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Abstract

Proof-Carrying Code (PCC) and other applications in
computer security require machine-checkable proofs of
properties of machine-language programs. The main ad-
vantage of the PCC approach is that the amount of code
that must be explicitly trusted is very small: it consists
of the logic in which predicates and proofs are expressed,
the safety predicate, and the proof checker. We have built
a minimal-TCB checker, and we explain its design prin-
ciples, and the representation issues of the logic, safety
predicate, and safety proofs. We show that the trusted
code in such a system can indeed be very small. In our
current system the TCB is less than 2,700 lines of code
(an order of magnitude smaller even than other PCC sys-
tems) which adds to our confidence of its correctness.

1 Introduction

Machine-verified proofs have applications in computer
security, program verification, and the formalization of
mathematics. In these applications, but especially in se-
curity applications such as proof-carrying code and proof-
carrying authorization, the proof checker is an essential
component of the trusted computing base: a bug in the
proof checker can be a security hole in the larger system.
Therefore, the checker must be trustworthy: it must be
small, simple, readable, and based on well-understood en-
gineering and mathematical principles.

In contrast, theorem provers are often large and ugly,
as required by the incompleteness results of G¨odel and
Turing: no prover of bounded size is sufficiently general,
but one can always hack more features into the prover un-
til it proves the desired class of theorems. It is difficult
to fully trust such software, so some proving systems use
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technical means to ensure that buggy provers cannot pro-
duce invalid proofs: the abstract data typetheoremof LCF
[13], or the proof-witness objects of Coq [7] or Twelf [19].
With these means, only a small part of a large system must
be examined and trusted.

How large is the proof checker that must be examined
and trusted? To answer this question we have tried the
experiment of constructing and measuring thesmallest
possibleuseful proof checker for some real application.
Our checker receives, checks the safety of, and executes,
proof-carrying code: machine code for the Sparc with an
accompanying proof of safety. The proof is in higher-
order logic represented in LF notation.

The checker would also be directly useful for proof-
carrying authorization [3, 8], that is, checking proofs
of authentication and permission according to some dis-
tributed policy.

A useful measure of the effort required to examine,
understand, and trust a program is its size in (non-blank,
non-comment) lines of source code. Although there may
be much variation in effort and complexity per line of
code, a crude quantitative measure is better than none. It
is also necessary to count, or otherwise account for, any
compiler, libraries, or supporting software used to execute
the program, and we address this issue explicitly.

Thetrusted computing base(TCB) of a proof-carrying
code system consists of all code that must be explicitly
trusted as correct by the user of the system. In our case
the TCB consists of two pieces: first, the specification
of the safety predicate in higher-order logic, and second,
the proof checker, a small C program that checks proofs,
loads, and executes safe programs.

In his investigation of Java-enabled browsers [10], Ed
Felten found that the first-generation implementations av-
eraged one security-relevant bug per 3,000 lines of source
code [12]. These browsers, as mobile-code host platforms
that depend on static checking for security, exemplify the
kind of application for which proof-carrying code is well
suited. Wang and Appel [6] measured the TCBs of vari-
ous Java Virtual Machines at between 50,000 and 200,000



lines of code. The SpecialJ JVM [9] uses proof-carrying
code to reduce the TCB to 36,000 lines.

In this work, we show how to reduce the size of the
TCB to under 2,700 lines, and by basing those lines on a
well understood logical framework, we have produced a
checker which is small enough so that it can be manually
verified; and as such it can be relied upon to accept only
valid proofs. Since this small checker “knows” only about
machine instructions, and nothing about the programming
language being compiled and its type system, the seman-
tic techniques for generating the proofs that the TCB will
check can be involved and complex [2], but the checker
doesn’t.

2 The LF logical framework

For a proof checker to be simple and correct, it is help-
ful to use a well designed and well understood represen-
tation for logics, theorems, and proofs. We use the LF
logical framework.

LF [14] provides a means for defining and presenting
logics. The framework is general enough to represent
a great number of logics of interest in mathematics and
computer science (for instance: first-order, higher-order,
intuitionistic, classical, modal, temporal, relevant and lin-
ear logics, and others). The framework is based on a gen-
eral treatment of syntax, rules, and proofs by means of
a typed first-orderλ-calculus with dependent types. The
LF type system has three levels of terms: objects, types,
and kinds. Types classify objects and kinds classify fami-
lies of types. The formal notion of definitional equality is
taken to beβη-conversion.

A logical system is presented by a signature, which as-
signs types and kinds to a finite set of constants that rep-
resent its syntax, its judgments, and its rule schemes. The
LF type system ensures that object-logic terms are well
formed. At the proof level, the system is based on the
judgments-as-typesprinciple: judgments are represented
as types, and proofs are represented as terms whose type is
the representation of the theorem they prove. Thus, there
is a correspondence between type-checked terms and the-
orems of the object logic. In this way proof checking
of the object logic is reduced to type checking of the LF
terms.

For developing our proofs, we use Twelf [19], an
implementation of LF by Frank Pfenning and his stu-
dents. Twelf is a sophisticated system with many use-
ful features: in addition to an LF type checker, it con-
tains a type-reconstruction algorithm that permits users
to omit many explicit parameters, a proof-search algo-

rithm (which is like a higher-order Prolog interpreter),
constraint regimes (e.g., linear programming over the ex-
act rational numbers), mode analysis of parameters, a
meta-theorem prover, a pretty-printer, a module system,
a configuration system, an interactive Emacs mode, and
more. We have found many of these features useful in
proof development, but Twelf is certainly not a minimal
proof checker. However, since Twelf does construct ex-
plicit proof objects internally, we can extract these objects
to send to our minimal checker.

