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Abstract

The problem of clustering a data-set according to certain optimization criteria is
of great theoretical interest, but also of major practical importance. The classification
of large data collections (i.e. web-pages, scientific literature, etc.) requires methods
that produce clusters of high quality and are efficient in practice, as well.

This thesis focuses on network clustering, based on maximum flow techniques.
Central notion in our methods are various definitions of a community within the
network, and key tool for extracting commmunities is the minimum cut tree (or
Gomory-Hu tree). We study the properties of the produced clusters and present
experimental results for real-world data.

We conclude that the maximum flows of a network provide strong relations be-
tween vertices, and allow for clustering algorithms of high quality. From a theoretical
point of view we can prove strong performance bounds under several settings. Ex-
perimentally, the algorithms are relatively simple to implement and perform well in

practice.
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Chapter 1

Introduction

Many clustering algorithms exist for both general data (e.g. directed, undirected
graphs) and application-specific data (e.g. pictures, program-modules, etc.). Many
of these algorithms are based on optimization criteria such as k-median, minimum
sum, minimum diameter, etc. Other algorithms may be more intuitive and are usu-
ally justified by empirical results on application specific data-sets. Regardless of the
approach, there are two important questions every clustering algorithm must address:

a) What constitutes a good clustering?

b) How good are the clusters produced by the algorithm?

The first question is hard to answer because of its subjectiveness. Different peo-
ple might consider different clusterings of the same data-set to be better or worse.
Different data-sets have different importance criteria, and even the level of locality
may yield totally different results. (Here, locality refers to how detailed or general
the clustering is. The terms resolution and levels have also been used for the same
notion, e.g. in [57]). Figure 1.1 shows an example of points in two dimensions, where
at a higher level there are two clusters and at a lower level six.

The second question is easier to answer once the first has been defined, but still
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Figure 1.1: Clusters of points on the plane

many of the clustering criteria can be hard to compute. This often results in approx-
imate solutions, heuristics and agglomerate methods, which relax the bounds in the
analysis for simpler algorithms and faster running times.

In our research we focus on clustering algorithms based on maximum flows. Max-
imum flow techniques are well studied, and there is a plethora of algorithms for
solving the maximum flow or minimum cut problem. Also many properties of maxi-
mum flows have been studied over the years, resulting in ever-faster algorithms and
powerful structures that represent certain information about the underlying network.
The minimum cut tree [45] is such a structure. It contains sufficient information
about the minimum cut between all pairs of nodes in a very compact format.

We use the minimum cut tree, and other properties of maximum flows, to develop
a series of clustering algorithms. The objective of these algorithms is to optimize
certain clustering criteria, depending on the definition of a community within the
network.

Besides studying these algorithms from a theoretical point of view, we have also
applied them to a number of data-sets. Many of these data-sets stem from previous
experimental studies, others we have developed ourselves, and yet others are real-
world data from several sources (e.g. the internet, large databases, etc.). Real-world
data is probably the most interesting among the above classes, not only because it

is easier to relate to, but also because it shows if and how well the algorithms apply



in practice. The fact that real-world data often contains a lot of noise, and thus
makes it hard to group into high-quality clusters, together with the large size of the
data-sets we used, made the experimental study quite challenging. We report on our
experiments at various points throughout the thesis, but have also devoted the final

chapter entirely to experimental results.

Structure

This thesis consists of four chapters, besides the Introduction. Chapter 2 contains
definitions and previous work. Basic concepts about the maximum flow and minimum
cuts are described, as well as a brief review on clustering algorithms.

Chapter 3 is about the minimum cut tree, an important structure for the chapters
to follow. The chapter contains two sections, the first of which describes the properties
and two older algorithms ([45] and [48]) for calculating a minimum cut tree. The
second section contains an experimental study of minimum cut trees we did with A.
Goldberg ([43] and [44]).

Chapter 4 contains four clustering methods, based on maximum flows and the
minimum cut tree. Section 4.1 describes a basic clustering algorithm. Section 4.2
contains previous work ([78]), that wasn’t ours, but fits very well in our general
framework, so we decided to make a brief reference to it, as well. Section 4.3 defines
and analyzes esoteric communities. Parts of this section were presented in [26], which
was in collaboration with G. Flake and S. Lawrence. Section 4.4 describes the cut-
clustering algorithm, which was joined work with G. Flake and R. Tarjan.

Finally, Chapter 5 contains experimental studies conducted on two data-sets: the
citeseer database [81] and a large subset of the open directory project [82]. Most of
this chapter is unpublished, except of on paper ([38]) with E. Glover, S. Lawrence,

D. Pennock, and G. Flake, which studies algorithms used for the naming of clusters.



The thesis concludes with an extended bibliography, with special focus on maxi-

mum flow techniques and graph clustering algorithms.



Chapter 2

Definitions and Background

2.1 General Notions on Networks and the Maxi-
mum Flow

This chapter contains general notation and definitions on networks and the maximum

flow problem, as used throughout this thesis.

2.1.1 Basic Definitions on Networks

The clustering algorithms in this thesis apply to networks or graphs. A graph G(V, E)
contains |V| = n nodes (or vertices) and |E| = m edges (or arcs) connecting the
nodes. (Sometimes we change slightly the definition of a vertex, e.g. in Section 3.2,
but always are very explicit when that is the case.)

The set of edges F is defined as E : VXV — S. If S = {0, 1}, we say that the graph
is unweighted. But usually the edges have real weights (S = R"), and sometimes they
are integers (S = N). We often represent an edge either by naming an element from

E (e.g. e € E), or by naming its end-nodes (e.g. e = (v, v3),v1,v2 € V). To refer to



the weight (or capacity) of edge e we write w(e) or c¢(e).
In the general case w(vy,ve) # w(vq,v1), and we say that the graph is directed.
But when w(vi,ve) = w(ve,v1), Yui,v9 € V the graph is undirected. Most of the

clustering algorithms in this thesis apply to undirected graphs.

2.1.2 Maximum Flow and Minimum Cut
Cuts

Let G(V, E) be an undirected network. We define a cut to be a partition of V' into two
nonempty sets. If S;, Sy are two nonempty sets, s.t. S;US, =V and S;NSy = 0, then
S and Sy define a cut which we denote as C(S1, S2) or simply (S7, S2). We make sure
that the distinction between a single edge (vy,v) and a cut (Sy, Sp) is always clear.
Also, we sometimes omit one of the two sides of a cut, writing e.g. C(S;). In that
case the other side of the cut is implied to be S; =V — Sy, and C(S;) = C(S1, Sy).
Every cut has a value, and it is equal to the sum of the capacities of the edges
crossing that cut. We say that cut C(Si, S2) has value ¢(S1,Ss). Let s,t € V' be two
nodes of the graph, and let C(S,T),s € S,t € T be a cut in G separating s and ¢.
If the cut (S,T) is of minimum value among all cuts separating s and ¢, we say that

(S,T) is a minimum cut between s and ¢, or equivalently, a minimum s, ¢-cut.

Flows

A flow in graph G is defined over the edges of G and in terms of a source node s and
a sink node t. An s, ¢-flow f assigns a flow value f(u,v) to every edge (u,v) € V x V.
In order for a flow to be valid it has to satisfy the following constraints:

a) Capacity constraint: f(u,v) < c(u,v), V(u,v) € V x V.

b) Antisymmetry constraint: f(u,v) = —f(v,u), Y(u,v) € V x V.



c) Conservation constraint: ) . f(u,v) =0, Vo € V — s,t.

The value of flow fis > . f(s,v) = >,y f(v,t). The maximum flow between
s and t is an s, t-flow of maximum value. The max-flow min-cut theorem [29] states
that the maximum flow between s and ¢ is equal to the minimum cut between s and

t.

2.2 The Clustering Problem

Clustering is a very broad and well-studied problem. There are hundreds of clustering
algorithms that address the problem under several different setting and optimization
goals.

The books by Everitt [23],Andenberg [4], Aldenderfer and Blashfield [3], and Jain
and Dubes [57], are good introductory and advanced references. A nice study on four
recent clustering techniques was done by Fasulo [24].

The two most common, general approaches to clustering are k-clustering and hi-
erarchical clustering. k-clustering algorithms take as input a set S of objects and
an integer parameter k, and output a partition of S into k subsets. Usual optimiza-
tion criteria for this category include minimum diameter, k-median, k-center, and
minimum sum. See [65] and [46] for important older work, [8] and [52] for surveys,
and [13], [14], [21], [56], and [58] for recent works in this area. It is interesting that
most of these problems raised are N P-complete, and thus much of the above literature
focuses on approximation algorithms. k-clustering algorithms are also very popular
in the data mining community ([61], [22], [1]).

Hierarchical clustering is different from k-clustering in that its goal is not to glob-
ally partition the data into k sets, but instead to produces a series of clusterings

at multiple levels. There are two main types of hierarchical clustering. The first



is top-down, or divisive, which partitions S recursively into smaller clusters. The
recursion bottoms out when it reaches singletons. The second is bottom-up, or ag-
glomerate, which starts with singletons and merges smaller clusters into larger ones.
Either way, hierarchical clustering algorithms produce a tree 7'(S), in which nodes
correspond to subsets of S. The root of the tree corresponds to the entire set S,
and the leaves to singletons. Moving up and down the tree gives larger and smaller
clusters, respectively.

Classical algorithms for the hierarchical clustering method are those by Ward [77],
Sibson [75], and Defays [18]. Some more recent works are [76], [17], [66].

In this thesis we will study examples of both methods, but most of the algorithms
will be k-clustering algorithms. Our work is closely related to other link-based cluster-
ing algorithms, e.g. [62], [12], and [35], except that methodologically our approach is
not based on spectral graph partitioning or eigenvectors; instead, clusters are formed
by minimum cuts in the network.

Minimum cut and maximum flow techniques have also a very rich history, and a
minimum cut inherently contains a partition of the graph into heavy connected com-
ponents. Previous works in that direction are by Wu and Leahy [78], and Hartuv and
Shamir [51], but the bounds they achieve are not particularly strong. (We will focus
more extensively on Wu and Leahy’s work, together with Saran and Vazirani’s [74], in
Section 4.2, since it is very closely related to our clustering algorithms.) Another work
that points out strengths and weaknesses of maximum flows techniques for clustering,
is that by Kannan et.al. [59], where in addition strong, general clustering criteria are
suggested. We will refer to their work several times in this thesis, esp. in Section 4.4,

when studying the quality of the cut clustering algorithm.



Chapter 3

Minimum Cut Trees

3.1 Properties of minimum cut trees and algo-
rithms

In this section we briefly summarize the theory behind minimum cut trees (or Gomory-
Hu trees) and present two algorithms ([45] and [48]) for computing a minimum cut
tree of a given undirected network.

Proofs of the theorems are omitted, since they can be found in the works of
Gomory and Hu ([45]), and Gusfield ([48]). They serve in this thesis as background

knowledge for the chapters that follow.

Multiterminal Maximum Flows

The notion of minimum cut tree was introduced by Gomory and Hu [45]. Let G(V, E)
be an undirected graph, V = {v,...v,} its nodes, and f(v;,v;), or simply f;;, the
maximum flow between any two nodes v;,v; € V.

The following theorem (realizability) can be shown about the maximum flow values

of a network:



Theorem 3.1.1 A set of nonnegative numbers fi; = fji, i,j € {1,...,n}, can be valid

mazimum flow values of a network G if and only if

fik Z min{fijvfjk}avz.ajak € {]—: an} (31)

By induction we get:

Corollary 3.1.2 For any sequence vy, va, ..., v, of nodes in a network,

Jin = min{ fia, foz, .-y fln—1)n} (3.2)

Furthermore, for any undirected network G there exists a network tree 7' that

inherently contains the maximum flow values of that network:

Theorem 3.1.3 The mazimum flow value between any two nodes v; and v; of the
original network G is equal to min{ fiq, fap, -.-, faj }, where vig, Vap, ..., Vg are the weights

of the edges that form the unique path between v; and v; in T.

Tree T is called a mazimum flow equivalent tree. There may exist multiple different
flow equivalent trees for a given network, but Gomory and Hu showed that among
those there is always at least one that has the additional property that the removal of
the edge of minimum weight on the path between v; and v; also yields the minimum
cut between v; and v; in G, for any v;, v;. The two sides of the cut consist of the nodes
of the two connected subtrees produced after the removal of the lightest edge. A flow
equivalent tree with this additional property is called a Gomory-Hu tree, minimum
cut tree, or simply cut tree.

Synopsizing, for every undirected, weighted network G(V, E) there exists a (not
necessarily unique) minimum cut tree 7" over the nodes V' that satisfies the following

condition:

10



For every two nodes v;,v; € V, let P(v;,v;) be the unique path between v; and v,
in 7', and let e, be the edge of P(v;,v;) with smallest weight. Then the minimum
cut between v; and v; in G has value equal to the weight w(em:,) of epin and the

removal of e,,;, from T yields the two sides of the minimum cut.

Gomory-Hu Algorithm

Besides defining a minimum cut tree and proving its existence for every undirected
network, Gomory and Hu also provided an algorithm for computing such a minimum
cut tree.

The general outline of the algorithm can be described in two steps ([45]):

STEP 1. Perform a maximum flow computation between two nodes on a network,
which is usually smaller than the original, since subsets are getting merged into a
single node. Go to step 2.

STEP 2. The maximum flow value from Step 1 is used to construct an edge in the
minimum cut tree with weight equal to that value. The algorithm ends when n — 1
edges have been constructed. Now, select a new source and sink for Step 1 in the
next iteration, and contract certain subsets of the original network. The new network
will be used for the next maximum flow computation. Go to Step 1.

Steps 1 and 2 are only general outlines of the actual algorithm. Figure 3.1 shows
the first two iterations of the algorithm. The initial network is shown on the left
hand side, and the minimum cut tree to be constructed on the right hand side. In
the first iteration of the algorithm, any two nodes are selected and a maximum flow,
of value f;, between them is computed. At that point, the node corresponding to the
minimum cut tree gets split into two nodes, which are connected by an edge of weight
f1- Each of these two nodes corresponds to one of the two sides of the minimum cut

found in the original network.

11
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Figure 3.1: Gomory-Hu algorithm

In the next iteration, we work on the network defined by either of the two sides
of the minimum cut. This new network consists of the network produced from the
original one by contracting the other side of the minimum cut into a single node. The
source and sink nodes in this new network must be chosen from the original nodes
of the network (not nodes produced by contractions). The maximum flow of the
second iteration produces the second edge of the minimum cut tree: the node of the
current minimum cut tree that corresponds to the network for which we calculated
the maximum flow gets split into two nodes and the edge that connects them gets
weight equal to the value of the maximum flow. The other node of the minimum cut
tree must now be connected to one of the newly produced nodes. Which one it is,
depends on which side of the minimum cut the contracted node ended up: it gets
connected to that node which corresponds to the side of the cut which contains the
contracted node.

The algorithm continues in this fashion, until every node of the minimum cut tree
corresponds to a subgraph of the initial network that contains exactly one original

node (and indifferent number of contracted nodes). This will happen after exactly

12



n — 1 iterations of the algorithm. Gomory and Hu showed that the minimum cut tree

produced is correct.

Gusfield’s Algorithm

As a simpler alternative to the Gomory-Hu algorithm, Gusfield ([48]) proposed an
algorithm that finds the minimum cut tree of a network without any node contrac-
tions. It still requires n — 1 maximum flow computations, but these are performed
each time on the initial network. The minimum cut tree starts off as a star graph,
and iteratively its edges get shifted between nodes, according to the maximum flows.

Gusfield suggested the algorithm of Figure 3.2 and proved its correctness.

GusCuTTREE(G(V, E))
Initialize:
Number all nodes in V' from 1 to n
Let p be an n length vector initialized to 1
/* p corresponds to star tree 7', s.t. every node s points to p[s] */
For s =2 ton do
Compute a minimum cut between nodes s and ¢ = p[s] in G
Let X be the set of nodes on the s side of the cut
Let f(s,t) be the value of the minimum cut found
Set fl[s| = f(s,1)
For i =1ton do
If ((: # s) and (i € X) and (p[i] == 1))
Set pi] = s
If (plt] € X)
Set p[s] = pli]
Set p[t] = s
Set fl[s] = flt]
Set fl[t] = f(s,1)
Output p and fl /* p corresponds to the minimum cut tree T’
with edges defined between all nodes i and p[i]; the weight of edge

(4, p[t]) is equal to fI[d].

Figure 3.2: Gusfield’s algorithm for minimum cut trees

The numbering of the nodes between 1 and n is arbitrary, but once these have

13



been set the algorithm is not flexible in picking the next source and sink. Also, it is
immediate that structure-wise this algorithm is much simpler than Gomory-Hu’s. The
main question that follows is: Which algorithm is faster? Asymptotically, they have
the same running time of O(|V|* MAX_FLOW (G(V, E))) for graph G(V, E), where
MAX_FLOW(G(V,E)) is equal to the running time for one max-flow computation
in G. But how do they compare in practice? The next section, 3.2, addresses this

question.

3.2 Experimental study of minimum cut trees

In this section we present an experimental study of algorithms for the cut tree prob-
lem. We study the Gomory-Hu and Gusfield’s algorithms as well as heuristics aimed
to make the former algorithm faster. We develop an efficient implementation of the
Gomory-Hu algorithm. We also develop problem families for testing cut tree algo-
rithms. In our tests, the Gomory-Hu algorithm with a right combination of heuristics

was significantly more robust than Gusfield’s algorithm.

3.2.1 Introduction

Cut trees, introduced by Gomory and Hu [45] and also known as Gomory-Hu trees,
represent the structure of all s-t cuts of undirected graphs in a compact way. The cut
trees have many applications.

All known algorithms for building cut trees use a minimum s-t cut subroutine.
The most efficient currently known way to find a minimum s-¢ cut is using a maximum

flow algorithm. See [41] for the currently known maximum flow bounds. Gomory and
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Hu [45] showed how to solve the tree problem using n — 1! minimum cut computa-
tions and graph contractions, as we have seen in the previous section. Gusfield [48]
proposed an algorithm that does not use graph contraction; all »—1 minimum s-t cut
computations are performed on the input graph. Gusfield’s algorithm is very simple
and can be implemented by adding a few lines to a maximum flow code.

Computational performance of algorithms for closely related problems, the maxi-
mum flow problem and the (global, e.g. over all s,¢ pairs) minimum cut problem has
been studied extensively; see e.g. [5, 16, 19, 39, 68] for computational studies of the
former problem and [15, 63, 64, 67, 69] for the latter. Both problems can be solved
well in practice: most problems that fit in RAM of a modern computer can be solved
in a few minutes. The cut tree problem appears more difficult, for one needs to solve
n — 1 minimum s-¢ cut problems.

Therefore, computational performance of cut tree algorithms is of great interest.
Implementations of cut tree algorithms exist — for example, as subroutines of TSP
codes [6, 47]. However, we are not aware of any published computational studies of
cut tree algorithms. In this section we undertake such a study.

We describe how to implement Gomory-Hu and Gusfield’s algorithms efficiently
(which is nontrivial for the former). We also introduce and study heuristics aimed
at improved computational performance of these algorithms. Our computational
experiments lead to a good understanding of practical performance of the cut tree

algorithms.

3.2.2 Definitions and Notation

The input to the cut tree problem is an undirected graph G = (V, E) and a capacity
function ¢ : E = R". We denote |V| =n and |E| = m. A cut (X,Y) in G is a

'We denote the number of vertices and edges in the input graph by n and m, respectively.
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partitioning of V' into two nonempty sets. We say that an edge crosses the cut if
its two endpoints are on different sides of the cut. Capacity of a cut is the sum of
capacities of edges crossing the cut.

We distinguish between wertices and nodes. We refer to the elements of V' as
vertices. Nodes correspond to subsets of vertices. (A node can be a single-element
subset.) We need the distinction because we use contraction operations.

For s,t € V, an s-t cut is a cut such that s and ¢ are on different sides of it. A
minimum s-t cut is an s-t cut of minimum capacity. A (global) minimum cut is a
minimum s-t cut over all s, pairs.

A cut tree is a weighted tree T on V with the following property. For every pair
of distinct vertices s and ¢, let e be a minimum weight edge on the unique path from
s to t in T. Deleting e from T separates T into two connected components, X and
Y. Then (X,Y) is a minimum s-¢ cut. Note that 7" is not a subgraph of G, i.e. edges

of T do not need to be in E.

Gomory-Hu Algorithm

In this subsection we outline again briefly the Gomory-Hu algorithm and its efficient
implementation. We also discuss heuristics that may improve algorithm’s performance
in practice. We provide only the details of the algorithm needed to describe the
implementation and the heuristics. For a complete description, see e.g. [29, 45, 54].
The Gomory-Hu algorithm is recursive. It distinguishes between two kinds of
nodes: original and contracted. A vertex of the input graph is an original node.
If there is more than one original node, the algorithm picks two, s and ¢, finds a
minimum s-¢ cut (S, 7T), and forms two graphs, G by contracting S into a contracted
node, and G; by contracting 7". Then it recursively builds cut trees in G5 and G; and

puts these trees together. One can see that the algorithm maintains the following
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invariant: a trivial cut around a contracted node is a minimum cut between this node
and some other node in the graph. If there is only one original node, the algorithm
has enough information to construct a cut tree; in this case the recursion bottoms
out.

Because of the contraction operations, efficient implementation of the Gomory-Hu
algorithm is nontrivial. (This was the main motivation behind Gusfield’s algorithm.)
A naive implementation of contractions allocates new memory for a contracted node
and its edges. This may result in £2(n?) memory allocation even for a sparse graph. We
describe an implementation that uses O(logn) extra node records and O(n) extra edge
records. These records are allocated as a block at the beginning of the computation,
avoiding expensive run-time memory allocation and improving locality of reference.

We maintain the following information at every step of the computation. Recall
that the computation is recursive. For each recursive call currently in progress, we
maintain information about the cut computed at this level and the graphs obtained by
contracting one of the cut sides. When the first recursive call returns, we mark node
and edge records of the corresponding subgraph as free. We also maintain information
about the contracted nodes (on which side of the cut they are each time), since this
determines the structure of the final cut tree. Finally, we maintain a data structure
that builds the cut tree according to the cuts found so far.

Our implementation first recurses on the subgraph with a smaller number of nodes
and uses fewer additional nodes and edges because of this. We analyze these numbers
next.

For the second recursive call, we can reuse the nodes and the edges of the already
processed subgraph and use no additional storage. The number of extra nodes we
need is determined by the longest sequence of left branches in a root-to-leaf path in

the recursion tree (corresponding to the first recursive calls), which is [log, n| because
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we recurse on the smaller subgraph first. Similarly, the number of extra edges needed
is determined by the maximum, over all root-to-leaf paths, of the sum of sizes of
subproblems corresponding to left branches. The maximum is bounded by n.

Note that our implementation destroys the input graph. If this is not desirable,
one can make a copy of the graph before running the algorithm. All our codes are
superlinear, and the time to make the copy would be negligible except for small
graphs.

When implemented as described above, direct overhead of contraction operations
is small; contraction usually costs less than the corresponding minimum cut compu-
tation. However, there is also indirect cost: locality of the input graph representation
suffers because of the contractions, reducing the number of cache hits somewhat.

At high level, two major factors determine the computational performance of the
algorithm. The first one is the balance (e.g., the ratio of the number of nodes) of the
cuts found by the algorithm. In the worst case, one side of every such cut contains
one node. In the best case, the cuts are balanced. In the latter case, assuming that
minimum cut computations are superlinear, the first one dominates the total running
time. The second factor is the hardness of the minimum cut subproblems. Heuris-
tics that lead to more balanced cuts or simpler subproblems improve the algorithm
performance.

The balance heuristic aims at keeping the cuts balanced. Assume we have at least
four original nodes. First we compute all minimum cuts between two such nodes, a
and b, and take the most balanced cut. If the cut is sufficiently balanced (e.g. the
ratio of the number of nodes of the larger and the smaller parts does not exceed a
threshold), we proceed. Otherwise, we pick two nodes, ¢ and d, on the bigger side
of the cut. We compute all minimum cuts between ¢ and d, take the most balanced

one, compare it to the most balanced minimum cut between a and b, and choose the
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best. We may have to compute twice as many cuts, so the worst-case loss is about a
factor of two. The best-case gain can be much larger.

We can also use both cuts, since according to [45], if the cuts are crossing, we
can always find non-crossing cuts. We use this technique, although it usually does
not lead to a big speedup: most often one of the cuts is quite unbalanced, and the
computation to find non-crossing cuts is relatively expensive.

The mincut heuristic makes use of the Hao-Orlin algorithm [49] for finding global
mincuts. This algorithm uses the push-relabel method to find a minimum cut between
the source and the sink. Then it contracts the source and the sink, and selects a
new sink. Hao and Orlin show that with a careful implementation of many push-
relabel algorithms, the asymptotic worst-case time bound for these n — 1 minimum
s-t cut computations is the same as that for one minimum s-¢ cut computation of the
underlying algorithm.

