
Secure Linking: a Framework for Trusted Software Components

Eunyoung Lee
Department of Computer Science

Princeton University
elee@cs.princeton.edu

Andrew W. Appel
Department of Computer Science

Princeton University
appel@cs.princeton.edu

Abstract

In linking together a software system from components in
the presence of multiple versions, digital signatures, static
type information, software fetched over networks, multiple
vendors, local libraries, and so on, the policies guiding link-
ing may be quite complex. We show how to describe such
policies in a “linking logic” that is modular and provably
sound. We show a prototype implementation, and we show
that this logic is expressive and general enough to describe
a real-world system: the Microsoft .NET “assembly” ver-
sioning system. The framework is general and expressive
enough to represent other existing linking systems and to
help different linking systems (and public key infrastruc-
tures) interoperate.

1 Introduction

Large software systems are often built from loosely-
coupled subsystems. The relative independence of soft-
ware components makes it possible for each component to
be implemented separately and to communicate with other
components only through its interface, regardless of its in-
ner implementation. When a programmer uses a third-party
software component as a building block of her system, she
doesn’t want the code she imports to break the whole sys-
tem. She needs some methods guaranteeing that linking the
foreign software component to her system is safe.

The most widely used methods for ensuring safe link-
ing are type checking and code signing. Checking the type
of the interfaces between two software components ensures
that two components agree on the types they are using. Al-
though type checking is quite strong and easy to use, it
doesn’t guarantee that the code will behave in an expected
way. Code signing ensures that someone trustworthy trusts
the code, but doesn’t specify what properties of the code
are certified by the signer: “never pops up misleading dia-
log box” or “immune to buffer overrun”?

To address this problem, stronger and more specific guar-

antees are needed. A code consumer may want to specify
that a component must have certain properties to be linked
safely and securely to its system. At the same time, the
code consumer wants a code provider writing or supplying
the component to prove it has the required properties.

We have developed a logical framework for linking sys-
tems providing stronger support for system safety and se-
curity. It is based on Proof-Carrying Authentication (PCA),
an authentication/authorization framework based on higher-
order logic [2]. In our framework, a code consumer an-
nounces its linking policy to protect itself from malicious
code from outside. The policy can include certain proper-
ties required by the code consumer for system safety, such
as software component names, application-specific correct-
ness properties, version information of software compo-
nents, etc. To link and to execute a component in the sys-
tem of a code consumer, the provider of the component
should submit a proof that the component has the proper-
ties specified in the code consumer’s linking policy. The
proof is formed by the basic logic and inference rules of
the framework. After being submitted, the proof is checked
by a small trusted proof checker in the code consumer, and
if verified, the component is allowed to be linked to other
components in the code consumer.

In this paper, we present the main design concepts of our
proposed linking framework, and describe how they are rep-
resented in the underlying linking logic. We then show that
the linking logic of the framework is general and powerful
enough to give a formal description to other real linking sys-
tems by encoding the linking system of .NET in our logic,
and discuss what we learned while formulating the .NET
linking system.

Policy examples. One could use our framework, in build-
ing a system from components, to specify and enforce poli-
cies such as,

• Gameimports (links to)GUI of version 1.3.

• Compiler links to any version ofSymbolTable
that hasefficient lookup property as certified



by underwriters laboratories.

• Compiler links only to the particular implementa-
tion of SymbolTable whose machine code hashes
to 8327518932.

• For version 1.6 through 1.9 ofGUI it is OK to substi-
tute version 2.4 (in .NET this is called a version redi-
rection).

• All modules imported byGamemust have been me-
chanically inspected by a virus detector.

• Certificate AuthorityAlice can vouch for the public
key of the virus detector.

• Gamelinks only to versions ofGUI that support any
superset of a particular COM interface.

• Untrusted modules must have been checked by a byte-
code verifier to assure that they respect their interfaces.

The connection between the code, the property, and the
property certifying agent is made by using cryptographic
hashing and public-key encryption, as appropriate.

2 Related work

Component models. Restricting the communication be-
tween components is necessary to protect each component
from misuse or malicious attack by other components. Tra-
ditionally, each program protects itself while communicat-
ing with other programs through abstract data types (ADT)
or information hiding.

Object-based frameworks such as COM or languages
such as Java provide component models based onobjects.
They permit access control at the level of class, method, or
data field. The Compilation Manager (CM) of SML/NJ [6],
enables access control of software components at a larger
scale: CM makes it possible to describe a hierarchy of mod-
ules so that entire submodules are hidden from view except
within their own component-group, and to export interfaces
at the group level.

Bauer, Appel, and Felten extended the Java package
mechanism and developed a linking system supporting hi-
erarchical modularity similar CM [4]; Reid et al. propose a
component model (calledunits) for the C language [14].

Bytecode verification. Java introduced the idea of static
type-checking of program code by the “code consumer” just
prior to linking; Necula [11] moved the checking from byte-
code to machine code inProof-Carrying Code. Devanbu et
al. [7] suggested that if the proof-checking is too expensive
to do on the “code consumer’s” machine, then it could be
done by a trusted coprocessor (on the code producer) that
would produce a signed certificate.

