
The Effectiveness of Request Redirection on CDN Robustness

Limin Wang, Vivek Pai and Larry Peterson
Department of Computer Science

Princeton University
{lmwang,vivek,llp}@cs.princeton.edu

Technical Report TR-654-02
June, 2002

Abstract

It is becoming increasingly common to construct network
services using redundant resources geographically distributed
across the Internet. Content Distribution Networks are a
prime example. Such systems distribute client requests to an
appropriate server based on a variety of factors—e.g., server
load, network proximity, cache locality—in an effort to re-
duce response time and increase the system capacity under
load. This paper explores the design space of strategies em-
ployed to redirect requests, and defines a class of new algo-
rithms that carefully balance load, locality, and proximity. We
use large-scale detailed simulations to evaluate the various
strategies. These simulations clearly demonstrate the effec-
tiveness of our new algorithms, which yield a 60-91% im-
provement in system capacity when compared with published
state-of-the-art CDN technology, yet user-perceived response
latency remains low and the system scales well with the num-
ber of servers.

1 Introduction
As the Internet becomes more integrated into our every-
day lives, the availability of information services built on
top of it becomes increasingly important. However, over-
loaded servers and congested networks present challenges
to maintaining high accessibility. To alleviate these bot-
tlenecks, it is becoming increasingly common to construct
network services using redundant resources, so-called Con-
tent Distribution Networks (CDN) [1, 13, 22]. CDNs
deploy geographically-dispersed server surrogates and dis-
tribute client requests to an “appropriate” server based on var-
ious strategies.

CDNs are designed to improve two performance metrics:
response time and system throughput. Response time, usually
reported as a cumulative distribution of latencies, is of obvi-
ous importance to clients, and represents the primary market-
ing case for CDNs. System throughput, the average number
of requests that can be satisfied each second, is primarily an
issue when the system is heavily loaded, for example, when a
flash crowd is accessing a small set of pages, or a Distributed
Denial of Service (DDoS) attacker is targeting a particular
site [15]. System throughput represents the overall robust-
ness of the system since either a flash crowd or a DDoS attack
can make portions of the information space inaccessible.

Given a sufficiently wide-spread distribution of servers,
CDNs use several—sometimes conflicting—factors to decide
how to distribute client requests. For example, to minimize
response time, a server might be selected based on its network

proximity. In contrast, to improve the overall system through-
put, it is desirable to evenly balance the load across a set of
servers. Both throughput and response time are improved if
the distribution mechanism takes locality into consideration,
that is, selects a server that is likely to already have the page
being requested in its cache.

Although the exact combination of factors employed by
commercial systems is not clearly defined in the literature,
evidence suggests that the scale is tipped in favor of reducing
response time. This paper addresses the problem of design-
ing a request distribution mechanism that is both responsive
across a wide range of loads, and robust in the face of flash
crowds and DDoS attacks. Specifically, our main contribution
is to explore the design space of strategies employed by the
request redirectors, and to define a class of new algorithms
that carefully balance load, locality, and proximity. We use
large-scale detailed simulations to evaluate the various strate-
gies. These simulations clearly demonstrate the effectiveness
of our new algorithms: they produce a 60-91% improvement
in system capacity when compared with published state-of-
the-art CDN technology, user-perceived response latency re-
mains low, and the system scales well with the number of
servers. We also discuss several implementation issues, but
evaluating a specific implementation is beyond the scope of
this paper.

2 Building Blocks
We assume multiple server surrogates geographically dis-
persed in different locations as in typical CDNs; any of these
servers can potentially serve any request on behalf of the
original server. Where to place the servers and how to keep
their contents up-to-date has been addressed by other CDN
research [1, 13, 22]. Here, we make no explicit assumption
about servers’ strategic locations.

This paper focuses on request redirectors, which are mid-
dleware entities that assign client requests to servers based on
one of the strategies described in the next section. To help
understand these strategies, this section first outlines various
mechanisms that could be employed to implement redirec-
tors, and then presents a set of hashing schemes that are at the
heart of redirection.

2.1 Redirector Mechanisms
Several different mechanisms could be used to redirect re-
quests [3]. For example, redirection could be implemented by
augmenting DNS servers to return different server addresses
to clients. This is essentially the implementation mechanism
used by current CDNs. The granularity of DNS-based redi-

1

rection is usually at the level of a domain or site rather than
a URL; with URL rewriting and augmenting the DNS infras-
tructure, this granularity can be refined. Redirection using
DNS also has to deal with client-side caching of mapping en-
tries.

Another possibility is to implement “logical redirectors”
at the servers, for example by using HTTP redirects. Unfor-
tunately, server-based redirections incur an additional round
trip time, and redirecting servers can be vulnerable to being
overloaded by the redirection task itself.

A third alternative is to distribute the redirection function
across intermediate nodes of the network, such as routers or
proxies. These routers/proxies could use one of two methods
to redirect requests: (1) rewrite server addresses (both to redi-
rect request packets and so that reply packets do not confuse
the clients), or (2) send HTTP redirect messages back to the
clients. In the first case, the router/proxy would need to be at
a choke point between the client and server to ensure that it
is able to edit all packets. In the second case, either the redi-
rector would need to be on a choke point, or the client would
have to cooperate by explicitly addressing the proxy (as with
a classical, rather than transparent, proxy). Proxy-based redi-
rectors can be placed either near clients (i.e., serving all the
clients at a site), or near servers (i.e., serving as a front-end to
a server cluster). In the former case, the client population that
a given redirector serves is well-confined and easy to iden-
tify; the number of redirectors easily scales with the number
of clients. Placing the redirectors near servers implies that
redirectors can closely watch server load information.

To reduce the complexity of considering the various com-
binations outlined in this section, the evaluation experiments
presented later in the paper assume redirectors are located at
the edge of a client site, and that they receive the full list of
cooperating servers through DNS or some other out-of-band
communication. The whole request-reply session between a
client and a server will go through a redirector through packet
rewriting. From these communications, the redirectors pas-
sively learn approximate server load information. Redirectors
are independent of each other and do not rely on a centralized
approach to synchronize. These assumptions—in particular,
the imperfect information about server load—do not have a
significant impact on the results. They do let us focus more
on the redirection strategies.

2.2 Hashing Schemes

Since geographically-distributed redirector placement is de-
sirable, we cannot easily adapt the schemes used in LAN-
oriented approaches [17, 26] to redirectors. Those approaches
generally use information about the instantaneous state of the
entire system. Instead, several of the strategies discussed be-
low use some form of hashing to deterministically map URLs
into a small range of values. The primary benefit of this ap-
proach is that no inter-redirector communication is required
to achieve coordinated operation; no matter which redirector
receives a URL, the hashing process produces the same out-

put. Another benefit of hashing is that the range of resulting
hash values can be controlled, to trade off precision for the
amount of memory consumed by bookkeeping. A good hash
function also provides a balanced partition of URL space.

The choice of which hashing style to use is one component
of the design space, and is somewhat flexible. The various
hashing schemes have some impact on computational time
and request reassignment behavior on node failure/overload.
However, as we discuss in the next section, the computa-
tional requirements of the various schemes can be reduced
by caching.

Modulo Hashing – This is the “classic” hashing approach,
but is not suitable for this environment. In this approach, the
URL is hashed modulo the number of cooperating servers.
While this approach is computationally efficient, its unsuit-
ability stems from its behavior when the server set changes.
When this occurs, the modulo calculation will result in a
diminishing fraction of the documents keeping their same
server assignments. While we do not expect frequent changes
in the set of servers, the fact that addition of new servers into
the set will cause massive reassignment is undesirable.

Consistent Hashing [19, 20] – In this approach, the URL
is mapped to a value on a unit circle, as are the cooperating
servers. The URL is assigned to the server that lies closest
on the circle to its hash value. While this scheme requires
finding the closest match, this lookup can be made in constant
time by using space equal to the number of possible values on
the circle. Otherwise, it can be computed in time logarithmic
with the number of servers. If a node fails in this scheme,
its load shifts to its neighbors, so the addition/removal of a
server only causes local changes in request assignments.

