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Abstract— The recent trend of constructing application-
level overlays makes it increasingly common to have end-to-
end paths decomposed into multiple overlay segments (tun-
nels). This paper investigates the potential benefits of mak-
ing these intermediate overlay nodes both application- and
congestion-aware in the context of streaming media. In par-
ticular, we demonstrate that hop-by-hop congestion control
improves the quality of TCP-friendly delivery of layered
video applications by up to a factor of four in the steady
state. Moreover, the resulting system is significantly more
responsive to changes in capacity, all the while not nega-
tively impacting competing TCP flows.

I. INTRODUCTION

Recent research advocates the use of rate-based, TCP-
friendly congestion control for realtime streaming media
applications [1], [2], [3], [4]. The main goal of TCP-
friendly congestion control is to provide the relatively
smooth short-term response to congestion events required
by streaming applications, while guaranteeing fairness
with competing TCP flows over the long term. At the
application level, layered-encoded video nicely matches
such a congestion control scheme since it is easy to add or
drop layers of the media stream in response to the avail-
able rate [5].

Independent of work on rate-based congestion control
and rate-adaptive applications, we are seeing an increase
in the use of overlay networks as a mechanism for pro-
viding improved performance, reliability, and functional-
ity; examples include RON [6] and End System Multicast
[7], [8]. Such application-level overlays typically break
the end-to-end path into a sequence of tunnels, with inter-
mediate overlay nodes forwarding data in an application-
specific way. Interposing proxies has a similar effect in
that one or more intermediate nodes sitting between the
source and sink have an opportunity to process and for-
ward packets.

We observe that these intermediate nodes provide an
opportunity to run both the rate-based congestion control
algorithms and the rate-adaptive video applications men-
tioned above, but to do so on a hop-by-hop basis rather

than strictly end-to-end. We call such a system running on
the intermediate nodes amedia streaming boostersince it
can be viewed an example of a protocol booster [9].

This paper studies the effectiveness of running TCP-
friendly congestion control—in particular, the TFRC al-
gorithm [1]—on a hop-by-hop basis. We demonstrate that
the shorter RTT of each hop provides opportunities for (1)
fast response to local congestion, (2) higher throughput
while remaining TCP-friendly, and (3) better error recov-
ery through the use of localized retransmission. A sec-
ondary contribution of this paper is to define an interface
between TFRC and layered-encoded video applications.

II. A RCHITECTURE

A. Overview

We assume a streaming application that traverses a path
through an overlay network, where each hop along the
path is a tunnel through the underlying Internet. Since the
path selection algorithm used by overlay networks often
requires at least one intermediate node to reflect traffic, we
expect to be able to decompose the end-to-end connection
into two (or more) segments at one (or more) intermedi-
ate node(s). As shown in Figure 1, we run three compo-
nents of the application—MmAppSend, MmAppInt , and
MmAppRecv—at the sending, intermediate, and receiv-
ing nodes, respectively. Underneath these modules, we
run TFRC over each segment.

MmAppSendand MmAppInt both have a transmit
queue (xmitq ) and a retransmit queue (rexmitq ),
while MmAppRecvhas a receive queue (recvq ). These
queues are implemented as priority queues whose key
is the transmission time needed to ensure EDF schedul-
ing. As soon asMmAppSendgenerates a video frame,
it puts it into xmitq with a pre-calculatedpresentation
time. When a packet is transmitted fromxmitq , it may
be cached inpktbuf for future retransmission. When
a packet is delivered toMmAppRecv, it is enqueued in
recvq until it can be decoded.

MmAppInt and MmAppRecv send NACKs when
packet loss occurs. We use these NACKs to trigger re-



2

MmAppSend MmAppI nt MmAppRecv

TFRC TFRC Si nk TFRC TFRC Si nk

xmi t q
xmi t q

r exmi t q

r ecv q
r exmi t q

vi deo f r ames

gen_pk t ()

NACK NACK

ACK

r ecv_ pk t ()

pk t bu f pk t buf

get _pk t () get _pk t ()

decode

Fig. 1. Decomposition of an end-to-end path into multiple segments.

transmission, based on the observation that video stream-
ing applications usually have playback buffers, which give
retransmission some cushion of time. However, this re-
transmission should not be regarded as a reliable trans-
port like TCP. In response to the NACK,MmAppSend
andMmAppInt look for the missing packet inpktbuf ,
and if they find it, place the packet inrexmitq , as long
as there is a chance the packet can be retransmitted by its
presentation time.MmAppSendandMmAppInt select a
packet for transmission from eitherxmitq or rexmitq ,
as described below. Finally,MmAppRecvperiodically
sends ACKs that are relayed back toMmAppSend. This
ACK is necessary to update the end-to-end semantics to
all the nodes.

B. Application/Transport Interaction

1) Interface: Three operations define the interface be-
tween the application and transport layers.

� Packet* get pkt(int xrate, int
*size, int mode)

� void recv pkt(Packet* pkt) .
� void break ss(void) .

