
iWalk: Interactive Out-Of-Core Rendering of Large Models

Wagner T. Corrêa∗

Princeton
James T. Klosowski†

IBM
Cláudio T. Silva‡

OGI

Abstract

We present iWalk, a system for interactive out-of-core rendering of
large models on an inexpensive PC. The system uses a new out-
of-core preprocessing algorithm and a new multi-threaded out-of-
core rendering approach. The out-of-core preprocessing algorithm
is incremental and fast, and it builds an on-disk hierarchical rep-
resentation for a model larger than main memory. The out-of-core
rendering approach uses multiple threads to overlap rendering, vis-
ibility computation, and disk operations. A rendering thread uses
a from-point visibility algorithm to find the nodes of the model hi-
erarchy that the user sees, and sends fetch requests to a geometry
cache, which reads nodes from disk into memory. To avoid bursts of
disk operations, a look-ahead thread guesses the nodes that the user
may see next, and sends prefetch requests to the geometry cache.
The system can run in approximate mode for interactive rendering,
or in conservative mode for rendering with guaranteed accuracy.
On a commodity PC, iWalk can preprocess a 13-million-polygon
model in 17 minutes, and then render it in approximate mode with
98% accuracy at 9 frames per second. Thus, iWalk allows us to use
an inexpensive PC to visualize models that would typically require
expensive high-end graphics workstations or parallel machines.

1 Introduction

In this paper, we present iWalk, a system for interactive rendering of
large polygonal models on an inexpensive PC. Interactive rendering
of large models has applications in many areas, including computer-
aided design, engineering, entertainment, and training. Tradition-
ally, interactive rendering of large models has required triangle
throughput only available on high-end graphics workstations or par-
allel machines that cost hundreds of thousands of dollars. Recently,
with the explosive growth in performance of PC graphics cards that
cost a few hundred dollars, inexpensive PCs are becoming an attrac-
tive alternative to high-end machines. Although inexpensive PCs
can match the triangle throughput of high-end machines, inexpen-
sive PCs have much less main memory than high-end machines. To-
day a typical high-end machine has 16 GB of main memory, while
a typical inexpensive PC has 512 MB (32 times less). Thus, a chal-
lenge in exploiting the performance of PC graphics cards is design-
ing rendering systems that work under tight memory constraints.

The iWalk system which we present here overcomes the mem-
ory constraints of an inexpensive PC by using a new out-of-core
preprocessing algorithm and a new multi-threaded out-of-core ren-
dering approach. The out-of-core preprocessing algorithm is incre-
mental and fast, and it builds an on-disk hierarchical representation
for a large model. The out-of-core rendering approach uses mul-
tiple threads to overlap rendering, visibility computation, and disk

∗Department of Computer Science, Princeton University, 35 Olden St.,
Princeton, NJ 08540; wtcorrea@cs.princeton.edu.

†Visual Technologies, IBM T. J. Watson Research Center, PO Box 704,
Yorktown Heights, NY 10598; jklosow@us.ibm.com.

‡Work performed while at AT&T. Currently at Department of Computer
Science & Engineering, OGI School of Science and Technology, 20000 NW
Walker Road, Beaverton, OR, 97006; csilva@cse.ogi.edu.

Figure 1: iWalk can preprocess a 13-million-triangle model in 17
minutes, and then render it with 98% accuracy at 9 frames per sec-
ond on an inexpensive PC. Model courtesy of UNC Chapel Hill.

operations. A rendering thread uses a from-point visibility algo-
rithm to find the nodes of the model hierarchy that the user sees,
and sends fetch requests to a geometry cache, which reads nodes
from disk into memory. To avoid bursts of disk operations, a look-
ahead thread uses a from-point visibility algorithm to find the nodes
the user is likely to see next, and sends prefetch requests to the ge-
ometry cache. The system can run in approximate mode for inter-
active rendering, or in conservative mode for rendering with guar-
anteed accuracy. Using an inexpensive single-processor PC, iWalk
can preprocess a model with tens of millions of polygons in a few
minutes, and then render it at interactive frame rates (Figure 1).

The main contributions of this paper are:

• A system that can render a model with tens of millions of
polygons at interactive frame rates on an inexpensive PC.

• An incremental and fast out-of-core algorithm that builds an
on-disk hierarchical representation for a large model.

• A multi-threaded out-of-core rendering approach which to our
knowledge is the first to combine speculative prefetching with
a from-point occlusion-culling algorithm.

The rest of this paper is organized as follows. Section 2 surveys
related work. Section 3 presents the out-of-core preprocessing al-
gorithm. Section 4 describes the out-of-core rendering approach.
In Section 5, we present experimental results. In Section 6, we con-
clude and outline areas for future work.

2 Related Work

Researchers have studied the problem of rendering complex mod-
els at interactive frame rates for many years. Clark [12] proposed
many of the techniques for rendering complex models used to-
day, including the use of hierarchical spatial data structures, level-
of-detail (LOD) management, hierarchical view-frustum and oc-
clusion culling, and working-set management (geometry caching).
Garlick et al. [21] presented the idea of exploiting multiprocessor
graphics workstations to overlap visibility computations with ren-
dering. Airey et al. [2] described a system that combined LOD
management with the idea of precomputing visibility information
for models made of axis-aligned polygons.

Funkhouser et al. [20] described the first published system that
supported models larger than main memory, and performed specu-
lative prefetching. Their system was based on the from-region visi-
bility algorithm of Teller and Séquin [32], which required long pre-
processing times, and was limited to models made of axis-aligned
cells. The iWalk system we present here is based on the from-point
visibility algorithm of Klosowski and Silva [22, 23], which requires
very little preprocessing, and can handle any 3D polygonal model.