Highest Random Weight [32] – This approach is the basis
for CARP [8], and consists of hashing each URL with each
server, and then sorting the results. Each URL then has a de-
terministic order to access the set of servers, and this list is
traversed until a suitably-loaded server is found. The benefit
of this approach compared to consistent hashing is that server
order is different for each URL, so if one server fails, its load
is distributed evenly among the other machines. The draw-
back to this approach is more computation is required to gen-
erate the list, O(NlogN) where N is the number of servers.
These lists can be cached, using O(N × num hash values)
space, and even this can be reduced by keeping only the top
few list entries for each hash value.

The strategies in the next section use the Consistent Hash-
ing (CHash) and Highest Random Weight (HRW) schemes as
one component of the request redirection process.

3 Strategies

This section discusses the design space for the request distri-
bution strategies, and introduces two new algorithms that fac-
tor both load and locality into their decision and another new
one that considers all aspects of network proximity, server
locality and load.

2

3.1 Random
We use the random assignment policy as a baseline to deter-
mine a reasonable level of performance. In this policy, each
request is randomly sent to one of the cooperating servers.
We expect this approach to scale with the number of servers
in the set, and since its request distribution has no pattern,
it is unlikely to exhibit any pathological behavior. It has the
drawback that the working set of each server increases with
the number of cooperating servers. Since server performance
increases as a higher fraction of requests that can be served
from main memory, this approach is at a disadvantage versus
schemes that exploit URL locality.

3.2 Replicated Consistent Hashing (R-CHash)
In the Replicated Consistent Hashing strategy, each URL is
assigned to a set of replicated servers. The URL is hashed to
a point on the unit circle, and the replicas are evenly spaced
starting from this original point. On each request, the redirec-
tor calculates the set of replicas for the URL and randomly
assigns the request to one of the replicas. The number of
replicas is fixed, but is configurable. This strategy is intended
to model the mechanism used in published state-of-the-art
content distribution networks, and is virtually identical to the
scheme described in [19] and [20].

3.3 Replicated Highest Random Weight
(R-HRW)

The Replicated Highest Random Weight strategy is the coun-
terpart to Replicated Consistent Hashing, but with a different
underlying hashing scheme used to determine the replicas.
To the best of our knowledge, this approach is not used in any
existing content distribution network. In this approach, the
ordered list of servers for each URL is determined using the
Highest Random Weight approach, and then the top N servers
are treated as possible targets for the URL. On each request,
the redirector randomly picks one member of the appropriate
set and sends the request to that server. The reason we expect
different behavior between this scheme and the previous ap-
proach is because this scheme is less likely to have two URLs
generate the same set of replicas. As a result, the less-popular
URLs that may have some overlapping servers with popular
URLs are also likely to have some other less-loaded nodes in
their replica sets.

3.4 Coarse Dynamic Replication (CDR)
This scheme stems from the belief that the number of replicas
used by redirectors to serve one URL should be dynamically
adjusted in response to server load and demand for that URL.
Like Replicated Highest Random Weight, HRW hashing is
used to generate an ordered list of servers, but rather than us-
ing a fixed number of replicas, based on coarse-grained server
load information, the first “available” server on the list is cho-
sen as the target server for the request. By reducing unnec-
essary replication, the working set of each server is reduced,
resulting in better file system caching behavior.

Figure 1 shows how a request redirector picks the destina-
tion server for each request. Notice that this decision process
is done at each redirector independently, using the load status
of the possible servers. Instead of relying on heavy communi-
cations between servers and request redirectors to get server
load status, we instead use local load information observed
by each redirector as an approximation. We currently use
the number of active connections to infer the load level, but
we can also combine this information with response latency,
bandwidth consumption, etc.

find server(url, S) {
foreach server si in server set S,
weighti = hash(url, address(si));

sort weight;
for each server sj in decreasing order of weightj {

if satisfy load criteria(sj) then {
targetServer← sj ;
stop search;
}

}
if targetServer is not valid then
targetServer← server with highest weight;

route request url to targetServer;
}

Figure 1: Coarse Dynamic Replication

As the load increases, this scheme changes from using
only the first server on the sorted list to spreading requests
across several servers. Some documents normally handled
by “busy” servers will also start being handled by less busy
servers. Since this process is based on aggregate server load
rather than the popularity of individual documents, servers
hosting some popular documents may find more servers shar-
ing their load than servers hosting collectively unpopular doc-
uments. In the process, some unpopular documents will be
replicated in the system simply because they happen to be
primarily hosted on busy servers. At the same time, if some
documents become extremely popular, it is conceivable that
all of the servers in the system could be responsible for serv-
ing them.

3.5 Fine Dynamic Replication (FDR)
The Fine Dynamic Replication (FDR) scheme addresses the
problem of unnecessary replication in CDR by keeping infor-
mation regarding the popularity of URLs and using it to more
precisely adjust the number of replicas. By controlling the
replication process, the per-server working sets should be re-
duced, leading to better server locality, and thereby better re-
sponse time or throughput. This scheme uses the HRW hash-
ing as in CDR, but additionally, each URL is also hashed to
a smaller identifier, in the range of thousands to millions of
values. With each of these identifiers is kept the number of
servers to use in the sorted list, allowing URLs to be repli-
cated across a number of servers based on their popularity.

3

The introduction of finer-grained bookkeeping is an at-
tempt to counter the possibility of a “ripple effect” in Coarse
Dynamic Replication, which could gradually reduce the sys-
tem to round-robin under heavy load. In this scenario, a very
popular URL causes its primary server to become overloaded,
causing extra load on other machines. Those machines, in
turn, also become overloaded, causing documents destined
for them to be served by their secondary servers. Under heavy
load, it is conceivable that this displacement process ripples
through the system, reducing or eliminating the intended lo-
cality effects of this approach.

find server(url, S) {
walk entry← walkLenHash(url);
w len← walk entry.length;
foreach server si in server set S,
weighti = hash(url, address(si));

sort weight;
scandidate← least loaded server of top w len servers;
if satisfy load criteria(scandidate) then {
targetServer← scandidate;
if (w len > 1 &&

timenow() - walk entry.lastUpd> changeThresh)
walk entry.length−−;

} else {
foreach remaining server sj in decreasing weight order {

if satisfy load criteria(sj) then {
targetServer← sj ;
stop search;
}

}
walk entry.length← actual search steps;

}
if walk entry.length changed then

walk entry.lastUpd← timenow();
if targetServer is not valid then
targetServer← server with highest weight;

route request url to targetServer;
}

Figure 2: Fine Dynamic Replication

To reduce extra replication, this scheme keeps an auxil-
iary structure at each redirector that maps from the URL to a
“walk length,” indicating how many servers in the HRW list
should be used for this URL. Using a minimum value of one
for entries in this table provides minimal replication for most
URLs, and a higher minimum can be used to try to always
distribute URLs over multiple servers. When the redirector
receives a request, it uses the current walk length for the URL
and picks the least loaded server from the current set. If even
this server is busy, the walk length is increased and the least
loaded server is used.

The rationale behind this approach is to try to keep popu-
lar URLs from overloading servers and displacing unpopular
URLs in the process. The size of the auxiliary structure is

contained by hashing the URL into a range in the thousands to
millions. While this hashing will produce some imprecision,
the collisions will only cause some small number of URLs
to have their replication policies affected by popular URLs.
As long as the the number of hash values exceeds the number
of servers, the granularity will be significantly better than the
Coarse Dynamic Replication approach. The redirector logic
for this approach is shown in Figure 2. To handle URLs that
become less popular over time, with each walk length, we
also keep the time of its last modification. We decrease the
walk length if it has not changed in some period of time.