In LF one declares the operators, axioms, and infer-
ence rules of anobject logicas constructors. For exam-
ple, we can declare a fragment of first-order logic with the
type form for formulas and a dependent type constructor
pf for proofs, so that for any formulaA, the typepf(A)

contains values that are proofs ofA. Then, we can declare
an “implies” constructorimp (infix, so it appears between
its arguments), so that ifA andB are formulas then so is
A imp B. Finally, we can define introduction and elimi-
nation rules forimp .1

form : type.
pf : form -> type.
imp : form -> form -> form.
%infix right 10 imp.
imp_i: (pf A -> pf B) -> pf (A imp B).
imp_e: pf (A imp B) -> pf A -> pf B.

All the above are defined as constructors. In general, con-
structors have the formname : τ and declare thatname
is a value of typeτ .

It is easy to declare inconsistent object-logic construc-
tors. For example,invalid: pf A is a constructor that
acts as a proof of any formula, so using it we could easily
prove the false proposition:

logic_inconsistent : pf (false) = invalid.

So the object logic should be designed carefully and must
be trusted.

Once the object logic is defined, theorems can be
proved. We can prove for instance that implication is tran-
sitive:

imp_trans: pf (A imp B) ->
pf (B imp C) ->

pf (A imp C) =
[p1: pf (A imp B)]
[p2: pf (B imp C)]
imp_i [p3: pf A]
imp_e p2 (imp_e p1 p3).

1Here, for example, theimp i axiom states that if you have an LF
function that can transform proofs ofA to proofs ofB, then applying the
rule produces a proof ofA imp B. The ruleimp e (generally known
asmodus ponens) goes the other way: given a proof ofA imp B and a
proof of A, applying the rule produces a proof ofB.
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In general, definitions (including predicates and the-
orems) have the formname : τ = exp, which
means thatname is now to stand for the valueexp
whose type isτ . In this example, theexp is a func-
tion with formal parametersp1 and p2, and with body
imp i [p3] imp e p2 (imp e p1 p3) .

Definitions need not be trusted, because the type-
checker can verify whetherexp does have typeτ . In gen-
eral, if a proof checker is to check the proofP of theorem
T in a logicL, then the constructors (operators and ax-
ioms) ofL must be given to the checker in a trusted way
(i.e., the adversary must not be free to install inconsistent
axioms). The statement ofT must also be trusted (i.e.,
the adversary must not be free to substitute an irrelevant
or vacuous theorem). The adversary provides only the
proof P , and then the checker does the proof checking
(i.e., it type-checks in the LF type system the definition
t : T = P , for some arbitrary namet).

3 Application: Proof-carrying code

Our checker is intended to serve a purpose: to check
safety theorems about machine-language programs. It is
important to include application-specific portions of the
checker in our measurements to ensure that we have ade-
quately addressed all issues relating to interfacing to the
real world.

The most important real-world-interface issue is, “is
the proved theorem meaningful?” An accurate checker
does no good if it checks the wrong theorem. As we will
explain, the specification of the safety theorem is larger
than all the other components of our checker combined!

Given a machine-language programP , that is, a se-
quence of integers that code for machine instructions (on
the Sparc, in our case), the theorem is, “when run on the
Sparc,P never executes an illegal instruction, nor reads or
writes from memory outside a given range of addresses.”
To formalize this theorem it is necessary to formalize a de-
scription of instruction execution on the Sparc processor.
We do this in higher-order logic augmented with arith-
metic.

In our model [15], a machine state comprises aregister
bankand amemory, each of which is a function from in-
tegers (register numbers and addresses) to integers (con-
tents). Every register of the instruction-set architecture
(ISA) must be assigned a number in the register bank: the
general registers, the floating-point registers, the condi-
tion codes, and the program counter. Where the ISA does
not specify a number (such as for the PC) or when the
numbers for two registers conflict (such as for the float-

ing point and integer registers) we use an arbitrary unused
index:

r
0: r0
1: r1

...
31: r31
32: fp0

...
63: fp31
64: cc
65: PC

unused
...

m
0:
1:
2:

...

A single step of the machine is the execution of one
instruction. We can specify instruction execution by giv-
ing a step relation(r,m) 7→ (r′,m′) that maps the prior
state(r,m) to the next state(r′,m′) that holds after the
execution of the machine instruction.

For example, to describe the add instructionr1 ← r2 +
r3 we might start by writing,

(r,m) 7→ (r′,m′) ≡
r′(1) = r(2) + r(3) ∧ (∀x 6= 1. r′(x) = r(x))
∧ m′ = m

In fact, we can parameterize the above on the three
registers involved and defineadd(i, j, k) as the following
predicate on four arguments(r,m, r′,m′):

add(i, j, k) ≡
λr,m, r′,m′. r′(i) = r(j) + r(k)

∧ (∀x 6= i. r′(x) = r(x)) ∧ m′ = m

Similarly, for the load instructionri ← m[rj + c] we
define its semantics to be the predicate:

load(i, j, c) ≡
λr,m, r′,m′. r′(i) = m(r(j) + c)

∧ (∀x 6= i. r′(x) = r(x)) ∧ m′ = m

To enforce memory safety policies, we will modify the
definition ofload(i, j, c) to require that the loaded address
is legal [2], but we omit those details here.

But we must also take into account instruction fetch
and decode. Suppose, for example, that the add instruc-
tion is encoded as a 32-bit word, containing a 6-bit field
with opcode 3 denotingadd,a 5-bit field denoting the des-
tination registeri, and 5-bit fields denoting the source reg-
istersj, k:
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3 i j 0 k
26 21 16 5 0

The load instruction might be encoded as:

12 i j c
26 21 16 0

Then we can say that some numberw decodes to an
instructioninstr iff,

decode(w, instr ) ≡
(∃i, j, k.
0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ k < 25 ∧
w = 3 · 226 + i · 221 + j · 216 + k · 20 ∧
instr = add(i, j, k))
∨ (∃i, j, c.

0 ≤ i < 25 ∧ 0 ≤ j < 25 ∧ 0 ≤ c < 216 ∧
w = 12 · 226 + i · 221 + j · 216 + c · 20 ∧
instr = load(i, j, sign-extend(c)))
∨ . . .

with the ellipsis denoting the many other instructions of
the machine, which must also be specified in this formula.

