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Abstract

This paper presents the design and implementation
of a peer-to-peer storage system that allows mobile users
to transparently access and share data. The system em-
ploys a small networked portable storage device that is
designed to compensate for weak wide-area connectiv-
ity by leveraging ad hoc peer-to-peer connectivity and
an embedded storage element. Other key features of
the system include the use of a location and topology-
sensitive multicast-like solution for locating data, lazy
peer-to-peer propagation of invalidation information for
ensuring consistency across multiple devices, and a dis-
tributed snapshot mechanism for supporting sharing
and distributed backup. A common theme of the de-
sign decisions is minimizing the amount of distributed
state and global coordination, while still achieving the
desired functionality and good performance. Initial ex-
periences with a prototype implementation suggest that
we have largely achieved our objectives.

1 Introduction

As the cost, form factor, and capacity of stable stor-
age continues to improve dramatically, one consequence
is the emergence of highly compact secondary storage
technologies that can be seamlessly integrated into de-
vices of all shapes and forms. Today, these devices
are largely disjoint and users are expected to manually
hoard, propagate, backup data on individual devices.
As these devices rapidly proliferate in our surroundings,
we are faced with an increasingly difficult challenge of
managing this chaotic sea of “invisible bits”.

In this paper, we argue that an effective way of man-
aging this data is applying the peer-to-peer philoso-
phy: instead of “powering” all these devices with an
omnipresent external networked storage utility, these
devices are by themselves able peer components of a
mobile storage system and what is needed is a piece of
system software that ties all these disjoint devices into a
coherent whole. However, wide-area connectivity alone
is not always sufficient for the purpose of coordinating
all these devices. To compensate for this inadequacy, we
introduce a small portable storage device equipped with
several connectivity technologies. This device leverages
ad hoc peer-to-peer connectivity and an embedded stor-
age element to overcome the wide-area connectivity bot-
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tleneck in accomplishing its role as a coordinator of the
other devices.

From a user’s point of view, this portable device
follows her wherever she goes (just like a BlackBerry
email device today would). As long as the user has the
device with her, she can (1) transparently access her
own data regardless on which machine the bytes are
physically stored and regardless where the user is, (2)
transparently read other users’ data whose access has
been granted, and (3) use the portable device as a stor-
age “adaptor” for other appliances so that their special
purpose data can be readily integrated into the entire
storage system. One important difference between this
system and some existing application-specific solutions
is that this system is designed to be a storage-level so-
lution that can transparently support most existing file
systems and applications.

Underneath the hood, the system must solve three
hard problems: (1) How does the system locate data
that can be stored on any devices? (2) How does the
system ensure consistency across multiple devices as old
data on these devices becomes obsolete? (3) How does
the system ensure a consistent image across all devices
for the purpose of backup and sharing?

The system solves the first problem using a loca-
tion and topology-sensitive multicast-like solution. The
advantage of this solution is that it minimizes global
state, allows for autonomous data movement decisions,
and can effectively exploit locality. The system solves
the second problem using lazy peer-to-peer propagation
of invalidation information. As a result of decoupling
this propagation from data propagation, it can quickly
bring weakly connected devices up-to-date. The system
solves the third problem using a distributed snapshot
mechanism. The advantage of this solution is that it
allows a user to continue to modify the storage system
without interfering with either backup or sharing.

We have implemented a Linux-based prototype of
the system in which the role of the portable storage de-
vice is played by a Compaq iPAQ equipped with storage
and connectivity accessories. One goal of our design is
to minimize the amount of distributed state and global
coordination. This design goal has resulted in a rela-
tively simple and robust implementation that, for ex-
ample, has little complexity in its crash recovery mech-
anism. Our initial experience with the prototype leads
us to conclude that a peer-to-peer model, when aided
by a mobile device equipped with embedded storage and
ad hoc connectivity, can effectively overcome wide-area
connectivity weakness and enable mobile users to access
and share data ubiquitously.
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2 Two Naive Approaches

There are two broad categories of existing solutions
to providing ubiquitously available mobile storage. One
is relying on ubiquitous connectivity to a “storage util-
ity” infrastructure; the second is relying exclusively on a
small portable storage device. We briefly explore these
simple alternatives and their limitations.

2.1 Connectivity Limitations

High-performance universal network connectivity re-
mains an elusive goal. Even the typical so called “broad-
band” home DSL users typically only have access to
an uplink capacity around 100 Kbps today. The much
anticipated 3G wireless networks are designed to ulti-
mately achieve 384 Kbps, but industry observers agree
that wide availability of such speeds is many years away.
Today, US 3G users can realistically expect data speeds
of somewhere between 40 to 80 Kbps, a far cry from
the hypothetical speeds of 144 Kbps and 192 Kbps [25].
At any instant, only a small number of devices may be
strongly connected to each other; and a mobile stor-
age user cannot always count on an omnipresent high-
quality connectivity to a centralized storage service.

2.2 Limitations of Portable Storage
Devices

Due to the difficulty of accessing data across a mo-
bile wide-area network, we tend to resort to carrying
bits with us. Today, when some of us travel, we are ap-
prehensive about leaving our laptops behind, not neces-
sarily because we fear that our travel destinations lack
computers, or because our personal machines have any
special capabilities. Instead, what makes a person’s ma-
chine personal is the data stored on it. Carrying a lap-
top for this purpose, however, is cumbersome: among
its many faults, one of the most serious is that the form
factor of a generic computing device such as a laptop is
unlikely to improve in terms of portability due to user
interface considerations such as the size of a screen or a
keyboard.

Recognizing this inconvenience, manufacturers have
started to offer a wide array of mobile storage devices.
The form factor of these devices can be as small as a key
chain ornament [21]. Some hope that as storage density
continues to increase, a day may come when all a user
would have to carry is such a small device.

We share this vision: we believe that the notion of
carrying computers will be as unnecessary as the notion
of carrying television sets—television sets are commod-
ity generic devices that are no different regardless which
user “owns” them; and even though small portable sets
are available, people have rarely found the desire to
carry them, as sets with more comfortable form fac-
tors are widely available at public locations such as ho-
tels and airports. Computers should be no different.
They will be cheap, widely available, and generic. The
only thing that a user needs to take advantage of these
widely available generic computing devices is an easily
portable storage device that houses their personal data,
something that makes a user uniquely herself.

However, relying exclusively on such a device for all
data storage needs has its pitfalls. First, despite the
capacity improvement of storage devices, the nature of
new applications’ appetite for storage is such that the
capacity of a single portable device is unlikely to be suf-
ficient for all of a user’s storage needs. The capacity of
the mobile devices is likely to continue to lag behind
that of their stationary counterparts, and we expect
much data will continue to reside on these stationary
devices. Second, mobile storage devices tend to have
poorer performance compared to desktop versions due
to energy consumption and form factor considerations.
For example, an IBM Microdrive housed in a PCMCIA
interface delivers an order of magnitude less bandwidth
than a typical laptop disk. Third, mobile storage de-
vices tend to be less reliable due to environmental and
human factors such as exposure to shock, moisture, and
theft. Last, but not least, mobile storage devices, by
themselves, provide little support for transparent data
sharing among collaborating users.

3 The Skunk-Based Peer-to-Peer
Approach

Our approach has two key elements: (1) instead of
relying on omnipresent access to a storage utility, the
system is based on the coordination of users’ existing
peer devices and their embedded storage elements; (2)
instead of relying exclusively on a portable storage de-
vice, the system employs such a device as a coordinator
of the other peer elements; and exploiting this portable
storage element and ad hoc peer-to-peer connectivity
becomes a powerful means of overcoming the handicaps
of wide-area connectivity. We shall refer to this portable
device as the Skunk device, or simply the Skunk; and we
shall refer to the entire peer-to-peer storage system as
the Skunk system.

