ON HARDNESS AND LOWER BOUNDS IN

COMPLEXITY THEORY

ANASTASIOS VIGLAS

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
By THE DEPARTMENT OF

COMPUTER SCIENCE

JANUARY 2002

(©) Copyright by Anastasios Viglas, 2001.
All Rights Reserved

Abstract

Proving hardness results (lower bounds) is a major problem in Theoretical Com-
puter Science. Many practical problems and applications are based on hardness as-
sumptions (for example, public-key cryptography and security, pseudo-random gen-
erators, one-way functions, derandomization). Separating complexity classes is also a
central question in Computational Complexity Theory that is closely connected with
lower bounds. Although considerable effort and research has been focused in the area
of lower bounds, very little progress has been made in attacking important open ques-
tions. There are however many interesting results for restricted computation models
such as space bounded machines, bounded depth circuits monotone circuits and other
models.

In this work we are going to discuss and present lower bounds for specific problems
in restricted computation models, and show connections between hardness and several
problems in Computational Complexity theory. In particular we are going to present
the following four results:

First, we consider the well known problem of satisfiability (SAT). Proving a
hardness result for this problem is a famous long standing open question, yet we
have seen very little progress towards such a result, even for restricted computation
models. We prove [LV99a] a non-linear time lower bound for solving satisfiability when
restricted to use only a small amount of space (time-space trade-off for satisfiability).
This was the first non-linear time bound for SAT in this model.

We also describe an interesting connection between the hardness of an explicit
problem and complexity class separations. The problem we consider is that of deciding
whether the intersection of a collection of finite state automata is empty: either this
problem requires large circuits, or N'£ is not equal to NP. For the uniform case,

either this problem does not have fast algorithms or AL is not equal to P. On the

1l

other hand if this problem is easy, the we can design improved algorithms for subset
sum and integer factoring, and we can also prove that non-deterministic time ¢ can
be simulated in deterministic time 2%, for any positive ¢. These results point to a
new way of separating fundamental complexity classes (VL from NP, or N'L from
P) and raise many interesting questions.

Considering the connection of the class P and the non-uniform class of small depth
and polynomial size circuits leads to some interesting results [LV01]: If every polyno-
mial time computation can be done by a non-uniform circuit of polynomial size and
sub-linear depth (for example if P C NC/poly), then DTIME(t) C SPACE(L' ™)
for some constant ¢. This is a connection between the non-uniform depth of P and
improving the well known result of Hopcroft, Paul and Valiant [HPV77] stating that
space is more powerful than time. Similar techniques (based on block respecting
turing machine computation) also allow us to prove unconditional results for the
simulation of polynomial time computation by small depth semi-unbounded type of
circuits.

A different approach to separating complexity classes is based on a connection
between computational complexity and the length of proofs in propositional logic. We
consider the correspondence between proof systems and computation models [LVI9b]:
starting from a class of automata, we can define a corresponding proof system in a
natural way. A new proof system that can be defined through this correspondence is
based on the class of push-down automata. This system is strictly more powerful than

a certain variant of regular resolution and gives rise to many interesting questions.

v

Acknowledgments

It has been a great pleasure working these five years in such a great research envi-
ronment as the one I found at Princeton University. The strong Theory community
in the Princeton area helped making my PhD years productive and enjoyable.

My advisor, Richard Lipton, has provided valuable guidance and more help than
I could ever hope for. It was a distinct experience working with him and I hope
to continue this in the future. I would like to extend my thanks to Sanjeev Arora,
Bernard Chazelle and Andy Yao for their help, and all the professors in the Computer
Science Department for creating a pleasant working and learning environment. I am
also grateful to Melissa Lawson for making almost everything in the Department a lot
easier. Working in the Theory group at NEC research was another great experience.
It was a pleasure working with Lance Fortnow, Ronnit Rubinfeld and many visitors
and graduate students during the summer of 2000. My most sincere thanks also go
to many of my good friends (too many to list here) who made my Princeton years

enjoyable and gave me so many great memories.

vi

OTNY OLKOYEVELQL [LOV:
To my parents, Christos and Ourania

and my brother, Kostas.

Contents

Abstract oL
1 Introduction
1.1 Hardness in Complexity Theory
1.1.1 Lower bounds for different computation models
1.2 Results and outline of this thesis
2 Time-Space trade-offs for Satisfiability
2.1 Introduction: Trading time for space
2.1.1 Related Work oo
2.2 Preliminaries
2.3 Time-space lower bounds for Satisfiability
2.3.1 Reducing NTIME to SAT
2.3.2 Proving uniform time-space lower bounds
233 Previouswork oL
2.4 A time-space Lower bound for NTZME and SAT
2.4.1 Improving the time-space lower bound
2.5 Lower Bounds for Uniform Circuits
2.6 Discussion L e

Vil

1l

3 Finite State Automata and Complexity Theory

3.1 Introduction
3.2 Subset sum and Factoring
3.2.1 Subsetsum

3.2.2 Integer Factoring

3.3 Deterministic simulation of non-deterministic computation

3.4 Separating Complexity Classes
3.4.1 Uniform assumption: NLvsP
3.5 Non-uniform assumption: NLvs NP
3.5.1 Ageneral Lemma
3.6 Remarks

4 Non-Uniform depth of Polynomial Time

4.1 Introduction
4.2 Notation - Definitions
4.3 Main Results

4.4 Semi-unbounded circuits

5 Tautologies and Propositional Proof Systems

5.1 Introduction o
5.2 Preliminaries

5.2.1 Previous Results
5.3 Definitions and Lemmata
5.4 Links and Meanders oL
5.5 The Lower Bound for the branching program model

5.6 Discussion and Open Problems

Vil

32
33
36
36
38
40
46
49
33
54
3D

56
36
38
39
63

65

List of Figures

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4

5.1
5.2
5.3
5.4
3.5
5.6

Break computation into blocks o000
Getting from Ato B
The input of the non-deterministic computation (second step).

Break the computation into sub-blocks recursively

Block respecting computation o000
Checking block respecting computation with finite state automata . .
Graph description of a block-respecting computation

Checking non-deterministic Logspace computation

Example of a branching program
Checking correctness of a proof system
Push-down branching programs
Links and meanders oL
Push-down BDD accepts £,, in polynomial time.

Oblivious read-once branching program for the £,,

X

43

Chapter 1

Introduction

1.1 Hardness in Complexity Theory

Hardness is a central concept in Computational Complexity theory. Lower bounds are
negative results, showing that a certain problem cannot be solved using less resources
(less time or space for example) than a certain bound.

There are however, many positive applications of hardness results. The best ex-
ample is cryptography and security: in this setting not being able to do something
efficiently is actually desirable. Showing that a cryptographic system is secure re-
quires a proof of a lower bound, a hardness result. A large part of todays widely used
cryptographic schemes are based on assumptions about the computational difficulty
of solving certain problems like factoring, discrete logarithms and many others. An-
other important “positive” aspect of hardness results is derandomization. Explicit
hard problems with certain properties can be used to built strong pseudo-random
generators, and can be used to derandomize algorithms.

Lower bounds also give very useful insight for designing algorithms, providing

better understanding of the structure of a problem, and its behaviour with respect to

different parameters, and in different computation models.

Separating complexity classes is also closely connected with hardness: questions
about the power of non-determinism, randomness, or separating fundamental classes
and computation models can be formulated as lower bound problems in a very natural

way.

1.1.1 Lower bounds for different computation models

Although a lot of effort has been given in proving lower bounds, we have seen very
little progress for general, unrestricted computation models. For example, the best
lower bounds for any explicit problem in AP, for Turing machine computation or
boolean circuits is only linear.

For restricted models however we have seen remarkable progress and many in-
teresting, strong lower bound results. Many different restricted systems have been
considered: time-space tradeoffs, branching programs, monotone circuits, constant
depth circuits, propositional proof systems, and many others.

In most cases, the restricted systems considered are natural and realistic models of
computation, and the results in these models give insight, and help develop techniques
and ideas to attack more and more general problems. These results also describe
how a problem behaves under different restrictions, giving information that helps in
understanding its structure and perhaps point to the correct directions for algorithm

design.

1.2 Results and outline of this thesis

In this work we are going to discuss and present lower bounds for specific problems, for

restricted computation models, and show connections between hardness and several

problems in Computational Complexity theory.
In chapter 2 we prove a time-space trade-off lower bound for satisfiability [LV99a]:
any Turing machine! using at most poly-logarithmic space cannot solve Satisfiability

in less than (essentially) nV? time:

SAT ¢ DTISP(nﬁ_C, polylog n) for any € > 0 (1.1)

For example:

SAT & DTISP(n'*, polylogn) (1.2)

It is easy to see that the best space bound that can be used in our proofs is
sublinear, n® for a small enough s > 0. This result improves on previous work by
Kannan [Kan84] and Fortnow [For00b]. The time bound exponent has subsequently
been improved by Fortnow and van Melkebeek [FvMO00] to the golden ratio (1.6).

Also we can use roughly the same techniques to prove a corresponding result
for uniform circuits. This conditional result is much weaker, and requires strong
uniformity conditions for our circuits.

The main theorem easily extends for the random access machine model. Also, all
the proofs work for sub-linear space instead of the poly-logarithmic space bound as
mentioned above.

Some interesting extensions to this work have been presented by Tourlakis [Tou00].
The time-space trade-offs for satisfiability are generalized for the case of limited non-

uniformity by considering machines that take sublinear advice.

1Our proof applies both to multi-tape Turing machines as well as random access machines

Chapter 3 presents connections between the hardness of a problem from classic
automata theory and different Computational Complexity questions [KLVO00].

We consider (uniform and non-uniform) assumptions for the hardness of deciding
whether the intersection of a collection of finite state automata (FSA) is empty.

First we show that a small improvement in the known (straightforward) algorithm
for this problem can be used to design faster algorithms for subset sum and factoring,
and improved deterministic simulations for non-deterministic time.

On the other hand, we can use the same improved algorithm for our FSA problem
to prove complexity class separation results (ML is not equal to P or N'P). This
result can be viewed either as a hardness result for the FSA intersection problem, or
as a method for separating N'L from P or N'P. It is interesting to note that this
approach is based on a more general method for separating two complexity classes,
using algorithms rather than lower bounds.

In more detail, the uniform version of our assumption (if there exists a fast algo-

rithm for the problem considered) will allow us to prove the following results:

1. There is an algorithm solving sub-set sum in O(n°®-2“) for all € > 0 and some

small constant ¢
2. Integer factorization can be solved in O(n® - 27) for all € > 0 and ¢ a constant
3. NTIME(t) SDTIME(2Y) for all € >0

4. NL#£P

The non-uniform version of the assumption (if there exists a small circuit solv-
ing the FSA problem) implies that we can separate V'L from NP using a different

argument.

In chapter 4 we present some new results based on block respecting computation.
The well known result of Hoperoft, Paul and Valiant [HPV77] showing that space is
more powerful than time, can be improved by making a (strong) assumption about
the connection of (linear) deterministic time computations and polynomial size, non-
uniform, small (sub-linear) depth circuits: If every polynomial time computation can
be done by a non-uniform circuit of polynomial size and sub-linear depth (for example
if P C NC/poly), then DTIME(t) C SPACE(t'~¢) for some constant c.

In chapter 5 we look at the connections between hardness in Complexity theory
and propositional proof systems, and present some results on the correspondence
between computation models and proof systems.

One way to address the N'P Z co-NP question is to consider the length of proofs
of tautologies in various proof systems. A well known theorem [CR79] states that
if there exists a propositional proof system (with certain properties) in which every
tautology has polynomial size proofs, then NP = co-NP. A natural question to
ask is the following: is there a direct correspondence between a propositional proof
system and a computation model 7 We know for example, that the proof system
of regular resolution corresponds to read-once branching programs in a very natural
way; the size of the smallest proof of a tautology in regular resolution is the same
as the size of the smallest read-once branching program that solves a search problem
associated with the tautology.

In this section we will try to look closer to the correspondence between computa-
tion models and propositional proof systems. We consider proof systems defined by
appropriate classes of automata [LVI9b]: In general, starting from a given class of
automata we can define a corresponding proof system in a natural way. An interest-
ing new proof system that we consider is based on the class of push down automata.

We present an exponential lower bound for oblivious read-once branching programs

which implies that the new proof system based on push down automata is strictly
more powerful than oblivious regular resolution. This result gives a characterization
of this new system and its power, compared to classic systems from propositional

logic.

Chapter 2

Time-Space trade-offs for

Satisfiability

Although Satisfiability is considered a hard problem, proving any strong hardness
result for it seems to be beyond current knowledge. For restricted systems however,
we can prove interesting, non-trivial lower bound results. In this section, we prove a
time-space trade-off result for Satisfiability: we consider space bounded computation,
and show non-linear time lower bounds [L.V99a]. This time-space trade-off result is

based on simulation and diagonalization techniques.

2.1 Introduction: Trading time for space

In many cases, we can reduce the space required to carry out a specific computation,
by allowing the algorithm to use more time. On the other hand, time savings can
be achieved if more space is available. This relation can be described by time-space

trade off results in various models of computation.

Time space trade-offs are central in Complexity Theory, capturing important as-
pects of the intrinsic hardness of specific computations, describing the way a problem
behaves with respect to time and space.

Time-space trade-offs can also be viewed as lower bound results for restricted
computation models. If for example we consider a computation that is restricted to
use a certain amount of space, then a trade-off could translate to a lower bound for
the time required by this space-bounded computation.

We are interested in proving such time-space lower bound results for the well
known problem of Satisfiability. This is the problem of deciding whether a given
propositional formula has a satisfying truth assignment. The best lower bounds known
for SAT, for general computation models are essentially trivial. It is interesting to
point out that even though we believe that no polynomial time algorithm could solve
this problem, we are unable to rule out the possibility that a linear time algorithm
exists.

If we consider space bounded computation, then it is possible to prove non-trivial
lower bounds for the time required to solve Satisfiability. More specifically, in this
section we will prove that any Turing machine! using at most poly-logarithmic space

cannot solve Satisfiability in less than (essentially) nV? time:

SAT ¢ DTISP(nﬁ_C, polylog n) for any ¢ > 0 (2.1)

or:

1Our proof applies both to multi-tape Turing machines as well as random access machines (the
RAM model was discussed in more detail in the work by Fortnow and van Melkebeek [FvMO00])

SAT ¢ DTISP(n'*, polylogn) (2.2)

It is easy to see that the best space bound that can be used in our proofs is
sublinear, n® for a small enough s > 0. This results improves on previous work
by Kannan [Kan84] and Fortnow [For00b]. The exponent has subsequently been
improved by Fortnow and van Melkebeek [FvMO00] to the golden ratio (1.6).

Also we can use roughly the same techniques to prove a corresponding result
for uniform circuits. This result is much weaker, and requires strong uniformity
conditions for our circuits. The model we will use is uniform circuits of size ¢ and
width d. The uniformity condition must be strong enough to provide us with a Turing
machine that will produce an appropriate description of the circuit in logarithmic
time; the Turing machine will receive as input the index of a gate in the circuit and
will output the connections of this gate in the circuit in log time? (input and output
connections). In this model we can prove the following: Assume that the class of
non-deterministic circuits of size ¢ is not a subset of the class of circuits of size ¢!7¢
for positive €. Then there are non-deterministic circuits of size n that cannot be
simulated by deterministic uniform circuits of size nV2=¢ and poly-logarithmic (or
sub-linear) width.

The basic structure and the main ideas used in the proof of the uniform circuit
result are in general the same as in the Turing machine case (note again that for the
uniform circuit case we will only describe a conditional result).

The main theorem easily extends for the random access machine model. Also, all

the proofs work for sub-linear space instead of the poly-logarithmic space bound as

?In fact polylog time or even sublinear time would also work here.

mentioned above.
Some interesting extensions to this work have been presented by Tourlakis [Tou00].
The time-space trade-offs for satisfiability are generalized for the case of limited non-

uniformity by considering machines that take sublinear advice.

2.1.1 Related Work

The first time-space lower bounds for Satisfiability were presented by Fortnow

[For00b]. The main results for SAT in that work were the following:

SAT ¢ NTISP(n'*toW nl=c)
SAT g DTISP(n'+o() pl=e)
SAT ¢ NTIME(nlog®Mn)n N L

In the work described in this section, we use similar ideas and techniques as
in [For97, For00b] to prove our time-space lower bound result for non-deterministic

polynomial time which will be used to derive the lower bound for SAT:

SAT ¢ DTISP(nﬁ_C, polylog n) for any € > 0 (2.3)

Other related results were also shown in [Kan84]. Kannan proved that there
is a constant k > 0 (not constructively defined) such that for all polynomial time
constructible functions ¢(n) where ¢(n) = w(n®), there is a language accepted in
non-deterministic time ¢ but not in deterministic time ¢ and (simultaneously) space
o(tl/k). This also implies that for any positive integer [# k, non-deterministic time
NTIME(n') is not a subset of deterministic time DTZSP(n', polylogn). In fact
Kannan’s techniques and the basic structure of his main proof are very similar to the

ones presented in this work.