We have shown [15] how to scale this idea up to the
instruction set of a real machine. Real machines have
large but semi-regular instruction sets; instead of a sin-
gle global disjunction, the decode relation can be fac-
tored into operands, addressing modes, and so on. Real
machines don’t use integer arithmetic, they use modular
arithmetic, which can itself be specified in our higher-
order logic. Some real machines have multiple program
counters (e.g., Sparc) or variable-length instructions (e.g.,
Pentium), and these can also be accommodated.

Our description of the decode relation is heavily fac-
tored by higher-order predicates (this would not be pos-
sible without higher-order logic). We have specified the
execution behavior of a large subset of the Sparc archi-
tecture, and we have built a prototype proof-generating
compiler that targets that subset. For proof-carrying code,
it is sufficient to specify a subset of the machine archi-
tecture; any unspecified instruction will be treated by the
safety policy as illegal. While this may be inconvenient
for compilers that want to generate that instruction, it does
ensure that safety cannot be compromised.

4 Specifying safety

Our step relation(r,m) 7→ (r′,m′) is deliberately par-
tial; some states have no successor state. In these states
the program counterr(PC) points to an illegal instruc-
tion. Using this partial step relation, we can define safety.
A safe program is one that will never execute an illegal

instruction; that is, a given state is safe if, for any state
reachable in the Kleene closure of the step relation, there
is a successor state:

safe-state(r,m) ≡
∀r′,m′. (r,m) 7→∗ (r′,m′) ⇒
∃r′′,m′′. (r′,m′) 7→ (r′′,m′′)

A program is just a sequence of integers (each repre-
senting a machine instruction); we say that a programp is
loaded at a locationl in memorym if

loaded(p,m, l) ≡ ∀i ∈ dom(p). m(i+ l) = p(i)

Finally (assuming that programs are written in position-
independent code), a program issafeif, no matter where
we load it in memory, we get a safe state:

safe(p) ≡
∀r,m, start . loaded(p,m, start) ∧ r(PC) = start

⇒ safe-state(r,m)

Let ; be a “cons” operator for sequences of integers
(easily definable in higher-order logic); then for some pro-
gram

8420 ; 2837 ; 2938 ; 2384 ; nil

the safety theorem is simply

safe ( 8420 ; 2837 ; 2938 ; 2384 ; nil )

and, given a proofP , the LF definition that must be type-
checked is

t: pf(safe(8420;2837;2938;2384;nil)) = P .

Though we wrote in section 2 that definitions need
not be trusted because they can be type-checked, this is
not strictly true. Any definition used in the statement of
the theorem must be trusted, because the wrong definition
will lead to the proof of the wrong theorem. Thus, all the
definitions leading up to the definition ofsafe (including
add , load , safe-state , step , loaded , etc.) must be
part of the trusted checker. Since we have approximately
1,600 lines of such definitions, and they are a component
of our “minimal” checker, one of the most important is-
sues we faced is the representation of these definitions;
we will discuss this in Section 7.

On the other hand, a large proof will contain hundreds
of internal definitions. These are predicates and internal
lemmas of the proof (not of the statement of the theorem),
and are at the discretion of the proof provider. Since each
is type checked by the checker before it is used in further
definitions and proofs, they don’t need to be trusted.
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In the table below we show the various pieces needed
for the specification of the safety theorem in our logic.
Every piece in this table is part of the TCB. Column two
shows the number of lines of Twelf code needed for the
specification and column three the number of definitions
in that specification. The first two lines show the size of
the logical and arithmetic connectives (in which theorems
are specified) as well as the size of the logical and arith-
metic axioms (using which theorems are proved). The
Sparc specification has two components, a “syntactic”
part (the decode relation) and a semantic part (the defi-
nitions ofadd, load,etc.); these are shown in the next two
lines. The size of the safety predicate is shown last.

Safety Specification Lines Definitions
Logic 135 61
Arithmetic 160 94
Machine Syntax 460 334
Machine Semantics 1,005 692
Safety Predicate 105 25

Total 1,865 1,206

From this point on we will refer to everything in the table
as thesafety specificationor simply thespecification.

5 Eliminating redundancy

Typically an LF signature will contain much redundant
information. Consider for example the rules forimp pre-
sented previously; in fully explicit form, their representa-
tion in LF is as follows:

imp_i: {A : form}{B : form}
(pf A -> pf B) -> pf (A imp B).

imp_e: {A : form}{B : form}
pf (A imp B) -> pf A -> pf B.

The fact that bothA andB are formulas can be easily in-
ferred by the fact they are given as arguments to the con-
structor imp , which has been previously declared as an
operator over formulas.

On the one hand, eliminating redundancy from the rep-
resentation of proofs benefits both proof size and type-
checking time. On the other hand, it requires performing
term reconstruction, and thus it may dramatically increase
the complexity of type checking, driving us away from
our goal of building a minimal checker.

Twelf deals with redundancy by allowing the user to
declare some parameters asimplicit. More precisely, all
variables which are not quantified in the declaration are
automatically assumed implicit. Whenever an operator

is used, Twelf’s term reconstruction will try to determine
the correct substitution for all its implicit arguments. For
example, in type-checking the lemma

imp_refl : pf (A imp A) =
imp_i ([p : pf A] p).

Twelf will automatically reconstruct the two implicit ar-
guments ofimp i to be both equal toA.

While Twelf’s notion of implicit arguments is effective
in eliminating most of the redundancy, type reconstruc-
tion adds considerable complexity to the system. Another
drawback of Twelf’s type reconstruction is its reliance on
unification, which for higher-order terms is in general un-
decidable. Because of this, type checking of some valid
proofs may fail.

Necula’sLFi [17] uses partial type reconstruction and
a simple algorithm to determine which of the arguments
can be made implicit. Implicit arguments are omitted in
the representation, and replaced by placeholders.