3.1 Peer-to-Peer Components
The storage managed by the Skunk system princi-

pally resides at the devices already owned by users.
These may include one’s computers at home, at work,
or on the road; and various consumer electronic appli-
ances already equipped with storage elements. In many
cases, these devices are sufficiently powerful by them-
selves and they are the natural “homes” of some data;
so a peer-to-peer system made of these existing storage
elements makes good sense. One of the main roles of
the Skunk system is to coordinate these peer devices to
form a single coherent name space.

3.2 The Skunk Device
The task of coordinating these existing disjoint de-

vices, however, may be difficult with existing connectiv-
ity capabilities. The role of the Skunk device is to fa-
cilitate this coordination across a potentially wide area.
Some of the tasks performed by the Skunk include: (1)
storing and propagating metadata that is used to drive
other devices towards eventual consistency; (2) caching
and propagating data to improve performance; (3) pro-
viding wireless peer-to-peer ad hoc short-range connec-
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tivity among peer devices; and (4) providing wireless
wide-area connectivity among peer devices.

Physically, a Skunk consists of a processor, a stor-
age element (such as the IBM Microdrive), an ad hoc
connectivity interface (such as a Bluetooth or 802.11
card), and a WAN connectivity interface (such as a cel-
lular modem).

We conjecture that an industrial strength version of
the Skunk can be packaged in a form factor that is not
much larger than a wrist watch; and just as a wrist
watch, or the larger BlackBerry email device, the Skunk
is a personal device and it accompanies the user at all
times. As long as a user has a Skunk with her, she can
access and share the storage system. We explore some
of the Skunk use cases in greater detail next.

3.3 Personal Use Cases
A user works on her office computer, with her Skunk

nearby, which communicates with the office computer
with an ad hoc wireless interface. The user “sees” a sin-
gle Skunk-backed file system whose data may be physi-
cally spread across any of her computers. As she creates
new data on the office computer, some of the new data
may be stored on the Skunk, and some of it may be
pushed to some of her other computers in the back-
ground. When the user leaves the office at the end of
the work day, she carries only the Skunk home, and
she “sees” the same coherent Skunk file system on her
home computer, which happens to have only a weak
DSL uplink. As she reads data on her home computer,
the Skunk system ensures that she always reads a fresh
copy of the data, which may physically reside on her
home computer, her Skunk device, her office computer,
or any other devices that she may own. The next morn-
ing, the user carries the Skunk back to her office and
the cycle repeats. The Skunk carries the metadata for
ensuring consistency and caches much of the data to
avoid over-stressing the weak wide-area link between
home and office.

Once in a while, the user travels. Again, the user
only brings the Skunk with her, fully expecting comput-
ers with comfortable form factor user interfaces to be
ubiquitously available: at airports, on planes, and in ho-
tels. Two factors make these locations different from her
office and home: (1) computers at these locations may
not be connected to the wide-area network; and (2) the
user cannot leave her data behind on these computers
if she expects to be able to retrieve them later. As the
user reads data, some of the read requests are satisfied
by data cached on the Skunk itself, while other requests
may be satisfied by the user’s home or office computers
via the wide-area wireless interface built into the Skunk
device. As the user writes data, it is principally stored
on the Skunk. (Although pushing over the wide-area
wireless interface is possible, the user may choose not
to due to its poor performance and high cost.) If the
Skunk fills up, the user may simply walk to the corner
drug store and buy another six-pack of Skunk devices.
When the user returns to her office or home from her
travel, the data accumulated on her Skunk(s) will be
gradually transfered to her office and/or home machines
via the fast ad hoc interface.
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Figure 1: Example route choices available to Skunkast.

Note that as long as the user has the Skunk with
her, she can access data stored on any of her machines.
At any instant, the Skunk system routes the user re-
quest to the closest replica. We call this communication
mechanism Skunkast (whose detail will be described in
a later section). Also note that although we have so
far assumed that the Skunk is a highly compact wrist
watch-sized or iPAQ-sized device, nothing prevents the
Skunk from being a fully functional conventional lap-
top. In fact, as we shall see later, in the peer-to-peer
Skunk system, there is little difference among all the
participating machines, and their roles are easily inter-
changeable so, for example, a laptop that usually resides
in the office can be turned into a Skunk when the user
travels.

3.4 Inter-Personal Use Cases

Two colleagues, Bob and Alice, bring their Skunks
to a business trip. The night before their scheduled
presentation, they need to collaborate on their slides as
they work on the hotel computers. The Skunk system
allows Alice to have read-only access to some of Bob’s
data, which, again, may be physically stored on any of
Bob’s devices. The system again uses Skunkast to route
Alice’s request to a closest device of Bob’s that houses
a desired replica. In the common case, the ad hoc wire-
less interfaces on their Skunks allow the two users to
directly and quickly share data without resorting to a
wide-area connection which may be either weak or non-
existent on the hotel computers. In the more general
case, if the collaborators are separated by a large geo-
graphical distance, however, the route choices available
to Skunkast may be more diverse and complex.

Consider the example shown in Figure 1. Let us as-
sume that the Skunk with a label of (0) is the reader of a
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data item. The other devices with numbered labels rep-
resent devices that house a replica of the desired data
item. The numbers roughly reflect the order of desir-
ability as Skunkast chooses a replica. (1) a peer Skunk
in the same ad hoc network; (2) a wired end host on the
stationary “backbone”; (3) a disconnected end host; (4)
a Skunk in a different ad hoc network that is reachable
via the backbone; (5) a wired but weakly connected end
host (such as a DSL host with limited uplink capacity);
(6) a Skunk that is only reachable via the cellular link;
(7) a disconnected end host reachable only via the cel-
lular link of a Skunk.

3.5 Sharing Model
In the Skunk system, each device and the data stored

on it have a single owner1. While the owner has full
read/write access to her data in the “personal” use
cases, in the “inter-personal” sharing use cases, the
Skunk system only supports read-only access to data
not owned by a user. In the example above, Alice can
modify any of her own data stored on any of her devices,
but Alice can only read from Bob’s devices—overwriting
Bob’s data by Alice is not supported by the Skunk sys-
tem, and Alice would have to make a copy of her own
before she can modify it2. This design decision is driven
by several considerations.

Our foremost consideration is simplicity. By legis-
lating away the possibility of concurrent writes to the
same data at different locations, we eliminate a large
amount of the complexity associated with handling con-
flicts and maintaining data coherence. Indeed, the sim-
plification is such that it has become possible to en-
gineer the Skunk system entirely as a storage-level so-
lution: the owner’s data appears to a host computer
as a read/write virtual disk, and others’ data appears
to a host computer as a read-only virtual disk. Exist-
ing file systems, operating systems, and most applica-
tions largely do not need to be altered and they trans-
parently benefit from the Skunk system. This level of
transparency is an important goal that we set out to
achieve.

The second consideration has to do with the tar-
get environment within which we would like to see the
Skunk system deployed, an environment that is not un-
like the one targeted by the BlackBerry device and its
service, or the one targeted by various peer-to-peer file
sharing applications. In these contexts, there are clear
and natural notions of ownership of devices and data.

The third consideration concerns the question of
whether this simple model of sharing is sufficient for
enabling meaningful collaboration. We believe the an-
swer is yes. This model in fact corresponds closely to
how some of us collaborate today: on our departmental

1It is possible to create multiple logical devices out of a single
physical device to allow multiple Skunk users to share physical
devices; but to simplify the discussion, we do not consider this
possibility in this paper.

2The Skunk system can in fact be easily extended to accom-
modate concurrent but non-conflicting writes at different devices
without user intervention by merging logical disks. A previous
paper [20] on a primitive predecessor of the system describes this
possible extension but we do not further consider this possibility
in this paper.

file server, even though the authors’ home directories re-
side in a single read/write file system, we rarely turn on
write permission bits of the directories and files that we
own and allow others to update them directly; instead,
we typically only modify our local copies.