The application implements the first two operations; the
transport layer implements the third. The transport layer
calls get pkt() when it decides it is time to transmit
another packet. It specifies the transmission rate (xrate )
and the congestion control mode (mode) as arguments; a
pointer to the packet is returned. Both the rate and the
mode serve as hints to the application, where the mode
indicates whether or not the transport layer is operating
in slow-start mode (more below). The transport layer
also does an upcall torecv pkt() to deliver an in-
coming packet to the application. The application calls
break ss() to force the transport layer out of slow-
start mode. This function is necessary for an extension
to TFRC that we explain in Section II-B.3.

2) TCP-Friendly Transport Protocol:Although TCP
is the dominant transport protocol in the current Internet,
it is not well suited for multimedia streaming. One rea-
son is that its Additive Increase/Multiplicative Decrease
(AIMD) algorithm [10] halves the sending rate in re-
sponse to a single congestion indication, and this may
have a severe impact on the user-perceived video quality.

Several TCP-friendly congestion control algorithms
have recently been proposed in response to this problem
[1], [2], [3], [4]. These algorithms have two main goals.
One is to slowly adapt the congestion window. This is
done by adapting over relatively longer time periods (e.g.,
an RTT) rather than on a per-packet basis. The second is to
be TCP-compatible in the sense of being fair to competing
TCP flows. This property is often discussed in terms of an
equation-based model of TCP throughput [11]. In par-
ticular, the recently proposed TCP-Friendly Rate Control
(TFRC) scheme uses equation-based control to explicitly
give the maximum acceptable sending rate as a function
of the recent loss event rate reported by the receiver [1].
We use TFRC as the transport mechanism in our study.

3) Limitations of TFRC: Although TFRC has desir-
able features as a TCP-friendly protocol, for streaming
media applications to take advantage of it, the follow-
ing limitations must be addressed: (1) it assumes infinite
packet supply from applications, (2) it moves out of slow-
start mode only at the first packet loss, and (3) it deals with
fixed-size packets. We consider each limitation, in turn.

First, while an infinite packet supply may be appro-
priate for a pre-existing media file, it is not a realis-
tic assumption for a streaming application like video-
conferencing, since such applications have a maximum
rate at which they can generate data for transmission,
and this rate may be less than the TFRC-calculated avail-
able rate. Usually, a real-time application sets the maxi-
mum bandwidthapp max bw early on. Adaptive appli-
cations may adjust the transmission rate due to conges-
tion by changing transmission layers (short term) or the
frame rate (long term) withinapp max bw. We assume
app max bw is typically set at a point that is less than
capacity of the link, meaning that when the transmission
rate allowed by transport layer exceedsapp max bw,
get pkt() returns a null packet.

Second, the original TFRC scheme breaks out of slow-
start mode only when it experiences packet loss. If there
is no congestion, the application keeps sending data in
slow-start mode. This leads to the following patholog-
ical situation. At the beginning of a connection, if the
application does not provide enough packets—due to its
rate control algorithm being based on the transmission
rate suggested by TFRC—the transmission rate might not
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increase, which prevents the application from supplying
enough packets to force congestion. TFRC uses feedback
every 1.5 RTTs, and if it does not receive feedback within
2 RTTs, it halves the transmission rate. This cycle pre-
vents the initial increase in the transmission rate.

In slow-start mode, the first priority for applications is
to gain speed. If the application knows that TFRC is in
slow-start mode, it can keep transmitting packets regard-
less of the TFRC-provided rate hint. Note that this does
not break TFRC, since the application transmission rate
cannot exceed the TFRC enforced rate. However, this
opens up another problem. As we remarked above, if there
is no congestion to cause packet losses, TFRC never gets
out of slow-start. This means the application keeps send-
ing packets in an uncontrolled manner. Therefore, the ap-
plication needs to know if the transport is in the slow-start
phase, or not, and it also needs to tell TFRC that it should
get out of slow-start when the rate reachesapp max bw.
This is the reason for themodeargument toget pkt and
thebreak ss() operation.

Third, TFRC supports only fixed-size packets. While
this simplifies TFRC, it complicates the interaction be-
tween the application and the transport protocol. In some
real-time applications, one way to control the transmis-
sion rate is to change packet size while fixing the trans-
mission interval; many layered-video applications make
such assumptions. However, TFRC changes the transmis-
sion interval to adjust the transmission rate while using the
fixed size of packets. This mismatch has to be resolved at
the application level. For example, as we see later in II-
D, we circumvent this limitation by modifying a layered
video application, WaveVideo, to make each layer approx-
imately the same size.

There have also been other research efforts on TFRC
variants that address similar problems. For example,
Variable Packet Size Equation Based Congestion Control
(VPS-TFRC) [12] deals with the variable size packets in
TFRC, but VPS-TFRC has not been extensively studied
yet, compared to standard TFRC.