.NET framework. The .NET framework is a computing
platform developed by Microsoft targeting the highly dis-
tributed environment of the Internet [13].

The Common Language Runtime (CLR) of the .NET
framework uses Java-style bytecode verification. It also
has a new configuration-management mechanism called the
assembly, which provides version-number information, as
well as information about what version-numbers of other
components are required for linking with the given assem-
bly.

Tying it all together. There are so many mechanisms
to choose from: class and method-level access control,
supermodule-level access control, bytecode verification,
delegation of verification to trusted hardware or some other
authority, code auditing and certification by vendors or by
independent third parties. All of these mechanisms may be
useful. We have developed a framework in which system-
builders can specify how the mechanisms should be com-
bined; our implementation enforces such specifications.

PCA. Our framework is built on the PCA logic introduced
by Appel and Felten [2]. Proof-Carrying Authentication
(PCA) is a distributed authentication/authorization frame-
work based the proof-carrying mechanism, originally intro-
duced for Proof-Carrying Code by Necula [11]. PCA is dif-
ferent from previously existing authentication frameworks
in two ways: it uses a higher-order logic that makes PCA
more general and more flexible, and a code consumer need
not execute a complicated decision procedure to grant the
client’s request. A code provider is responsible for proving
her capability of access.

Authentication frameworks and protocols have been de-
scribed using formal logic [1], for example in the Taos dis-
tributed operating system [15]. Taos has a logic of authenti-
cation on top of propositional calculus, which are proved to
be sound. Wobber et al. [15] chose to implement only a de-
cidable subset of their authentication logic since they want
the decision procedure for granting a request to be decid-
able. Decidable logics are weaker than general logics, so
this makes the authentication logic less flexible. To make
an application-specific inference logic, some application-
specific rules are added to a given set of basic inference
rules and the soundness of the whole logic must be proved
again.

PCA gains more flexibility by allowing quantification
over predicates. Therefore the authentication framework
has only one set of inference rules and all application-
specific rules are proved as lemmas. In other words, for
an application-specific security policy, users can define op-
erators on top of the basic logic of PCA.

Since all the application-specific logics are expressed us-
ing the same general inference rules, they can interoperate

2



Figure 1. An example of secure linking

with each other easily. This makes PCA more general than
other previous authentication logics. However, finding a
proof for a request is not always possible because higher-
order logic is not decidable. To get around this problem,
PCA puts the burden of constructing proofs on the client and
on the contrary the server simply checks that proof. This is
in analogy with proof-carrying code [11]. Even in an unde-
cidable logic, proof checking (not proving!) can be simple
and efficient. Bauer, Schneider, and Felten developed an in-
frastructure for distributed authorization based on the ideas
of PCA [5].

3 Example

Suppose that a principal Alice has a component named
compiler . Alice could be a programmer who wrote the
component, or she could be a customer who bought the
component from a third-party developer. Now, Alice wants
to send the componentcompiler to another principal
named Bob, and Bob wants to executecompiler after
linking it to other components in his system. Because Bob
wants to keep his system secure and cannot trust the safety
of the component Alice provides, he requires Alice to prove
that her software component is safe enough to be linked to
other components. To protect his system from all untrusted
components from outside, Bob tells his linking policy to Al-
ice. The linking policy usually consists of three parts: the
description of software components Bob provides (call it a
library), a list of useful properties Bob requires for outside
software components, and the names of authorities trusted
by Bob.

Properties. A code consumer requires a software com-
ponent to have some pre-announced properties in order for
the component to be linked to other components in his sys-
tem. A property of a component is an assertion of ex-
pected behavior from the component. There are many use-
ful properties which help protect systems from malicious

outside codes, such as “this software component is type-
checked,” “this software component never accesses out-
side of the memory which is assigned to it,” “this soft-
ware component doesn’t read any information from or write
any information to the file system,” or “this software com-
ponent doesn’t produce any arithmetic overflow or under-
flow.” In our example, suppose that Bob requires that ev-
ery component from outside should have a property called
prp type checked , that means that Bob will allow only
a type-checked component to be linked to his system. Now
Alice must prove her componentcompiler has the prop-
erty prp type checked in order to link the component
to Bob’s system.

Property authorities. Some properties, like the property
of being type checked, can be guaranteed by a trusted
compiler, while others cannot be proven easily. But these
properties may be accepted as true if a software compo-
nent has assurances made by trusted third-party authori-
ties. The trusted authorities can make assurances result-
ing from a software audit or some other verification pro-
cesses for software engineering. Such assurances are usu-
ally encoded as digitally signed statements. We call those
authoritiesproperty authorities. After verifying the dig-
ital signatures on the statements, the property statements
made by trusted property authorities are accepted as true
and the components of those statements are considered to
have the properties in those statements. In our example,
as shown in Figure 1, Charlie is a property authority who
examines a software component and determines if the com-
ponent has the propertyprp type checked . Since Bob
announced that he trusts Charlie as a property authority for
prp type checked , Alice must get a digitally signed as-
surance from Charlie that the componentcompiler has
the propertyprp type checked .