This is not to say that we believe that this is the only
sharing model that one needs and there is no need for
a shared read/write store. To the contrary, we believe
that for more sophisticated collaborations, one needs
both. For example, while maintaining separate local
copies of Powerpoint slides in the collaborators’ own
home directories tends to be sufficient, collaborating on
a large programming project typically requires a source
control system (such as CVS) as the shared read/write
store, in addition to the separate local copies. This
shared read/write store, however, is best implemented
above the file system at the application level (as is the
case of CVS). The task of solving problems such as con-
current writes and conflict resolution does not belong in
the file system layer. In this sense, we do not necessar-
ily see a peer-to-peer storage-level solution (such as the
Skunk system) as a replacement of or even a competitor
to a peer-to-peer application-specific read/write store
(such as the Bayou system [16, 23]). Each of these two
classes of systems has its own reason of existence: the
former allows many existing applications to run trans-
parently in a distributed and mobile context and pro-
vides a simple model of sharing, while the latter pro-
vides richer sharing semantics at the expense of sacri-
ficing generality. Neither type of system is suitable for
all types of data, and a side-by-side coexistence delivers
the best benefits of both worlds.

3.6 The Skunk as a Storage Adaptor

The data management needs addressed by the Skunk
system are by no means limited to traditional desktop
applications. As the data management functionalities
are separated from cumbersome generic computing de-
vices, and as these functionalities are cleanly encap-
sulated in modular small form factor devices (such as
the Skunk), such devices can then readily interact with
other consumer electronic devices in interesting and use-
ful ways. For example, as a camera is coupled with
a Skunk, the captured images can instantly be made
sharable among family and friends; as an MP3 player is
coupled with a Skunk, friends can swap music as ad hoc
fan groups form; as a phone is coupled with a Skunk,
one can store, retrieve, edit, embed, share voice mes-
sages just as one can with any other forms of data; and
as an email device is coupled with a Skunk, one can
integrate file sharing into emails smoothly. In these ex-
amples, the Skunk devices essentially serve as storage
“adaptors” for other appliances so that their special-
purpose data becomes accessible on a “backplane” con-
necting all peer-to-peer Skunk devices.

4 Design

The key questions that the Skunk system design
must address are: (1) Upon a read request, how does
the system find out which device has the desired data,
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and which device does the system choose to retrieve the
data from? (2) Upon delete or overwrite operations,
how does the system keep all the devices “consistent”
so that they do not return stale data and the storage
space occupied by obsolete data is freed? (3) How does
the system support backup and sharing while the owner
may continue to modify the system.

4.1 Drawbacks of Employing Location
Maps

The types of connectivity technologies connecting
the devices in a Skunk system may include fast LANs,
ad hoc links such as Bluetooth or 802.11, high-latency
wide-area Internet links, and even wireless modems. It
is critical for the Skunk system to be able to flexibly
place the data around the system and minimize the
use of slow links. This requirement of flexible data
placement precludes the use of simple distributed hash
table-based schemes which dictate rigid placement al-
gorithms of their own [22, 18]. And unlike peer-to-peer
systems that attempt to maintain full replicas at all de-
vices [16, 20, 23], a copy of the desired data may only be
stored on a subset of the devices in the Skunk system.

One plausible solution to the data location problem
is to maintain a mapping from block IDs to a list of
devices where a replica of the block can be found. This
mapping, however, scales with the total amount of data
in the entire Skunk system; so it may be too large to
store the entire map on a single device in general, or
on the Skunk device in particular. Therefore, the map
itself may need to be distributed across a number of de-
vices and the placement decision of the map also needs
to be carefully controlled to minimize the use of slow
links. This is in contrast to existing cluster file systems
where all the participating machines are located on a
single fast LAN and the penalty of communicating with
fixed location “managers” is not as severe [1, 11, 24]. As
the system must be able to flexibly store pieces of the
location map on any device, we now need a means of
locating the location map itself; so a higher level of map
of map is needed. This leads to a hierarchical map solu-
tion: the highest level map should be compact enough
that it can fit on any single device and following the hi-
erarchy in a top-down fashion allows the reader of any
data block to uncover where the data is stored.

This hierarchical map solution, however, has some
drawbacks. First, for each data read operation, the sys-
tem may be forced to perform one or more map read
operations, potentially across a network; and for each
data write operation, the system may need to perform
more map writes to update the location map. These ex-
tra I/Os can be costly. Second, data movements, such as
caching data at, pushing data to, and evicting cached
copies from nearby devices, must update the location
map, and the cost of doing so may offset the benefit.
Third, an implementation based on this design must
exercise care to keep various pieces of distributed state,
such as different levels of the map, consistent with each
other; this approach may lead to considerable imple-
mentation complexity.

4.2 Locating Data Using Skunkast

Instead of employing location maps, the Skunk sys-
tem uses a mechanism that is similar to multicast, which
we call Skunkast. At each location, the system con-
structs a multicast tree rooted at the current reader
device connecting all of a user’s devices, which we call
a Skunkast tree. We note the following properties of
a Skunkast tree. First, the tree is on a per-user basis
and it includes only the devices owned by a single user.
We do not envision this number of devices to be mas-
sive at this stage so there is little scalability concern.
Second, the Skunkast tree is an overlay tree. Third,
the Skunkast tree is location sensitive so a new tree
rooted at each new location is constructed. Fourth, the
Skunkast tree is only for sending requests and the sin-
gle data reply in response to a Skunkast request flows
directly from the replier to the requester.

One feature that makes Skunkast different from tra-
ditional multicast is that a Skunkast request does not
necessarily have to reach all the devices in the Skunkast
tree: the Skunkast requests are divided into several
stages and if an earlier stage succeeds in finding a
replica, no further stage is executed. For example, the
first stage request queries the single local device on
which the read request originates. Only when this de-
vice fails to produce the requested data does the system
initiate the second stage requests which would reach all
the user’s devices on a nearby ad hoc network. Only
when the data is not found on any of these devices does
the system cross a modem link once to initiate the third
stage requests to all devices reachable only across this
modem link.

The request messages within a single Skunkast stage
may propagate in parallel but different stages occur se-
quentially. If the desired data is located in nearby de-
vices, Skunkast introduces little extra overhead. If the
desired data is found in farther away devices, such as
those across a wide-area or a modem link, the extra time
spent by Skunkast querying the nearby devices is likely
to be relatively insignificant. To further improve data
location speed, it is possible for the system to incorpo-
rate a small location hint table that is indexed by a hash
of the block ID. Querying the hint table can proceed in
parallel with regular Skunkast and incorrect hints have
no negative impact on correctness or performance.

Compared to the location map-based approach dis-
cussed in the last section, Skunkast has several advan-
tages. Skunkast relies on no distributed state so it has
no complexity associated with maintaining the consis-
tency of distributed state. The system may freely move,
replicate, or purge data on any device without having to
update location information stored elsewhere. Skunkast
provides a built-in means of exploiting location proxim-
ity in both the data location phase and data read phase,
as a nearby node on the Skunkast tree tends to receive
the query first and supplies the data. In contrast, al-
though a location map may pinpoint the exact locations
of the data, it still leaves the question of which one to
choose unanswered.

5



4.3 Invalidating Stale Data

When the user deletes or overwrites data, data stored
on some devices becomes obsolete. Regardless the data
location mechanism used, these devices need to be in-
formed of the invalidation events so the storage space
occupied by stale data can be freed up. Furthermore,
under the Skunkast approach, a device should not re-
spond to a Skunkast request if its copy of the data is
stale, and the only way for the device to “know” that
its copy is stale is for it to have received an invalidation
message. The devices that should receive these invalida-
tion messages, however, may be poorly connected to the
user’s current device (which is where writes occur). It is
thus infeasible to require the invalidation messages to be
sent to all the appropriate devices in the foreground. In
the Skunk system, these invalidation messages are ini-
tially buffered at the writer device and propagated to
other devices in the background. We now describe the
details of this process and how it interacts with other
operations of the Skunk system.