Aliaga et al. [3] presented the Massive Model Rendering (MMR)
system, which employed many acceleration techniques, including
replacing geometry far from the user’s point of view with imagery,
occlusion culling, LOD management, and from-region prefetching.
MMR was the first published system to handle models with tens
of millions of polygons at interactive frame rates. A difference be-
tween MMR and iWalk is that MMR’s preprocessing step required
user intervention, and took weeks to run, while iWalk’s preprocess-
ing step is fully automatic, and takes minutes to run. Another differ-
ence is that MMR required an expensive high-end multi-processor
graphics workstation, while iWalk runs on an inexpensive PC.

Wald et al. [35] developed a ray tracing system that used a cluster
of 7 dual-processor PCs to render low-resolution images of mod-
els with tens of millions of polygons at interactive frame rates.
Their system could preprocess the UNC power plant model [36]
in 2.5 hours (two orders of magnitude faster than MMR [3]). Our
preprocessing algorithm is similar to the one of Wald et al., but our
algorithm performs many fewer disk operations, and can preprocess
the UNC power plant in 17 minutes.

Avila and Schroeder [6] and El-Sana and Chiang [16] devel-
oped systems for interactive out-of-core rendering based on LOD
management, but these systems did not perform occlusion culling.
Varadhan and Manocha [34] describe a system for out-of-core ren-
dering that uses hierarchical LODs [18] and prefetching, but their
system does not perform occlusion culling, and their preprocessing
step is in-core. Many other researchers [9, 10, 13, 27, 30, 31] have
developed systems for out-of-core rendering and visualization.

Ueng et al. [33] presented an out-of-core algorithm to build an
on-disk octree for large unstructured tetrahedral meshes. Both their
algorithm and ours save the structure (or skeleton) of the octree in a
file, and the contents of the octree nodes in seperate files. Also, both
algorithms enforce a maximum amount of data per octree node.
The difference is that their algorithm may need to perform multi-
ple passes over the same octree node during insertion, while our
algorithm only needs one pass per node.

Cignoni et al. [11] developed an out-of-core algorithm for sim-
plification of large models. Their algorithm first builds a raw (not
indexed) octree-based external memory mesh (OEMM), and then
traverses the raw OEMM twice to build an indexed OEMM. Our
preprocessing algorithm is similar to the first phase of their simpli-
fication algorithm. The main difference is that they build the octree
starting from the leaves at a predefined depth, and then merge adja-
cent leaves with few triangles. We build the octree starting from the
root, and then split leaves with too many triangles. Our algorithm
and theirs have similar running times.

Wonka et al. [37] presented a from-region visibility preprocess-
ing algorithm with occluder fusion. Their algorithm took 9 hours
to preprocess a model with 8 million triangles, and was limited to
2.5D environments. In later work, Wonka et al. [38] employed a
from-point approach that needed very little preprocessing, and used
2 processors to overlap visibility computation and rendering at run-
time (similarly to the idea introduced by Garlick et al. [21]). But
Wonka et al. [38] only reported results for 2.5D environments that
were smaller than main memory.

Durand et al. [15] presented a from-region visibility preprocess-
ing algorithm that could handle 3D environments, as opposed to
2.5D [37]. But the algorithm took 33 hours to process a model
with 6 million triangles. Schaufler et al. [29] also presented a from-
region 3D visibility preprocessing algorithm, but their largest test
model had only 0.6 million triangles.

3 Out-Of-Core Preprocessing

Recall that our goal is to render a large model using an inexpen-
sive PC with small memory. Our approach is to construct an out-
of-core hierarchical representation for the model at preprocessing
time, and at runtime load on demand the hierarchy nodes that the
user sees. The database literature uses the term bulk loading to re-
fer to the construction of out-of-core spatial data structures. Agar-
wal et al. [1] and Arge et al. [5] present bulk loading algorithms for
many data structures, including kd-trees, quad-trees, and R-trees.
The algorithm we present here builds an out-of-core octree [28]
whose leaves contain the geometry of the model.

To store the octree on disk, our algorithm saves the geometric
contents of each octree node in a separate file, and creates a hier-
archy structure (HS) file (Figure 2). The HS file has information
about the spatial relationship of the nodes in the hierarchy, and for
each node it contains the node’s bounding box and auxiliary data
needed for visibility culling. The HS file is the main data struc-
ture that the iWalk system uses to control the flow of data. A key
assumption we make is that the HS file fits in memory. That is usu-
ally a trivial assumption. For example, the size of the HS file for a
13-million-triangle model is only 1 MB.

id
min point
max point
octant
depth
is leaf

triangles
vertices

vertices
vertex normals
vertex colors
triangles

vertex normals

triangles

vertices

vertex colors

node
structure

hierarchy
structure

file

node
contents

files
node

contents

... ...

Figure 2: The on-disk hierarchical representation of a model. The
out-of-core preprocessing algorithm builds an octree for a model,
saving the skeleton of the octree in the hierarchy structure (HS)
file, and the geometric contents of each node in a separate file.

An in-core approach to build an octree for a model would process
the entire model in one pass, using a machine with large enough
memory to hold both the model and the resulting octree. We avoid
this brute-force approach, because we do not want to use a separate
expensive machine with large memory just to build the octree.