C. Packet Transmission Algorithm

1) Two Queues: We maintain two separate priority
queues, one for transmission and one for retransmission.
There are two reasons for this. First, retransmission of
base layer (important) packets has priority over transmis-
sion of higher layer (less important) packets. At the same
time, we have a limited bandwidth budget for each frame,
so we have to arbitrate between transmitted packets and
retransmitted packets. If we maintain both kinds of pack-
ets in the same queue, we have to implement complex

queue management since we do not want to drop poten-
tially useful packets from the queue. Having two sepa-
rate queues makes the arbitration logic simpler. Second,
if we always put retransmitted packets in a retransmission
queue, we can always guarantee the order of packets in the
transmission queue, since retransmission does not pollute
the transmission queue. This invariant is useful because
in the transmission queue, packets are ordered according
to the importance of the packets. This makes the packet
dropping logic simpler.

2) Arbitration: Arbitration between the transmission
and retransmission of packets happens when the underly-
ing transport protocol TFRC callsget pkt() . For the
transmission rate hintX(t) at time t given from the un-
derlying TFRC, we assign total budgetBtotal(t) to the
current framef , denoting the available bytes for frame
f . Note that to respond to the sudden change inX(t), the
budgetBtotal(t) changes over time, even within the same
framef .
Btotal(t) is divided into the transmission budget

Bxmit(t) and the retransmission budgetBrexmit(t). We
define� to be the fraction of budgetBtotal(t) allocated
to Brexmit(t), and (1 � �) to be the fraction allocated
to Bxmit(t). We calculate� as follows. For the current
frame f , we keep track of how many bytes have been
used for transmissionUxmit and calculate availability ra-
tioR(t) ofUxmit toBtotal(t). Then, we take the minimum
value� between preset value�max andR(t). �max is a
maximum ratio of the retransmission budget to the total
budget. In our simulation, typical value of�max is 0.2.

Btotal(t) = X(t)=fps (1)

Brexmit(t) = � �Btotal(t) (2)

Bxmit(t) = (1� �) � Btotal(t) (3)

R(t) = 1� Uxmit=Btotal(t) (4)

� = min(�max; R(t)) (5)

� = S(t)=A(t) (6)

Each timeget pkt() is called at timet, if there is
a packet in the retransmission queue, we update� and
transmit it if Urexmit + s < Brexmit(t) wheres is the
packet size, and if the deadline of the packet will be met.
After transmitting it, we updateUrexmit+ = s.

If there is no packet in the retransmission queue, or the
budget for retransmission is short, we check the transmis-
sion queue. We transmit a packet in transmission queue if
Uxmit + s < Bxmit(t), the packet belongs to the current
framef , and the deadline of the packet will be met. Oth-
erwise, we increment the current framef and resetUxmit

andUrexmit so subsequent packets belonging to the old
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Parameter Description

t time whenget pkt() gets called
s packet size
Btotal(t) total budget per frame at timet
Bxmit(t) budget for transmission at timet
Brexmit(t) budget for retransmission at timet
f current frame in transmission
Uxmit transmitted bytes of framef
Urexmit retransmitted bytes of framef
R(t) budget for retransmission
� ratio ofBrexmit toBtotal

�max preset maximum value of�
A(t) average maximum layers in transmission
S(t) secure level
� constant ratio ofS(t) toA(t)

TABLE I
ARBITRATION PARAMETERS

frames get dropped from then on. As described briefly
in the previous section, in transmission, we cache pack-
ets intopktbuf for possible future retransmissions. In
order to do this, we keep track of the long term average
A(t) (exponentially weighted mean average) of the maxi-
mum layers in transmission. We definesecure levelS(t)
as� portion ofA(t). We try to guarantee the delivery of
the packets of the layer less than (or more important than)
S(t). Accordingly, we cache packets containing layers
less thanS(t) in the packet buffer for future retransmis-
sion. Typical value of� in our experiments is0:8.

Note that in the transmission queue, packets are always
ordered according to their importance. Therefore, less im-
portant packets are naturally tail-dropped

3) Deadline Consideration: We also consider the
deadline of the packets during the course of the arbitra-
tion algorithm. Let us define the following parameters

Parameter Description

G packet generation time at source
Si packet send time at nodei
D packet presentation time (deadline)
P probation period (P = D �G)
RTTa;b estimated RTT betweena andb

TABLE II
TRANSMISSIONPARAMETERS

At node i, we take a packet from the transmission
queue, and as a general rule, if the following condition
is true,

(Si +RTTi;n=2) < D (7)

we (re)transmit this packet. In the retransmission case,
the number of possible retransmissionk is given by the
following condition.

RTT1;n=2 + k � RTTi;i+1 < P = (D �G) (8)

Cache entries will be evicted after the periodk �RTTi;i+1

has passed, so the buffer size required at the nodei is at
mostk �RTTi;i+1 � app max bw. For example, 1.5Mbps
video requires 1.5Mbps/8� 100msec = 18.75KB memory
for retransmission (k = 1) over 50 msec link.

Usually, unless the link is heavily congested,k is typi-
cally small and so is the required buffer size, since (1) the
packet loss is randomized so the same packet rarely gets
lost, and (2) due to the deadline limitation, largek does
not satisfy Equation 8.