As a final note, the two dynamic replication approaches
require some information about server load, specifically how
many outstanding requests can be sent to a server by a redirec-
tor before the director believes it is busy. We currently allow
the redirectors to have 300 outstanding requests per server, at
which point the redirector locally decides the server is busy.
In the future, we can calibrate these values using both lo-
cal and global information—using its own request traffic, the
redirector can adjust its view of what constitutes heavy load,
and it can perform opportunistic communication with other
redirectors to see what sort of collective loads are being gen-
erated. The count of outstanding requests already has some
feedback, in the sense that if a server becomes slow due to its
resources (CPU, disk, bandwidth, etc.) being stressed, it will
respond more slowly, increasing the number of outstanding
connections.

3.6 FDR with Network Proximity (FDR-NP)
Many commercial CDNs start server selection with net-
work proximity matching. For an instance, [19] indicates
that CDN’s hierarchical authoritative DNS servers can map
client’s (actually its local DNS server’s) IP address to a geo-
graphic region within a particular network and then combine
it with network and server load information to select a server.
Other research [18] shows that in practice, CDNs succeed not
by always choosing the “optimal” server, but by avoiding no-
tably bad servers.

We introduce a new strategy, called FDR with Network
Proximity (FDR-NP), which also explicitly factors network
proximity into server selection, but in a more unified fashion.
Our redirector measures servers’ geographical/topological lo-
cation information through ping, traceroute or similiar mech-
anisms; and different from FDR, when evaulating servers’
status, it uses “effective load ” instead of raw server load in-
formation to choose a proper server.

min distance = MIN{distancei, i = 1...n} (1)

std distancei = distancei/min distance (2)

effect loadi = loadi × std distancei (3)

In our evaluation, we define effective load in the above
equations. Redirectors first calculate minimum distance
among all servers using gathered redirector-server distance
information. Here, distance can take the form of either round
trip time (RTT) or routing hops; we choose to use RTT. Then

4

all raw distances are normalized to standard distances using
this minimum distance. Effective load is thus defined as the
product of raw load numbers and standard distance. The ra-
tionale behind this is that, although the server load metric pig-
gybacks some distance information implicitly, since replies
from remote servers take longer time to finish, plain FDR ac-
tually tries to use servers with various distances equally by
only considering load. FDR-NP, on the other hand, takes
server distances into consideration explicitly. A remote server
with the same raw load as a nearby server should be regarded
as “effectively” more loaded, since redirecting a new request
to that remote server will result in long network journeys and
resources being potentially held longer. The tradeoff between
server’s load and proximity is thus achieved through assign-
ing each server’s load a weight inversely proportional to its
distance. Using minimum distance to normalize all distances
conservatively ensures that even the closest server is not sig-
nificantly overloaded.

Although we currently calculate effective load this way, it
is not the only possibility. In fact, effective load can take
other dynamic load/proximity metrics into account, for ex-
ample network congestion status through real time measure-
ment, thereby reflecting instantaneous load conditions.

3.7 Categories and Other Variants
To summarize, we classify the above strategies along three
different dimensions. We also introduce a few new variants.

Replication. Based on how replication is achieved, there
are three types of strategies: purely random replication—
Rand, static replication (R-CHash and R-HRW), and dynamic
replication (CDR, FDR and FDR-NP).

Server Load Awareness. Strategies either select servers
in a load oblivious way (Rand, R-CHash and R-HRW); or
consider server load deliberately (CDR, FDR and FDR-NP).
Although it is not clear how fine grained load information is
used in current CDN systems, we try to approximate their
best behaviors by introducing two variants of static replica-
tion strategies, Load-aware R-CHash (LR-CHash) and Load-
aware R-HRW (LR-HRW), into our evaluation. In short, in-
stead of randomly choosing a server from members of the
fixed size of server set for each URL as in R-CHash and R-
HRW, these two new strategies pick the least loaded server
from the server set.

Network Distance Awareness. Except for FDR-NP, most
of the above strategies treat each server surrogate as “equally”
distant from clients. This may not have much impact on the
system’s aggregate capacity, but will affect response time. As
mentioned earlier, current CDNs rely on DNS region map-
ping to achieve network closeness. However, the proxim-
ity obtained that way is usually at the granularity of an Au-
tonomous System, or ISP, and the actual topological or ge-
ographical distance between server and client could still be
substantial [21]. Factoring fine-grained network proximity
into server selection can still be beneficial. To approximate
this improved proximity matching at the redirectors, we de-

rive a variant from R-CHash, called NP-CHash, which as-
signs requests such that each surrogate in the fixed-size server
set of an URL will get a share of total requests for that URL
inversely proportional to the surrogate’s distance from the
redirector. Similarly, NPLR-CHash is a variant of LR-CHash
using effective load as FDR-NP.

Not all possible combinations of these three factors yield
practical strategies. Rather than exhaustively considering all
possibilities, we choose to concentrate on those strategies that
seem most promising or illustrative.

4 Evaluation Methodology
The goal of this work is to examine how different strategies
respond under different loads and especially how robust they
are in the face of flash crowds and DDoS attacks. Although
DDoS attacks take many different forms, the most-difficult-
to-detect versions generate legitimate traffic, virtually indis-
tinguishable from flash crowds. So we use high request vol-
umes to stress the system.

Evaluating the various algorithms described in Section 3 on
the Internet is not practical, both due to the scale of the exper-
iment required and the impact a flash crowd or attack is likely
to have on regular users. Simulation is clearly the only option.
Unfortunately, there has not been (up to this point) a simula-
tor that considers both network traffic and server load. Exist-
ing simulators either focus on the network, assuming a con-
stant processing cost at the server, or they accurately model
server processing (including the cache replacement strategy),
but use a static estimate for the network transfer time. In
the situations we are interested in, both the network and the
server are important.

To remedy this situation, we develop a new simulator that
combines network-level simulation with OS/server simula-
tion. Specifically, we combine the NS simulator with Logsim,
allowing us to simulate network bottlenecks, round-trip de-
lays, and OS/server performance. NS-2 [24] is a packet-level
simulator that has been widely-used to test TCP implemen-
tations. However, it does not simulate much server-side be-
havior. Logsim is a server cluster simulator used in previous
research on LARD [26], and it provides detailed and accu-
rate simulation of server CPU processing, memory usage, and
disk access. This section describes how we combine these
two simulators, and discusses how we configure the resulting
simulator to study the algorithms presented in Section 3.

4.1 Simulator
A simulation model of Logsim is shown in Figure 3. Each
server node consists of a CPU and locally attached disk(s),
with a separate queue for each. At the same time, each server
node maintains its own memory cache of a configurable size
and replacement policy. Incoming requests are first put into
holding queue, and then moved to the active queue. The ac-
tive queue models the parallelism of the server, for example,
in multiple process or thread server systems, the maximum
number of processes or threads allowed on each server.

5

CPU

disk

read finished

cache misses

done

new
reqs

more time needed

inside a server node

active
queue

holding
queue

Req

Node Abstraction

Figure 3: Logsim Simulator

We combined Logsim with NS-2 as follows. We keep
NS-2’s event engine as the main event manager, wrap each
Logsim event as a NS-2 event, and insert it into the NS-2
event queue. All the callback functions are kept unchanged in
Logsim. When crossing the boundary between the two sim-
ulators, tokens (continuations) are used to carry side-specific
information. To speed up the simulation time, we also re-
implemented several NS-2 modules and performed other op-
timizations.

On the NS side, all packets are stored and forwarded, as
in a real network, and we use two-way TCP. We use static
routing within NS-2, although it would be interesting to run
simulation under dynamic routing.