10

Gurevich and Shelah [GS90] defined a clique problem solvable by non-deterministic
log-space Turing machines in linear time, which cannot be solved by deterministic
machine with sequential access to its input tape and work space n° in time n'*”
where o + 7 < 1/2.

Other related (earlier) results for uniform models of computation were given by
Hopcroft, Paul and Valiant [HPVT77] (deterministic time ¢ is strictly contained in
deterministic space ¢ for well behaved functions ¢ = ¢(n)), Paul and Reischuk [PR80]
(simulation of a deterministic Turing machine by an alternating machine) and Paul,
Pippenger, Szemerédi and Trotter [PPST83] (non-deterministic linear time is not a
subset of deterministic linear time).

Time-space lower bounds have also been shown for other models such as Jumping
Automata for Graphs (JAG) [Edm98, BE9S, EP95], branching programs [Kar86,
BST98, Bea91] and comparison models [Ya0o94].

A very successful (non-uniform) model for proving time-space trade-offs is the
branching program model [Bor93]. Many techniques have been developed and strong
results have been shown for multi-output problems [BC82, Bea91, Abr90], element
distinctness [Yao88] and read-k time branching programs [BRS93, BST98]. Strong
super-linear time-space trade-offs have been shown using this model for problems in
polynomial time. The breakthrough work of Ajtai [Ajt98, Ajt99b, Ajt99a] showed
how to prove super-linear trade-offs for element distinctness and for the computa-
tion of natural quadratic forms. Based on the techniques developed in that work,
Beame, Saks, Sun and Vee [BSSV00] have shown super-linear time-space trade-offs

for randomized computation for (decision) problems in P.

11

2.2 Preliminaries

We will use the multi-tape Turing machine model to describe the proof of the main
theorem. It is easy to see that all our arguments carry over to Random Access
machines.

Let NTIME(t) and DTIME(L) denote the classes of all languages accepted by
Turing machines running in nondeterministic time O(¢) and deterministic time O(t)
respectively. Also, we will use DTZME(t,s) (NTIME(L,s)) to denote the class of
all languages accepted by deterministic (non-deterministic) Turning machines running
in time O(¢) and using space O(s). For simplicity, we will use polylogn instead of
log®M n to denote poly-logarithmic functions of n. Let M be a Turing machine and
C1,Cy two configurations of M (the description of a Turing machine configuration
contains information about the state, the position of the heads on the tapes and
the contents of all tapes). We will write Cy F3; Cy if there is a legal sequence of
computation steps of M starting from configuration €'y and ending with configuration
Cy. C1 Fpr €3 means that M starting form C; can reach C in one step.

A function ¢(n) is called polynomial time constructible if there exists a determin-
istic Turing machine which on any input of length n computes ¢(n) in polynomial
time.

A circuit family {C),} is called log-space (time) uniform if there exists a log-space
(time) Turing machine M¢ that on input 1™ will output the circuit C,,. For the circuit
setting, let NSTZEy(t) (and DSTZEy(t)) denote the class of non-deterministic,
log-time uniform circuits with ¢ gates (and deterministic size ¢ circuits respectively).
DWIDT Huy (s, w) will denote the class of deterministic log-time uniform circuits with

s gates and width w.

12

2.3 Time-space lower bounds for Satisfiability

In this section we are going to describe some of the methods that have been developed

for proving time-space trade-off results for Satisfiabilty (see also a survey by van

Melkebeek [vMO1]).

2.3.1 Reducing NTZME to SAT

Throughout this chapter we will prove relations between non-deterministic time
classes and space bounded deterministic time. Strong enough results of this form
(super-linear time and at least poly-logarithmic space) imply lower bounds for Satis-
fiability using Cook’s theorem and reductions of non-deterministic time computations
to Satisfiability questions.

SAT is known [Sch78, Coo88] to be complete for quasi-linear nondeterministic

time N'TZME(n logP®™) n), under quasi-linear time reductions [Sch78, Coo88].

Theorem 2.3.1 ([Sch78, Coo088]) SAT is complete for quasi-linear non-

deterministic time under (deterministic) quasi-linear time reductions.

The reduction of N'TZME(n polylog n) described in the above theorem 2.3.1 and
is explicitly given by Cook [Coo88] can also be done “on the fly” using small, poly-
logarithmic space. The following theorem is not the strongest form, but good enough
for the results that will follow. In particular the theorem can be extended for al-
ternating computation and more tight bounds for the required time and space are

known.

Theorem 2.3.2 ([Co088, Sch78]) Any non-deterministic computation (of a multi-
tape Turing machine) of length t(n) can be reduced to a SAT formula of size t polylogt.
This algorithm will output the i-th bit of the SAT formula in poly-logarithmic time

and space.

13

The results of Robson [Rob91] for reducing RAM computations to SAT formulas
can be used to extend theorems for non-deterministic time to equivalent results for
Satisfiability.

We can use the above theorems to translate relations between non-deterministic
time classes and deterministic time-space, into lower bounds for Satisfiability. If, for
example, we can prove that NTZME(n) € DTIME(r,s) then we can argue that

SAT ¢ DTIME(r,s) for appropriate values of the parameters 7, s.

Theorem 2.3.3 For any superlinear time bound 7(n) >> O(nlog®Mn), and poly-

logarithmic space s(n) = log®M n,

NTIME(n) L DTISP(r,s) (2.4)

implies that

SAT ¢ DTISP(r,s) (2.5)

Proof

The idea is the following: assume that SAT can be solved in DTZSP(r,s). Con-
sider any computation in NTZME(n). Reduce this to a SAT question, and solve it in
DTIME(T,s). The reduction uses n log®™ n time but the resulting SAT formula has
size n logo(l) n which is bigger than the space available (we only have poly-logarithmic
space s = log®Mn. We do not have to write down the resulting formula however,
since by theorem [Coo088] there is an algorithm using only polylogarithmic space that

provides random access to the bits of the SAT formula. 1

14

2.3.2 Proving uniform time-space lower bounds

The main idea for proving time-space trade-off results on uniform models can be

described as follows:

1. Assume that some strong simulation of non-deterministic time is possible (in

order to reach a contradiction, and therefore prove that this simulation cannot

exist). This assumption will be of the form N'TZME(t) C DTIME(Y,s).

2. Start from some non-deterministic computation, and argue that it can be re-
duced to a deterministic time-space computation, using the assumption de-

scribed in the first step.

3. Break the (deterministic) computation of the previous step into blocks and
simulate it by an alternation, which will save time based on the power of the

alternations (“trade time for alternations”).

4. Look at each part of the alternation and use the initial assumption of the first

step to reduce the alternations (“Trade alternations for time”).

5. The resulting computation (which simulates the original one) is “too fast”,

violating known time hierarchy theorems (“diagonalization”).

The contradiction that we will reach in the final step derives from hierarchy the-
orems, which are based on direct diagonalization, a well known and old technique
that continues to prove its strength with new results (see [For00a] for an interesting
account/survey of diagonalization methods in current Complexity Theory research.)

The hierarchy theorem that we will use in the following section to prove the main

trade-off result for Satisfiability is the well known non-deterministic time hierarchy

theorem [Coo73, SFM73, SFM78].

15

Theorem 2.3.4 (Non-deterministic Time Hierarchy [SFM78]) For time con-

structible functions t1(n) and ty(n) such that ty(n+ 1) = o(ta(n)):

NTIME (L) C NTIME(L,) (2.6)

The following lemma, is much weaker statement of the non-deterministic time-

hierarchy theorem, but will be enough for our purposes:

Lemma 2.3.5 For any € > 0, there is a language with non-deterministic time com-

plexity NTIME(t) that is not computable in NTIME().

NTIME() € NTIME(H) (2.7)

Another, more technical result that is used in the time-space lower bounds, is the

following [Kan84]:

IN

Lemma 2.3.6 (Translation Lemma) If for some o > 0, NTIME(n)

N

DTISP(n”, polylogn) then for any t = n° ¢ > 1, NTIME(L)

DTISP(t*, polylogt).

Proof (padding)

Let NTIME(n) C DTISP(n®, polylogn). We will show that any language
in NTIME(t) is also in DTZSP(t*, polylogt). Consider any language [€
NTIME(t). Define a new language L' = {zU'"Fl;z € L}; L' consists of all the
strings in L padded by enough quasi-blanks to bring the length of the string to ¢. It
is easy to see that ' € NTIME(n). Since NTIME(n) C DTISP(n”, polylogn)
it follows that L' € DTZSP(n®, polylogn). Therefore L € DTISP(t*, polylogt)
(on input x, consider y = z'~1*l and solve y € L' in deterministic time-space

DTISP(lyl™, polylog |yl)).

16

Note that we only have poly-logarithmic space available for our computations.
For the new language L’ mentioned above, we need to pad the input strings by quasi-
blanks so that the resulting string has size ¢ which will be bigger that the available
space. We do not need to write down this new string though. The padded part of the
input consist by all quasi-blanks and therefore all we need to know is which position
in the input string we are reading. In other words we only need the original input
string and a counter, that will be used when the input pointer goes into the padded

part of the string. This counter only needs space log t. |

2.3.3 Previous work

The first techniques dealing with the space bounded model that we will consider
next, were given by Kannan [Kan84]. His work addressed a different problem: the
relation between deterministic and non-deterministic time. His main result was that
linear non-deterministic time cannot be simulated by linear deterministic time using

sub-linear space.

NTIME(n) & DTISP(n,o(n)) (2.8)

This theorem does not imply a time-space lower bound for Satisfiability, but the
techniques used have been proven to be very useful in later results. In particular the

results in [LV99a] have the same basic structure with Kannan’s.

17

Theorem 2.3.7 (Kannan [Kan84]) There is a universal (non-constructible) con-

stant k, such that, for any integer 3 > k + 1

NTIME(n?) € DTISP(n’,o0(n)) (2.9)

The constant k& from the above theorem is defined as follows:

o k=1if NTIME(n?) L DTIME(n?), for all j > 1, or
e k=min{j >1: NTIME(n’) = DTIME(n’)} otherwise.

The above theorem addresses the following question: Is NTZME(t) equal to
DTIME(t) for polynomial ¢ 7 Kannan [Kan84] proves a partial result towards that
goal, for restricted space (the strongest version of the theorem uses the constant k).

Using a somewhat different approach, Fortnow [For97, For00b] was able to prove
stronger results, and the first (slightly) super-linear time-space trade-off for Satisfia-

bility.

Theorem 2.3.8 (Fortnow) For any unbounded function r(n) such that r(n) =

logn
loglogn

and for any ¢ > 0
SAT ¢ NTIME(n'* 7)Y N NTISP(n°"), n'~) (2.10)

A number of interesting results follow from this theorem:

SAT ¢ NTISP(n'+oM nl=e)
SAT & DTISP(n'+°() n'=c)
SAT ¢ NTIME(n'+*WYnNL
SAT ¢ NTIME(nlog®Mn)n N L

18

The proofs of these theorems follow the same spirit as mentioned above but dif-
ferent methods and ideas are use in some of the steps. This results to strong re-
sults for SAT as well as some interesting uniform circuit results. The main theorem
2.3.8 is stated for SAT. Starting from the assumption that SAT can be solved in
non-deterministic time-space of the form NTZSP(n'+(1) n'=¢) it is argued that an
alternating computation can be simulated “too fast”, in a new alternating class, with
fewer alternations using less time. This simulations is achieved by reducing parts of
the computation to SAT questions and then using the initial assumption to reduce
the time and space, and argue that the resulting computation is in a new alternating
class. Then, a direct diagonalization between the two alternating classes completes
the proof.

Based on these ideas, the improved time-space lower bounds for Satisfiablity de-
scribed in the next sections can be derived [LV99a]. Compared to Fortnow’s [For00b]
theorems, these results show a stronger time-bound (about n'*) but assume more
restricted space bounds (sublinear space). These results where improved even fur-
ther by Fortnow and van Melkebeek [FvMO00]. Other extensions were considered by

Tourlakis [Tou00]. These improvements are also discussed in section 2.6.

2.4 A time-space Lower bound for NTZME and

SAT

Using many of the ideas mentioned in the previous section, we can prove the first
essentially non-linear time lower bound for space bounded Turing Machine computa-

tion. The main theorem proved in this section, is the following.

19

Theorem 2.4.1 If NTIME(n) C DTISP(n®, polylogn) then a > /2 — ¢ for any

e > 0.

The proof will proceed as follows:

Assume that the theorem is mnot true (and therefore NTIME(n) C

DTISP(n®, polylogn) for some a < v/2 call this the “initial assumption™).

Start with any non-deterministic computation running in time ¢ and show how
to simulate it in slightly less non-deterministic time (which is a contradiction

with the known hierarchy theorems).

To describe this “too-efficient” simulation of the second step, we will proceed as

follows:

Denote by M; the nondeterministic computation (Turing machine) we are start-

ing from. This is a NTZME(t) computation.

M can be simulated by a computation My in DTZSP(t*, polylogn) (by our

initial assumption)
Mj can be simulated by an alternating computation M3 using less time.

Using again the initial assumption, we can reduce the alternations and end up

with a non-deterministic computation in NTIJME(Z‘“Z)/Q) roughly.

Argue that if o is smaller than /2, then we get a contradiction with the hier-
archy results.

Mo M= My

NTIME®)
DTISP(4 polylog t)

2/2)

g
NTIME(t

20

Proof (of theorem 2.4.1) Assume the following:

NTIME(n) C DTISP(n®, polylogn) (2.11)

For any ¢t = n®, ¢ > 1, lemma 2.3.6 implies:

NTIME(t) C DTISP(t*, polylogt) (2.12)

We will show that if o < v/2 then NTIME(t) is contained in NTIJME(tl_ﬁ) for
some 3 > 0; this contradicts lemma 2.3.5 (non-deterministic time hierarchy theorem).

Consider any language L € WNTZIME(t) and let M; denote the non-
deterministic Turing machine deciding L running in time ¢. Since NTIME(t) C
DTISP(t*, polylogt) it follows that there is a deterministic machine M3 running in
time-space DT ZSP(t*, polylogn) deciding L.

Consider the computation of M, (t* steps). Each configuration of M, has size
polylog n since M, runs in space polylogn. Break up the computation in /2 blocks,
of size t°/? and let A,. .., A,as2 denote the configurations of M, every t%/% steps; that
is A; is the initial starting configuration, A, is the configuration after t*/? steps of
computation, and so on; A,a/2 is the final configuration.

We will construct a non-deterministic machine M3 that simulates M, efficiently;

on input z (|z| = n), M3 will proceed as follows®:

3The technique described here is a variant of a standard method that was also used in [For97,

Kang4].

21

s Cl
tC(/Z
Co
ta
v Cta/2

i polylog(f)

Figure 2.1: Break computation into blocks

AL, ., AV < 1272 Ai S Avgy) (2.13)

1. guess the configurations A, ..., Az of M, on input z, every t*/? steps of

computation.

2. check that A; is a legal starting state and A,s;2 is a legal final state and that
for every 0 < i < 1%/2, (A; F3s Aiz1). To find out if there is a configuration A,

such that M; will not reach A;;, after ta/Z, universally choose (guess) the index

i and check if (A4; F3; Aitr).

In very simple terms the above alternation states the following (see figure 2.2):
To express the fact that “there is a way to get from the point A to the point B” on a
line, we can also say, “there exist intermediate check-points x1,...,x,, such that for
each intermediate point there is a way to get to the next (for all ¢ we can get from z;

to z,41).” This alternate expression is the alternation described for this proof.

22

start of

computation "accept’

Figure 2.2: Getting from A to B

Cl’ - Ctor/2
n polylog(t)

Figure 2.3: The input of the non-deterministic computation (second step).

The first step requires non-deterministic time t*/2 polylogt. The second step is
a non-deterministic computation on input of size n + /2 polylog¢ (n is the size of
the initial input z, t*/2 is the number of steps from A; to A;4q and polylogt is the
size of each configuration) and requires time n + (*/2 polylog ¢: in order to check if
A; By Aigr we need to move the input head to the correct position in the input z
and simulate M, for t*/? steps.

Assumption 2.12 implies* that this task can be done in deterministic time-
space DTISP((n + 1°/2 polylogt)™, polylogt). For large enough ¢ > n, (n +

1%/% polylog) ~ 1°*/2 polylog t. Ms runs in non-deterministic time

1%/% polylog t + Tk polylog 2.14
g g

“Note that it suffices to use assumption 2.11 for this case.