Note that the first cut found by the Hao-Orlin algorithm is a minimum s-t cut
in the input graph. Also, the algorithm finds a minimum cut, which is a minimum
s-t cut for any s,t on the opposite sides of it. We prove a lemma that allows to use
several cuts found by the algorithm in the cut tree construction.

The Hao-Orlin algorithm has the following property. Let s be the initial source
and let S be the set of vertices contracted into the source at some point of an execution
of the algorithm. Let A be the capacity of the smallest cut found up to this point
(initially A = co). Then for any = € S, the capacity of a minimum s-z cut is at least

A

Lemma 3.2.1 Suppose that t is the next sink and the minimum S-t cut has value

N < \. Then this cut is also a minimum cut between s and t in G.

Proof. Suppose that there is a smaller cut between s and t. This cut cannot separate
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s from a vertex x € S because s and = are A-connected. Thus the cut separates S

and t. This contradicts the definition of \'. m

The mincut heuristic uses the above lemma and finds several minimum s-¢ cuts
with one Hao-Orlin computation. This number is usually small, so we use this heuris-
tic together with the balance heuristic to obtain one or two cuts — the most balanced
ones.

The source selection heuristic is aimed at both making minimum cut computations
simpler and making balanced cuts more likely. This heuristic uses the fact that any
original node can be chosen as the source for the next minimum cut computation.
After choosing a sink for the computation, we choose an original node that is furthest
away from the sink as the source. (All distances are with respect to a unit length
function.) Note that we use an implementation of the push-relabel method [42] based
on that of [16]. This implementation computes distances to the sink during the
initialization, so the source selection heuristic adds essentially no overhead.

As part of the source selection heuristic, we choose the source/sink to be the
heaviest nodes of the graph (e.g. nodes with the highest total capacity of adjacent

edges), since this sometimes leads to more balanced cuts.

Our Implementations

After studying different ways of incorporating heuristics into the Gomory-Hu algo-
rithm, we report on three implementations. The GH code uses no heuristics and
picks the next source/sink pair at random. The GHs code uses the source selection
heuristic. The GHG code uses the mincut heuristic in the following way: Initially, it
picks the two heaviest nodes as the source and the sink of the Hao-Orlin algorithm.?

As soon as it finds a cut in the decreasing sequence which is more balanced than the

2A random choice was much less robust in our tests.
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first cut found, it splits the graph according to both this cut and the first one. Our
experience shows that using the mincut heuristic is the best way to find balanced cuts

at low expense.

Gusfield’s Algorithm

Like the Gomory-Hu algorithm, Gusfield’s algorithm [48] consists of n — 1 iterations
of a minimum cut subroutine and bookkeeping that puts the resulting cuts together.
Gusfield’s algorithm, however, does not contract vertices and works with the original
graph, making it easy to implement. At each of the n — 1 iterations of Gusfield’s
algorithm, a different vertex is chosen as the source. This choice determines the sink.

Low-level operations of this algorithm are efficient because of its simplicity and the
fact that the algorithm takes advantage of locality of the input graph representation.
However, all minimum cut subproblems are as big as the original graph. Furthermore,
the algorithm has less flexibility for adding heuristics. The only flexibility is the choice
of the next source. We choose the next source at random. We refer to the resulting

implementation as GUS.

Experimental Setup

For our computations, we used a SUN Sparc Ultra-2 workstation with 256 MB memory
running SunOS 5.5.1. All the code is written in C and compiled with ’gec’ and
optimization option -O4. Our implementations are written in the same style and are
derived from the Hao-Orlin algorithm implementation of [15]. We attempted to make
all implementations as efficient as possible.

For our tests we use problem families from the previous minimum cut studies [15,
64, 67, 69], but instead of finding a minimum cut of a graph, we build a cut tree. We

omit the description of the problem families. Detailed descriptions appear in [64].
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| Problem family || Generator | # nodes | # edges | Other parameters

BIKEWHE bikewheelgen | 32,64,...,1024 2n — 3

CYC1 cyclegen 64,...,4096 n

DBLCYC dblcyclegen 64,...,1024 2n

IRREG irregulargen 1000 4000-5000 k=28,9,W €[0...1000]

NOI1 noigen 100-800 density: 50% | P=n,k=1

NOI2 noigen 100-800 density: 50% | P=n,k=2

NOI3 noigen 500 6000-124000 P =1000,k =1

NOI4 noigen 500 6000-124000 P =1000,k =2

NOI5 noigen 500 62000 P =1000
k=1,3,...,100,500

NOI6 noigen 500 62000 P = 5000,2000, ..., 10, 1
k=2

PATH pathgen 2000 20000 P =1,000
ke [1...2000]

PR1 prgen 200,400,...,1000 | density: 2% k=1

PR5 prgen 200,400,...,1000 | density: 2% k=2

PR6 prgen 200,400,...,1000 | density: 10% | k=2

PR7 prgen 200,400,...,600 | density: 50% | k=2

PRS prgen 200,400,...,600 | density: 100% | k =2

REG1 regulargen 301 301,...,90300

REG2 regulargen 50,100,...,800 50n

TREE treegen 800 density: 50% | k€ [1...800]

TSP tsp-instances | 500-13000 ~n

WHE wheelgen 64,128,...,1024 | 2n —2

Table 3.1: Problem families reported on in the experimental study of minimum cut
trees.

We do not report on PR2-PR4 problem families because the results are very close
to those for the PR1 family, and on REG3-REG4 families because the results are
very close to those for the REG1 and REG2 families. We also use two new problem
families produced by two generators, PATHGEN and TREEGEN, described below. A
summary of the problem families we use appears in Table 3.1. We experimented with
more families, but do not report on some where the results were similar to the ones
we include.

The PATHGEN generator works as follows. Given a parameter k, it builds a path
of £k —1 “heavy” edges and connects the remaining n — k vertices to the path vertices

by heavy edges, at random. Then it adds “light” edges at random to achieve the
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desired number of arcs and to make the minimum cut problems more difficult. This

generator takes the following parameters:

e n, the number of vertices;

d, the density of the graph as a percentage;

k, the path length;

P, the path arc capacity parameter;

S, the seed.

Heavy edge capacities are chosen uniformly at random from the interval [1,...,100- P]
and light edge capacities from [1,...,100].

The value of k£ determines the path shape. For example, if £ = n then we get one
heavy path through all the nodes; if £ = 1, then the graph is a star. We use PATHGEN
to produce the PATH problem family. We use n = 2,000, d = 10, P = 1,000, and &
changing from 1 to 2, 000.

The TREEGEN generator works as follows. Given a parameter k, it builds a tree
by connecting vertex i, 2 < ¢ < n, to a randomly chosen vertex in [1, min(i — 1, k).
The tree edges are heavy. Then it adds “light” edges at random to achieve the desired
number of arcs and to make the minimum cut problems more difficult. This generator

takes the following parameters:
e n, the number of vertices;
e d, the density of the graph as a percentage;
e [, the shape parameter mentioned above;

e P the path arc capacity parameter;
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| | Gus | GH | GHs | GHg |

BIKEWLE | O O+
CYCL || O+

DBLCYC | o

TRREGL | O
NOIL || O+
NOI2
NOI3
NOI4
NOI5
NOI6
PATH
PRI
PR5
PR6
PR7
PRS
REGI1
REG2
TREE
TSP
WHE
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Table 3.2: Summary of algorithm performance. () means good, () means fair, )
means poor, and e means bad. + marks the fastest code(s).

e S, the seed.

The generator chooses heavy edge capacities uniformly at random from the interval
[1,...,100 - P] and light edge capacities from [1,...,100].

The value of k determines the shape of the tree. For example, if £ = 1 then the
tree is a star. If Kk =n — 1, then a tree is obtained by connecting each vertex except
the first one to a randomly chosen preceding vertex.

We use TREEGEN to produce the TREE problem family.
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Experimental Results

In this section we describe our experimental results. Table 3.2 summarizes these
results. Detailed data appears at the end of this section. As usual, our experimental
results should be taken in the context of our study.

We use the following scoring system in the table. We normalize the times by that
of the fastest code and use a factor of two as the threshold between adjacent scores.
For example, if the fastest code runs in x seconds, a code running in 1.5z seconds
is rated good, in 3x seconds — fair, in 7x seconds — poor, in 12z — bad. Our choice
of the threshold makes it less likely that a code not rated good in our experiment
would be the fastest under a different compiler and machine architecture combination.
The scoring is done using instances with the biggest performance difference (usually,
the largest instances) for a problem family. If a code is consistently faster than the
other codes, we mark that code with a +. Several codes can be marked so if their
performance is very close, and no codes can be marked if there is no consistent winner.
Note that no code will get a good score on a problem family if every code performs
relatively poorly for some parameter values.

This scoring system gives a general idea of relative performance of the codes
and is robust with respect to many low-level implementation details and machine
architecture variations. Note that in some cases larger problem sizes may amplify
performance differences and thus change the scores.

Data tables at the end of this section give much more information than the above
scores and can be used to explain performance differences. All our implementations
are based on the push-relabel maximum flow method; we give counts of the push
and relabel operations which give a machine-independent measure of performance.
We also give the average size (the number of nodes and the number of edges) of the

s-t cut problems solved. The average problem size is correlated with the algorithm
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performance. In addition to the total running time, we give the time spend computing
minimum s-¢ cuts (CutTime) and the time spend on auxilary operations (ManipTime)
such as building the cut tree, contracting nodes, etc. The total time is equal to the

sum of the CutTime, ManipTime, initialization time, and postprocessing time.

3.2.3 Gusfield’s Algorithm

The data shows that GuUs is not robust. Although it is the fastest code on many
problem families, in some cases it performs much worse than the Gomory-Hu algo-
rithms.

Operation counts show that Gusfield’s algorithm wins mostly due to its simplicity
and better spatial locality resulting from the lack of contraction operations. The
algorithm works on the original graph, so the average subproblem size is the original
graph size. In contrast, Gomory-Hu algorithm wins when it gets balanced cuts which
reduce the average size of the subproblems as well as reduces the number of push and
relabel operations (which dominate the computation).

Note that if one assumes that contraction operations do not increase the number
of push and relabel operations needed to solve a minimum s-¢ cut problem, the only
reason Gusfield’s algorithm may be faster than the Gomory-Hu algorithm is because
of better locality and the lack of contraction operations. Since the work of the latter
can be amortized, Gusfield’s algorithm cannot win by more than a moderate constant

factor. The Gomory-Hu algorithm can, and in some cases does, win by a wide margin.

3.2.4 The Gomory-Hu Implementations

Next we compare our implementations of the Gomory-Hu algorithm. Performance of

these implementations depends on two factors: how balanced the “typical” cuts are,
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and how much work is involved in looking for more balanced cuts.

Recall that the GH implementation choses the next source-sink pair at random.
This is a natural selection strategy to try. Somewhat surprisingly, in our tests this
strategy was not as robust as the source selection heuristic used in GHS. On most
problem families, GH performs similarly to GHs, but on a small number of families
(in particular PATH and TREE), the former code is noticeably slower.

GHs and GHG are the most robust codes in our study, with the latter code being
somewhat more robust. Receiving only one fair mark, GHG is the most robust code in
our study. On some input classes (BIKEWHE, DBLCYC, WHE), it outperforms the
other codes by a large margin. This is due to the fact that on these problem classes,
GHG finds more balanced cuts and on the average works with smaller problems. One
has to keep in mind, however, that the structure of these graph instances is quite
special. They are very symmetric and have many cuts of the same value, which GHG
takes advantage of. So, one has to be careful not to overestimate GHG performance in
the general case. In general, the average problem size for GHG tends to be somewhat
smaller than for GHS. However, the size is never much smaller, and often does not
pay for the additional overhead. Thus on many graphs GHG is slightly slower than
GHs.

The TREE family is the only problem family where GHG gets a fair score. As
usual, on this family the average problem size for GHG is smaller than for GHS,
but the minimum cut problems are very easy and GHS solves them very fast. GHG,
finding several cuts for each problem, spent significantly more time on each of those

problems.
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Concluding Remarks

In this section we summarize our work and discuss heuristics that work as well as
those that do not work.

Currently, the cut tree problems are substantially harder than the related maxi-
mum flow and minimum cut problems, both in theory and in practice. This is a good
motivation for improving theoretical bounds for the problem and developing faster
codes for it. Our study is a step towards the faster codes.

We get a good understanding of implementation issues for the existing cut tree
algorithms, as well as a good understanding of computational performance of these
algorithms. In particular, we show that with a careful low-level implementation, the
Gomory-Hu algorithm is more robust than Gusfield’s algorithm. This is because all
subproblems solved by Gusfield’s algorithm have the same size as the input prob-
lem. For the Gomory-Hu algorithm, however, the average problem size can be much
smaller than the original problem size. The Gomory-Hu algorithm performance is
less predictable, because the average problem size depends on the heuristics used.

Good heuristics reduce the average problem size and can substantially improve
performance of the Gomory-Hu algorithm on some problems. One such heuristic
is our source selection heuristic, which was the most robust in our tests. Random
selection, although quite natural and easy to implement, does not work as well.

Other heuristics are based on the idea of finding several minimum cuts at every
iteration of the Gomory-Hu algorithm and selecting the most balanced one. We
experimented with the simple balance heuristic of selecting the best of two cuts at
every recursive call of the algorithm. The resulting implementation was usually slower
than GH, although not by much, and never significantly faster. This is because the
best of the two cuts is usually not much more balanced than the first cut. The Hao-

Orlin algorithm provides more opportunities for finding balanced cuts, and the GHG
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implementation was the most robust implementation in our tests. Further research
may lead to even more effective heuristics, but we could not produce a more robust
code.

Padberg-Rinaldi heuristics [69] proved very useful for certain classes of global
minimum cut problems. One can use these heuristics (in a somewhat restricted form)
to speed up s-t cut computations in the Gomory-Hu algorithm. However, on the
problems these heuristics are effective, their use tends to lead to less balanced cuts
and worse running times. This is because the heuristics tend to contract together
large subsets of nodes. Although we invested substantial effort, we could not use the
heuristics to consistently speed up our codes.

Further study of heuristics for the Gomory-Hu algorithm may provide significant

improvements.

Data Tables and Plots

In the following tables and plots we present data for all the class instances we have
considered in this study.

Notes:

e All the data reported has been averaged over multiple (5) runs of the algorithms

for each input instance.
e N and M denote the number of vertices and edges respectively.

e Aver.N and Aver.M are equal to the average size (vertices and edges, respec-
tively) over all subgraphs during the min-cut computations. For Gus these
values are equal to N and M. For GH, GHs and GHG they are often signifi-

cantly smaller.
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CutTime corresponds to the total running time required to find all the cuts;

this time is dominated by the max-flow computations.

ManipTime is the time required to manipulate the cuts. This includes the
time to build the tree and for GH, GHs and GHG also includes the time for
the contractions done. Moreover, for GHG it includes the time to perform

double-splitting, according to the two most balanced cuts found so far.

Relabels and Pushes account for the total number of relabels and pushes during

the min-cut computation.

TotalTime is the total CPU-time for each algorithm. TotalTime should be
slightly bigger than CutTime + ManipTime, (TotalTime also includes initial-

ization and final output).

Some tables contain individual parameters for certain problem families.
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BIKEWHE

I N[ M| AverN ]| AverM | CutTime | ManipTime | Relabels | Pushes | TotalTime
gus 32 61 32.000 61.000 0.018 0.002 2590 4632 0.020
gh 32 61 32.000 79.000 0.016 0.000 2173 3704 0.016
ghs 32 61 32.000 77.000 0.020 0.004 3297 6533 0.024
ghg 32 61 14.097 36.113 0.006 0.002 1412 2526 0.008
gus 64 125 64.000 125.000 0.078 0.014 18428 39598 0.096
gh 64 125 64.000 159.000 0.076 0.016 16846 34441 0.098
ghs 64 125 64.000 157.000 0.122 0.018 23681 53183 0.140
ghg 64 125 27.603 74.738 0.054 0.018 10374 20601 0.074
gus 128 | 253 128.000 | 253.000 0.612 0.054 116305 276111 0.670
gh 128 | 253 128.000 | 319.000 0.588 0.060 117001 268674 0.652
ghs 128 | 253 128.000 | 317.000 0.818 0.076 160638 380200 0.902
ghg 128 | 253 52.504 144.008 0.322 0.050 60367 125806 0.372
gus 256 | 509 | 256.000 | 509.000 4.054 0.292 736057 1881693 4.370
gh 256 | 509 | 256.000 | 639.000 4.092 0.312 771031 1909737 4.420
ghs 256 | 509 | 256.000 | 637.000 6.048 0.336 1107079 2749403 6.396
ghg 256 | 509 98.929 | 275.508 2.102 0.214 357203 756738 2.332
gus 512 | 1021 512.000 | 1021.000 28.302 1.188 | 4597115 12473634 29.540
gh 512 | 1021 512.000 | 1279.000 27.458 1.276 | 4778584 12344741 28.754
ghs 512 | 1021 512.000 | 1277.000 44.138 1.464 | 7713890 19621858 45.624
ghg 512 | 1021 198.252 | 556.555 14.128 0.858 | 2220836 4848881 15.014
gus || 1024 | 2045 | 1024.000 | 2045.000 193.438 6.364 | 30058422 | 83973336 199.882
gh 1024 | 2045 | 1024.000 | 2559.000 202.008 8.066 | 30431074 | 81759094 210.142
ghs || 1024 | 2045 | 1024.000 | 2557.000 355.830 8.130 | 54754257 | 142345058 364.014
ghg || 1024 | 2045 | 396.855 | 1113.205 107.632 5.492 | 15305374 | 33838972 113.172

total-time (sec)

0.015625 ;

0.00390625

Table 3.3: Data for BIKEWHE family
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Figure 3.3: Running times for BIKEWHE family
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CYC1

[ N[ M| AverN | AverM | CutTime | ManipTime | Relabels | Pushes | TotalTime
gus 64 64 64.000 64.000 0.016 0.016 3782 3906 0.034
gh 64 64 64.000 98.000 0.010 0.030 3781 3906 0.044
ghs 64 64 64.000 96.000 0.010 0.004 3782 3906 0.026
ghg 64 64 64.000 96.000 0.030 0.012 3782 3906 0.052
gus 128 128 128.000 128.000 0.056 0.046 15750 16002 0.110
gh 128 128 128.000 194.000 0.036 0.060 15749 16002 0.104
ghs 128 128 128.000 192.000 0.058 0.062 15750 16002 0.122
ghg 128 128 128.000 192.000 0.080 0.060 15750 16002 0.144
gus 256 256 256.000 256.000 0.212 0.196 64262 64770 0.428
gh 256 256 256.000 386.000 0.224 0.230 64263 64770 0.460
ghs 256 256 256.000 384.000 0.218 0.230 64262 64770 0.466
ghg 256 256 256.000 384.000 0.362 0.228 64262 64770 0.610
gus 512 512 512.000 512.000 0.818 0.746 259590 260610 1.600
gh 512 512 512.000 770.000 0.808 0.986 259588 260610 1.822
ghs 512 512 512.000 768.000 0.902 0.980 259590 260610 1.902
ghg 512 512 512.000 768.000 1.620 0.852 259590 260610 2.502
gus 1024 | 1024 1024.000 1024.000 3.252 4.410 1043462 1045506 7.724
gh 1024 | 1024 1024.000 1538.000 3.064 6.592 1043462 1045506 9.698
ghs 1024 1024 1024.000 1536.000 3.724 5.678 1043462 1045506 9.456
ghg 1024 | 1024 1024.000 1536.000 5.788 6.174 1043462 1045506 12.006
gus 2048 | 2048 | 2048.000 | 2048.000 12.190 29.252 4184070 4188162 41.606
gh 2048 2048 2048.000 3074.000 14.530 35.908 4184071 4188162 50.528
ghs 2048 | 2048 | 2048.000 | 3072.000 14.824 34.104 4184070 4188162 49.028
ghg 2048 | 2048 | 2048.000 | 3072.000 26.068 35.952 4184070 4188162 62.148
gus 4096 | 4096 | 4096.000 | 4096.000 50.988 116.528 16756742 16764930 167.846
gh 4096 | 4096 | 4096.000 | 6146.000 66.034 154.422 16756740 16764930 220.680
ghs 4096 | 4096 | 4096.000 | 6144.000 63.144 142.724 | 16756742 16764930 206.070
ghg 4096 | 4096 | 4096.000 | 6144.000 106.782 152.694 | 16756742 16764930 259.732
Table 3.4: Data for CYC1 family
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Figure 3.4: Running times for CYC1 family
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DBLCYC

[ N[ M| AverN ]| AverM | CutTime | ManipTime | Relabels | Pushes | TotalTime

gus 64 128 64.000 128.000 0.034 0.020 8904 13986 0.056
gh 64 128 64.000 162.000 0.038 0.018 9940 17248 0.058
ghs 64 128 64.000 160.000 0.086 0.016 19359 37934 0.108
ghg 64 128 22.571 55.540 0.026 0.006 4593 7450 0.040
gus 128 256 128.000 256.000 0.700 0.058 158022 302252 0.760
gh 128 256 65.118 164.843 0.134 0.048 36321 57223 0.190
ghs 128 256 46.874 116.925 0.130 0.052 30128 53221 0.184
ghg 128 256 15.913 38.413 0.040 0.056 5584 9436 0.104
gus 256 512 256.000 512.000 3.758 0.282 824857 1586501 4.050
gh 256 512 128.843 324.120 0.714 0.202 186897 308900 0.936
ghs 256 512 93.463 233.465 0.864 0.170 211112 381336 1.048
ghg 256 512 24.263 59.461 0.128 0.160 21506 35338 0.298
gus 512 | 1024 512.000 | 1024.000 44.272 1.282 9343902 | 18489463 45.600
gh 512 | 1024 257.411 645.535 4.494 0.898 1123988 1978619 5.404
ghs 512 | 1024 226.335 565.772 7.568 0.920 1787452 3390017 8.510
ghg 512 | 1024 43.129 106.592 0.478 0.620 85484 135.154 1.124
gus 1024 | 2048 | 1024.000 | 2048.000 180.620 6.206 | 36782759 | 72438517 186.904
gh 1024 | 2048 513.879 | 1286.702 34.576 5.368 7506538 | 13993665 39.990
ghs 1024 | 2048 399.940 999.699 54.382 5.216 | 11568074 | 22416182 59.648
ghg 1024 | 2048 91.745 228.161 2.174 3.906 407532 656551 6.120

Table 3.5: Data for DBLCYC family
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Figure 3.5: Running times for DBLCYC family
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TRREGI

