
JVM TCB: Measurements of the
Trusted Computing Base of Java Virtual Machines

Andrew W. Appel Daniel C. Wang

Princeton University
April 12, 2002

Abstract. The trusted computing base (TCB) of a Java vir-
tual machine (JVM) is the part of the program code in which
programming bugs could lead to security holes. Java systems
keep the front end compiler (which translates source code to
byte code) out of the TCB, by having the JVM verify the safety
of the byte code before just-in-time (JIT) compiling it to ma-
chine code. Still, the JIT compiler itself is usually in the TCB,
and the more lines of code in the TCB, the more likelihood of
security problems. We have measured the TCB size of several
JVMs, and find that they range from 36,000 to 229,000 lines of
source code.

When you obtain a piece of software – a shrink-
wrapped application, a browser plugin, an applet, an OS
kernel extension – you might like to ascertain that it’s safe
to execute: for example, it accesses only its own mem-
ory and respects the private variables of the API to which
it’s linked. The Java byte-code verifier can make such
a guarantee by “type-checking” the byte-code program
before the just-in-time (JIT) compiler translates it to ma-
chine code for efficient execution.

A safe mobile code host is one that permits untrusted
software to run while guaranteeing that it obeys a given
security policy; a JVM is an example of a safe host. The
design of Java (or of any type-safe language such as C#,
ML, Modula-3) allows this guarantee to be neatly decom-
posed into two parts:

Type safety. The Java byte-code verifier checks type-
safety: that the program respects its API’s, doesn’t
cast integers to pointers, doesn’t fetch private fields,
and so on.

Capability engineering. Type-safe applets interact with
the outside world (and sensitive data) by politely
making API calls (not impolitely modifying the pri-
vate variables of API implementations). But the
API must grant capabilities (implemented as ob-
jects) only in accordance with the security policy
[Wal99, AWF00].

But suppose there’s a bug in the implementation of the
JVM? Then an attacker can design just the right kind of

program that will exploit the bug and breach security. A
bug in the verifier may permit type-unsafe code that casts
integers to pointers. A bug in the JIT compiler may incor-
rectly compile type-safe byte-code into type-unsafe ma-
chine code in a way that the attacker can exploit to cast
integers to pointers; and the same for bugs in the garbage
collector. Once a type-safety violation is permitted, it’s
easy for the attacker to modify any memory address, and
security is completely compromised [DFW96].

If there are no bugs that compromise type safety, there
may still be bugs in the capability engineering. Then the
attacker can’t access and modify arbitrary memory loca-
tions, but might still be able to perform file and network
I/O (by politely abusing API calls) that violate the secu-
rity policy.

In assessing the vulnerability of systems to attack, we
use the notion oftrusted computing base(TCB), which is
that portion of a system in which any bug might lead to a
security hole. A bug outside the TCB may cause incorrect
behavior but not insecure behavior. The untrusted soft-
ware is outside the TCB; it may contain bugs that make
it display meaningless or misleading results, but it must
still obey the security policy (e.g., it cannot read or de-
stroy the host’s private data).

Many components of a JVM are not in the TCB. For
example, user libraries, provided by the host to the un-
trusted code, implemented in type-safe Java, and that
do not provide capability objects, cannot cause security
holes even if they contain bugs. At worst they cause the
untrusted code to behave incorrectly. This is an impor-
tant advantage of type-safe languages; even a very large
system can have a relatively small TCB.

A ”high-assurance” safe host is one whose TCB has
been carefully audited by appropriate methods such as
mathematical proof, software engineering practices, or
testing. Obviously, it is desirable that the TCB be as small
and well-engineered as possible.

Just as the security guarantee decomposes nicely into
two parts (in a type-safe language), the TCB can be sepa-
rated into two parts. TheSafety TCBincludes any compo-
nent in which a bug could compromise type safety: typ-

1



ically, the byte-code verifier, the just-in-time (JIT) com-
piler, the garbage collector, the core runtime system, and
any libraries implemented in type-unsafe languages such
as C or C++. In a conventional Java system, the type-
safety audit is difficult, because the JIT is large and rea-
soning about its correctness is complex.

The capability TCBcovers those APIs that allow ac-
cess to resources such as files and networks. Fortunately,
since most of these APIs are implemented in type-safe
Java, the audit can take the source code at face value; this
would not be possible in a C or C++ system, where there
would be no protection from illegitimate casting by the
untrusted applet.

Proof-carrying code (PCC) is a new approach to guar-
anteeing type safety, by constructing and verifying a
mathematical proof about a machine-language program
[Nec97]. With PCC, the byte-code verifier and the JIT
compiler can be outside of the TCB, because the out-
put of the JIT is verified. The TCB of a proof-carrying
code system includes a verification-condition generator,
logical axioms, typing rules, and a proof-checker. For-
tunately, these TCB components are significantly smaller
than the TCB of a JIT and JVM, and may be easier to
reason about.