23

Let oo = a + ¢; then for any € > 0, t*/?polylogn < t*</* for large enough t.
This implies that any non-deterministic time ¢ machine can be simulated in non-

deterministic time ¢2¢/2:

NTIME() C NTIME(1/?) (2.15)

If a?/2 < 1 then we get a contradiction with lemma 2.3.5. 1

2.4.1 Improving the time-space lower bound

In order to improve theorem 2.4.1, we could try to use one additional idea when simu-
lating the DTZSP(t, polylog n) machine M,. The idea is to break the computation
recursively into smaller and smaller blocks. The technique that we will describe below
will not enable us to improve our result in a straighforward way. It is possible however
to improve the time bound by combining additional ideas. Fortnow and van Melke-
beek were able to show that this technique can be used to improve the bound to the
golden ratio by reversing the order of the quantifiers (see [FvMO00] for the improved
bound).

We will describe this method briefly. Let NTZME(n) C DTISP(n*, polylogn)

for some a > 0. By lemma 2.3.6 we have the following (for ¢t = n®, ¢ > 1):

NTIME(t) C DTISP(t*, polylogt) (2.16)

for some ¢ > 0. Proceed in the same way as in theorem 2.4.1. The main dif-

ference is in equation 2.13. Recall that the computation of any machine M, from

24

DTISP(t*, polylogt) can be simulated as follows:

AL,y AeeVi < 172 (A iy Ais) (2.17)

There are t*/? steps between A; and A;11. In other words we have broken down
the computation of M, into blocks of size 1%/ and A, is the first step of the i-th block.
For simplicity we will refer to the :-th block as “block A;”.

Consider breaking the computation of M, in blocks A; of size t* for some a < «
that we will choose appropriately. Then, in order to check the transition in a block
A; B3 Aigr, recurse once more and break the computation in block A; in sub-blocks

B; of size t? each.

.
t2 D4
C2 }b
e
Dt&b
V Cta-a

i polyl og(f)

Figure 2.4: Break the computation into sub-blocks recursively

Note that we can simulate the computation of M3 by a non-deterministic machine

M3 in the following way:

25

JAL, ..., ApecaVi < 1270
(2.18)

3By, By, ... Buao¥5 < t°7(Bj F* Bjn)
1. Guess the computation of My, every t* steps: Ay,..., Aja-a

2. Check that the computation steps are correct: guess an index 7 and check if the

transition A; k3, A;4q is correct;

3. In order to check whether A; F3; A;41, break the computation from A; to
A;y1 in sub-blocks; of size ¢* (the number of sub-blocks is ¢*7*), and guess the
configurations By, ..., Biu-» of M; every t° steps starting from A; and ending

with A;41.

4. To verify that for all 0 < j < t*~*, B; Fu, Bit1, check if there is an incorrect

computation step Bj;; universally choose the index j of the incorrect step and

check if B; F3; Biti.

The last step is a non-deterministic computation on input of size n +t~° polylog t
(the original input = of M, and ¢*~" blocks (B;) of size polylogt each) and re-
quires time n 4 * polylogt. By assumption 2.16 this is in deterministic time-space
DTISP((n + t*polylogt)™, polylogt) or DTISP(t* polylogt, polylogt) for large
enough t. Steps 3 and 4 are a non-deterministic computation on input of size
n + t*"% polylog t and require time n 4 t*~° polylog t + t** polylogt. By assumption

2.16 this can be done deterministically in time ¢*(*= polylog t + {e° polylogt. Steps

26

2.3,4 form a non-deterministic computation and require time

NTIME* = polylog t + 1o polylogt) C

(2.19)
DTISP(ta2(“_b) polylogt + 1o polylog t, polylogt)
Finally the entire computation of M3 is in non-deterministic time
NTIME(t*~* polylog t + (o (a=b) polylog t +
(2.20)

b polylog t)

(for large enough ¢ > n).
As in the proof of theorem 2.4.1, we can drop the poly-log factors, by adding any

small constant § > 0: a5 = o + 4. This will give us the following time bound:

os—a 4 la=blaf 4 ybaj (2.21)

If we continue for w alternations (for any fixed w) and each time we break the

computation in blocks of size t*, 0 < + < w, then we get a time bound of the form:

flomar) 4 ylar—az)of o
(2.22)

—1

_I_t(aw_l—aw)ozgw_Q + tawagw

One would hope that by picking the parameters a; appropriately the lower bound
of theorem 2.4.1. More careful analysis of this method [FvMO00] shows that this tech-
nique will not improve the exponent. However as we mentioned before by reversing

the order of quantification it has been shown that the bound can be improved up to

27

the golden ratio [FvMO00].

Corollary 2.4.2 Any deterministic Turing machine solving Satisfiability that uses

poly-logarithmic space, requires infinitely often almost nV? time:
SAT ¢ DTISP(n">~*, polylogn) (2.23)

for any ¢ > 0.

This corollary follows from the discussion in section 2.3.1 and theorems 2.3.2,

2.3.3.

2.5 Lower Bounds for Uniform Circuits

For the circuit setting we will consider the class NSZZEp(n) of uniform® non-
deterministic circuits of size s(n), where n is the size of the input. The analog of
DTISP(n*, polylogn) in this setting will be the class STZEWDy(n®, polylogn) of
(deterministic) uniform circuits of size O(n®) and width polylog n.

Using the same methods as in theorem 2.4.1 we can prove that if every circuit in
NSIZEy(n) can be simulated by a deterministic log-time uniform circuit of width

polylogn and length n® then o > /2 — ¢ for any € > 0:

NSIZEy(n) L SIZEWDU(nﬁ_E, polylog n) (2.24)

To prove an equivalent result as in theorem 2.4.1 we would need the following

lemma (the equivalent of lemma 2.3.5):

5log-time uniformity is assumed as discussed in the previous sections

28

For any ¢ > 0 and ¢t = n° ¢ > 1 (where n is the size of the input) there is
a language that can be computed by non-deterministic circuits of size ¢ but is not

computable by any non-deterministic circuit of size t!=¢, for any ¢ > 0.

NSTZEy(t) & NSTZEy (1) (2.25)

Theorem 2.5.1 Assuming that (2.25) is true, the class of log-time uniform non-
deterministic circuits of size n is not a subset of the class of log-time uniform deter-

V2

ministic circuits of width polylogn and length n , for any e > 0.

Proof We will show how the ideas of the proof of theorem 2.4.1 can be used in

the uniform circuit setting to prove the weaker result:

NSIZEy(n) C SIZEWDy(n?, polylogn) =
o> \/5 — ¢

(2.26)

for any ¢ > 0.

Let NSTZEy(n) C SIZEWD(n”, polylogn). For any non-deterministic circuit
Cy of size t, there exists a circuit Cy in STZEWDy (L, polylogt) that simulates
C1 (accepts the same language as C7). C has width polylogt and length t*. This
corresponds to polylog ¢ space bounded computation of length ¢* described in theorem
2.4.1. Assume that the gates of Cy are arranged in levels (there at most ¢* such levels,
and each level consists of at most polylog t nodes). We will define a non-deterministic

circuit C'3 that simulates C'y. (5 proceeds as follows:

1. Partition C; into blocks, such that there are t*/2 levels in each block. Guess
the states Ay,..., A of Cy after each block of computation (between A; and

Aiyq there are 1272 levels of).

29

2. Check that the sequence Ay,..., A,as2 is correct: for all i: A; 52* Aiy1. This
task can be done by choosing universally an index ¢ and checking whether

A; B Aipq by simulating C; for /2 steps (levels).

Note that in the second step, we need a mnon-deterministic sub-circuit of
size t*/?polylogt whose input has size t*/?polylogt + n. The simulation is
made possible by our strong uniformity assumptions. Since NSTZEy(t*) C
SIZEW'DU(taQ/?, polylogt), it follows that (5 is a non-deterministic circuit of size

t(@+9°/2 for any € > 0, and therefore:

NSTIZEy(l) C NSTZE(10+)*/?) (2.27)

Assumption (2.25) implies that a >/ 2 —«.

2.6 Discussion

In this work we have proven a separation between non-deterministic time n and deter-
ministic time n¥2=¢ in poly-logarithmic space. The proof uses mostly known and in
some sense elementary techniques. For example, Kannan in [Kan84] proceeds almost
the same way to prove his result; Fortnow also uses about the same techniques for
simulating non-deterministic machines by alternations, and for simulating alternating
Turing machines by non-deterministic machines. We also presented a similar (condi-
tional) result for log-space uniform circuits, using the same techniques and ideas.

It would be interesting to see if the time bound can be improved using the same
techniques; Fortnow and van Melkebeek have improved the bound to the golden ratio.

The quadratic bound still seems beyond our reach. Proving a non-uniform result is

30

probably the most challenging task. It seems that the techniques used in this paper
do not generalize in the non-uniform setting. The uniform result was shown for poly-
logarithmic width circuits. A more natural and interesting result would be to prove

a lower bound for the size of poly-logarithmic depth circuits.

31

Chapter 3

Finite State Automata and

Complexity Theory

We consider [KIV00] (uniform and non-uniform) assumptions for the hardness of an
explicit problem from finite state automata theory.

First we show that a small improvement in the known (straightforward) algorithm
for this problem can be used to design faster algorithms for subset sum and factoring,
and improved deterministic simulations for non-deterministic time.

On the other hand, we can use the same improved algorithm for our FSA problem
to prove complexity class separation results (ML is not equal to P or N'P). This
result can be viewed either as a hardness result for the FSA intersection problem, or
as a method for separating N'L from P or N'P. It is interesting to note that this
approach is based on a more general method for separating two complexity classes,

using algorithms rather than lower bounds.

32

3.1 Introduction

Separating complexity classes is a major problem in complexity theory. There are only
a few unconditional results and many open questions. Another major open problem
is to give an explicit hard function for the circuit and Turing machine models. In this
work, we show a connection between the separation of V'L from other complexity
classes and the hardness of an explicit problem in P. We consider the problem of
deciding whether the intersection of a collection of & finite state automata is empty.
Either this problem requires large circuits or N'£ # NP. For the uniform case, either
this problem does not have fast algorithms or N'L # P. On the other hand, we will
also prove that if the finite state automata intersection emptiness problem has indeed
fast algorithms (if there exists almost any improvement to the known algorithm) then
we can design faster algorithms for subset sum and integer factoring. In addition to
that, we can also use these fast algorithms for the intersection emptiness problem to
provide improved deterministic simulations for non-deterministic time.

Let Fi, Fy, ..., F) be a collection of k finite state automata of size' |F;| = o and

consider the problem of checking whether their intersection is empty:

where L(F') denotes the language accepted by the automaton F'.

The standard algorithm for checking the above intersection involves constructing
the finite state automaton corresponding to the “Cartesian product” F' = Fy x Fy X
-++x Fy, and solving the emptiness problem for F': L(F) # @. The size of F is O(c*).

Let F denote the assumption that there is a better algorithm for checking the

IFor simplicity, in this paper the size of an automaton is the number of states. The number of
bits required for the description of the automaton is the same times a poly-logarithmic factor, which
does not affect our computations.

33

intersection emptiness problem for a collection of a fixed number k of automata,

namely:

Assumption F: Let Fy, Fy, ..., Fy be k FSA’s of size 0. There is a deterministic

algorithm that can decide whether

k
in time JWH, where f(-) is an unbounded function that depends only on k, and

d > 0 is a constlant.

Based on the assumption F we can prove the following theorems:

1. There is an algorithm solving sub-set sum in O(n®M") . 2%) for all € > 0
2. Integer factorization can also be solved in O(n%™") . 2) for all € > 0

3. NTIME(t) SDTIME(2Y) for all € >0

A slight modification of assumption F also allows us to separate V'L from P.

If we consider a non-uniform version of our assumption, i.e. that there exists a
“small” circuit that solves the emptiness problem for a collection of FSA’s then we
can prove that NL # NP. This result can be proved using a new lemma, that
provides a general technique for proving complexity class separations and may be of
independent interest.

It is interesting to note that the complexity class separation results mentioned
above, are based on algorithms rather than lower bounds. In order to separate N'L
from P for example, all we would need is to improve the algorithms for deciding

whether the intersection of a collection of finite state automata is empty.

34

Note that for the intersection emptiness problem, the parameter £ (the number
of the finite state automata) is constant. The general problem, where this parameter
can depend on the input size (the size of the automata) is much harder, known to be
PSPACE-complete [Koz77]. If k is a constant then the problem has a polynomial
time algorithm as described above.

A similar result was given by Feige and Kilian [FK97]. In that work the clique
problem is considered and more specifically the following parameterized version: given
a graph on n nodes, does it contain a clique of size k& where k < logn 7 The general
clique problem is N'P-complete. But the complexity of the parameterized version
mentioned above (small, logn size cliques) remains an open problem. Feige and
Kilian [FK97] prove that if this problem is solvable in polynomial time then there is

a subexponential simulation of non-deterministic computations:

NTIME(L) C DTIME(V) (3.1)

where 7 = tlogt, and ¢ > n. That work is inspired from the fact that certain
N P-complete problems require only “limited” non-determinism and questions that
come from the framework of fized parameter intractability [DF92, DF99]. For example
the N'P-complete problem Vertex Cover (“given a graph with n vertices, is there a
vertex cover of size k 77) is known to have algorithms with running time of the form
O(2F - n°) for some fixed constant ¢, which implies a polynomial time algorithm for
small values of the parameter k& < log n.

Another related result is that of Paul, Pippenger, Szemeredi and Trotter

[PPST83]. The main result was that non-deterministic linear time is more power-

ful than deterministic linear time NTZME(n) # DTIME(n). (This is related to

35

the non-deterministic time simulation result presented in this section.)

3.2 Subset sum and Factoring

We start by showing the implications of assumption F for two problems that are
considered hard: subset sum and factoring. If F is true then we can construct better

algorithms for solving these problems.

3.2.1 Subset sum

We consider the following type of subset sum problem: Given n integers aq,...,a,

and a number b, check if there exists a boolean vector = (z1,...,x,) such that

n

Zaixi =b

=1

Assuming that there is an “easy” way of checking the intersection of two automata
is empty, we can construct an algorithm solving subset sum in 2*/3n®(). By choosing

a collection of k automata, the resulting algorithm runs in 2*n°® for any € > 0.

Theorem 3.2.1 Assumption F implies that there is an algorithm solving subset sum

in 027" - n®M) for all e > 0

Proof Pick two primes® p,q of size n/3 and build two machines M, and M,
testing > " a;x; = b(mod p) and > ", a;x; = b(mod q). The size (number of states)
of these two machines is |[M,| = O(p-n°M) (same for M,), where p < 27/3. Consider
the intersection L(M,)N L(M,). If there is a solution to the given knapsack problem
then this intersection is nonempty, since .., a;z; = b(mod p) modulo any number

p. If, on the other hand, >7" | a;z; = b modulo both primes, then 3"

iy a;z; = bor

2p and ¢ only need to be relatively prime

36

b—>" a;z; is a multiple of p and ¢. Define the set S to be the set of exceptions: all

those numbers of the form b — > a;z; (that correspond to different values of the

n

input, binary vector z, and for which b — "7 a;x; # 0 but the sum is zero modulo

both primes. The set S is explicit (multiples of p, ¢) and we can construct a tree-like
acceptor. The size of S is less than 2*/2 since the number of vectors # which make

the quantity b — >

.y a;z; equal to zero modulo both p and ¢ is:

1 1
n . _ on/3
2 In/3 9n/3 2
Therefore the size of the automaton for S is at most 0(2”/3). Now Consider the

following intersection problem:

?

L(M,) N L(M,)N S # @ (3.2)

If this intersection is non-empty, then there exists a solution to the given knapsack
problem. The FSA for S is acyclic (tree-like). We can compute the intersection of
such an acceptor with the automaton M, without computing the cartesian product

of the two machines. We can combine S and any FSA M into a new machine with

|S| + | M| states that accepts L(S) N L(M).
In order to get the desired bound (2 for any positive €), use a similar construction

for k automata: pick k primes pq, ..., p; of size Py and follow the same ideas described

above to construct k automata M, that check if b— X" | = 0(mod pi). Construct the

tree-like acceptor S as before, and consider the emptiness problem for the intersection

37

(M. nS (3.3)

The size of the automata M,, is at most o = 0(2%). S has also size o, and
will be combined in an automaton for M,, N S of size O(c). Now we can use the
assumption F: for a collection of k£ automata of size o the emptiness problem of their

k
intersection can be solved in time O(UWH). This will give us the following upper

bound:

o1 d -
eXp<k+1f(k)n+k+1n> (34)

For large enough k the above expression becomes

971" (3.5)

(assuming that f(k) grows slower than O(k).) Since f(k) is unbounded, ﬁ can

become less than any constant € > 0 by choosing k appropriately. |

3.2.2 Integer Factoring

Using the same ideas as in the previous section, we can prove that integer factoring of
an n-bit number is solvable in O(27), for any € > 0, provided that the assumption F
is valid. Finding deterministic algorithms for factoring is a major open problem: The

best known deterministic algorithm runs in time 237 With the Extended Riemann

38

Hypothesis this bound only improves to 25" (See [Bac90]).
The problem is the following: Given any integer z of size n, find z,y such that

Ty ==z

Theorem 3.2.2 The assumptlion F implies thal factoring can be solved in time

O(n°M2) for any e > 0.