In the Skunk system, writes can only occur at the
device that is physically with the user. Each write
is tagged with a monotonically incrementing counter,
which we shall refer to as a timestamp. Logically, a
device in the Skunk system maintains three persistent
data structures: (1) a block store that is keyed by block
IDs and stores the block content and the timestamps of
the writes; (2) an invalidation log that records, in time
order, the block IDs and their timestamps of the writes;
and (3) the freshness of a device, which is the timestamp
of the tip of the tail of the contiguous invalidation log
received by a device.

As a write occurs on the writer device D3, data and
its associated timestamp t3 is added to the block store
on D3, the block ID and t3 is appended to its invali-
dation log, and the freshness of D3 becomes t3. In the
background, possibly at a much later time, D3 attempts
to send a portion of its invalidation log to a device D1
that has a freshness value of t1(t1 < t3). D3 may choose
to send only a convenient chunk of the log between t1
and t2(t1 < t2 < t3). Upon successfully receiving this
chunk, D1 appends it to its own invalidation log, and
advances its freshness to t2. At possibly yet another
later time, D1 plays its invalidation log to its own block
store to delete the stale data if the block ID contained
in an invalidation record is indeed found in the block
store and the time stamp of the corresponding block in
the block store is older than the one contained in the
invalidation log.

We assume that the Skunk device houses the most
complete invalidation log as the Skunk follows the user,
who is always the sole writer. The head of the log can
be truncated once it has been sent to all this user’s other
devices3. Theoretically, log fragments stored on other
devices can be discarded as soon as they are played to

3Parts of the log can also be stored on other well-connected
devices if the capacity on the Skunk becomes a premium. Since
the Skunk is always with the user and the Skunk has at least the
wireless modem link, the entire invalidation log should always be
reachable. To simplify the rest of the discussion, however, we
shall not consider this possibility.

the local block store; but next, we will discuss another
potential use of these log fragments.

4.4 Peer-to-Peer Propagation of
Invalidation Records

So far, we have assumed that the invalidation records
are only sent from the Skunk device to another devices
to bring them up to date. This restriction is not nec-
essary: any fresher device can send an invalidation log
fragment to any less fresh device to bring it more up-to-
date. Theoretically, it is not even necessary for a device
to receive invalidation records in the strict order of in-
creasing timestamps—as long as a device conservatively
announces its freshness t so that t < t′ for all miss-
ing invalidation record timestamps t′, correctness can
be ensured. For simplicity, however, we dictate that
each device in the Skunk system receives invalidation
records in strict time order. Because the single-writer
restriction that we have imposed on the Skunk system,
the invalidation record propagations are always one-way
from a fresher device to a less fresh one. This feature
leads to a few key differences between the Skunk system
and other peer-to-peer systems based on the epidemic
exchange model such as Bayou [16, 23].

First, the Skunk system is a storage-level solution.
By imposing the single-writer restriction and replacing
two-way exchanges with one-way invalidation propaga-
tions, the system legislates away the problem of con-
flict resolution, which intrinsically does not belong to
the storage level. The benefit that one gains is a much
more general system that supports a vast majority of
the existing applications.

Second, to ensure correctness, only the invalidation
records need to be propagated in the Skunk system and
no data exchange is necessary to ensure a consistent
view of the participating devices. The size of invalida-
tion records should be at least three orders of magni-
tude smaller than that of data. This allows devices to
be quickly brought up-to-date. This is in contrast to
replicated databases where data and metadata propa-
gations are intertwined.

This peer-to-peer model makes all the devices in a
Skunk system very much similar to each other. One
difference between the Skunk device and the other de-
vices is that the Skunk device is guaranteed to have the
most complete invalidation log. This property ensures
that as long as the Skunk is with the user, the user sees
a consistent system wherever she goes. This property
also makes it easy for a user to turn other devices into
the Skunk device: as long as a device, such as a laptop,
has the proper hardware capabilities, the user can sim-
ply transfer the complete invalidation log onto it and
take it with her in place of her usual wrist watch-sized
Skunk device.

4.5 Querying Invalidation Logs for Reads
The discussion so far may have implied that it is

necessary to bring a device up-to-date by first playing
invalidation records to it before the system allows the
device to participate in the Skunkast protocol to satisfy
reads. This is in fact not necessary. We now describe
how the invalidation log interacts with Skunkast.
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Suppose a user is performing read and write op-
erations on a particular device. This device contains
the most complete invalidation log as writes are being
recorded, so it is effectively the Skunk device of the
moment. Suppose invalidations on this device are im-
mediately performed to the block store on this device.
So in every sense of the word, this device is up-to-date.

When this device receives a read request, it first
queries the local block store. If the desired data is
found there, the read request is satisfied and no fur-
ther action is necessary. Otherwise, the system queries
the invalidation log on this device. If an entry for this
block is found in the invalidation log, it implies that
this block has been recently overwritten but the data is
not found on this device. The system then launches
a Skunkast to query the rest of the devices, specifi-
cally asking for a block with the timestamp found in
the invalidation log. When the other devices receive
this Skunkast query, regardless of their own freshness
value, they query their own block store for the block ID
with the specified timestamp. When the desired data is
found in any block store, the read request is satisfied.

If no entry for this block is found in the invalidation
log of the original read device, it implies that the block
has not been overwritten during the entire time period
reflected in the invalidation log on this device. Suppose
the head of the invalidation log has a timestamp of t0.
The system then launches a Skunkast to query the rest
of the devices, asking only the devices whose freshness is
larger than t0 to respond. When such a device receives
the Skunkast request, it may also need to query its own
invalidation log to be sure that the data contained in
its own block store is fresh up to t0.

This read algorithm requires at least a portion of
the invalidation log to be queryable. Again, suppose
the oldest queryable log record has a timestamp of t0,
an invariant of the system is that all the devices reach-
able by the Skunkast protocol at this moment must be
at least as fresh as t0. This, however, does not imply
that the complete invalidation log at the Skunk must
be queryable: older portions of the invalidation log that
are kept for currently disconnected devices, for exam-
ple, need not be queryable because there is no danger
of reading obsolete data from a disconnected device.
When such a device later becomes reachable and can
participate in Skunkast again, the system must restore
the invariant by either making more of the older por-
tion of the log queryable, or perhaps more sensibly, by
playing this older portion of the log to the newly con-
nected device to upgrade its freshness up to t0. This
invariant makes it possible to cache the queryable tail
of the invalidation log entirely in memory, minimizing
overhead paid on reads.

4.6 Peer-to-Peer Data Propagation
As explained earlier, a distinct advantage of the

Skunk system compared to some existing epidemic
exchange-based systems is that the propagation of the
invalidation records and that of data can be decoupled:
only the former is required for correctness while the
latter is purely a performance optimization. When and
what data to propagate is largely a policy decision.

There is, however, still an ordering constraint that
one must follow for data propagation: data is only prop-
agated from fresher devices to less fresh devices. This
constraint ensures that if the propagated data is over-
written after its creation timestamp, the correspond-
ing invalidation record is guaranteed to not have been
played to the data receiver by the time of the data prop-
agation event yet, so a future receipt of the invalidation
record by the data receiver would properly invalidate
the data. The timestamp of the data itself is copied as
is into the receiver’s block store. None of the other data
structures on either machine is affected. Interestingly,
there is no constraint on the relationship between the
timestamp of the propagated data and the freshness of
the receiver device: the former can be less than, equal
to, or greater than the latter.

An opposite case of data propagation is data dis-
card. Discard operations by themselves do not affect
any data structures. One goal of the Skunk system de-
sign is to allow individual devices or subsets of devices
to autonomously make data movement decision with-
out relying on global state or global coordination. The
system, however, needs to exercise care not to discard a
last lone copy of the data. We adopt a simple solution:
when data is initially created, a so called golden copy
is established; and a device is not allowed to discard a
golden copy without propagating a replacement golden
copy to another device.