D. Layered Video

Among many possible coding schemes, we use a
wavelet-based system called WaveVideo [5] as our ex-
ample encoding. WaveVideo spatially decomposes each
video frame into 33 layers of subbands for adaptive trans-
mission. WaveVideo iteratively applies two-dimensional
discrete wavelet transform (2D-DWT) to each of lumi-
nance (Y) and color difference (Cb, Cr) channels of the
image. 2-D DWT steps from one depth to the next in-
cludes a horizontal and vertical 1-D DWT performed in
a series. Since the 1-D DWT produces low- and high-
frequency subbands, the 2-D DWT at each depth produces
four (LL,LH,HL,HH) frequency subbands of a quarter of
the original size. LL-subbands are recursively passed to
the next higher depth for further decomposition. The
luminance (Y) channel is often transformed one depth
deeper than the color channels (Cb, Cr). Wavevideo uses 3
(4 for Y channel) depths of transformation for QCIF size
of the image, which allows 33 layers of subsampling of
the image. (See Figure 2.) It does further spatial com-
pression within subbands, and also temporal compression
between frames.

The general idea of adaptive layered video is to give pri-
ority to coarse video channels (low frequency subbands)
over detail video channels (high frequency subbands).
Figure 2 illustrates the priority of each subband used in
WaveVideo, where 1 is the most important (coarse) layer
and 33 is the least important (fine-grain) layer.

We measured the average size of the subband for two
example video streams (Akiyoqcif.avi, Foremanqcif.avi)
used in WaveVideo. Figure 3 shows the average data size
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distribution among layers in the example video streams.
(We set I-frame frequency to 1/25, so the majority of the
frames are�-frames.) The Figure 3 suggests the follow-
ing observations. First, sizes range over almost two orders
of magnitude among layers. Note that the graph shown
in 3 has logarithmic scale along y-axis. Theoretically,
depthn subbands are 4 times larger than depthn + 1

subbands, without considering inter- or intra-band com-
pression. Second, it does not seem to make sense to sub-

sample into as many as 33 layers. Loss of layers less than
10 results in unacceptably degraded images, while the size
of these low (important) layers are often very small. In
terms of network adaptation, it would make more sense to
combine these low layers into one (base) layer. Third, the
Y layers always have larger size than Cb, Cr layers.

These points are not favorable to the use of TFRC as the
underlying transport layer protocol. Ideally, we want each
layer to be of nearly the same size, since TFRC is limited
to fixed size packets. For this purpose, we define a new
layering scheme, denoted (L0

1 � L0

16) out of the existing
WaveVideo layering scheme (L1 � L33).

L0

1 = fL1; L2; L3; L4; L5; L6; L7; L10g;

L0

2 = fL8; L9; L11; L12; L13; L14; L15g;

L0

3 = L16;

L0

4 = L19;

L0

5 = fL17; L18; L20; L21g;

L0

6 = L22;

L0

7 = fL23; L24g

L0

i = L(17+i) (8 � i � 16)

Figure 4 shows the distribution of average size of the
new layers. Except for the new layers 8, 11, and 14 (Y
channel, LH, HL, HH subbands in depth 1), the size is al-
most evenly distributed over the layers. We can packetize
the data in the new layers 8, 11, and 14 into segments of
a size comparable to the other layers. In this new layer-
ing scheme, we have the following desirable features: (1)
every layer has almost the same size (except for a few lay-
ers that need to be further segmented into the comparable
size); (2) base layer 1, by itself, contains an acceptable
image; and (3) we still preserve the original characteris-
tics: the higher the layer, the more detail of the image it
includes.

III. E VALUATION

Our goal is to determine if a layered video application
benefits from taking advantage of intermediate nodes in an
overlay network, that is, by running the congestion control
algorithm plus the adaptive application on a hop-by-hop
basis rather than end-to-end.

We conducted a set of experiments using the ns-2 net-
work simulator [13]. In lieu of actual video data, we mod-
eled the WaveVideo as described in the previous section.
Throughout the simulations, we use the following param-
eters: 16 layers, 1000-byte packets, and a frame rate of 10
fps. We also limit our study to a single intermediate node,
resulting in two segments.
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We evaluate our scheme in three scenarios. The first
quantifies the improvement in video quality—specifically,
the number of layers successfully delivered—of the hop-
by-hop case verses the end-to-end case, when only one
overlay segment is congested. It also allows us to inves-
tigate the impact of this improvement on layers’ smooth-
ness, latency and loss recovery. In the second scenario, we
study the dynamic behavior of decomposed TFRC con-
trol, for example, its responsiveness and aggressiveness
when congestion conditions change. The last scenario re-
peats similar tests as in the first one, but with both overlay
segments congested.