Proof We show how to build a fixed number of finite state automata to check
if vy = 2. Exactly as in the case of the subset sum problem, pick two primes p
and ¢ of size n/3 and consider the corresponding FSA’s M,, M,, checking whether
z-y = z(mod p) and = -y = z(mod q) respectively. Again we build the set S of those
strings x,y for which z - y = z modulo both primes p and g but z -y # z. The size
of S is |S] < 2"3, and since S is explicit we can construct a tree-like FSA acceptor.

The following emptiness problem solves the factoring problem:

?

LIM)NL(M)NS # o (3.6)

The input of the finite state machines is the string x#y. Since M, and M, are
finite state automata, we need to know the length of = and y in advance; we need to
know where the string x stops and y starts. Since the length of the factors x, y is not
known in advance, we simply check all possible lengths |z| = n/2,|z| =n/2 —1,....

The size of M, is p-n°®") (and M, = ¢-n°")). Based on the assumption F, we can

check the intersection (3.6) for emptiness in 2%/3 . @),

Now consider & primes py, ..., py of size 727 each, build the corresponding collec-

tion of FSA’s M,,,..., M,,. The size of each automaton is |M,,| = ¢ = p; - n°") =

¥ o(1)

2%+1 . n~W. The factoring problem can be solved by checking the following intersec-

39

(M. nS (3.7)

where S is the set of all numbers z,y such that « -y = z(mod p;) for 1 <i <k, but
-y #z. Sis a tree acceptor FSA, and can be combined with M,, into one FSA of
size 277 as discussed above.

By our assumption F the intersection from equation (3.7) can be solved in time

o7 Thig yields the following upper bound:

k 1 d
o),
n eXp<k+1f(k)n+k+1n> (3.8)

In order to factor a given number z proceed as follows: check whether there exist
z,y such that zy = z (trying all possible lengths for z and using the automata inter-
section technique presented above). In order to find the actual number z, compute
its bits one by one by solving the following problem: is there a factorization of z = zy
where the first bit of x is 17 If we repeat this O(n/2) times, we can find all the bits

of the number z. |

3.3 Deterministic simulation of non-deterministic
computation

In this section we show how to build a collection of automata to check deterministically
the computation of a non-deterministic time-bounded Turing machine. Under the

assumption F the time required for constructing the automata and checking their

40

intersection for emptiness will be “subexponential”.

The main theorem is proved for multi-tape Turing machines. A trace of the com-
putation on input z of a machine M is a string of computation steps. Each step
contains the current contents of the working tapes, the position of the heads, the
state of M, the input symbol read, the position of the head on the input tape, and
the nondeterministic choice of M at this step. This description of the computation of
a Turing machine M on a certain input is also refered to as a tableau of computation,
the computation string, or just “the computation” of M.

The main idea for the simulation follows roughly these steps: Start from any non-
deterministic computation (Turing machine) and on input x simulate the computation

deterministically as follows:

1. Break the non-deterministic computation in blocks
2. Make sure the computation is “local” in each block

3. Build finite state automata that will check the correctness of the computation

in each block (each block can be checked independently)

4. Check if all the automata accept the computation (which means that every

block of the computation is correct)

If the input z is accepted by the (non-deterministic) machine M we started from,
then there exists a valid accepting computation of M on z. Therefore, for our de-
terministic simulation described above, the question “does there exist an accepting
computation for x” translates to “is there a string accepted by all the automata”
in the last step. To answer this question, we will use the fast algorithm for FSA
intersection emptiness (whose existence is implied by assumption F) to speed up the

simulation.

41

Each automaton will be checking a part of the computation. In order to keep
the size of the automata small, we would like to break the computation in such a
way so that each automaton will only have to look in certain (as small as possible)
parts of the computation to verify correctness. This can be achieved if we make the
computation “local” in the sense of the “block respecting computation” ideas.

The notion of block respecting computation was introduced by Hopcroft Paul and
Valiant in [HPV77] to prove that deterministic space is strictly more powerful than
deterministic time (DTZME(t) C SPACE(t/logt)). Block respecting Turing ma-
chines are also used in [PPST83] to prove that non-deterministic linear time is more

powerful than deterministic linear time (see also [PR81] for a generalization of the

results from [HPV77] for RAMs and other machine models).

computation

—1 b steps tapes

t steps

i b cells

Figure 3.1: Block respecting computation

Definition 3.3.1 Let M be a machine running in time f(n), where n is the length
of its input x. Lel the computation of M be partitioned in a(n) segments, where each
segment consists of b(n) consecutive steps (a(n)-b(n) = f(n)). Let also the cells of
the tapes of M be partitioned into a(n) blocks each consisting of b(n) cells on each
tape. We will call M block respecting if during each segment of its computation, each

head visits only one block on each tape.

42

Here are some more details for the ideas behind the proof. Let M be a nonde-
terministic Turing machine running in time ¢. On input z, convert M to a block
respecting machine My. Consider the trace of the computation of M, and construct
a collection of FSA’s that will check if the computation is correct the following way:
each FSA will check the correctness for a number of segments of the computation
trace. Note that since M, is block respecting, for each segment of the computation,
the automaton needs to check the contents of only one block on each working tape.
Now consider the intersection of all the automata (an automaton accepts its input if
it corresponds to a valid computation of M on x). If the intersection of the automata

is non-empty, then there exists a valid accepting computation for M, and therefore

for M.

M B computation

tapes

Figure 3.2: Checking block respecting computation with finite state automata

In order for an FSA to check a computation segment, it needs to know the contents
of the corresponding blocks the last time they were accessed in the computation trace.
Since the machine M, is nondeterministic, we need to consider many possibilities
for the position of these previous accesses in the computation trace for M,. These

dependencies can be represented by a graph as in [HPV77]. For the deterministic

43

simulation we need to consider all possible graphs.
Theorem 3.3.2 Assumption F implies NTIME(L) C DTIME(2Y), for any e > 0.

Proof Let M be a non-deterministic machine with [tapes, running in time
t. Let Mg be the corresponding block respecting machine, with running time O(t).
Break the computation of Mp (on input x) in segments of size B each; the number of
segments is O(¢/B). Consider the directed graph G corresponding to the computation
of the block respecting machine as described in [HPV77]: G has one vertex for every
time segment (that is ¢/ B vertices) and the edges are defined from the sequence of
head positions. Let v(A) denote the vertex corresponding to time segment A and A;
is the last time segment before A during which the i-th head was scanning the same
block as during segment A. Then the edges of G are v(A — 1) — v(A) and for all
1 < <1, v(A;) = v(A). The number of edges can be at most O((! + 1)%) and

therefore the number of bits required to describe the graph is® O ((l + 1)5 log %)

'tape block | \

]

B computation

Figure 3.3: Graph description of a block-respecting computation

The general idea for simulating Mp, is to build finite state automata to check the

computation that takes place on each vertex of the graph (each vertex corresponds to

3Since [is a constant, from now on it will be incorporated in the big-O notation.

44

a segment of the computation). Since the machine M is non-deterministic, we need
to consider all 20(#10g %) possible such graphs.

Now consider the computation of the block respecting machine during time seg-
ment A: this time segment contains B computation steps. In each step, the machine
reads and writes the bits on the head positions in the blocks corresponding to A
depending on the non-deterministic choice at that step.

In order to check if the computation is correct during one step, we could use an
FSA of constant size (the size actually depends only on the number of tapes of the
machine). This check can be done by a decision tree of size 20(B),

Let k& be the number of FSA’s. Then for any ¢ > 0 we can pick k = 1/¢ such that
each automaton checks +£) = et/B segments or 4B = el steps. The size of each
FSA is therefore 2¢ (decision tree).

Our deterministic algorithm that will simulate M must construct the transition
diagrams for these k FSA’s. For each transition (arc in the decision tree) we need to
simulate M, for at most 2P steps. Since 27 is the total number of transitions, the
total time required is 2 - 2. The running time for the construction of all the FSA’s

for all possible graphs is therefore:

251‘2B20(%10g %) — QO(Et) (39)

In order to check if there exists an accepting computation for M on input x it
suffices to check if the intersection of all FSA’s N*_ F; is non-empty. Under our

assumption F, the time needed to intersect k FSA’s of size o = 2 = 2!/* is:

45

(3.10)

Since f(k) = o(k), the time needed for testing the intersection for emptiness is

90(5t5") | Therefore the total time for our simulation is the time to construct the FSA’s
1

plus the time to check the intersection: 2°0(<) 4 2", Since f(k) is unbounded we

can always pick k appropriately so that the total time is 20(<). |

3.4 Separating Complexity Classes

Consider the problem of separating two complexity classes, for example, P from NP.
One way to approach this problem is to show that NP is “too hard”, meaning that
there exists a problem in NP that cannot be solved in (deterministic) polynomial
time. A different way to view this separation problem, is to prove that P is actually
“too easy”, in the sense that everything in P can actually be solved in small non-
deterministic time. For example, if we can prove that every problem in P has fixed
polynomial size (non-uniform) circuits (for example size n°) then P # NP. This ap-
proach tries to prove separation results using “algorithms” rather than lower bounds.
In the following section we will see an example of this method: If there exists a fast
enough algorithm solving the FSA intersection emptiness problem, then N'L is actu-
ally “too easy” for polynomial time P, meaning that everything in 'L can be done
in fixed polynomial (less than n?) time. The separation follows immediately from the
well known time hierarchy results. This means that if one would like to separate V'L
from P it would suffice to improve the algorithm for the FSA intersection emptiness

problem. On the other hand, this could be considered as a hardness result for the

46

FSA problem. Since separating these fundamental complexity classes is considered
quite hard, this theorem could be an indication of the hardness of the FSA problem.

A similar, more general result can be shown for a non-uniform variant of our
assumption. If we assume that there is a small enough (non-uniform) circuit solving
the FSA intersection emptiness problem, then we can separate N'L from NP. This
is based on a result of Kannan [Kan81].

In the previous sections, the assumption F that was used, was that given & FSA’s
Fi, Fy, ... F) of the same size o, there is an algorithm that can check whether their
intersection is empty in time ckaﬁw. We modify slightly this assumption to the

following:

Assumption F': Let Fy, Fy, ..., Fy be k FSA’s of size 0 and G a FSA of size o'.

Then there is a deterministic algorithm that can decide whether

k

ﬂL(FZ»)mG;AQ

=1

in lime Uﬁ+d0/, where f(-) is an unbounded function and d > 0 is a constant.
Notice that the new assumption F’ differs from F only in the introduction of an
extra FSA G which may not have the same size as the rest of the FSA’s. The problem
can still be solved by the standard method of taking the Cartesian product of the
k 4+ 1 automata and deciding whether its language is empty in time O(c*0’). This
is a natural generalization, stating basically the same fact as the original assumption
F (“is there a faster algorithm for FSA intersection emptiness ?”) and is used to

overcome a technical point in our proof.

We will also prove a similar separation result for the non-uniform setting. For this

47

case, we will state a more general assumption, which is just the non-uniform version
of F': instead of assuming that there exists a fast enough algorithm solving the finite
state automata intersection emptiness problem, assume that there is a non-uniform

circuit that will solve the same problem in small size. Call this assumption F¢.

Assumption Fe: Let Fi, Fy, ... Fy be k FSA’s of size 0 and G a FSA of size o'.

Then there is a circuit (family of non-uniform circuits) that can decide whether

k

ﬂL(FZ»)mG;AQ

=1

Q) +da’, where f(-) is an unbounded function, and d > 0 is a constant.

with size o
In both the uniform and the non-uniform cases, the proofs of the separation the-

orems will proceed as follows. Think of the separation of N'L from P:

1. Start from any N £ Turing machine My, and consider the computation on some

input x.

2. Given the N'L machine, and the input z, we will check if there exist any ac-

cepting computations on input z.

3. “Break” the computation of the machine into blocks (in fact we will break the
work tape into blocks, and each such block will correspond to a part of the

computation)

4. Build one finite state automaton for each block to check if a given computation
string is correct, in all parts that correspond to that block (ignore the rest of

the computation string)

48

5. The question “does there exist an accepting computation of My, on z” translates

to “does there exist a string accepted by all the automata”

6. Argue that the entire simulation can be done in some fixed polynomial time (or

circuit size).

In order to speed up the simulation described above, we will use the fast algorithm
(or small circuit) for the intersection emptiness problem (last two steps).
For the uniform setting, this simulation will give a (better than) n? time simulation

of NL. Then the deterministic time-hierarchy results will complete the separation

proof of N'L and P.

Theorem 3.4.1 (Deterministic time hierarchy) For any &k > 0,

DTI/MS(nk) C DTI/MS(nk‘H)

For the non-uniform case, the simulation will give (non-uniform) circuits of size

n?. To separate N L from NP, the following result by Kannan [Kan81] will be used:

Theorem 3.4.2 (Kannan [Kan81]) For any k > 0, there is a language in X5 N 11

that does not have circuits of size n*.

In simple terms, for any &, the polynomial hierarchy contains hard problems, that

. This theorem can be restated as a general lemma

require circuits bigger that n
see section 3.6) that can be used to separate complexity classes by designing fast
p p y y gning

algorithms and/or simulations rather than proving lower bounds.

3.4.1 Uniform assumption: N'L vs P

In the uniform setting, we will separate N'L from P (based on assumption F’)
by showing that N'L is very easy given the power of polynomial time: every non-

deterministic log-space computation can be done in less than n? time.

49

Theorem 3.4.3 Assumption F' implies NL C DTIME(n'*e), for any € > 0.

Proof Without loss of generality, we can assume that an AL machine has only

one working tape.

NL computation

working tape

B . |

nC

Figure 3.4: Checking non-deterministic Logspace computation

The main idea is the following: Break the working tape of the machine into blocks.
This corresponds into breaking the computation of the machine into segments. We
will use one FSA for each tape block that will accept only strings representing ‘cor-
rect’ computations for this particular block. This is done by having the automaton
going through its input (claimed to be a valid computation) until the head of the
working tape enters the tape block assigned to this automaton. Then the FSA starts
simulating the computation steps of the machine in this block, and checks whether
the input represents a valid computation. The FSA continues to check all computa-
tion steps in the input until the work tape head leaves its (pre-assigned) block. Then
the automaton goes through the rest of the computation (ignoring everything) until
the head enters that block again or the computation ends. Note that the automa-
ton ‘remembers’ the contents in its tape block in its own state, in order to do the

simulation the next time it encounters its block in its input.

50

If there is a string that belongs in the languages accepted by all the FSA’s (i.e.
the intersection of their languages is non-empty), then this string corresponds to a
computation that is correct for each block. There is a technical problem however: the
FSA’s cannot check whether the input (on the read-only input tape) appears correctly
throughout the computation string (it would require bigger finite state automata).
To overcome this difficulty we will use another FSA that will only check the input
of the computation on the computation string. This requires the modification of the
assumption F as discussed above.

More specifically, let L € NL and M; be the corresponding block-respecting
Turing machine, using at most clogn working space (and therefore time n°), for
some constant ¢ > 0. The computation on input z of this machine can be described
by a string of computation steps: each step contains information about the position
of the head of the working tape, the state of Mp(z), the input symbol read, the
nondeterministic choice of My () at this step and the symbol read/written on the
working tape.

We break the working tape of My (z) into k blocks of size B each (k is a parameter

to be determined later). Then k = Clc];gn. For each block B;, 1 = 1...k we construct

a FSA F; that does the following:
1. F; reads its input until the working tape head enters B;
2. Simulate the computation in B; until head moves to B;_; or B4

3. Go through the rest of the computation string. If the working tape head enters

B; again, repeat the previous step.

4. When the end of the computation is reached and the computation string read

was correct, then accept/reject according to what Mp(z) does.