4.7 Snapshots

A snapshot represents a consistent state of an
owner’s Skunk storage system “frozen” at one point in
time. Creating a snapshot is logically making a copy
of the owner’s entire Skunk system so that subsequent
modifications to the storage system is reflected only in
the new copy. The Skunk system uses snapshots to
cope with device losses and to handle read sharing with
other users. A snapshot is named by the timestamp at
the time when the snapshot is created.

Physically, creating a snapshot is more like copy-on-
write. When the owner decides to create a snapshot, all
that is required is the appending of a snapshot creation
record to the invalidation log. Since the system requires
the invalidation log to be propagated to all devices in
timestamp order, the local block store on each device
would not inadvertently overwrite blocks of an older
snapshot before it “sees” a snapshot creation record.
(The local block store must, of course, support snapshot
operations.) How snapshots are deleted depends on the
purpose of the snapshots and is described below.

4.8 Backup and Restore

If a device that houses no golden copy is lost, no re-
covery action is necessary. If a device that stores some
golden copies is lost, we must roll back the Skunk sys-
tem to an earlier snapshot.

The Skunk device, which follows its owner as she
travels, is likely to be the most vulnerable. Whenever
possible, the system should attempt to migrate golden
copies off the Skunk. At a point when the Skunk device
houses no golden copy, the system can take a Skunk-less
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snapshot. In the event a Skunk device is lost with some
golden copies stored on it, the system rolls back to the
last Skunk-less snapshot and discards all data added to
the system after that.

To recover from the loss of other devices that par-
ticipate in an owner’s Skunk system, we use a backup-
restore scheme. Periodically, the owner instructs her
Skunk system to take a backup snapshot. A backup
snapshot is created so that it can be copied to backup
devices such as tapes. Backup devices can be intro-
duced into the Skunk system in a flexible manner that
is very much similar to how regular devices are incor-
porated. At one extreme, each device or each site can
have its own backup device; at another extreme, we can
have a single backup device (such as a tape) that is pe-
riodically carried from site to site to backup all devices
onto a single tape; an intermediate number of backup
devices are of course possible as well; and golden copies
of a backup snapshot can also be transferred from one
site to another to be backed up via either the Skunk or
a network. Data belonging to a backup snapshot can be
deleted in a piecemeal fashion as they are copied onto
backup devices. During restore, one needs to restore
the latest snapshot that has all its participating devices
completely backed up; there are various ways of finding
out the name of this snapshot and examining the state
recorded on all backup devices is an obvious alternative.

There are several possible optimizations. Incremen-
tal backup is natural and easy to support because the
block store from which the backups are made uses copy-
on-write already and an extension to the block store
interface that identifies the incremental changes should
not be hard to add. Another possible optimization is
to leave data belonging to an old backup snapshot un-
deleted on the regular devices. During a restore, this
data can be quickly resurrected without requiring one to
copy from backup devices. So far, we have assumed that
upon a restore, we discard all surviving blocks newer
than the timestamp of a backup snapshot. Attempting
to salvage some of this data by “rolling-forward” after
a restore is a possible future research topic.

4.9 Read Sharing

The discussion on data reads in Section 4.5 assumes
that the data reader is the owner of a Skunk system.
This assumption simplifies the discussion as the reader
coincides with the only possible writer. In general, how-
ever, a different user may attempt to read the data, and
this reader may initially contact a device that is dif-
ferent from the one on which the owner is performing
writes. We call this reader a foreign reader. Because the
Skunk system is being developed as a storage system,
the requests serviced by the Skunk system are at block-
level. If we do not exercise sufficient care, the block
requests belonging to multiple file system operations,
some of which may be writes, may interleave, leading to
undesirable behavior (including possibly even crashes).

The Skunk system uses snapshots to solve this prob-
lem. When a foreign reader A wishes to read from a
different user B, A’s requesting device starts a foreign
read session and sends a message to the sole device that

B can write to at the moment (which is quite possi-
bly B’s Skunk device itself). We will briefly discuss
the device location mechanism later. In response, user
B creates a consistent read sharing snapshot, starts a
counter of the number of foreign readers of this snap-
shot, and sends the snapshot name back to the foreign
reader. The foreign reader A builds a new (and differ-
ent) Skunkast tree of B’s devices. Upon receiving the
snapshot name from B, A sends Skunkast queries to B’s
devices to read data only from this consistent snapshot.
Note that within this single session, A can perform all
manners of file system read operations such as listing a
directory, changing working directories, in addition to,
of course, reading one or more files. In the mean time, B
can continue to modify her Skunk system without inter-
fering with foreign readers. When A is finished reading,
it ends the foreign read session and sends a foreign read
session termination message to inform B and flushes its
cache of all B’s data. Upon receiving this message from
A, if the counter on this snapshot becomes zero, B can
delete this snapshot.

The protocol described above assumes that a foreign
reader must always first reach the current device that
the owner may write to to acquire a snapshot name.
It is possible to loosen this restriction so that it is up
to a foreign reader to query any of the other devices
and choose a snapshot to read from. Unlike the rest
of the Skunk system, which works at the storage level,
the protocol that handles foreign reads requires a small
modification at the file system level to start and end
foreign read sessions.

4.10 Crash Recovery

One design goal of the Skunk system is that the sys-
tem has virtually no distributed state. This goal aids
crash recovery so that recovering individual crashed de-
vices is sufficient. When the owner is writing to a device,
some of the data and the tail of the invalidation log is
buffered in memory and may be lost upon a crash. Upon
rebooting the device, the system reads the tail of the
invalidation log from the disk and finds the last times-
tamp; instructs the block store to return the block IDs
and their timestamps of all the writes made stable in
the block store after this timestamp; adds them to the
invalidation log; and records the timestamp of the very
tail of the invalidation log as the freshness of the device.
(The block store itself employs a log-structured design
so that finding the updates after a particular timestamp
is easy, although other alternative implementations of
the block store are possible as well.) The device pro-
vides only crash-consistent semantics so the file system
that runs on top of the device may need to run its own
recovery code (such as fsck).

During any peer-to-peer propagation of either inval-
idation records or data, we ensure that each communi-
cation event is atomic in that the entire communicated
content must safely land on disk before we declare the
communication complete. Playing invalidation records
to the block store and adding data into it are idem-
potent operations so repeating these activities after a
reboot is acceptable.
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4.11 Other Issues

Adding or removing devices. The Skunk device
stores the most complete invalidation log and truncates
the head of the log only when all of a user’s devices’
freshness values have progressed beyond the timestamp
of the log head. Peer-to-peer exchanges of freshness
values allow the Skunk device to discover the freshness
values of all devices. When a new device is added to
the system, this event needs to be registered with the
Skunk device so that it does not discard invalidation
log entries until all devices have received them. When
a device is to be removed from the system, the system
must “walk” the block store of this device to identify
all golden copies and migrate them off this device. The
device removal event also needs to be registered with
the Skunk device so it does not wait for invalidation log
entries to be propagated to the removed device.

Locating devices of a user. When user A desires
to read data of user B, A needs to find the name of
at least one of B’s devices. We expect a simple hier-
archical scheme to be sufficient. First, each of a single
user’s devices “knows” all other devices of this user. In
particular, each device “knows” the name of the current
Skunk device. If a user B wants her data to be read by a
foreign reader, she joins a service-wide registry by sub-
mitting a user name and a small number of the names
of her devices. The foreign reader A contacts the reg-
istry to locate at least the name of one device of B’s.
From this device, A can uncover the names of all of B’s
devices, which A uses to construct a Skunkast tree for
reads. This is similar to how DNS works; and the user
name-based name space is similar to how email works.

Access control. When a user sends a request to
a device, she must present proof of her identity to the
device. Each device keeps an access control list and
checks it for each operation. Known authentication and
encryption techniques can be used.

5 Implementation

While Section 4 describes some of the more funda-
mental design issues, in this section, we describe some
implementation choices and details that are somewhat
less fundamental. Alternative choices could very well
have been made without changing the basic philosophy
of the Skunk system. For example, while the current
implementation works at the storage level, a file system
or user library could have worked too.