Key authorities. Since all certificates from property au-
thorities come with digital signatures, a code consumer
must know what the signers’ public keys are in order to
check the validity of the digital signatures. The code con-
sumer must at least know who is the authority providing the
right public keys for verifying the signatures and what her
public key is. These authorities are calledkey authorities
(also known as certificate authorities). Key authorities are
responsible for guaranteeing the bindings between a prin-
cipal’s name and a public key. Key certificates signed by
a key authority are verified with her already known public
key. Hence, it is not unusual for the key certificates to form
a chain of trust. Diane in Figure 1, is a key authority in our
example. When Bob gets a digitally signed property cer-
tificate from Charlie, Bob doesn’t need to know in advance
the public key of Charlie to verify the signature of that cer-
tificate. Instead Bob asks Diane for Charlie’s key certificate

3



(or Bob might ask Alice to get Charlie’s key certificate from
Diane to complete her proof); he gets Charlie’s public key
after verifying the key certificate with Diane’s public key.

Property servers. Just as Bob doesn’t have to know all
the public keys of principals, he doesn’t have to know all
the bindings between properties and property authorities.
Instead Bob announces that he trusts a principal as some-
one who will let him know the property-authority bindings.
Therefore, Bob doesn’t enumerate the names of property
authorities for every required property in his linking pol-
icy, and it relieves him from modifying and re-announcing
the linking policy whenever a property-authority binding
changes. In Figure 1, Bob announces that he trusts Emily as
a property server. So Alice should consult Emily to find out
from whom she can get property statements for the compo-
nentcompiler .

Library. Although it is possible to write a software com-
ponent to be self-contained, it is very natural for a software
component to use already existing software components by
importing them. A code consumer announces what com-
ponents it has and what properties are exported by each of
those components. At the same time, a component from
a code provider declares what components it imports and
what properties are required for each of them in its com-
ponent description. For a foreign component to be linked
safely, a secure linker checks whether or not the library of
the code consumer provides all the software components
that are required by the foreign component. Suppose that
the componentcompiler in our example uses a hash ta-
ble during its computation and imports a component called
hashTable with a propertyprp efficient search .
Bob’s library could have several different components
named hashTable . These are different from each
other in terms of the properties they export. Because
the componentcompiler requires that a component
hashTable should haveprp efficient search ,
only a componenthashTable exporting the property
prp efficient search would be linked to the com-
ponentcompiler .

Linking decision. To decide to link a component com-
ing from outside to other components in the system, a code
consumer must verify whether or not the component pro-
vides all the required properties. For example, Bob checks
the proof from Alice with the certificates by using a trusted
proof checker, and links the componentcompiler to other
components in his system if the proof is valid; otherwise he
rejects it. Since the certificates Alice provides are digitally
signed, all signatures are verified during the proof-checking
time.

〈componentDsc〉
〈name〉 compiler 〈/name〉
〈modules〉
〈itemhash= “194CA77319” 〉 compiler.class〈/item〉
〈itemhash= “EF41900142” 〉 regAlloc.class〈/item〉
〈/modules〉
〈exports〉
〈type〉
〈item〉 class compiler〈/item 〉
〈item〉 interface regAlloc〈/item〉
〈/type〉
〈property〉 〈item〉 prp type safety〈/item〉
〈/property〉 〈/exports〉
〈imports〉
〈component〉
〈name〉 hashTable〈/name〉
〈required〉
〈type〉 〈item〉 class hashtable〈/item〉 〈/type〉
〈property〉
〈item〉 prp type safety〈/item〉
〈item〉 prp efficient search〈/item〉
〈/property〉 〈/required〉 〈/component〉 〈/imports〉

〈/componentDsc〉
Figure 2. A component description in XML

In what follows, we will explain our framework using
the example above. Our framework is independent of pro-
gramming languages or programming environments; thus,
the explanation of the framework is language-neutral.

4 Models for linking

Our framework has two conceptual models for linking:
one for describing components and their properties, and one
for describing a code consumer’s linking policies. Each
model has its own descriptive language adopting the XML
syntax. We developed XML parsers for each language, pro-
ducing our linking logic from XML description files. The
resulting component description of the previous example is
shown in Figure 2.

In this section, we will explain the models of components
and linking policies in our framework. The complete syntax
and semantics of the two description languages is presented
in our companion technical report [9].

Going back to the example in the previous section, Alice
must describe the software componentcompiler to Bob’s
linking system. A component description in our framework
consists of four parts: a component name, modules, exports,
and imports. Thecomponent nameis a local identifier of
convenience for the component. Themodulepart is a set
of code files which implement the component. The logic
represents each code file by its file name and cryptographic
hash code; a secure linker makes sure (by checking hash
codes) that the files linked are the ones that the policy ac-

4



cepted. Theexportpart of a component description speci-
fies what should be visible outside of the component. Usu-
ally the identifiers with type information have been exported
from software components (e.g., class and method names).
In our framework, we allow components to export proper-
ties as well as class and method identifiers. Theimportpart
of a component description shows what other components
it depends on. An import request of a component consists
of a component name and some required properties. A se-
cure linker locates an imported component and checks that
it exports all the required properties of an import request.