Our out-of-core algorithm builds an octree for a model directly
on machines with small memory. The algorithm first breaks the
model in sections that fit in main memory, and then incrementally
builds the octree on disk, one pass for each section, keeping in
memory only the section being processed. The out-of-core algo-
rithm to build an octree for a model M with bounding box b and a
maximum number V of vertices per leaf is:

OCTREE-BUILD(M, b, V)
1 break model M in sections S that fit into main memory
2 pick a section si ∈ S
3 OCTREE-INIT(si, b, V)
4 for each section s j ∈ S,s j 6= si
5 OCTREE-ADD-SECTION(s j, V)

Breaking the model in sections is simple. Let N be the number of
triangles in the model, and n the number of triangles that a machine
can hold in memory (typically, N is much larger than n). We can
create dN/ne sections of at most n triangles each, without bringing
the entire model into memory, by reading at most n triangles at a
time, and writing them to a separate file. Chiang et al. [10] propose
a technique that splits the model in spatially coherent sections.

To initialize the octree, we pick a section of the model, and in-
sert the vertices and triangles of the section into the octree. The
octree starts out as a single leaf that contains the bounding box of
the model. We first insert the vertices of the section in the octree.
For each vertex of the section, we find the leaf that contains the
vertex, and add the vertex to the leaf’s list of vertices. If the num-
ber of vertices in the leaf exceeds the predefined limit, we create
eight children under the leaf, and redistribute its vertices among its
children. We then insert the triangles of the section in the octree.
For each triangle of the section, we find the leaves touched by the
triangle, and replicate the triangle in all those leaves, checking the
limit of vertices per node. The final leaves may have different sizes,
but each leaf will contain at most the predefined number of vertices.
The routines to initialize an octree with a model section s are:

OCTREE-INIT(s, b, V)
1 root← new octree node with bounding box b
2 for each vertex v of model section s
3 OCTREE-NODE-INSERT-VERTEX(root, v, V)
4 for each triangle t of model section s
5 OCTREE-NODE-INSERT-TRIANGLE(root, t, V)
6 save octree to disk

OCTREE-NODE-INSERT-VERTEX(x, v, V)
1 if node x is not a leaf
2 y← child of x containing vertex v
3 OCTREE-NODE-INSERT-VERTEX(y, v, V)
4 else
5 add vertex v to the list of vertices of node x
6 if the number of vertices in x is greater than V
7 create eight children under x
8 distribute the vertices in x among the children of x

OCTREE-NODE-INSERT-TRIANGLE(x, t, V)
1 if node x is a leaf
2 add triangle t to the list of triangles in x
3 if the number of vertices in x is greater than V
4 create eight children under x
5 distribute the triangles in x among the children of x
6 else
7 for each child y of node x touched by triangle t
8 OCTREE-NODE-INSERT-TRIANGLE(y, t, V)

After initializing the octree with one of the model sections, we
add the other sections one at a time. To add a section to an octree,

we first read the the HS file (Figure 2) from disk. Recall that the
HS file trivially fits in memory. We do not read the contents of any
node yet. At this point, all the octree nodes in memory are empty,
even the leaves that do have contents stored on disk. We then read
the section itself, which by construction fits in memory, and insert
the geometry of the section into the octree. After these insertions,
some leaves will have received new data. Because of the limit of
vertices per leaf, some leaves may have become internal nodes, and
new leaves may have been created. For each old leaf modified by
the insertions, we read the old contents from disk, reinsert the old
contents into the old leaf, and update the contents of the old leaf
on disk. The important point is that these reinsertions are local
to the old leaf, and therefore never require reading more than one
octree node of a fixed maximum size from disk. If the old leaf
is now an internal node, its contents have been redistributed to its
descendants; we then delete the file for the old leaf, and create new
files for the new descendants. After updating each contents file, we
free the memory allocated for it. Finally, we update the HS file on
disk, and free the memory used by the model section and by the HS
file. Thus, the routine to add a section s to an octree is:

OCTREE-ADD-SECTION(s, V)
1 read octree structure (HS file) from disk
2 read model section s from disk
3 for each vertex v of model section s
4 OCTREE-NODE-INSERT-VERTEX(root, v, V)
5 for each triangle t of model section s
6 OCTREE-NODE-INSERT-TRIANGLE(root, t, V)
7 for each old leaf x that was modified
8 read old contents of x from disk
9 reinsert old contents into x

10 if x is no longer a leaf
11 remove old contents file for x
12 for each leaf y descendant of x
13 update the contents file for y
14 free memory used by y
15 update HS file on disk
16 free memory used by section s
17 free memory used by HS file

If the new section does not fit inside the bounding box of the
original model, and we do not want to rebuild the octree for the
entire model, we grow the octree toward the new section. We create
seven siblings for the current root node, and a new root that will be
the parent of the old root and its new siblings. We repeat this until
the octree does contain the new section, and then proceed with the
insertion as before.

Our preprocessing algorithm has three important features:

• It is an out-of-core algorithm. When processing a section, we
only need enough memory to hold the section itself, the octree
structure (the HS file), and the contents of one octree leaf. The
section fits in memory by construction, the size of HS file is
negligible, and the size of the contents of a leaf is limited by
the maximum number of vertices per leaf. Therefore, we can
create octrees for extremely large data.

• It is an incremental algorithm. If new objects are added to the
model, only the spatial regions touched by those objects need
to be updated, as opposed to rebuilding the entire hierarchy.
This is particularly useful for applications that build models
incrementally, such as 3D scanning.