[ N[ MJ[K] W] AverN | Aver.M | CTime | MTime | Relabels | Pushes | TotTime
gus 1000 4000 8 0 1000.00 4000.00 5.39 7.32 974166.2 1023545.0 12.792
gh 1000 | 4000 8 0 | 1000.00 | 4487.40 5.75 9.97 974336.6 | 1025379.0 15.778
ghs 1000 | 4000 8 0 | 1000.00 | 4485.40 6.06 9.42 964990.2 | 1012366.6 15.530
ghg 1000 | 4000 8 0 281.56 | 1777.62 4.31 5.38 507450.4 595453.4 9.746
gus 1000 | 4002 8 4 | 1000.00 | 4002.00 4.77 7.30 859142.2 892370.4 12.144
gh 1000 | 4002 8 4 | 1000.00 | 4489.40 5.78 9.96 978548.0 | 1031098.4 15.806
ghs 1000 | 4002 8 4 | 1000.00 | 4487.40 5.58 9.40 859329.0 890894.8 15.036
ghg 1000 | 4002 8 4 283.21 1774.54 4.30 5.32 513306.0 603358.2 9.682
gus 1000 | 4032 8 64 | 1000.00 | 4032.00 4.77 7.35 849120.2 879463.4 12.208
gh 1000 | 4032 8 64 | 1000.00 | 4519.20 5.91 10.04 | 1005170.4 | 1059059.4 16.024
ghs 1000 | 4032 8 64 | 1000.00 | 4517.20 5.68 9.54 860271.2 891862.2 15.296
ghg 1000 | 4032 8 64 308.11 1846.52 4.65 5.49 594861.4 693941.2 10.188
gus 1000 | 4128 8 256 | 1000.00 | 4128.00 5.38 7.52 965819.0 | 1012517.2 12.960
gh 1000 4128 8 256 1000.00 4614.60 6.18 10.22 1034272.2 1090457.6 16.460
ghs 1000 | 4128 8 256 | 1000.00 | 4612.60 6.22 9.95 924975.8 965052.4 16.230
ghg 1000 | 4128 8 256 351.77 | 2067.06 5.53 5.96 707328.8 824033.0 11.542
gus 1000 | 4384 8 768 | 1000.00 | 4384.00 5.59 7.74 970471.6 | 1017946.6 13.432
gh 1000 | 4384 8 768 | 1000.00 | 4868.60 6.31 10.78 997111.6 | 1049918.8 17.140
ghs 1000 | 4384 8 768 | 1000.00 | 4866.60 6.95 10.63 974138.8 | 1022270.4 17.642
ghg 1000 | 4384 8 768 306.32 | 1969.54 5.22 5.90 587228.6 690631.4 11.156
gus 1000 | 4500 8 | 1000 | 1000.00 | 4500.00 5.60 7.84 943306.0 989277.2 13.522
gh 1000 | 4500 8 | 1000 | 1000.00 | 4984.20 6.27 11.08 970817.6 | 1021374.2 17.408
ghs 1000 | 4500 8 | 1000 | 1000.00 | 4982.20 6.65 10.42 959151.8 | 1005409.8 17.126
ghg 1000 4500 8 1000 282.99 1987.57 5.08 5.86 521775.2 629682.6 10.990
gus 1000 | 4500 9 0 | 1000.00 | 4500.00 5.54 7.86 939854.8 983888.2 13.478
gh 1000 | 4500 9 0 | 1000.00 | 4984.40 6.31 10.99 971813.8 | 1022280.8 17.334
ghs 1000 4500 9 0 1000.00 4982.40 6.70 10.41 963312.2 1010213.4 17.160
ghg 1000 | 4500 9 0 290.21 | 2037.71 5.18 5.97 533194.8 637646.8 11.210
gus 1000 | 4502 9 4 | 1000.00 | 4502.00 5.09 7.85 861165.2 891509.0 13.024
gh 1000 4502 9 4 1000.00 4986.40 6.31 11.01 973293.2 1022636.8 17.378
ghs 1000 | 4502 9 4 | 1000.00 | 4984.40 6.33 10.45 891036.4 927130.4 16.816
ghg 1000 | 4502 9 4 286.36 | 1985.68 5.06 5.87 525460.0 623485.0 10.986
gus 1000 4532 9 64 1000.00 4532.00 5.38 7.81 907690.8 946118.2 13.248
gh 1000 | 4532 9 64 | 1000.00 | 5016.20 6.58 11.12 | 1007777.2 | 1061260.2 17.742
ghs 1000 | 4532 9 64 | 1000.00 | 5014.20 6.45 10.58 896267.4 932213.6 17.096
ghg 1000 4532 9 64 320.02 2116.92 5.62 6.15 622135.4 730064.6 11.840
gus 1000 | 4628 9 256 | 1000.00 | 4628.00 5.35 7.95 888729.4 924258.4 13.366
gh 1000 | 4628 9 256 | 1000.00 | 5111.80 6.83 11.34 | 1027583.6 | 1082463.2 18.222
ghs 1000 | 4628 9 256 | 1000.00 | 5109.80 6.89 11.19 895798.8 932278.8 18.146
ghg 1000 | 4628 9 256 327.07 | 2103.72 5.74 6.30 651540.4 764990.2 12.082
gus 1000 | 4884 9 768 | 1000.00 | 4884.00 5.71 8.16 906560.0 944295.6 13.928
gh 1000 | 4884 9 768 | 1000.00 | 5366.20 6.91 12.10 998317.4 | 1051006.4 19.060
ghs 1000 | 4884 9 768 | 1000.00 | 5364.20 7.50 11.87 902697.2 940658.8 19.418
ghg 1000 | 4884 9 768 314.30 | 2258.70 6.09 6.52 600495.2 703592.4 12.672
gus 1000 | 5000 9 | 1000 | 1000.00 | 5000.00 6.04 8.38 954539.8 998726.4 14.506
gh 1000 | 5000 9 | 1000 | 1000.00 | 5481.40 6.92 12.42 966768.8 | 1015155.8 19.392
ghs 1000 | 5000 9 | 1000 | 1000.00 | 5479.40 7.60 11.82 937960.2 979618.8 19.470
ghg 1000 | 5000 9 | 1000 293.30 | 2252.57 5.86 6.48 544862.8 660723.6 12.390

Table 3.6: Data for IRREG1 family
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Figure 3.6: Running times for IRREG1 family (K = 8)
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Figure 3.7: Running times for IRREG1 family (K =9)
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NOI1

[ N] M | AvN ]| Aver.M | CutTime | ManipTime | Relabels | Pushes | TotTime
gus 100 2475 | 100.00 2475.00 0.140 0.166 8072.400 20613.400 0.312
gh 100 2475 | 100.00 2001.80 0.162 0.236 10209.800 26180.200 0.404
ghs 100 2475 | 100.00 1999.80 0.184 0.224 7466.600 20015.800 0.414
ghg 100 2475 50.50 1010.00 0.306 0.164 15586.000 63282.000 0.474
gus 200 9950 | 200.00 9950.00 1.092 1.190 32507.200 80882.000 2.304
gh 200 9950 | 200.00 7934.80 1.390 1.932 40733.400 106244.600 3.330
ghs 200 9950 | 200.00 7932.80 1.406 1.978 30856.600 81365.200 3.394
ghg 200 9950 | 100.50 3986.33 2.630 1.446 63018.800 293091.600 4.084
gus 300 22425 | 300.00 22425.00 4.512 5.926 76437.200 190874.400 10.450
gh 300 22425 | 300.00 17784.20 5.340 9.338 91304.800 241702.000 14.692
ghs 300 22425 | 300.00 17782.20 6.140 9.192 73695.600 196178.600 15.338
ghg 300 22425 150.50 8920.83 11.194 6.900 146903.400 715597.600 18.098
gus 400 39900 | 400.00 39900.00 12.074 15.590 137977.000 345299.400 27.690
gh 400 39900 | 400.00 31615.40 13.810 25.774 161840.000 431264.800 39.606
ghs 400 39900 | 400.00 31613.40 17.056 25.244 134417.600 360402.600 42.318
ghg 400 39900 200.50 15846.31 27.858 19.100 245537.800 1216714.000 46.964
gus 500 62375 | 500.00 62375.00 25.572 30.642 220971.200 547866.400 56.256
gh 500 62375 | 500.00 49346.79 28.108 51.604 252343.000 675534.600 79.742
ghs 500 62375 500.00 49344.80 35.204 50.572 215844.600 581653.800 85.800
ghg 500 62375 | 250.50 24721.84 57.012 38.462 380651.800 1880512.600 95.490
gus 600 89850 | 600.00 89850.00 45.994 53.012 322304.800 793268.200 99.064
gh 600 89850 600.00 70937.80 50.120 89.686 362894.400 974327.800 139.832
ghs 600 89850 | 600.00 70935.80 62.702 87.972 316684.000 849284.000 150.706
ghg 600 89850 | 300.50 35527.11 102.768 66.756 553239.000 | 2772812.000 169.542
gus 700 122325 700.00 122325.00 74.892 84.312 440571.400 1091108.200 159.240
gh 700 | 122325 | 700.00 96604.79 80.788 143.050 493805.200 1331621.800 223.862
ghs 700 | 122325 | 700.00 96602.79 100.572 140.406 427978.400 1156990.000 241.020
ghg 700 | 122325 | 350.50 48370.50 166.184 106.776 754564.400 | 3916730.000 272.988
gus 800 | 159800 | 800.00 159800.00 113.326 126.118 572226.200 1417749.400 239.498
gh 800 | 159800 | 800.00 126152.79 123.284 214.504 646932.200 1751024.000 337.818
ghs 800 | 159800 | 800.00 126150.79 151.044 209.462 560811.600 1520480.600 360.544
ghg 800 | 159800 | 400.50 63154.34 264.006 159.752 1028238.600 | 5673518.400 423.786

Table 3.7: Data
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NOI2

[ N] M | Aver.N [ Aver.M [ CutTime | ManipTime | Relabels | Pushes | TotTime
gus 100 2475 | 100.000 2475.00 0.180 0.150 9405.200 29992.600 0.334
gh 100 2475 51.877 576.97 0.078 0.076 5715.800 17849.200 0.166
ghs 100 2475 52.632 606.60 0.060 0.088 3849.000 13698.600 0.150
ghg 100 2475 27.547 331.28 0.090 0.076 8295.800 33064.200 0.168
gus 200 9950 | 200.000 9950.00 1.288 1.154 37258.600 122806.800 2.448
gh 200 9950 | 101.851 2129.31 0.400 0.574 21855.400 71123.200 0.986
ghs 200 9950 | 104.755 2319.64 0.402 0.620 16094.600 56659.600 1.038
ghg 200 9950 52.853 1170.14 0.802 0.434 34968.200 159329.200 1.236
gus 300 22425 | 300.000 22425.00 5.018 5.868 83616.800 271293.400 10.898
gh 300 22425 151.963 4661.09 1.444 2.230 47927.800 157165.600 3.696
ghs 300 22425 157.648 5204.80 1.728 2.430 38543.000 134470.000 4.172
ghg 300 22425 78.567 2549.97 2.954 1.688 78217.200 366670.200 4.650
gus 400 39900 | 400.000 39900.00 13.194 15.578 150554.800 487276.200 28.800
gh 400 39900 | 201.916 8185.69 3.508 6.396 84492.400 281351.400 9.930
ghs 400 39900 | 202.461 8288.57 3.980 6.116 66213.000 231040.200 10.116
ghg 400 39900 102.461 4239.54 7.302 4.450 136564.000 662437.600 11.758
gus 500 62375 | 500.000 62375.00 27.312 30.870 | 237081.400 768829.400 58.206
gh 500 62375 | 252.429 12785.18 7.164 14.172 130190.800 437624.600 21.346
ghs 500 62375 258.742 13782.18 9.268 14.404 108203.400 374733.600 23.702
ghg 500 62375 129.830 6924.36 16.332 10.584 | 216869.800 1118776.200 26.922
gus 600 89850 | 600.000 89850.00 48.638 53.212 | 340552.200 1101504.000 101.882
gh 600 89850 302.181 18244.81 12.866 26.274 186688.600 628797.800 39.190
ghs 600 89850 | 307.650 19283.53 16.770 26.152 156110.800 542817.600 42.956
ghg 600 89850 157.417 10208.28 31.286 20.186 | 317276.800 1681369.600 51.486
gus 700 122325 700.000 122325.00 78.260 84.392 459326.200 1480889.200 162.702
gh 700 122325 352.168 24717.82 21.216 42.922 252435.800 854438.600 64.170
ghs 700 | 122325 | 353.985 25164.45 26.614 41.372 | 208409.600 727069.600 68.014
ghg 700 | 122325 178.165 12778.21 47.600 31.100 | 421098.600 | 2212331.600 78.718
gus 800 | 159800 | 800.000 159800.00 120.070 126.082 | 608897.400 1967348.800 246.202
gh 800 | 159800 | 402.020 32160.97 32.024 64.858 | 329014.800 1117358.800 96.922
ghs 800 | 159800 | 402.206 32281.82 40.684 61.830 | 277282.000 962146.200 102.540
ghg 800 | 159800 | 202.299 16321.77 71.264 46.570 | 536687.000 | 2785569.600 117.868

Table 3.8: Data for NOI2 family
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NOI3

[ N] M | Aver.N [  Aver.M [ CutTime | ManipTime | Relabels | Pushes | TotTime
gus 500 6237 | 500.000 6237.00 2.850 2.834 | 234598.600 330315.800 5.726
gh 500 6237 | 500.000 6328.00 4.034 4.686 322827.200 467052.800 8.744
ghs 500 6237 | 500.000 6326.00 3.288 4.496 | 223513.800 320174.400 7.802
ghg 500 6237 | 250.501 3169.33 6.838 3.250 | 460777.600 915968.600 10.102
gus 500 12475 | 500.000 12475.00 5.304 6.330 | 227950.200 365955.000 11.662
gh 500 12475 | 500.000 12119.60 6.814 9.696 | 289028.600 479595.800 16.536
ghs 500 12475 | 500.000 12117.60 6.516 9.576 | 210491.000 351918.600 16.116
ghg 500 12475 | 250.501 6070.94 13.196 7.082 | 441605.400 1136142.600 20.288
gus 500 31187 | 500.000 31187.00 13.546 17.132 | 223723.000 456445.400 30.712
gh 500 31187 | 500.000 27831.80 15.502 27.856 | 261829.600 564165.200 43.394
ghs 500 31187 | 500.000 27829.80 18.294 27.526 | 214188.800 464787.400 45.838
ghg 500 31187 | 250.501 13942.78 32.632 20.954 | 411799.400 1464214.000 53.604
gus 500 62375 | 500.000 62375.00 26.322 31.572 | 220971.200 547866.400 57.916
gh 500 62375 | 500.000 49346.79 28.852 52.654 | 252343.000 675534.600 81.534
ghs 500 62375 | 500.000 49344.80 36.056 51.928 | 215844.600 581653.800 88.012
ghg 500 62375 250.501 24721.84 58.980 39.994 380651.800 1880512.600 98.978
gus 500 93562 | 500.000 93562.00 37.748 44.144 | 220040.400 605356.000 81.934
gh 500 93562 | 500.000 66115.79 39.842 73.276 | 248833.400 744295.600 113.140
ghs 500 93562 500.000 66113.80 50.760 71.540 216279.600 649482.800 122.328
ghg 500 93562 | 250.501 33123.14 82.472 55.190 | 375962.800 | 2248610.600 137.678
gus 500 | 124750 | 500.000 124750.00 46.402 54.370 | 217498.000 630824.000 100.828
gh 500 124750 500.000 79109.40 48.900 90.230 247546.400 787930.200 139.156
ghs 500 | 124750 | 500.000 79107.39 62.470 87.550 | 214949.000 687242.800 150.030
ghg 500 | 124750 | 250.501 39632.96 95.706 67.000 | 356865.600 | 2446801.600 162.724

Table 3.9: Data for NOI3 family
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Figure 3.10: Running times for NOI3 family
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NOI4

[ N] M | Aver.N [  Aver.M [ CutTime | ManipTime | Relabels | Pushes | TotTime
gus 500 6237 | 500.000 6237.00 3.644 2.672 | 299293.600 554510.200 6.348
gh 500 6237 | 252.132 1932.21 1.658 1.690 | 202376.000 398719.400 3.370
ghs 500 6237 | 251.897 1933.07 1.370 1.664 | 126560.000 270927.800 3.062
ghg 500 6237 | 126.709 976.89 2.724 2.526 | 285626.000 670309.800 5.254
gus 500 12475 | 500.000 12475.00 5.700 5.956 | 256192.600 517099.000 11.692
gh 500 12475 | 252.653 3413.27 2.212 3.158 | 165373.000 365230.800 5.396
ghs 500 12475 253.184 3441.14 1.978 3.116 112728.600 267144.400 5.112
ghg 500 12475 127.600 1750.86 4.302 4.594 | 262285.000 722592.800 8.914
gus 500 31187 | 500.000 31187.00 14.142 16.606 | 241792.200 632689.800 30.794
gh 500 31187 | 252.846 7428.08 4.032 7.284 | 139160.800 389687.200 11.336
ghs 500 31187 | 253.974 7547.21 4.536 7.004 | 107543.200 313657.400 11.556
ghg 500 31187 128.498 3880.39 9.036 10.614 | 236752.400 894985.800 19.658
gus 500 62375 | 500.000 62375.00 27.098 30.666 | 234114.800 764217.000 57.798
gh 500 62375 | 252.846 12856.06 7.212 14.146 130832.600 441029.600 21.376
ghs 500 62375 | 257.453 13595.62 9.272 14.316 107365.200 374154.600 23.604
ghg 500 62375 130.971 7098.68 16.544 12.942 217833.000 1126862.800 29.492
gus 500 93562 | 500.000 93562.00 38.496 42.648 | 233186.800 846458.400 81.194
gh 500 93562 | 252.846 17110.38 9.862 20.260 127954.800 474673.000 30.158
ghs 500 93562 262.583 19145.87 14.016 21.210 108811.200 417675.800 35.248
ghg 500 93562 129.849 9244.61 22.144 15.234 | 205688.600 1287036.400 37.386
gus 500 | 124750 | 500.000 124750.00 47.552 52.964 | 230628.600 882537.200 100.560
gh 500 124750 252.550 20354.71 11.912 25.136 125878.000 496930.800 37.072
ghs 500 | 124750 | 267.743 24122.76 18.236 27.494 | 112151.400 460400.000 45.756
ghg 500 | 124750 131.624 11470.81 28.338 19.574 | 205917.400 1478475.600 47.924

Table 3.10: Data for NOI4 family
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Figure 3.11: Running times for NOI4 family
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NOI5

[ N] M | K [ Aver.N [ Aver.M | CutTime | ManipTime | Relabels | Pushes | TotTime
gus 500 | 62375 1 | 500.000 | 62375.00 25.750 30.994 | 220971.2 547866.4 56.786
gh 500 | 62375 1 | 500.000 | 49346.79 28.122 51.388 | 252343.0 675534.6 79.552
ghs 500 | 62375 1 | 500.000 | 49344.80 35.646 51.256 | 215844.6 581653.8 86.934
ghg 500 | 62375 1 | 250.501 24721.84 57.232 38.588 | 380651.8 1880512.6 95.838
gus 500 | 62375 3 | 500.000 | 62375.00 28.770 30.862 | 247409.6 914064.0 59.654
gh 500 | 62375 3 171.527 6095.50 3.726 6.450 91066.8 356699.2 10.190
ghs 500 | 62375 3 181.966 7265.09 5.030 7.264 78182.2 350358.4 12.310
ghg 500 | 62375 3 88.705 3407.96 7.266 4.732 | 146781.6 731719.6 12.010
gus 500 | 62375 5 | 500.000 | 62375.00 31.186 30.954 | 260338.2 1137906.8 62.172
gh 500 | 62375 5 106.179 2511.96 1.832 2.912 59546.2 293668.8 4.766
ghs 500 | 62375 5 114.860 3321.28 2.518 3.446 50017.2 274181.8 5.992
ghg 500 | 62375 5 59.831 1920.63 4.346 2.854 | 101138.6 558784.2 7.214
gus 500 | 62375 10 | 500.000 | 62375.00 35.974 31.116 | 286834.4 | 1486421.4 67.122
gh 500 | 62375 10 64.779 1540.89 2.538 2.062 46341.4 388276.8 4.618
ghs 500 | 62375 10 68.250 1894.69 1.938 2.254 | 31876.40 231647.2 4.214
ghg 500 | 62375 10 38.011 1305.77 3.966 2.182 66670.2 464666.8 6.164
gus 500 | 62375 20 | 500.000 | 62375.00 44.764 31.082 | 329765.6 | 2039234.2 75.886
gh 500 | 62375 20 56.855 2333.32 4.920 3.006 59452.6 595017.0 7.952
ghs 500 | 62375 20 46.461 1625.09 2.238 2.134 26611.8 243525.6 4.402
ghg 500 | 62375 20 28.612 1249.94 5.054 2.162 57991.0 483311.2 7.232
gus 500 | 62375 33 | 500.000 | 62375.00 54.408 30.788 | 381868.6 | 2380417.8 85.228
gh 500 | 62375 33 71.868 4313.29 9.600 5.144 92870.4 859104.4 14.758
ghs 500 | 62375 33 40.293 1873.45 2.816 2.476 27230.8 260385.0 5.316
ghg 500 | 62375 33 27.572 1529.10 7.908 2.706 71487.8 631922.0 10.632
gus 500 | 62375 50 | 500.000 | 62375.00 56.012 30.814 | 392128.8 | 2379258.0 86.856
gh 500 | 62375 50 105.720 7861.90 16.824 9.212 | 143414.4 | 1167246.8 26.060
ghs 500 | 62375 50 49.181 2841.66 3.898 3.436 34782.2 297480.8 7.350
ghg 500 62375 50 32.944 2109.61 11.524 3.680 92422.0 858688.0 15.220
gus 500 | 62375 150 | 500.000 | 62375.00 41.260 30.714 | 321830.0 1317642.8 71.998
gh 500 | 62375 150 | 248.431 23843.52 35.484 27.596 | 254034.4 | 1465512.6 63.114
ghs 500 | 62375 150 176.290 15750.19 16.552 20.228 99246.8 466330.2 36.806
ghg 500 | 62375 150 96.215 8640.09 43.204 15.620 | 251426.2 | 2717844.0 58.842
gus 500 | 62375 | 300 | 500.000 | 62375.00 34.924 30.698 | 287580.2 941331.6 65.658
gh 500 | 62375 | 300 | 348.333 | 34539.50 37.862 38.226 | 283830.0 1305608.2 76.118
ghs 500 | 62375 | 300 | 289.413 | 28466.63 25.686 33.848 145519.4 524623.6 59.556
ghg 500 | 62375 | 300 149.117 14630.23 78.020 25.918 | 414365.6 | 4849200.2 103.962
gus 500 | 62375 | 500 | 500.000 | 62375.00 30.604 30.626 | 262441.4 760785.8 61.266
gh 500 | 62375 | 500 | 411.329 | 40854.05 36.796 43.902 | 291815.6 1132334.4 80.726
ghs 500 | 62375 | 500 | 369.372 | 36897.73 31.182 41.738 181231.2 572763.6 72.954
ghg 500 | 62375 | 500 187.771 18722.43 95.588 31.984 | 517790.2 | 5073999.2 127.576

Table 3.11: Data for NOI5 family
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Figure 3.12: Running times for NOI5 family
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Figure 3.13: Running times for NOI6 family
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NOI6

[ N ] M | P | AvN ] AverM [ CutTime | ManipTime | Relabels | Pushes | TotTime
gus 500 | 62375 1 500.00 | 62375.00 25.038 30.406 | 219398.8 540051.0 55.466
gh 500 | 62375 1 500.00 | 49346.79 27.802 50.954 | 251919.2 669250.2 78.786
ghs 500 | 62375 1 500.00 | 49344.80 34.806 49.924 | 214554.8 571190.2 84.764
ghg 500 | 62375 1 250.50 | 24721.84 55.776 38.000 | 377032.2 1898937.0 93.786
gus 500 | 62375 10 | 500.00 | 62375.00 26.442 30.432 | 228514.8 889520.4 56.902
gh 500 | 62375 10 | 500.00 | 49346.79 30.182 51.078 | 269007.4 | 1053732.2 81.286
ghs 500 | 62375 10 | 500.00 | 49344.80 36.096 49.950 | 224058.6 933569.0 86.072
ghg 500 | 62375 10 | 250.50 | 24721.84 67.978 38.110 | 445558.4 | 2860203.4 106.110
gus 500 | 62375 50 | 500.00 | 62375.00 29.980 30.462 | 248876.2 | 2127012.4 60.482
gh 500 | 62375 50 | 500.00 | 49346.79 35.166 50.942 | 302002.4 | 2398172.0 86.122
ghs 500 | 62375 50 | 500.00 | 49344.80 39.934 49.964 | 246871.6 | 2211179.2 89.914
ghg 500 | 62375 50 | 250.50 | 24721.84 73.468 38.068 | 472712.2 | 5259467.4 111.558
gus 500 | 62375 100 | 500.00 | 62375.00 34.366 30.388 | 279440.2 | 3469834.2 64.786
gh 500 | 62375 100 | 500.00 | 49346.79 39.666 50.942 | 331127.6 | 3990786.0 90.636
ghs 500 | 62375 100 | 500.00 | 49344.80 44.158 50.036 | 274994.6 | 3585685.6 94.230
ghg 500 | 62375 100 | 250.50 | 24721.84 78.026 38.078 | 499262.4 | 6945915.8 116.128
gus 500 | 62375 250 | 500.00 | 62375.00 27.068 30.372 | 236391.8 788705.6 57.466
gh 500 | 62375 250 | 255.24 13199.00 7.556 14.256 132531.6 507056.6 21.832
ghs 500 | 62375 250 | 256.77 13486.43 8.802 13.864 | 106236.0 346881.8 22.698
ghg 500 62375 250 131.22 7143.68 15.984 10.708 212483.6 1071805.0 26.704
gus 500 | 62375 500 | 500.00 | 62375.00 27.094 30.406 | 237081.4 768829.4 57.544
gh 500 | 62375 500 | 252.42 12785.18 7.036 14.022 130190.8 437624.6 21.078
ghs 500 | 62375 500 | 258.74 13782.18 9.146 14.210 108203.4 374733.6 23.376
ghg 500 | 62375 500 129.83 6924.36 16.190 10.364 | 216869.8 1118776.2 26.570
gus 500 | 62375 1000 | 500.00 | 62375.00 27.162 30.360 | 236495.6 778270.4 57.554
gh 500 | 62375 1000 | 252.52 12799.72 7.476 13.880 135933.8 462982.0 21.372
ghs 500 | 62375 1000 | 257.09 13532.46 9.016 13.944 | 108466.8 392449.8 22.986
ghg 500 | 62375 1000 129.67 6900.01 15.768 10.356 | 214945.2 1081002.4 26.142
gus 500 | 62375 | 2000 | 500.00 | 62375.00 27.252 30.370 | 237338.2 788437.0 57.650
gh 500 62375 2000 252.42 12785.18 7.756 14.044 144343.6 490483.8 21.814
ghs 500 | 62375 | 2000 | 255.96 13364.02 8.894 13.826 109076.2 401186.4 22.738
ghg 500 | 62375 | 2000 130.52 7016.94 16.156 10.590 | 217461.2 1114206.0 26.758
gus 500 | 62375 | 5000 | 500.00 | 62375.00 27.358 30.338 | 237857.0 808932.4 57.730
gh 500 | 62375 | 5000 | 252.32 12770.47 8.136 14.050 153392.0 505017.0 22.208
ghs 500 | 62375 | 5000 | 256.84 13494.08 9.162 13.876 110165.4 412341.8 23.060
ghg 500 | 62375 | 5000 129.71 6903.91 16.840 10.368 | 226332.0 1164251.6 27.234