51

5. If any errors in were discovered in the computation string, reject.

In order to perform the second step, F; has to keep in its state the contents
of B; and the current position of the working head, therefore it needs to remem-
ber O(c2P loglogn) bits, and since we are going to pick B large enough, the size
of F;is |[F;| = 2°B). The FSA’s are constructed in a straightforward way, as
decision trees, branching on every input bit (from the pre-assigned positions on
the tape blocks). In order to compute the transitions of F; (label the transitions
in the automaton) for a single computation step, we need to run My (z) starting
from all possible configurations of B; while the number of transitions is at most
O(number of states of F;) = 20(B) Hence the time needed to construct the FSA’s is
at most 20(B),

We still need to check whether the input (of My) is read correctly, if the input
bits appear correctly in the computation string. We cannot assign this task to the
F;’s since this requires too many bits to keep track of. Thus we construct one more
FSA G with O(n) states that goes through the computation string and just checks
the positions where the input bits are read by the A'£ machine M.

If the intersection N, L(F;) N L(G) is non-empty, then there is a computation
string that represents a correct accepting computation of My (z) (as checked by the
F;’s), in which the input tape bits appear correctly (as checked by). Using our
assumption F’, the emptiness of this intersection can be decided in deterministic

time

BT+ G = dy2 T8 Py,

doclog n+d2clogn
= d12 f(k) 2 n

(3.11)

52

for some constants dy,dy; > 0. Considering the time needed to construct the FSA’s,

and for f(k) = o(k), the total time needed for the deterministic simulation is at most

d3c
n, F(k)

+1

dgc
f(k)

for any € > 0 (since f(-) is unbounded). |

for some constant d3 > 0, and thus we can always pick a big enough £ so that < €,

From the well known time hierarchy theorem 3.4.1 we get the following:

Corollary 3.4.4 Assumption F' implies NL # P

3.5 Non-uniform assumption: N'L vs NP

The non-uniform version of our assumption F¢ implies that N'L # NP. We will start
by showing that V'L has small (fixed polynomial size) circuits (VL is “too easy”).

% circuits, but note that any fixed

The following theorem proves that V'L has size n
polynomial size circuit simulation would work just as good. This will be obvious in

the proof, where Kannan’s [Kan81] result is used.

Theorem 3.5.1 Assumption Fe implies that N L can be simulated by fized polyno-

mial size (size n?) (non-uniform) circuits.

Proof The proof is essentially the same as for theorem 3.4.3. Each of the au-
tomata Fj, i = 1...k, is of size 2°B) and thus can be described by a circuit of size
20(B) (¢ can be described by a circuit of size O(n?). Assuming Fe, there is a size
|F¢|ﬁ+d|G| = n?F@ %) circuit that given the description of automata F, i = 1...k,
and G from theorem 3.4.3 decides the emptiness of their intersection. By picking k

2

large enough this size can be made less than n® (any constant in the exponent would

53

be sufficient here, as long as it is independent of ¢). Hence every language in N'L has

a circuit of size n?. |

Corollary 3.5.2 Assumption F¢ implies NL # NP
Proof

1. VL has (fixed) polynomial size circuits.

2. If NL = NP then the polynomial time hierarchy collapses to N'L, and Kan-
nan’s theorem 3.4.2 implies that for any constant 3 there is a language in X}

and therefore 'L that is not computable by circuits of size n”.
3. By theorem 3.5.1 N'L has fixed polynomial (rn?) size circuits. Contradiction

Therefore N'L # NP. 1

Note that the proof of corollary 3.5.2 can be considered as an application of lemma

3.5.3 (presented in the next section).

3.5.1 A general Lemma

The following lemma is a general way to state Kannan’s [Kan81] result, as a tool
for separating Complexity Classes. As mentioned earlier, this technique provides a
somewhat different approach since it gives a method to separate complexity classes

by proving upper bounds, designing algorithms and efficient reductions.
Lemma 3.5.3 Let Cy,Cy be two complexily classes such that:
1. C; € P/poly

2. if C; = Cy then for any k, there is a language in Cy that requires circuits of size

>> nk.

54

3. for some fired k, C; has circuils of size < n* with access to an oracle from C,.
Then Cl 7£ C2

Proof Let C; = C,. Consider the fixed polynomial size circuit implied by (3).
Since C; = C the Cy oracle has also (fixed) polynomial size, and therefore all Cy has

fixed polynomial size circuits. But this contradicts 2. |

3.6 Remarks

The results mentioned in this section can be viewed as a method of separating N'L
from P or NP (See Fortnow [For00a] for related survey). Improving the algorithm
for the finite state automata intersection emptiness problem would provide very in-
teresting separation results as well as fast algorithms and simulations discussed in
this section. It would also be interesting to see if there are other connections between

similar problems and Complexity theory questions.

99

Chapter 4

Non-Uniform depth of Polynomial

Time

We discuss some connections between polynomial time and non-uniform, small depth
circuits. A connection is shown with simulating deterministic time in small space.
The well known result of Hopcroft, Paul and Valiant [HPV77] showing that space is
more powerful than time can be improved, by making a (strong) assumption about
the connection of (linear) deterministic time computations and polynomial size, non-
uniform, small (sub-linear) depth circuits. To be more precise, in this section we
will prove the following: If every polynomial time computation can be done by a non-
uniform circuit of polynomial size and sub-linear depth (for example if P C N'C/poly),
then DTIME(t) C SPACE(1'~¢) for some constant c.

4.1 Introduction

Hopcroft Paul and Valiant [HPV77] proved in 1977 that space is more powerful than
time: DTIME(t) C SPACE(t/logt). The proof of this trade-off result is based

56

on pebbling techniques and the notion of block respecting computation. Improving
the space simulation of deterministic time has been a long standing open problem.
Paul Tarjan and Celoni [PTC77] proved an nlog n lower bound for pebbling a certain
family of graphs. This lower bound implies that the trade-off result DTZME(t) C
SPACE(t/logt) of [HPVTT7] cannot be improved using pebbling arguments.

In this work we will present a connection between space simulations of determin-
istic time and the depth of non-uniform circuits simulating polynomial time compu-
tations. If every problem in P can be solved by a polynomial size non-uniform circuit
of small (sub-linear) depth then every deterministic computation of time ¢ can be
simulated in space ¢'7¢ for some constant ¢ (that depends only on our assumption

about the non-uniform depth of P):

DTIME(n) CSTZE-DEPT H(poly(n),n' ™) -
4.1

= DTIME(t) C SPACE(L' ™)

A similar result was shown by Sipser [Sip86, Sip88] from the point of view of
reducing randomness required for randomized algorithms. His result considers the
problem of constructing expanders with certain properties. Assuming that those
expanders can be constructed efficiently, the main theorem proved is that if P is

equal to R then the space simulation of Hopcroft, Paul and Valiant [HPV77] can be

improved for a more restricted case:

Theorem 4.1.1 (Sipser [Sip86]) Under the assumption thal certain expanders

have explicit constructions, there exists an € > 0 such that

P=R = (DTIME{)N1*) C SPACE(' ™) (4.2)

57

The above results shows how to simulate unary languages in DTZME(1).

4.2 Notation - Definitions

We will use the standard notation for time and space complexity classes DTZME(t)
and SPACE(t). SIZE-DEPT H(s,d) will denote the class of non-uniform circuits
withs size (number of gates) O(s) and depth O(d). At some points in this section, we
will also avoid writing poly-logarithmic factors in detail and use the notation O(n) to
denote O(n log” n) for constant k. In this chapter we will consider time complexity
functions that are time constructible: A function ¢(n) is called fully time constructible
if there exists a deterministic Turing Machine that on input of length n halts after
exactly ¢(n) steps. In general a function f(n) is t-time constructible, if there is a
deterministic Turing Machine that on input z outputs 1/(°) and runs in time O(t).
t, s time-space constructible functions are defined similarly.

For the proof of the main result we will use the notion of block respecting Turing
machines introduced by roft Paul and Valiant in [HPV77]. Recall that block respectin
Turing machine computation is defined as follows (definition 3.3.1):

Let M be a machine running in time f(n), where n is the length of its input z. Let
the computation of M be partitioned in a(n) segments, where each segment consists
of b(n) consecutive steps (a(n)-b(n) = f(n)). Let also the cells of the tapes of M be
partitioned into a(n) blocks each consisting of b(n) cells on each tape. We will call M
block respecting if during each segment of its computation, each head visits only one
block on each tape.

Recall also that block respecting Turing machines are also used in [PPST83] to
prove that non-deterministic linear time is more powerful than deterministic linear

time (see also [PR81] for a generalization of the results from [HPV77] for RAMs and

58

other machine models).

4.3 Main Results

We show that if polynomial time has small non-uniform circuit depth (for polynomial
size circuits) then DTIME(t) C SPACE(L'~°) for some ¢ > 0.

The strongest form of the main result is the following: if (deterministic) linear
time has polynomial size, non-uniform circuits of sublinear depth, then DTZME(t) C
SPACE(t'~¢) (for some small € > 0):

DTIME(n) C STZE-DEPT H(poly,n°) = DTIME() C SPACE(t'™°) (4.3)

It is easy to see though, that by padding arguments, the assumption mentioned
above, implies that P C STZE-DEPT H(poly,n°M))

The main idea is the following: Start with a deterministic Turing machine M
running in time ¢ and convert it in a block respecting machine Mg with block size B.
In each segment of the computation, Mg reads and/or writes in exactly one block on
each tape. We will argue that we can check the computation in each such segment
with the same sub-circuit and using an assumption of the form P C N'C/poly we can
actually construct this sub-circuit in polynomial size and small (poly-logarithmic)
depth. Combining all these sub-circuits together we can build a larger circuit that
will check the entire computation of Mp in small depth. The final step is a technical

lemma that shows how to evaluate this circuit in small space (equal to its depth).

Theorem 4.3.1 Let t be a reasonable time complexily function. If P C NC/poly

then DTIME(t) C SPACE(t'~°) for some constant c.

59

Proof
Consider any Turing Machine M running in deterministic time ¢{. We will show
how to simulate M in small space using the assumption that polynomial time has

shallow (poly-logarithmic depth) polynomial size circuits. Here is a brief outline:

1. convert given TM in a block respecting machine with block size B.

2. construct the graph that describes the computation. Each vertex corresponds

to a computation segment of B steps.

3. The computation on each vertex can be checked by the same TM U that runs

in polynomial time (linear time)

4. Since P C NC/poly, there is a circuit Ug that can replace U. Ug has polynomial

size and polylogarithmic depth.
5. Construct Ug by trying all possible circuits.

6. Plug in the sub-circuit Uc to the entire graph. This graph is the description of
a circuit of small depth, that corresponds to the computation of the given TM.

Evaluate the circuit (in small space)

In more detail: Convert M to a block respecting machine Mp. Break the com-
putation of Mg (on input x) in segments of size B each; the number of segments is
t/B. Consider the directed graph G corresponding to the computation of the block
respecting machine as described in [HPV77]: (G has one vertex for every time segment
(that is ¢t/ B vertices) and the edges are defined from the sequence of head positions.
Let v(A) denotes the vertex corresponding to time segment A and A; the last time
segment before A during which the i-th head was scanning the same block as dur-

ing segment A. Then the edges of G are v(A — 1) — v(A) and for all 1 < <[]

60

v(A;) = v(A). The number of edges can be at most O(%) and therefore the number
of bits required to describe the graph is O (% log %)

Each vertex of this graph corresponds to B computation steps of Mp. During
this computation, Mp reads and writes only in one block from each tape. In order to
check the computation that corresponds to a vertex of this graph, we would need to
simulate Mp for B steps and check O(B) bits from Mp’s tapes. For each vertex we
need to check/simulate a different segment of Mp’s computation: this can be done by
a Turing machine that will check the corresponding computation of Mp. It is easy to
see that the Turing machine that checks the computation on each vertex of the graph
is the same; the machine needs to simulate Mg for B steps and check the content
of specific tape blocks. The only thing that is different for each vertex is which
blocks on the working tapes we need to check and which part of the computation
we need to simulate (starting state of Mp. Therefore we can assume that the exact
same machine is used on all vertices to check the computation of Mg, with an extra
input: this extra input is an index that shows which segment of the computation
of Mp must be simulated (index of the vertex for example). Therefore we have the
same (“universal”) machine U on all vertices of the graph which runs in deterministic
polynomial time.

If P C SIZE-DEPT H(n",log'n) then U can be simulated by a circuit Ug of
size O(B*) and small depth O(log' B), for some k, . The same circuit is used on all
vertices of the graph. In order to construct this circuit, we can try all possible circuits
and simulate them on all possible inputs. This requires exponential time, but only
small amount of space: the size of the circuit is B* and its depth polylogarithmic in
B. We need ON(B’“) bits to write down the circuit and only polylog space to evaluate
it (using lemma 4.3.2).

Once we have constructed U, we can build the entire circuit that will simulate

61

Mpg. This circuit derives directly from the (block-respecting) computation graph
where each vertex is an instance of the sub-circuit U/¢. The size of the entire circuit is
too big to write down. We have up to ¢/ B sub-circuits (Ug) that would require a size
of O(%Bk) for some constant k. But since it is the same sub-circuit Ugs that appears
throughout the graph, we can implicitly describe the entire circuit in much less space.
For the evaluation of the circuit, we only need to be able to describe the exact position
of a vertex in the graph, and determine the immediate neighbors of a given vertex
(previous and next vertices). This can easily be done in space O(t/B + B*).

In order to complete the simulation we need to show how to evaluate a small-depth

circuit in small space (see Borodin [Bor77]).

Lemma 4.3.2 Consider a directed acyclic graph G with one source (root). Assume
that the leaves are labeled from {0,1}, ils inner nodes are either AND or OR nodes

and the depth is al most d. Then we can evaluate the graph in space at most O(d).

Proof (of lemma. See [Bor77] for more details).

Convert the graph to a tree (by making copies of the nodes). The tree will have
much bigger size but the depth will remain the same. We can prove (by induction)
that the value of the tree is the same as the value of the graph from which we started.
Evaluating the tree corresponds to computing the value of its root. In order to find
the value of any node v in the tree, proceed as follows: Let wuq,...,u; denote the
child-nodes of v.

If v is an AND node, then compute (recursively) the value of its first child w;. If
value(uy) = 0 then the value of v is also 0. Otherwise continue with the next child.
If the last child has value 1 then the value of v is 1. Note that we do not need to
remember the value of the child-nodes that we have evaluated. If v is an OR node,

the same idea can be applied. We can use a stack for the evaluation of the tree. It is

62

easy to see that the size of the stack will be at most O(d), that is as big as the depth

of the tree. |

t

Bk
+B

log' B (4.4)
To get the desired result, we need to choose the size B of the blocks appropriately

to balance the two terms in (4.4). B will be {'/¢ for some constant ¢ that is larger

than k.

As mentioned above, the exact same proof would work even if we allow almost

linear depth for the non-uniform circuits for P. The stronger theorem is the following;:

Theorem 4.3.3 If DTIME(n) C SIZE-DEPT H(nk, 0(n)) for some k > 0 then
DTIME(t) C SPACE(LY) for some constant ¢ < 1.

These proof ideas seem to fail if we try to simulate non-deterministic time in small
space. In that case, evaluating the circuit would be more complicated: we would
need to use more space in order to make sure that the non-deterministic guesses are

consistent throughout the evaluation of the circuit.

4.4 Semi-unbounded circuits

These simulation ideas using block respecting computation can also be used to prove
an unconditional result relating uniform polynomial time and non-uniform circuits.
The simulation of the previous section implies unconditionally a (weak) trade-off

type of result for the size and depth of a non-uniform circuit that simulates a uniform

63

computation. The next theorem proves that any deterministic time ¢ computation
can be simulated by a non-uniform circuit of size v/t - 2Vt and depth v/, which
has “semi-unbounded” fan-in. It follows that deterministic time ¢ can be simulated
by non-uniform circuits that can be described in size 2VT and have depth +/¢. This
description is possible since the same subcircuit is used many times in the construction

described in the following theorem:

Theorem 4.4.1 Lett be a reasonable time complexity function. Then DTIME(t) C
SIZE-DEPTH(\/t- Vi, V1), and the simulating circuils requires exponential fan-in

for AND gates and polynomial for OR gates (or vice-versa)

Proof

Given a Turing machine running in DTZME(t), construct the block respecting
version, and repeat the exact same construction as the one presented in the proof
of theorem 4.3.1: Construct the graph describing the block respecting computation,
which has ¢/ B nodes, and every node corresponds to a segment of B (we will chose
the size B later in the proof) computation steps. Use this graph to construct the
non-uniform circuit: For every node, build a circuit, say in DNF, that corresponds to
the computation that takes place on that node. This circuit has size exponential in

(B)

B in the worst case, 2°(B) and depth 2. The entire graph describes a circuit of size

%20(3) and depth O(B). Also, note that for every sub-circuit that corresponds to
each node, the input gates (AND gates as described in the proof) have a fan-in of at

most O(B), while the second level might need exponential fan-in. This construction

yields a circuit of “semi-unbounded” fan-in type. |

64

Chapter 5

Tautologies and Propositional

Proof Systems

One way to address the NP L co-NP question is to consider the length of proofs of
tautologies in various proof systems. A well known theorem [CR79] states that if there
exists a propositional proof system (with certain properties) in which every tautology
has polynomial size proofs, then NP = co-NP. This is a very interesting connection
between Propositional logic and fundamental questions in Complexity theory. Many
different proof systems have been considered and strong lower bounds have been
shown for different tautologies. A natural question to ask is the following: is there
a direct correspondence between a propositional proof system and a computation
model? We know for example, that the proof system of regular resolution corresponds
to read-once branching programs in a very natural way; the size of the smallest proof
of a tautology in regular resolution is the same as the size of the smallest read-once
branching program that solves a search problem associated with the tautology.