• It is fast. For each section, it only reads a modified node once,
doing the insertion in the most efficient way. Our algorithm
builds the octree for the UNC power plant in just 17 minutes.

approximate
visible set conservative

visible set

fetch
request

nodes to
render

nodes to
render

approximate
visible set

approximate
visibility: PLP

(h)

geometry
cache

(i)

look−ahead
(g)

front

camera image

read request

geometry

geometry

user
interface

(a)

approximate
visibility: PLP

(b)

conservative
visibility: cPLP

(c)

rendering
(d)

graphics
card
(e)

disk
(j)

monitor
(f)

fetch request

prefetch request

predicted camera

Figure 3: The multi-threaded out-of-core rendering approach of the iWalk system. For each new camera (a), the system finds the set of
visible nodes using either approximate visibility (b), or conservative visibility (c). For each visible node, the rendering thread (d) sends a
fetch request to the geometry cache (i), and then sends the node to the graphics card (e). The look-ahead thread (g) predicts future cameras,
estimates the nodes that the user would see then (h), and sends prefetch requests to the geometry cache (i).

4 Out-Of-Core Rendering

Thus far, we have shown iWalk’s preprocessing algorithm to create
an out-of-core octree for a model larger than main memory. We
now present iWalk’s out-of-core rendering approach that loads on
demand the octree nodes that the user sees.

Overview of the Rendering Approach

Figure 3 shows a diagram of iWalk’s rendering approach. The user
interface (a) keeps track of the position, orientation, and field-of-
view of the user’s camera. For each new set of camera parameters,
the system computes the visible set — the set of octree nodes that
the user sees. According to the user’s choice, the system can com-
pute an approximate visible set (b), or a conservative visible set (c).
To compute an approximate visible set, iWalk uses the prioritized-
layered projection (PLP) algorithm [22]. To compute a conservative
visible set, iWalk uses cPLP [23], a conservative extension of PLP.
(We will review PLP and cPLP shortly.) For each node in the visi-
ble set, the rendering thread (d) sends a fetch request to the geom-
etry cache (i), which will read the node from disk (j) into memory.
The rendering thread then sends the node to the graphics card (e)
for display (f). To avoid bursts of disk operations, the look-ahead
thread (g) predicts where the user’s camera is likely to be in the next
few frames. For each predicted camera, the look-ahead thread uses
PLP (h) to estimate the visible set, and then sends prefetch requests
to the geometry cache (i).

Review of the PLP and cPLP Algorithms

To better understand iWalk’s rendering approach, we need to review
the visibility algorithms that iWalk uses. In approximate mode,
iWalk uses the prioritized-layered projection (PLP) algorithm [22].
In conservative mode, iWalk uses the cPLP algorithm [23].

PLP is an approximate, from-point visibility algorithm that may
be understood as a set of modifications to the traditional hierarchi-
cal view frustum culling algorithm [12]. First, instead of traversing
the model hierarchy in a predefined order, PLP keeps the hierarchy
leaf nodes in a priority queue called the front (Figure 3b), and tra-
verses the nodes from highest to lowest priority. When PLP visits
a node, it adds the node to the visible set, removes the node from
the front, and adds the unvisited neighbors of the node to the front.
Second, instead of traversing the entire hierarchy, PLP works on a

Figure 4: A section of the Soda Hall model. At runtime, the iWalk
system uses the prioritized-layered projection (PLP) algorithm to
estimate the nodes potentially visible from the current view frustum
(outlined in yellow). The transparent color of each node indicates
the projection priority of the node. Model courtesy of UC Berkeley.

budget, stopping the traversal after a certain number of primitives
have been added to the visible set. Finally, PLP requires each node
to know not only its children, but also all of its neighbors.

An implementation of PLP may be simple or sophisticated, de-
pending on the heuristic to assign priorities to each node. Several
heuristics precompute for each node a value between 0.0 and 1.0
called solidity, which estimates how likely it is for the node to oc-
clude an object behind it. At run time, the priority of a node is found
by initializing it to 1.0, and attenuating it based on the solidity of
the nodes found along the traversal path to the node (Figure 4).

A key feature of PLP that iWalk exploits is that PLP can gener-
ate an approximate visible set based on just the information stored
in the hierarchy structure (HS) file created at preprocessing time
(Figure 2). In other words, PLP can estimate the visible set without
access to the actual scene geometry.

Although PLP is in practice quite accurate for most frames, it
does not guarantee image quality, and some frames may show ob-
jectionable artifacts. To avoid this potential problem, the system
may optionally use cPLP [23], a conservative extension of PLP that
guarantees 100% accurate images. But cPLP cannot find the visible
set from the HS file only, and needs to read the geometry of all po-
tentially visible nodes. The additional disk operations make cPLP
much slower than PLP. Recall that PLP keeps the octree nodes in a
priority queue called the front, and traverses the nodes from highest
to lowest priority, adding nodes to the visible set up to a predefined
budget of primitives. The cPLP algorithm augments the approxi-
mate visible set found by PLP into a conservative one (Figure 3c).
There are many ways to implement cPLP [23], including using
hardware-dependent extensions for visibility computation. Our im-
plementation of cPLP uses an item-buffer technique that is portable
to any system that supports OpenGL. Thus, cPLP needs to fetch ge-
ometry from the geometry cache (Figure 3i), and read pixels from
the graphics card (Figure 3e).

The Geometry Cache

To render a model larger than main memory, the iWalk system
keeps on disk an octree-based representation for the model (Fig-
ure 2), and loads on demand the contents of the octree nodes that
the user sees. Because nodes that are visible in one frame tend to
be visible in the next frame (frame-to-frame coherence), iWalk tries
to reduce the number of disk operations by maintaining a geometry
cache (Figure 3i) with the contents of the most recently used nodes.