By allowing the export and import of properties as well
as class and method identifiers, our framework gives a
linker more information than types and enables component
composition to be safer.

Linking policies are set by system administrators (or
component integrators) and specify what software compo-
nents may be linked together. The user interface language
provides a simple and convenient way of stating linking
policies: users can specify library components provided by
a system (usually a system of a code consumer), required
properties from foreign software components, the names of
trusted key authorities, and the names of trusted property
servers.

Separating linking policies from the framework gives
more ability to code consumers to express their linking poli-
cies, and it makes our framework more general and flexible
than frameworks with fixed linking policies.

5 Linking logic

The linking logic of the secure linking framework is a
higher-order logic defined on top of Proof-Carrying Au-
thentication (PCA) logic [2]; therefore the semantics of
each operator are expressed in terms of the underlying PCA
logic, and inference rules using operators are then proved
as lemmas. In this section, we explain how we translate the
software component description and linking policy from the
user interface languages into the linking logic, and how we
represent the linking decision procedure in the linking logic.

Soundness. A logic comprisesoperators(such askeybind
in an authentication logic) andinference rules. The infer-
ence rules can be used to prove theorems; in our applica-
tion the linker demands the proof of a linking theorem be-
fore running a software system built from the linked com-
ponents. It is desirable to prove the logicsound, i.e., that
untrue formulas cannot be proved.

Soundness is typically proved by induction over all
proofs that can be built from a given set of inference rules.
PCA takes a different approach, however: each application-
specific operator (such askeybind) is defined in terms of the
underlying operators of higher-order logic. Each inference

prp kind(p, prp componentname)
rq componentnameexists(p)

nameexists

p namerequest= mk rq componentname(p)
prp eq(p,q)
prp kind(q, prp componentname)

p namerequest(q)
namematch

Figure 3. Rules for component names

rule is proved as a theorem of higher-order logic. Because
each rule is proved sound independent of all the others, the
system is more modular: it’s easier to add new application-
specific operators and rules as needed. This is important
when making two systems (such as public-key infrastruc-
ture and safe linking, or two public-key infrastructures) in-
teroperate. We have used PCA to prove the soundness of
our logic.

Representing properties. In our framework, a code con-
sumer announces in advance which properties it requires a
foreign component to have. Code providers are responsi-
ble for proving that their components have the properties
required by the the code consumer. Therefore, an essential
part of the logic is to check if two properties match each
other.

In designing the logic for property matching, we had
three purposes. We wanted: to easily check if two proper-
ties match each other, to make adding new properties sim-
ple, and to isolate the implementation details ofproperties
from other parts of the linking logic.

We achieved the first goal by dividing property match-
ing into two parts,propertiesandproperty requests. In our
design, a property request is a predicate of typeprp req
accepting an argument of typeproperty; it returns true if
the argument matches the request it implements, or returns
false otherwise. By introducing a predicate typeprp req as
well as the typeproperty, we turn the procedure of check-
ing property matching into simple evaluation of a predicate.
Thus, the required properties in the linking policy of a code
consumer are encoded in the form of typeprp req, and a
code producer proves that the set of its exported properties
includes all of those required to make the encoded property
requests true.

As enumerated in Section 3, there exist many different
kinds of properties. Therefore it is useful to make it sim-
ple to add a new kind of properties and property requests
to the framework without changing other already existing
properties in the linking logic. Our framework and its logic
is designed for making this procedure as easy and simple as
possible. For example, Figure 3 shows the inference rules
used for matching properties for component names. Two
different property requests on component names are typi-

5



cally used in linking. A code consumer may require a com-
ponent to have a specific namep, by building a “name re-
quest” using the predicatemk rq componentname(p). An
inference rule callednamematchspecifies how a name re-
quest can be satisfied (inference rules have names for con-
venience in referring to them in proofs). If a name request
p namerequestis built from p using the the predicate, and
if there is some nameq equal top, thenp namerequestcan
be satisfied byq.

Another kind of request is simpler: The code consumer
may require a component to have some name – any name.
The inference rulenameexistscan be used to build proofs
of therq componentnameexistspredicate.

An important design goal is to separate property defini-
tions (property) and property requests(prp req) from the
other part of the linking logic. By separating these con-
cerns, we increased the scalability and flexibility of the
framework. During a linking procedure, property matching
happens in two places: a secure linker checks if a foreign
software component exports all the properties required by a
code consumer, and if the library of the code consumer sat-
isfies the foreign component’s import requests. The pred-
icatesexport requiredprps andsatisfyimport req address
these requirements respectively in the linking logic.