On the Logsim side, the costs for the basic request process-
ing were derived by performing measurements on a 300 MHz
Pentium II machine running FreeBSD 2.2.5 and the Flash
web server [25]. Connection establishment and tear-down
costs are set at 145µs, while transmit processing incurs 40µs
per 512 bytes. Using these numbers, an 8KByte document
can be served from the main memory cache at a rate of ap-
proximately 1075 requests/sec. When disk access is needed,
reading a file from the disk has a latency of 28ms. The disk
transfer time is 410µs per 4KBytes. For files larger than 44
KBytes, and additional 14ms is charged for every 44 KBytes
of file length in excess of 44 KBytes. The replacement pol-
icy used on the servers is Greedy-Dual-Size (GDS)[5], as it
appears to be the best known policy for Web workloads. This
is a server that is somewhat slower than the current state-of-
the-art (it is able to service approximately 600 requests per
second), but this allows the simulation to scale to a larger
number of nodes.

The final simulations are very heavy-weight, with over a
thousand nodes and a very high aggregate request rate. We
run the simulator on a 4-processor/667MHz Alpha with 8GB
RAM. Each simulation requires 2-6GB of RAM, and gener-
ally takes 20-50 hours of wall-clock time.

4.2 Network Topology
It is not easy to find a topology that is both realistic and makes
the simulation manageable. Although we could use a topol-
ogy generation tool to get a power-law topology, we instead
choose to slightly modify the NSFNET backbone network T3

topology, as shown in Figure 4. The reason is not only be-
cause this topology is easy to manage, but also because to a
large extent, it resembles an ISP’s network, or a simplified
backbone. In this topology, the round-cornered boxes rep-
resent backbone routers with the approximate geographical
location label on it. The circles, tagged as R1, R2..., are re-
gional routers1; small circles with “C” stands for client hosts;
and shaded circles with “S” are the cooperating servers. In the
particular configuration shown in the figure, we put 64 coop-
erating servers behind regional routers R0, R1, R7, R8, R9,
R10, R15, R19, where each router sits in front of 8 servers.
We distribute 1,000 client hosts evenly behind the other re-
gional routers, which ends up with a topology of nearly 1,100
nodes. The redirector algorithms run on the regional routers
that sit in front of the clients.

 WA

 DC

 MI

CA
SD

 TX

 CO

 IL

R0

R14

R3 R4

R17

R16

R18

R19
R15

R10

R11
R12

R8

R7

R9

R6R5R2

R1

C C

C
C

C C

C

C

C C

C

C

C

C

C
C

C

C

C

C

C C CC

S

S S
S

S

S

S

S

 NE
PA
CA

 MA

 GA

R13

... ...

 ...
...

...

...

... ...

... ...

...

...

...

...

...
...

...

...

Figure 4: Network Topology

The latencies of servers to regional routers are set ran-
domly between 1ms to 3ms; those between clients to regional
routers are between 5 ms and 20ms; those regional routers to
backbone routers are between 1 to 10ms; latencies between
backbone routers are set roughly according to their geograph-
ical distances, ranging from 8ms to 28ms.

To simulate high request volume, we deliberately provision
the network with high link bandwidth by setting the back-
bone links at 2,488Mbps, and links between regional routers
and backbone routers at 622Mbps. Links between servers
and regional routers are 100Mbps and those between clients
and their regional servers are randomly between 10Mbps and
45Mbps. All the queues at routers are drop tail, with the back-
bone routers having room to buffer 1024 packets, and all other
routers able to buffer 512 packets.

4.3 Workload and Stability
We drive our simulations using a two month trace of server
logs obtained at Rice University, which contains 2.3 million
requests for 37,703 files with a total size of 1,418MB [26].

1These can also be thought of as edge/site routers, or the boundary to an
autonomous system

6

Since populating cooperating servers with documents and
maintaining content consistency are not our primary focus,
how close these logs are to real life user accesses to web sites
is not the most important issue. In fact, we only use the name
and size of the documents, and ignore the timing information
contained in the trace.

We carry out stress tests as follows. Each client starts re-
questing documents at a certain rate from the very beginning
of the test, with the documents’ information drawn from the
trace. The request redirector decides where the request should
be sent and then the client opens a new connection to that
server for this request, mimicking instant packet rewriting.
Clients keep sending requests at a rate-defined time interval
without waiting for previous ones to finish. We start with a
low aggregate rate—with all clients contributing equally to
this rate—and then increase the rate by 1% every simulated
6 seconds. In doing so, we warm the server memory caches
at the beginning, and drive servers to their limits gradually
over time. The parallelism parameter of Logsim is set to 512,
allowing each server to handle at most 512 simultaneous re-
quests. We keep increasing the offered load in this way until
the servers become saturated, as defined below.

Flash crowds, or DDoS attacks in bursty legitimate traf-
fic form, are simulated by randomly selecting some clients
as intensive requesters and randomly picking a certain num-
ber of hot-spot documents. These intensive requesters ran-
domly request the hot documents at the same rate as nor-
mal clients, making them look no different than other legit-
imate users. We believe that this random distribution of in-
tensive requesters and hot documents is a quite general as-
sumption; flash crowds and DDoS attacks can happen without
pre-knowledge and present less obvious patterns.

It is not obvious how to decide when the system reaches its
maximum capacity. What we want to determine is the state
where servers are stable in delivering responses, yet another
small increase in the offered load could result in server over-
load or instability. Contrary to real servers, our simulated
servers do not crash. This complicates the decision on server
stability.

The length of a server’s request queue (active + holding)
seems to be a good indication of how busy a server is. How-
ever, queue length may grow quickly due to a short burst
of requests, which we do not want to misinterpret as server
failure. On the other hand, if the server has a persistently
long queue that significantly exceeds the server’s parallelism,
chances are that server will not catch up with offered load
soon, and under an ever-increasing request volume, the re-
quest queue can only become longer and the server will be-
come unstable.

We conducted a series of simple tests in which we monitor
the request queue of each server at 15 seconds intervals, al-
lowing the queue to grow infinitely. We check the throughput
of the system against queue length in units of the servers’ par-
allelism settings. Empirically, allowing longer queues yields
higher throughput, but when queue length exceeds 4 or 5

times the parallelism parameter, throughput flattens out and
then drops. Thus, we define the threshold for a server fail-
ure to be when the request queue length exceeds five times
the parallelism parameter. Since we increase the offered load
1% every 6 seconds, we record the request load exactly 30
seconds before the first server fails, and declare this to be the
system’s maximum capacity.

Although we regard any single server failure as a system
failure in our simulation, the strategies we choose to compare
all exhibit similar behavior. Significant numbers of servers
fail at the same time, implying that our approach to deciding
system capacity is not biased toward any particular scheme.

5 Results
This section evaluates how the different strategies perform,
both under normal conditions and under flash crowds or
DDoS attacks. The strategies we examine include: Random,
R-CHash, R-HRW, CDR, FDR, FDR-NP and FDR-Ideal.
The last one, FDR-Ideal, is a reference strategy where all
redirectors have perfect knowledge of the load at all servers.
We also consider a couple of variants: LR-CHash, LR-HRW,
NP-CHash and NPLR-CHash.

5.1 Normal Workload
Before evaluating these strategies under flash crowd or attack,
we first measure their behavior under normal workloads. In
these simulations, all clients generate traffic similar to normal
users and gradually increase their request rates as discussed
in Section 4.3. We compare aggregate system capacity and
user-perceived latency under the different strategies, using the
topology shown in Figure 4. We place 64 servers behind 8
regional routers and 1000 clients behind the remaining 12 re-
gional routers. Request redirectors are placed at the clients’
regional routers.

8000

10000

12000

14000

16000

18000

20000

0 10 20 30 40 50 60

R
eq

ue
st

s
Pe

r S
ec

on
d

Number of Server Replicas for Each URL

Figure 5: Finding Optimal Number of Replicas for R-HRW
in 64 Server Case

5.1.1 Optimal Static Replication

The two static replication schemes, R-CHash and R-HRW,
and their variants use a configurable (but fixed) number of
replicas, and this parameter’s value can significantly influ-
ence their performance. In the extreme case with only one
target server per URL, requests for a very popular URL can

7

Random R-CHash R-HRW LR-CHash LR-HRW CDR FDR FDR-Ideal

Schemes

0

10000

20000

30000

40000

 R
eq

ue
st

s
Pe

r
Se

co
nd

9300

20411
18478	

25407 25407

32582
33237 33237

Figure 6: Capacity Comparison under Normal Load

easily overwhelm a single server. To determine an appropri-
ate value, we varied this parameter between 2 and 64 repli-
cas. The system capacity results of these tests for R-HRW
are shown in Figure 5; the results for R-CHash are similar.