As the user walks through a model, the conservative visibility
thread (Figure 3c) and the rendering thread (Figure 3d) send fetch
requests to the geometry cache (Figure 3i). A fetch request contains
the identification of an octree node whose contents will be rendered.
The geometry cache puts the fetch requests in a queue, and a set of
fetch threads process the requests. (Butenhof [8] uses the term work
queue to refer to a set of threads that accept work requests from a
common queue, processing them potentially in parallel.) Each fetch
thread pops a request from the fetch queue, and checks whether the
contents of the requested node is in memory (a hit) or not (a miss).
In the case of a miss, the fetch thread allocates memory for the
contents of the requested node, and reads it from disk (Figure 3j).
If the cache is full, the least recently used nodes are evicted from
memory. Finally, the fetch thread puts the requested node in a queue
for nodes that are ready to be rendered.

Since the cost of disk read operations is high, most systems try
to overlap these operations with other computations by running sev-
eral processes on a multiprocessor machine [3, 19, 21], or on a net-
work of machines [35, 38]. Along these same lines, our system
uses threads on a single processor machine to overlap disk opera-
tions with visibility computations and rendering.

The user can configure the number of threads that process the
requests in the fetch queue. One advantage of using multiple fetch
threads is that it avoids stalls in the rendering pipeline: if a fetch
thread processes a miss, that thread will wait until the requested
node is read from disk, but the fetch threads that process hits will
put the requested nodes in the ready queue, keeping the graphics
card busy. Another advantage of using multiple fetch threads is that
it gives the operating system kernel a chance to better schedule the
read operations when there are concurrent misses.

The geometry cache uses a locking mechanism to prevent multi-
ple threads from modifying or deleting the same node at the same
time. The locking mechanism is similar to the one used by the
UNIX operating system in its buffer cache [7]. The main differ-
ence is that the UNIX buffer cache uses multiple processes for par-
allelism and signals for synchronization, and we use threads and
condition variables [8]. Another difference is that the UNIX buffer
cache uses buffers of fixed size, and we use buffers of variable size.

The From-Point Prefetching Method

The idea behind prefetching is to predict a set of nodes that the user
is likely to see next, and bring them to memory ahead of time. Ide-
ally, by the time the user sees those nodes, they will be already in the
geometry cache, and the frame rates will not be affected by the disk
latency. Many previous systems [3, 19, 20, 34] have used prefetch-
ing successfully. To our knowledge, all previous prefetching meth-
ods that employ occlusion culling have been based on from-region
visibility algorithms, and were designed to run on multiprocessor
machines. Our prefetching method works with from-point visibility
algorithms, and runs as a separate thread in a uniprocessor machine.

Our prefetching method exploits the fact that PLP can very
quickly compute an approximate visible set. Given the current cam-
era (Figure 3a), the look-ahead thread (Figure 3g) predicts future
cameras based on the current camera’s position, linear speed, and
angular speed. More sophisticated prediction schemes could con-
sider accelerations and more than one past camera. For each pre-
dicted camera, the look-ahead thread uses PLP (Figure 3h) to de-
termine which nodes the predicted camera is likely to see. For each
node likely to be visible, the look-ahead thread sends a prefetch re-
quest to the geometry cache (Figure 3i). The geometry cache puts
the prefetch requests in a queue (different from the fetch queue we
described above), and a set of prefetch threads process the requests.
If there are no fetch requests pending, and if the maximum amount
of geometry that can be prefetched per frame has not been reached,
a prefetch thread will pop a request from the prefetch queue, and
read the requested node from disk (Figure 3j), without changing the
node’s priority for replacement. Figure 5a shows the user’s view of
the UNC power plant model [36] during a walkthrough session, and
Figure 5b shows the state of the octree nodes in the geometry cache.

Unlike our from-point prefetching method, from-region pre-
fetching methods decompose the model into cells, and precompute
for each cell the geometry that the user would see from any point in
the cell. At runtime, from-region methods guess in which cell the
user will be next, and load the geometry visible from that cell ahead
of time. Our from-point prefetching method has several advantages
over from-region prefetching methods. First, from-region methods
typically require long preprocessing times (tens of hours), while our
from-point method requires little preprocessing (a few minutes).
Second, the set of nodes visible from a single point is typically
much smaller than the set of nodes visible from any point in a re-
gion. Thus, our from-point prefetching method avoids unnecessary
disk operations, and has a better chance than a from-region method
of prefetching nodes that actually will be visible soon. Third, some
from-region methods require that cells coincide with axis-aligned
polygons in the model. Our from-point method imposes no restric-
tion on the model’s geometry. Finally, the nodes visible from a cell
may be very different from the nodes visible from a neighbor of that
cell. Thus, a from-region method may cause bursts of disk activity
when the user crosses cell boundaries, while a from-point method
better exploits frame-to-frame coherence.

5 Experimental Results

To evaluate our system, we measured the preprocessing time and
the runtime frame-rates for the 13-million-triangle UNC power
plant model [36]. To our knowledge, no other system has been
able to render this model at interactive rates on a single PC.

Preprocessing Results

We measured the time to preprocess the power plant model on a
computer with a 900 MHz AMD Athlon CPU, 512 MB of main
memory, and a 400 GB SCSI disk. The computer’s operating sys-
tem was Red Hat Linux 7.2.

(a) user’s view (b) cache view

Figure 5: A sample frame inside the power plant model. (a) The image that the user sees. (b) The state of the nodes in the geometry cache.