A. Scenario I: Localized Congestion

We first examine the scenario in which the decomposi-
tion localizes the congestion to either the first or the sec-
ond half of the connection. If the first half is congested
and the second half is not, the behavior of decomposed
congestion control is equivalent to the end-to-end case,
except with a shorter latency. The more interesting case
is when the second segment is congested while the first is
not, due to a bandwidth gap at the intermediate node. We
consider this latter case.

r 2

dd

TCP Sour ce TCP Si nk 

TFRC Sour ce TFRC Si nk

s1

ss

r 1

I nt er medi at e Node

s2

Fig. 5. Topology in Scenario I

For this experiment we use a single-bottleneck topol-
ogy with RED queue management at the bottleneck router,
as shown in Figure 5. We set the bandwidth of the bottle-
neck to 5Mbps. We decompose the end-to-end connec-
tion into two segmentss1 ands2 at the bottleneck router
(overlay node)r1. Although we treatr1 as both a router
and an overlay node in the simulation, in practice they
would likely be separate nodes located close to each other
(e.g., at the same site). We change the location of the in-
termediate node so that the latency of the first segment
s1 ranges—at 10ms intervals—from 10msec to 90msec.
Our single TFRC flow competes with 15 end-to-end TCP
flows with the same 100msec latency. Note that regard-
less of the location of the intermediate node, and whether

or not we have an intermediate node, we get almost the
same packet loss rate (about 2%) mainly caused by com-
peting TCP flows. We set the retransmission parameters
�max to 0.2,� to 0.8, and the probation time to 500msec.
A typical experiment runs for 600 seconds of simulated
time.

1) Layers: The quality of video is primarily deter-
mined by how many layers are delivered within the pre-
determined delay (probation time). We define themini-
mum layerfor each frame to be the largest layer number
received,consecutively, starting at the base layer.
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Fig. 6. Received Minimum Layers (top: end-to-end , bottom: with
intermediate node (first segment = 50ms))

We change the location of the intermediate node and
measured the number of layers the receiver gets to see
how the location of intermediate node affects behavior.
Figure 6 shows the traces of the number of successfully re-
ceived minimum layers for each frame, with and without
the intermediate node (only the case with the first segment
delay of 50 msec is shown), respectively. It’s clear the
hop-by-hop case successfully delivers more layers; fur-
ther analysis shows precisely how much better.

Figure 7 compares the average number of layers over
frames in the end-to-end case without an intermediate
node, and in cases with an intermediate node at various
locations. Note that in the end-to-end case, the curves of
enabling or disabling retransmission are overlapped. This
is because the average number of minimum layers is too
small to produce a significant difference with retransmis-
sion.

We see from the graph that a shorter RTT on the con-
gested segment leads to a better number of layers being
successfully delivered to the receiver. Comparing to the
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end-to-end case, having an intermediate node at 50 msec
and 90msec improves the average number of layers by
a factor of 2 and 4, respectively. Enabling retransmis-
sion adds slight improvement to the factors. The result
in 50msec is consistent with the goodput of TFRC, since
the goodputT is inversely proportional to the RTT of the
segment as in the TFRC equation [1], whereas the 90msec
case does not perform as well as the equation predicts,
perhaps because the number of layers tends to saturate at
the maximum number of layers in this case.
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While we want to have a larger number of layers, a large
deviation in the number of layers is undesirable. To see
how well the two cases performed, we also measured the
standard deviation of the average layers over frames in
Figure 8. We see the shorter RTT the congested segment
has, and the great the average number of layers, the more
deviation we tend to see. The ratio of the standard devia-
tion to the average layer—i.e., the coefficient of variation
(COV)—is shown in Figure 9. Without retransmission,
this graph shows that COV stays flat around (40%) re-
gardless of the average number of layers. However, with
retransmission, COV decreases as the first segment delay
increases. At 50msec and 90msec, COV is 29% and 23%,
respectively.
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ers successfully received, we also plotted the histogram
of layers in Figure 10. As we see in the figure, the cases
with the first segment having shorter RTTs have a wider
distribution. The less congested cases add more random-
ness in the distribution.

2) Smoothness:In [14], smoothnessis defined to be
the largest reduction of the sending rate in one RTT in
the deterministic steady-state scenario. In order to see
smoothness from the application’s point of view, we ex-
ploit a similar idea to that stated in [14]. Specifically,
we uselayer ratio si = Li=Li+1 as a metric, whereLi

is the number of layers of the framei. Figure 11 shows
the histogram of layer ratiosi. Although the trace fluc-
tuates somewhat over frames, the figure shows that at a
frame level, the layer ratio is mostly distributed close to 1.
We see that we tend to lose smoothness with shorter RTT.
Note that the 90msec case has better smoothness than the
80msec case, probably because in the 90msec case, the
received layer tends to saturate at the maximum layer.
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3) Latency: We compared the average end-to-end de-
lay with various intermediate node locations, with retrans-
mission enabled. Since we use real-time video applica-
tions, latency is measured between the time a packet is
generated at the sender, and the time it is delivered to the
destination. Figure 12 plots the average latency of pack-
ets successfully received in the first transmission and that
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Fig. 10. Histogram of Layers with different competing TCP flows (Retransmission Enabled)

of those received in the single retransmission. Note that
the average latency values are plotted as straight lines in
the end-to-end case. Also the standard deviation values
are plotted around the average latency values as error bars
in the hop-by-hop cases and as separate dashed lines in
the end-to-end cases. As we can see in the figure, the
transmission case incurs only a slight additional delay (<
10msec) on average, compared to the end-to-end latency
of 160msec, but the intermediate node can significantly
reduce retransmission delay as the second-segment de-
lay decreases. For example, with an intermediate node at
90 msec, we have only 250msec latency for retransmitted
packets, whereas the end-to-end case has 418 msec. The
improvement by 168msec may be accounted as the time
difference in retransmission paths which is 180msec.
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Fig. 12. Average Latency