As seen from this figure, increasing the number of replicas
per URL initially helps to improve the system’s throughput
because the load is more evenly distributed. But this increase
stops after the number of replicas surpasses a threshold, and
then throughput starts decreasing due to lessening locality. At
the extreme, using 64 replicas to serve each URL, R-HRW
and R-CHash degenerate to the Random strategy. In the 64-
server case—the scenario we use throughout the rest of this
section—10 server replicas for each URL achieves the opti-
mal system capacity. For all of the remaining experiments,
we use this value in the R-CHash and R-HRW schemes and
their variants.

5.1.2 System Capacity

The maximum aggregate throughput of the various strategies
are shown in Figure 6. Here we do not plot all the strategies
and variants, but focus on those impacting throughput sub-
stantially. To simplify the discussion, we sometimes group
the algorithms into four categories: Random, static repli-
cation (R-CHash and R-HRW), static load replication (LR-
CHash and LR-HRW) and dynamic replication (CDR, FDR,
FDR-Ideal). Random shows the lowest throughput at 9,300
req/s before overload. The static replication schemes, R-
CHash and R-HRW, outperform Random by 119% and 99%,
respectively. Our approximation of static schemes’ best be-
haviors, LR-CHash and LR-HRW, yields 173% better capac-
ity than Random. The dynamic replication schemes, CDR
and FDR, show over 250% higher throughput than Random,
or more than a 60% improvement over the static approaches
and 28% over static schemes with fine-grained load control.

The difference between Random and the static approaches
stems from the locality benefits of the hashing in the static
schemes. By partitioning the working set, more documents
are served from memory by the servers. Note, however,
that absolute minimal replication can be detrimental, and the
throughput for only two replicas in Figure 5 is actually lower
than the throughput for Random. The difference in through-
put between R-CHash and R-HRW is 11% in our simula-

Utilization CPU (%) DISK (%)
Scheme Mean Stddev Mean Stddev
Random 21.03 1.36 100.00 0.00
R-CHash 57.88 18.36 99.15 3.89
R-HRW 47.88 15.33 99.74 1.26

LR-CHash 59.48 18.85 97.83 12.51
LR-HRW 58.43 16.56 99.00 5.94

CDR 90.07 11.78 36.10 25.18
FDR 93.86 7.58 33.96 20.38

FDR-Ideal 91.93 11.81 17.60 15.43

Table 1: Server Resource Utilization at Overload

tion. It appears that R-CHash spreads load somewhat more
evenly since two URLs that have one replica in common
will have all replicas in common. As a result, no single
server gets overloaded before others. This difference should
not be overly emphasized, because changes in the number
of servers or workload can cause their relative ordering to
change. Considering load helps static schemes gain about
25% better throughput, but they still do not exceed the dy-
namic approaches.

The performance difference between the static (including
with load control) and dynamic schemes stems from the ad-
justment of the number of replicas for the documents. FDR
also shows 2% better capacity than CDR.

Interestingly, the difference between our dynamic schemes
(with only local knowledge) and the FDR-Ideal policy (with
perfect global knowledge) is minimal. These results suggest
that request distribution policies not only fare well with only
local information, but that adding more global information
may not gain much in system capacity.

Examination of what ultimately causes overload in these
systems reveals that, under normal load, the server’s behav-
ior is the factor that determines the performance limit of the
system. None of the schemes suffers from saturated network
links in these non-attack simulations. For Random, due to the
large working set, the disk performance is the limit of the sys-
tem, and before system failure, the disks exhibit almost 100%
activity while the CPU remains largely idle. The R-CHash, R-
RHW and LR-CHash and LR-HRW exhibit much lower disk
utilization at comparable request rates; but by the time the
system becomes overloaded, their bottleneck also becomes
the disk and the CPU is busy roughly half the time. In the
CDR and FDR cases, at system overload, the average CPU
is over 90% busy, while most of the disks are only 10-70%
utilized. Table 1 summarizes resource utilization of different
schemes before server failures (not at the same time point).

These results suggest that the CDR and FDR schemes are
the best suited for technology trends, and can most benefit
from upgrading server capacities. The throughput of our sim-
ulated machines is roughly half of what can be expected from
state-of-the-art machines, but this decision to scale down re-
sources was made to keep the simulation time manageable.
With faster simulated machines, we expect the gap between
the dynamic schemes and the others to grow even larger.

8

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

R-HRW
R-CHash

FDR
CDR

Random

(a) Random limit: 9,300 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

R-HRW
R-CHash

FDR
CDR

(b) R-HRW limit: 18,478 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

FDR
CDR

(c) LR-HRW limit: 25,407 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

FDR
CDR

(d) CDR limit: 32,582 req/s

Figure 7: Response Latency Distribution under Normal Load

Req Rate 9,300 req/s 18,478 req/s 25,407 req/s 32,582 req/s
Latency Mean Median 90% Stddev Mean Median 90% Stddev Mean Median 90% Stddev Mean Median 90% Stddev
Random 3.95 1.78 11.32 6.99
R-CHash 0.79 0.53 1.46 2.67 1.01 0.57 1.98 3.58
R-HRW 0.81 0.53 1.49 2.83 1.07 0.57 2.28 3.22

LR-CHash 0.68 0.44 1.17 2.50 0.87 0.51 1.82 2.74 1.19 0.60 2.47 3.79
LR-HRW 0.68 0.44 1.18 2.50 0.90 0.51 1.89 3.13 1.27 0.64 2.84 3.76

CDR 1.16 0.52 1.47 5.96 1.35 0.55 1.75 6.63 1.86 0.63 4.49 6.62 2.37 1.12 5.19 7.21
FDR 1.10 0.52 1.48 5.49 1.35 0.54 1.64 6.70 1.87 0.62 3.49 6.78 2.22 0.87 4.88 7.12

FDR-ideal 0.78 0.50 1.42 2.88 0.97 0.54 1.58 5.69 1.11 0.56 1.86 5.70 1.35 0.66 2.35 6.29

Table 2: Response Latency of Different Strategies under Normal Load

5.1.3 Response Latency

Along with system capacity, the other metric of interest is
user-perceived latency, and we find that our schemes also per-
form well in this regard. To understand the latency behav-
ior of these systems, we use the capacity measurements from
Figure 6 and analyze the latency of all of the schemes when-
ever one of the schemes reaches its performance limit. For
schemes with similar performance, we pick the lower limit
for the analysis so that we can include numbers for the higher-
performing scheme. In all cases, we present the cumulative
distribution of all request latencies as well as some statistics
about the distribution.

Figure 7 shows the latency cumulative distribution plots at
four request rates: the maximums for Random, R-HRW, LR-
HRW, and CDR. The x-axis is in log scale and shows the time
needed to complete requests. The y-axis shows what fraction
of all requests finished in that time. The data in Table 2 gives
mean, median, 90th percentile and standard deviation details
of response latencies at our comparison points.

The response time improvement from exploiting locality is
most clearly seen in Figure 7a. At Random’s capacity, most
responses complete under 4 seconds, but a few responses take
longer than 40 seconds. In contrast, all other strategies have
median times almost one-fourth that of Random, and even
their 90th percentile results are less than Random’s median.
These results, coupled with the disk utilization information,
suggest that most requests in the Random scheme are suf-
fering from disk delays, and that the locality improvement
techniques in the other schemes are a significant benefit.