The power plant model consists of 21 sections, each of which fits
in the main memory of the test machine. We used our out-of-core
incremental algorithm to build the octree for the entire model, one
section at a time. We set a limit of 15,000 vertices per leaf, and
the resulting octree had 14,722 leaves. The size of the hierarchy
structure (HS) file (Figure 2) was 1 MB, and the size of the largest
contents file was 600 KB. Thus, after the octree was created, even a
machine with small memory could use them for rendering. Recall
that being able to keep the HS file in memory is critical for the
incremental construction of the octree, and for the use of the PLP
algorithm for approximate visibility computation.

The total preprocessing time was 17 minutes, and the maximum
amount of memory the preprocessing algorithm ever needed was
214 MB, even though the final size of the octree was 2.2 GB. If the
test machine had less memory than 214 MB, we would have bro-
ken the model down into smaller pieces (Section 3). The important
point is that we were able to quickly build a large octree using a
modest PC with small memory.

The original model has 13 million triangles, while the final oc-
tree has 18 million triangles, because the preprocessing algorithm
replicates a triangle in all leaves the triangle touches. The average
replication factor was thus 1.5. The disk size of the original model
was 0.6 GB, while the disk size of the final octree was 2.2 GB. The
octree needs more disk space not only because of the replicated tri-
angles, but also because of the vertex normals, which are stored in
the octree, but not in the original model. Storing the normals on
disk instead of computing them at runtime is a time-space tradeoff.

Runtime Results

For the runtime tests, we used a computer with a 900 MHz AMD
Athlon CPU, 128 MB of main memory, a 30 GB IDE disk, and an
nVidia GeForce2 graphics card. The computer’s operating system
was Red Hat Linux 7.2. Using top, we found that the operating

system and related utilities (including the X server) uses roughly
64 MB of main memory when idle.

The user can configure many parameters in our system, including
geometry cache size, number of fetch threads, number of prefetch
threads, maximum amount of prefetched geometry per frame, vis-
ibility mode (approximate or conservative), target frame rate, and
image resolution. These parameters depend mainly on the triangle
throughput of the graphics card and the disk bandwidth. For our
test machine, we found that this configuration works well in prac-
tice: 32 MB of geometry cache, 8 fetch threads, 1 prefetch thread,
a maximum of 1 MB of prefetched geometry per frame, approxi-
mate visibility with a budget of 140,000 triangles per frame, a target
frame rate of 10 fps, and image resolution of 1024×768.

To analyze the overall performance of our system, we measured
the frame rates the system achieved when walking through the
power plant model along a large path of 36,432 viewpoints. The
path visits almost every part of the model, and requires fetching a
total of 1.6 GB of data from disk. Using the configuration described
above, our system rendered the frames along that path in less than
1.5 hours. The use of approximate visibility causes objects to pop in
and out of view occasionally because of visibility computation mis-
takes, but objectionable artifacts were rare. Only 147 frames (0.4%)
caused the system to achieve less than 1 fps. The mean frame rate
was 8.3 fps, and the median frame rate was 9.1 fps. These frame
rates are close to the target of 10 fps.

To analyze the detailed performance of our system, it is easier
to use shorter paths. For this purpose, we used a 500-frame path
which required 210 MB of data to be read from disk. If fetched in-
dependently, the maximum amount of memory necessary to render
any given frame in approximate mode would be 16 MB.

To study how multiple threads improve the frame rates, we ran
tests using three different configurations. The first configuration
is entirely sequential: a single thread is responsible for computing
visibility, performing disk operations, and rendering. The second

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

12

(a) sequential fetching and rendering

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

12

(b) concurrent fetching and rendering

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

12

(c) concurrent fetching, rendering, and prefetching

Figure 6: Using multiple threads to improve frame rates. We
measured the frame rates during a 500-frame walkthrough of the
power plant model under three configurations: (a) using one thread
for fetching and rendering; (b) using multiple threads to overlap
fetching and rendering; and (c) using multiple threads to overlap
fetching, rendering, and prefetching. Concurrent fetching elimi-
nates some downward spikes, and adding concurrent speculative
prefetching eliminates almost all of the remaining spikes. The first
spike happens because the cache is initially empty. The three con-
figurations produce identical images.

frame number

ac
cu

ra
cy

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7: Image accuracy for a 500-frame walkthrough of the
power plant model when using approximate visibility. The verti-
cal axis represents the fraction of correct pixels in the approximate
images in comparison to the conservative images. The minimum
accuracy was 89%, and the median accuracy was 98%.

configuration adds asynchronous fetching to the first configuration,
allowing up to 8 fetch threads. The third configuration adds an ex-
tra thread for speculative prefetching to the second configuration,
allowing up to 1 MB of geometry to be prefetched per frame. Fig-
ure 6 shows the frame rates achieved by these three configurations
for the 500-frame path. For the purely sequential configuration, we
see many downward spikes that correspond to abrupt drops in frame
rates, which are caused by the latency of the disk operations, and
spoil the user’s experience. When we add asynchronous fetching,
most of the downward spikes disappear, but many still remain. The
user’s experience is much better, but the frame rate drops are still
disturbing. When we add speculative prefetching, almost all down-
ward spikes disappear, and the user experience is smooth. Note that
the gain in interactivity comes entirely from overlapping the inde-
pendent operations. The three configurations achieve exactly the
same image accuracy (Figure 7). We could obtain further gains in
interactivity if we were willing to compromise image quality [19].

Figure 8 shows why prefetching improves the frame rates. The
charts compare the amount of geometry that the system reads from
disk per frame for the second and third configurations described
above. Prefetching greatly reduces the need to fetch large amounts
of geometry in a single frame, and thus helps the system to maintain
higher and smoother frame rates.