In this section we will try to look closer to the correspondence between computa-

tion models and propositional proof systems. We consider proof systems defined by

65

appropriate classes of automata [LVI9b]: In general, starting from a given class of
automata we can define a corresponding proof system in a natural way. An interest-
ing new proof system that we consider is based on the class of push down automata.
We present an exponential lower bound for oblivious read-once branching programs
which implies that the new proof system based on push down automata is strictly
more powerful than oblivious regular resolution. This result gives a characterization
of this new system and its power, compared to classic systems from propositional

logic.

5.1 Introduction

One of the famous open questions of complexity theory is whether NP is equal to
co-N'P. Cook and Reckhow [CR79] showed that this question translates in a very
basic and natural in terms of propositional logic: P equals co-NP if and only if
there exists a propositional proof system in which every tautology has short (polyno-
mial size) proofs. This question, in its general form seems to be completely beyond
our reach. However, recently there has been considerable progress on attacking a
restricted version of this problem.

In our case we plan to look more closely at this correspondence between compu-
tation models (automata classes) and propositional proof systems. It is known, for
example, that the proof system of regular resolution corresponds directly to the class
of read-once branching programs. A lower bound on the size of regular resolution
proofs for a language £ that is defined by a tautology, translates directly to a lower
bound for the size of read-once branching programs solving a search problem asso-
ciated with £. Thus, the known technology for proving lower bounds on read-once

branching programs can be used to prove lower bounds for resolution.

66

We will mostly try to look at the “reverse” correspondence: computation model
— proof system. Starting from a class of automata (with certain properties) we will
show how to associate with it a proof system, in a “natural” way. One important
point is that we have to restrict the automata class so that the proof system lies in
NP. This correspondence will allow us to compare the power of automata classes
(computation models) with classic propositional proof systems. It also provides a
way to try to design proof systems with the power to prove certain tautologies, and
translate ideas from computation models into the context of propositional logic.

An interesting new proof systems that we get in this way is based on the class
of push down automata (PDA’s). Our correspondence shows that there is a proof
system that is in NP that corresponds to PDA. We can show that, in a certain sense,
it is more powerful than oblivious regular resolution. This seems to be expected since
regular resolution corresponds to essentially finite state automata.

As we stated earlier the language that is used must be a language that encodes
a tautology. In our case this will require a somewhat unusual language, which will
be based on the pigeonhole principle. In order to prove our results, we will allow the
automata to read their inputs in any order. Thus, the famous example ww® that
is not accepted by a finite automata is accepted if the finite automata can read the
inputs in one right order. The latter point is essentially that our automata classes
are more like binary decision diagrams (BDD’s) than classic automata.

Many questions arise from the definitions and results presented in this section:
what does this PDA based proof system mean? Is there some natural generalization
of regular resolution that can be seen to be equivalent to our PDA system? A related
interesting question is the class of BDD’s based on PDA. What is their power? For
example, if these PDA systems could compute x * y = z in polynomial bounded

size, then we would have interesting consequences for factoring (see section 5.6). It

67

is, of course, known that this is impossible for normal BDD’s (Ponzio, [Pon95]).
However, the lower bound proof does not seem to generalize to PDA based BDD'’s:
the technique used in [Pon95] is based on a lemma about counting subfunctions for
fixed size subsets of input variables which seems to fail for the PDA machines (see
section 5.6).

The new PDA based proof system allows us to move beyond read-once machines.
For example, simply consider a branching program with a push-down stack, that
first reads its input x, pushes all symbols on the stack, and then pops the stack
and reads the input again in reverse, . This is equivalent to a weak read-twice
branching program, that reads zz®. The PDA in general seems to be more powerful
than ordinary branching programs, since it is allowed to read the input in different
ways. For example, the PDA can scan the input (z1,...,2,) and also compute some
“useful” value) . f(z;) and then use this value to scan (z,,...,2;) more wisely.
A lower bound for the PDA proof system would be an interesting generalization of
existing results.

The definitions for the correspondence between automata models and proof sys-
tems as well as the exponential separation between the PDA based proof system and
oblivious regular resolution presented in this section, assume that the clauses we con-
sider are “fsa” type formulas: these are simply formulas that can be computed easily
by an finite state automaton for any ordering of their variables. The lower bound for
oblivious regular resolution is implied by an exponential lower bound for oblivious
branching programs, which is proved by applying a technique of Alon and Maass
[AMSS].

68

5.2 Preliminaries

The connections between complexity theory and propositional proof systems were
first proposed and formalized by Cook and Reckhow [CR73]. A propositional proof
system S can be defined! as a polynomial time computable predicate S such that, a
formula ¢ is a tautology if and only if there exists a “proof” p, for which S(¢,p) is
true. A propositional proof system is usually defined in terms of a set of axioms and
a set of inference rules. For a general survey of propositional proof complexity see
[BP98, Urq95].

The proof system of resolution is defined ([Bla37, DP60, Rob65]) as a very simple
propositional proof system, with no axioms and only one inference rule, the resolution
rule. In this proof system (see [Kra95]) we consider clauses which are defined as sets
of literals (disjunctions of literals). A literal is a propositional variable or its negation.
If C,Cy are two clauses, and = a variable, then the resolution rule is the following:
If z and its negation appear in two clauses, then we can replace those two clauses by

their disjunction, after we have removed the occurrences of x and —z.

Cl\/Jf,CQ\/—'JJ
Cy Vv Oy

In order to prove a tautology, we start from its negation (a set of clauses
C = {C1,...,Ck}), and apply the resolution rule until we reach the empty clause
(contradiction). This will give us a resolution refutation, which is a sequence of
clauses, that are produced by the resolution rule, and ending with the empty clause.

The refutation can be represented as a (directed acyclic) graph, in which every node

1See Beame and Pitassi [BP98], Krajicek [Kra95] and Cook and Reckhow [CR73] for more details

on the definition.

69

corresponds to a clause, and the edges show the applications of the resolution rule.

Regular Resolution is a restricted version of the resolution proof system in which
every literal appears at most once in every path in the resolution refutation (in the
graph of the refutation).

As mentioned in the introduction regular resolution is known to be equivalent to
the computation model of branching programs.

Branching programs are graph representations of discrete functions. Many re-
stricted types of branching programs have been studied, as this type of representa-
tion of boolean functions allows us to prove many non trivial lower bounds for various
problems.

A branching program B for a function f : ¥} — X3, where |¥;| = o1, and
|¥2| = o3 is a directed acyclic graph, with one node of in-degree 0 (source node) and
(up to) oz sink nodes. All non-sink nodes are labeled with some variable name from
the set of input variables X = {z,...,z,} of the function f = f(xy,...,2,), and
the number of outgoing edges is o;. Each edge is labeled by a symbol from the input
alphabet ¥;. The sink nodes are labeled by elements of the output alphabet ;. For
each input ¢ = (¢1,...,¢,) € X7, the output of the function f(c) is given by the label
of the sink node we will reach, after following the computation path designated by
the input variables: start at the source, and on each node of the branching program
labeled by z; follow the edge labeled ¢;. The previous definition describes the R-way
branching programs proposed by Borodin, Cook [BC82], where R = o is the size of
the input alphabet.

As a simple example, figure 5.1 shows the branching program representation of
the boolean function f, defined as follows: f(z,y,z) = 1 iff at least 2 of its inputs
{z,y, 2z} are equal to 1.

For our purposes we can assume that the vertices of the branching program are

70

X
[EEY
N

Figure 5.1: Example of a branching program

arranged in levels, such that edges connect nodes in consecutive levels only?

The width of the branching program is the maximum number of nodes in one
level, and the length is the number of levels (maximum length of a path from the
source node to a sink). A branching program is called read-once if along every path
p every variable is tested at most once. A read-once branching program is also called
Binary Decision Diagram (BDD). A read-once branching program is called uniform
if for any path p starting from the root, the set of variables tested along p depends
only on the terminal node u of the path p, and every path from the root to a sink
contains all variables. A uniform read-once branching program is called oblivious if
the variables are tested in the same order along each path. It has been shown that
any read-once branching program can be polynomially simulated by an equivalent
uniform branching program ([RWY97]). It is an open question whether oblivious
read-once branching programs are less powerful than “non-oblivious” ones.

To see the correspondence between branching programs and the resolution proof

2We can convert an arbitrary branching program into a leveled branching program such that
both length and width will not exceed the size of the original device, up to a constant factor.

71

system, consider the following: Define the search problem associated with a set of
unsatisfiable clauses C' (clauses that correspond to the negation of a tautology) is
this: given a truth assignment « find a clause in C' that is false under «. This
problem can be solved by a branching program whose sink nodes are labeled by the

clauses in C.

Theorem 5.2.1 The smallest® reqular resolution refutation of a set of clauses C
is equal to the size (number of nodes) of the smallest read-once branching program

solving the search problem associated with C.

For the proof of this theorem one simply needs to construct a read-once branching

program given a regular resolution refutation and vice versa (see [Kra95]).

5.2.1 Previous Results

Haken in [Hak85] has shown that the pigeonhole principle PH P! requires expo-
nential size resolution proofs, while further improvements were given by Buss and
Turan [BT88]. Recent results by Ran Raz [Raz98] have shown that the weak pigeon-
hole principle requires exponential size resolution proofs, solving a long standing open
question. PH P has polynomial size proofs in extended resolution systems, Frege
proof systems and in the cutting planes proof system [BT88, CCT87, Bus87].

Lower bounds for a function in NP computed by unrestricted branching programs,
were given by Neciporuk [Nec66]. Also Babai et al. [BPRS90] prove a super-linear
lower bound for the majority function (Pudlak also proves a non-trivial bound for
majority function in [Pud84]).

Many lower bounds and general techniques have been given for restricted forms

of branching programs and mostly for oblivious and read-once branching programs:

3The size of a resolution refutation is the number of clauses that appear in the refutation

72

exponential lower bounds are known for computing the parity of the number of tri-
angles in a graph [ABH86, BHST87, SS93], size of regular resolution proofs for the
pigeonhole principle [Hak85, RWY97] as well as the modular counting principle (see
also [Kra95]), integer multiplication [Pon95] (also [Bry91]), for the clique-only func-
tion [BRS93, Weg87], the k-regularity problem for a graph [BHST87, SS93]. Recent
work of Thathachar [Tha98] proves an exponential separation between consecutive
levels of the hierarchy of read-k-times branching programs (result also applies to
non-deterministic branching programs).

Except for these more natural problems, many exponential lower bounds have
been proven for explicit functions (for some less “natural” problems than the ones
mentioned in the previous paragraph) [Gal97, Pon95, ABH*86, BHST87, Dun85]. For
a more complete survey of lower bound results for branching programs see [Raz91].

The branching program model is also very useful for proving time-space tradeoff
results (as mentioned in section 2.1). Recent work of Beame, Saks, Sun and Vee
[BSSV00], based on previous results of [Ajt98, Ajt99b, Ajt99a] show very strong
super-linear time-space trade-offs for randomized computation for (decision) problems

i P.

5.3 Definitions and Lemmata

As we mentioned in the introduction, in order to prove the separation result between
the new push-down proof system and oblivious regular resolution, we need to allow
the machines to read the input variables in any (fixed) order. A simple way to
describe this fact, is to assume that the formulas we will be dealing with, are “easy”
to compute by finite state automata, for any ordering of the variables, in which the

automata will read the input. Another way to think about this restriction, is that

73

we will require the given formulas to have the following property: for any ordering
of the formula variables, there is a polynomial size finite state automaton description
of the formula (i.e. a FSA that accepts all inputs (truth assignments) that make the
formula true).

We will call boolean formulas with the above property, “fsa” formulas. For a given
ordering of the (input) variables, FSA formulas can be described by a finite state
automaton, of size polynomial in the number of variables: Let ¢(z) be a formula,
depending on the variables * = (z1,...,2,). We say that ¢ is an FSA formula,
if there exists a finite state automaton of size polynomial in n, that computes the
formula ¢, for any permutation of the variables z.

More formally: consider a formula ¢(z1,...,z,), and let z,,,..., 2., be a permu-
tation 7 of the variables. We will denote by ||#|| s« the maximum size of the smallest
FSA accepting all strings ,,,..., 2., for a permutation m with ¢(zy,...,z,) = 1
(where the maximum is taken over all permutations 7 of the variables). Lets call this

measure the FSA-size of a formula:

smallest FSA accepting z,,,..., 2,

|191]£sa = max ’
T for which ¢(z1,...,2,) =1
Definition 5.3.1 An FSA formula, is any formula ¢(z1,...,x,) whose FSA-size is

polynomial in the number of variables n.

For example, ||z1 V -+ V 2,50 = O(1) and ||z1 & -+ & 24|50 = O(1), but for
any threshold function ||T]|| s« = O(n) since computing threshold functions involves
counting. On the other hand consider the problem of checking whether the input is

R

a palindrome, ww?, where w® is the string w reversed. It is easy to see that there

is an ordering of the variables that will force an exponential FSA size. On the other

74

hand there is also an ordering that makes the FSA size constant. In other words,
the hardness of this problem depends on the ordering of the input variables. With
our definition of FSA formulas, we can argue that the complexity of computing the
formula is independent of the ordering of the variables.

For this model, we can show that a proof system based on oblivious read-once
branching program machines is strictly less powerful than the proof system of push
down BDD’s. We can prove this separation using the meander lemma of Alon and
Maass [AMS8S]. If, on the other hand, we allow the input to be ordinary clauses, then
it is open if the push down model has greater power. Since it is known that read-once
branching programs correspond to regular resolution, the fact that the push down
model can solve problems that require exponential size oblivious read-once branching
programs, implies that the push-down BDD model is a strictly more powerful proof
system than oblivious* regular resolution.

Let C be a set of clauses, C = {Cy,...,C;} where the clauses C; depend on
variables © = (z1,...2,). A truth assignment « satisfies C if it satisfies all clauses
in C (we can consider C as a conjunction C = /\f:1 C;). The set C is unsatisfiable,
if there is no truth assignment which satisfies all clauses in C. For our purposes we

need to assume that C; are FSA clauses.

Definition 5.3.2 Define an automata-based proof system to be a class of machines
M. We say that M can give a refutation of a set of clauses C, if there exists a
machine M € M such thal, for a given truth assignment o which assigns the values

x to the variables x, M can find and output a clause from C that is false:
1. M(z) =1 = Cy(z) = false

2. M(7)=i=>ic{1,2,...,k}

4We need to consider oblivious BDD’s in order to apply the techniques of Alon and Maas [AM8§]

75

Note that the clauses C; are described by finite state automata (FSA formulas).
Since we allow our machines to read the variables in any (fixed) order, the complexity
of computing the clauses C; should be independent of the ordering of the variables.

As mentioned above, we will consider proof systems that lie in A/P. This implies
that we must restrict our finite machines to classes for which the correctness of the
computation can be checked in polynomial time.

The following lemma (5.3.3) gives a characterization of some automata based proof
systems that lie in NP. Checking the correctness of the computation of a machine
M from a class of automata M, involves verifying the two properties of definition
5.3.2; the second property (i € {1,2,...,k}) is easy to check. For the first property
(if M outputs 7, then the i-th clause is false) we need to check if there exists an input
z such that M will output ¢ and C; is false under # (and z has length n). This can
be formulated as a standard emptiness problem for an intersection of automata: is
there a string z (of length n) for which M outputs ¢ and C; is false under z 7 In
other words, is the intersection of M and C; non-empty® ? The standard algorithm
for testing whether the intersection of finite automata is empty, is to construct their
“cartesian product” and solve the emptiness problem for that machine. Using these

ideas we can prove the following lemma:

Lemma 5.3.3 If M is any class of machines and M € M, it is possible to check

the correctness of the computation of M in time polynomial in the size of M, if the
following hold:

o The class M is closed under Cartesian product with finite state automata: that
is (M x F)e M for any M € M and FSA F, and also we can compute the

machine M x F in polynomial time.