Table 3.12: Data for NOI6 family
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PATH

[ N | M | K [ AverN | Aver.M | CTime | MTime | Relabels | Pushes | TotTime
gus 2000 | 21990 1 | 2000.00 | 21990.00 2.738 71.926 11.0 39757.6 74.844
gh 2000 | 21990 1 | 2000.00 | 22864.00 53.860 | 111.120 3462058.2 5089280.4 165.076
ghs 2000 | 21990 1 | 2000.00 | 22862.00 19.528 | 112.792 11.0 39757.6 132.434
ghg 2000 | 21990 1 1000.50 | 11436.71 66.922 79.284 1674373.6 | 10123340.2 146.248
gus 2000 | 21990 4 | 2000.00 | 21990.00 14.940 71.836 757042.2 2022180.8 86.910
gh 2000 | 21990 4 | 1989.43 | 22709.44 80.414 | 110.346 5323845.6 9611058.8 190.858
ghs 2000 | 21990 4 504.14 2776.64 2.264 31.808 7482.6 73443.8 34.180
ghg 2000 | 21990 4 253.03 1398.47 5.224 16.604 254095.2 664068.2 21.886
gus 2000 | 21990 15 | 2000.00 | 21990.00 46.264 73.574 2950639.8 6537896.6 119.994
gh 2000 | 21990 15 | 1778.39 | 20386.26 | 130.034 | 100.612 7040216.0 | 16579151.4 230.760
ghs 2000 | 21990 15 143.34 628.79 1.196 24.778 30778.8 173520.2 26.070
ghg 2000 | 21990 15 75.21 354.88 2.288 11.702 118590.8 385170.6 14.042
gus 2000 | 21990 50 | 2000.00 | 21990.00 83.076 72.760 5057902.6 | 10189574.2 155.996
gh 2000 | 21990 50 | 1260.43 | 15504.24 | 136.430 81.156 6536603.2 | 18526364.4 217.706
ghs 2000 | 21990 50 60.54 381.10 2.194 23.872 90910.4 403747.6 26.186
ghg 2000 | 21990 50 38.56 294.20 3.900 11.676 177543.4 722060.4 15.636
gus 2000 | 21990 200 | 2000.00 | 21990.00 | 110.852 71.096 6804711.8 | 12232899.8 182.078
gh 2000 | 21990 200 266.61 3667.48 42.074 35.896 2037790.2 6330626.4 78.070
ghs 2000 21990 200 43.03 458.31 4.270 24.228 196448.2 636261.6 28.586
ghg 2000 | 21990 200 34.97 402.49 8.172 12.656 347545.6 1285304.8 20.882
gus 2000 | 21990 800 | 2000.00 | 21990.00 | 242.030 71.264 | 13343243.8 | 24378523.8 313.436
gh 2000 21990 800 124.97 1846.75 36.848 29.216 1658893.6 4227637.4 66.180
ghs 2000 | 21990 800 64.56 956.40 11.258 25.950 499685.4 1265666.4 37.322
ghg 2000 | 21990 800 50.95 731.54 32.882 15.852 1243339.8 3886804.2 48.794
gus 2000 21990 2000 2000.00 21990.00 554.889 70.765 28851668.8 50298108.4 625.804
gh 2000 | 21990 | 2000 126.65 2030.55 62.116 29.720 2671666.2 5836707.4 91.926
ghs 2000 | 21990 | 2000 103.92 1701.29 34.484 28.802 1501881.4 3255455.4 63.360
ghg 2000 | 21990 | 2000 67.00 1053.02 89.398 19.110 3371604.6 8772053.8 108.568
Table 3.13: Data for PATH family
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Figure 3.14: Running times for PATH family
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PR1

I N | M | AverN | Aver.M | CutTime [ ManipTime | Relabels | Pushes | TotTime
gus 200 583 200.000 583.400 0.198 0.184 38043.20 49857.20 0.390
gh 200 583 191.417 667.144 0.288 0.256 60242.60 80960.00 0.550
ghs 200 583 180.615 630.366 0.162 0.230 32129.40 41757.00 0.404
ghg 200 583 92.651 323.107 0.420 0.166 73554.00 124632.60 0.586
gus 400 1968 400.000 1968.000 0.844 0.964 145920.60 178316.20 1.848
gh 400 1968 399.895 2169.843 1.440 1.304 228495.00 287433.80 2.770
ghs 400 1968 399.645 2166.681 1.050 1.262 136425.20 166105.00 2.332
ghg 400 1968 200.179 1085.436 2.140 0.922 286573.20 465718.60 3.076
gus 600 4157 600.000 4157.000 2.548 2.644 306644.00 360422.20 5.230
gh 600 4157 600.000 4459.000 3.914 4.242 481212.20 584416.80 8.192
ghs 600 4157 600.000 4457.000 2.850 4.388 298350.40 352604.20 7.256
ghg 600 4157 300.387 2232.006 5.538 2.988 607139.20 956597.20 8.544
gus 800 7175 800.000 7175.200 5.878 7.832 549325.20 636626.00 13.748
gh 800 7175 800.000 7577.200 9.300 12.786 826197.40 986157.00 22.136
ghs 800 7175 800.000 7575.200 7.956 12.982 506020.00 591347.80 20.974
ghg 800 7175 400.375 3791.932 14.344 9.640 1046093.20 1620243.40 24.006
gus 1000 10923 1000.000 10923.400 9.976 15.514 865278.80 987098.80 25.580
gh 1000 10923 1000.000 11425.400 15.470 22.460 1252763.20 1470220.60 37.968
ghs 1000 10923 1000.000 11423.400 12.726 22.664 806876.20 931668.00 35.430
ghg 1000 10923 500.472 5717.315 22.302 15.438 1550385.20 | 2254644.00 37.766
Table 3.14: Data for PR1 family
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Figure 3.15: Running times for PR1 family
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PR5

I N | M | AverN | Aver.M | CutTime [ ManipTime | Relabels | Pushes | TotTime
gus 200 583 200.000 583.400 0.302 0.180 63118.40 95808.80 0.498
gh 200 583 79.653 273.606 0.168 0.148 34759.00 61253.40 0.328
ghs 200 583 61.963 214.261 0.090 0.128 15153.40 28268.60 0.228
ghg 200 583 34.907 119.939 0.196 0.068 30987.80 64216.20 0.266
gus 400 1968 400.000 1968.000 1.444 0.916 222721.00 331643.80 2.398
gh 400 1968 193.153 858.583 0.848 0.688 150966.20 262749.40 1.560
ghs 400 1968 182.832 816.417 0.580 0.670 81575.80 149125.20 1.260
ghg 400 1968 94.265 420.948 1.188 0.508 184163.60 374778.60 1.712
gus 600 4157 600.000 4157.000 3.668 2.938 470455.20 683390.80 6.650
gh 600 4157 299.150 1629.344 2.068 2.042 322511.20 555542.60 4.146
ghs 600 4157 295.839 1614.090 1.534 2.030 186272.80 338361.20 3.596
ghg 600 4157 149.336 815.801 3.330 1.288 432119.20 870631.60 4.636
gus 800 7175 800.000 7175.200 8.742 7.864 790617.00 1133614.00 16.668
gh 800 7175 400.874 2585.057 4.094 4.856 530152.20 916293.20 8.972
ghs 800 7175 400.393 2589.191 3.210 4.882 320745.80 579301.00 8.140
ghg 800 7175 201.171 1304.450 7.650 3.548 767179.00 1535033.80 11.216
gus 1000 10923 1000.000 10923.400 14.468 15.752 1220926.20 1729318.00 30.300
gh 1000 10923 501.456 3727.116 6.896 9.450 795712.80 1365773.00 16.400
ghs 1000 10923 501.725 3734.425 5.436 9.126 506897.40 919886.80 14.612
ghg 1000 10923 251.623 1876.382 11.292 5.824 1128825.20 2195287.20 17.144
Table 3.15: Data for PR5 family
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PR6

I N | M | AverN | Aver.M | CutTime [ ManipTime | Relabels | Pushes | TotTime
gus 200 2172 200.000 2171.800 0.472 0.376 41935.600 85789.60 0.868
gh 200 2172 101.361 742.568 0.232 0.276 28228.600 61798.60 0.520
ghs 200 2172 102.459 761.375 0.188 0.238 16747.000 40648.60 0.434
ghg 200 2172 52.117 391.956 0.372 0.164 39328.400 104808.80 0.536
gus 400 8307 400.000 8307.200 3.122 2.802 162708.600 328246.20 5.960
gh 400 8307 201.997 2490.413 1.292 1.436 103221.200 229085.20 2.744
ghs 400 8307 202.097 2500.436 1.100 1.458 69329.400 166563.80 2.574
ghg 400 8307 101.849 1269.926 2.248 1.056 157521.000 429883.40 3.324
gus 600 18481 600.000 18481.400 10.906 12.670 | 360963.800 726273.20 23.624
gh 600 18481 301.499 5197.957 3.822 5.822 | 219253.400 490586.80 9.674
ghs 600 18481 302.198 5241.647 3.496 5.754 | 154055.000 366086.20 9.284
ghg 600 18481 152.351 2659.269 7.422 3.940 | 354662.400 991072.20 11.372
gus 800 | 32740 800.000 | 32740.000 28.196 32.610 | 633331.400 1258017.00 60.874
gh 800 | 32740 401.499 8946.378 8.898 15.186 | 378634.600 854925.80 24.124
ghs 800 | 32740 402.099 8999.726 8.768 14.792 | 277902.600 653849.60 23.602
ghg 800 32740 202.351 4549.897 18.868 10.568 626897.400 1753289.40 29.458
gus 1000 | 50959 1000.000 | 50959.200 56.828 62.902 | 992343.800 1970744.60 119.812
gh 1000 | 50959 501.500 13734.130 17.776 32.628 | 579732.800 1318336.40 50.452
ghs 1000 | 50959 502.399 13824.069 18.886 31.958 | 439993.200 1032512.80 50.906
ghg 1000 | 50959 252.351 6967.647 39.202 22.866 | 981210.200 | 2750153.80 62.100
Table 3.16: Data for PR6 family
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Figure 3.17: Running times for PR6 family
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PR7

[ N] M | AverN |  Aver.M [ CutTime | ManipTime |  Relabels | Pushes | TotalTime
gus 200 10053 | 200.000 10053.400 1.606 1.518 36113.400 128901.60 3.136
gh 200 10053 101.497 2693.447 0.500 0.714 20294.800 71946.00 1.230
ghs 200 10053 101.995 2753.068 0.564 0.684 15493.600 59643.60 1.256
ghg 200 10053 51.956 1416.748 0.900 0.506 30685.400 158949.60 1.414
gus 300 | 22564 | 300.000 | 22564.400 6.438 7.092 83126.600 311260.60 13.560
gh 300 | 22564 | 151.498 5917.411 1.750 2.840 45649.000 165996.80 4.614
ghs 300 | 22564 | 152.096 6019.273 1.860 2.772 35552.600 136054.00 4.646
ghg 300 | 22564 77.354 3101.000 3.420 1.922 71827.400 396020.80 5.358
gus 400 | 40047 | 400.000 | 40047.200 16.798 18.482 149747.200 569512.00 35.302
gh 400 | 40047 | 201.499 10343.649 4.336 8.018 80879.000 295589.60 12.368
ghs 400 | 40047 | 201.997 | 10465.661 5.106 7.688 65574.200 249304.60 12.812
ghg 400 | 40047 | 102.253 5346.542 8.788 5.636 127392.200 700936.60 14.434
gus 500 | 62596 | 500.000 | 62595.800 34.276 36.478 | 232183.800 870089.20 70.794
gh 500 | 62596 | 251.499 16100.493 9.172 17.994 126032.200 463793.60 27.192
ghs 500 | 62596 | 251.998 16253.585 11.084 17.460 102698.000 391509.60 28.558
ghg 500 62596 127.253 8268.730 19.106 12.946 200461.600 1150734.60 32.068
gus 600 | 90090 | 600.000 | 90090.400 61.468 63.182 | 337965.400 1294392.80 124.714
gh 600 | 90090 | 301.499 | 23028.875 16.372 33.302 181342.000 670525.60 49.704
ghs 600 | 90090 | 302.298 | 23280.924 21.198 32.222 152022.600 580170.00 53.452
ghg 600 90090 152.552 11844.242 36.840 24.326 297449.400 1771142.40 61.178
Table 3.17: Data for PR7 family
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PRS

[ N] M | Aver.N | AverM [ CutTime | ManipTime |  Relabels | Pushes | TotTime
gus 200 19694 | 200.000 19693.800 3.544 3.810 35768.000 165378.00 7.372
gh 200 19694 101.497 5074.955 0.970 1.448 19206.400 85271.00 2.430
ghs 200 19694 102.492 5269.992 1.022 1.494 15393.600 72885.40 2.528
ghg 200 19694 52.754 2784.239 1.706 1.106 28500.400 221103.00 2.820
gus 300 44397 | 300.000 44396.600 14.204 15.402 81803.200 374690.80 29.628
gh 300 44397 151.498 11324.736 3.458 6.488 43257.800 192910.00 9.968
ghs 300 44397 151.997 11507.513 4.170 6.250 35757.600 168378.80 10.434
ghg 300 44397 77.254 5921.627 6.554 4,664 62164.000 516311.00 11.226
gus 400 79002 | 400.000 79002.200 35.896 36.846 147182.000 694794.20 72.774
gh 400 79002 | 201.499 20051.519 9.154 18.444 77549.600 347151.60 27.628
ghs 400 79002 | 202.596 20474.217 11.956 17.758 66382.200 310587.60 29.740
ghg 400 79002 102.852 10549.703 18.462 13.772 114846.800 964515.80 32.242
gus 500 | 123495 | 500.000 123495.000 73.118 72.542 | 230464.400 1082868.80 145.686
gh 500 | 123495 | 251.499 31249.892 18.870 38.124 | 121357.800 548266.80 57.018
ghs 500 | 123495 | 252.597 31779.008 24.914 36.810 102977.800 482336.60 61.754
ghg 500 123495 127.451 16156.218 35.880 27.774 171577.200 1529135.20 63.666
gus 600 | 177903 | 600.000 177903.000 126.522 125.338 | 333352.800 1580193.20 251.906
gh 600 | 177903 | 301.499 44922.063 33.806 66.898 175337.600 789361.20 100.722
ghs 600 | 177903 | 302.497 45513.105 44.560 64.370 152255.000 709552.80 108.970
ghg 600 | 177903 152.751 23202.804 67.874 48.854 | 260187.200 | 2381038.00 116.736

Table 3.18: Data for PR8 family
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REGI

[ N M [ AverN | AverM | CutTime | ManipTime | Relabels | Pushes | TotalTime
gus 301 301 301.000 301.000 0.268 0.288 89102.000 89700.00 0.572
gh 301 301 301.000 453.500 0.316 0.314 89100.600 89700.00 0.648
ghs 301 301 301.000 451.500 0.306 0.330 89102.000 89700.00 0.664
ghg 301 301 301.000 451.500 0.472 0.350 89102.000 89700.00 0.834
gus 301 602 | 301.000 602.000 0.330 0.342 92460.600 96053.40 0.692
gh 301 602 | 301.000 752.100 0.362 0.452 90589.000 96899.60 0.824
ghs 301 602 | 301.000 750.100 0.386 0.476 82518.000 87639.20 0.882
ghg 301 602 79.731 237.356 0.238 0.264 41614.800 53610.60 0.516
gus 301 1505 | 301.000 1505.000 0.516 0.498 88339.200 96316.00 1.034
gh 301 1505 | 301.000 1638.900 0.492 0.756 86939.000 94634.20 1.264
ghs 301 1505 | 301.000 1636.900 0.614 0.734 87014.000 94640.20 1.364
ghg 301 1505 99.064 714.244 0.556 0.378 58392.000 82351.80 0.950
gus 301 4816 | 301.000 4816.000 1.220 1.138 87408.000 103524.80 2.386
gh 301 4816 | 301.000 4743.900 1.308 1.976 88418.200 106863.20 3.298
ghs 301 4816 | 301.000 4741.900 1.528 2.040 87735.400 104425.20 3.578
ghg 301 4816 107.843 2120.813 1.596 0.924 73879.400 149285.40 2.538
gus 301 15050 | 301.000 15050.000 3.310 3.530 88835.800 134363.20 6.872
gh 301 15050 | 301.000 12999.900 3.432 5.350 88676.600 143933.20 8.794
ghs 301 15050 301.000 12997.900 4.046 5.282 88771.200 136157.2 9.352
ghg 301 15050 126.786 5847.286 6.440 2.588 113434.800 487002.40 9.036
gus 301 | 49966 | 301.000 | 49966.000 10.778 12.360 88941.600 199804.80 23.154
gh 301 49966 301.000 30416.700 10.312 19.950 89063.400 223790.00 30.274
ghs 301 | 49966 | 301.000 | 30414.700 14.024 19.362 88995.000 209584.20 33.404
ghg 301 | 49966 136.869 12248.858 24.042 8.968 148442.200 1075426.20 33.036
gus 301 90300 301.000 90300.000 15.122 17.150 89104.600 231682.80 32.282
gh 301 90300 | 301.000 | 39205.700 14.218 27.546 89147.800 259904.40 41.786
ghs 301 90300 | 301.000 | 39203.700 19.256 26.356 89147.000 246501.00 45.628
ghg 301 90300 170.299 18951.678 41.610 15.172 187139.000 1530682.40 56.792
Table 3.19: Data for REG1 family
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Figure 3.20: Running times for REG1 family
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REG2

[ N] M | AverN | Aver.M [ CutTime | ManipTime | Relabels | Pushes | TotalTime
gus 50 1250 50.000 1250.000 0.026 0.044 2247.800 4994.200 0.076
gh 50 1250 50.000 827.000 0.032 0.042 2252.000 5212.400 0.076
ghs 50 1250 50.000 825.000 0.038 0.052 2240.000 5097.000 0.090
ghg 50 1250 23.082 326.418 0.056 0.026 3150.800 11222.000 0.082
gus 100 2500 100.000 2500.000 0.152 0.168 9438.800 16356.200 0.322
gh 100 2500 100.000 2036.000 0.190 0.212 9446.000 17180.400 0.402
ghs 100 2500 100.000 2034.000 0.204 0.222 9463.800 16765.800 0.430
ghg 100 2500 42.303 841.432 0.252 0.092 11547.800 41391.400 0.356
gus 200 5000 | 200.000 5000.000 0.740 0.710 38813.200 54391.800 1.462
gh 200 5000 | 200.000 4521.200 0.748 0.982 38775.200 56663.000 1.732
ghs 200 5000 | 200.000 4519.200 0.742 1.176 38704.800 54660.800 1.930
ghg 200 5000 82.338 2064.235 1.128 0.466 42566.200 122155.000 1.596
gus 400 10000 | 400.000 10000.000 3.372 3.300 157202.400 190449.400 6.692
gh 400 10000 | 400.000 9626.800 3.450 5.402 156654.000 195953.000 8.866
ghs 400 10000 | 400.000 9624.800 4.270 5.512 157578.600 192128.000 9.806
ghg 400 10000 144.792 4299.959 4.778 2.626 137136.200 | 310780.000 7.422
gus 800 | 20000 | 800.000 | 20000.000 15.212 19.480 | 632617.600 | 703019.400 34.750
gh 800 | 20000 | 800.000 19806.600 15.520 29.952 | 631304.800 | 715456.200 45.506
ghs 800 | 20000 | 800.000 19804.600 20.186 29.752 | 629028.200 | 701329.000 49.968
ghg 800 | 20000 | 257.503 8466.638 18.310 13.130 | 449468.200 | 766573.600 31.480
Table 3.20: Data for REG2 family
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Figure 3.21: Running times for REG2 family
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TREE

[ N] M| K[ AvN ]| Aver.M | CutTime [ MTime | Relabels | Pushes | TotTime
gus 800 160600 1 | 800.00 160600.00 14.668 131.290 127.2 251171.0 146.026
gh 800 160600 1 | 800.00 126637.99 139.682 | 225.440 654496.8 3382659.2 365.164
ghs 800 160600 1 | 800.00 126635.99 51.730 | 215.438 127.2 251171.8 267.196
ghg 800 160600 1 | 400.50 63397.24 195.330 164.424 353357.4 | 31922655.0 359.770
gus 800 160600 3 | 800.00 160600.00 46.530 131.504 170829.8 794471.0 178.098
gh 800 160600 3 | 793.24 125034.00 167.616 | 224.196 765747.2 4583496.4 391.840
ghs 800 160600 3 | 403.76 38863.52 18.934 73.984 7531.6 284183.8 92.936
ghg 800 160600 3 | 202.33 19504.64 50.922 55.570 130895.8 8917101.4 106.522
gus 800 160600 5 | 800.00 160600.00 59.126 131.236 237671.4 1124891.4 190.412
gh 800 160600 5 | 792.88 124943.02 185.174 | 219.818 849349.4 5763163.0 405.030
ghs 800 160600 5 296.02 22990.66 11.962 44.134 11237.4 313122.4 56.118
ghg 800 160600 5 148.79 11610.35 28.988 32.786 91232.2 5175053.6 61.796
gus 800 160600 10 | 800.00 160600.00 80.516 131.440 349191.0 1602387.4 212.018
gh 800 160600 10 | 789.17 | 124159.16 219.236 | 220.068 968735.2 6947990.2 439.336
ghs 800 160600 10 194.26 11909.41 7.200 23.224 16703.4 355732.0 30.476
ghg 800 160600 10 98.26 6132.02 15.710 17.238 67740.8 2736431.0 32.962
gus 800 160600 20 | 800.00 160600.00 98.936 131.174 451982.8 2125038.4 230.176
gh 800 160600 20 | 776.14 121513.25 245.868 | 216.928 1055504.2 7735155.0 462.838
ghs 800 160600 20 131.73 7341.17 5.842 14.622 22917.2 408319.6 20.496
ghg 800 160600 20 68.12 3990.48 12.174 11.434 61921.6 1857187.8 23.626
gus 800 160600 50 | 800.00 160600.00 115.680 131.382 545664.4 2696860.8 247.110
gh 800 160600 50 | 727.92 112241.48 268.230 | 202.242 1109984.0 8832373.8 470.506
ghs 800 160600 50 99.22 6610.69 7.598 13.654 37106.6 507136.8 21.286
ghg 800 160600 50 54.42 3978.67 17.628 11.798 87508.6 1859914.0 29.450
gus 800 160600 100 | 800.00 160600.00 126.788 131.646 598343.8 3171652.0 258.488
gh 800 160600 100 | 664.09 101533.40 258.378 186.488 1054070.2 8568625.0 444.904
ghs 800 160600 100 102.32 8889.52 11.888 18.540 55722.2 616169.8 30.464
ghg 800 160600 100 60.02 5679.07 35.894 17.040 162158.4 3017374.2 52.946
gus 800 160600 | 200 | 800.00 160600.00 138.074 131.416 644957.2 3737396.0 269.544
gh 800 160600 | 200 | 594.63 91044.89 259.294 172.300 1005457.8 8267321.0 431.610
ghs 800 160600 | 200 121.06 13033.33 20.328 27.702 86009.0 798572.0 48.064
ghg 800 160600 | 200 75.15 8543.69 77.432 26.386 303894.2 5516712.8 103.842
gus 800 160600 400 800.00 160600.00 154.596 131.048 704840.2 4323066.8 285.720
gh 800 160600 | 400 | 508.54 78112.80 242.806 152.198 930439.0 7687778.2 395.044
ghs 800 160600 | 400 156.70 19788.66 32.374 42.148 123498.2 1073789.4 74.558
ghg 800 160600 | 400 98.21 12798.78 144.732 39.998 502969.0 9447691.2 184.744
gus 800 160600 | 800 | 800.00 160600.00 185.920 131.012 809714.6 5163665.6 316.990
gh 800 160600 | 800 | 449.86 69666.43 238.776 137.512 895883.2 7362390.4 376.320
ghs 800 160600 | 800 192.21 26378.75 46.742 55.636 166621.6 1424371.0 102.430
ghg 800 160600 800 115.63 16127.19 212.824 49.914 696121.4 12522017.2 262.764

Table 3.21: Data for TREE family
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Figure 3.22: Running times for TREE family
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TSP

