is used by the DS to commu-
nicate with the SAM on the entry node. Currently, SAP
defines two channels: a lookup control channel and data
forwarding channel.

The DS performs two tasks: (1) it intercepts packets

DS

App App
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SAM SAM

div_port

ctrl_port

Ctrl (TCP)
Data (UDP)

Divert

Client Server
Overlay Entry Overlay Exitserver_portclient_port
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Figure 2: Divert Architecture

sent by the client program and diverts them onto the over-
lay, and (2) it receives packets from the overlay and makes
them look like they arrived directly from the server. Note
that only the DS is aware of the overlay, that is, the divert
mechanism is totally transparent to the application.

As shown in Figure 3, we have implemented DS on
Linux 2.4.19 kernel, using kernel modules ����������	
���
���
��� �
���
��� and user programs �����
������������� 	���� . Central
to DS software is �����
����� . The DS can be implemented on
other platforms as well, for example in BSD using ��������� �
! ��"�#��
� .

netfilter

Linux Kernel (2.4.19)

Socket Calls

ip_queue

divmod

To Overlay

− Lookup 
− ForwardApplication

UDP Tunnel (DATA)
TCP Channel (CTRL)

Output

ipq_lib
Linux User

Figure 3: Desktop Shim on Linux 2.4.19
The DS is configured to bind an application, as identi-

fied by a (����������"
��	$� ! ��������� ������� ) pair to a particular
SAM, as identified by an ( �
����� % ���&�'"�� ��	 ���
��� ) pair.
In our prototype, we use ������(��)	�� ! facility to bind the DS
to the client program. When the DS sees the first packet
belonging to a new session, it blocks the subsequent pack-
ets of that session and sends a lookup control message to
the corresponding SAM. This lookup control channel is
implemented using TCP, and the control message includes
the first 128 bytes of the intercepted message.

The SAM at the overlay entry determines whether it can
process this session based on this information, and if it can,
replies with a session-specific ( �
��� ��% ���*�+�
������% ������� )
pair. In our prototype, the SAM at the overlay entry makes
this decision if the destination address is on the same net-
work as a known overlay node, denoted as ( � ,���� ��� ). If
the SAM at the overlay entry cannot help in this case, it
informs the DS of this fact and all subsequent packets are
delivered directly over the Internet. If the lookup opera-
tion was successful, it forwards the first packet, and then
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any subsequent packets over a UDP tunnel using forward
data channel to ( �
����� % ���&�+������� % ����� � ). We use UDP
data channel, not TCP, since the end-to-end communica-
tion may be using TCP and we would avoid the complex-
ity of having another TCP connection nested inside a TCP
connection.

3.2 Step-by-Step Packet Trace

Forwarding packets through the overlay requires doing
network address translation (NAT) at overlay entry and exit
nodes. Figure 4 summarizes how an example TCP packet
is transferred between client application and server appli-
cation. Each component sends and receives data packets
both in the forward direction (from client to server) and in
the reverse direction (from server to client). We now walk
through the process step by step.
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Figure 4: TCP packets forwarding
Step 1: Client (forward)

A client application sends packets whose header includes
client address ( "�	��
�
��� ���&�'"
	��
�
��� ������� ) as the source
address, server address ( ! �
�����
� ���&� ! ��� ���
� ����� � ) as
the destination address and protocol (����������"
��	 ). The DS
selectively intercepts designated packets and redirect them
to the overlay at UDP port ������� % ����� � . The source port
for these tunneled messages is ����� ����� � .

Step 2: Overlay Entry (forward)

At the overlay entry node, the SAM receives packets at
the UDP port, ����� ��% ���
��� from the address ��(
� ���*�
�)(
� ����� � , which are translated from the DS’s address
"�	��
����� ���*� ����� ������� as a result of NAT(s) at any fire-
wall(s) that happen to be between the desktop and the over-
lay entry node. Thus, ��(
� ���*� �)(
� ������� may or may not
be the same as "
	��
�
��� ���&� ����� ����� � , depending on the

existence of firewall(s). As we describe later, we need to
keep state for each session at the overlay entry and the
overlay exit, so we need to define a unique session ID
( ! � !�! �
�
� ��� ). We use the following 5-tuple as session
ID:
�#"��	�)� �#�

�
� ' ��� ����$ � �!��
 ����$ � �����	$ 
 �#"����)"��

�
���

�#"�����"#�
�
�����.$ 
 �	����$������)���

Since we need to use this session ID at the overlay exit
too, we need to carry ��(
� ���*� �)(
� ������� along with the
packet, perhaps in the overlay header. In order to avoid
these extra bytes, we decided to do the first NAT and
rewrite the original packet header as follows. Note this
NAT does not require root privilege since everything is en-
capsulated in UDP or the overlay header.
� � �

�
�!� � ����$

�
���

� � �
�
�����	$ � ����$

�
�����	$

The overlay entry records the following information in a
hash map ( �
������% ��(�� ):
"#�)$	���

�
���#�
	

�#"��.�)���#�
�
� ' � � � ������"#�)$ � ����
 �#����"#�)$

�
�����	$ 


"�� �+$
�
��� 
 $�� ��"�� $��+���
�

Since we use a UDP tunnel between the desktop and
the overlay entry, we can find the original client address
( "�	��
�
��� ���&� "�	��
�
��� ����� � ) deep in the original packet.
� ,���� ��� is selected for the first packet of a new ses-
sion, and stored in the hash map for subsequent packets.
�)� �)� ! ��(���� is the time when the last packet of this session
was forwarded.

After we strip the divert header from the packet, we at-
tach the overlay header, and send the packet to overlay
internal nodes according to some routing algorithm like
RON. Note that �
��� ��% ��� is sent to the overlay exit in the
overlay header.

Step 3: Overlay Exit (forward)

At the overlay exit, the local SAM receives packets from
the overlay internal nodes. After stripping off the overlay
header, it forwards these packets to the server application.
A complication here is that we need to intercept packets re-
turning from the server application transparently and for-
ward them through our overlay again. Decomposing the
end-to-end connection would break the end-to-end seman-
tics between applications, which is against our design pol-
icy that our divert mechanism be totally transparent to the
applications. Therefore, we decided to utilize protected
RAW socket (PRS) available on overlay nodes, and to per-
form another NAT as follows.
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� � �
�
��� � "�� �+$

�
���

� � �
�
�����	$ � �����

�
�����.$

When we see the first packet of a new session, we open
a PRS ( ��(�� ! ��"�# ) and use it for the subsequent pack-
ets. PRS differs from the original RAW socket as follows.
First, it does not require root privilege to use PRS. Note
that the NAT at Step 3 actually needs to edit the header of a
bare IP packet. Therefore we would have to need root priv-
ilege to send out the packet, if we were using the original
RAW socket, not PRS. Second, a PRS user not only spec-
ifies a protocol number but also a port number. Once the
user opens a PRS with a specific protocol and port number
as a demux key, nobody else can intercept the packets with
that demux key. Third, we cannot spoof the source address
of the packet departing an overlay node via PRS. Finally,
PRS grabs the original (not a copy of) packet.

The overlay exit needs to record the following infor-
mation in two index hash maps. The first hash map
( ��,���� � (�� � ) associates a session ID ( ! � !�! �
�
� ��� ) with a
PRS number ( ��(�� ! ��"�# ) and its port number ( ��(�� ���
��� ).
The second hash map ( � ,���� � (���� ) associates a PRS num-
ber with a session ID, IP address of entry, and timestamp.
� ,���� � (�� � will be used to check if we can reuse ��(�� ! ��"�#
and ��(�� ���
��� for ! � ! ! �
��� �
� . ��,���� ��(���� will be used
to classify and edit the returning packets from the server in
Step 5.
"�����$

�
���#��� 	

�#"��.�)���#�
�
� ' � � � ����� � �#���+� 
 ���#� � �����	$ 
 $�� ��"�� $��+���
�"�����$

�
���#�	� 	

���#�
�
�#��� � � � � �#"��	�)� �#� � � ' 
 "#�)$.��� � ��� 
 $�� ��"�� $��+���
�

Step 4: Server

The server application observes the other end of commu-
nication is the overlay exit. In response to the received
packets, the server application sends back the reply pack-
ets whose header includes the following information.
� � �

�
��� � �#"#����"��

�
���

� � �
�
�����	$ � �#"#����"��

�
�����	$

' � $
�
��� � "�� �+$

�
���

' � $
�
�����	$ � �����

�
�����.$

Step 5: Overlay Exit (reverse)

There are two things that happen in reverse delivery at
SAM on the overlay exit node: packet classification and
packet editing. As we discussed in Step 3, since PRS
demultiplexes packets with specific protocol and source

port numbers, we receive the packets from the server at
the corresponding ��(�� ! ��"�# . Since we use the same PRS
��(�� ! ��"�# both for sending packets in the Step 3, and for
receiving packets here, we can retrieve the information
about the session by consulting � ,���� � (���� .