5.1 Volumes

We have developed the system on Linux. The Skunk
system appears to the rest of the operating system as
a regular disk: the owner initially makes an “ext2” file
system on the Skunk system and mounts it on a com-
puter. When the user travels, she unmounts the file
system, takes the Skunk device with her, and mounts
it on some other computer. A foreign reader mounts a
separate read-only file system for each user whom she
desires to read from. We call each of these file systems
a volume.

We use a pseudo block device driver that exports
the interface of a disk and redirects the requests sent
to it to a user-level process via upcalls. All the rest of
the Skunk system components are implemented in this
user-level process. The skunk system provides 64-bit
block IDs and each block is 4 KB. The timestamps are
also 64-bit. The Linux ext2 file system uses the lower
32 bits of a block ID, to which a prefix consisting of bits
representing users and attributes is added by the Skunk
system.

Although there are many possible policies that one
may employ for data placement and migration, we have
so far implemented only a few. Each owner may define
several volumes, each with its own attributes: a volume
can be mobile, shared, or stationary. If the volume is
defined mobile, the owner hints to the system that she
would like to have this data follow her, and the Skunk
system attempts to propagate the data in the volume to
as many devices as possible given enough resources. If
the volume is defined shared, the owner hints to the sys-
tem that others may need the data, and the Skunk sys-
tem attempts to propagate the data to a well-connected
device and to cache a copy on the Skunk device if pos-
sible. If the volume is defined stationary, the user hints
to the system that the data is most likely to be needed
exclusively on this creator device, although accessing it
from “elsewhere” is still possible. Clearly, other poli-
cies are possible; and these “attributes” do not have to
be attached to an entire “volume” and can be defined
for individual files instead (which would require a file
system-level implementation).

5.2 The Block Store and the Invalidation
Log

The block store is a log-structured logical disk, sim-
ilar to the ones used in some earlier systems [4, 20].
One difference is that because the Skunk system uses
64-bit block IDs, it cannot use a simple in-memory ta-
ble for mapping logical addresses to physical addresses,
as these earlier systems did; instead, the block store
employs an in-memory B-tree for the mapping. The
block store accesses the physical disk using raw I/O
via the Linux /dev/raw/raw* interface, bypassing the
buffer cache. Due to time pressure, we have not been
able to finish the snapshot feature of the block store. A
more primitive temporary substitute currently remaps
block IDs of new writes into a specially designated sub-
space which uses IDs not visible to the file system.
These blocks are later made visible when the snapshot is
deleted. Some additional small modifications are made
to the in-kernel file system to cause a foreign reader file
system to flush its client cache at the start of a for-
eign read session and to cause all in-memory dirty data
structures of the block store to be flushed to disk upon
an fsync.

The invalidation log is itself stored in the block store
in a designated subspace of the 64-bit space. Each log
record is a tuple consisting of the block ID, a times-
tamp, and a 32-bit attributes field. The attributes
field is largely unused currently. Each log block con-
tains a checksum of the block, the number of records in
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Dell Inspiron Laptop Compaq iPAQ 3870
Processor Intel Pentium III, 650 MHz Intel StrongARM, 206 MHz
OS Linux 2.4.7-10 Linux 2.4.18-rmk3
Memory 256M 64M
Disk model IBM Travelstar 20GN IBM Microdrive
Capacity 10GB 1GB
RPM 4200 3600
Average latency 7.1 ms (measured) 20.3ms (measured)
Bandwidth 16.9 MB/s (measured) 1.5 MB/s (measured)
Wireless Card Cisco Aironet 350, 11Mbps Cisco Aironet 350, 11Mbps
Modem Card Viking PC Card Modem, 56Kbps Viking PC Card Modem, 56Kbps

Table 1: Platform characteristics.

3

2

2

0

Office Home

Computer

Skunk

Ad hoc link

W
A

N
 li

nk

UserData

(a)

11

1

(b)

1 2 3

2

1

1

(a)

(c)

(d)

1 2 3

2

1

1

(e)

1 2 3 1

21

(f)

1

Figure 2: The experiments. (a) The setup. (b) Phase 1. (c) Phase 2. (d) Phase 3. (e) Phase 4. (f) Phase 5.

the block and then the records themselves in increasing
timestamp order. As writes occur, new log records are
buffered in memory. This allows us to eliminate records
for recent overwrites. Once a log block is written to
the block store it is not further compressed or altered.
Since we have not done any optimizations in the encod-
ing of the log records, a 4 KB log block stores only up
to 204 records in the current implementation. A better
encoding scheme could have significantly improved the
already low log propagation cost presented in the later
results section.

5.3 The iPAQ-Based Skunk Prototype
We use a Compaq iPAQ-based Skunk device in our

prototype. Ideally, we would like to equip an iPAQ
with at least three accessory devices: an IBM 1GB Mi-
crodrive, an 802.11 wireless card operating in ad hoc
mode, and a cellular modem. With a double-slot PCM-
CIA sleeve, unfortunately, we are only able to equip the
iPAQ with two out of three accessory devices at any one
time. There are few occasions, however, when a Skunk
user must have all three devices operating in the iPAQ
at once, so occasional unplugging and plugging of PC
cards in the iPAQ sleeve usually suffices. The iPAQ also
runs Linux. In fact, the Skunk system programs that
run on all devices share the same source.

5.4 Communication
The communication in the system occurs at three

layers of abstraction. The task of the lowest connectiv-
ity layer is to route to a device regardless where it is
and what physical connectivity interface it uses. The

middle layer is Skunkast. The top layer is the storage
system.

The Skunk device follows its owner and can be highly
mobile. From a foreign reader A’s point of view, a dif-
ferent user B’s Skunk can be reached via: (1) an ad hoc
wireless network encompassing both users’ Skunks, (2)
the Internet which connects to a remote ad hoc network
within which B’s Skunk is currently located, or (3) B’s
Skunk’s wireless modem interface. In our implementa-
tion, the first two cases share a fixed IP address that is
always valid (as long as the corresponding physical con-
nectivity exists) and case (3) has its own IP address.

To reach a Skunk in the first two cases, we need a
combination of an ad hoc routing component and “Mo-
bile IP”. We have implemented our own version of the
“Ad hoc On-demand Distance Vector” (AODV) routing
algorithm based on the draft 9 specification of AODV.
The implementation runs at user-level and can support
multiple network interfaces. For example, a computer
equipped with both an ad hoc network interface and a
wired ethernet interface can participate in Skunkasts.
We have used an existing Mobile IP implementation:
Dynamics HUT Mobile IP version 0.8.1.

The above mechanisms handle routing and provide
reachability between any two devices in the Skunk sys-
tem. The Skunkast layer is built on top. It consists of
two components: construction of a Skunkast tree and
using the tree to perform the actual Skunkasts. The
prototype implementation builds the Skunkast tree by
measuring the latency from the current host to each of
the other reachable devices owned by a user and uses
a simple heuristic to order the devices into “groups”—
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Phase Operation Time
(s)

1 Make Ext2 FS 2.1
Create 7800 15.4
Create f1 (10 MB) 1.4

2 Create f2 (10 MB) 1.3
Overwrite 2500 34.4

3 Create f3 (1 MB) 0.6
Overwrite 250 8.9

4 Read f1 (10 MB) 1.1
Read f2 (10 MB) 32.6
Read f3 (1 MB) 138.5
Read 3900 250.4

5 Read f1 (10 MB) 53.0
Read f2 (10 MB) 77.8
Read f3 (1 MB) 222.8
Read 3900 594.1

Table 2: Times experienced by the user as he performs I/Os on
a laptop while with an iPAQ Skunk.