I Name | N | M | AverN [ AverM [ CutTime | ManTime
gus tsp.pr76.x.2 76 90 76.000 90.000 0.046 0.018
gh tsp.pr76.x.2 76 90 26.360 47.140 0.014 0.018
ghs tsp.pr76.x.2 76 90 30.813 53.500 0.020 0.018
ghg tsp.pr76.x.2 76 90 20.813 35.380 0.014 0.010
gus tsp.att532.x.1 532 787 532.000 787.000 4.028 0.930
gh tsp.att532.x.1 532 787 44.034 90.348 0.400 0.544
ghs tsp.att532.x.1 532 787 52.652 104.667 0.512 0.560
ghg tsp.att532.x.1 532 787 19.454 37.599 0.242 0.508
gus tsp.vm1084.x.1 1084 1252 1084.000 1252.000 16.850 5.778
gh tsp.vin1084.x.1 1084 1252 151.038 251.206 1.784 3.912
ghs tsp.vm1084.x.1 1084 1252 148.443 244.495 2.174 3.898
ghg tsp.vi1084.x.1 1084 1252 69.059 113.071 2.642 3.758
gus tsp.d1291.x.1 1291 1942 1291.000 1942.000 34.922 10.210
gh tsp.d1291.x.1 1291 1942 49.640 108.058 1.692 6.858
ghs tsp.d1291.x.1 1291 1942 65.643 133.611 2.528 6.812
ghg tsp.d1291.x.1 1291 1942 32.154 65.568 1.768 5.398
gus tsp.rl1323.x.1 1323 2169 1323.000 2169.000 48.742 11.360
gh tsp.rl1323.x.1 1323 2169 145.005 347.968 7.476 7.862
ghs tsp.rl1323.x.1 1323 2169 179.663 400.577 6.494 8.012
ghg tsp.rl1323.x.1 1323 2169 84.682 187.326 5.492 6.324
gus tsp.rl1323.x.2 1323 2195 1323.000 2195.000 54.468 11.472
gh tsp.r11323.x.2 1323 2195 136.018 331.185 6.970 7.898
ghs tsp.rl1323.x.2 1323 2195 161.665 367.155 10.320 7.904
ghg tsp.rl1323.x.2 1323 2195 87.026 198.292 8.554 6.276
gus tsp.fl1400.x.1 1400 2231 1400.000 2231.000 22.182 13.050
gh tsp.fl1400.x.1 1400 2231 104.392 221.533 2.770 9.140
ghs tsp.f11400.x.1 1400 2231 153.761 296.658 3.902 9.102
ghg tsp.fl1400.x.1 1400 2231 54.195 107.243 2.134 7.360
gus tsp.vm1748.x.1 1748 2336 1748.000 2336.000 57.994 22.826
gh tsp.vm1748.x.1 1748 2336 84.007 179.390 5.760 16.740
ghs tsp.vm1748.x.1 1748 2336 146.673 276.722 7.700 17.180
ghg tsp.vm1748.x.1 1748 2336 83.975 156.121 6.270 13.430
gus tsp.r15934.x.1 5934 7287 5934.000 7287.000 872.524 259.342
gh tsp.r15934.x.1 5934 7287 94.734 179.307 21.992 198.364
ghs tsp.r15934.x.1 5934 7287 166.762 290.145 34.826 199.054
ghg tsp.r15934.x.1 5934 7287 74.835 132.483 19.593 167.161
gus tsp.r15934.x.2 5934 7627 5934.000 7627.000 1361.879 264.833
gh tsp.r15934.x.2 5934 7627 124.668 248.837 38.140 199.346
ghs tsp.r15934.x.2 5934 7627 160.541 294.561 72.360 199.152
ghg tsp.r15934.x.2 5934 7627 75.964 136.789 36.728 167.710
gus usal3d509.x0.15631 13509 | 15631 13509.000 15631.000 2530.176 1502.263
gh usal3509.x0.15631 13509 | 15631 214.049 390.342 104.680 1052.889
ghs usal3509.x0.15631 13509 | 15631 381.401 662.432 147.000 1063.709
ghg usal3509.x0.15631 13509 | 15631 109.505 187.916 99.529 892.320
gus usal3509.x0.17494 13509 | 17494 | 13509.000 17494.000 2936.825 1636.194
gh usal3509.x0.17494 13509 17494 509.419 1011.787 295.418 1148.741
ghs usal3509.x0.17494 13509 | 17494 1029.467 1907.037 340.760 1189.828
ghg usal3509.x0.17494 13509 | 17494 316.181 571.854 440.779 1023.730
gus d15112.x0.19057 15112 | 19057 | 15112.000 19057.000 3268.710 1935.979
gh d15112.x0.19057 15112 19057 765.822 1491.199 405.040 1415.519
ghs d15112.x0.19057 15112 | 19057 1470.403 2678.758 564.729 1465.350
ghg d15112.x0.19057 15112 19057 512.190 915.079 991.442 1254.776

Table 3.22: Data for TSP family

54




TSP - cont’d

I Name | N | M | Relabels | Pushes | TotalTime
gus tsp.pr76.x.2 76 90 11266 14127 0.068
gh tsp.pr76.x.2 76 90 3349 4188 0.034
ghs tsp.pr76.x.2 76 90 4535 5709 0.042
ghg tsp.pr76.x.2 76 90 3003 4422 0.026
gus tsp.att532.x.1 532 787 1063351 1562818 4.990
gh tsp.att532.x.1 532 787 113526 163446 0.972
ghs tsp.att532.x.1 532 787 153862 209975 1.110
ghg tsp.att532.x.1 532 787 41882 72700 0.778
gus tsp.vm1084.x.1 1084 1252 4620731 6759490 22.722
gh tsp.vm1084.x.1 1084 1252 692992 791288 5.760
ghs tsp.vm1084.x.1 1084 1252 729703 837499 6.126
ghg tsp.vm1084.x.1 1084 1252 585930 1019210 6.462
gus tsp.d1291.x.1 1291 1942 8799141 13794299 45.244
gh tsp.d1291.x.1 1291 1942 468269 722254 8.596
ghs tsp.d1291.x.1 1291 1942 698900 1090299 9.396
ghg tsp.d1291.x.1 | 1291 | 1942 354765 633638 7.236
gus tsp.rl1323.x.1 1323 2169 11847414 18843579 60.212
gh tsp.rl1323.x.1 1323 2169 1982525 3171867 15.410
ghs tsp.rl1323.x.1 1323 2169 1674102 2568434 14.568
ghg tsp.rl1323.x.1 1323 2169 1184215 2043948 11.884
gus tsp.rl1323.x.2 1323 2195 13154067 21379535 66.032
gh tsp.rl1323.x.2 1323 2195 1858710 2970391 14.936
ghs tsp.rl1323.x.2 1323 2195 2587602 4283288 18.274
ghg tsp.rl1323.x.2 1323 2195 1809131 3182704 14.888
gus tsp.fl1400.x.1 1400 2231 5611206 7733388 35.336
gh tsp.fl1400.x.1 1400 2231 882686 1215741 11.982
ghs tsp.fl1400.x.1 1400 2231 1178439 1543050 13.072
ghg tsp.fl1400.x.1 1400 2231 440222 722726 9.562
gus tsp.vm1748.x.1 1748 2336 14378206 21863109 80.952
gh tsp.vm1748.x.1 1748 2336 1690678 2613124 22.568
ghs tsp.vm1748.x.1 1748 2336 2141324 3188744 24.974
ghg tsp.vm1748.x.1 1748 2336 1292352 2156314 19.782
gus tsp.r15934.x.1 5934 7287 | 215146904 | 339530461 1132.362
gh tsp.r15934.x.1 5934 7287 6548048 9811932 220.642
ghs tsp.r15934.x.1 5934 7287 10326695 15343457 234.178
ghg tsp.r15934.x.1 5934 7287 3690344 6859845 186.579
gus tsp.r15934.x.2 5934 7627 | 323352112 539711410 1627.174
gh tsp.r15934.x.2 5934 7627 11642651 16912327 237.774
ghs tsp.r15934.x.2 5934 7627 21090031 33203500 271.778
ghg tsp.r15934.x.2 5934 7627 7753845 14153522 204.682
gus usal3509.x0.15631 13509 15631 531347283 | 678321694 4033.327
gh usal3509.x0.15631 13509 15631 30634681 39561542 1158.174
ghs usal3509.x0.15631 13509 15631 45549472 53759023 1211.342
ghg usal3509.x0.15631 13509 15631 20050422 34115253 992.468
gus usal3509.x0.17494 13509 17494 | 549530523 | 709759847 4574.013
gh usal3509.x0.17494 13509 17494 69743866 96070354 1444.972
ghs usal3509.x0.17494 13509 17494 81149905 103254869 1531.428
ghg usal3509.x0.17494 13509 17494 80970759 138601854 1465.180
gus d15112.x0.19057 | 15112 19057 | 646836745 816539734 5205.931
gh d15112.x0.19057 | 15112 19057 96301486 128562817 1821.206
ghs d15112.x0.19057 | 15112 19057 130209542 170710980 2030.944
ghg d15112.x0.19057 | 15112 19057 191025627 | 326933722 2247.079

Table 3.23: Data for TSP family - cont’d
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WHE

[ N[ M| AverN ]| AverM | CutTime | ManipTime | Relabels | Pushes | TotalTime

gus 64 126 64.000 126.000 0.090 0.020 20093 36092 0.110
gh 64 126 64.000 160.000 0.084 0.012 18083 30519 0.098
ghs 64 126 64.000 158.000 0.102 0.014 20186 38086 0.116
ghg 64 126 26.317 63.333 0.054 0.004 9851 16521 0.064
gus 128 254 128.000 254.000 0.612 0.052 132799 239193 0.676
gh 128 254 128.000 320.000 0.586 0.072 128092 219885 0.662
ghs 128 254 128.000 318.000 0.632 0.064 125855 251667 0.704
ghg 128 254 51.992 127.500 0.338 0.046 63320 111598 0.388
gus 256 510 256.000 510.000 4.330 0.228 826401 1622279 4.586
gh 256 510 256.000 640.000 3.866 0.342 803582 1429288 4.228
ghs 256 510 256.000 638.000 4.404 0.328 741497 1548958 4.744
ghg 256 510 102.863 254.655 1.982 0.240 367431 673441 2.238
gus 512 | 1022 512.000 | 1022.000 28.624 1.016 5062917 9804981 29.674
gh 512 | 1022 512.000 | 1280.000 28.906 1.302 5355418 | 10046681 30.228
ghs 512 | 1022 512.000 | 1278.000 27.272 1.346 4573090 | 10065115 28.636
ghg 512 | 1022 203.014 505.063 12.500 1.034 1989225 3994170 13.554
gus 1024 | 2046 | 1024.000 | 2046.000 205.388 6.568 | 32290667 | 68441212 212.014
gh 1024 | 2046 | 1024.000 | 2560.000 221.048 7.666 | 35834725 | 67668296 228.762
ghs 1024 | 2046 | 1024.000 | 2558.000 215.368 7.968 | 29847073 | 67803180 223.390
ghg 1024 | 2046 409.289 | 1020.676 80.816 5.912 | 11480901 | 23882469 86.784

Table 3.24: Data for WHE family
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Chapter 4

Maximum Flow Techniques for

Graph Clustering

4.1 Basic minimum cut tree algorithm

4.1.1 Properties

The minimum cut tree T of a network GG provides not only information about the
minimum cuts within G, but also about its structure. The following two lemmata

follow directly from the definition of a minimum cut tree:

Lemma 4.1.1 Let u,v be two nodes of the minimum cut tree T, and let P(u,v) be
the (unique) path that connects them in T. Then, for any node w on that path, the
mazimum flow f(u,w) between u and w is no less than the mazimum flow f(u,v)

between u and v. Symmetrically, f(w,v) > f(u,v).

Lemma 4.1.2 Foru,v two nodes and P(u,v) the path between them in the minimum
cut tree T, the length p = |P(u,v)| of that path is equal to the number of unique (i.e.

different) minimum s, t-cuts in the graph.
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The minimum cut tree tends to put together nodes that are relatively heavily
connected in the graph. But the fact that it tries to do so for all nodes can be
conflicting between the neighborhoods created and may result in minimum cut trees
of poor overall structure (e.g. a circular unit-capacity graph has an exponential in
its size number of minimum cut trees, and there are at least two trees very different
from each other).

But often the minimum cut tree does follow the structure of the initial graph close
enough, and the algorithm of this section exploits this characteristic. We describe a
basic clustering algorithm that clusters according to the structure of the minimum cut
tree, and provide examples for queries from the WWW, which justify the potential of
the algorithm to produce clusters of high quality. In later sections we shall improve
upon this algorithm, by imposing stronger clustering criteria and produce clusters of

high quality more consistently.

4.1.2 The algorithm

Let G(V, E) be the graph to be clustered, and T its minimum cut tree. The algorithm
starts off with identifying the centroid v, of T". The centroid of a tree T" with nodes
V is defined as follows: Let v € V and 11,75, ...,T; be the connected components
induced by removing v from 7. If |T;| denotes the size of subtree T;, define for each

node the following measure:

N(v) = max{|T;]} (4.1)

1<i<d

Then, a centroid of tree T is defined ([50]) as the node v., which minimizes N (v) over
all nodes in V, or

N(v.) = min{N(v)} (4.2)

veV
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It is easy to show that 7" may have up to two centroids, in which case we pick one
arbitrarily.

Once the algorithm has located the centroid v,, let T" be rooted at v.. The subtrees
under v, partition G' and correspond to the clusters returned by the algorithm. The
only node that gets not clustered this way is the centroid itself. Let e. be the adjacent
edge of v, with maximum weight. We assign v, to the cluster which corresponds to
the tree under e.. Figure 4.1 shows a minimum cut tree and the clusters given by the

algorithm.

Figure 4.1: Clusters of basic clustering algorithm

The algorithm also allows for hierarchical clustering. Let the clusters produced by
the above procedure be the clusters of highest (i.e. first) level. We recursively apply
the same algorithm to each of the clusters in order to get clusters of lower levels.
So, for the second iteration, let the nodes adjacent to the initial v, be the new roots
(notice that we don’t recalculate new centroids for the subtrees), and let the subtrees
of these roots be the clusters of second level. Figure 4.2 shows the clusters for the

top two levels (roots omitted).
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Figure 4.2: Clusters of Basic Clustering Algorithm

4.1.3 Edge normalization

The minimum cut tree, as defined by Gomory and Hu, applies only to undirected
graphs. In fact, Benczir [7] showed that no minimum cut tree can be defined for
directed graphs. On the other hand, many of the data-sets we experimented with are
directed by nature, e.g. web-pages and the links among them, scientific literature and
their references, etc. In order to transform these directed graphs into undirected, we
normalize over the outgoing edges.

Let G(V, E) be a directed graph, and v € V one of its nodes. Let E;,, B,y C E
be respectively the set of edges pointing inwards to and outwards from v. For an
edge (z,y) € E, let w(z,y) be its weight. We normalize the outgoing edges from v
as follows: Let (u,v) € E,y. Make (u,v) undirected and set its new weight w'(u,v)
according to:

% if | Eout| > 0;

0 lf ‘Eout| - 0

w'(u,v) =

Every node normalizes the weights of its outgoing edges only, and since every
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edge is outgoing for some node, applying the above procedure to every node and all
its adjacent outgoing edges transforms G into an undirected graph with all its edges
normalized.

This normalization technique loses some information, but is not arbitrary. A
similar approach is being used in pagerank [11], and also corresponds to the first
iteration of Kleinberg’s hubs and authorities algorithm [62]. One improvement over
normalizing only over outgoing edges is to repeat the same normalization for the
incoming edges, and possibly iterate in both directions several times until the edge-
weights are close enough to their fixed point. (Which is also what Kleinberg does for
hubs and authorities.) We have tried this approach as well, but report only on results

for a single iteration (over outgoing links), since they were satisfying enough.

4.1.4 Data from the WWW

For the experiments on the basic clustering algorithm, we start off by choosing a search
term and use one of the existing search engines (alltheweb.com, altavista.com,
google.com, etc.) to get an initial seed set of web-pages relevant to the search term.
Then, to create our initial graph of web-pages, we look at all the in- and out-going
links of that seed-set. The nodes of the graph correspond to the web-pages (both
the initial seed-set and those at distance 1), and the edges correspond to the links
between the web-pages.

Given this graph, we first normalize it and then apply the algorithm of Subsec-

tion 4.1.2 to compute its clusters.

Authorities

Next, we report on results for four search terms, which are the exact same ones used

in [62]. Also, we follow the same procedure in obtaining the seed set and expanding
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it one link away. This allows for a direct comparison of our results to those from [62].
One difference is in ranking the results we get. Since our algorithm produces hierar-
chical clusters of nodes, instead of a linear ranking function, we assign to each node
a rank value which depends on the distance (i.e. number of links) between that node
and the centroid. To compare two nodes not in the same cluster, we look at the
underlying subtrees in their clusters respectively, and sort according to their sizes.

The four search terms are: java, censorship, search engine, and gates. In all
cases we get our initial seed-set from altavista.com and truncate it down to the top
200 results. Then we look at all nodes within distance 1 away from that seed-set. This
will be in each case our initial graph, and this is exactly identical to what Kleinberg
did for his experiments [62].

Also, next to each web-page, there are two numbers, indicating the size of the
subtree rooted at that node (i.e. the size of the cluster for which this node is the
centroid/root), and how strongly connected it is to the rest of the graph (i.e. the
min-cut value). The larger the min-cut value, the more connected that cluster is to

the rest of the graph. The smaller the min-cut value, the more isolated that cluster.

S1ze: 20987 — TOP RESULTS FOR java:

1. http://www.javaboutique.com/ (2425, 2615)
Java applets, downloads,...

2. http://www.gamelan.com/ (676, 1720)
Gamelan portal on java

3. http://www.devworld.apple.com/java/ (346, 3033)
Developer - java

4. http://www.davecentral.com/java.html (593, 1341)
Java software, freeware,...

5. http://www.mindprod.com/gloss.html (310, 2954)
Java and internet glossary

Figure 4.3: Results for search term ’java’

For the search term java (Figure 4.3), we see that our results are similar to
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Kleinberg’s. Entries in positions 2 and 3 are expected, since they are among the most
authoritative ones. Our algorithm differs from Kleinberg’s in entries 1, 4, and 5, where
all three web-pages correspond to large authoritative directories on java-programming

and java-applications.

Si1ze: 4787 — TOP RESULTS FOR censorship:

1. http://www.eff.org (528, 2087)
Electronic Frontier Foundation

2. http://www.ncac.org/index.html (265, 2827)
National Coalition Against Censorship

3. http://www.canada.ifex.org/ (769, 1812)
International Freedom of Expression eXchange

4. http://www.projectcensored.org/intro.htm (237, 957)
Project Censored

5. http://www.booksatoz.com/censorship/index.htm (55, 2212)
Information on Censorship of the Written Word

Figure 4.4: Results for search term ’censorship’

For the term censorship (Figure 4.4), all five webpages are very strong and closely
related to the search term. This community is much smaller (over 4 times) than the

java community above, and there are fewer, thus stronger, authorities.

S1ze: 10722 — TOP RESULTS FOR search engine:
http://www.yahoo.com/ (10722, 6130)
http://searchenginewatch.com/ (922, 6130)
http://www.beaucoup.com/ (626, 4688)
http://www.netstrider.com/search/ (357, 2647)
http://www.google.com (6, 11019)

ARl

Figure 4.5: Results for search term ’search engine’

For search term search engine, Kleinberg’s top 5 consisted of the most popular
search engines. We also get two search engines in the top 5, but looking at the top

10-20 results, we see that they are dominated by directories about search engines,
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and meta-search engines about search engines, including those that support multiple,
simultaneous searches (from several sources) at once. Individual search engines did
not rank as high, compared to these web-pages. Depending on the criteria, both top
results make sense. Our results seem more general, Kleinberg’s seem more focused,

but again, this is very subjective.

S1ZE: 5723 — TOP RESULTS FOR gates:

1. http://www.microsoft.com/billgates/ (874, 1657)
Bill Gates’” Web Site

2. http://www.gatesfoundation.org/ (866, 760)
B. and M. Gates Foundation

3. http://www.quuxuum.org/ evan/bgnw.html (241, 2195)
Gates Net Worth

4. http://www.zpub.com/un/bill/ (121, 2414)
The Unofficial B. Gates

5. http://gates.theinfo.org (103, 2044)
Gates Dollars

Figure 4.6: Results for search term ’gates’

The search term gates is very broad, so the results we get cover a wide range of
different topics. It is interesting though that all top results are about Bill Gates, and
that there are only a couple of strong authorities in this community: his home-page

and the Gates Foundation.

Tree-structure

The next example shows not only the centroids/roots at the highest level, but for
the top three levels. It is an illustrative case, where the simple minimum cut tree
produced a high quality multi-level clustering, indicating that the minimum cut tree
can follow the structure of a graph in a very natural way.

Figure 4.7 shows the results for the search term jaguar. Again, we start off with

a seed set of size 200 from altavista.com, which we expand by following one link
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away, then normalize, and find the clusters from the minimum cut tree, as described

in Section 4.1.2.

Jaguar*® (3129)

Automobile http://www.carlynx.com/mak/jag.htm (1887)
Jaguar Cars Official Home Page http://www.jaguarcars.com/ (588)
Jaguar Racing http://www.jaguar-racing.com/ (370)

US Jaguar Sites http://www.jaguarvehicles.com/us/ (166)

Jaguar Clubs and Events http://wuw.jagweb.com/ (143)

International Jaguar Sites
http://autopedia.com/html/MfgSitesJagua.html (78)

Jaguar Parts (22)

Jaguar Magazines (12)

NFL Football Team

http://cnnsi.com/football/nfl/teams/jaguars/index.html (322)

Home page http://jaguars.jacksonville.com/ (100)

NFL page on Jaguars http://www.nfl.com/jaguars/ (95)

Atari Jaguar machine

http://www.angelfire.com/nv/jaguartop50/ (121)
Jaguar portal http://jaguar.holyoak.com/ (70)

Other clusters - more isolated or smaller
Webdesign company http://www.jaguarwoman.com/ (277)
Drug company http://www.schrodinger.com/ (261)
Diving company http://www.divejaguarreef.com/ (57)
Starship and military models (42)

Animal Jaguar http://www.bluelion.org/jaguar.htm (15)

Figure 4.7: Example for the basic minimum cut tree algorithm

We conclude from the examples of this section that the subtrees of the minimum
cut tree, with respect to the centroid, often correspond to high quality clusters. In the
next sections we will continue to use the minimum cut tree as the basic underlying
structure, but the clusters will be calculated by different, stronger criteria, that will

guarantee for higher quality clusters.
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4.2 Minimum k-cut clustering algorithm

4.2.1 Properties

The minimum k-cut clustering problem is that of dividing a network into £ disjoint
sets, s.t. the total sum of edges between the sets is minimum. This problem, though

N P-complete, has a (2—2)-approximation that makes use of a minimum cut tree [74]:

Lemma 4.2.1 Let T be the minimum cut tree for an undirected network G(V, E).
Remowving the k-1 edges with minimum weight in T yields k connected components,
which partition G into k clusters, s.t. the sum of the edges between these clusters are

a(2- %) approximation to the minimum k-cut clustering problem.

Wu and Leahy [78] apply the same methodology to image segmentation. In their
paper they show that the clusters produced have the following property: Let vy, vo be
two nodes from the same cluster, and let w;, wy be two nodes from different clusters.
Then the maximum flow between v; and v, is always at least as great as the maximum

flow between w; and wy in the original graph. In other words,

Lemma 4.2.2 All intra-clusters cuts (i.e. cuts between nodes of the same cluster)

are at least as large as any inter-cluster cuts (i.e. between nodes of different clusters)

i G.

4.2.2 Performance

The reason we mention the above algorithm is that it is closely related to our topic
of clustering a graph by means of a minimum cut tree. We will not analyze further
the exact properties of this algorithm, but it is worthwhile to mention its advantages

and disadvantages, as we recorded them.
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Advantages:

Lemma 4.2.2 provides a simple way to partition the nodes of GG into clusters, so
that nodes with large maximum flows between them get clustered together. This is a
natural way to classify the nodes according to the maximum flows of the graph, and
it has been shown to perform well in practice for image segmentation [78].

Disadvantages:

We have observed that the minimum cut tree tends to place heavier edges towards
the center and lighter edges at the perimeter. In fact, for most of the graphs we
experimented with, the lightest edges were between leaves (external nodes) and the
rest of the graph. Thus, a clustering algorithm based on removing these edges would
result in highly unbalanced clusters, mostly singletons. This is exactly what we have

experienced for our data-sets.

4.3 Community clustering algorithm

In this section we focus on a clustering algorithm that is based on the following

definition of a community:

Definition 4.3.1 An esoteric community is a set S, such that Vs € S,

Zw(s,v)z Z w(s,v) (4.3)

veS veEV S

That is, all community members predominantly link to other community members.
Our goal is to find a clustering that is non-trivial and covers the entire graph, that
is, a partitioning of the graph into esoteric communities.
Before presenting the algorithm, we will show that this problem is in fact NP-

complete. Yet, for many instances the minimum cut tree (on which our algorithm
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is based) provides a simple tool for extracting such communities, and we will study

under which conditions it succeeds to cluster the graph and under which it doesn’t.