Oracle-based checking [18] reduces the proof size even
further by allowing the erasure of subterms whose recon-
struction is not uniquely determined. Specifically, in cases
when the reconstruction of a subterm is not unique, but
there is a finite (and usually small) list of candidates, it
stores an oracle for the right candidate number instead of
storing the entire subterm.

All the techniques mentioned above are based on
the idea that it is acceptable to make the typechecker
“smarter” (and therefore larger, and more likely to contain
bugs) in order to minimize proof size. In this work, how-
ever, we are interested in a minimal proof checker, and so
we looked for a way to eliminate some redundancy from
the LF representation, without adding too many lines of
code to the TCB.

We internally represent LF terms as directed acyclic
graphs (DAGs). This representation gives us a simple
way to reduce redundancy by structure sharing. We save
space, since common subterms are stored just once; we
also save time, because testing for equality of two terms
is performed by reference first.

A node in the DAG can be one of ten possible types:
one for kinds, five for ordinary LF terms, and four for
arithmetic expressions. Each node may store up to three
integers,arg1 , arg2 , andtype . This last one, if present,
will always point to the sub-DAG representing the type of
the expression.
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arg1 arg2 type
n U U U kind
c U U M constant
v M M M variable
a M M O application
p M M O product
l M M O abstraction
# M U O number
+ M M O addition proof obj
* M M O mult proof obj
/ M M O div proof obj

M = mandatory
O = optional
U = unused

The content ofarg1 andarg2 is used in different ways
for different node types. For all nodes representing arith-
metic expressions (‘#’, ‘+’, ‘*’, and ‘/’), these contain in-
teger values; in particular, for the nodes corresponding to
meta-level numbers (‘#’) onlyarg1 is used. For products
and abstractions (‘p’ and ‘l’),arg1 points to the bound
variable, andarg2 to the term where the binding takes
place. For variable nodes (‘v’),arg1 andarg2 are used
to make sure that the variable always occurs within the
scope of a quantifier. For application nodes (‘a’),arg1

andarg2 point to the function and its argument, respec-
tively. Finally, constant declaration nodes (‘c’), and kind
declaration nodes (‘n’) use neither of the two.

For a concrete example, consider the LF signature:

form : type.
pf : form -> type.
imp : form -> form -> form.

Remembering that-> above is just a shorthand for the
product of types, we present below the DAG represen-
tation of this signature. We “flattened” the DAG into a
numbered list, and, for clarity, we also added a comment
on the right showing the corresponding LF term.

1| n 0 0 0 ; type Kind
2| c 0 0 1 ; form: type
3| v 0 0 2 ; x: form
4| p 3 1 0 ; {x: form} type
5| c 0 0 4 ; pf: {x: form} type
6| v 0 0 2 ; y: form
7| p 6 2 0 ; {y: form} form
8| v 0 0 2 ; x: form
9| p 8 7 0 ; {x: form}{y: form} form

10| c 0 0 9 ; imp: {x: form}{y: form} form

6 Dealing with arithmetic

Since our proofs reason about encodings of machine
instructions (opcode calculations) and integer values ma-

nipulated by programs, the problem of representing arith-
metic within our system is a critical one. A purely logical
representation based on 0, successor and predecessor is
not suitable to us, since it would cause proof size to ex-
plode.

The latest releases of Twelf offer extensions that deal
natively with infinite-precision integers and rationals.
While these extensions are very powerful and convenient
to use, they offer far more than we need, and because of
their generality they have a very complex implementation
(the rational extension alone is 1,950 lines of Standard
ML). What we actually would like for our checker is an
extension built in the same spirit as those, but much sim-
pler and lighter.

There are essentially two properties that we require
from such an extension:

1. LF terms for all the numbers we use; moreover, the
size of the LF term forn should be constant and in-
dependent ofn.

2. Proof objects for single-operation arithmetic facts
such as “10 + 2 = 12”; again, we require that such
proof objects have constant size.

Our arithmetic extensions to the checker are the small-
est and simplest ones to satisfy (1) and (2) above. We add
theword32 type to the TCB, (representing integers in the
range [0, 232 − 1]) as well as the following axioms:

word32 : type.
+ : word32 -> word32 -> word32 -> type.
* : word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.

We also modify the checker to accept arithmetic terms
such as:

567 : word32.
456+25 : + 456 25 481.
32*4 : * 32 4 128.
56/5 : / 56 5 11.

This extension does not modify in any way the stan-
dard LF type checking: we could have obtained the same
result (although much more inefficiently) if we added all
these constants to the trusted LF signature by hand. How-
ever, granting them special treatment allowed us to save
literally millions of lines in the axioms in exchange for an
extra 55 lines in the checker.

To embed and use these new constants in our object
logic, we also declare:

6



const: word32 -> tm num.
eval_plus:

+ A B C ->
pf (eq (plus (const A) (const B))

(const C)).
eval_times:

* A B C ->
pf (eq (times (const A) (const B))

(const C)).
eval_div:

/ M N Q ->
pf ((geq (const M)

(times (const N) (const Q)))
and
(not

(geq (const M)
(times (const N)

(plus one
(const Q)))))).

This embedding fromword32 to numbers in our object
logic is not surjective. Numbers in our object logic are
still unbounded;word32 merely provides us with handy
names for the ones used most often.

With this “glue” to connect object logic to meta logic,
numbers and proofs of elementary arithmetic properties,
are just terms of size two. For example, the representa-
tion of 5634in the object logic, isconst 5634 , which, by
virtue of these additional axioms, can be easily verified to
be a valid term of typenum.

7 Representing axioms and trusted defini-
tions

Since we can represent axioms, theorems, and proofs
as DAGs, it might seem that we need neither a parser nor
a pretty-printer in our minimal checker. In principle, we
could provide our checker with an initial trusted DAG rep-
resenting the axioms and the theorem to be proved, and
then it could receive and check an untrusted DAG repre-
senting the proof. The trusted DAG could be represented
in the C language as an initialized array of graph nodes.