The benefit of FDR over CDR is visible in Figure 7d, where
the plot for FDR lies to the left of CDR. The statistics also
show a much better median response time, in addition to bet-
ter mean and 90th percentile numbers. FDR-Ideal has better
numbers in all cases than CDR and FDR, due to its perfect
knowledge on server load status.

An interesting observation is that when compared to the
static schemes, dynamic schemes have worse mean times but
comparable/better medians and 90th percentile results. We
believe this behavior stems from the time required to serve the
largest files. Since these files are less popular, the dynamic
schemes replicate them less than what occurs in the static
scheme. As a result, these files are served from a smaller set
of servers, causing them to be served more slowly than if they
were replicated more widely. We do not consider this behav-
ior to be a significant drawback, and note that some research
explicitly aims to achieve this effect [10, 11].

5.1.4 Scalability

Robustness not only comes from resilience with certain re-
sources, but also from good scalability with increasing re-
sources. We repeat similar experiments with different num-
ber of servers, from 8 to 128, to test how well these strategies
scale. The number of server-side routers is not changed, but
instead, more servers are attached to each server router as the
total number of servers increases.

We plot system capacity against the number of servers in
Figure 8. They all display near-linear scalability, implying all
of them are reasonably good strategies when the system be-
comes larger. The only noticeably sub-linear increase seen

9

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 8 16 32 64 128

C
ap

ac
ity

 (R
eq

ue
st

s
Pe

r S
ec

on
d)

Number of Servers

FDR
CDR

LR-HRW
LR-CHash

R-HRW
R-CHash
Random

Figure 8: System Scalability under Normal Load

is when dynamic schemes, CDR and FDR increases from
64 servers to 128 servers. However, closer inspection of
the simulation shows that the bottleneck in that case is the
link between the server router and backbone router, which is
622Mbps. In this scenario, each server router is handling 16
servers, giving each server on average only 39Mbps of traf-
fic. At 600 reqs/s, even an average size of 10KB requires
48Mbps. Rerunning the simulation with doubled bandwidth
on the router-to-backbone links once again shows linear scal-
ability at 128 servers.

5.2 Behavior Under Flash Crowds

Having established that our new algorithms perform well un-
der normal workloads, we now evaluate how they behave
when the system is under a flash crowd or a DDoS attack.
To simulate a flash crowd, we randomly select 25% of the
1,000 clients to be intensive requesters, where each of these
requesters repeatedly issues requests from a small set of pre-
selected URLs with an average size of about 6KB.

5.2.1 System Capacity

Figure 9 depicts system capacity under flash crowd with a
set of 10 URLs. In general, it exhibits similar trends as the
no-attack case shown in Figure 6. Importantly, the CDR and
FDR schemes still yield the best throughput, making them
most robust to flash crowds or attacks. Two additional points
deserve more attention.

First, FDR now has a similar capacity with CDR, but still
is more desirable as it provides noticeably better latency, as
we will see later. FDR’s benefit over R-CHash and R-HRW
has grown to 91% from 60% and still outperforms LR-CHash
and LR-HRW by 22%.

Second, most of the absolute throughput numbers are
larger compared to the no-attack case. One reason is that
at least 25% of the traffic is now concentrated on 10 URLs,
which may increase the servers’ hit rates. Moreover, these at-
tack URLs are relatively small, with an average size of 6KB,
which results in more responses delivered using the same re-
sources.

Random R-CHash R-HRW LR-CHash LR-HRW CDR FDR FDR-Ideal

Schemes

0

10000

20000

30000

40000

 R
eq

ue
st

s
Pe

r
Se

co
nd

11235

19811 19811	

31000 31000

37827 37827 38587

Figure 9: Capacity Comparison Under Flash Crowds

5.2.2 Response Latency

The cumulative distribution form of response latencies for all
seven algorithms, when under attack, are shown in Figure 10.
Also, the full statistics for all seven algorithms and FDR-
Ideal are given in Table 3. As seen from the figure and ta-
ble, R-CHash, R-HRW, LR-CHash, LR-HRW CDR and FDR
still have far better latency than Random, and static schemes
are a little better than CDR and FDR at Random, R-HRW’s
and LR-HRW’s failure points; and LR-CHash and LR-HRW
yields slightly better latency than R-CHash and R-HRW.

As we explained earlier, CDR and FDR adjust the server
replica set in response to request volume. The number
of replicas that serve attack URLs increases as the attack
ramps up, which may adversely affect serving non-attack
URLs. However, the differences in the mean, median, and
90-percentile are not large, and all are probably acceptable to
users. The small price paid in response time for CDR and
FDR brings us higher system capacity, and thus, stronger re-
silience to various loads.

5.2.3 Scalability

We also repeat the scalability test under flash crowd or attack,
where 250 clients are intensive requesters that repeatedly re-
quest 10 URLs. As shown in Figure 11, all strategies scale
linearly with the number of servers, with the exception of
CDR and FDR’s 128 server case. Again, the network link
becomes a bottleneck in this case, which can be solved either
by greater bandwidth provisioning or placing fewer servers
behind each pipe and instead spreading them across more lo-
cations.

5.2.4 Various Flash Crowds

Throughout our simulations, we have seen that a different
number of intensive requesters, and a different number of hot
or attacked URLs, have an impact on system performance.
To further investigate this issue, we carry out a series of sim-
ulations by varying both the number of intensive requesters
and the number of hot URLs. Here, we show the results for
three representative strategies: Random, R-HRW and CDR.
Since it is impractical to exhaust all possible combinations,
we choose two classes of flash crowds. One class has a single

10

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

R-HRW
R-CHash

FDR
CDR

Random

(a) Random limit: 11,235 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

R-HRW
R-CHash

FDR
CDR

(b) R-HRW limit: 19,811 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-HRW
LR-CHash

FDR
CDR

(c) LR-HRW limit: 31,000 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

C
u

m
u

la
ti
v
e

 P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

FDR
CDR

(d) CDR limit: 37,827 req/s

Figure 10: Response Latency Distribution under Flash Crowds

Req Rate 11,235 req/s 19,811 req/s 31,000 req/s 37,827 req/s
Latency Mean Median 90% Stddev Mean Median 90% Stddev Mean Median 90% Stddev Mean Median 90% Stddev
Random 2.37 0.64 8.57 5.29
R-CHash 0.73 0.53 1.45 2.10 0.81 0.53 1.57 2.59
R-HRW 0.73 0.52 1.45 2.11 0.76 0.52 1.51 2.51

LR-CHash 0.62 0.45 1.15 1.70 0.67 0.45 1.23 2.42 0.96 0.52 1.86 3.55
LR-HRW 0.63 0.45 1.18 1.80 0.67 0.46 1.26 2.65 1.07 0.53 2.19 3.52

CDR 1.19 0.55 1.72 5.40 1.25 0.55 1.86 5.51 1.80 0.76 4.35 6.08 2.29 1.50 4.20 6.41
FDR 1.22 0.55 1.81 5.71 1.18 0.55 1.83 5.27 1.64 0.66 3.57 5.95 2.18 1.14 4.15 6.63

FDR-ideal 0.91 0.55 1.66 4.09 0.90 0.53 1.60 4.59 0.98 0.54 1.74 5.08 1.20 0.56 1.99 5.53

Table 3: Response Latency of Different Strategies under Flash Crowds

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 8 16 32 64 128

C
ap

ac
ity

 (R
eq

ue
st

s
Pe

r S
ec

on
d)

Number of Servers

FDR
CDR

LR-HRW
LR-CHash

R-HRW
R-CHash
Random

Figure 11: System Scalability under Flash Crowds

hot URL of size 1KB. This represents a small home page of
a website. The other class has 10 hot URLs averaging 6KB,
as before. In both cases, we vary the percentage of the 1000
clients that are intensive requesters from 10% to 80%. The
results of these two experiments are shown in Figures 12 and
13, respectively.