4) Error Recovery: There are several recovery tech-
niques from errors caused by packet losses, such as re-
transmission. Retransmission is a general technique that is
independent of coding schemes. As we have seen in Fig-
ure 12, by decomposing the end-to-end congestion con-
trol, we have better opportunity to localize the retransmis-
sion delay. From Figure 7, we see that the packet loss re-
covery by retransmission improves both the average num-

ber of layers received and its deviation.
Although we have not fully explored the effect of�max

and� to the average number of layers and its deviation,
our preliminary experiment shows that small�max <
20% tends to add long latency in retransmission in our
simulation environment with relatively small packet loss
rate (� 2%).

B. Scenario II: Responsiveness

We next examine the dynamic behavior of our decom-
posed congestion control. We are especially interested in
responsiveness and aggressiveness of the congestion con-
trol algorithm in the light of sudden changes in network
capacity.

Similar to the first scenario, we assume that only the
second segment of the end-to-end connection is con-
gested. Also, we disable retransmission to avoid introduc-
ing unnecessary complexity. The topology for the setting
is simple: we have two end points and at most one inter-
mediate node. We compare two cases,Case (1):end-to-
end congestion control without intermediate nodes, and
Case (2): decomposed congestion control with an inter-
mediate node placed in the middle. Both the first half and
the second half delay are set to 50msec, while end-to-end
latency is fixed at 100 msec. In this scenario, we simulate
the sudden introduction or removal of heavy congestion
during the course of the experiment, which be caused by
the introduction/termination of a CBR flow, or by a flash
crowd.

1) Responsiveness:The responsivenessof a conges-
tion control mechanism has been defined in [14] as the
number of RTTs of persistent congestion until the sender
halves its sending rate, wherepersistent congestionis de-
fined as the loss of one packet per RTT. Analysis and sim-
ulation in [1] shows that the responsiveness of TFRC is 4
to 6.



9

Similar to the experiments in [14], we have a single
TFRC flow with everykd-th packet being dropped at the
bottleneck router while in steady state. At the simulation
time 150sec, we start dropping every other packet to sim-
ulate the heavy congestion. Figure 13 shows the traces
of the minimumand maximumlayers. As stated in the
previous section,minimum layeris defined per frame, as
the largest number of layersconsecutivelyreceived, start-
ing at the base layer.Maximum layeris simply defined
per frame as the largest layer received. We also plotted
framewise packet loss shown as a circle at the bottom of
the graph. For the sake of visibility, we setkd = 700

for the case (1) andkd = 200 for the case (2) in order
to adjust the goodput in the steady (less congested) state
to comparable value for both cases (about 14 layers of re-
ception). Settingkd to the same value would result in very
different throughput in the steady state between the case
(1) and the case (2), since decomposition gives us better
throughput as seen in the previous scenario. The choice of
kd affects the starting throughput but not the responsive-
ness.
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Fig. 13. Responsiveness (top: end-to-end (kd = 700), bottom: with
intermediate node (kd = 200). Heavy congestion is introduced at the
simulation time 150 seconds (around 1500-th frame )

Figure 13 shows that after congestion is introduced at
simulation time 150 seconds (around the 1500-th frame),
case (1) takes 8 frames to halve the maximum number of
layers, whereas case (2) takes only 5 frames. Since we are
sending layered video at 10 fps, this result roughly corre-
sponds to (1) 0.8 seconds and (2) 0.5 seconds of response

time. Therefore, by decomposing end-to-end connection
by half, we can reduce the response time to about 60% of
the end-to-end case.

Note that we just looked at the maximum layer curve to
examine responsiveness. However, from the application’s
point of view, in absence of retransmission, only the min-
imum layer affects the quality of the video, since layered
video has the property that higher layers always depend on
lower layers for decoding. Figure 13 shows the minimum
layer curve drops sharply (taking only a few frames) right
after the congestion begins. This is because we introduce
extremely high packet loss rate (50%) to cause conges-
tion, but in general, the maximum layer curve gives an
upper bound on the minimum layer curve. This implies
that the video quality the application perceives is likely
to be degraded faster than the real responsiveness with-
out retransmission. Even though the application is still
receiving higher layer packets, they may not contribute to
the video quality, since lower layer packets have been lost.