®We also need to check that # has the right length, so we will use one more automaton to check
that, and solve the emptiness problem for the intersection of the three automata in lemma 5.3.3

76

o The empliness problem for any M € M, can be solved in time polynomial in

the size of M.

Proof Consider a class M, and lets assume that M solves the unsatisfiability
problem for a set C = {C4,...,C,}. To verify the correctness of the computation
(verify the proof of unsatisfiability of C) of a machine M € M, we must check that

the output ¢ of the machine is in {1,...,k} and also, if M(z) =1 then C(z) = false.

M': M = Cisfdse

al N C 1 Ci(a)=fase

|:n 1% lengthof aisn

Figure 5.2: Checking correctness of a proof system

The language® L(M) contains all strings = that do not satisfy some clause C;. The
clause C; is described by an FSA (denoted by C;) and C; is the FSA that accepts all
inputs that make the clause false. Consider the machine M' = (M x C;). If the class
M is closed under Cartesian product with an FSA, then M € M = M' c M.
We now want to solve the emptiness problem for M': does L(M") contain a string
of length n? In order to formalize this as a standard emptiness problem, denote by
F,, an FSA which accepts only strings of length n and define M = (M x C; x F,).

Observe that if L(M") is non-empty and z € L(M") then:

o [Z|=n

5The machine M accepts a string z if there is a clause C; such that C;(z) = false and outputs
the index .

77

e 7 is accepted by C; and therefore C;(z) is false.
o if M(z) =1 then indeed C;(z) = false

So, since M* € M, if the emptiness problem for machines from M is decidable
in polynomial time, then the correctness of a system based on M can be checked in

polynomial time, and therefore the proof system is in N'P. |

The previous lemma, gives a method for proving that a class M defines a proof
system that lies in A/P. For example, consider the class of finite state automata. The
emptiness problem is easy: it can be reduced to a reachability problem in the graph
describing the FSA (find a path from the start state to any final state). It is also
easy to see that the Cartesian product of two FSA’s is also an FSA. In the same way,
branching programs, binary decision diagrams and so on are also classes that imply
proof systems that lie in N'P.

We can prove that for push down automata, correctness is also checkable in time
polynomial in the size of the machine.

Recall that the definition of a PDA is the following [HU79]: A push-down automa-
ton (PDA) is the system (@, X, I, 6, qo, Zo, F') where @ is a finite set of states, ¥ and
I' are the input and stack alphabets respectively, qo € @) is the initial state, Zy € T’
is the initial stack symbol, F' C @ is the set of final states and ¢ is the transition
function: §: @ x (X U{e}) x (IF'U{e}) = P(Q x (I'U {e})), where P(X) denotes
the power set of X and ¥, =X U {e} and I'. = ' U {¢}.

The class of (polynomial size) PDA’s is closed under Cartesian product with an
FSA, and also we can see that the emptiness problem for a PDA can be solved
in polynomial time. The following theorem combines classic results for push-down
automata and context free languages. But note that those results, do not usually state

the properties that we need for our purposes, namely that the well-known algorithms

78

for push-down automata need time polynomial in the size of the machine, too.

Theorem 5.3.4 The emptiness problem for a push down automaton with n states

can be decided in time polynomial in n.

Proof The proof is straightforward, and combines the well known technique for
converting a PDA to a context free grammar and the standard algorithms for the
emptiness problem for context free languages.

In order to see if the language of a PDA is empty, first we convert it to a context
free grammar and then we use the standard algorithm for the emptiness problem in

context free grammars (see [HUT79))

e Convert the PDA to an equivalent context-free grammar: Define the grammar
G = (V,X, P,S), such that: the set of non-terminal symbolsis V = Q xI'xQ =
{lg, A,p]: p,q € Q,A €T} Thesize of V is |[V]| = O(n*- |I'|) where the size of
the alphabet is fixed, so |[V| = O(n?). The set of Production rules P consists of
productions of the form: [q, A, g1l = a[q1, B1, 2] - .. [Gms B, @u+1] where
G €Q,aeX, A B el and (¢1,B1---Bn) € 6(q,a,A),and S = [qo, 2, q|
for all ¢ € Q). The size of P is also polynomial in n, since the size of the

transition function § of the PDA is O(n? - |X| - |['|?), and P will have the same

size as 9.

e The standard algorithm for checking emptiness of a context-free grammar runs
in time linear in the number of non-terminal symbols |V| = O(r* - |T|). The
following algorithm checks whether the symbol S is useless or not. The set N
contains all the non-terminal symbols that can lead to a string of ¥* consisting

of terminal symbols only.

1. 1]\702072.:1.

79

2. Ni={A|[A = «ain Pand a € (N;-1 UX)*}UN,;_4

3. if N; = N;_q then i = 74+ 1 and goto (2) else if S € N; then the language in

non-empty else the language is empty.
Step 2 also requires polynomial time, since |V| = O(n? - |T'|).

We will consider a class of machines based on BDD’s that read their input once,

but have access to a push-down stack: a machine M from this class is defined as

follows:

Definition 5.3.5 Let X = (zy,...,2,) denote the sel of input variables, over the
alphabet ¥. A push down BDD is the system (G, X, 1,0, 8,00, Zo, F'): G = (V,E) is a
directed acyclic graph, ¥ and I' are the input and stack alphabets respectively, vg € V
is the source node (of in-degree 0) in the graph G, Zy is the initial stack symbol, and
F C 'V is the sel of sink nodes, and |F| = n. FEvery node is labeled by an input

variable given by the labeling function o 1 V' — X and every edge is labeled according

to the transition function § : V x 3. xI'. =V x I,

<< .

Figure 5.3: Push-down branching programs

The push-down BDD machines, have the same basic structure as BDD’s, but in

addition, they have access to a push down stack, and the transition from each node,

80

depends on both the value of the input variable tested on that node and the value of
the symbol in the top of the stack (the out degree of all non-sink nodes in the graph
G is |X] - |I'|). On the other hand, the push-down BDD’s have the same structure
as the usual push-down automata, but they can “choose” any (fixed) way to read
their input. Since our push-down BDD proof system will handle FSA formulas, we
know that any ordering of the variables is easy. Once we fix the ordering of the input
variables given the fact that we deal with FSA formulas, we know that our push-
down system corresponds to a push down automaton of polynomial size reading the
variables in this ordering. So, using theorem 5.3.4 and lemma 5.3.3 we conclude the
following (Recall that the push-down BDD proof system is defined as described in
definition 5.3.2.):

Corollary 5.3.6 The proof system based on the class of push-down BDD’s lies in
NP.

5.4 Links and Meanders

Alon and Maass [AMSS] describe a general technique for proving lower bounds for
branching programs.

Let X = z1zy...2, be a sequence of numbers z; € {1,2,...,n}, and consider
two disjoint subsets of {1,2,...,n}, S,T C {1,2,...,n}. We say that an interval
TiTig1 ... Tigjis a link between S and T if x4y ... 2421 ¢ SUT and x; € S, 24, €T,
orz; €T and z,4; € 5.

We say that a sequence of X over n numbers is a meander if for any two disjoint
sets S, T C {1,2,...,n} with |S| = |T|, there are in X at least |S| links between
and T'. For any function g : N = R*, X is a g(x)-meander if for any disjoint sets

S, T CH{1,2,...,n} with |S| = |T|, there are at least ¢g(|S|) links between S and 7.

81

X Xi+j

|~
s/gHSG'T\T

Figure 5.4: Links and meanders

Lemma 5.4.1 Assume s(n) is some arbitrary function and X is a sequence over
{1,2,...,n}. In order to prove that |X| = Q(n-s(n)) it is sufficient to show for some
E < n/2°0) that for any two sets S C {1,2,....n/2} and T C {n/2+1,...,n} of

size k there are in X at least s(n) links between S and T

In [AMSS] the above result is used to prove two lower bounds for oblivious read-
once branching programs:for the Set Fquality problem S(n, m) and the sequence equal-

ity function Q(n).

5.5 The Lower Bound for the branching program
model

In order to show that the proof system based on push-down BDD automata described
above is more powerful than the BDD model, we prove an exponential lower bound
for oblivious read-once branching programs, for deciding an appropriate language.
We define the language £, (based on the Pigeonhole principle) as follows: Consider
strings over the alphabet {0, 1,0}, where o is a symbol that can be ignored by our
machines. Let z,y € {0,1,0}" where x = 21 --- 2, and y = y; - - - y,. Also denote by
z and gy the strings resulting from = and y if we omit all occurrences of the symbol
o. Define the language L, to be a set of pairs of strings x,y, having the following

properties:

82

e z,y have the same length, |z| = |y| = n

o %,y have the same length, |Z| = |§| = m, and there are % + 1 ones and % — 1

zeroes in both z and y. m depends only on n. Assume that m = n/2.

By the above definition, it follows (by the pigeonhole principle) that there exists
an index ¢ such that #; = ¢; = 1. This is the search problem associated with L,:
given two strings x and y, find a position ¢ such that z; = y;.

The properties given above, can be described by a set of clauses that encode the
negation =L, of our pigeonhole language, as follows: either there are less than m /241
ones in x or y, or the two strings, z and y, “agree” in some position. The latter can
be expressed by a set of clauses of the form {C, ;(z,y)} for all r,s < n, where each

w »

clause C, s(z,y) describes that, z, = ys and the number of skip “0” symbols in the

prefixes {z;|i < r} and {y;|7 < s} is the same.

Theorem 5.5.1 A push-down BDD can recognize the language L, in time polyno-

mial in n (and the size of the push-down BDD is also polynomial in n).

Proof

Figure 5.5: Push-down BDD accepts £, in polynomial time.

The PDA can check whether (z,y) is in the language £,, the following way: Read
z from right to left. For each symbol z, # o, push z, on the stack. When we finish

reading x, we start reading y from left to right: for each symbol y; # o of y pop from

83

the stack the top symbol z, and check if x, = y, = 1. This way we can verify if a
pair (z,y) € L,. |

In the branching program model, it is not possible to solve the search problem
associated with £, , unless we allow the branching programs to have super-polynomial
number of nodes. Note that if in our definition of £, we did not use the symbols ‘o’,
then BDD’s would also be able to solve the search problem described above, since

BDD’s can choose the ordering in which they will read their input.

Theorem 5.5.2 Any (3—way) oblivious (read—once) branching program of width

gn/2" solving the search problem associated with the language L,, has length

Proof

Consider an oblivious read-once branching program with length m = 2n and width
w < 272" The input of the branching program, will be the strings z,y € {0,1,0}"
which will be read in some arbitrary (fixed) order. The size of the input is 2n. Let

X be a sequence of length m = 2n, X =< aq,...aq, > over {1,2,...,2n} such that:

7 if the i-th level vertices are labeled by z;

n+j if they are labeled by y;

Set s = h/2 and suppose S C {1,...,n} and T" C {n + 1,...,2n} with |S| =
|T| = 2n/2°. By lemma 5.4.1 it is sufficient to show that there are in X at least s
links between S and T'.

Consider inputs of the form 45 =< 21,..., 29, >, where z; = o forallt ¢ SUT,
and A =< z; >ies, B =< z; >jer such that A and B have a “1” at the same position.
We can now use a “crossing sequence” argument to find the number of links between

S and T: If we consider an instance [ap =< 27,...,25 >, such that A # A’ then

84

start

Xil XjOI')ﬁ
O] O]
3 SN

. \

i-th level

Figure 5.6: Oblivious read-once branching program for the £,

true

fase

there is a link [such that the computation path in the branching program for I4p

differs from that of 745 on that level of the branching program that corresponds

to the last element of the link /. Otherwise, the branching program for /45 would

also accept the input T4 5. The number of different choices for A is 2/ (if A and A’

differ even in only one position they should lead to different states in the branching

program). So, if we denote the set of links between S and T' by L:

wlll > o181 = 92/2° — || > 2° > 5

The length of our BDD’s is 2n, since they are read-once, and therefore the previous

theorem shows that the size of such machines solving the search problem correspond-

ing to L, is exponential.

85

5.6 Discussion and Open Problems

Proving the separation for ordinary clauses seems to be more difficult. For the lan-
guage L, our clauses must express that z,y € £,, iff 2; = y; = 1 and the number of
symbols equal to one is the same in both {z1,...,2;} and {y1,...,y;}. The second
condition involves counting, and would require super-polynomial size formulas (but
only polynomial size FSA formulas). One way to try to overcome this problem is
to change the definition of the language, and allow the use of auxiliary bits in the
input that count the number of ones in the string: then the clauses describing the new
language are polynomial in size, (ordinary clauses). The new language, £',,, is the fol-
lowing: A string xy,a1,...,%n,0n, Y1, b1, .., yn, by € L, iff v, = 2; = 1 and a; = by,
where a; = [{zx|k < i, and z = 1}| (same for b;’s). Note that z;,y; € {0,1,0}
and both a; and b; have length O(logn). The length of the input is 2n 4 2nlog n.
The correctness of the numbers a;,b; can be verified by both push down and FSA
machines by simply checking that a;11 = a; + x;. Since |a;| = O(logn), we can write
the previous equation as a polynomial size formula. The lower bound proof however
does not go through for this case. Some different approach seems to be needed.

Let M be a class of read-once machines, and denote by Mg the class of machines
from M which are oblivious: For any computation path of the machine, the input
variables are tested in the same order. For example, if M = class of FSA’s, then Mg

is the class of oblivious BDD’s. We can prove the following:

Proposition 5.6.1 The emptiness problem is polynomial for M if and only if it is

polynomial for the corresponding oblivious class Mg.

Note that Mo C M and therefore the “only if” part is trivial. For the “if” part,
notice that any machine M € M will read a specific input in some order. We can

construct an oblivious machine in Mg, which will read the input in the order defined

86

by M. And since the emptiness problem is polynomial for My, it is also polynomial
for M.

The BDD model is as powerful as oblivious regular resolution [Kra95]. Theorem
5.5.2 shows that the push down BDD proof system is strictly more powerful than
oblivious regular resolution, when our formulas are general FSA machines. If we con-
sider ordinary formulas and not generalized (“fsa”) formulas, then it is open whether
the push down model of the BDD logic is more powerful than the BDD model.

As mentioned in the introduction, the push-down based proof system essentially
contains a form of read-twice branching programs: If z is the input, using the push-
down stack we can easily simulate a read-twice branching program reading zz. It is
not clear however what is the exact relation between the two proof systems. This weak
read-twice version of the PDA system seems to have enough power to make a lower
bound for pigeonhole principle harder to prove. For example consider the following
problem [RWY97]: given an input A € {1,2,...,n}™ find some iy,15 € {1,2,...,m}
where 71 # i3 such that A;, = A,, = 7. This is called the row model for the pigeonhole
principle. A PDA BDD can make a single pass on the input A, and compute some
useful function of the input variables, and use this information to re-read the input.
So if the PDA machine has access to some function that is easy to compute for any
order of the input variables it clearly has an advantage, which seems to pose new
problems in proving a lower bound.

A natural question for the push-down BDD model is the following: is there an
exponential lower bound for the size of the proof of some special kind of tautology?
The integer multiplication problem seems to be a candidate for an exponential lower
bound, since a polynomial size proof for = * y = z would give improved results for

factoring. In particular we can prove the following:

Proposition 5.6.2 If there exists a push-down BDD M,,..; accepting the language

87

x -y =z with size S, then factoring can be solved in time SO

Proof Indeed, given the push-down machine M,,,;; we can factor a number z = z -y
in the following manner: starting from M,,,,;; construct the push down machine M

mult
by restricting the first bit of y to be equal to 1. If the language accepted by M} .
is non-empty, then there is a factor y of z whose first bit is 1. Otherwise the first
bit has to be 0. Continue in the same way by fixing the -th, ¢+ = 1,2,.. bit of y
and solving the emptiness problem for the corresponding M! .. This will give us the
factor y of z. The size of the machines anu“ have the same size as M,,,;: and the
emptiness problem is solvable in time polynomial in the size of M,,,; (by theorem

5.3.4). Therefore the factoring algorithm described above, is polynomial in the size

of the machine M,, ;. |

Another interesting problem, is to generalize the results of this section, to proba-
bilistic machines. This will enable us to consider a notion of probabilistic automata
based proof systems. One difficulty for this generalization would be to show that the
emptiness problem for probabilistic machines is easy.