In the first experiment, as the portion of intensive re-
questers increases, more traffic is concentrated on this one
URL, and the request load becomes more unbalanced. Ran-
dom and CDR adapt to this change well and yield increasing
throughput. This benefit comes from their ability to spread
load across more servers. However, CDR behaves better than
Random because it not only adjusts the server replica set on
demand, but it also maintains server locality for less popular
URLs. In contrast, R-HRW suffers with more intensive re-
questers or attackers, since its fixed number of replicas for

each URL cannot handle the high volume of requests for
one URL. In the 10-URL case, the change in system capac-
ity looks similar to the 1-URL case, except that due to more
URLs being intensively requested or attacked, CDR and Ran-
dom cannot sustain the same high throughput. We continue to
investigate the effects of more attack URLs and other strate-
gies.

Another possible DDoS attack scenario is to randomly se-
lect a wide range of URLs. In the case that these URLs are
valid, the dynamic schemes will “degenerate” into one server
for each URL. This is the desirable behavior for this attack as
it increases the cache hit rates for all the servers. In the event
the URLs are invalid, and the servers are actually reverse
proxies (as is typically the case in a CDN), then these in-
valid URLs are forwarded to the server-of-origin, effectively
bringing it down. Servers must address this possibility by
throttling the number of URL-misses they forward.

To summarize, under flash crowds or attacks, our CDR and
FDR sustain very high request volumes. This makes over-
loading the whole system significantly harder. Considering
CDR’s maximum capacity of 37,827 req/s, each of the 1000
clients we use in the simulation has to maintain a request rate
of roughly 37 req/s, which is quite a high number for a typical
browsing user. In this regard, our clients are more aggressive
than a single attacker might be, and should be viewed as a
small group of clients.

5.3 Network Proximity and Heterogeneity
This section takes the topological distance between servers
and clients and network bandwidth into consideration.

11

0

5000

10000

15000

20000

25000

30000

35000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ca
pa

cit
y

(R
eq

ue
st

s
Pe

r S
ec

on
d)

Fraction of Intensive Requesters

"Dynamic" (CDR)
"Static" (R-HRW)

"Random

Figure 12: 1 Hot URL, 32 Servers, 1000 Clients

0

5000

10000

15000

20000

25000

30000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ca
pa

cit
y

(R
eq

ue
st

s
Pe

r S
ec

on
d)

Fraction of Intensive Requesters

"Dynamic" (CDR)
"Static" (R-HRW)

"Random

Figure 13: 10 Hot URL, 32 Servers, 1000 Clients

5.3.1 Proximity

Previous experiments focus on system’s capacity under dif-
ferent loads. Here, we will compare those strategies
that factor network closeness into server selection, namely
static (NP-CHash), load-static (NPLR-CHash), and dynamic
(FDR-NP) with their counterparts that ignore proximity. We
test 64 server case in the same set up as that of Section 5.2.

Static NP-CHash 14409
R-CHash 19811

Load NPLR-CHash 30090
Static LR-CHash 31000

Dynamic FDR-NP 35280
FDR 37827

Table 4: Proximity Impact on Capacity under Flash Crowds

Table 4 shows the capacity numbers of these strategies
under flash crowds of 250 intensive requesters with 10 hot
URLs. As we can see, adding network proximity into server
selection slightly decrease systems capacity in the case of
NPLR-CHash and FDR-NP. However throughput drop in NP-
CHash compared with R-CHash is considerably large. Part of
reason is that in LR-CHash and FDR, server load information
already conveys the distance of a server. However, in the R-
CHash case, redirector round robin among all servers causes
the load to be evenly distributed, while NP-CHash puts more
burden on closer servers, resulting in unbalanced server load.

We further investigate the impact of network proximity on
response latency. In Figure 14, instead of plotting relevant
strategies together all the way, we use a different format. We
first plot all relevant strategies against the Random scheme at
Random’s limit of 11,235 req/s, then we plot the six schemes
pair-wise at the lower capacity in each category. From
this graph we can see that when servers are not loaded, all
schemes with network proximity taken into consideration—
NP-CHash, NPLR-CHash and FDR-NP—yield much better
latency. When these schemes reach their limit, NP-CHash
and FDR-NP still demonstrate significant latency advantage
over R-CHash and FDR, respectively.

To our surprise, NPLR-CHash underperforms LR-CHash
at its limit of 30,090 req/s. NPLR-CHash is basically LR-

CHash using effective load. When all the servers are not
loaded, it redirects more requests to nearby servers, thus
shortening the response time. However, as the load increases,
in order for a remote server to get a share of load, a lo-
cal server has to be much more overloaded than the remote
one, inversely proportional to their distance ratio. Since un-
like FDR-NP, there’s is no load threshold control in NPLR-
CHash, it is possible that some close servers get a lot more
requests, resulting in slow processing and longer response. In
a summary, considering proximity might bring latency bene-
fit, but it could also slightly hurt the capacity. FDR-NP, how-
ever, achieves a good balance.

5.3.2 Heterogeneity

To determine the impact of network heterogeneity on our
schemes, we explore the impact of non-uniform server net-
work bandwidth. In our original setup, all first-mile links
from the server have bandwidths of 100Mbps. We now ran-
domly select some of the servers and reduce their link band-
width by an order of magnitude, to 10Mbps. We want to test
how different strategies respond to this heterogeneous envi-
ronment. We pick some representative schemes: Random,
R-CHash, LR-CHash and FDR. Table 5 summarizes our find-
ings for the flash crowds test similar to Section 5.3.1.

Scheme Portion of Slower Links
0% 10% 30%

Random 11235 8449 8449
R-CHash 19811 7110 7110

LR-CHash 31000 26703 22547
FDR 37827 34244 28065

Table 5: Capacity under Flash Crowds with Heterogeneous
Server Bandwidth

From the table we can see, with 10% server links 10 times
slower than others, FDR’s capacity downgrades by 9.5% and
LR-CHash decreases by 14%; when 30% of the links are
slower, the decrease changes to 25.8% and 27.3%, respec-
tively. However, Random and R-CHash are hurt badly be-
cause they are load oblivious and keep assigning requests to
servers with slower links thereby overload them early.

12

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

NPLR-CHash
LR-CHash
NP-CHash

R-CHash
FDR-NP

FDR
Random

(a) Random limit: 11,235 req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

NP-CHash
R-CHash

(b) NP-CHash limit: 14,409
req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

LR-CHash
NPLR-CHash

(c) NPLR-CHash limit: 30,090
req/s

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100

P
e

rc
e

n
ta

g
e

 o
f

R
e

s
p

o
n

s
e

s

Response Latency (seconds) in Log Scale

FDR-NP
FDR

(d) FDR-NP limit: 35,280 req/s

Figure 14: Proximity Impact on Response Latency

6 Related Work and Discussion
Cluster Schemes: Approaches for request distribution in
clusters [8, 12, 17] generally use a switch/router through
which all requests for the cluster pass. As a result, they
can use various forms of feedback and load information from
servers in the cluster to improve the performance of request
distribution. In these environment, the delay between the
redirector and the servers is minimal, so they can have tighter
coordination [2] than in schemes like ours, which are devel-
oped for wide-area environments. We do, however, adapt
the fine-grained server set accounting from the LARD/R ap-
proach [26] for our Fine Dynamic Replication approach.

Distributed Servers: In the case of geographically dis-
tributed caches and servers, DNS-based systems can be used
to obliviously spread load among a set of servers, as in the
case of round-robin DNS [4], or it can be used to take ad-
vantage of geographically dispersed server replicas [6]. More
active approaches [9, 14, 16] attempt to use load/latency in-
formation to improve overall performance. Our current tech-
niques are primarily focused on balancing load, locality and
latency, we also demonstrate a feasible way to incorporate
network proximity into server selection explicitly.