Foundational proof-carrying code is an improvement
of PCC, being designed at Princeton, that is an attempt
to answer the question, “What is the smallest possible
TCB for a safe mobile-code system?” We reduce the size
of the trusted components even at the expense of a large
increase in the size of the untrusted parts [AF00, MA00,
AM00, WA01].

Measurements. We can learn something about the de-
sign of a system by measuring the size (in lines of source
code) of the TCB. This is a very crude measure, as it tells
us little about the quality of the code, but it may nonethe-
less be instructive. We have measured several JVMs, and
for each we report three numbers:

• Safety TCBmeasures a core Java system without its
class libraries, roughly what is described inThe Java
Programming Language[AG96] minus chapters 11
and 12. This is meant to measure the parts of the
system that ensure that Java classes respect the API’s
of the interfaces and classes to which they are linked
– that is, type safety.

• Security TCBis the size of the entire system’s trusted
computing base; it approximates the safety TCB
plus the capability TCB.

If we imagine a Java system with almost all the API’s
stripped away, leaving only the Object, Exception, and
JNI classes, we get a “min-API” system. Any component
not in the min-API system cannot be part of the Safety

TCB; it will be either in the Security TCB or not in the
trusted computing base at all.

For a conventional JVM with just-in-time (JIT) com-
piler, we calculate the number as follows. We count each
module in one of the following categories:

FC Front-end compiler from Java byte codes to verifi-
able intermediate language; for conventional JVM’s,
where the verifiable ILis byte code, this is zero.

C Just-in-time compiler, byte-code verifier, linker.

GC Garbage collector.

CR Core run-time system (present even in the min-API
system, necessarily present for any Java code to run,
typically not implemented in Java itself).

UL Type-unsafe libraries to support APIs (not imple-
mented in type-safe Java, not part of min-API sys-
tem).

TL Type-safe security-critical runtime libraries (imple-
mented in Java, provide sensitive capabilities such
as I/O or security primitives, not present in min-API
system).

L Type-safe security-irrelevant user libraries (imple-
mented in Java, not called by security-critical li-
braries, not in min-API).

Then we can calculate

Safety TCB = C + GC + CR

Security TCB = C + GC + CR + UL + TL

For a JVM built using proof-carrying code, the same
calculations apply; the difference is that the boundary be-
tween FC and C is moved; instead of being at the byte-
code level, it is at the machine-code level. The C compo-
nent now consists of the proof checker (and related com-
ponents); C is much smaller, and FC is bigger.

We have measured the TCB size of several real systems
and one hypothetical:

• JDK is Sun’s Java Software Development Kit
(Java 2 SDK 1.3)with its “classic” nonoptimiz-
ing just-in-time compiler (www.sun.com/software/
java2/download.html).

• Kaffe is an open-source cross-platform JVM
with a nonoptimizing just-in-time compiler
(www.kaffe.org).

• Hotspot is Sun’s Java 2 SDK 1.3 with with
the “Hotspot” optimizing just-in-time com-
piler and a more efficient garbage collector
(www.sun.com/software/communitysource/hotspot/
download.html).

2



Bullet
JDK Kaffe Hotspot Train Ginseng FPCC

FC 1 42,0005 200,000 9

C 38,200 38,2002 204,500 116,2004 25,0006 2,65010

GC 7,100 2,400 15,700 11,000 7 150 11

CR 8,900 7,200 8,900 7,600 6,0008 800 12

UL 14,000 10,9003 14,000 48,700 8 13

TL+L 14,5000 16,6003 14,5000 13,100 8 13

L 14 3 8 13

Safety TCB: 54,200 47,800 229,100 123,800 34,600 3,600
Security TCB: 87,200 3 257,600 185,600 8 13

0 We do not include here 37,700 lines of embedded Javadoc comments.

1 We do not include here the Java source-to-bytecode compiler, which is not part of the TCB and which usually operates at the
code provider’s site, not inside the JVM. The JDK’s source-to-bytecode compiler is 31,000 lines of code.

2 This number does not include the bytecode verifier, which is not yet implemented in Kaffe. To compute TCB totals, we estimate
this size at 5,000 lines, which is the size of Sun’s verifier [Mic01].

3 Although most of the standard API is implemented, Kaffe’s security manager is not. Therefore the size of the total Security TCB
cannot yet be measured.

4 This total includes 5,000 lines of libraries shared between the C and TL components; to avoid double counting, the number
shown for TL does not include them. All numbers for BulletTrain provided by Kenneth Zadeck[Zad01].

5 “Special-J” compiler, 33,000 lines; prover, 9,000 lines [CLN+00].