The semantics of these decision predicates depend
on a predicatehasproperty. Therefore, the predicate
haspropertyis the only part concerned with the implemen-
tation of property matching. Furthermore, even the predi-
catehaspropertychecks if a property satisfies a given prop-
erty request. In other words, the predicatehasproperty
depends only on the abstract part of typesproperty and
prp req, not on the details of their implementation.

Component description. A component description is
usually turned into formulas in the linking logic after check-
ing the hash codes of binary modules. Digitally signed
statements of certificates from key authorities, property au-
thorities, or property servers are converted into axioms in
the logic after verifying their signatures.

A component description is encoded in the form of a set
of properties and a list of sets of property requests. The
name of a component, the set of exported type identifiers,
and the set of exported properties are all treated as prop-
erties and encoded into instances of typeproperty. These
make up the export part of the component.

The list of sets of property requests corresponds to the
import part of a component. Each set of property requests
stands for one imported component and includes the predi-
cates for useful properties such as component names. Since
a software component usually imports more than one com-
ponents, the sets of property requests for imported compo-
nents form a list. By using a list rather than using a set, we
can handle some cases in which the order of importing the

components is critical in linking decision.

Component descriptions can be combined by using the
formula constructorcdsccombine, which accepts two terms
of type componentdscand returns a term of typecompo-
nentdsc. In addition, the linking logic provides a binary
relationsub cdsc, which determines one argument is a sub-
component of the other.

It is very useful to make it possible to combine com-
ponent descriptions, especially when considering digitally-
signed certificates from property authorities. When signing,
it is reasonable for a property authority to want to sign only
on the properties he can guarantee, rather than sign on all
the properties a component description exports. For exam-
ple, a trusted compiler can guarantee that modules with a
given component description are type-safe, but doesn’t want
to, or is not able to, guarantee any other properties. After
collecting component descriptions assured by property au-
thorities, a code producer combines the small descriptions,
and builds a complete component description. It frees the
property authorities from a burden of assuring more proper-
ties of a component description than they want to.

Linking policy description. A linking policy is translated
into two forms in the linking logic: axioms and formulas.
The name bindings of property servers and of key authori-
ties are turned into axioms.

The library components are encoded in formulas. A li-
brary component’s name, its exported type identifiers, and
its exported properties are encoded as a set of properties.
Since a code consumer usually provides more than one li-
brary component, they are put into a list, each element of
which is encoded as a set of properties, as explained.

At the same time, linking policies specify the properties
required by the code consumer. Each required property is
translated into a corresponding predicate of typeprp req.
Together they form a set. For example, if a code con-
sumer requires every foreign component to have a name,
it is turned into the predicaterq componentnameexistsof
Figure 3.

Making a linking decision. To link a component to other
components of a code consumer, a code producer must
show that her component exports all the properties required
by the code consumer. This can be done by showing that
a set of modules and its component description satisfy the
predicateok to link with the linking policy specified by
the code consumer. The semantics of predicateok to link
shows what steps a secure linker should follow to make a
linking decision. The following is the inference rule for a
linking decision.

6



signedcomponentdsc(m,dsc, prqset)
providesenoughprps(dsc, lib, libdsc)
exportsrequired prps(prqset,dsc)
ok to link(m,dsc, lib, libdsc, prqset)

ok to link i

First, the linker examines if the given logical description
dsc of a component really represents the given set of mod-
ulesm; if so, the code producer can prove that the predicate
signedcomponentdscholds. Second, the linker examines
if the component can obtain all the imported components
from the librarylib and libdsc of the code consumer;
if so, the code producer can prove that the predicatepro-
videsenoughprps holds. Last, the linker examines if the
component description exports all the required properties
prqset ; if so, the code producer can prove that the predi-
cateexportsrequiredprpsholds.

If the component description and modules satisfy the
above three conditions, in other words, if the code producer
can prove that those three predicates hold, linking is al-
lowed; otherwise, it is denied. All the decision steps are
addressed in the linking logic as operators and lemmas on
top of PCA logic, and all the lemmas are proved.

Given a proof from a code producer, a code consumer
must be able to verify the validity of the proof. Our frame-
work is built on the Twelf logical framework [12]. The
Twelf system is one of the implementations of the logical
framework LF [8], which allows the specification of logics.
Since our linking logic is written on top of PCA, an object
logic of LF, every term in our linking logic boils down to a
term in the underlying LF logic. Therefore, the proof pro-
vided by a code producer is encoded as an LF term. The
type of the term is the statement of the proof; the body of
the term is the proof’s derivation.

By the Curry-Howard isomorphism, checking the cor-
rectness of deriving the term that represents a proof is equiv-
alent to type checking the term. If the term is well typed,
then the derivation is correct; hence, a code producer has
succeeded in proving the proposition. If the proof of a code
producer is checked, a secure linker of our framework will
allow the component with the proof to be linked.

6 Tactical prover

We have developed a tactical prover for our linking logic.
The prover is a logic program running on the Twelf logical
framework [12]. The goal to be proved is encoded as the
statement of a theorem, and axioms that are likely to be
helpful in proving the theorem are added as assumptions.
The prover generates a derivation of the theorem; this is the
proof that a code provider must send to a code consumer.