This might work if we had a very small number of ax-
ioms and trusted definitions, and if the statement of the
theorem to be proved were very small. We would have
to read and trust the initialized-array statements in C, and
understand their correspondence to the axioms (etc.) as
we would write them in LF notation. For a sufficiently
small DAG, this might be simpler than reading and trust-
ing a parser for LF notation.

However, even a small set of operators and axioms
(especially once the axioms of arithmetic are included)
requires hundreds of graph nodes. In addition, as ex-
plained in Section 4, our trusted definitions include the

machine-instruction step relation of the Sparc processor.
These 1,865 lines of Twelf expand to 22,270 DAG nodes.
Clearly it is impossible for a human to directly read and
trust a graph that large.

Therefore, we require a parser or pretty-printer in the
minimal checker; we choose to use a parser. Our C pro-
gram will parse the 1,865 lines of axioms and trusted def-
initions, translating the LF notation into DAG nodes. The
axioms and definitions are also part of the C program:
they are a constant string to which the parser is applied
on startup.

This parser is 428 lines of C code; adding these lines to
the minimal checker means our minimal checker can use
1,865 lines of LF instead of 22,270 lines of graph-node
initializers, clearly a good tradeoff.

Our parser accepts valid LF expressions, written in the
same syntax used by Twelf. In addition to those, it will
also parse nonnegative numbers below232 and type them
asword32 objects.

Two extra features we added to our parser are infix op-
erators (the fixity information is passed to the parser using
the same%infix directive used by Twelf), and single-line
comments. While these are not strictly necessary, imple-
menting them did not significantly affect the complexity
of the parser, and their use greatly improved the readabil-
ity of the specification, and therefore its trustworthiness.

7.1 Encoding higher-order logic in LF

Our encoding of higher-order logic in LF follows that
of Harper et al. [14] and is shown in figure 1. Thecon-
structorsgenerate the syntax of the object logic and the
axiomsgenerate its proofs. A meta-logical type istype

and an object-logic type istp . Object-logic types are con-
structed fromform (the type of formulas),num (the type
of integers), and thearrow constructor. So the object-
logic predicateeven? , for instance, would have object
type (num arrow form) . The LF termtm maps an ob-
ject type to a meta type, so an object-level term of typeT

has type (tm T) in the meta logic.
Abstraction in the object logic is expressed by thelam

term. The term(lam [x] (F x)) is the object-logic
function that mapsx to (F x) . Application for such
lambda terms is expressed via the@operator. The quanti-
fier forall is defined to take as input a meta-level (LF)
function of type (tm T -> tm form) and produce a
tm form . The use of the LF functions here makes it easy
to perform substitution when a proof offorall needs to
be discharged, since equality in LF is justβη-conversion.

Notice that most of the standard logical connectives
are absent from figure 1. This is because we can produce
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Logic Constructors

tp : type.
tm : tp -> type.
form : tp.
num : tp.
arrow : tp -> tp -> tp.
pf : tm form -> type.
lam : (tm T1 -> tm T2) -> tm (T1 arrow T2).
@ : tm (T1 arrow T2) -> tm T1 -> tm T2.
forall : (tm T -> tm form) -> tm form.
imp : tm form -> tm form -> tm form.

Logic Axioms

beta e : pf (P ((lam F) @ X)) -> pf (P (F X)).
beta i : pf (P (F X)) -> pf (P (lam F) @ X).
imp i : (pf A -> pf B) -> pf (A imp B).
imp e : pf (A imp B) -> pf A -> pf B.
forall i : ( {X : tm T } pf (A X)) -> pf (forall A).
forall e : pf (forall A) -> {X : tm T } pf (A X).

Figure 1: Higher Order Logic in Twelf

them as definitions from the constructors we already have.
For instance, theand andor connectives can be defined
as follows:

and = [A][B] forall [C]
(A imp B imp C) imp C.

or = [A][B] forall [C]
(A imp C) imp (B imp C) imp C.

It is easy to see that the above formulae are equivalent
to the standard definitions ofand andor . We can like-
wise define introduction and elimination rules for all such
logic constructors. These rules are proven as lemmas and
need not be trusted. Object-level equality2 is also easy to
define:

eq : tm T -> tm T -> tm form =
[A : tm T][B : tm T]

forall [P] P @ B imp P @ A.

This states that objectsA andB are considered equal iff
any predicateP that holds onB also holds onA.

2The equality predicate is polymorphic inT in a sense to be made
precise later. The objectsAandBhave object typeT and so they could be
nums, form s or even object level functions (arrow types). The object
typeT is implicit in the sense that when we use theeq predicate we do
not have to specify it; Twelf can automatically infer it. So internally,
the meta-level type ofeq is not what we have specified above but the
following:

eq : {T : tp} tm T -> tm T -> tm form = ...

We will have more to say about this in section 7.2.

Terms of type (pf A ) are terms representing proofs
of object formulaA. Such terms are constructed us-
ing the axioms of figure 1. Axiomsbeta e and
beta i are used to proveβ-equivalence in the object
logic. The first states that for any meta-level predicate
P (of type tm T -> tm form ), if P holds on the term
((lam F) @ X) then it also holds on(F X) . Axiom
beta i takes one in the other direction. Axiomsimp i

and imp e transform a meta-level proof function to the
object level and vice-versa. Finally,forall i introduces
the forall statement if it is presented with a meta-level
function fromX to pf (A X) , andforall e discharges
a forall by applying the meta-level functionA to an
instanceX of its domain to producepf (A X) . Notice
how the higher-order abstract syntax of LF makes this dis-
charging (and the term substitution ofX in the body ofA)
completely painless for the designer of the logic.