6 Verification-condition generator, 23,000 lines; logical axioms, 700 lines; LF proof-checker, 1,400 lines [CLN+00].

7 No number available. For computation of TCB sizes, we estimate at 3,600 lines (by analogy with Kaffe).

8 Current size of core runtime [Ple01]. Libraries are incomplete, so Security TCB cannot be measured.

9 This is a very rough estimate of the size of compiler, prover, and the non-TCB components of the garbage collector (see11).

10 These are preliminary measurements of our Sparc opcode specification (600 lines) and instruction semantics (600 lines) [MA00],
and safety policy (50 lines); plus the same kind of 1,400-line LF proof-checker used by Ginseng [CLN+00].

11 Wang’stype-preserving garbage collector[WA01] will be able to automatically verify almost the entire collector, leaving only
150 lines of support routines (interface tomemmap) in the TCB.

12 Our ability to verify machine code directly should allow most components of the core runtime to be moved out of the TCB, but
still this number is more speculative than our other numbers.

13 We have no implementation of APIs. Using the BulletTrain implementation as a model, a Security TCB of 65,000 lines seems
plausible. Further research might significantly reduce the size of the Capability TCB.

14 In this draft we have not yet separated L counts from TL.

Figure 1: Comparison of JVM TCB sizes

• BulletTrain is a conventional well-engineered high-
performance JVM with optimizing JIT compiler,
from NaturalBridge.com. We would expect it to
achieve much faster performance than Kaffe, and
probably faster than Hotspot.

• SpecialJis a proof-carrying code JVM [CLN+00]
developed by CedillaSystems.com. It probably
achieves performance midway between Kaffe and
BulletTrain, though in principle it should be possible
to combine the compiler engineering of BulletTrain
with the proof-carrying of SpecialJ.

• FPCC is a Foundational Proof-Carrying Code sys-
tem being designed at Princeton University. It is still
in design and construction, and the numbers we re-
port here are a design target, not the measurement of
an artifact.

Figure 1 shows the results. The size of the Safety TCB
ranges from 139,000 lines (with a conventional optimiz-
ing JIT) down to 4,000 lines (with Foundational Proof-
Carrying Code).

Conclusion. A conventional Java Virtual Machine with
a nonoptimizing just-in-time compiler has a Safety TCB

3



of about 67,000 lines of source code, and total TCB of
probably 130,000 lines.

A conventional, well-engineered JVM with optimiz-
ing compiler has a Safety TCB of about 140,000 lines
of source code, and a capability TCB of 60,000 lines. A
JVM using proof-carrying code technology has achieved
a Safety TCB of 35,000 lines; this technology does not,
at present, reduce the size of the capability TCB. The
proposed “foundational proof-carrying code” technology
might reduce the size of the Safety TCB to 4,000 lines.

References
[AF00] Andrew W. Appel and Amy P. Felty. A seman-

tic model of types and machine instructions for
proof-carrying code. InPOPL ’00: The 27th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 243–253. ACM
Press, January 2000.

[AG96] Ken Arnold and James Gosling.The Java Program-
ming Language. Addison Wesley, Reading, MA,
1996.

[AM00] Andrew W. Appel and David McAllester. An in-
dexed model of recursive types for foundational
proof-carrying code. October 2000.

[AWF00] Andrew W. Appel, Dan Wallach, and Edward W.
Felten. Safkasi: A security mechanism for
language-based systems.ACM Transactions on
Software Engineering and Methodology, to appear,
2000.

[CLN+00] Christopher Colby, Peter Lee, George C. Necula,
Fred Blau, Ken Cline, and Mark Plesko. A cer-
tifying compiler for Java. InProceedings of the
2000 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’00).
ACM Press, June 2000.

[DFW96] Drew Dean, Edward W. Felten, and Dan S. Wal-
lach. Java security: From HotJava to Netscape and
beyond. InProceedings of 1996 IEEE Symposium
on Security and Privacy, May 1996.

[MA00] Neophytos G. Michael and Andrew W. Appel. Ma-
chine instruction syntax and semantics in higher-
order logic. In17th International Conference on
Automated Deduction, June 2000.

[Mic01] Sun Microsystems. Java 2 SDK Stan-
dard Edition v1.3.0 for Solaris/Intel.
//www.sun.com/software/communitysource/java2,
January 2001.

[Nec97] George Necula. Proof-carrying code. In24th
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 106–119, New
York, January 1997. ACM Press.

[Ple01] Mark Plesko. personal communication,
plesko@CedillaSys.com, January 2001.

[WA01] Daniel C. Wang and Andrew W. Appel. Type-
preserving garbage collectors. InPOPL 2001: The
28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 166–178.
ACM Press, January 2001.

[Wal99] Dan Seth Wallach. A New Approach to Mobile
Code Security. PhD thesis, Princeton University,
Princeton, NJ, January 1999.

[Zad01] Kenneth Zadeck. personal communication,
zadeck@NaturalBridge.com, January 2001.

4