Phase Direction Size Time
(KB) (s)

1 H → S 456 2.8
2 S → O 456 1.6

O → S 140 1.4
3 O → S 20 0.2
4 S → H 160 1.1

Table 3: Statistics of log propagation: the size of the log and
the propagation times. “H”, “S”, and “O” represent the home
computer, the Skunk, and the office computer respectively.

devices within a group are queried in parallel but differ-
ent groups are queried sequentially during a Skunkast.
This process is performed whenever the current device
changes location and can be periodically rerun. We are
considering ways of exploiting routing information other
than latency for building Skunkast trees.

For point-to-point communication channels during
actual Skunkasts, we have experimented with the socket
interface (on both UDP and TCP) and the SUN-style
RPC interface (running on top of both UDP and TCP
transport). The socket version is more asynchronous in
overlapping messages but, unfortunately, we observed
some pathological performance on the ad hoc wireless
network that is not seen on wired ethernet. The results
that we report are based on the UDP/RPC version.

For the purpose of obtaining the list of devices be-
longing to any particular user, the simple DNS-like
mechanism described in Section 4.11 has only a simple
configuration file-based substitute at the moment.

5.5 Status

All aspects of the design described in Section 4 are
implemented with the exception of full support for snap-
shots, backup and restore, and access control. The C
prototype implementation consists of about 18K lines.
The design of the Skunk system has sought to minimize
the amount of distributed state and global coordination.
The result has been a system that is relatively simple
to understand and implement.

Phase Direction Size Time
(MB) (s)

1 H → S 90.2 239.3
2 S → O 90.2 187.5

O → S 27.8 88.4

Table 4: Statistics of data propagation: the amount of data and
the propagation times.

6 Experimental Results

In this section, we present some experimental re-
sults to show that: (1) the use of portable storage and
ad hoc connectivity in the Skunk system compensates
for a weak wide-area connectivity; (2) the propagation
of invalidation log introduces little overhead; and (3)
Skunkast can effectively locate close replicas without
adding significant overhead.

Table 1 gives the platform characteristics. The role
of the Skunk device is played by a Compaq iPAQ. The
rest of the devices are played by Dell laptops. Fig-
ure 2(a) shows the setup. Two sites, home (H) and
office (O), are connected by a weak WAN (56 Kbps mo-
dem). Each device is equipped with an ad hoc network
interface. The Skunk device (S) follows the user. The
experiment consists of five phases, each illustrated by
a pane in the rest of Figure 2. The first three phases
create data at different sites and the data is propagated
in different ways. The last two phases read data that is
distributed throughout the system.

Figure (b) illustrates the first phase of the experi-
ment. User Bob is at home. He creates an Ext2 file sys-
tem on an initially empty Skunk system. Then he cre-
ates a directory tree, which is four levels deep. Each di-
rectory has five subdirectories and ten files in it. There
are a total of 7800 files, each of which is 8 KB in size.
Then he creates a 10 MB file called “f1”. The rows
labeled as “Phase 1” in Table 2 give the latency ex-
perienced by Bob as he performs these activities. All
this new data initially resides on the home laptop disk;
so the latencies are determined by the efficiency of our
per-device block store.

The invalidation log created by these activities, to-
taling 456 KB, as shown by the first row of Table 3, is
propagated to the Skunk device over an ad hoc wireless
network. As more idle time is available, the new data is
propagated to the Skunk as well over the same ad hoc
network. The first row of Table 4 gives the statistics of
data propagation. Although the size of the invalidation
log can be drastically reduced with more careful encod-
ing, we see that it is already quite small compared to the
amount of data. The bandwidth that we achieve on the
ad hoc network can be improved further if we overlap
messages more aggressively. At the end of this phase,
the Skunk not only contains the complete invalidation
log, it also contains all the new data.

Figure (c) illustrates the second phase. At the be-
ginning of this phase, Bob arrives at his office with his
Skunk device, and since idle time is available, both the
invalidation log and the data carried in the Skunk are
transfered to the office computer over the ad hoc net-
work. The costs of these transfers are shown in the “S
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→ O” rows of Tables 3 and 4. Unlike most existing so-
lutions, the propagation of the invalidation log and the
data are decoupled in the Skunk system; so it is not
mandatory to propagate the data immediately. This
allows the user to use the storage system immediately
without having to wait for lengthy data propagation.
As the top two rows of Table 4 show, the “S→ O” data
propagation is faster than the “H → S” data propaga-
tion. This is due to the fact that the read performance
of the block store on the Microdrive in the Skunk device
is significantly better than its write performance.

Next in this phase, Bob performs more I/O: he cre-
ates another 10 MB file “f2” and overwrites 2500 ran-
domly selected existing files. The latencies are reported
in the “Phase 2” rows of Table 2. Overwriting exist-
ing files is slower than creating the directory structure
due to extra disk reads incurred by lookup operations,
whose latency cannot be overlapped. Both the invali-
dation log and the newly created data is propagated to
the Skunk at the end of this phase. The costs of these
propagations are given by the “Phase 2 / O → S” rows
in Table 3 and 4.

Figure (d) illustrates the third phase. Bob creates
more new data as he creates a 1 MB file “f3” and over-
writes 250 randomly selected files. The performance of
these activities are reported in the “Phase 3” rows of
Table 2. Since Bob must leave office in a hurry, the
newly created data resides only on the office computer.
The system still, however, needs to propagate the inval-
idation log to the Skunk before he takes it home, and
the cost of doing so is reported by the “Phase 3/ O →
S” row in Table 3.

Figure (e) illustrate the fourth phase. Bob returns
home with his Skunk. The home computer is quickly
brought up-to-date as the invalidation log is propagated
to it. This time is reported in the “Phase 4” row of Ta-
ble 3. Since he needs to perform more I/Os, however,
the data propagation does not commence. As he reads
various files in this phase, some of which have been over-
written in the office, the Skunk system always directs his
requests to copies that are both fresh and close. Bob
first reads the three large files: f1, f2, and f3. The
system performs Skunkasts and retrieves the three files
from the local disk of the home computer, the Skunk
over the ad hoc network, and the office computer over a
WAN respectively. Bob then randomly chooses 50% of
his small files and reads them. Again, since the data is
smeared across the three devices, for each data request,
Skunkast probes the three devices in the order: H, S,
O. The performance of these operations is shown in the
“Phase 4” rows of Table 2. An analysis of these num-
bers shows that querying the nearer devices by Skunkast
adds little to the cost of retrieving data over the mo-
dem, and when reading from nearer devices, Skunkast
is able to obtain all the bandwidth that UDP/RPC over
the wireless ad hoc network or the local block store is
able to deliver.

Finally, Figure (f) illustrates the fifth phase, which
is an instance of read sharing of data in the Skunk sys-
tem. Bob’s colleague Alice shows up at Bob’s home and
wishes to read some of Bob’s data. Alice’s laptop is able

1 2 3 4 5
Coda Bayou F.R. PR0 Skunk

1. Transparency
√ × √ √ √

2. P2P × √
— —

√
3. Infra.-less ops. × √ × √ √
4. Partial repli. — × — × √
5. Read sharing

√ √ √ × √
6. Write sharing

√ √ √ × ×
7. Conflict resol. —

√
— × ×

8. Metadata prop. × × √ √ √
9. Redundancy × — × √ ×

Table 5: Comparison of five mobile storage systems: “
√

” indi-
cates good (although not necessarily perfect) support of this fea-
ture; “×” indicates little or no support; and “—” indicates some
limited support.

to access data at H and S using the ad hoc interface,
and the data at O via the modem link. In this bench-
mark, Alice reads the same data as read in phase four
above. The data is smeared across H, O and S as at the
end of phase 3. To satisfy reads generated by Alice’s
laptop, Skunkast probes Bob’s device in the order: H,
S, O. The read latencies perceived by Alice on her lap-
top (see “Phase 5” rows of Table 2) are worse than the
corresponding latencies seen by Bob in Phase 4. The
reason for this is that Skunkast incurs an extra hop in
satisfying Alice’s requests. 4

7 Related Work

7.1 Mobile Storage Systems

Table 5 is a feature matrix of five mobile storage
systems: (1) Coda [9, 13] is a client/server file sys-
tem that allows disconnected or weakly connected mo-
bile clients to operate out of their local “hoard”. (2)
Bayou [16, 23] is a peer-to-peer application construc-
tion framework that allows its users to craft application-
specific mergers and conflict resolvers for dealing with
concurrent writes to the same objects. (3) Fluid Repli-
cation (labeled “F.R.” in the table) [8], an extension
based on Coda, introduces an intermediate level be-
tween mobile clients and their stationary servers, called
“WayStations”, which are designed to provide a degree
of data reliability while minimizing the communication
across the wide-area used for maintaining replica con-
sistency. (4) PersonalRAID0 (labeled “PR0” in the ta-
ble) [20] allows a mobile user to use a small portable
device to transport modifications from one host to an-
other to keep their images consistent without penalizing
the user with these propagation delays. (5) The Skunk
system. (The PR0 and Skunk systems are part of the
umbrella PersonalRAID project and the former can be
viewed as a primitive predecessor of the latter.) We ex-
amine nine features, each of which corresponds to a row
in the table and a paragraph below.