4.3.1 Esoteric community

Let G(V, E) be a weighted, undirected graph with n nodes and m edges. Let p > 1/2
be a connectedness parameter that defines an esoteric community S C V in the

following way:

Definition 4.3.2 S is a p-esoteric community if Vs € S,

Zw(s, v) > pr(s,v) (4.4)

vES veV

or equivalently,

(1-p) Zw(s,v) >p Z w(s,v) (4.5)

veS veEV-S
That is, the sum of the weights of the edges that connect s with S — s is at least a
fraction p of the total weight of all adjacent edges of s. Also, when we refer to an

esoteric community without specifying p, we imply that p = 1/2, so that

Zw(s,v)z Z w(s,v) (4.6)

vES veEV-S

as defined earlier.
The notion of an esoteric community has been used before in a similar way for

graph clustering ([25]).

4.3.2 N P-completeness of esoteric community problem

For graph GG, we define the following partitioning problem:
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PROBLEM: PARTITION INTO ESOTERIC COMMUNITIES
INSTANCE: Undirected graph G(V, E), real parameter p > 1/2, integer k.
QUESTION: Can the vertices of G be partitioned into k disjoint sets

Vi, Vs, ..., Vi, such that for 1 <1 < k, the subgraph of GG induced by V; is an

esoteric community?

Lemma 4.3.1 PARTITION INTO ESOTERIC COMMUNITIES, or simply ESO-

TERIC COMMUNITIES, is NP-complete.

We will prove the above lemma by reducing BALANCED PARTITION, a re-

stricted version of PARTITION, to ESOTERIC COMMUNITIES.

Here are the definitions for PARTITION (from [33]) and BALANCED PARTI-

TION.

PROBLEM: PARTITION
INSTANCE: A finite set A and a size s(a) € Z* for each a € A.
QUESTION: Is there a subset A" C A such that Y, s(a) =3, ca_4 s(a)?

PROBLEM: BALANCED PARTITION

INSTANCE: A finite set A and a size s(a) € Z* for each a € A.
QUESTION: Is there a subset A" C A such that ) ., s(a) = > ,c4_a s(a),
and |A'| = |A|/27

Both PARTITION and BALANCED PARTITION are well known N P-complete

problems ([60] and [33]). Now we can prove Lemma 4.3.1:

Proof. We will reduce BALANCED PARTITION to ESOTERIC COMMUNITIES.
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First of all, it is easy to see that if we are given a solution C' of ESOTERIC
COMMUNITIES, we can verify in polynomial time weather each node is connected

to nodes of the same cluster by at least a fraction p of its total adjacent edge-weight.

O

core nodes
N/

satellite
nodes

Figure 4.8: Core and satellite nodes forming the core graph

For the proof, we will transform the input of BALANCED PARTITION to that
of ESOTERIC COMMUNITIES. The input set C' has cardinality n = 2k. We will
construct an undirected graph G' with 2n + 4 nodes as follows. First, n of G’s nodes
will form a complete graph K, with all edge-weights equal to w, s.t. W >w > 0,
where a,,;, is the smallest among all elements a; of A. Lets call these nodes the
core of the graph. Then, we connect each node of the core to a single satellite node
respectively, with edge-weight w + €, s.t. w > 2e¢ > 0. The n satellite nodes have all
degree 1 (Figure 4.8).

Now, we add two more nodes to the graph, which we call basic. Each basic node
is connected to every core node by an edge of weight s(a;). We make sure that all
s(a;)’s of A are used as weights by the adjacent edges of the basic nodes, but also
that every core node is connected to both basic nodes by the exact same weight s(a;).

Finally, we add two more satellite nodes, one to each basic node, by edges of weight
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€. The final graph looks as in Figure 4.9.

core graph
(only core nodes shown)

basic node —

Figure 4.9: Final graph for esoteric community proof

Now, lets assume that ESOTERIC COMMUNITY is solvable in polynomial time.
We transform an input of BALANCED PARTITION as mentioned above, and set
p=1/2and k = 2.

Assume that ESOTERIC COMMUNITY gives a solution for this instance. Then,
that solution must divide the core nodes into two sets, S; and Ss, for if this were not
true, one of the two sets, say S; must consist only of basic and/or satellite nodes.
But every satellite node requires its adjacent node to be included as well in order to
form an esoteric community, and thus there must be at least one basic node in 5.
Including a basic node in S; also requires including at least one core node, because
otherwise that basic node cannot be connected heavily enough within S;. So, the
partitioning must split the core nodes into two sets.

Also, the partitioning cannot put both basic nodes in the same set, because then
a core node in the other set will be connected to at most n — 2 core nodes (and its
satellite node), thus having adjacent edge-weight of at most (n — 1)w + € within its
community. But its total adjacent weight is nw + € + 2s(a;) > 2((n — 1)w + €). So,

each partitioned set must contain exactly one basic node.
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Now we can prove that the core nodes can actually only be split evenly. To
see this, assume w.l.o.g. that S; contains ¢ < n/2 core nodes. Then the adjacent
weight of each of those core nodes is qw + € + z;. But its total adjacent weight is
nw+ e+ 2s(a;) > 2(qw+e+s(a;)). So, S; and Se must contain at least, thus exactly,
n/2 nodes each. When that is the case, we can verify that the adjacent weight for
each core node sums up.

Satellite nodes will always be in the same set as their adjacent nodes, so the only
nodes left to consider are the basic nodes. Is it possible that their adjacent weight
is less within their community? The answer depends on the way the core nodes get
divided. If the core nodes are divided in such a way that the sum of their adjacent a;
values is equal for both sets, then it easy to verify that the basic nodes don’t violate
the esoteric community property. But in the opposite case, one of the two basic nodes
will be connected heavier to the nodes of the other community than to the nodes of
its own community. Thus, the only possible solution for ESOTERIC COMMUNITY
must partition all a;’s into two sets of equal sum and cardinality. But this implies that
any instance for the BALANCED PARTITION problem can be solved by ESOTERIC
COMMUNITY. And since BALANCED PARTITION is N P-complete and we can
build the graph G and transform the one instance to the other in polynomial time,

ESOTERIC COMMUNITY is NP-complete too. m

4.3.3 Structure of esoteric communities

Here, we mention some lemmata that provide a good intuition about the structure of

esoteric communities:

Lemma 4.3.2 If G is connected and C is a clustering of esoteric communities that

covers (G, then each esoteric community must contain at least two nodes of G.
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Proof. Immediate, since no singleton can form an esoteric community by itself in a

connected graph. m

Lemma 4.3.3 If C is a clustering that covers G, then C' consisting of unions of

communities of C' is also a valid clustering of G.

Proof. For each node in a community, the addition of more nodes to that community

can only increase the weight of the adjacent edges within the community. m

Lemma 4.3.4 Let C be a minimal clustering that covers G. That is, the communities
of C' cannot be split into smaller sub-communities and still maintain the esoteric
community invariant. Then there may exist another minimal clustering C' that covers
G, yet 1s different than C. That is, there might not exist a unique minimum clustering

for a graph, but more than one different minimal clusterings.

Proof. Figure 4.10 depicts a graph and two of its clusterings that are minimal, yet

different. In this example p =1/2. =

O O
100

O O
1

O O

1007171040
O O
Initial graph Minimal clusteringl Minimal clustering 2

Figure 4.10: Two different minimal clusterings

So, by combining communities of lower levels we can create larger, more general
ones, and thus build a hierarchy of communities of G'. Also, there can be multiple

different hierarchies, based on different minimal clusterings, at the lowest level.

73



Next we will present an algorithm that is based on minimum cut trees and finds

esoteric communities in a graph.

4.3.4 Finding esoteric communities

In the rest of this section we will assume that p = 1/2.

Let s,t be any source and sink for graph G, and consider the minimum s, ¢-cut in
G. Let S, T be the two sides of the cut, s.t. s € S and ¢t € T. If we move any node
from S — s to the other side of the cut, the cut-value can only increase, and the same
holds for every node in 7" — ¢t. Thus every node in S and 7' is heavier connected to
the other nodes in its side of the cut, and thus S and 7" obey the esoteric community
properties, for p = 1/2. Only exception might be the nodes s and ¢ themselves. If by
moving s or ¢ to the other side of the cut, the value of the cut increases, then S and
T are both esoteric communities. It follows directly that the global minimum cut of
G always produces esoteric communities, unless of course one of the two sides is a
singleton.

Based on the above observations we can find a minimum cut in G that gives two
esoteric communities by using a minimum cut tree. We introduce local minimum

edges in the minimum cut tree as follows:

Definition 4.3.3 An edge e of a minimum cut tree T is a local minimum edge, if

both ends vi,vs of € have at least one adjacent edge in T with larger weight than that

of e.

Equivalently, let 7" be a minimum cut tree, and mark for every node its adjacent
edge of largest weight. All unmarked edges are local minimum edges.

We show the following lemma:
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Lemma 4.3.5 LetT be a minimum cut tree for graph G, and let e be a local minimum

edge in e. Then, the removal of e yields two esoteric communities.

Proof. Let vy, vs be the nodes of T" adjacent to e. Edge e corresponds to the (vq, vg)-
minimum cut in G. Thus, the two sides of the cut are esoteric communities if (a)
neither of them contains only a singleton and (b) if moving v; or v, to the other side
doesn’t yield a cut of smaller value.

To show (a) assume that v, is the only node in its community. But then e would
be marked as the heaviest (since unique) adjacent edge of v;.

For (b), assume w.l.o.g. that moving v; to the v, side of the cut yields a cut of
smaller value. Let e, be the adjacent edge of vy with largest weight, and let vyas
and v; be the two nodes adjacent to €paz- (€mar # €, for otherwise e would have
been marked.) But moving v; to the other side of the cut creates a new cut that also
separates vUmq, from v; and thus can’t have weight less than that of e,,,;, which is
larger than the weight of e.

Thus the esoteric communities created by removing e are valid. m

Based on the previous lemma we develop an algorithm that finds esoteric commu-
nities in G. The idea is to first find two communities and contract one of them into a
single node, say X. Subsequent iterations produce again two communities, and each
time one of these communities gets contracted into X. The algorithm finishes when
no local minimum edge can be found in the current minimum cut tree. Figure 4.11

contains the pseudocode.
Lemma 4.3.6 The algorithm of Figure 4.11 produces valid %—esoteric communities.

Proof. In each iteration, the cluster output corresponds to one of the two sides of a
minimum cut, induced by the removal of a local minimum edge. Lemma 4.3.5 applies

directly and guarantees for the validity of the esoteric clusters. m
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CoMMUNITYCLUSTER(G(V, E))
Let T be the minimum cut tree of G
If (T has no local minimum edge)
Output single, trivial cluster covering entire G and return
Else
Let X = {} be empty
Let e be a local minimum edge in T’
While (e non-empty)
Let 51,5, be the two communities formed after removing e
If (X =={})
Either output S; as next community and contract it into X
or output S, as next community and contract it into X
Else if (X € 5)
Output S; as next community and contract it into X
Else /* X € S, */
Output 5] as next community and contract it into X
Calculate new minimum cut tree T’
Let e be a local minimum edge in new 7T’
Return

Figure 4.11: Community clustering algorithm

Note that Lemma 4.3.5 allows for the removal of only one local minimum edge at
a time. This is also the reason for outputting only one community in each iteration.
If we delete multiple local minimum edges simultaneously, the resulting connected
components are not necessarily esoteric communities. The reason we contract all
output communities into X is to avoid crossing cuts that might cause the same node
to be part of more than one communities. Also, note that the algorithm doesn’t

necessarily partition the entire graph; it only extracts esoteric communities from G.

4.3.5 Relaxing the conditions

Instead of iterating over newly found local minimum edges, as described in the previ-

ous algorithm, one idea is to remove all local minimum edges of the first minimum cut
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tree at once. Of course, as mentioned above, the clusters produced that way might

not be esoteric communities, but we can still prove the following lemma:

Lemma 4.3.7 Let T be the minimum cut tree of graph G, and let C be the clustering
produced by removing all local minimum edges of T'. Let vy, vy be two nodes in the same
cluster of C. Let c(vy), c(ve) be the largest minimum cut values separating respectively
v1 and vy from any other node in G. Then, the for the minimum cut value c(vy, v)

between v and vy we have that

c(v1,v9) > minc(vy), c(vq) (4.7)

Proof. Every cluster formed by removing the local minimum edges of 7" is connected
in T. Thus, for any vy, v in the same cluster, say C7, the nodes between v; and v,
on the path P = P(vy,v,) that connects them in 7" also belong to C;.

Looking at the weights of the edges of P, we can see that there must exist a
node, say v € P, s.t. the edges from both v; and v, to v have non-decreasing weight,
for otherwise some edge on the path is a local minimum edge and should have been
removed. But v is different than either v; or vy or both. Assume w.l.o.g. that v; # v.
Then the node adjacent to vy, say vs, didn’t mark the edge (v1,v3) (because the
edge-weights increase monotonically towards v), and thus it was marked by vy, which
means that the weight of edge (v1,v3) is equal to ¢(v1), the largest minimum cut
value separating v; from all other nodes in G. But it is also an upper bound on the

minimum cut value between v; and vy, which proves the lemma. m

We have applied the algorithm on several of the problem families of Section 3.2 and
concluded that it produces clusters of high quality in most cases. We will elaborate

in detail on experimental results involving esoteric communities in Chapter 5.
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4.4 Cut-clustering algorithm

In this section we introduce a simple clustering method for undirected graphs. The
clustering method uses maximum flow techniques on the link-structure of the graph.
The quality of the produced clusters is bounded by strong minimum-cut and expan-
sion criteria. We also present a framework for hierarchical clustering and apply it to
real-world data. We conclude that the clustering algorithms satisfy strong theoretical

criteria and perform well in practice.

4.4.1 Introduction

As mentioned above, in this section we present a new clustering algorithm which is
based on maximum flow techniques. Maximum flow algorithms are relatively fast and
simple, and have been used in the past for data-clustering (e.g. [78], [25]). Difficulties
in the analysis and in practice have also been pointed out in [59]. The main idea
behind maximum flow (or equivalently, minimum cut [29]) techniques is to create
clusters that have small inter-cluster cuts (i.e. between clusters) and relatively large
intra-cluster cuts (i.e. within clusters). This guarantees strong connectedness within
the clusters and is also a strong criterion for a good clustering in general.

Our clustering algorithm is based on inserting an artificial sink to a network
and connecting it to all nodes of the network. Maximum flows are then calculated
between all nodes of the network and the artificial sink. A similar approach has been
introduced in [25], which was also the motivation for our work. Here we analyze
the minimum cuts produced, calculate the quality of the clusters produced in terms
of expansion-like criteria, generalize the clustering algorithm into a multi-layered
clustering technique, and apply it to real-world data.

Structure-wise, this section consists of five subsections, besides the Introduction.
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In Subsection 4.4.2, we review basic notions necessary for the results and sections that
follow. In Subsection 4.4.3, we focus on the previous work of Flake et.al. ([25]) and lay
the foundations for our cut-clustering algorithm by inserting an artificial sink to the
network, as mentioned before, and studying the minimum-cut properties induced. In
Subsection 4.4.4, we generalize the method of Subsection 4.4.3 by defining a recursive
clustering method on multiple levels. In Subsection 4.4.5, we present results of our
method applied to a real world problem set and see how the algorithm performs in
practice. We end with Subsection 4.4.6, which contains a summary of our results and

final remarks.

4.4.2 Basic Notions and Terminology

Max-flows and the minimum-cut tree

Let G(V, E) be an undirected network with |V| = n nodes and |E| = m edges. The
edges are weighted, and each edge e € E has weight w(e).

Let s,t € V be two nodes designated as source and sink respectively. We define a
community of s in terms of a minimum cut between s and t. Specifically, we define
the community of s in G with respect to ¢ to be the set S C V,st. s € S, t¢ S
and the cut between S and V — S is minimum. We say that the cut (S,V — S) has
value ¢(S,V — S). In the case of a tie between more than one communities with the
same minimum cut value, we pick the one of smallest size. In that case, we know
that the smallest community is unique ([45]). We can avoid ties in the first place by
slightly changing the graph, but not affecting the minimum cuts (by changing the
edge-weights very little).

Our algorithm is based on minimum-cut trees, which were defined in [45]. For

G(V, E), we define Tg, or simply T, to be its minimum-cut tree (or simply, min-cut
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tree). The min-cut tree is defined over V' and has the property that we can find the
minimum cut between two nodes s, ¢ in G' by inspecting the path that connects s and
t in T. The edge of minimum capacity on that path corresponds to that minimum
cut. The capacity of the edge is equal to the minimum cut value, and the removal of
it yields two sets of nodes in 7" but also in G, which correspond to the two sides of
the cut. For every undirected graph, there always exists a min-cut tree.

Thus, the min-cut tree provides an easy way to find the community S for any s
with respect to some ¢t. We simply need to find the edge of minimum capacity (and
closest to s), on the path that connects s and ¢, and after removing it the community

S will be the side of the cut where s lies in.

Expansion and conductance

Let (S,S) be a cut in G. We define the expansion of this cut to be

ZieS,jeS Wi

V) = (i), 15

where w; ; is the weight of edge (7, 7). The expansion of a (sub)graph is the minimum
expansion over all the cuts of the (sub)graph. The quality of a clustering can be
measured in terms of expansion: The expansion of a clustering of G is the minimum
expansion over all its clusters. The bigger the expansion of the clustering the higher
its quality.

Similarly to expansion, we can also define conductance. For the cut (S, S) in G,
conductance is defined as

ZieS,jeS‘ Wi

9(9) = min{w(S), w(S)}’
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where w(S) = w(S,V) = 37;cs > ey wij. The conductance of a graph is the mini-
mum conductance over all the cuts of the graph. For a clustering of G, let C' C V' be
a cluster and (S, C\S) a cluster within C, where S C C. The conductance of S in C
is

ZieS,jeC\S Wi

50) = Hinfw(s), w @)}

The conductance of a cluster ¢(C) is the smallest conductance of a cut within the
cluster. For a clustering, the conductance is the minimum conductance of its clusters.

Both expansion and conductance seem to give very good measures of quality for
clusterings and are claimed in [59] to be generally better than simple minimum-
cuts. We agree with this claim, as it was true for the majority of the data we
have experimented with, including that presented in Subsection 4.4.5. The main
difference between expansion and conductance is that expansion treats all nodes as
equally important and conductance gives greater importance to nodes that have many
similar neighbors, where ’similar’ is given in terms of edge-weights: the bigger the
edge-weight the more ’similar’ the nodes.

But there are also difficulties in using either expansion or conductance for clus-
tering applications. Both are computationally hard, usually raising problems that
are N P-hard, since they have an immediate relation to the ’sparsest cut’ problem.
Hence, approximations must be employed. But there are also problems relevant to
the graph-structure that worsen their performance, e.g. isolated nodes, very sparse
regions, etc.

Kannan et.al. [59] have addressed many of these issues. (We have borrowed the
above definitions of expansion and conductance from their work.) They propose a
bicriteria optimization problem that requires:

a) the clusters to have some minimum conductance (or expansion) «, and
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b) the sum of the edge-weights between clusters to not exceed some maximum
fraction € of the sum of the weights of all edges in G.

The algorithm that we are going to present has a similar bicriterion and is based
on expansion only. In our clustering algorithm we don’t differentiate among nodes

according to their neighborhoods.

4.4.3 Artificial Sink and Cut-Clustering Algorithm
Addition of an artificial sink

In the first section we defined a community S, containing source s, with respect to
sink ¢. But sometimes we wish to find a community in G to include a source s (or a
set, of source-nodes) when no sink-node is provided. In this case, either the definition
of S has to be changed, so as to include a ’similarity’ measure between its nodes that
separates S from the rest of the graph, or an artificial £ has to be defined. One idea
in this direction is to add a new node, which we call an ’artificial sink’, and connect
it to all nodes of the graph. This idea has been used before in [25], and this was
also the motivation for our work. There, the definition of a community is slightly
different and the bounds not as well defined. In particular, a community is a set S,
such that Vs € S, > ., _sw(s,v) < Y sw(s,v), that is, all community members
predominantly link to other community members. Our definition of a community
covers this definition.

Also, in [25] the artificial sink is not connected to all nodes, but only to the
outermost nodes of a community already found under certain connectivity criteria.
And the weight of the edges that connect the artificial sink to the graph is constant,
equal to the edges-weights of the rest of the graph, which are all set to be constant

as well (i.e. equal to 1). In our case, we connect the artificial sink to all nodes of
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the graph and parameterize the weight of the adjacent edges to the artificial sink.
The rest of the edge-weights don’t have to be constant, but can carry any positive
real values. More formally, let G(V, E) be a weighted, undirected graph, as defined
in Subsection 4.4.2. Let ¢ be a new node in the graph and connect ¢ with every node
in V with an undirected edge of weight equal to some value a. Let G'(V', E') be
the new graph, where V' = V Ut and E' = EUe(t,v),Yvo € V. |V/| =n+1 and
|E'| = m + n.

The outcome of a community S for some sink s with respect to ¢ is directly related
to the parametric value of a.. This raises the following questions:

a) For some «, what is the quality of community S produced? That is, can we
bound the inter- and intra-community cuts somehow?

b) What is a good choice of a in general?

Next we will study several properties of the artificial sink and the new graph
G'. We will also propose a general clustering algorithm for G and answer the above

questions for o and S in terms of that algorithm.

Quality of the community

Let G’ be the graph including the artificial sink ¢ as defined above. If s (# t) is any
source in G', and S is the community of s with respect to ¢, we will show in this
section that we can lower bound the expansion of S, thus providing a strong quality
measure for S. In particular, the expansion of S is lower bound by «, the parameter
connecting ¢ to all other nodes. That is, we will show that ¢(S) > .

Let T'" be the min-cut tree of G’ and let X = V — S. Then, V' = SUtU X.
Figure 4.12 shows how 7" looks. Call v € S the node that is adjacent to ¢ in 7’. Now
let (P, Q) be any cut of S. PUQ =S, PNQ = (. We wish to lower bound ¢(P, Q),

the cut-value between P and ). (Figure 4.13.)
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Figure 4.12: Communities of the min-cut tree

First, we need a couple of lemmata and the notion of 'contraction’. When con-
tracting a subset A of V in GG, we replace A by a single node. Loops get removed
and parallel edges are merged into a single edge with weight equal to the sum of the

weights of the parallel edges.

Figure 4.13: Cut within a community

Lemma 4.4.1 Let T be the (unique) min-cut tree of an undirected graph G, and let
A be a subtree of T. Let G' be the graph that results after contracting A in G, and let
T’ be the min-cut tree of G'. Let T" be the tree that results after contracting A in T.

Then T'" and T" are identical.

Proof. The proof follows directly from [45] and the method by which a min-cut tree

is computed. m

84



Lemma 4.4.2 Let T' be the min-cut tree of G' and let S, P, Q, X, and v be as
defined above. Contract t U X into x in G' and T'. Then c(z,Q) < ¢(P,Q), where
c(z, Q) and c(P,Q) correspond to the total edge-weight connecting x and @, and x

and P respectively.

Proof. As defined above, v is the node of S that is adjacent to ¢ in 7', or equivalently,
adjacent to z in 7". But by the definition of a min-cut tree, and the fact that v is in
P it follows that the cut that separates x from P U (@ is smaller than the cut between
Pand zUQ. Or, ¢c(z,PUQ) <c(P,zUQ) = c(z,P) + c(z,Q) < c(P,z) + c(P,Q),

and the lemma follows. m
We now lower-bound the expansion of S:

Lemma 4.4.3 For S as defined above, the expansion of S in G is lower-bounded by

a. That is, for any P,Q C A, s.t. PUQ =A and PN Q = 0,

(P, Q)
min{| P}, |Q} ~

Proof. By Lemma 4.4.1 we can contract £ U X in 7" and G and treat it as a single
node, say y. Then y is connected in 7" to either a node of P, or a node of Q.
W.lo.g. say P. But then Lemma 4.4.2 can be applied, according to which ¢z (y, Q) <
cr (P, Q) =. But e (y, Q) in contracted 7 is equal to er(tUX, Q) in uncontracted 7.
So, er(tUX,Q) <cr(P,Q) = cr(t,Q) +er(X,Q) < cr(P,Q) = |Qla+cr(X,Q) <
or(P,Q) = Qa < er(P,Q) = a < % = a < %. (Note: We use

the notation ¢y for the cuts in contracted 7" and cy in uncontracted T, to avoid

confusion). m
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Cut-clustering algorithm

We can use the ideas of the previous section to develop a general clustering algorithm
for graph G. Simply, add an artificial sink ¢ with parameter o. Call the new graph
G’ and let T" be its min-cut tree. Remove t from 7’. The remaining connected
components (former communities of 7") form the clusters. We call this algorithm the

‘cut-clustering algorithm’ (Figure 4.14).