Figure 9 shows that the user speed is another important param-
eter in the system, and has to be adjusted to the disk bandwidth.
When the user speed increases, the changes in the visible set are
larger. In other words, as the frame-to-frame coherence decreases,
the amount of data the system needs to read per frame increases.
Thus, caching and prefetching are more effective if the user moves
at speeds compatible with the disk bandwidth. The figure also indi-
cates that higher disk bandwidth should improve frame rates.

6 Conclusion

We have presented iWalk, a system for rendering large models on
machines with small memory at interactive frame rates. Given a
model, the system uses a new out-of-core preprocessing algorithm
to quickly build an octree-based representation for the model on
disk. At runtime, the system uses a new out-of-core rendering ap-
proach that loads on demand the octree nodes that the user sees.
The rendering approach uses multiple threads in a single processor
to overlap visibility computations, disk operations, and rendering.
The system can run in approximate mode (using the PLP algorithm)
for interactive rendering, or in conservative mode (using the cPLP

frame number

si
ze

 (
K

B
)

0 100 200 300 400 500

0
20

00
40

00
60

00
80

00 misses
prefetches

(a) without prefetching

frame number

si
ze

 (
K

B
)

0 100 200 300 400 500

0
20

00
40

00
60

00
80

00 misses
prefetches

(b) with prefetching

Figure 8: Using prefetching to amortize the cost of disk operations. We measured the amount of geometry fetched per frame without
prefetching (a) and with prefetching (b). Prefetching amortizes the cost of bursts of disk operations over frames with few disk operations,
thus eliminating or alleviating most frame rate drops. The system was configured to prefetch at most 1 MB per frame.

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 20 40 60 80 100 120

0
2

4
6

8
10

12

(a) very high user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 50 100 150 200 250

0
2

4
6

8
10

12

(b) high user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 100 200 300 400 500

0
2

4
6

8
10

12

(c) normal user speed

frame number

fr
am

e
ra

te
 (

fr
am

es
/s

ec
)

0 200 400 600 800 1000

0
2

4
6

8
10

12

(d) low user speed

Figure 9: Adjusting the user speed to the disk bandwidth. We measured the frame rates along a camera path inside the power plant model for
different user speeds (or equivalently, for different number of frames in the path). If the user moves too fast, the frame rates are not smooth.
The faster the user moves, the larger the changes in occlusion, and therefore the larger the number of disk operations.

algorithm) for rendering with guaranteed accuracy. A key compo-
nent of the rendering approach is the geometry cache, which main-
tains a fetch queue for nodes that will be rendered in the current
frame, and a prefetch queue for nodes that are likely to be ren-
dered in future frames. The prefetch queue receives requests from
a look-ahead thread that uses the PLP algorithm to estimate future
visible sets. We believe our system is the first to employ a prefetch-
ing method based on a from-point visibility algorithm. The system
can preprocess the 13-million-triangle UNC power plant model in
17 minutes, and then render it with 98% accuracy at 9 frames per
second using an inexpensive PC. To our knowledge, our system is
the first to render a model this large on an inexpensive PC.

There are several possible areas for future work. One is adding
level-of-detail (LOD) management [4, 12, 14, 17, 20, 24, 25, 26]
to our system. In approximate mode, our system may produce
images with low accuracy if the camera sees the entire model.
El-Sana et al. [17] show how to integrate LOD management with
PLP-based occlusion culling. Although this integration is highly
desirable, because it can improve rendering quality, it will come at
the expense of a more expensive preprocessing step and a more
complex rendering algorithm. Another possible area for future
work is speeding up rending in conservative mode, which currently
can be much slower than rendering in approximate mode. Part of
the problem is the lack of good occlusion query functionality in
current hardware, while another part is that conservative rendering
significantly raises the disk bandwidth requirements. Finally, we
also would like to extend the system to support dynamic scenes.

Acknowledgements

We thank Daniel Aliaga, David Dobkin, Juliana Freire, Thomas
Funkhouser, Jeff Korn, Patrick Min, and Emil Praun for sugges-
tions and encouragement. We also thank the University of North
Carolina at Chapel Hill and the University of California at Berke-
ley for providing us with datasets. Good models “are at least as
valuable as the visible surface algorithms that render them [12].”
This research was partly funded by CNPq (Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico), Brazil.

References

[1] P. Agarwal, L. Arge, O. Procopiuc, and J. Vitter. A frame-
work for index bulk loading and dynamization. In Interna-
tional Colloquium on Automata, Languages, and Program-
ming, pages 115–127, 2001.

[2] J. M. Airey, J. H. Rohlf, and J. Frederick P. Brooks. Towards
image realism with interactive update rates in complex virtual
building environments. 1990 ACM Symposium on Interactive
3D Graphics, 24(2):41–50, Mar. 1990.

[3] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson,
K. Hoff, T. Hudson, W. Stürzlinger, E. Baker, R. Bastos,
M. Whitton, F. Brooks, and D. Manocha. MMR: An inter-
active massive model rendering system using geometric and
image-based acceleration. 1999 ACM Symposium on Interac-
tive 3D Graphics, pages 199–206, Apr. 1999.

[4] C. Andújar, C. Saona-Vázquez, I. Navazo, and P. Brunet. In-
tegrating occlusion culling and levels of detail through hardly-
visible sets. Computer Graphics Forum, 19(3):499–506,
2000.

[5] L. Arge, K. Hinrichs, J. Vahrenhold, and J. Vitter. Efficient
bulk operations on dynamic R-trees. In Proc. Workshop on
Algorithm Engineering, pages 104–128, 1999.