Transparency. Although it is not difficult to con-
struct cases that will expose non-transparent behavior

4In phase four, it makes sense to cache the data read by Bob
at H, but we do not do so in our experiment. This is done to
illustrate the fact that Skunkast incurs no significant overhead
even in the case of read sharing when the data is distributed across
multiple devices accessible via different levels of connectivity.
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on each of these systems, all systems with the excep-
tion of Bayou are low-level solutions that support most
existing application transparently. Bayou is the least
transparent: new applications must be developed from
scratch to take advantage of the Bayou framework.

Peer-to-peer support. We define peer-to-peer
support to mean that all devices in the system are
equals and any two devices can communicate directly
with each other to create the illusion of a single system.
(In one of the simplest cases, for example, two users
who meet on the road should be able to spontaneously
collaborate.) Coda lacks this support in that the sys-
tem by design differentiates “clients” from “servers” and
clients do not communicate with each other directly.
Each data item has a fixed “home” on the server and
clients are always required to “reintegrate” their up-
dates back to the server. While one intent of this dif-
ferentiation is to allow better managed servers to pro-
vide a higher level of reliability guarantee, requiring a
large number of wide-spread devices to communicate
only with a server becomes too strict a constraint when
peer-to-peer interactions could have done well. Fluid
Replication allows some limited peer-to-peer support in
that the WayStations are basically equals to each other
but mobile clients still do not communicate with each
other directly. PR0 allows some limited support as well
in that all of a user’s computers are peers but the only
way for them to communicate with each other is via a
portable storage device. Bayou and Skunk provide true
peer-to-peer support.

Infrastructure-less operations. “Infrastructure
support” refers to well-managed servers that are crucial
for enabling user-to-user and device-to-device interac-
tions and are not likely to be found at locations such as
moving trains. We classify Coda servers and WaySta-
tions as infrastructures, without which two users cannot
meaningfully collaborate. Bayou, PR0, and the Skunk
system rely on no special infrastructure support.

Partial replicas. Bayou and PR0 attempt to main-
tain complete replicas at all devices. This simplifies
some aspects of the system but is not always natural for
all types of data and all types of devices, some of which,
for example, may have capacity limitations. Coda and
Fluid Replication allow a mobile client to contain only
a subset of the data while the servers and WayStations
should contain full replicas. In the Skunk system, any
piece of data can reside on any device and no device is
required to contain a complete replica. This provides a
large degree of placement flexibility.

Read sharing. PR0 is designed to maintain the
consistency of a single person’s multiple computers with
minimum resource requirements and minimum inconve-
nience to the user. It is the only system among the five
that does not support any inter-personal sharing.

Write sharing. “Write sharing” refers to the sys-
tem’s ability of handling writes to the same data by
different users. Coda, Bayou, and Fluid Replication all
support this feature while PR0 and the Skunk system
do not. (The PR0 paper [20] describes how writes on
multiple devices belonging to the same user can be sup-
ported but this idea is not implemented in either PR0 or

Skunk.) Section 3.5 contains a more detailed analysis.
We believe that this choice simplifies the Skunk system,
is appropriate for a user-centric name space and device
ownership model, and still enables meaningful collabo-
ration among different users.

Conflict resolution. Coda, Bayou, and Fluid
Replication support varying degrees of conflict resolu-
tion while the PR0 and Skunk systems do not: as stor-
age systems, these latter systems possess little informa-
tion for handling conflicts. As discussed in Section 3.5,
we believe that the coexistence of a general peer-to-
peer storage system and specialized peer-to-peer shared
read-write stores provides the best of both worlds.

Decoupled metadata and data propagation. In
Coda and Bayou, data and metadata are intertwined in
the update log and the process of bringing another ma-
chine up-to-date requires the propagation of both data
and metadata. New data may reside at at least two
places: both in the update log and in the “normal” data
store. During this propagation process, which may in-
volve a large amount of data movement, user access to
the system needs to be suspended to avoid exposure to
inconsistent state. Fluid Replication relieves this in-
convenience as only metadata, namely, consistency in-
formation, is exchanged among the WayStations across
a potentially weak link most of the time. In PR0, only
the location of the latest updates needs to be propa-
gated when two disconnected devices are reconnected
so data propagation can happen in the background. In
the Skunk system, only the data-less invalidation log
needs to be propagated to keep devices consistent and
data can be propagated in the background as well.

Built-in data redundancy. PR0 is the only sys-
tem that guarantees a high level of data reliability: it
tolerates any single device loss. Bayou replicas provide
some safety in the case of a device loss but newly cre-
ated data may be lost if the loss of the device occurs
before the data is propagated elsewhere. All other sys-
tems rely on a backup-restore scheme. The problem
is easier to solve in Coda where backing up a single
server’s data is sufficient, but it is more complex for
Fluid Replication which may have its state distributed
across numerous WayStations. The Skunk system uses
a distributed snapshot scheme for backing up data.

7.2 Other Systems

In cluster file systems [1, 11, 24], like in the Skunk
system, data may reside anywhere. The Skunk system
is more aware of a potentially more diverse topology as
it employs the topology-aware Skunkast to locate data.
An alternative of providing storage support to mobile
devices is to rely on an omnipresent file system “util-
ity” [10] that the devices are always connected to. The
utility itself may be made of peer-to-peer components.
In the Skunk system, our goal is to exploit the stor-
age elements embedded in end devices themselves to
lessen the demand on a wide-area network. Other recent
wide-area peer-to-peer file systems employ distributed
hash table-based placement algorithms [3, 19]. The
Skunk system is more sensitive to the physical topology
and must control its own data placement in a flexible
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manner. Distributed databases [6, 14], like Bayou, use
update logs to keep replicas consistent. The invalida-
tion log in the Skunk system contains only invalidation
records and the system does not need to propagate data
to quickly bring other devices up-to-date. The use of a
consistent storage snapshot for backup-restore has been
used by many systems [15, 17]. The Skunk system lever-
ages the propagation of the invalidation log to create a
consistent snapshot across a number of distributed de-
vices, which are then used to create a backup, poten-
tially across multiple backup devices. Finally, Skunkast
is similar to user-level multicast systems [2, 5, 7] except
not all hosts in the target list of a Skunkast need to be
reached.

8 Conclusion

We have designed and implemented a peer-to-peer
storage system that caters to the needs of mobile users.
The system coordinates a plethora of a user’s exist-
ing devices to form a coherent whole so that it may
ease the user’s increasingly difficult data management
chores. By judiciously introducing and enlisting the aid
of ad hoc peer-to-peer connectivity and portable storage
elements, the system can overcome the inadequacy of
wide-area connectivity. We believe that a combination
of the system’s features, including the Skunkast data
location mechanism, the lazy invalidation log propaga-
tion, and the distributed snapshot scheme, are uniquely
suited for the decentralized, autonomous, and person-
alized environments it targets.
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