CuTCLUSTER_BASIC(G(V, E), «)
Let V=V Ut
For all nodes v € V
Connect t to v with edge of weight «
Let G'(V', E') be the new graph after connecting ¢ to V'
Calculate the minimum-cut tree 7" of G’
Remove t from T’
Return all connected components as the clusters of G

Figure 4.14: Basic cut-clustering algorithm

The value of « is a lower-bound on the expansion of every cluster formed by this
procedure. This follows directly from Lemma 4.4.3. Thus, the algorithm guarantees
high quality within each cluster. But for the cut-clustering algorithm we can also
upper-bound the cut-values between clusters. In particular, we show the following

lemma;

Lemma 4.4.4 Let S be a cluster produced by the cut-clustering algorithm applied to
graph G(V, E). Let t be the artificial sink, G' the new graph, T' its min-cut tree, and
let X =V —S. Then for S we can show that

c(S,V = 25) < c(S,V = 25)
v = v=5s -

«.

Proof. Because the min-cut tree puts X on the ¢ side of the minimum cut between
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S and t, we have that ¢(S, X) + ¢(S,t) < ¢(S,t) + ¢(X,t) & ¢(S,z) < [X|a, or

¢(5,X)
| X

(S,V—5)
S a= Ty

equivalently, <a. =

With regard to the bi-criteria posed in [59], which we mentioned in the previous
section, we see that our algorithm satisfies the same lower bound for the expansion
of the clusters. (In fact, because of the slack variables removed in Lemma 4.4.3, the
connectedness of the clusters produced is often stronger than that indicated by the
expansion measure.) Where the criteria differ is in the upper-bounds of the cuts
between individual clusters. In [59], the total sum of edge-weights between clusters
is upper-bounded by a fraction € of the sum of all edges, where € is a parameter to
the input. Our bi-criterion upper-bounds the cut-value between clusters in terms of
expansion-like measures.

If we wish to approximate an upper bound on the sum of the edge-weights between
clusters, here are some approaches:

1) The inter-cluster cuts are also upper-bound in our algorithm, ¢(S, X) < | X|a,
thus summing up over all clusters we find that W; < n(k — 1), where Wy is the sum
of all inter-cluster cuts and k is the number of clusters produced. If n(k —1)a < W,
where W is the total sum of all edge-weights, the upper bound criterion is satisfied
as well.

2) If n(k—1)a > €W, we can limit the number of clusters the algorithm returns, so
not to exceed the upper bound. Of course, this way the algorithm fails to cluster the
entire graph, but still produces heavily connected components within the graph. In
practice, it is often the case that besides bigger clusters of the graph, many singletons
get produced as well. This happens when the lower bound expansion criterion is too
strong to allow for some nodes to be co-clustered with other nodes. In that case,
we either relax the expansion criterion (i.e. decrease «) or focus only on a subset of

the clusters produced, usually the biggest in size, or those with smallest inter-cluster
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weight.
In general, our algorithm comes close to satisfying the above conditions besides

imposing its own criteria that guarantee high quality of the clusters produced.

Choice of o

We have addressed earlier the question of a good choice for . But how does the
number and sizes of clusters change with respect to o?

It is easy to see that if « is very small, close to 0, the min-cut between ¢ and any
other node of G will produce a trivial cut isolating ¢ from the rest of the nodes. The
value of this cut is na, and thus by decreasing o enough we can always guarantee
that ¢ will be a single node on one side of the cut, and hence it will be an external
node in the min-cut tree; thus, the clustering algorithm will produce only one cluster
with respect to ¢, and this cluster will be the entire graph G.

On the other extreme, if « is very large it will cause T to be a star with ¢ at its
center. If W is the total sum of the weights of all edges in GG, for any value of a > W,
and for all v € V, the cut between ¢ and v will produce two sets, V — v and v. Thus,
the clustering algorithm will produce n trivial clusters, all singletons.

For values of o between these two extremes the number of clusters will be between
1 and n, but the exact value depends on the structure of G' and the distribution of
the weights over the edges. What is important, though, is that the number of clusters
increases monotonically with a. If we increase the value of o, the number of clusters
can only increase as well, or stay the same. When implementing our algorithm we
often need to apply a binary-search-like approach in order to determine the best value
for o, or make use of the 'nesting property’.

The nesting property has been used by Gallo et.al. [32] in the context of parametric

maximum flow algorithms. A parametric network is defined as a regular network G
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with source s and sink ¢, only the edge-weights are linear functions of a parameter A,
as follows:

1) wx(s,v) is a non-decreasing function of A for all v # ¢.

2) wy(v,t) is a non-increasing function of A for all v # s.

3) wy(v,w) is constant for all v # s, w # t.

A maximum flow or minimum cut in the parametric network G corresponds to a
maximum flow or minimum cut in G for some particular value of .

This parametric network allows directed edges, thus applies directly to the undi-
rected case as well. Also, it is immediate to see that it is a generalized version of our
graph G’ after the artificial sink has been added to G with parameter «. In fact, the
weights are a linear function only for the edges adjacent to the artificial sink, and we
can use both non-decreasing and non-increasing values for «, since ¢ can be treated
as the sink, but also as the source of G'.

The following lemma holds for our graph G':

Lemma 4.4.5 For a source s in G' a given on-line sequence of parameter values
ar < g < ... < Quaz, Yields a sequence Si, 59, ...Smaz 0f communities of s with

respect to t, such that S1 C Sy C ... C Spaz-

Proof. This is a direct result of a similar lemma in [32]. =

In fact, in [32] it has been shown that for some s the total number of different
communities S; is no more than n — 2 and they can all be computed in time pro-
portional to a single max-flow computation, when a variation of the Goldberg-Tarjan
preflow-push algorithm [42] is employed.

Thus, if we want to find a cluster of s in GG of certain size or other characteristic
we can simply use this methodology, find all clusters fast and then choose the one

that fits best. Also, because the parametric preflow algorithm in [32] finds all clusters
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either in increasing or decreasing size, we can stop the algorithm as soon as a desired
cluster has been found. We shall use the nesting property again, in Subsection 4.4.4,

when introducing the recursive cut-clustering algorithm.

Heuristic for the cut-clustering algorithm

The running time of the Basic cut-clustering algorithm is equal to the time to calculate
the minimum-cut tree, plus a small overhead for extracting the subtrees under ¢. But
calculating the minimum-cut tree can be equivalent to computing n — 1 maximum
flows [45] in the worst case. We now present a heuristic that finds the clusters of G

much faster, usually in time proportional to the number of final clusters produced.

Lemma 4.4.6 Let vi,vo € V and Ci,Cy be their communities with respect to t in

G'. Then either Cy and Cy are disjoint or the one is a subset of the other.

Proof. This is a special case of a more general lemma in [45]. If C; and C5 overlap
without the one containing the other then either C; N Cy or C; — (5 is a smaller
community for vy, or symmetrically, either C; NCs or Cy — (' is a smaller community

for vo. Thus C; and (5 are disjoint or the one is a subset of the other. m

We use the above lemma in order to reduce the number of minimum cut compu-
tations necessary. If the cut between some node v and ¢ yields the community (and
candidate cluster) C, then we don’t use any of the nodes in C' as sources to find
following minimum cuts with ¢, since according to the previous lemma, they cannot
produce better (i.e. larger) communities. Instead we mark them as part of commu-
nity C, and later, if C' becomes a part of a larger community C’ we mark all nodes of
C as part of C'. The heuristic relies on the choice of the next node for which we find
its minimum cut with respect to ¢. The bigger the cluster produced, the smaller the

number of minimum cut calculations. We sort all nodes by the sum of the weights of
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their adjacent edges, in decreasing order. Each time we compute the minimum cut
between the next unmarked node and ¢t. We have seen that in practice this reduces
the number of max-flow computations almost to the number of communities (and

final clusters) in G, speeding up the algorithm significantly.

4.4.4 Recursive Algorithm

We have referred to contraction on a set of nodes in Section 3.2. We can use successive
contractions to develop a recursive cut-clustering algorithm. After having applied the
basic cut-clustering algorithm to graph G, with some initial value of «, we can apply
the same algorithm on the clusters, instead of the nodes. For this, we contract the
clusters of GG into single nodes. Contracting the clusters of the initial graph yields a
new graph, for which we can apply the basic algorithm as before, with a new a-value,
which has to be smaller, for otherwise no new clusters will be found. (This is a direct
result of the nesting property of Lemma 4.4.5.) This results in clustering the clusters
of the initial graph, and can serve as a method for creating a hierarchy of clusters.
Each time the current clusters get contracted and the procedure repeated.

The quality of the clusters at each level of the hierarchy is the same as for the
initial basic algorithm, depending each time on the value of «, only the expansion
measure is now over the clusters instead over the nodes.

The recursion stops either when the clusters returned are of desired number and/or
size, or when the cut-clustering algorithm fails to produce other clusters besides the
extreme cases of a single cluster and all singletons.

In our experiments we used cluster contraction to produce such a hierarchy of
clusters, and the outline of the algorithm is described in Figure 4.15.

Hierarchical clustering offers a better "locality’ view on the structure of the graph.

A node of the graph can be part of a small, very dense cluster, but it can also be part
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of a more general cluster that contains a broader set of nodes. Hierarchical clustering
will produce both of these clusters, at different levels, providing a better overview of

the structure of the graph.

CUTCLUSTER_RECURSIVE(G(V, E))

Let G°=G

For (i=0;;4i++)
Set new, smaller value «; /* possibly parametric */
Call CutCluster_Basic(G?, o)
If ((clusters returned are of desired number and size) or

(clustering failed to create non-trivial clusters))
break

Contract clusters to produce G'*!

Return all clusters at all levels

Figure 4.15: Recursive cut-clustering algorithm

It is also a direct result of the nesting property (Lemma 4.4.5) that the clusters

at higher levels will be supersets of clusters at lower levels:

Lemma 4.4.7 Let a7 < ag < ... < Qmaz be a sequence of parameter values that
connect t to 'V in G'. Let oy < oy be small enough to yield a single cluster in G
and Qmaz+1 > Qmas be large enough to yield all singletons. Then all o; values, for
0 <i < mazx, yield clusters in G which are supersets of the clusters produced by each

a1, and all clusterings together form a hierarchical tree over the clusterings of G.

Figure 4.16: Hierarchical tree of clusters
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4.4.5 Results
Citeseer data set

Citeseer [81], is a digital library for scientific literature. Scientific literature can be
viewed as a graph, where the documents correspond to the nodes and the citations
between documents to the edges that connect them.

Our experiment was performed on a large subset of Citeseer, with 132,210 docu-
ments and 461,170 citations. All edges were undirected with normalized weight over
the number of outbound citations. That is, if document A cites 12 other documents,
the node corresponding to document A gets connected via undirected edges to each
of the 12 documents, and the weight of each edge will be 1/12. Weights for the
inbound edges are determined by the nodes for which they are outpointing. In the
end, rescaling might be necessary over all weights, if many of them are too small for
practical use. Normalization is a fair method for assigning edge-weights, since some
documents may point to many other documents and some only to few. This way, the
sum of all out-pointing edges for all nodes is equal.

In the experiment we apply the recursive cut-clustering algorithm of Figure 4.15.
We start with the largest possible value of « that gives non-trivial clusters (not all
singletons), as described earlier in this section. Then we contract those clusters,
producing the graph of next level. We cluster again with the largest value of a.
These are clusters of the second level and correspond to clusters of clusters of nodes.
We repeat the process until it is not possible to create any more clusters between a
single one and all singletons.

From the clusters produced, we conclude that at lower levels the clusters contain
nodes that correspond to documents with very specific content. For example, there

are small clusters (usually less than 10 nodes) that focus on topics like 'LogP Model
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of Parallel Computation’, "Wavelets and Digital Image Compression’, 'Low Power
CMOS’, 'Nonholonomic Motion Planning’, ’Bayesian Interpolation’, and thousands
others. In order to evaluate the quality of the clusters, we ranked all documents within
each cluster according to the total edge-weight by which they are connected to the rest
of the documents in that cluster, that is, the sum of all edges between that node and
the rest of the nodes in that cluster. For each cluster, the top-ranked document was
the most heavily connected one within its cluster, and the bottom-ranked document
was the one least connected to the other nodes. In Table 4.1 we present 3 documents
for the clusters mentioned above. For each entry the first document is the top-ranked
document of its cluster, the second document is of medium ranking, and the third
document is the bottom-ranked document of its cluster. We can see that the clusters

contain documents of high quality, closely related to each other.

LogP Model of Parallel Computation
LogP: Towards a Realistic Model of Parallel Computation
A Realistic Cost Model for the Communication Time in Parallel Programs
LogP Modelling of List Algorithms

Wavelets and Digital Image Compression
An Overview Of Wavelet Based Multiresolution Analyses
Wavelet Based Image Compression
Wavelets and Digital Image Compression Part T & II
Low Power CMOS

Low Power CMOS Digital Design
Power-Time Tradeoffs In Digital Filter Design And Implementation
Input Synchronization in Low Power CMOS Arithmetic Circuit Design

Nonholonomic Motion Planning
Nonholonomic Motion Planning: Steering Using Sinusoids
Nonholomobile Robot Manual
On Motion Planning of Nonholonomic Mobile Robots

Bayesian Interpolation
Bayesian Interpolation
Benchmarking Bayesian neural networks for time series forecasting
Bayesian linear regression

Table 4.1: Citeseer data - example titles are from the highest, median, and lowest
ranking papers within a community, thus demonstrating that the communities are
topically focused
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For clusters of higher levels, we notice that they combine clusters of lower levels
and singletons that haven’t been clustered with other nodes yet. The clusters of these
levels (approximately after 10 iterations) focus on more general topics like ’"Concurrent
Neural Networks’, ’Software Engineering, Verification, Validation’, 'TDNA and Bio
Computing’, "Encryption’ etc.

At the highest levels, the clusters become quite general, with broad topics covering
entire areas like 'Networks’, 'Databases’, 'Programming Languages’, etc. At these
levels, we can also draw conclusions about the distribution of the documents in the
database. E.g. what percentage of papers is related to ’Algorithms’ more than to the
other clusters, or what are the sub-clusters of cluster ’‘Compilers’, and so on.

Because of space-limitations and the huge number of papers in the database,
it is difficult to include more detailed results of the citeseer data. Nevertheless,
we can conclude that the recursive cut-clustering algorithm provides a good tool
for hierarchical clustering of large graphs, and can be applied to a wide range of
applications, as long as they can be described efficiently in the form of a graph.

Also, as has been pointed out in Subsection 4.4.3, because of the strict bounds
that the algorithm imposes on the expansion for each cluster, it may happen that
only a subgraph of G gets clustered into non-trivial clusters. This is also the case
for the citeseer data, which is a very sparse graph (with an average node degree of
only approx. 3.5). Thus, many of the initial documents never get clustered with
other nodes (except at the highest level). Nevertheless, when this is the case, the
clusters that get produced are still of very high quality and can serve as representative
communities or seed sets for other, less strict clustering algorithms (we have used the
clusters from the citeseer data in combination with the clustering algorithm of [25]
and clustered the entire citeseer data into topic-related levels, exactly as described

above).
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We elaborate on the citeseer data in much more detail in Section 5.2.

4.4.6 Conclusions

We have shown that minimum-cut trees with artificial sinks provide a good mean
for strong clustering (or for extracting heavily connected components) from both
a theoretical perspective and in practice. Cut-clustering algorithms are relatively
fast (especially with the use of the heuristic of Subsection 4.4.3), they are simple to
implement and give robust results. The flexibility of choosing «, and thus determining
the quality of the clusters produced, is a great advantage of the cut-clustering method.
Also, if « is not given, we can find all breakpoints of « fast [32].

On the other hand, one limitation of our algorithms is the fact that they don’t
parameterize over the number and sizes of the clusters. The clusters are a natural
result of the algorithm and cannot be set as desired (unless searched for by repeated
calculations). Also, another problem might occur by the fact that clusters are not
allowed to overlap. But sometimes it seems more natural to assign a node to multiple
categories, something we have also noticed in our citeseer data-set. This is a more
general limitation of all clustering algorithms that produce disjoint clusters.

Implementation-wise, maximum flow algorithms have been sped-up significantly
over the past years [40], [15], but they are still computationally intense. Randomized
or approximation algorithms could yield similar results but in less time, thus laying

the basis for very fast cut-clustering techniques of high quality.
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Chapter 5

Case Studies and Experimental

Results

This chapter reports on experimental studies we performed on large real-world data-
sets. Section 5.1 describes the clustering methods used in our experiments. In or-
der to quantify the quality of the produced clusterings, we refer to the theoretical
bounds given by the algorithms used, but also use information theoretical measures
on the content of the clustered documents. This provides additional insight about
the strengths and weaknesses of the algorithms.

There are two experiments we report on. The first, presented in Section 5.2, is on
the citeseer ([81]) data-set, an extensive collection of documents of scientific literature.
The second, in Section 5.3, is on a set of web-pages from the Open Directory Project,
or dmoz [82].

The chapter concludes with a discussion about the strengths and weaknesses of
our algorithms, potential improvements on the maximum flow algorithms used, and

final remarks.
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5.1 Methodology

5.1.1 Cluster Extraction

In the previous sections we presented and analyzed algorithms for link-based graph
clustering. But not all algorithms produce clusters of same quality, or are easy to
implement. The cut clustering algorithm can produce clusters of high quality, but
it may fail to cluster the entire data. Instead, it often finds strong connected com-
munities within the graph. The community clustering algorithm produces esoteric
communities, which in general are quite good, but not as strong as those produced
by the cut-clustering algorithm. Also, finding the best esoteric communities is not
always easy, since there can be multiple solutions, and the problem itself is N P-hard.
Finally, agglomerate, link-based algorithms are very simple to implement, but run
the danger of producing poor clusters because of the local optimization they do. In
our attempt to cluster large real-world data-sets, we realized that the best clusterings
were produced by a combination of the above algorithms. We start off with strong
clustering criteria, which we progressively weaken, in order to get more general clus-

ters or hierarchical clusterings.

Progressive link-structure method

More specifically, our method is to initially apply the cut clustering algorithm for
several values of a. We set certain constraints on the number and sizes of the clusters,
and find the appropriate value for o that satisfies those. To find a clustering that
satisfies both the number and sizes of the clusters may not always be feasible. In
that case we can either relax the bounds, use a different algorithm or say that the
clustering failed. From our experience, and as mentioned before, in most of the cases

we experimented with, the cut clustering algorithm does not produce a partition of

98



the graph, but rather extracts communities that cover portions of the graph, usually
uniformly distributed.

At this point, we relax the clustering constraints and form esoteric communities,
based on the initial communities found by the cut clustering algorithm. If C' =
{C1,Cy, ...,Ck} is such an initial clustering, then for all nodes v ¢ |J, C; we assign
v to a cluster C; if v is connected to C; with edges that have weight at least half
of v’s total adjacent weight. We repeat until no remaining node can be included in
some of the clusters. The new, expanded clusters contain more nodes of the initial
graph, and in order for us to accept C as a valid clustering of (G, we require that the
clusters cover almost the entire graph. If that is not the case, we can either weaken
the criterion that expands the communities, or report on the current clusters only, or
say that the algorithm failed. Weakening the criterion can be done in several ways,
e.g. we can assign v to the cluster it is heaviest connected to (instead of requiring it
to form an esoteric community). In our experiments that was never the case, and all
expanded clusters formed esoteric communities.

Finally, at the third step, and only if the current number of clusters is too large,
we merge them into bigger clusters, based on the links that connect them. In this
case, we assign a connectedness measure between clusters. Let C;, C; be two clusters
with sizes |C;| and |C;|, respectively. Also, let WW; ; be the sum of the weights of all
edges between the two clusters. We define the connectedness measure p for C; and

C; to be equal to
W

O = — Y
MGG =g

(5.1)

which corresponds to the average edge-weight normalized by the sizes of the clusters.
The merging algorithm considers among all pairs of clusters, the one with highest

value of p. Then, these two clusters get merged and the process repeated for the next
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highest-ranking pair. Notice that merging C; with C; deletes these two clusters and
replaces them by a new cluster, which has size equal to the sum of their sizes and
different edges connecting it to the remaining clusters. We can stop the merging at
any number of clusters, but typical values range between 10 and 100, depending on
the number of nodes and edges in the initial graph, and the current value of x. In most
cases, esp. for the citeseer data, we didn’t need to make use of this step, since the
cut clustering algorithm, together with the cluster expansion, produced good enough
results.

Figure 5.1 shows the three steps just described.

PROGRESSIVEALGORITHM(G(V, E))
1) Apply cut-clustering algorithm to find initial clusters
2) Expand clusters from Step 1 into esoteric communities
3) Merge clusters from Step 2 according to the edge-weights between clusters

Figure 5.1: Progressive link-structure method

5.1.2 Information theoretical measures

Except of quantifying the quality of the clusters by terms of expansion or minimum
cut criteria, we can also draw conclusions from the content of the documents clustered.
Both the citeseer and the dmoz data-sets contain text documents from which we can
extract features that characterize individual documents or clusters of documents. To
do this, we use information theoretical measures, applied to combinations of words

extracted from the documents. We describe these techniques next.

Entropy Loss based Feature Extraction

Let D be a set of |D| text documents. Divide D into two sets P (positive documents)

and N (negative documents), according to some arbitrary partitioning criterion. |P|+
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N| = |Dl.
Define a feature to be any consecutive 1-, 2-, and 3-word combination from the
documents of D. We wish to extract those features that characterize the positive
documents P. The basic idea is to assign scores to all the features, so that if a
feature appears many times in the positive set and only few times in the negative set,
it gets a higher score. The scores are defined in terms of expected entropy loss.
More specifically, we compute the entropy for each feature f independently. Let
C be the event indicating whether a document is positive. The prior entropy of the

class distribution is
e =—Pr(C)lg(Pr(C)) — Pr(C)lg(Pr(C)) (5.2)
The posterior entropy of the class when the feature is present is
ef = —Pr(C|f)1g(Pr(C|f)) — Pr(C|f)1g(Pr(Clf)) (5.3)
Likewise, the posterior entropy of the class when the feature is absent is
ez = —Pr(C|f)1g(Pr(C|f)) — Pr(C|[)1g(Pr(C|f)) (5.4)

Thus, the expected posterior entropy is

Pr(f)1g(Pr(f)) + Pr(f)1g(Pr(f)) (5.5)

and the expected entropy loss is

e — (Pr(f)lg(Pr(f)) + Pr(f)1g(Pr(f))) (5.6)
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For more details see [37], from which we adopted the above technique.

In order to extract the top features that characterize P, we extract all the features
from P that satisfy minimal thresholds (which are parametric to the input) and rank
them according to their expected entropy loss. The top features provide a good
measure for the textual coherence of the documents in the cluster, and that also
often translates into a good quality measure of the cluster, in general. A cluster that
has many top-ranking features of low score is likely to be too general, and thus of low
quality. Ideally, a cluster of high quality has several high-ranking features (maybe 10-
15, depending on the size of the cluster) that are focused around some specific subject,
but also several other lower-ranking features that correspond to subcategories within
the cluster and demonstrate its internal structure.

The expected entropy loss method has been analyzed and used successfully in [37]
and [38] for the naming of web-communities. The exact implementation issues are
beyond this work, and we use this method only as an additional quality measure for
our clusters, since it provides a simple, illustrative way to get a good idea about the

clusters formed and the textual features they contain.

Cluster Naming

An extension to the feature extraction is that of naming the clusters. By using sta-
tistical measures ([36]) we were able to predict likely names for each cluster (SELF),
as well as PARENT and CHILD features. SELF features are those that best charac-
terize the cluster itself. PARENT features are those that are more general and would
be good for characterizing a concept of which this cluster would be a subset. CHILD
features are those that are common to the cluster, but do not fully describe it; they
correspond to sub-concepts within the cluster.

Again, we don’t focus any further on the exact way these names are extracted, or
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the accuracy of this particular method, but use it as yet another way to measure the
quality of the clusterings, keeping in mind that eventual inaccurate and erroneous
namings should be expected. But the fact that wrong namings will only lower the
quality measure, together with the actual, surprisingly good results we got, are a
strong indication about the potential of this method, as well as about the quality of

our clusterings.

5.1.3 Experimental Setup

For our computations, we used two different computers. The first, kyle, is a Dell
XPS850r, with a Pentium III processor at 850Mhz, and 512MB RAM. The second,
gaea, is a Dell Precision Workstation 730, with four Itanium processors at 800Mhz
each, and 64GB RAM.

Both machines run Redhat Linux 7.1, and all codes were written in C, and com-
piled with ’gcc’ and optimization option -O4.

Most of the experiments were done on kyle. We used gaea for the larger data-sets,

some of which required several gigabytes of RAM.

5.2 Citeseer data

5.2.1 Description of the Citeseer data

Citeseer [81] is a digital library for scientific literature. It currently contains sev-
eral hundreds of thousands of documents and is growing rapidly. Our experiments
were performed on a snapshot of citeseer, containing 1,345,911 document titles and
3,050,745 citations between them. The number of actual documents in the database

was 144,812 and the citations between these documents only were 471,537. For these
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documents we also had available the title and abstract, which we used to extract
content-based features.