As an example of a simple proof we show how to
prove the reflexivity lemmarefl , which states that all
objects equal themselves. By the definition ofeq, if X is
to equal itself, we must to show that for any predicateP if
(P @ X) then(P @ X) – which is obvious. Here is the
proof:

refl : pf (eq X X) =
forall_i [P] imp_i [q : pf (P @ X)] q.
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7.2 “Polymorphic” programming in Twelf

ML-style implicit polymorphism allows one to write
a function usable at many different argument types, and
ML-style type inference does this with a low syntactic
overhead. We are writing proofs, not programs, but we
would still like to have polymorphic predicates and poly-
morphic lemmas. LF is not polymorphic in the ML sense,
but Harper et al. [14] show how to use LF’s dependent
type system to get the effect and (most of) the conve-
nience of implicit parametric polymorphism with an en-
coding trick, which we will illustrate with an example.

Suppose we wish to write the lemmacongr that would
allow us to substitute equals for equals:

congr : {H : type -> tm form}
pf (eq X Z) -> pf (H Z)

-> pf (H X) = ...

The lemma states that for any predicateH, if H holds onZ

andZ = X thenHalso holds onX. Unfortunately this does
not work in LF since LF does not allow polymorphism.
Fortunately though, there is way to get polymorphism at
the object level. We rewritecongr as:

congr : {H : tm T -> tm form}
pf (eq X Z) -> pf (H Z)

-> pf (H X) = ...

and this is now acceptable to Twelf. FunctionH now
judges objects of meta-type(tm T) for any object-level
type T, and socongr is now “polymorphic” in T. We
can apply it on any object-level type, such asnum, form ,
num arrow num , num arrow form , etc. This solution
is general enough to allow us to express any polymor-
phic term or lemma with ease. Axiomsforall i and
forall e in figure 1 are likewise polymorphic inT.

7.3 How to write explicit Twelf

In the definition of lemmacongr above, we have
left out many explicit parameters since Twelf’s type-
reconstruction algorithm can infer them. The actual LF
type of the termcongr is:

congr : {T : tp}{X : tm T}{Z : tm T}
{H : tm T -> tm form}

pf (_eq T X Z) -> pf (H Z)
-> pf (H X) = ...

Type reconstruction in Twelf is extremely useful, espe-
cially in a large system like ours, where literally hundreds
of definitions and lemmas have to be stated and proved.

Our safety specification was originally written to take
advantage of Twelf’s ability to infer missing arguments.

Before proof checking can begin, this specification needs
to be fed to our proof checker. In choosing then what
would be in our TCB we had to decide between the fol-
lowing alternatives:

1. Keep the implicitly-typed specification in the TCB
and run it through Twelf to produce an explicit ver-
sion (with no missing arguments or types). This ex-
plicit version would be fed to our proof checker. This
approach allows the specification to remain in the
implicit style. Also our proof checker would remain
simple (with no type reconstruction/inference capa-
bilities) but unfortunately we now have to add to the
TCB Twelf’s type-reconstruction and unification al-
gorithms, which are about 5,000 lines of ML code.

2. Run the implicitly typed specification through Twelf
to get an explicit version. Now instead of trust-
ing the implicit specification and Twelf’s type-
reconstruction algorithms, we keep them out of the
TCB and proceed to manually verify the explicit ver-
sion. This approach also keeps the checker simple
(without type-reconstruction capabilities). Unfortu-
nately the explicit specification produced by Twelf
explodes in size from 1,700 to 11,000 lines, and thus
the code that needs to be verified correct is huge. The
TCB would grow by a lot.

3. Rewrite the trusted definitions in an explicit style.
Now we do not need type reconstruction in the TCB
(the problem of choice 1), and if the rewrite from
the implicit to the explicit style can avoid the size
explosion (the problem of choice 2), then we have
achieved the best of both worlds.

Since neither of choices 1 and 2 above were consis-
tent with our goal of a small trusted computing base, we
followed choice 3 and rewrote the trusted definitions in
an explicit style while managing to avoid the size explo-
sion. The new safety specification is only 1,865 lines
of explicitly-typed Twelf. It contains no terms with im-
plicit arguments – everything is explicit and every quan-
tified variable is explicitly typed. Thus, we do not need a
type-reconstruction/type-inference algorithm in the proof
checker. The rewrite solves the problem while maintain-
ing the succinctness and brevity of the original TCB, the
penalty of the explicit style being an increase in size of
124 lines. The remainder of this section explains the prob-
lem in detail and the method we used to bypass it.

To see why there is such an enormous difference in
size (1,700 lines vs 11,000) between the implicit specifi-
cation and its explicit representation generated by Twelf’s
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Object Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
lam6 (arrow T1 (arrow T2 form))

(arrow T3 (arrow T2 form))
(arrow T2 form)
(arrow T1 (arrow T3 T4))
T4 T2 form

[f0][f1][p_pi][icons][ins][w]
(@ T2 form p_pi w) and
(exists2 T1 ([x:tm T1] T3)

([g0:tm T1] [g1:tm T3]
(@ T2 form

(&& T2 (@ T1 (arrow T2 form) f0 g0)
(@ T3 (arrow T2 form) f1 g1)) w) and

(eq T4 ins (@ T3 T4
(@ T1 (arrow T3 T4)

icons g0) g1)))).

Meta Logic Abstraction/Application

fld2 = [T1:tp][T2:tp][T3:tp][T4:tp]
[f0][f1][p_pi][icons][ins][w]
(p_pi w) and
(exists2 [g0:tm T1][g1:tm T3]

(f0 g0 && f1 g1) w) and
(eq ins (icons g0 g1)).

Figure 2: Abstraction & Application in the Object versus Meta Logic.

type-reconstruction algorithm, consider the following ex-
ample. Let F be a two-argument object-level pred-
icate F : tm (num arrow num arrow form) (typi-
cal case when describing unary operators in an instruc-
tion set). When such a predicate is applied, as in
(F @ X @ Y), Twelf has to infer the implicit arguments
to the two instances of operator@. The explicit represen-
tation of the application then becomes:

@ num form (@ num (num arrow form) F X) Y

It is easy to see how the explicit representation explodes
in size for terms of higher order. Since the use of higher-
order terms was essential in achieving maximal factoring
in the machine descriptions [15], the size of the explicit
representation quickly becomes unmanageable.