Our tactical prover consists of 30 tacticals and 58 tactics:
tactics, reducing goals to subgoals, and tacticals, providing
primitives for combining tactics into larger ones that can

<configuration>
<runtime>

<assemblyBinding
xmlns="run:schemas-microsoft-com:asm.v1">
<dependentAssembly>

<assemblyIdentity name="hashTable"/>
<bindingRedirect

oldVersion = "1.0.0.0 - 1.9.9.0"
newVersion = "2.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

Figure 4. A .NET configuration file

give multiple proof-steps. By showing the soundness of
logic, it is guaranteed that every formula that is provable (or
derivable) by the prover (consisting of axioms and inference
rules) is true in the logic.

Appel and Felty [3] showed that using a dependently
typed programming language can yield a partial correctness
guarantee for a theorem prover: if it type-checks, then any
proof (or subproof) that it builds will be valid. Twelf is
such a higher-order dependently typed logic programming
language, and our prover is easily seen to be sound by the
method of Appel and Felty.

Although a dependent type system is very useful for
showing the soundness of a prover, it doesn’t guarantee that
the prover is complete.

We also proved that our tactical prover always terminates
and that it is complete. By proving the termination of the
prover, we can guarantee that it halts, regardless of the in-
put. By proving the completeness of the prover, we can
make sure that it finds a derivation for every true formula
formed by the linking logic. We will outline the proof in
this section, and the complete proof can be found at [9].

To prove the completeness of the prover, we related each
formula constructor in the linking logic to one tactical in
the prover. That means, for a formula formed by a given
constructor, the formula is derivable only by the related tac-
tical in the prover. For example, the formula constructor
ok to link is related to the tacticalfindproof. Therefore, any
formula formed byok to link is derivable only by using the
tacticalfindproofin the prover. Since the goal of the tacti-
cal prover is to find proofs of formulas built fromok to link,
we can prove that the tactical prover is complete and always
terminates by showing that the tacticalfindproofalways ter-
minates and finds a proof of a true formula.

7 Case study: .NET framework

In this section, we will show our linking logic is gen-
eral and expressive enough to address the linking decision
procedure of the .NET framework.

7



7.1 Versioning

Version redirection in .NET. The .NET framework treats
an assembly’s version number as part of the assembly’s
identity; this enables assemblies of the same name to co-
exist within one system, and gives more control to develop-
ers or system administrators in the linking time. The run-
time of the .NET framework allows developers or system
administrators to specify the version of an assembly to be
used for linking, and to use a different version of an as-
sembly of the same name in the linking time. In order to
redirect binding of assemblies users can specify it in con-
figuration files in different levels. Application configura-
tion files, machine configuration files, and publisher policy
files are used to redirect one version of an assembly to an-
other. An example of a configuration file redirecting assem-
bly versions is shown in Figure 4. The information for each
assembly that developers want to redirect is put inside the
〈dependentAssembly〉 tag and the information identifying
the assembly is inside the〈assemblyIdentity〉 tag.

Usually the original version of an assembly and the ver-
sions of dependent assemblies are recorded automatically
in the assembly’s manifest by programming tools or com-
pilers supporting the .NET framework. A linker makes a
decision of which version of an assembly is to be linked
with the following steps: first, the linker checks the orig-
inal assembly reference to determine what version is orig-
inally used. Second, it checks all available configuration
files to find applicable redirection requests in a sequence of
machine configuration files, publisher policy files and ap-
plication configuration files. Last, it determines the correct
assembly version that should be linked to the calling assem-
bly, from the information of the original assembly reference
and any redirection specified in the configuration files.

Translation into our linking logic. In Section 5, we ex-
plained how to represent some entities such as component
names as properties and property requests in our logic. In
the same way, version information and redirection requests
are coded aspropertiesandproperty requests.

Version information is of typeversion, alias of type
property, and built by using the formula constructor
mk prp version. The constructormk prp version takes 4
numbers as arguments, each of which stands for a major
version number, a minor version number, a build number
and a revision number respectively.

A redirection request for an assembly is a predicate of
type ver req, alias of typeprp req. It takes an argument
of type versionand returns true if the given version infor-
mation satisfies the redirection request it implements. The
version redirection information in configuration files has the
typever policy, consisting of two parts, the affected old ver-
sion (either a specific version or a range of versions) and a

¬isempty(vPolicy)
inrange(vPolicy.range,originalVer)

ver policy effective(vPolicy,orginalVer)
vp effective

ver policy effective(vrq.mch,vrq.org)
versionmatch policy(vrq.mch,v)

vrq(v)
machineredir

¬ver policy effective(vrq.mch,vrq.org)
ver policy effective(vrq.pub,vrq.org)
versionmatch policy(vrq.pub,v)

vrq(v)
publisher redir

¬ver policy effective(vrq.mch,vrq.org)
¬ver policy effective(vrq.pub,vrq.org)
ver policy effective(vrq.app,vrq.org)
versionmatch policy(vrq.app,v)

vrq(v)
app redir

¬ver policy effective(vrq.mch,vrq.org)
¬ver policy effective(vrq.pub,vrq.org)
¬ver policy effective(vrq.app,vrq.org)
versionmatchsimple(vrq.org,v)

vrq(v)
no redir

Figure 5. Rules for version redirection

new target version.
The linking decision procedure of the .NET framework

is translated into a set of lemmas in our linking logic, shown
in Figure 5.