We applied our progressive clustering algorithm on the graph, where every node
corresponded to one of the 144,812 documents, and the edges corresponded to the
citations between them. Before running the algorithm, we separated the graph into
connected components, since we can work on each of them individually. The largest
such connected component consisted of 132,210, or 91.298% of the initial nodes, and
461,170 edges. This was by far the most interesting connected component, and it is
the only one we report results on here.

Another preprocessing step required, before applying the clustering algorithm, was
that of making the graph undirected. Citations between two documents are directed,
and so were the edges of the graph. We have seen in Section 4.1 how to transform
directed edges into undirected ones by normalizing their weight. Note that initially
all edge-weights are equal to 1.

Finally, when studying the results of the clustering algorithm, it is important to
keep in mind special characteristics of the citeseer data:

1) The graph is very sparse. The average node-degree is less than 7.

2) Citations point almost always backwards in time. Thus the initial directed
graph is acyclic, with more recent papers pointing to older ones. It has been argued
in other studies (e.g. [70]) that because of this, older documents might be favored and
a penalty parameter, depending on how old a paper is, should be introduced. We
chose to avoid such a parameter, and handle all documents the same way. (In [70]
the evolution of clusters was being studied and time was an important factor.)

3) Noise. The documents in citeseer are processed automatically, and often contain
parse errors, wrong field entries, multiple copies of the same document, and other

mistakes. This may drop the quality of the results, although we noticed that in
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general our algorithm was very stable, e.g. by clustering together different copies of

the same paper, etc.

5.2.2 Initial cluster extraction

In order to cluster the citeseer data, we initially applied the cut clustering algorithm
for several values of @. Among those, we noticed that as a increases, the smallest
value not yielding a trivial, single cluster, produced exactly two clusters: one of size
88, and one of size 132,122. Since the larger cluster again covers almost the entire
data, we increased « to the immediately next value that produced more than two
clusters. That value was a = 10 (actually, the range [10, 20] of values resulted in the
same clustering), and the number of clusters now jumped into the thousands.

We applied the heuristic of Subsection 4.4.3 and extracted the first n clusters,
where n € {5,10, 20,50, 100, 500,1000}. Table 5.1 shows the sizes of these clusters.
The first column of the table refers to the number of clusters, and the second column
shows the total number of nodes in the clusters. The third column shows the total
number of nodes as a percentage over all nodes in the graph.

So, e.g. the top 100 clusters contained 3,517 nodes (35.17 nodes on average), or

covered 2.660% of the citeseer documents.

#clusters || init. #nodes | percent. | exp. #nodes | percent.
5 466 0.352% 132,210 100%
10 1,008 0.762% 132,210 100%
20 1,609 1.217% 132,203 99.995%
50 2,539 1.920% 132,199 | 99.992%
100 3,517 2.660% 132,196 99.989%
500 7,969 6.028% 132,202 99.994%
1000 11,498 8.697% 132,199 99.992%

Table 5.1: Sizes of initial and expanded clusters
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expansion of all clusters produced is at least o = 10. A more practical measure is
that of the expected entropy loss and the percentage of positive occurrences of the
features extracted from the title and the abstract of the documents.

Table 5.2 refers to the features extracted from the top 100 and 1000 clusters, and
we see that for 1000 clusters the top feature appears in 68.5% of the documents of
each cluster. The top three features appear in 62.9% and the top ten features in
53.5% of the documents. So, even though the clusters were formed based on link-
structure only, they have high percentages of the features characterizing them. For

other numbers of clusters the percentages are similar.

#top feat. || aver. % pos. 100 clust. | aver. % pos. 1000 clust.
1 66.8 68.5
2 64.7 65.5
3 61.4 62.9
9 57.4 59.2
10 51.6 53.5
20 44.8 46.9
30 40.8 43.1

Table 5.2: Top features after initial iteration

5.2.3 Cluster expansion

After calculating the initial clusters, we expanded them as described earlier, thus cre-
ating esoteric communities. It is very interesting that this cluster expansion method
resulted in assigning at least 132,196 nodes, that is all but 14 nodes, or 99.989% of
the entire citeseer data, to some cluster! And this was true for all different cases of
numbers of clusters! (See columns 4 and 5 of Table 5.1.)

Thus, we conclude that the initial clusters are evenly spread over the citeseer

graph, in all cases, capturing its entire distribution of heavily connected components.
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#clusters | min max | mean | aver. | st.dev.

5 17,666 | 36,722 | 22,738 | 26,442 | 7,898

10 8,945 | 16,569 | 13,255 | 13,221 | 2,513

20 3,282 | 10,655 | 6,324 | 6,610 | 1,917

50 695 5,991 | 2,433 | 2,644 | 1,275
100 282 4,633 | 1,147 | 1,322 750
500 39 2,191 214 264 201
1000 10 1,377 102 132 111

Table 5.3: Statistics for expanded cluster sizes

This, together with the low degree of the nodes (6.976 on average) are the two main
reasons for the resulting partitioning. It is also interesting that even though many
of the initial clusters were very small (that is, singletons or 2-node clusters), esp. for
100, 500, and 1000 clusters, the expanded clusters (or esoteric communities) had sizes
at least 282, 39, and 10 respectively. Also, the largest communities never grow too
large, and the standard deviation from the average size is small as well. Statistics for
the expanded cluster sizes are shown in Table 5.3. So, for example, for 20 clusters the
smallest cluster contained 3,282 nodes, the largest 10,655, and the mean 6,324 nodes.

The average size was 6,610 nodes with standard deviation 1,917.

#top feat. || aver. % pos. 100 clus. | aver. % pos. 1000 clus.
1 48.9 49.7
2 44.1 45.0
3 40.7 41.9
) 36.3 37.7
10 30.2 31.5
20 24.0 25.2
30 21.1 21.9

Table 5.4: Top features after cluster expansion

Concentrating again on the positive percentage of the top features (in the case of
1000 clusters), we can see from Table 5.4 that the top feature occurs in 49.7% of the

documents within each cluster. The top three and top ten features occur in 41.9%
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and 31.5% of the documents respectively. Again, even though the clustering has been
entirely based on the link-structure the features demonstrate high concentration.
Also, Tables 5.5 and 5.6 show the top 5 features for 5 clusters and 20 clusters,
respectively. (Tables are sorted by cluster size.) From these features we can see
how concentrated the clusters are content-wise. 5 clusters are probably too few for
clustering the entire data-set, but the features do provide a good high-level idea
about the very general classes of the citeseer data. 20 clusters seem to give a better
classification; the clusters are now very focused, though still general enough. As the
number of clusters increases, they become even more focused on very specific subjects.

Table 5.7 shows the top 3 features for the largest and smallest among 1000 clusters.

| Size |[Featurel | Feature 2 | Feature 3 | Feature 4 | Feature5 |
36,722 | image numerical | method d dimensional
32,575 | protocol network users learning access
22,737 | logic language | calculus semantics | reasoning
22,509 | specification | formal software verification | development
17,666 | parallel memory | performance | processor parallelism

Table 5.5: Top 5 features for 5 clusters

One minor issue is that of the (up to 14) remaining nodes that were never clustered.
Even though they also often formed esoteric communities themselves, we prefered to
remove them from our data-set and worked with the remaining nodes. This seemed

the most fair approach and had virtually no impact on the results.

5.2.4 Cluster merging

At this point, in the cases of 5-100 clusters, the algorithm stopped. But for more than
100 clusters we continued with the third step of the progressive link-based method.

Next, we describe the results for 1000 clusters.
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‘ Size ‘Features 1-5

10,655 | security, secure, polynomial, protocols, n

9,259 | numerical, parallel, equations, matrix, solution of

8,543 | database, query, object oriented, object, relational

8,314 | specification, formal, software, verification, development
8,079 | image, vision, motion, camera, scene

7,982 | memory, shared memory, parallel, shared, processor
7,685 | speech, word, corpus, neural, speech recognition

7,460 | robot, agent, planning, autonomous, environment

7,320 | parallel, memory, compiler, parallelism, fortran

6,328 | service, multimedia, qos, of service, quality of service
6,320 | wavelet, regression, estimation, bayesian, function

6,039 | genetic, evolutionary, genetic algorithm, fitness, ga
5,969 | rewriting, logic, calculus, languages, functional

5,600 | logic, reasoning, logic programming, semantics, knowledge
5,097 | network, traffic, packet, tcp, internet

4,734 | proof, calculus, theorem, proving, type

4,858 | learning, neural, neural network, training, machine learning
4,214 | software, code, program, language, compiler

3,964 | markov, markov chain, random, chain, stochastic

3,282 | learning, training, neural, classification, recognition

After 1000 esoteric communities covered the citeseer data, we combined them
iteratively into fewer, and thus larger, clusters. By applying the merging algorithm,
we noticed that the most interesting clusters were formed when they were between 20
and 200. While more than 200, the clusters were still pretty small and often separate
clusters focused on very similar topics and should actually be merged together. When
less than 20, especially when less than 10, the clusters tended to become too general.

We have extracted the names for each of the clusters at certain levels according
to the methodology described in Section 5.1.2. Table 5.8 displays the top two SELF,
PARENT, and CHILD names for the 10 largest clusters, and Table 5.9 displays the

top names for the 10 smallest clusters. At this point the total number of clusters

Table 5.6: Top 5 features for 20 clusters
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‘ Size ‘ Feature 1 ‘ Feature 2 ‘ Feature 3
1377 | security cryptographic secure
905 | rewriting term rewriting rewrite
846 | recurrent neural connectionist
828 | parallel hpf fortran
807 | regression nonparametric estimation
789 | genetic genetic programming evolutionary
752 | formal specification vdm
732 | mpi parallel message passing
670 | image motion optical flow
586 | neural neural networks learning
510 | robots robot autonomous
500 | markov markov chain stochastic
479 | synthesis embedded dsp
478 | graph vertices drawing
474 | mixture of experts neural
463 | dna adleman of dna
458 | nonlinear stability lyapunov
458 | numerical iterative equations
457 | type theory proof theorem
28 | coding wavelet coder
27 | unix explicit dynamic linking | system v
26 | service scheduling service scheduling scheme | service
26 | propositional satis ability sat ability sat
26 | code run time proof carrying code
25 | in files can structuring schema in files
25 | wireless atm wireless atm
25 | shared memory shared memory
25 | cache memory referencing patterns
25 | protocol protocols performance
22 | logic programs the well founded logic
21 | knowledge knowledge representation | number restrictions
20 | multicast reliable reliable multicast
19 | distributed memory | parallel fortran
19 | mining association association rules
17 | timed clocks timed systems
14 | discovery knowledge discovery tasa telecommunication
10 | require differ. views | in multidimensional processing olap systems

Table 5.7: Top 3 features for largest and smallest of 1000 clusters
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had been reduced to 100. Note that the SELF features are almost always also the

top-ranking features, and that very similar entries in multiple columns are the result

of insufficiencies of the naming algorithm.

size/ | SELF 1 PARENT 1 CHILD 1

index | SELF 2 PARENT 2 CHILD 2

2852 | security protocols cryptographic

988 | public key protocol attacks

2824 | quality of service network multicast

989 | multimedia applications | control end to end

2452 | neural networks learning genetic programming
905 | genetic algorithms problems artificial neural

2448 | server network disks

981 | file system control caching

2385 | data parallel memory high performance fortran
994 | high performance program hpf

2264 | machine learning algorithms case based reasoning
941 | learning algorithms methods decision trees

2146 | mobile robot environment navigation

976 | robot control sensors

2114 | high performance parallel mpi

996 | message passing communication | distributed memory
2071 | optimization problems | linear semidefinite programming
987 | polynomial time g semidefinite

1957 | camera image uncalibrated

954 | vision method calibration

Table 5.8: Names for the largest 10 clusters

5.2.5 Feature overlap

Besides the progressive link-based algorithm, we also experimented with a different
method that merges the expanded clusters from the second step, not by heaviest links
between clusters, but by largest feature overlap.

More specifically, the algorithm in this method is the same as that of the pre-

vious subsection for the first two steps, but in the third step it is not link-based
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size/ | SELF 1 PARENT 1 CHILD 1

index | SELF 2 PARENT 2 CHILD 2

617 | probabilistic logic belief revision
803 | belief reasoning possibilistic

605 | parallel programming programs skeletons

950 | data parallel implementation | higher order

593 | reinforcement learning algorithms value function
983 | learning algorithms control reinforcement
584 | matrices algorithms subspace

425 | singular value decomposition | method eigenvalue

579 | ad hoc network algorithms routing protocol
800 | wireless simulation shortest path
519 | model checking verification infinite state

949 | finite state logic ctl

507 | computer graphics method radiosity

902 | global illumination algorithms hierarchical radiosity
459 | real time systems logic qualitative simulation
998 | qualitative models temporal logic
361 | hypermedia support open hypermedia
612 | hypermedia systems work hypertext

356 | linear time algorithm graph treewidth

852 | linear time algorithms classes of graphs

Table 5.9: Names for the smallest 10 clusters

anymore. Instead, it compares the features between all pairs of the 1000 clusters.
The comparison is done using a TFIDF on the feature weights.

There are a number of TFIDF algorithms which differ in their selection of feature
weighting method and similarity measure [73]. The basic idea is to represent each
document d as a vector d = (d(l), - d”FD) in a vector space, so that documents with
similar content have similar vectors. Each dimension of the vector space represents a
feature, that is a combination of words, selected as described earlier. We extract the
top 50 features (ranked by expected entropy loss) for each document, which means
|F| = 50 in our case.

The values of the vector elements d® are calculated as a combination of the

statistics TF(f,d) and DF(f). The term frequency TF(f,d) is the number of times
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feature f occurs in document d. The document frequency DF(f) is the number
of documents in which the feature f occurs at least once. The inverse document
frequency IDF(f) can be calculated from the document frequency:

Dl

IDF(f) = log(DF(f)) (5.7)

|D| is the total number of documents. The inverse document frequency of a feature
is low if it occurs in many documents and is highest if the feature occurs in only one.

The value d® of feature f; for document d is then calculated as the product

d = TF(f;,d)- IDF(f;) (5.8)

d® is called the weight of feature f; in document d.

We used the TFIDF model to rank all pairs of clusters, so that the pair with highest
feature similarity gets the highest rank. Feature similarity is defined as follows. Let
Cy and Cj be two of the 1000 initial clusters. Let f be a common feature among the
top 50 features in both clusters. We adjust the definition of the weight of feature f

to apply to clusters instead of documents only:

d = TF(f,Cy) - IDF(f) (5.9)

The weight d of feature f in cluster C} is based on the number of documents in C}
that contain feature f. The product dj - d; gives a similarity measure between Cj
and () with respect to feature f. We sum up the TFIDF products over all common
features in C and C} and the result will be the similarity score between them.
Once we have found the TFIDF scores between all pairs of clusters, we merge the

two clusters with the highest score, and recalculate all TFIDF’s. (In practice we only
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need to find the TFIDF values between the newly formed cluster and the remaining
clusters; the other values stay the same.)

Comparing the results for this method with that of Subsection 5.1.1, we conclude
that when the total number of clusters is large (close to 1000) or very small (fewer
than 20) the clusters produced are of higher quality. This is because for a large
number of clusters, those that get merged are subject-wise extremely close. For a
very small number of clusters, few features dominate each set, forcing clusters with
similar main content to get merged together.

In contrast, for an average number of clusters (100-500), the progressive link-
structure method is more effective, since it combines clusters that feature-wise may

not be of very high quality, but link-wise are closely related to each other.

5.3 Web communities

5.3.1 Description of Data and Preprocessing

The Open Directory Project [82], or dmoz, is a human edited directory of the Web.
Currently, it contains 3,218,307 sites in 369,906 categories, and 46,374 editors who
synopsize and categorize new entries.

Our experiment was conducted as follows. We started off with the homepage of
the Open directory, http://www.dmoz. com, and crawled all web-pages up to two links
away, in a breadth-first approach. This produced 2,312,358 webpages.

In order to cluster these webpages, we represent them as nodes of a graph, where
the edges correspond to hyperlinks between them, but we don’t include links between
web-pages of the same domain, because this biases the graph. We will elaborate
more on links within the same domain at the end of this section. Removing isolated

nodes, we get a graph of 1,269,838 nodes and 1,673,380 edges. At this point we
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apply another preprocessing step: We remove all nodes of single degree. Nodes of
single degree can only be part of the cluster their adjacent neighbor belongs to, or
form a singleton community by themselves. Cutting off single degree nodes, reduces
the graph substantially and decreases the running time of the algorithms. Once
the clustering has been performed, we can easily re-attach the single nodes to those
clusters where they don’t violate the clustering criteria. It turns out that 89.6% of all
nodes in the graph have single degree, and removing them results in 131,965 nodes
and 553,693 edges. The largest connected component of this graph covers 124,963
nodes and has 540,423 edges. This is the graph we are going to report on.

Similarly to the citeseer data, we again apply the progressive link-based method,
starting off with the cut-clustering algorithm, expanding clusters into esoteric com-
munities, and merging communities based on the link structure, when necessary. Of
course, before applying any of these algorithms, we normalize the edges by outbound

links, thus making the graph undirected.

5.3.2 Initial cluster extraction

Applying the cut-clustering algorithm, for various values of «, we see that the smallest
value that produces more than one clusters is 2. But for « € [2,6], and number of
clusters ranging between 3 and 46, there is always one dominant cluster that contains
at least 122,908 nodes, or 98.356% of the graph. Increasing a to 7 breaks this one
large cluster, and produces thousands of smaller clusters, very similar in nature to
the citeseer data. There are many clusters that contain a few hundred nodes. The
biggest cluster contains about 9000 nodes. Looking at the web-pages in this cluster,
we see that they were from the web-directory Yahoo. For larger values of «, about
1000, the Yahoo cluster breaks also, and the number of clusters now increases into

the tens of thousands. For oo = 10000, all clusters are singletons. From the above
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description, we conclude that the most interesting cases are when « is between 7 and

1000, and these are the cases we will study in more detail.

5.3.3 Cluster expansion

After we find the initial clusters for several values of o, we expand these clusters, as in
the citeseer case. We notice that this time the expanded clusters grow approximately
by 30% on average and don’t cover the entire data-set as before. For example, for
a = 10, the top 789 initial clusters cover 38,350 nodes, or 30.689% and expanded
they cover 51,550 nodes, or 41.252% of the entire graph. Similar numbers apply for
the other values in that range.

But, even though the number of clusters is now bigger, and they are harder to
expand, their quality is again very high. In fact, features have a much higher positive
percentage than for the citeseer data, averaging over 80% for the top 3-5 features
for the range of o we study. Looking at the actual documents within the clusters,
we see what the reason for this is. There are mainly two different types of clusters:
The first type are clusters that contain documents from the same domain, or from
similar categories. We excluded links within the same domain, but the Open Directory
contains thousand of subcategories that cover extremely diverse and unrelated topics.
This forces the clustering algorithm to create many small, but highly focused clusters.
Web-pages from the same domain get merged together because of their adjacent web-
pages from other domains with similar subject.

The second type are clusters that are broad subcategories of dmoz. These, in fact,
are the most common among the largest clusters. Characteristically, such clusters can
be seen in Table 5.10, which shows the top three features for the 12 clusters containing

at least 200 nodes.
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| Size | Feature 1 | Feature 2 | Feature 3
8456 | in yahoo yahoo inc copy yahoo inc
826 | about altavista altavista company altavista reg
512 | software search on software software top
354 | and economy search economy top regional and economy about
334 | health about dmoz health search on health top
331 | employment about dmoz | employment search on employment top
318 | and tourism search tourism search tourism top
316 | personal pages search pages search on personal pages
261 | and environment search | and environment top environment top regional
255 | and entertain search and entertainment about | and entertainment top
254 | and culture top and culture about and culture search
236 | and sports search sports top regional and sport top

Table 5.10: Top 3 features for largest dmoz clusters

5.3.4 Cluster merging

Since the number of clusters was very large, we applied the third step of the progressive
link-based method, and merged together clusters that were heavily linked. The top
features produced this way are again very similar to those of Table 5.10, only the
expected entropy loss drops significantly very quickly. When the clusters become less
than approx. 100, the features are not good enough to distinguish them, and the
algorithm stopped.

Overall, the dmoz data-set was harder to cluster, mainly because of the very
broad topics it covered. The citeseer data was larger, but the documents were more
related to each other, since they were all from scientific literature, with main focus
on computer science. Also, the features extracted from the citeseer clusters were of
higher quality than those from the web-pages, for high-level clusterings. Another
reason for the relatively poor naming of the feature extraction method, applied to
web-pages, has been pointed out in [38]. There, we make the following claim, which
we verify: the features extracted from the text of a web-page might be a poor measure

for describing its content. Much better features can be extracted from the extended
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anchortext of the pages that point to the documents in the clusters. Unfortunately,
we didn’t have this information available for our data-set.

Still, we believe that the clusters extracted from the dmoz data-set can be of high
quality (as we have seen in Table 5.10 for small clusters), but they are harder to
cluster into more general groups, and even harder to name by the feature-extraction

algorithm based on expected entropy loss.

5.4 Conclusions

5.4.1 Running times

Besides the quality of the clustering, another important factor that determines the
applicability of an algorithm is speed. Most of the agglomerate methods, the cluster
expansion, the feature extraction, and all the pre- and post-processing can be done
in linear or sublinear time. But algorithms that contain maximum flow techniques at
their core are superlinear by nature.

Currently, the fastest maximum flow algorithm ([41]) has a running time of
O(min(n??,m'/?)mlog(">)logU). The fastest maximum flow implementation is
based on Goldberg’s push-relabel method, and we extracted it from a previous ex-
perimental study on minimum cuts ([15]). We used this same algorithm in both
the experimental study of Section 3.2 and the clustering algorithms of Section 4.
The theoretical bound of this algorithm is O(n?m!/?), which for sparse graphs (with
bounded average degree) translates to O(n°/?). Heuristics, like the global update,
speed up significantly the actual running time. For the data-sets in our experiments
we calculated the complexity of the algorithm to less than quadratic, about O(n'-3)

to O(n'?®). In practice, this translates into few (less than 30) seconds for graphs with

100,000-200,000 nodes and average degree of 3-7. Of course, the exact running time
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also depends on the actual structure of the graph, the implementation, the machine
used, etc. With our experimental setup, and the given maximum flow implementa-
tions, for each data-set the clustering algorithm required between a few minutes (for
graphs with few thousand nodes and edges) and 2-3 days for the largest instances,
with all heuristics employed.

As said earlier, often the biggest bottleneck is the maximum flow routine. Since
it was the currently fastest known implementation, we considered approximation al-
gorithms that might be faster. Most interesting among those was an algorithm by
Gabow ([30], and also [31]) that allows for subsequent iterations that yield flows ever
closer to the maximum. This algorithm restricts edge-weights to depend on a pa-
rameter P, which is always a power of 2. Initially P is equal to the largest power of
2 that is smaller than at least one edge-weight of the graph. All edges get capacity
1 if their weight is larger than P, and 0 if it’s less. A maximum flow algorithm is
performed on the (now unit-capacity) network, and subsequently, P is set to half its
initial value, and again 0 and 1 values are assigned to edges in the residual graph.
After 1g P > 1g w4, + 1 iterations, where w,,,, is the maximum initial edge-weight,
the algorithm converges to the exact maximum flow value.

The idea in the approximation variation is to stop the iterations when P is beyond
some threshold. Ideally, this should reduce the number of necessary iterations, and
if the threshold is not too low, the approximate maximum flow value should be close
enough to the actual value. ([30] also shows how close this approximation will be,
depending on the number of iterations.) Unfortunately, in practice this idea didn’t
perform too well. The additional overhead for keeping track of the virtual edge-
weights, was about the same as the time saved from the approximation. Also, Gabow’s
algorithm is based on augmenting paths, whereas Goldberg’s algorithm is based on

local pushes and relabels. We were not able to adjust the one to the other and still
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preserve the advantages of the approximation algorithm.
We don’t elaborate any further into this idea, but it would certainly be interesting
to see faster implementations in practice, even in the form of approximation and

randomized algorithms.

5.4.2 Internal links

In addition to the dmoz data-set, we also tried another data-set of web-pages, crawled
from the internet. But this time we didn’t exclude links within the same domain. The
initial seed set was also just a random set of nodes, and the final graph we worked
on contained 202,132 nodes and 1,072,327 links. Applying the progressive link-based
method for different values of «, and number of clusters, we concluded that the
clusters were of extremely low quality, because of the bias of links within the same
domain. This links were dominating in many cases, and didn’t allow for more general
clusters to be built.

Also, when we attempted to extract features from these clusters, they often had
extremely high occurrences in the positive set, but only because they were phrases
common within that community, like “click here”, “prev”, “next”, “copyright”, etc.
We concluded that any link-based clustering algorithm for web-pages, must exclude,
or at least handle in a special way, interconnecting links. The dmoz data-set would
most likely have similar resulted, hadn’t these links been removed prior to any clus-

tering.
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