There is a number of general methods for proving lower bounds in restricted
proof systems. Counting the number of subfunctions for example is a combinatorial
method used in many proofs of lower bounds for read-once branching programs ([SS93,
Gal97]). The technique is the following: Let X be a set of variables and consider a
partition of X into ¥ € X, and B = X \ Y. Every truth assignment a for the
variables in Y, defines a subfunction f, : B = {0,1}. Denote by {f, B} the
set of such subfunctions and by N(f,Y) the number of subfunctions (cardinality of
N(f,Y)). The following lemma gives a general technique for proving lower bounds

for the size of read-once branching programs:

Lemma 5.6.3 ([GAal97, SS93]) Let f be a boolean function on the variables X,

88

| X| = n. If m is an integer, 1 < m < n, such that for any subset Y C X, of size
Y| =m, N(f,Y) = 2" then the size of any read-once branching program computing

f is at least 2™ — 1.

The technique described in the previous lemma does not seem to generalize to
directly apply in the case of the push down proof system.
In conclusion, here is list of some open problems for the new push-down BDD

proof system:

1. Prove a separation between push-down BDD proof system and branching pro-

grams for ordinary (not FSA) clauses.
2. Prove that the push down BDD proof system is exponential.

3. Find the complexity of the Pigeonhole principle and integer multiplication in
the push-down BDD model.

4. Find the relation of the new proof system to read-twice branching programs or

to other well known proof systems like resolution.

89

Bibliography

[ABH*86] Miklés Ajtai, Laszl6 Babai, Péter Hajnal, Janos Komlds, Pavel Pudlék,

[Abro0]

[Ajt98]

[Ajt99a]

Vojtéch Rodl, Endre Szemerédi, and Gyorgy Turan. Two lower bounds
for branching programs. In Proceedings of the Fighteenth Annual ACM
Symposium on Theory of Computing, pages 30-38, Berkeley, California,
28-30 May 1986.

K. Abrahamson. A time-space tradeoff for Boolean matrix multiplication.
In IEEE, editor, Proceedings: 31st Annual Symposium on Foundations of
Computer Science: October 22-24, 1990, St. Louis, Missouri, volume 1,
pages 412-419, 1109 Spring Street, Suite 300, Silver Spring, MD 20910,
USA, 1990. TEEE Computer Society Press.

Ajtai. Determinism versus non-determinism for linear time RAMs with
memory restrictions. In FCCC: FElectronic Colloguium on Computational

Complexity, technical reports, 1998.

M. Ajtai. A non-linear time lower bound for Boolean branching programs.
In IEEE, editor, 40th Annual Symposium on Foundations of Computer
Science: October 17-19, 1999, New York Clily, New York,, pages 60-70,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1999. IEEE

Computer Society Press.

90

[Ajt99b]

[AMSS]

[Bac90]

[BCS2]

[BEOS]

[Bea91]

[BHSTS7]

[Bla37]

Miklos Ajtai. Determinism versus non-determinism for linear Time RAMs
with memory. In Proceedings of the Thirty-First Annual ACM Symposium
on Theory of Computing (STOC’99), pages 632-641, New York, May 1999.

Association for Computing Machinery.

Noga Alon and Wolfgang Maass. Meanders and their applications in lower
bound arguments. Journal of Computer and System Sciences, 37(2):118—
129, October 1988.

Eric Bach. Number-theoretic algorithms. In Annual Review of Computer

Science, volume 4, pages 119-172. Annual Reviews, Inc., 1990.

A. Borodin and S. Cook. A Time space trade off for sorting on a general
sequential model of Computation. SIAM Journal on Computing, 11:287—
297, 1982.

Greg Barnes and Jeff A. Edmonds. Time-space lower bounds for directed
st-connectivity on graph automata models. SIAM Journal on Computing,

27(4):1190-1202, August 1998.

Paul Beame. A general sequential time-space tradeoff for finding unique

elements. STAM Journal on Compuling, 20(2):270-277, April 1991.

Laszlé Babai, Péter Hajnal, Endre Szemerédi, and Gyorgy Turan. A lower
bound for read-once-only branching programs. Journal of Computer and

System Sciences, 35(2):153-162, October 1987.

A. Blake. Canonical expressions in boolean algebra. PhD thesis, University

of Chicago, 1937.

91

[Bor77]

[Bor93|

[BPOS]

[BPRS90]

[BRS93]

[Bry91]

[BSSVO0]

A. Borodin. On relating time and space to size and depth. SIAM Journal
of Computing, 6(4):733-744, December 1977.

Borodin. Time-space tradeoffs. In ISAAC: jth International Symposium
on Algorithms and Computation (formerly SIGAL International Sympo-
stum on Algorithms), Organized by Special Interest Group on Algorithms
(SIGAL) of the Information Processing Society of Japan (IPSJ) and the
Technical Group on Theoretical Foundation of Computing of the Insti-
tute of Flectronics, Information and Communication FEngineers (IEICE)),

1993.

Paul Beame and Toniann Pitassi. Propositional proof complexity: Past,

present, future. Bulletin of the FATCS, 65:66-89, June 1998.

L. Babai, P. Pudlak, V. Rodl, and E. Szemeredi. Lower bounds to the
complexity of symmetric Boolean functions. Theoretical Computer Sci-

ence, 74(3):313-323, 28 August 1990.

Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower

bounds for read-k-times branching programs. Computational Complexity,

3(1):1-18, 1993.

R. Bryant. On the Complexity of VLSI implementations and graph repre-
sentations of boolean functions with applications to integer multiplication.

IEEE Transactions on Computers, 40(2):205-213, 1991.

P. Beame, M. Saks, Xiaodong Sun, and E. Vee. Super-linear time-space
tradeoff lower bounds for randomized computation. In IEEE, editor, 41st

Annual Symposium on Foundations of Computer Science: proceedings:

12-14 November, 2000, Redondo Beach, California, pages 169-179, 1109

92

[BSTO8]

[BTSS]

[Bus87]

[CCTST)

[CooT3]

[Coo88]

[CR73]

[CR79]

[DF92]

Spring Street, Suite 300, Silver Spring, MD 20910, USA. 2000. IEEE Com-

puter Society Press.

Paul Beame, Michael Saks, and Jayram S. Thathachar. Time-space trade-
offs for branching programs. In FOCS: IEEE Symposium on Foundations
of Computer Science (FOCS), pages 254-263, 1998.

S. Buss and G. Turan. Resolution proofs of generalized pigeonhole princi-

ple. Theoretical Computer Science, 62:311-317, 1988.

Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole

principle. Journal of Symbolic Logic, 52(4):916-927, December 1987.

W. Cook, C. Coullard, and G. Turan. On the Complexity of Cutting Plane
Proofs. Discrete Applied Mathematics, 18:25-38, 1987.

Stephen A. Cook. A hierarchy for nondeterministic time complexity. Jour-

nal of Computer and System Sciences, 7(4):343-353, August 1973.

Stephen A. Cook. Short propositional formulas represent nondeterministic
computations. Information Processing Letters, 26(5):269-270, January
1988.

Stephen A. Cook and Robert A. Reckhow. Time bounded random ac-
cess machines. Journal of Computer and System Sciences, 7(4):354-375,
August 1973.

Stephen Cook and Robert Reckhow. The relative efficiency of proposi-

tional proof systems. Journal of Symbolic Logic, 44:36ff, 1979.

Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractabil-

ity (extended abstract). In Proceedings of the Seventh Annual Structure

93

[DF99]

[DP60]

[Dun85]

[Edm9s]

[EP95]

[FK97]

[For97]

in Complexity Theory Conference, pages 36-49, Boston, Massachusetts,

22-25 June 1992. IEEE Computer Society Press,.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer,
1999.

Martin Davis and Hilary Putnam. A computing procedure for quantifica-

tion theory. Journal of the ACM, 7(3):201-215, July 1960.

P. E. Dunne. Lower bounds on the complexity of 1-time only branching
programs. FCT: Fundamentals (or Foundations) of Computation Theory,
5, 1985.

Jeff A. Edmonds. Time-space tradeoffs for undirected st-connectivity on a
graph automata. SIAM Journal on Computing, 27(5):1492-1513, October

1998.

Jeff Edmonds and Chung Keung Poon. A nearly optimal time-space lower
bound for directed st-connectivity on the NNJAG model. In Proceedings
of the Twenty-Seventh Annual ACM Symposium on the Theory of Com-

puting, pages 147-156, Las Vegas, Nevada, 29 May—1 June 1995.

Uriel Feige and Joe Kilian. On limited versus polynomial nondeterminism.

Chicago Journal of Theoretical Computer Science, March 1997.

L. Fortnow. Nondeterministic polynomial time versus nondeterministic
logarithmic space: Time-space tradeoffs for satisfiability. In Proceedings
of the 12th Annual IEEFE Conference on Computational Complexity (CCC-
97), pages 5H2-60, Los Alamitos, June24-27 1997. IEEE Computer Society.

94

[For00a]

[For00D]

[FvMOO]

[G4lo7]

[GS90]

[Hak85]

[HPVT77]

[HU79]

[Kan81]

L. Fortnow. Diagonalization. Bulletin of the Furopean Association for
Theoretical Computer Science, 71:102-112, June 2000. Columns: Compu-

tational Complexity.

Lance Fortnow. Time-space tradeoffs for satisfiability. JCSS: Journal of
Computer and System Sciences, 60:337-353, 2000.

Lance Fortnow and Dieter van Melkebeek. Time-space tradeoffs for nonde-
terministic computation. In Computational Complexity Conference, pages

2-13, Florence, Italy, 4-7 July 2000.

Anna Gal. A simple function that requires exponential size read-once
branching programs. Information Processing Letters, 62(1):13-16, 14 April
1997.

Y. Gurevich and S. Shelah. Nondeterministic linear-time tasks may require

substantially nonlinear deterministic time in the case of sublinear work

space. Journal of the ACM, JACM, 37(3):674-687, July 1990.

A. Haken. The Intractability of resolution. Theoretical Computer Science,
39:297-308, 1985.

J. Hopcroft, W. Paul, and L. Valiant. On time versus space. Journal of
the ACM., 24(2):332-337, April 1977.

John Hopcroft and Jefrey Ullman. Introduction to Automata Theory, Lan-

guages and Computation. Addison-Wesley, 1979.

R. Kannan. A circuit-size lower bound. In 22th Annual Symposium
on Foundations of Computer Science, pages 304-309, Los Alamitos, Ca.,
USA, October 1981. IEEE Computer Society Press.

95

[Kan84]

[Kar86]

[KLVO00]

[Koz77]

[Kra95]

[LV99a]

[LVOYb]

[LVO1]

[Nec66]

Ravindran Kannan. Towards separating nondeterminism from determin-

ism. Mathematical Systems Theory, 17(1):29-45, April 1984.

M. Karchmer. Two time-space tradeoffs for element distinctness. Theo-

retical Computer Science, 47(3):237-246, 1986.

George Karakostas, Richard J Lipton, and Anastasios Viglas. On the
Complexity of intersecting finite state automata. In Proceedings of the
15th Annual IEEE Conference on Computational Complexily, pages 229—

234, Florence, Italy, July7-9 2000.

D. Kozen. Lower bounds for natural proof systems. In 18th Annual Sympo-
stum on Foundations of Computer Science, pages 254-266. IEEE, October

1977.

Jan Krajicek. Bounded Arithmetic, Propositional Logic and Complexity

Theory. Cambridge University Press, 1995.

Richard J. Lipton and Anastasios Viglas. On the complexity of SAT. In
40th Annual Symposium on Foundations of Computer Science (FOCS),

pages 459-464, New York City, New York, 17-190ctober 1999.

Richard J Lipton and Anastasios Viglas. On the Power of Automata based
Proof Systems. In Proceedings of the 2nd Panhellenic Logic Symposium,
Delphi, Greece, July13-17 1999.

Richard J Lipton and Anastasios Viglas. New results using Block Respect-

ing Turing Machine computation, 2001.

Neciporuk. A boolean function. DOKLADY: Russtan Academy of Sciences
Doklady. Mathematics (formerly Soviet Mathematics—Doklady), 7, 1966.

96

[Pon95]

[PPSTS3]

[PRSO]

[PRS1]

[PTC77]

[Pud84]

[Raz91]

[Raz98]

Stephen Ponzio. A lower bound for integer multiplication with read-once
branching programs. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, pages 130-139, Las Vegas, Nevada,
29 May-1 June 1995.

Wolfgang J. Paul, Nicholas Pippenger, Endre Szemerédi, and William T.
Trotter. On determinism versus non-determinism and related problems
(preliminary version). In 2/th Annual Symposium on Foundations of Com-

puter Science, pages 429-438, Tucson, Arizona, 7-9 November 1983. TEEE.

Wolfgang J. Paul and Rudiger Reischuk. On alternation II. A graph theo-
retic approach to determinism versus nondeterminism. Acta Informatica,

14:391-403, 1980.

W. Paul and R. Reischuk. On time versus space II. Journal of Computer
and System Sciences, 22(3):312-327, June 198]1.

Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space
bounds for a game on graphs. Mathematical Systems Theory, 10:239-251,
1977.

P. Pudlak. A Lower bound on the Complexity of Branching Pro-
grams. Conference on the Mathematical Foundations of Computer Science,

176:480-489, 1984.

A. A. Razborov. Lower bounds for deterministic and nondeterministic

branching programs. Lecture Notes in Computer Science, 529:47-61, 1991.

Ran Raz. Resolution Lower Bounds for the Weak Pigeonhole Princi-

ple. Technical Report TR01-021, Electronic Colloquium on Computational
Complexity ECCC, 1998.

97

[Rob65]

[Rob91]

[RWY97]

[Sch78]

[SFM73]

[SFM78]

[Sip86]

[Sip88]

J. Alan Robinson. A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12(1):23-41, January 1965.

J. M. Robson. An O(T log T) reduction from RAM computations to

satisfiability. Theoretical Computer Science, 82(1):141-149, May 1991.

Alexander Razborov, Avi Wigderson, and Andrew Yao. Read-Once
Branching Programs, Rectangular Proofs of the Pigeonhole Principle and
the Traversal Calculus. Proceedings of the Twenty-Ninth Annual ACM
Symposium on Theory of Computing, STOC 97, pages 739-748, 1997.

C. P. Schnorr. Satisfiability is quasilinear complete in NQL. Journal of
the ACM, 25(1):136-145, January 1978.

J. 1. Seiferas, M. J. Fischer, and A. R. Meyer. Refinements of the nondeter-
ministic time and space hierarchies. In Ronald V. Book, editor, Proceedings

of the 14th Annual Symposium on Switching and Automata Theory, pages

130-137, University of lowa, October 1973. IEEE Computer Society Press.

Joel 1. Seiferas, Michael J. Fischer, and Albert R. Meyer. Separating
nondeterministic time complexity classes. Journal of the ACM, 25(1):146—
167, January 1978.

M. Sipser. FEzpanders, randomness, or time versus space. In Alan L.
Selman, editor, Proceedings of the Conference on Structure in Complexity

Theory, volume 223 of LNCS, pages 325-329, Berkeley, CA, June 1986.

Springer.

M. Sipser. Expanders, randomness, or time versus space. Journal of Com-

puter and System Sciences, 36, 1988. Contains a discussion on efficiently

98

$593]

[Tha9s]

[Tou00]

[Urq95]

[VMO1]

[WegS7]

[Yao88|

reducing the probability of error in randomized algorithms. It also de-
scribes a relationship between pseudorandomness, time and space used by
certain algorithms if certain types of expander graphs can be explicitly

constructed.

Janos Simon and Mario Szegedy. A new Lower Bound Theorem for Read-
Only-Once Branching Programs and its Applications. DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, 13, 1993.

Jayram Thathachar. On Separating the Read-k-Times Branching Program
Hierarchy. Technical Report 2, Electronic Colloquium on Computational

Complexity ECCC, 1998.

[annis Tourlakis. Time-space lower bounds for SAT on uniform and non-
uniform machines. In Computational Complexity Conference, pages 22-33,

Florence, Italy, 4-7 July 2000.

Alasdair Urquhart. The complexity of propositional proofs. The Bulletin
of Symbolic Logic, 1(4):425-467, December 1995.

Dieter van Melkebeek. Time-space lower bounds for satisfiability.
BEATCS: Bulletin of the Furopean Assoctation for Theoretical Computer
Science, 73, 2001.

Ingo Wegener. The Complexity of Boolean Functions. John Wiley & Sons,
1987.

A. C.-C. Yao. Near-optimal time-space tradeoff for element distinctness.
In IEEE, editor, 29th annual Symposium on Foundations of Computer Sci-
ence, October 2/-26, 1958, White Plains, New York, pages 91-97, 1109

99

Spring Street, Suite 300, Silver Spring, MD 20910, USA. 1988. IEEE Com-

puter Society Press.

[Yao94] Andrew Chi-Chih Yao. Near-optimal time-space tradeoff for element dis-

tinctness. SIAM Journal on Computing, 23(5):966-975, October 1994.

100