Web Caches: We have discussed proxy caches as one
deployment vehicle for redirectors, and these platforms are
also used in other content distribution schemes. The sim-
plest approach, the static cache hierarchy [7], performs well
in small environments but fails to scale to much larger popu-
lations [33]. Other schemes involve overlapping meshes [34]
or networks of caches in a content distribution network [19],
presumably including commercial CDNs such as Akamai.

DDoS Detection and Protection: DDoS attacks have be-
come an increasingly serious problem on the Internet [23].
Researchers have recently developed techniques to identify
the source of attacks using various traceback techniques, such
as probabilistic packet marking [29] and SPIE [30]. These ap-
proaches are effective in detecting and confining attack traf-
fic. With their success in deterring spoofing and suspicious
traffic, attackers have to use more disguised attacks, for ex-
ample by taking control of large number of slave hosts and

instructing them to attack victims with legitimate requests.
Our new redirection strategy is effective to provide protection
against exactly such difficult-to-detect attacks.

Peer-to-Peer Networks: Peer-to-peer systems provide an
alternative infrastructure for content distribution. Typical
peer-to-peer systems involve a large number of participants
acting as both clients and servers, and they have the respon-
sibility of forwarding traffic on behalf of others. Given their
very large scale and massive resources, peer-to-peer networks
could provide a potential robust means of information dis-
semination or exchange. Many peer-to-peer systems, such
as CAN [27], Chord [31], and Pastry [28] have been pro-
posed and they can serve as a substrate to build other services.
Most of these peer-to-peer networks use a distributed hash-
based scheme to combine object location and request routing
and are designed for extreme scalability up to hundreds of
thousands of nodes and beyond. We also use hash-based ap-
proach, but we are dealing one to two orders of magnitude
fewer servers than the peers in these systems, and we expect
relatively stable servers. As a result, much of the effort that
peer-to-peer networks spend in discovery and membership is-
sues is not needed for our work.

7 Conclusions
This paper demonstrates that request redirection can effec-
tively improve CDN’s robustness. The key is to balance lo-
cality, load and proximity. Detailed end-to-end simulations
show that even when the redirectors have imperfect informa-
tion about server load, an algorithm that dynamically adjusts
the number of servers selected for a given object allows the
system to support a 60-91% greater load than published state-
of-the-art CDN systems. Moreover, this gain in capacity does
not come at the expense of response time, which is essen-
tially the same both when the system is under flash crowds
and when operating under normal conditions.

These results demonstrate that the proposed algorithm re-
sults in a system with significantly greater capacity than pub-
lished CDNs, which should improve the system’s ability to
handle legitimate flash crowds. The results also suggest a

13

new strategy in defending against DDoS attacks: each server
added to the system multiplicatively increases the number of
resources an attacker must marshal in order to have a notice-
able affect on the system.

8 REFERENCES
[1] Akamai. Akamai content delivery network. http://www.akamai.com.
[2] D. Andresen, T. Yang, V. Holmedahl, and O. Ibarra. Sweb: Towards a

scalable world wide web server on multicomputers, 1996.
[3] A. Barbir, B. Cain, F. Douglis, M. Green, M. Hofmann, R. Nair,

D. Potter, and O. Spatscheck. Known CN Request-Routing
Mechanisms, Feb. 2002. Work in Progress,
draft-ietf-cdi-known-request-routing-00.txt.

[4] T. Brisco. DNS support for load balancing. Request for Comments
1794, Rutgers University, New Brunswick, New Jersey, Apr. 1995.

[5] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In
Proceedings of the USENIX Symposium on Internet Technologies an d
Systems (USITS), Monterey, CA, Dec. 1997.

[6] V. Cardellini, M. Colajanni, and P. Yu. Geographic load balancing for
scalable distributed web systems. In Proceedings of the International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), Aug. 2000.

[7] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and
K. J. Worrell. A hierarchical internet object cache. In USENIX Annual
Technical Conference, pages 153–164, 1996.

[8] J. Cohen, N. Phadnis, V. Valloppillil, and K. W. Ross. Cache array
routing protocol v1.1.
http://ds1.internic.net/internet-drafts/draft-vinod-carp-v1-01.txt,
September 1997.

[9] M. Colajanni, P. S. Yu, and V. Cardellini. Dynamic load balancing in
geographically distributed heterogeneous web servers. In International
Conference on Distributed Computing Systems, pages 295–302, 1998.

[10] M. Crovella, R. Frangioso, and M. Harchol-Balter. Connection
scheduling in web servers. In USENIX Symposium on Internet
Technologies and Systems, 1999.

[11] M. Crovella, M. Harchol-Balter, and C. D. Murta. Task assignment in
a distributed system: Improving performance by unbalancing load
(extended abstract). In Measurement and Modeling of Computer
Systems, pages 268–269, 1998.

[12] O. Damani, P. Y. Chung, Y. Huang, C. M. R. Kintala, and Y. M. Wang.
ONE-IP: Techniques for hosting a service on a cluster of machines. In
Proceedings of the Sixth International World-Wide Web Conference,
1997.

[13] Digital Island. http://www.digitalisland.com.
[14] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A novel

server selection technique for improving the response time of a
replicated service. In INFOCOM (2), pages 783–791, 1998.

[15] L. Garber. Technology news: Denial-of-service attacks rip the
Internet. Computer, 33(4):12–17, Apr. 2000.

[16] J. D. Guyton and M. F. Schwartz. Locating nearby copies of replicated
internet servers. In SIGCOMM, pages 288–298, 1995.

[17] G. Hunt, E. Nahum, and J. Tracey. Enabling content-based load
distribution for scalable services. Technical report, IBM T.J. Watson
Research Center, May 1997.

[18] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek. The
measured performance of content distribution networks. In
Proceedings of The 5th International Web Caching and Content
Delivery Workshop, Lisbon, Portugal, May 2000.

[19] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi. Web caching
with consistent hashing. In Proceedings of the Eighth International
World-Wide Web Conference, 1999.

[20] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine,
and D. Lewin. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the world wide web. In
ACM Symposium on Theory of Computing, pages 654–663, 1997.

[21] Z. M. Mao, C. D. Cranor, F. Douglis, M. Rabinovich, O. Spatscheck,
and J. Wang. A Precise and Efficient Evaluation of the Proximity
between Web Clients and their Local DNS Servers. In USENIX
Annual Technical Conference, 2002.

[22] Mirror Image. http://www.mirror-image.com.
[23] D. Moore, G. Voelker, and S. Savage. Inferring internet denial of

service activity. In Proceedings of 2001 USENIX Security Symposium,
Aug. 2001.

[24] NS. (Network Simulator). http://www.isi.edu/nsnam/ns/.
[25] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and

portable web server. In USENIX Annual Technical Conference, June
1999.

[26] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. M. Nahum. Locality-aware request
distribution in cluster-based network servers. In Architectural Support
for Programming Languages and Operating Systems, pages 205–216,
1998.

[27] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A
scalable content-addressable network. In Proceedings of ACM
SIGCOMM’01, Aug. 2001.

[28] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
IFIP/ACM International Conference on Distributed Systems Platforms
(Middleware), pages 329–350, Nov. 2001.

[29] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical
network support for IP traceback. In Proceedings of the 2000 ACM
SIGCOMM Conference, Aug. 2000.

[30] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones,
F. Tchakountio, S. T. Kent, and W. T. Strayer. Hash-based ip
traceback. In Proceedings of ACM SIGCOMM’01, Aug. 2001.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of ACM SIGCOMM’01, Aug. 2001.

[32] D. G. Thaler and C. V. Ravishankar. Using name-based mappings to
increase hit rates. IEEE/ACM Transactions on Networking, 6(1):1–14,
Feb. 1998.

[33] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A. R. Karlin, and
H. M. Levy. On the scale and performance of cooperative web proxy
caching. In Symposium on Operating Systems Principles, pages
16–31, 1999.

[34] L. Zhang, S. Floyd, and V. Jacobson. Adaptive web caching. In
Proceedings of the 1997 NLANR Web Cache Workshop, June 1997.

14