2) Aggressiveness: Aggressivenessis defined as the
maximum increase in sending rate in one RTT—stated in
packets per second—in the absence of congestion. Anal-
ysis and simulations in [1] show that the aggressiveness
of TFRC is at most 0.14 pkts to 0.28 pkts per RTT. We
examined application-level aggressiveness in terms of the
number of successfully received layers in the face of sud-
den absence of congestion. Similar to the experiment
conducted in the previous section, we have only a sin-
gle TFRC flow with everykd-th packet being dropped at
the bottleneck router so that we set equal loss intervals
while in congestion. At simulation time 150 seconds, no
more packets are dropped, which represents the sudden
absence of congestion. Figure 14 shows the traces of the
minimum number of successfully received layers per each
frame. The definition of minimum layer is the same as in
the previous section. We also plotted framewise packet
loss at the bottom of the graph.

For the sake of visibility, we setkd = 100 for (1) and
kd = 30 for (2) in order to adjust the goodput in the con-
gestion state to comparable value for both cases (about 5
layers of reception).

According to Figure 14, after congestion is removed at
the 1500-th frame, case (1) takes 250 frames to ramp up to
the maximum reception of layers, whereas case (2) takes
only 60 frames. Since we are sending layered video at
10 fps, this roughly corresponds to 25 seconds and 6 sec-
onds of response time, respectively. Therefore, by decom-
posing end-to-end connection by half, we can reduce the
response time by a factor of four.
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Fig. 14. Aggressiveness (top: end-to-end (kd = 100), bottom: with
intermediate node (kd = 30). Congestion is removed at time 150sec
(around 1500-th frame)

C. Scenario III: Multiple Congested Segments

The next scenario we examined is similar to the first
one, except both the first half and the second half of the
connection areequallyandindependentlycongested.
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Fig. 15. Average Layers

Figure 15 shows the topology of the experiment. We
have two bottleneck routersr1 andr3 with RED queue
management. We set the bandwidth of the bottleneck
segments1 and s2 to 5Mbps. At the bottleneck router
r3, we run an intermediate node and decompose the end-
to-end connection into two segments. While end-to-end
latency is fixed to 100 msec, we change the location of
the intermediate node so that the latency of the first half
connections1 ranges—at 10ms intervals—from 10msec
to 90msec. For the end-to-end case, without an inter-

mediate node, the latency before and after the bottleneck
router is 50ms, for a total of 100ms. Our single TFRC
flow competes with 20 TCP flows with the same latency,
where 10 of them share segments1 with the TFRC, and
the other 10 share segments2. This generates two kinds
of independent congestion along the TFRC flow. Note
that whether or not we have an intermediate node, we
get almost the same packet loss rate (about 2.5%) mainly
caused by competing TCP flows.1 Most parameters such
as�max = 0:2, � = 0:8 and probation time of 500msec
are the same as in the first scenario. Typical experiments
run for duration 600 seconds of simulated time.

1) Layers: Figure 16,17, and 18, compares the aver-
age number of layers, the deviation, and the ratio of devia-
tion to the average number of layers (COV), respectively,
for the end-to-end case and the set of hop-by-hop cases
with the intermediate node at various latencies from the
source. These figures tell us the following.

First, Figure 16 shows the improvement with an in-
termediate node. In particular, the number of layers is
maximized when the first segment delay is set to 50msec.
Compared to the end-to-end case, we see about 4 times
(without retransmission) and 5 times (with retransmis-
sion) more throughput when we use decomposed conges-
tion control in the very middle of the end-to-end connec-
tion.

We try to explain this result relative to the first sce-
nario. In the first scenario, letf1(x) be a throughput ra-
tio of decomposed congestion control case to end-to-end
congestion control case, when the first segment delay isx
msec. From Figure 7,f1(x) is monotonically and slowly
increasing asx. Theoretically, this curvef1(x) is propor-
tional to (d� x)�1, whered is end-to-end latency, pro-
vided that the packet loss rate is independent ofx and
throughput strictly follows the TCP equation [11]. Since
we have equally congested segments in the third scenario,
the throughput ratio function in the third scenario is mod-
eled asf3(x) = f1(x)�f1(d � x) / fx(d � x)g�1. It is
obvious thatf3(x) reaches its maximum atx = d=2. We
could easily imagine that in more realistic and complex
scenario where we have unequally congested segments,
this maximum would be shifted to either end point.

Second, Figure 17 shows that without retransmission,
the deviation tends to increase as the average number of
layers. With retransmission, however, the deviation is
greatly suppressed, especially for the cases with improved
average number of layers. It is apparent from Figure 18
1We calculate theeffectiveend-to-end packet loss ratep for decom-

posed congestion control asp = 1� (1� p1)(1� p2), wherep1, p2,
denote the loss rate for the first half and the second half of the end-
to-end connection, respectively. Thiseffectiveloss rate turns out to be
comparable to that in end-to-end control case.
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that COV is minimized when the intermediate node is
placed in the middle of the end-to-end connection. For
example, at 50msec, COV is 37.8% without retransmis-
sion, and is 21.6% with retransmission.