Here is another more concrete example from the
decode relation of section 3. This one shows how the
abstraction operatorlam suffers from the same problem.
The predicate below (given in implicit form) is used in
specifying the syntax of all Sparc instructions of two ar-
guments.

fld2 = lam6 [f0][f1][p_pi][icons][ins][w]
p_pi @ w and
exists2 [g0][g1] (f0 @ g0 && f1 @ g1) @ w and

eq ins (icons @ g0 @ g1).

Predicatesf0 andf1 specify the input and the output reg-
isters,p pi decides the instruction opcode,icons is the
instruction constructor,ins is the instruction we are de-
coding, andw is the machine-code word.3 In explicit form

3As we mentioned before, our specifications are highly factored and
this is an example of such factoring – any instruction of two arguments

this turns into what we see on the left-hand side of figure 2
– an explicitly typed definition 16 lines long.

The way around this problem is the following: We
avoid using object-logic predicates whenever possible.
This way we need not specify the types on which object-
logic application and abstraction are used. For example,
the fld2 predicate above now becomes what we see on
the right-hand side of figure 2. This new predicate has
shrunk in size by more than half.

Sometimes moving predicates to the meta-logic is not
possible. For instance, we representinstructionsas pred-
icates from machine states to machine states (see sec-
tion 3). Such predicates must be in the object logic
since we need to be able to use them in quantifiers
(exists [ins : tm instr] ...). Thus, we face the
problem of having to supply all the implicit types when
defining such predicates and when applying them. But
since these types are always fixed we can factor the par-
tial applications and avoid the repetition. So, for example,
when defining some Sparc machine instruction as in:

i_anyInstr = lam2 [rs : tnum][rd : tnum]
lam4 registers memory

registers memory form
[r : tregs][m : tmem]
[r’ : tregs][m’ : tmem]

...

we define the predicateinstr lam as:

can be specified using this predicate. To define, for instance, the pred-
icate that decides theFMOVs(floating-point move) instruction on the
Sparc, we would say:

ins_MOVs = fld2 @ f_fs2 @ f_fd @ p_FMOVs @ i_FMOVs.

where the arguments are as described above.
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instr_lam = lam4 registers memory
registers memory form.

and then use it in defining each of the 250 or so Sparc
instructions as below:

i_anyInstr = [rs : tnum][rd : tnum]
instr_lam [r : tregs][m : tmem]

[r’ : tregs][m’ : tmem]
...

This technique turns out to be very effective because our
machine syntax and semantics specifications were highly
factored to begin with [15].

So by moving to the meta logic and by clever factoring
we have moved the TCB from implicit to explicit style
with only a minor increase in size. Now we don’t have
to trust a complicated type-reconstruction/type-inference
algorithm. What we feed to our proof checker is precisely
the set of axioms we explicitly trust.

7.4 The implicit layer

When we are building proofs, we still wish to use the
implicit style because of its brevity and convenience. For
this reason we have built an implicit layer on top of our ex-
plicit TCB. This allows us to write proofs and definitions
in the implicit style and LF’sβη-conversion takes care of
establishing meta-level term equality. For instance, con-
sider the object-logic application operator@given below:

_@ : {T1 : tp}{T2 : tp}
tm (T1 arrow T2) ->

tm T1 -> tm T2.

In the implicit layer we now define a corresponding appli-
cation operator@in terms of @as follows:

@ : tm (T1 arrow T2) ->
tm T1 -> tm T2 = _@ T1 T2.

In this term the type variablesT1 andT2 are implicit and
need not be specified when@is used. Because@is a def-
inition used only in proofs (not in the statement of the
safety predicate), it does not have to trusted.

8 The proof checker

The total number of lines of code that form our checker
is 2,668. Of these, 1,865 are used to represent the LF sig-
nature containing the core axioms and definition, which is
stored as a static constant string.

The remaining 803 lines of C source code, can be bro-
ken down as follows:

Component Lines
Error messaging 14
Input/Output 29
Parser 428
DAG creation and manipulation 111
Type checking and term equality 167
Main program 54

Total 803

In designing the components listed above, we make
sure not to use any library functions. Libraries often have
bugs, and by avoiding their use we eliminate the possibil-
ity that some adversary may exploit one of these bugs to
disable or subvert proof checking.

8.1 Trusting the C compiler

We hasten to point out that these 803 lines of C need
to be compiled by a C compiler, and so it would appear
that this compiler would need to be included in our TCB.
The C compiler could have bugs that may potentially
be exploited by an adversary to circumvent proof check-
ing. More dangerously perhaps, the C compiler could
have been written by the adversary so while compiling
our checker, it could insert a Thompson-style [21] Trojan
horse into the executable of the checker.

All proof verification systems suffer from this prob-
lem. One solution (as suggested by Pollack [20]) is that of
independent checking: write the proof checker in a widely
used programming language and then use different com-
pilers of that language to compile the checker. Then run
all your checkers on the proof in question. This is similar
to the way mathematical proofs are “verified” as such by
mathematicians today.

The small size of our checker suggests another solu-
tion. Given enough time one may read the output of the C
compiler (assembly language or machine code) and verify
that this output faithfully implements the C program given
to the compiler. Such an examination would be tedious
but it is not out of the question for a C program the size of
our checker, and it could be carried out if such a high level
of assurance was necessary. Such an investigation would
certainly uncover Thompson-style Trojan horses inserted
by a malicious compiler. This approach would not be fea-
sible for the JVMs mentioned in the introduction; they are
simply too big.

8.2 Proof-checking measurements

In order to test the proof checker, and measure its per-
formance, we wrote a small Standard ML program that
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converts Twelf internal data structures into DAG format,
and dumps the output of this conversion to a file, ready
for consumption by the checker.