Two versions may match if they are identi-
cal (ver matchsimple), or through a redirection
(ver matchpolicy). The redirection may come from
local configuration files(machineredir), from the soft-
ware developer(publisherredir), or from the component
integrator(app redir).

A redirection request is effective, if the version of an
original assembly to be linked is within the affected old ver-
sion range specified in the redirection request. If so, the
predicatever policy effectiveholds.

The inference rulemachineredir shows the case when
there exists a version redirection requestvreq , and the ver-
sion policy fieldmch of vreq is effective. If the versionv
of a target assembly matches the new version in the policy
mch, then the versionv satisfies the version requestvreq ,
and the assembly of versionv is used in the later phase of
linking.

Other inference rules (publisherredir, app redir, and
no redir) show that local redirections override publisher
redirections, and so on.

7.2 Strong naming

The runtime system of .NET requires that every assem-
bly has a strong name [10]. A strong name of an assembly

8



consists of the assembly’s name, its version number, its cul-
ture information (such as languages), plus a public key and
a digital signature. This information is stored in the assem-
bly’s manifest.

In order to guarantee the integrity of an assembly, a code
producer is recommended to sign the assembly. A code pro-
ducer can sign an assembly in two different ways: with a
strong name or with key certificates obtained from third-
party key authorities. Signing an assembly with a public key
adds the encrypted public key and the resulting signature to
its assembly manifest. Then, the .NET runtime verifies the
digital signature of an assembly using the public key in its
assembly manifest.

In formalizing the strong-naming feature of .NET, we
were unable to prove a standard theorem in our system: that
every public key is certified by at least one authority. It turns
out that .NET’s strong names use keys that need not be cer-
tified. At first glance, this appears to be a security hole, but
in fact it is simply a harmless misapplication of public-key
encryption. (However, it is a latent weakness if some future
user could be misled into using this signature as a certificate
of some property!)

Signing with a self-announcing public key doesn’t pro-
vide more trust than a hash verification does. Verifying a
digital signature with a public key in an assembly manifest
only guarantees that the assembly has not been tampered
after being signed. Without key certificates from trusted
third-party key authorities, a digital signature on an assem-
bly cannot give any assurance about the source of the as-
sembly. It is exactly as strong as verifying a hash code
of an assembly manifest because it is (assumed) impossi-
ble to change the content of data without changing the hash
code of the data calculated by a cryptographic hash function
(such as MD5 or SHA-1).

Digital signing is more complicated than hash code ver-
ification, and usually operates with hash code verification.
Therefore, signing an assembly without key certificates in
.NET seems redundant. In expressing strong-named assem-
blies in our logic, we replace signing on an assembly with
a self-announcing public key by simple hash code verifica-
tion. Following is the inference rule of strong-named as-
semblies.
∃N.asmname(asm,N)
∃V.asmversion(asm,V)
∃C.asmculture(asm,C)
∃P.asm pubkey(asm,P)
∃H.asmhashcode(asm,H)
valid hashcode(asm,H)

strongnamedasm(asm)
strongnamed

An assemblyasm has a strong name if there exist an as-
sembly’s name, its version, its culture information and its
public key, and if a hash code accompanied with the assem-
bly is valid.

7.3 Key certificates

Code signing uses key certificates issued by trusted key
authorities. Since different key authorities could use differ-
ent formats for their certificates, it is necessary for a secure
system to support as many formats as possible for interop-
erability.

The security model of the .NET framework supports sev-
eral standard public key certificate formats including X.509.
The key certificates are embedded in a specific location in
an assembly manifest by a .NET-supporting compiler at
compile time and then used by a code consumer to check
the assembly’s authenticity later.

The assembly-manifest format accommodates a specific
set of key certificate formats. Tying public-key infrastruc-
ture so closely to version management results in a less flex-
ible system than expected: future users with a different PKI
will not be able to take advantage of code signing in .NET.
Our linking logic can separate these issues in a more mod-
ular way.

To address principal-public key bindings, our linking
framework has a built-in formula constructorkeybindfor
translating various key certificate formats into a formula in
the linking logic. The formula constructorkeybindtakes
two arguments: the name of a principal, and its public
key. The formula holds if and only if the second argument
pubkey is the public key of the first argumentname. The
statement ofkeybind(name, pubkey) is made out of
several key certificate formats by the trusted part of a code
consumer. Since translating format-specific key certificates
is not a part of the linking logic, a new key certificate for-
mat can be added to the linking framework later without
the necessity of changing the linking logic. It increases the
scalability of the linking framework.