[6] L. S. Avila and W. Schroeder. Interactive visualization of air-
craft and power generation engines. In IEEE Visualization
’97, pages 483–486. IEEE, Nov. 1997.

[7] M. J. Bach. The Design of the UNIX Operating System. Pren-
tice Hall, 1986.

[8] D. R. Butenhof. Programming with POSIX Threads. Addison
Wesley, 1997.

[9] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction.
IEEE Visualization ’97, pages 293–300, Nov. 1997.

[10] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-
of-core isosurface extraction. IEEE Visualization ’98, pages
167–174, Oct. 1998.

[11] P. Cignoni, C. Rocchini, C. Montani, and R. Scopigno. Exter-
nal memory management and simplification of huge meshes.
IEEE Transactions on Visualization and Computer Graphics,
2002. To appear.

[12] J. H. Clark. Hierarchical geometric models for visible surface
algorithms. Communications of the ACM, 19(10):547–554,
Oct. 1976.

[13] M. B. Cox and D. Ellsworth. Application-controlled demand
paging for out-of-core visualization. IEEE Visualization ’97,
pages 235–244, Nov. 1997.

[14] M. A. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller,
C. Aldrich, and M. B. Mineev-Weinstein. ROAMing terrain:
Real-time optimally adapting meshes. In IEEE Visualization
’97, pages 81–88. IEEE, Nov. 1997.

[15] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conser-
vative visibility preprocessing using extended projections. In
Proceedings of Siggraph 2000, pages 239–248, July 2000.

[16] J. El-Sana and Y.-J. Chiang. External memory view-
dependent simplification. Computer Graphics Forum,
19(3):139–150, Aug. 2000.

[17] J. El-Sana, N. Sokolovsky, and C. T. Silva. Integrating occlu-
sion culling with view-dependent rendering. In IEEE Visual-
ization 2001, pages 371–378, Oct. 2001.

[18] C. Erikson, D. Manocha, and W. V. Baxter III. HLODs for
faster display of large static and dynamic environments. In
2001 ACM Symposium on Interactive 3D Graphics, pages
111–120, Mar. 2001.

[19] T. A. Funkhouser. Database management for interactive dis-
play of large architectural models. Graphics Interface ’96,
pages 1–8, May 1996.

[20] T. A. Funkhouser, C. H. Séquin, and S. J. Teller. Management
of large amounts of data in interactive building walkthroughs.
1992 ACM Symposium on Interactive 3D Graphics, 25(2):11–
20, Mar. 1992.

[21] B. J. Garlick, D. R. Baum, and J. M. Winget. Interactive view-
ing of large geometric databases using multiprocessor graph-
ics workstations. In Siggraph Course: Parallel Algorithms
and Architectures for 3D Image Generation, pages 239–245.
ACM Siggraph, 1990.

[22] J. T. Klosowski and C. T. Silva. The prioritized-layered pro-
jection algorithm for visible set estimation. IEEE Transac-
tions on Visualization and Computer Graphics, 6(2):108–123,
Apr.-June 2000.

[23] J. T. Klosowski and C. T. Silva. Efficient conservative visibil-
ity culling using the prioritized-layered projection algorithm.
IEEE Transactions on Visualization and Computer Graphics,
7(4):365–379, Oct.-Dec. 2001.

[24] P. Lindstrom. Out-of-core simplification of large polygonal
models. In Proceedings of Siggraph 2000, pages 259–262,
July 2000.

[25] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hughes, N. Faust,
and G. Turner. Real-time, continuous level of detail rendering
of height fields. In Proceedings of Siggraph 96, pages 109–
118. ACM Siggraph, Aug. 1996.

[26] P. Lindstrom and C. T. Silva. A memory insensitive technique
for large model simplification. In IEEE Visualization 2001,
pages 121–126, Oct. 2001.

[27] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering
complex scenes with memory-coherent ray tracing. Proceed-
ings of Siggraph 97, pages 101–108, Aug. 1997.

[28] H. Samet. The Design and Analysis of Spatial Data Struc-
tures. Addison-Wesley, 1990.

[29] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conser-
vative volumetric visibility with occluder fusion. In Proceed-
ings of Siggraph 2000, pages 229–238, July 2000.

[30] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume ren-
dering algorithm for time-varying fields using a time-space
partitioning (TSP) tree. IEEE Visualization ’99, pages 371–
378, Oct. 1999.

[31] P. M. Sutton and C. D. Hansen. Accelerated isosurface extrac-
tion in time-varying fields. IEEE Transactions on Visualiza-
tion and Computer Graphics, 6(2):98–107, Apr.-June 2000.

[32] S. J. Teller and C. H. Séquin. Visibility preprocessing
for interactive walkthroughs. Proceedings of Siggraph 91,
25(4):61–69, July 1991.

[33] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core stream-
line visualization on large unstructured meshes. IEEE Trans-
actions on Visualization and Computer Graphics, 3(4):370–
380, Oct.-Dec. 1997.

[34] G. Varadhan and D. Manocha. Out-of-core rendering of mas-
sive geometric environments. In IEEE Visualization 2002. To
appear.

[35] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed
ray tracing of highly complex models. Rendering Techniques
2001, pages 277–288, 2001.

[36] Walkthru Project at UNC Chapel Hill. Power plant model.
http://www.cs.unc.edu/˜geom/Powerplant/.

[37] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility pre-
processing with occluder fusion for urban walkthroughs. In
Rendering Techniques 2000, pages 71–82, 2000.

[38] P. Wonka, M. Wimmer, and F. Sillion. Instant visibility. Com-
puter Graphics Forum, 20(3):411–421, 2001.