We performed our measurements on a sample proof of
nontrivial size. In its original formulation, this proof is
6,367 lines of Twelf, and makes extensive use of implicit
arguments. Converted to its fully explicit form, its size
expands to 49,809 lines. Its DAG representation consists
of 177,425 nodes.

Checking the sample proof consists of the steps shown
below; timings for each step are also shown:

1. Parsing the axioms and definitions in the TCB and
generating a DAG for them: 0.06 secs.

2. Loading the proof from disk: 0.02 secs.

3. Checking the DAG for well-formedness: 0.03 secs.

4. Type checking the proof term: 79.94 secs.

The measurements above were made on a 1 GHz Pen-
tium III PC with 256MB of memory. During type check-
ing of this proof the number of temporary nodes gener-
ated is 1,115,768. Most of the time during type check-
ing is spent in performing substitutions in reductions to
weak head normal form (WHNF). We believe that reduc-
tion to WHNF may not be necessary in all cases, and
that by performing some analysis in the checker we could
obtain improvements in both memory usage and type-
checking time, without a significant increase in the size
of the checker.

9 Future work

The DAG representation of proofs is quite large, and
we would like to do better. One approach would be to
compress the DAGs in some way; another approach is
to use a compressed form of the LF syntactic notation.
However, we believe that the most promising approach is
neither of these.

Our proofs of program safety are structured as fol-
lows: first we prove (by hand, and check by machine)
many structural lemmas about machine instructions and
semantics of types [4, 5, 1]. Then we use these lemmas
to prove (by hand, as derived lemmas) the rules of a low-
level typed assembly language (TAL). Our TAL has sev-
eral important properties:

1. Each TAL operator corresponds to exactly 0 or 1 ma-
chine instructions (0-instruction operators are coer-
cions that serve as hints to the TAL typechecker and
do nothing at runtime).

2. The TAL rules prescribe Sparc instruction encodings
as well as the more conventional [16] register names,
types, and so on.

3. The TAL typing rules are syntax-directed, so type-
checking a TAL expression is decidable by a simple
tree-walk without backtracking.

4. The TAL rules can be expressed as a set of Horn
clauses.

Although we use higher-order logic to state and prove
lemmas leading up to the proofs of the TAL typing rules,
and we use higher-order logic in the proofs of the TAL
rules, we take care to make all the statements of the TAL
rules first-order Horn clauses. Consider such a clause,

head :- goal1 , goal2 , goal3.

In LF (using our object logic) we could express this as
a lemma:

n : pf (goal3) -> pf (goal2) ->
pf (goal1) -> pf (head) =

proof .

Insideproof there may be higher-order abstract syntax,
quantification, and so on, but thegoal s are all Prolog-
style. The namen identifies the clause.

Our compiler (that produced the Sparc machine code)
does so using a series of typed intermediate languages, the
last of which is our TAL. Our prover constructs the safety
proof for the Sparc program by “executing” the TAL Horn
clauses as a logic program, using the TAL expression as
input data. The proof is then a tree of clause names, cor-
responding to the TAL typing derivation.

We can make a checker that takes smaller proofs by
just implementing a simple Prolog interpreter (without
backtracking, since TAL is syntax-directed). But the we
would need to trust the Prolog interpreter and the Prolog
program itself (all the TAL rules). This is similar to what
Necula [17] and Morrisett et al. [16] do. The problem
is that in a full-scale system, the TAL comprises about a
thousand fairly complex rules. Necula and Morrisett have
given informal (i.e., mathematical) proofs of the sound-
ness of their type systems for prototype languages, but no
machine-checked proof, and no proof of a full-scale sys-
tem.

The solution, we believe, is to use the technology we
have described in the previous sections of this paper to
check the derivations of the TAL rules from the axioms of
logic (and the specification of the Sparc). Then, we can
add a simple (non-backtracking) Prolog interpreter to our
minimal checker, which will no longer be minimal: we

12



estimate that this interpreter will add 200–300 lines of C
code.

The proof producer (adversary) will first send to our
checker, as a DAG, the definitions of Horn clauses for
the TAL rules, which will be LF-typechecked. Then, the
“proofs” sent for machine-language programs will be in
the form of TAL expressions, which are much smaller
than the proof DAGs we measured in section 8.

A further useful extension would be to implement
oracle-based checking [18]. In this scheme, a stream
of “oracle bits” guides the application of a set of Horn
clauses, so that it would not be necessary to send the TAL
expression – it would be re-derived by consulting the or-
acle. This would probably give the most concise safety
proofs for machine-language programs, and the imple-
mentation of the oracle-stream decoder would not be too
large. Again, in this solution the Horn clauses are first
checked (using a proof DAG), and then they can be used
for checking many successive TAL programs.

Although this approach seems very specific to our ap-
plication in proof-carrying code, it probably applies in
other domains as well. Our semantic approach to dis-
tributed authentication frameworks [3] takes the form of
axioms in higher-order logic, which are then used to prove
(as derived lemmas) first-order protocol-specific rules.
While in that work we did not structure those rules as
Horn clauses, more recent work in distributed authenti-
cation [11] does express security policies as sets of Horn
clauses. By combining the approaches, we could have our
checker first verify the soundness of a set of rules (using a
DAG of higher-order logic) and then interpret these rules
as a Prolog program.

10 Conclusion

Proof-carrying code has a number of technical advan-
tages over other approaches to the security problem of
mobile code. We feel that the most important of these
is the fact that the trusted code of such a system can be
made small. We have quantified this and have shown that
in fact the trusted code can be made orders of magnitude
smaller than in competing systems (JVMs). We have also
analyzed the representation issues of the logical specifi-
cation and shown how they relate to the size of the safety
predicate and the proof checker. In our system the trusted
code itself is based on a well understood and analyzed
logical framework, which adds to our confidence of its
correctness.
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