Following is the complete rule for verifying digital sig-
natures.

keyauth(ca)
keybind(ca,caKey)
signed(caKey,keybind(pname, pkey))
signed(pkey,stmt)

says(pname,stmt)
valid sig

This rule means that it is believed that the principal
pname saysstmt if stmt is signed with a keypkey and
a key certificate, saying that the public key of the principal
pname is pkey , is issued by a key trusted authorityca .

Having verified the digital signatures with this inference
rule, none of the remaining part of linking procedures de-
pends on the formulas built bykeybindor signed. By in-
troducing the format-neutral constructorkeybindand letting
only a small part of the logic use the signature-specific con-
structors, we separate the logic of verifying digital signa-
tures from the rest of the linking logic, and make the frame-
work work smoothly with different key certificates.

9



8 Conclusion

We have developed a framework for secure linking sys-
tems based on PCA. In this scheme, the burden of proving
rights to access the shared resources of a code consumer is
put on a code producer rather than on the code consumer,
unlike in traditional distributed authentication frameworks.

In our framework, a code consumer announces its link-
ing policy to protect its system from malicious code from
outside. The policy can include properties, for example,
class name, valid hash code of programs, version informa-
tion, and so on, which the code consumer thinks important
for system safety. To link a software component to other
components in a code consumer and to execute it, a provider
of the component should submit a proof that the component
has the properties required by the code consumer.

The linking logic of our framework consists of basic for-
mula constructors and inference rules on top of the PCA
logic. Linking decision procedures of a code consumer,
system-specific linking policies, and software component
description of code producers are translated into the linking
logic. A proof of secure linking is formed out of the link-
ing logic, and checked by a trusted proof checker in a code
consumer. If the accompanying proof is verified, a software
component is allowed to be linked to other components in
the system of the code consumer.

In addition, adopting the higher-order logic of PCA
makes our linking logic general and flexible. Due to this ex-
pressiveness, it is possible to encode various security mod-
els into our logic, and to enable different security models to
interoperate conveniently. We tested the expressiveness of
our linking logic by encoding the linking procedures of the
.NET framework. We showed how we formulate .NET’s
version redirection, strong-named assemblies, and digital
signature verification on top of our linking logic.

Trying to give a formal description to a real-world sys-
tem gives us insight into the system. In case of .NET, we
found that its signing an assembly without key certificates is
redundant and can be replaced by simple hash code verifica-
tion. We also found that digital signature verification and its
key certificate management would better be separated from
other linking decision parts to enhance the scalability and
interoperability of the .NET framework.

Using logic and formal methods has been helpful in two
ways: formalization has helped us define abstractions in or-
der to build a prototype language and system that would
have been difficult to design otherwise; and in the process
of formalizing an existing protocol (such as .NET) we find
latent design flaws that might have otherwise gone unde-
tected.

References

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A
calculus for access control in distributed systems.ACM
Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

[2] A. W. Appel and E. W. Felten. Proof-carrying authentica-
tion. In 6th ACM Conference on Computer and Communi-
cations Security, November 1999.

[3] A. W. Appel and A. P. Felty. Dependent types ensure par-
tial correctness of theorem provers.Journal of Functional
Programming, Accepted for publication.

[4] L. Bauer, A. W. Appel, and E. W. Felten. Mechanisms
for secure modular programming in java. Technical Report
CS-TR-603-99, Department of Computer Science, Prince-
ton University, July 1999.

[5] L. Bauer, M. A. Schneider, and E. W. Felten. A general and
flexible access-control system for the web. InProceedings
of the 11th USENIX Security Symposium, August 2002.

[6] M. Blume and A. W. Appel. Hierarchical modularity.
ACM Transactions on Programming Languages and Sys-
tems, 21:812–846, 1999.

[7] P. T. Devanbu, P. W.-L. Fong, and S. G. Stubblebine. Tech-
niques for trusted software engineering. InProceedings of
the 1998 Internation Conference on Software Engineering,
pages 126–135, Los Alamitos, California, 1998.

[8] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for Computing
Machinery, 40:143–184, January 1993.

[9] E. Lee and A. W. Appel. Secure linking: a framework for
trusted software components (extended version). Technical
report, Department of Computer Science, Princeton Univer-
sity, To appear, 2002.

[10] Microsoft. Inside the .NET framework.
http://msdn.microsoft.com/library/.

[11] G. Necula. Proof-carrying code. InProceedings of the 24th
Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Langauges (POPL ’97), January 1997.

[12] F. Pfenning and C. Sch¨urmann. System description: Twelf
– a meta-logical framework for deductive systems. InPro-
ceedings of the 16th International Conference on Automated
Deduction (CADE-16), pages 202–206, July 1999.

[13] D. S. Platt. Introducing Microsoft .NET. Microsoft Press,
2001.

[14] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. InProceed-
ings of the Usenix Conference on Operating System Design
and Implementation, pages 347–360, 2000.

[15] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Au-
thentication in the Taos operating system.ACM Transac-
tions on Computer Systems, 12(1):3–32, 1994.

10