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100

A
ve

ra
ge

 L
ay

er
 (

M
ax

 1
5:

 M
in

 0
)

First Link Delay

Average Layer

Average Layer (with retransmission)
Average Layer (without retransmission) 

End−to−End Average Layer (with retransmission)
End−to−End Average Layer (without retransmission)

Fig. 16. Average Layers

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

D
ev

ia
tio

n

First Link Delay

Layer Deviation

Layer Deviation (with retransmission)
Layer Deviation (without retransmission)

End−to−End Layer Deviation (without retransmission)
End−to−End Layer Deviation

Fig. 17. Deviation of the Average Layers

0

20

40

60

80

100

0 20 40 60 80 100

D
ev

ia
tio

n/
A

ve
ra

ge
 (

%
)

First Link Delay

Deviation/Average  (%)

Deviation/Average (with retransmission)
Deviation/Average (without retransmission)

End−to−End Deviation/Average (with retransmission)
End−to−End Deviation/Average (without retransmission)

Fig. 18. Coefficient of Variation (COV)

2) Latency: Figure 19 shows the average latency of
packets successfully received in the first transmission and
that of those received in the single retransmission. We
see that having an intermediate node introduces additional
delay (<20msec) on average. However, with an interme-
diate node, we can significantly reduce the average re-
transmission latency. We have roughly 340msec retrans-
mission latency with an intermediate node as opposed to

441msec in the end-to-end case. We believe this is be-
cause we can localize the retransmission by decompos-
ing the congestion control. The improvement of about
100msec is accounted as the average time difference in
the retransmission paths.

It is interesting to see the deviation in latency of retrans-
mitted packets is minimized when the intermediate node
is placed in the very middle of the end-to-end connection.
Note that the deviation in the average retransmission la-
tency is high when the intermediate node is close to either
end point. For example, at 50msec the standard devia-
tion is only 50msec whereas at 10msec and 90msec it is
almost 90msec. Although we can localize the retransmis-
sion, when the intermediate node is near either end point,
we still have many cases that it takes time close to end-
to-end latency to retransmit the packets along the longer
segment, whereas it needs less time along the shorter seg-
ment.
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D. Fairness

Once we accept the possibility of forwarding applica-
tion data through an overlay network, we have already in-
troduced an element of unfairness into the network. This
is because traffic reflected via one or more intermediate
nodes effectively traverse multiple short-RTT segments
rather than a single long-RTT path, and both TCP and
TFRC are biases against long-RTT connections.

This makes it difficult to compare the fairness of flows
through an overlay with flows through the Internet. How-
ever, we note that on each segement of overlay path, our
flows compete with other non-overlay flows in a fair man-
ner, and they do not cause congestion collapse since they
employ the TFRC algorithm which guarantees fairness
with respect to other flows. Although it is not shown here,
we conducted similar experments as in [1], and we ob-
serve the fairness guarantee on a hop-by-hop basis.



12

E. Summary

This section has examined the benefits from decompos-
ing end-to-end congestion control in three scenarios. In
scenarios I and III, we investigate the improvement in the
behavior of our streaming application in the steady state.
The first scenario captures the possible improvement if we
are able to localize congestion to just one segment. The
third scenario reflects the situation in which the two seg-
ments areequallyandindependentlycongested.

Our simulation result shows that when we place an in-
termediate node in the middle, we can double the recep-
tion of layers in the first scenario and improve it by a fac-
tor of four in the third scenario. Because TFRC conforms
to TCP throughput equation, a shorter RTT implies a bet-
ter average number of layers. Moreover, we observed a
smaller deviation in the average number of received lay-
ers results from localization of retransmission. We also
examined the improvement in the retransmission latency
while adding a little extra delay (10 to 20 msec) in the
transmission latency. In both scenarios, retransmission la-
tency was reduced by the time difference in retransmis-
sion paths.

In scenario II, we studied the dynamic behavior of the
decomposed congestion control in the similar setting to
that of the scenario I. The shorter feedbackloop results in
improvement in both responsiveness and aggressiveness
by roughly a factor of 2 and 4, respectively, when com-
pared to the end-to-end congestion control.

In general, hop-by-hop congestion control is more ef-
fective than end-to-end control for short term congestion.
Earlier research on ABR in the context of ATM networks
came to a similar conclusion [15]. This study goes fur-
ther, however, in that it shows how a congestion control
mechanism designed for realtime applications can benefit
from hop-by-hop control, especially when coupled with
application-based adaptation. In addition, our approach
still conveys end-to-end semantics to the source, which is
useful when persistent congestion occurs.

IV. CONCLUSION

This paper makes two contributions. First, we point
out the opportunity to exploit intermediaries to improve
the delivery of streaming media in an overlay network.
Better performance can be achieved if intermediate nodes
are both application-aware and congestion-aware. The
decomposition of congestion control from end-to-end to
hop-by-hop results in several advantages: responsiveness,
aggressiveness while maintaining smoothness in steady
state, and improved video quality. This comes at the cost
of a small increase in latency and jitter.

Second, we define the interface between layered video
application and a particular TCP-friendly transport pro-
tocol: TFRC. We identify the limitations of the current
TFRC, from the application point of view, and propose a
viable way to make the current TFRC work with layered
video applications.
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