Once the SAM classifies an arriving packet, it edits their
headers (NAT). Since everything will be encapsulated in
UDP from now on, until we really transmit the packet to
the client application in Step 7, we do not need to use RAW
socket yet, and NAT does not require root privilege either.
After retrieving ! � ! ! �
��� �
� , �
����� % ��� from � ,���� � (���� ,
we just rewrite the IP header as follows.
' � $

�
�!� � ����$

�
���

' � $
�
�����	$ � ����$

�
�����	$

This packet is then encapsulated in the overlay header and
sent back to the overlay entry via a UDP tunnel.

Step 6: Overlay Entry (reverse)

At the overlay entry node, the local SAM gets packets
from overlay internal nodes. After stripping off the overlay
header, we retrieve the session information by consulting
�
��� ��% � (�� , and edit the packet header as follows (NAT).
This NAT is necessary to make the packet look like des-
tined to the address of client application at Step 7.
' � $

�
�!� � ������"��)$

�
���

' � $
�
�����	$ � ������"��)$

�
���#�	$

It then attaches a divert header to the packet and relays
it back to the DS’s NAT-ed address (�)(
� ���&� �)(
� ����� � )
via UDP tunnel. This NAT-ed address will be translated
by the firewall(s) to the DS’s private address ( "�	��
����� ���*�
����� ������� ) so the packets may reach the DS program.

Step 7: Client (reverse)

Finally, the DS receives packets from the SAM at the
overlay entry. It strips off the divert header and sends
the packet to the client application via the original RAW
socket. Note that the packet already has the correct ad-
dress ( "�	��
����� ���*��"�	��
�
��� ����� � ) as a result of the NAT
at Step 6.

3.3 Remarks

As explained above, the overlay entry and the exit nodes
keep soft-state about sessions. Figure 5 summarizes the
mapping between session ID and overlay parameters. In
our design, we want to avoid out-of-band signaling as
much as possible, since overlay nodes may come and go

4



Entry
Exit

exit_ip
raw_port

Client

Server
< nat_ip,
   nat_port,
   server_ip,
   server_port, 
   protocol>

−session_id
−entry_ip
−timestamp

−exit_ip
−client_ip
−client_port
−timestamp

raw_sock

entry_ip coveyed
in overlay header

−raw_sock
−raw_port
−timestamp

session_id

entry_map exit_map1:

exit_map2:

session_id =

nat_port
nat_ip

div_port
client_ip

server_ip
server_port

entry_ip
entry_port

client_ip
client_port
div_port (shim)

Firewall(s)

Figure 5: Per-Flow Soft-State Mapping

dynamically. We add a session entry when we see the first
packet of a new session, and evict a session entry after the
session has been idle for relatively long time. We also con-
sider protocol-based optimization. For example, in case
of TCP protocol sessions, we invalidate a session entry
shortly after we detect TCP FIN or TCP RST. On the other
hand, in the case of UDP sessions, it would probably be
fine to invalidate the session entry quickly. Note that our
mapping scheme is resistant to the loss or the replacement
of entry node, but not that of exit node. This asymmetry re-
sults from the complication that we need to receive packets
returning from the server onto the overlay transparently.

4 Conclusion

Our contributions in this paper are two-fold. First, we have
designed and implemented a general divert mechanism.
Second, we have demonstrated a RON-based routing ser-
vice overlay using RON on PlanetLab. We are able to run
several applications, such as �����
�&� !�! �&� ! � �
� , on top of
the resulting system.

We note that our divert mechanism resembles Detour [9]
in several ways, although no implementation details are
given for Detour. Detour uses in-kernel routing architec-
ture to support alternate route by IP-IP tunnels. Detour
directs its outbound traffic to the nearest Detour router,
these packets are forwarded along tunnels, and then exit
at a point close to the destination. Interestingly, Detour
points out the complication of NAT to get responses on
Detour routers again.

Although our early stage implementation has already
proved the validity of the scheme, we do see the following
challenges. First, since we use PRS to splice the end-to-
end connection, port numbers became limited shared re-
sources. We also use soft-state mappings on overlay entry
and exit per session, which may consume a fair amount of
memory. How to relinquish these per-session resources is

one of the challenges. Second, we have very preliminary
scheme to look up overlay entry and exit for a given ses-
sion based on autonomous system numbers. We are likely
to need a more sophisticated algorithm for this. Although
designing new routing overlays was not our main focus, we
realize that addressing scalability problem of routing over-
lays beyond traffic aggregation is an interesting research
problem.

We recognize that emerging overlay services may in-
troduce the need to extend the service access module or
the desktop shim with more elaborate translation steps be-
yond packet manipulation and redirection. We believe our
model can be extended to support these services by intro-
ducing translation plug-ins in SAM and DS, which will be
addressed in our future work.
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